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ABSTRACT 

 

Liriomyza Leafminers, Associated Parasitoid and Insecticide Evaluation in South Texas. 

(May 2009) 

Ricardo Hernandez Moreno, B.S., New Mexico State University 

Co-Chairs of Advisory Committee:  Dr. Tong-Xian Liu 
                           Dr. Marvin Harris 

 

In the Lower Rio Grande Valley of Texas, dipterous leafminers cause damage to 

pepper crop by destroying small plants (excessive mining), reduction of yield, and by 

vectoring plant diseases. The objectives of the present research were to identify 

leafminers species, which cause damage to peppers in South Texas, their associated 

parasitoid guilds and to evaluate the efficacy of abamectin, novaluron, spinetoram and 

lambda-cyhalothrin against leafminers as well as their effects on the parasitoid complex.  

Field surveys were conducted on various pepper varieties in different cities of 

South Texas. Insecticide evaluation was carried out on field plots in Weslaco TX using 

the different insecticide treatments and water. To determine the insecticides’ lethal effects 

on adult leafminer parasitoids, Neochrysocharis formosa and Ganaspidium nigrimanus, 

laboratory bioassays, such as topical insecticide application, pesticide intake and residual 

effects were performed.  

The surveys suggested that the leafminers causing the most damage to pepper 

crops in South Texas is Liromyza trifolii, which represents more than 99% of the 

collected and identified species. Twenty parasitoid species, of four different families, 

were found to be attacking L. trifolii on pepper plants in the field. Novaluron was the 
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most effective insecticide in controlling L. trifolii, followed by spinetoram and abamectin. 

Lambda-cyhalothrin was the least effective, showing L. trifolii tolerance to the compound. 

In field evaluation novaluron showed the lowest parasitoid: leafminer larvae ratio and 

parasitoid diversity index. In contrast, novaluron had the least impact on adult parasitoids 

in laboratory bioassays compared with other treatments (abamectin, spinetoram, lambda-

cyhalothrin). The lambda-cyhalothrin showed negative effects only to Ganaspidium 

nigrimanus in topical assays, but in the residual assays it had negative effects on G. 

nigrimanus as well as N.  formosa. On the other hand, abamectin showed negative effects 

on N.  formosa and G. nigrimanus in the topical and intake bioassays and negative effects 

on G. nigrimanus but no-effect on N.  formosa in the residue bioassay. Furthermore 

spinetoram showed negative effects on N.  formosa and G. nigrimanus in all bioassays 

carried out in the laboratory. Leafminer species, parasitoid species composition, efficacy 

of insecticides, effects of insecticides on parasitoids and development of tolerance to 

lambda-cyhalothrin by L. trifolii and N.  formosa were discussed. 
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CHAPTER I 

INTRODUCTION 

Integrated Pest Management (IPM) is a comprehensive technique used to reduce 

pests below tolerance levels using multiple pest control tactics that are effective, 

economically feasible and ecological compatible, and that meet the needs of agricultural 

growers and society (Pedigo 2002, Norris et al. 2003). IPM is a desirable technique to 

control agricultural pests that cause crop losses from 20 to 50 percent in important 

agricultural commodities around the world (Norris et al. 2003).  Among agricultural pests, 

arthropods including insects, can cause economic, environmental, and health-safety 

impacts (Norris et al. 2003).  One of the components of an IPM program is the use of 

pesticides. 

 Pesticides are chemicals that directly influence pests by toxic means and there are 

advantages and disadvantages to their use. Some of the advantages are the control of 

pests that are impossible to manage with any other IPM tactic, their low cost when 

compared to other management sources, and the rapid control of target pests, among 

others. However, they also have disadvantages; for example, effects on untargeted 

organisms, residue and drift, food contamination, human and animal toxicity, and 

creation of other pest problems (Norris et al. 2003).  Another IPM tactic is biological 

control. This is defined as the use living organisms like predators, parasites, antagonists 

and diseases to maintain tolerance levels of pests and lessen damage (Hajek 2004).  
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It is imperative to use IPM tactics such as pesticides and biological control in 

order to manage pests that cause economic damage to agricultural crops. Examples of 

such pests are the Liriomyza leafminers.  

 

THE PEST 

Leafminers in the family Agromyzidae (Diptera) are composed of about 1800 

species and ~75% produce mines on leaves (Bader 2006). Twenty three of ~300 species 

in the genus Liriomyza are capable of causing economic damage to agricultural and 

horticultural crops (Spencer 1973, Parella 1987). Six of the important economic species 

are polyphagous: Liriomyza sativae (Branchard), L. trifolii (Burgess), L. huidobrensis 

(Branchard), L. bryoniae (Kaltenbach), L. strigata (Meigen) and L. longei (Frick); they 

all occur world-wide (Spencer 1973, Parella and Keil 1984, van-der-Linden 1990, 

Lanzoni et al. 2002, Bader 2006, Liu et al. 2009). Liriomyza species can develop host-

plant specialization, which might be explained by pre-imaginal adult experience or the 

presence of cryptic species (Scheffer 2000, Facknath and Wright 2006). 

In the Lower Rio Grande Valley of Texas (LRGV), L. sativae and L. trifolii are 

the economically important species attacking vegetable crops and are targeted by as many 

as 10 insecticide applications per season in South Texas (Chandler 1981, 1984a, 1985b, 

1987, 1988). The damage of L. sativae is relative to the plant’s size and maturity (age). 

Although leafminer density is low from the seedling stage to first bloom, such damage is 

considered important since leaf area is also low. A significant increase in leafminer 

density occurs from plant bloom to harvest (Chandler 1984a). Liriomyza trifolii is the 

most abundant species on bell pepper (Capsicum annuum) (Chandler 1985b) and can also 
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be found on weeds in the LRGV (Chandler 1988). This crop/weed relationship has also 

been found elsewhere in the world (Schuster et al. 1991, Rauf et al. 2000, Chen et al. 

2002). 

Liriomyza sativae and L. trifolii adult females injure the plant using their 

ovipositor by puncturing the leaf with a series of thrusts forming a fan or tubular pattern; 

the exudates from the wounds are fed on by the female. Tubular wounds are also used for 

oviposition (Dimetry 1971, Bethke and Parella 1985, Parella 1987). The eggs are oval 

and elongated in shape, with a cream/white color, and measure ~0.25 mm in length and 

~0.10 mm in width (Dimetry 1971). Eggs are inserted in the palisade leaf tissue, and they 

increase in size by imbibing plant fluids (Tilden 1950, Dimetry 1971). Larvae hatch and 

feed in the palisade mesophyll using their mouthhooks (Dimetry 1971, Parella et al. 1985) 

and complete their four larval instars while mining between the upper and lower 

epidermis (Dimetry 1971). The larval developmental period is completed after 147.5 

degree-days above 10.1 oC (Miller and Isger 1985) and larval instars may be determined 

either by mine or mouthhook size (Tauber and Tauber 1968, Webb and Smith 1969). The 

sated larva exits the leaf and pupates in the soil (Dimetry 1971, Parella 1987, Malais and 

Ravensberg 1992). Temperature variations affect the developmental time of the egg 

(Dimetry 1971), larval (Fagoonee and Toory 1984, Liebee 1984, Parella 1987), and pupal 

(Oatman and Michelbacher 1959, Parella 1987) stages. 

Liriomyza leafminers, including L. trifolii and L. sativae, have highly mobile 

adults with a high reproductive potential that give rise to rapidly maturing immatures 

growing in protected plant tissue followed by pupation in the soil (Parella 1987); these 

factors contribute to their pestiferous capabilities. Liriomyza has also demonstrated the 



 

 

4 
 

capacity to express resistance to insecticides (Genung 1957, Wolfenbarger 1958, 

Stegmaier 1966, Parella and Keil 1984, Parkman and Pienkowski 1989).  

Leafminers inflict stress to plants by several means: transmitting plant diseases 

(Zitter and Tsai 1977); killing or slowing down the development of young seedlings by 

excessive mining (Elmore and Ranney 1954); reducing photosynthetic activity and hence 

crop yields (Wolfenbarger 1954, Ledieu and Heyler 1985, Weintraub and Horowitz 

1995); and causing leaf drop from the top of developing fruit that could lead to 

“sunburning” of the fruit (IPM Manual Group 1985, Parella 1987); thereby reducing 

aesthetics of ornamental plants (Parella et al. 1985). 

 

CONTROL TECHNIQUES 

Resistance 

Research has focused on different control tactics to suppress Liriomyza. Host 

monogeneic plant resistance to Liriomyza in melons (Charentais) has been researched 

(Dogimont et al. 1999) and genetic resistance in some chrysanthemum cultivars (C. 

pacificum) has been reported (De Jong and Van De Vrie 1987), and some antixenotic and 

antibiotic resistance has been found in Apium species (Trumble and Quiros 1988).  

Cultural practices are also used to control leafminers, including, the use of clean 

stock (cuttings) free of leafminers; elimination of host weeds in the crop environment 

(Price and Harbaugh 1981), exclusion of leafminers from greenhouse growing areas by 

physical barrier (mesh protection) (Schuster and Harbaugh 1979), adequate fertilization 

eliminating excessive nitrogen that may favor leafminer development (Woltz and 

Kelsheimer 1958, Poe et al. 1976, Poe and Overman 1977); and the use of gravel as a 
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substrate in the greenhouse to reduce leafminer survival (Oetting 1983). 

 

Insecticides 

The most common tactic to control Liriomyza densities is insecticidal control. 

Nicotine was among the first insecticides used to control leafminer, killing the adult by 

contact and larvae by osmosis through the leaf epidermis (Sanders 1912, Smulyan 1914, 

Mesnil and Marcel 1935, Miles and Cohen 1936). The use of nicotine for leafminer 

control was popular from 1900 to 1940 (Spencer 1973). After World War II, however, 

DDT was adopted as the main insecticide to control leafminer around the world (Hely 

1947, Speyer and Parr 1948, Venugopal and Venkataramani 1954, Ali 1957) including 

the United States, i. e., Florida (Kelsheimer 1948, Wolfenbarger 1958), California 

(Wilcox and Howland 1952), Arizona (Hills and Taylor 1951), and Texas (Wene 1953, 

1955). 

Harding and Wolfenbarger (1963) tested several granular systemic insecticides on 

cucumbers and southern peas against Liriomyza sativae in Texas, finding successful 

control with Di-syston, and phorate. They based their insecticide selection on insect 

control and predator-parasite protection.  

In recent years, avermectins and cyromazine have been the most successful 

insecticides to control leafminers (Trumble 1984, Hara 1986, Mujica et al. 2000) on 

horticultural crops (Hara 1986) and vegetables (Schuster and Everftt 1983, Trumble 1984, 

Civelek and Weintraub 2003). Neem-based insecticides like azadirachtin are also 

expanding the spectrum of compounds available to control Liriomyza (Weintraub and 

Horowitz 1997, Civelek and Weintraub 2003).  In addition, some fruit extracts such as 
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Melia azedarach (Meliaceae) have also been investigated for their effects on the control 

of leafminers (Banchio et al. 2003). 

Liriomyza leafminers have shown resistance to several pesticides (Hills and 

Taylor 1951, Wene 1955, Oatman 1959, Spencer 1973, Musgrave et al. 1976, Oatman 

and Kennedy 1976, Johnson et al. 1980b, Parrella 1983, Trumble and Toscano 1983, Keil 

and Parrella 1990, Ferguson 2004) including dichloro-diphenyl-trichloroethane (DDT) 

and Lindane (BHC) (Spencer 1973). 

In addition, leafminers have shown resistance to carbamate, organophosphate, 

pyrethroids and insect growth regulators (Hills and Taylor 1951, Wene 1955, Oatman 

1959, Musgrave et al. 1976, Oatman and Kennedy 1976, Johnson et al. 1980b, a, Parrella 

1983, Trumble and Toscano 1983). Colonies of L. trifolii from Florida and California 

were shown to be resistant to DDT, cypermethrin, permethrin, methyl parathion and 

methamidophos (Keil and Parrella 1990). More recently, populations of L. trifolii have 

shown resistance to abamectin, spinosad and cyromazine (Ferguson 2004).  

 

NATURAL ENEMIES 

Liriomyza leafminers are attacked by a variety of natural enemies, including 

predators, entomopathogenic nematodes, entomopathogens and parasitoids (Liu et al. 

2009). Parasitoid guilds are the most common category of natural enemies of leafminers 

and many species have been reported around the world. Liu et al. (2009) compiled a list 

of the species of parasitoids reported around the world including 23 species in the 

Nearctic region, 14 from Florida, 72 from South America, 28 from Japan, 14 in China, 11 

in Indonesia, eight species in Malaysia, 18 species in Vietnam and several from Europe 
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and Turkey. These species belong to the Braconidae, Cynipidae, Pteromalidae, Figitidae 

and Eulophidae families of Hymenoptera. Some of these natural enemies are used to 

manage leafminers and have kept pest densities under control in several countries 

including Senegal (Neuenschwander et al. 1987), Indonesia (Rauf et al. 2000), Iran 

(Talebi et al. 2005), Malaysia (Sivapragasam et al. 1999), Vietnam (Tran et al. 2005b, 

Tran et al. 2006), Japan (Yano 2004), China (Xu et al. 1999, Wen et al. 2002), and the 

U.S.A. (Zehnder and Trumble 1984). Biological control using parasitoids is mainly used 

in protected horticultural systems (Chow and Heinz 2005, van-der-Linden 2005), and 

vegetable production systems (Trumble 1990) and to a lesser extent in field crops (Reitz 

et al. 1999).  

 

Conservation biological control 

Conservation biological control is the modification of existing farming practices, 

in order to protect natural enemies and reduce the effect of the pest (Barbosa, 1998), and 

has been used for the control of leafminers. The most important strategy is the use of 

pesticides that exclude or have minimal impact on leafminer parasitoids (Liu et al. 2009). 

For example in Mexico, a reduction in leafminer density was shown to be associated with 

using IPM strategies in comparison with a conventional pesticide program (Trumble and 

Alvarado-Rodriguez 1993). Similarly in Califonia, natural enemies kept the leafminer 

density below threshold level in tomatoes and celery fields (Trumble and Alvarado-

Rodriguez 1993, Trumble et al. 1997, Reitz et al. 1999).  

Classical biological control, which is the practice of introducing non-indigenous 

parasitoids for the control of leafminers has had some success under field conditions (Liu 
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et al. 2009). In Hawaii, G. utilis Baerdsley, N. diastatae and C. oscinidis were released 

for the control of L. trifolli and L. sativae on watermelon, celery, tomato, pumpkin, bean, 

and Irish potato with great success (Johnson et al. 1983, Johnson and Hara 1987, Johnson 

1993, Liu et al. 2009). 

  Augmentation biological control, which relies on routine rearing and periodic 

release of mass reared parasitoids (Yano 2004), has been used principally under protected 

agriculture. Two approaches are used, innundative augmentation and inoculative 

augmentation biological control.  

 

Inundative augmentation 

 The application of high densities of parasitoids to achieve a high initial control 

(Yano 2004) has been used in greenhouse high value crops (Liu et al. 2009). Diglyphus 

isaea is commercially available for the control of Liriomyza, and has been reported to be 

effective against L. trifolii (Cabitza et al. 1993, Ulubilir and Sekeroglu 1997, Ozawa et al. 

1999) and L. bryoniae (Boot et al. 1992, Ushchekov 1994, Sampson and Walker 1998) in 

several crops including tomatoes and nursery plants. Another example is Diglyphus 

begini, which is not commercially available, however research has shown its 

effectiveness; for example in marigolds L. trifolii was controlled with time-releases of D. 

begini reducing leafminer densities to near zero (Heinz et al. 1988, Heinz and Parrella 

1990). Similar success was achieved with greenhouse-grown chrysanthemum (Parrella et 

al. 1992). 

Dacnusa sibirica in combination with Diglyphus isaea is also used in inundative 

biological control. Liriomyza trifolii has been controlled by releasing these two 
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parasitoids in greenhouses producing tomatoes and cucumbers (Ozawa et al. 1993, 

Matsumura et al. 2001, Abd-Rabou 2006); the combination of these parasitoids is 

available commercially.  

Hemiptarsenus varicornis has also been effective in controlling L. trifolii by 

inundative conditions in greenhouse cherry tomatoes (Ozawa et al. 2004). 

Neochrysocharis formosa is also effective in controlling L. trifolii on egg plant 

(Shimomoto 2005, Hondo et al. 2006), and Opius pallipes improved the control of L. 

bryoniae (Van Schelt and Altena 1997). 

 

Inoculative biological control 

 In this method, the release of small numbers of parasitoids anticipates they will 

reproduce and their offspring will continue with the control of the pest for a longer period 

of time (Van Driesche and Bellows 1996), and is also used against Liriomyza leafminers. 

In Europe, L. bryoniae was suppressed with inoculative releases of Diglyphus isaea (Boot 

et al. 1992), and in Japan L. trifolli was controlled with inoculative releases of D. isaea 

and D. sibirica (Ozawa et al. 2001). Opius dissitus was also established in Senegal for the 

control of L. trifolii (Neuenschwander et al. 1987). 

 

Effect of insecticides on natural enemies 
 

Natural enemies are in close association with leafminers in the field, and any 

chemical treatment used against Liriomyza will directly or indirectly affect its associated 

natural enemies. The effects of different insecticides used against leafminers and natural 

enemies have been reported throughout time. In the literature, Darvas and Polgar (1998) 
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alleged that insecticides that disrupt the parasitoid food chain by killing leafminers would 

always have a negative effect on their natural enemies. A field trial showed that 

methomyl could encourage pest growth through the disturbance of the parasitoid guilds, 

methomyl could encourage pest development through the disturbance of parasitoid guilds, 

and that methamidophos was safer than methomyl to the natural enemies (Trumble and 

Toscano 1983).  In contrast to methomyl and methamidophos, abamectin showed higher 

densities of the leafminer parasitoid Diglyphus isaea on treated potatoes compared to 

cyromazine (Weintraub 2001). Prijono et al. (2004), however, have shown that abamectin 

was not the safest insecticide against Hemiptarsenus varicornis Gerault, Opius sp., 

Gronotoma micromorpha Perkins, Hemiptarsenus varicornis and D. isaea. Similarly, 

Kaspi and Parrella (2005) studied the compatibility of the widely used abamectin 

insecticide with the commercially available parasitoid D. isaea. Topical applications 

greatly affected parasitoid survival. Abamectin residue on plants also negatively affected 

D. isaea survival up to 5 days after application. Parasitism of treated leafminer larvae was 

lethal for the natural enemy. However, application of insecticide after the leafminer was 

parasitized and parasitoid larvae started feeding, did not affect D. isaea emergence and 

longevity.  

The susceptibility of the insecticides imidacloprid, pymetrozine and lufenuron to 

the leafminer parasitoid Neochrysacharis formosa (Westwood) were investigated using 

glass vials coated with different insecticide solutions (Tran et al. 2005a). The sublethal 

effects on longevity showed that imidacloprid and pymetrozine reduced longevity and 

that lufenuron did not have an effect on longevity of the parasitoid.  
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 Hidrayani et al. (2005) studied the effects of profenofos, carbosulfan, and 

abamectin. They observed that profenofos, and carbosulfan reduced parasitism by 

Hemiptarsenus varicornis, Opius chromatomyiae and C. humilis, and abamectin did not 

reduce parasitism.  

 Bjorksten and Robinson (2005) tested larval and pupal mortality and sublethal 

effects of abamectin, cyromazine and mancozeb on the two important parasitoids of 

Australian Hemiptarsenus varicornis (Girault) and Diglyphus isaea (Walker). Abamectin 

caused mortality to the larvae and pupae of the two species; cyromazine and mancozeb 

did not. In addition, cyromazine and mancozeb did not cause a reduction in longevity and 

progeny production compared to the control, and abamectin had a significantly higher 

mortality in the first 3 days and females dying within these 3 days did not produce any 

progeny. Females surviving these three days produced progeny similar to the control. 

They concluded that cyromazine and mancozeb were compatible in an IPM program in 

Australia, and that abamectin should be used with caution. 

The effects of neem (azadirachtin), abamectin and spinosad to Neochrysocharis 

formosa and Opius chromatomyiae were summarized by Hossain and Poehling (2006). 

Neem-Azal-U is used for soil applications, and it caused low mortality on O. 

chromatomyiae when the parasitized L. sativae pupae came in contact with the 

insecticide; the longevity of the emerged parasitoids was unaffected. The foliar 

formulations of azadirachtin, spinosad and abamectin were all highly toxic to O. 

chromatomyiae. The application of spinosad and abamectin to parasitized leafminer 

larvae by N. formosa had strong negative effects on its emergence. However, NeemAzal-

T/S (azadirachtin) had no detrimental effects on the parasitoid observed. 
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PROJECT FOCUS 

Vegetable production in South Texas covers approximately 26,300 hectares 

(Johnson 1997). This region is heterogeneous in its farming techniques, crops, and insect 

pests. Although the use of natural enemies as a sole technique for controlling dipterous 

leafminers is the ideal model, the complex interactions of other pests and economic 

thresholds may require the incorporation of insecticides in the pest control program.  

Insecticides that conserve natural enemies may be integrated into an IPM program to 

successfully control Liriomyza. 

Liriomyza species composition and parasitoid guilds were determined by 

sampling different pepper growing areas in the Lower Rio Grande Valley (LRGV). In 

addition, current commercially used insecticides like abamectin, novaluron, spinetoram 

and lambda-cyhalothrin were tested to record their effects on the parasitoid complex 

attacking Liriomyza and leafminer species.  

The overall objective of this research was to develop methods and strategies to 

manage Liriomyza utilizing both insecticides and biological control agents. Pepper, one 

of the most important cash crops and hosts of the leafminers, was used as the research 

crop. This model system for the management of leafminers could also be applied to other 

crops.  

The research addressed the following objectives: 

• To determine the composition of leafminer species attacking vegetables; 

• To identify the native, larval, larval-pupal and pupal parasitoid complexes 

attacking the leafminer species;  
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• To determine which currently used insecticides are effective in controlling 

leafminers; 

• To summarize the effects of different insecticides on the parasitoid complexes and 

make suggestions for leafminer management. 

 
Field and laboratory experiments were conducted in order to achieve the 

objectives. Pepper-growing areas in South Texas were sampled for leafminer and 

parasitoid species composition. Experimental plots were established on the research farm, 

Texas AgriLife Research at Weslaco, where insecticides were applied and their efficacy 

in controlling Liriomyza and effects on the parasitoids were determined. Laboratory 

research used two colonies of native parasitoids that were established and insecticide 

bioassays were used to investigate the insecticide effects on the natural enemies.   
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CHAPTER II 

LIRIOMYZA AND PARASITOID SPECIES COMPOSITION  

INTRODUCTION 

Leafminers of the family Agromizidae (Diptera) are composed of about 1800 

species and 75% of them produce mines in leaves (Bader 2006). Twenty three species in 

the genus Liriomyza (~ 300 species) are capable of inflicting economic damage on 

agricultural and horticultural crops (Spencer 1973, Parella 1987). Six of the economically 

important species are polyphagous: L. sativae (Branchard), L. trifolii (Burgess), L. 

huidobrensis (Branchard), L. bryoniae (Kaltenbach), L. strigata (Meigen) and L. longei 

(Frick) (Spencer 1973, 1981, Morgan et al. 2000b, van-der-Linden 2005, Liu et al. 2009). 

Liriomyza species are considered a secondary pest but the reduction in natural enemies 

due to indiscriminate use of insecticides has lead the insect to develop as a major pest of 

several crops (Oatman and Kennedy 1976, Trumble and Toscano 1983, Schuster and 

Wharton 1993). Liriomyza leafminers damage plants in several different ways; however 

the aggressive feeding-tunneling behavior causes the death of young seedlings, reduction 

of photosynthesis and yield loss (Elmore and Ranney 1954, Wolfenbarger 1954, Ledieu 

and Heyler 1985, Weintraub and Horowitz 1995). In the LRGV, peppers (Capsicum 

annum) are an important crop which are severely attacked by Liriomyza species which 

has triggered several insecticide applications to control the pests (Chandler 1981, 1984a). 

In LRGV, L. sativae (Blanchard) and L. trifolli (Burguess) were reported to damage 

vegetable crops ~20 years ago (Chandler 1984a, 1985a, 1987, 1988). 
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Interactions among different Liriomyza species could cause displacements among 

them. For example, L. huidobrensis is capable of displacing L. trifolii from different hosts 

and therefore L. trifolii could not get established onto a particular host plant (Reitz and 

Trumble 2002). In addition, the displacement of L. sativae by L. trifolii has also been 

documented on gypsophila (Price and Stanley 1982) and tomato (Schuster and Everett 

1982) in Florida, and celery in California (Zehnder and Trumble 1984). 

Liriomyza leafminers are attacked by hymenopterous parasitoids of different 

families including Braconidae, Figitidae, Pteromalidae, and Eulophidae and they are 

considered an imperative factor for their control (Liu et al. 2009).  Several parasitoids 

were recorded in South Texas attacking L. sativae and L. trifolli including 

Chrysonotomyia spp., Chrysocharis ainsliei (Crawford), Closterocerus cinctipennies 

(Ashmead), Diglyphus intermedius (Girault), and Zagromosoma americanum (Girault), 

all from the family Eulophidae. Unidentified Opius spp. from the family Braconidae; 

Cothonaspis spp. from the family Eucolidae; and Halticoptera circulus (Walker) from the 

family Pteromalidae (Chandler 1982). In another study Chrysocharis spp., and 

Disorygma spp. were also reported (Chandler 1985b). All these species were collected 

from the same pepper growing area in South Texas (Weslaco) from cantaloupe and bell 

pepper varieties. 

The objective of this chapter was to identify and update the species composition 

of the leafminers present in the LRGV attacking peppers. In addition, parasitoids 

associated with the pest were also collected and identified as components of the 

parasitoid complex in South Texas. 
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MATERIALS AND METHODS 
 
Study sites and crop 
 

Chili peppers (Capsicum annuum) were selected as the research crop for the 

collection of leafminer species and parasitoid guilds in the LRGV for several reasons. 

Throughout the LRGV, the pepper fields in South Texas are distributed on irrigated 

farmland. Pepper varieties planted in the LRGV differ among fields and they are grown 

in both the spring and fall, making year-round research on them feasible. 

During the Fall of 2007, five sites were established for the subsequent survey of 

parasitoid guilds and leafminers on pepper plants. Study site locations were distributed 

throughout the LRGV in Edinburg, San Juan, Weslaco, La Feria, and Brownsville. In the 

spring of 2008, the study sites were located in Weslaco, Pharr, and La Feria cities of 

Texas (Table 1). Locations differed in pepper varieties grown, size of farm, planting dates 

and farming practices. 

 
 
Table 1.  Study site descriptions Fall 2007 and Spring 2008 
City County Season Location Variety Area 
Edinburg, TX Hidalgo Fall 2007 26o 21’58.70” N, 

98o 12’02.79” W 
Cuban Hots 5 hectares 

San Juan, TX Hidalgo Fall 2007 26o 08’50.2” N, 
98o 08’45.12” W 

Serrano 
pepper 

8 hectares 

Weslaco, TX Hidalgo Fall 2007 26o 09’33.01” N, 
97o 57’32.67” W 

 Jalapeno M 1 hectare 

La Feria, TX Cameron Fall 2007 26o 07’44.20” N, 
97o 50’37.73” W 

Tam 
Veracruz 

11.3 hectares 

Brownsville, TX Cameron Fall 2007 25o 58’50.47” N, 
97o 36’25.58” W 

Tam 
Veracruz 

24 hectares 

Weslaco, TX Hidalgo Spring 2008 26o 09’33.01” N, 
97o 57’32.67” W 

Jalapeno M 1 hectares 

La Feria, TX Cameron Spring 2008 26o 12’17.38” N, 
97o 48’38.49” W 

Magnum 45 
Cayenne 408 

0.5 hectares 

Pharr, TX Hidalgo Spring 2008 26o 14’11.55” N, 
98o 11’41.04” W 

Tormenta 3 hectares 
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Infested foliage collection 

Mined leaves with larvae were collected and inspected. Sampling began when the 

crop was in the fifth true leaf and continued bi-weekly until the crop was harvested. 

Sampling consisted of collecting leaves from different areas within the field; they were 

inspected for leafminer larvae development. Leaves containing visible leafminer larvae 

were collected; groups of 10 infested leaves were placed in one-gallon plastic zipper 

storage bags for a total of fifty infested leaves in five different bags per field. The bags 

were placed in an icebox during the field collection process. The material was transported 

to the laboratory where the total number of mines and larvae were recorded. 

Consequently, leaves were arranged on a piece of paper towel avoiding contact among 

them, and the paper towel was placed back inside the zipper plastic bag with a cup in the 

middle to keep the top part of the bag from touching the leaves.  

The bags were closed with the zipper, and cotton balls were used to allow air 

diffusion. The bags were held in an insectary at 28oC, at a photoperiod of 11:13 (L:D) 

hours; the bags were checked for adults emergence every ten days (30 days total) and 

leafminer adults, pupae, larvae, and parasitoids were collected. Leafminers were 

identified to species; parasitoids of the leafminers were identified to genus. After 

specimen separation, the specimens were sent to the appropriate experts for further 

identification. 

 

Tray pupae collection 

In addition to larval collection, pupal collection was also performed in order to 

collect potential parasitoid species that attack pupae directly in the soil. Pupae were 
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collected from the same study sites as those utilized for larvae collection (Table 1). Foam 

trays of 26 x 4.6 x 5.1 cm (Genpak 10k tray) were used for the pupal collection. The trays 

were modified from the Johnson et al. (1980b) tray collection technique. Each tray 

contained a rectangular slit at the bottom covered with mesh to allow for water drainage 

in case of rain and irrigation. A layer of beach sand ~2.5 cm in thickness was placed in 

each tray to mimic field soil conditions. A total of 20 trays per location were placed 

under plant canopy and on top of the row to avoid damage by farming practices. The 

trays were fixed to the soil by a 12 cm nail, flagged and maintained for two weeks. 

After this period, trays were collected / replaced and transported to the laboratory 

where pupae were extracted using a 650 µm mesh siever. Pupae were held in aerated 

plastic cups until adult emergence. Adults emerging from pupae were identified and 

preserved. Species diversity and abundance was recorded throughout the season. 

 

Specimen identification 

Five taxonomy experts assisted with the specimen identifications:  

Dr. Robert Wharton, Entomology Department, Texas A&M University, College Station 
TX. (Braconidae). 
 
Dr. Chao-Dong Zhu, Institute of Zoology Chinese Academy of Sciences, Beijing, China  
(Eulophidae).  
 
Dr. Matthew Buffington.  Systematic Entomology Lab, USDA/ARS NMNH, 
Smithsonian Institution, Washington DC (Figitidae). 
 
Dr. Steve Heydon R.M. Bohart Museum, Department of Entomology, University of 
California, Davis (Pteromalidae). 
 
Dr. Zhongren Lei, Institute of Plant Protection, Chinese Academy of Agricultural Science 
Beijing, China (Liriomyza spp).  
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RESULTS  

Leafminer species composition 

One predominant leafminer species was collected in the LRGV. In Fall 2007, L. 

trifolii accounted for 93.9% (1076) of the individuals collected, L. sativae accounted for 

0.3% (3) and 5.9% (67) of the specimens collected were unidentifiable due to their poor 

condition (Table 2). In Spring 2008, the leafminer infestation was significantly lower; 

Liriomyza trifolii was the only species collected with 85.8% (247), and 14.2% (35) were 

unidentified due to the lack of morphological characters (Table 3).  

 

 

Table 2. Liriomyza species Fall 2007 
Sampling 
method 

Leafminer 
Family 

Genus Species No. of 
specimens 

% of total 

Infested Agromyzidae Liriomyza L. trifolii 811 70.8 
foliage sampling   L. sativae 3 0.3 
Tray pupae  Agromyzidae Liriomyza L. trifolii 265 23.1 
sampling   L. sativae 0 0.0 
 
 
 
 
 
 
 
Table 3. Liriomyza species Spring 2008 
Sampling 
method 

Leafminer 
Family 

Genus Species Number of 
specimens 

Percent 
of total 

Infested Agromyzidae Liriomyza L. trifolii 242 84.0 
foliage sampling   L. sativae 0 0.0 
Tray pupae  Agromyzidae Liriomyza L. trifolii 5 1.7 
sampling   L. sativae 0 0.0 
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Parasitoid guild composition 

In the two seasons, parasitoid species from four different families were collected: 

Eulophidae, Braconidae, Figitidae, and Pteromalidae. In the family Eulophidae eight 

different species were found; seven from the family Braconidae; four from Figitidae, and 

one from Pteromalidae (Tables 4 and 5). The species composition from Fall 2007 and 

Spring 2008 is similar with minimal variability.  

Fall 2007 and Spring 2008: Eulophidae species were the same except for 

Cirrospulus spp and Asecodes spp that were only found in the Fall (Table 4). In the 

family Braconidae, Opius dissitus, O. dimidiatus, O. nr browsvillensis and Opis spp. 2 

were found in both seasons (Table 4, 5). In addition, an unidentified Opius species (Opius 

spp 1) and O.  thoracosema were found only in Fall 2007 (Table 4), and O. bruneipes 

was found only in Spring 2008 (Table 5). In the family Figitidae, all four species were 

found in both seasons (Table 4, Table 5). Halticoptera nr. circulus spp (Pteromalidae) 

was found in both Fall 2007 (Table 4) and Spring 2008 (Table 5). Samples of specimens 

were placed in the Texas A&M University insect museum, voucher number 673. 
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Table 4. Parasitoid species Fall 2007 
Sampling 
method 

Parasitoid 
Family 

Genus Species No. of 
specimens 

% of 
total  

Infested Eulophidae Neochrysocharis Kurdjumov N. formosa 574 60.8 
Foliage  Closterocerus Westwood C. cinctipennis 73 7.7 
Sampling  Diglyphus Walker D. isaea 20 2.1 
  Cirrospilus variegatus group Cirrospilus spp. 46 4.9 
  Asecodes Förster Asecodes spp. 4 0.4 
  Pnigalio Schoranx Pnigalio spp.  2 0.2 
  Zogrammosoma Ashmead Zogrammosoma spp. 1 0.1 
  Chrysocharis Förster Chrysocharis spp. 1 0.1 
 Braconidae Opius Wesmael O. dissitus 37 3.9 
   O. dimidiatus 3 0.3 
   O. thoracosema 2 0.2 
   Opius spp 1 1 0.1 
   O. nr browsvillensis 7 0.8 
 Figitidae Ganaspidium Weld G. pusillae 55 5.8 
   G. nigrimanus  61 6.5 
  Disorygma Foerster D. pacifica  5 0.5 
  Agrostocynips A. robusta 4 0.4 
 Pteromalidae Halticoptera nr. circulus 

Walker 
Halticoptera nr. 
circulus spp. 

28 
3.0 

Tray  Braconidae Opius Wesmael O. dissitus 25 2.6 
Pupae   Opius spp 2 2 0.2 
Sampling   O. nr browsvillensis 1 0.1 
 Figitidae Ganaspidium Weld G. pusillae 10 1.1 
   G. nigrimanus  6 0.6 
  Disorygma Foerster D. pacifica  1 0.1 
  Agrostocynips A. robusta 2 0.2 
 Pteromalidae Halticoptera nr. circulus 

Walker 
Halticoptera nr. 
circulus spp. 

9 
1.0 
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Table 5. Parasitoid species Spring 2008 
Sampling 
method 

Parasitoid 
Family 

Genus Species No. of 
specimens 

% of 
total 

Infested Eulophidae Neochrysocharis Kurdjumov N. formosa 538 60.3 
Foliage  Closterocerus Westwood C. cinctipennis 30 3.4 
Sampling  Diglyphus Walker D. isaea 45 5.0 
  Pnigalio schoranx Pnigalio spp. 15 1.7 
  Zogrammosoma Ashmead Zogrammosoma spp. 5 0.6 
  Chrysocharis Förster Chrysocharis spp. 11 1.2 
 Braconidae Opius Wesmael O. dissitus 87 9.8 
   O. dimidiatus 9 1.0 
   Opius spp 2  5 0.6 
   O. bruneipes   22 2.5 
   O. nr browsvillensis  12 1.3 
 Figitidae Ganaspidium Weld G. pusillae 49 5.5 
   G. nigrimanus  19 2.1 
  Disorygma Foerster D. pacifica  10 1.1 
  Agrostocynips A. robusta  1 0.1 
Tray  Braconidae Opius Wesmael O. dissitus 25 2.8 
Pupae   O. bruneipes   4 0.4 
Sampling Figitidae Ganaspidium Weld G. pusillae 4 0.4 
 Pteromalidae Halticoptera nr. circulus 

Walker 
Halticoptera nr. 
circulus spp. 

1 
0.1 
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DISCUSSION 

Liriomyza species composition 

Liriomyza trifolii is the predominant leafminer attacking peppers in the LRGV. L. 

trifolii and L. sativae were reported present in the LRGV (Chandler 1982, 1984b, 1985b, 

1987) in the 1980’s and Liriomyza sativae was found in high numbers attacking pepper 

(Chandler 1984b). Our results indicate a displacement of L. sativae from pepper by L. 

trifolii has occurred in the LRGV. This phenomenon had been reported before (Price and 

Stanley 1982, Schuster and Everett 1982, Zehnder and Trumble 1984, Reitz and Trumble 

2002). The potential cause for leafminer species displacement is host preferences and host 

specialization (Morgan et al. 2000a, Reitz and Trumble 2002). Thus, Liriomyza trifolii may 

be better adapted to pepper species than L. sativae and other L. trifolii populations. Zhao 

and Kang (2003) reported that among olfactory responses to host plants by L. sativae, bell 

pepper was classified among those with the smallest response. In another study Capsicum 

annuum ovipositional deterrent compounds deterred L. trifolii females from laying eggs on 

peppers (Kashiwagi et al. 2005). In California, two geographically separated species of L. 

trifolii were tested for host preferences: the central California species more successfully 

reproduced on bell pepper than other crops, and the southern L. trifolii did not successfully 

reproduce on bell pepper (Reitz and Trumble 2002).  Polymerase Chain Reaction (PCR) 

was used to study speciation between the two L. trifolii populations in California, however 

the lack of Liriomyza infestation on the same host prevented obtaining a clear answer 

(Morgan et al. 2000a). The L. trifolii attacking peppers in the LRGV may be a specialist on 

this host or may consist of a cryptic species. 

Parasitoid species composition  

Other parasitoid surveys in the LRGV (Weslaco TX) were performed in 1979 

(Chandler 1982), 1981, 1982, and 1984 (Chandler 1985b) on cantaloupe and bell pepper. 
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Cantaloupe samples yielded eight different species of parasitoid from L. trifolii and L. 

sativae: Chrysonotomyia spp., Chrysocharis ainsliei (Crawford), Closterocerus 

cinctipennies (Ashmead), Diglyphus intermedius (Girault), and Zagromosoma 

americanum (Girault) (Family: Eulophidae). Unidentified Opius spp. (Family: 

Braconidae); Cothonaspis spp. (Family: Figitidae); and Halticoptera circulus (Walker) 

(Family Pteromalidae) (Chandler 1982). In bell pepper, attacking L. trifolii, six parasitoid 

species were collected: Chrysocharis spp., Chrysonotomyia spp., Zagromosoma 

americanum (Girault) (Eulophidae); Opius spp. (Family: Braconidae); and Disorygma 

spp. (Family: Figitidae) (Chandler 1985b). 

In the present study two of the species identified in previous samples were found 

again (Closterocerus cinctipennies (Ashmead), Halticoptera circulus (Walker). In 

addition, 15 new records of species in South Texas attacking L. trifolii were made, 

including: D. isaea (65), Cirrospilus spp. (46), Asecodes spp. (4), Pnigalio spp. (17) from 

Eulophidae family. Opius dissitus (174), O. dimidiatus (12), Opius spp 1 (1), Opius spp 2 

(7), O. bruneipes (26), O. nr browsvillensis (20), O. thoracosma (2) from Braconidae 

family. Ganaspidium pusillae (118), G. nigrimanus (86), D. pacifica (16), and A. robusta 

(6) from the Figitidae family.   

The most abundant parasitoid in both seasons was N. formosa (Eulophidae), this 

parasitoid accounted for ~60 % of the total collected (Tables 4 and 5). Neochrysocharis 

formosa is an endoparasitoid of Liriomyza leafminers reported from many parts of the 

world (Harding 1965, Ozawa et al. 2002, Noyes 2004). Neochrysocharis formosa is also 

reported to be a successful biological control agent (Shimomoto 2005, Hondo et al. 2006) 

and it has also been reported to be a hyperparasitoid of D. isaea (Ozawa et al. 2002). The 
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specimens collected from this species showed a high variability in morphological 

characters that all key out to N. formosa.  

Opius dissitus was the most abundant parasitoid of the family Braconidae with 

9.5% of the collected species (Tables 4 and 5). This parasitoid is a larval-pupal 

endoparasitoid that attacks several species of leafminers. Research shows it has potential 

for biological control of leafminer pests (Neuenschwander et al. 1987).   

In the family Figitidae the most abundant species are G. nigrimanus 4.7% and G. 

pusillae 6.4%. Ganaspidium nigrimanus was more abundant in Fall 2007 and G. pusillae 

was more abundant in Spring 2008 (Tables 4 and 5). G. nigrimanus, which is currently a 

synonym of G. utilis (Buffington 2004) has been used successfully in biological control 

programs (Johnson et al. 1983, Johnson and Hara 1987, Liu et al. 2009).  

To conclude, Liriomyza trifolii is the leafminer responsible for economic damage 

to pepper crops in the LRGV. It has displaced L. sativae from this host. The molecular 

comparison of this particular L. trifolii species with another population of L. trifolii in the 

country may answer the question of potential development of biotypes or cryptic species. 

An extensive survey in other agricultural and weed hosts is needed, in order to obtain 

more complete data on the Liriomyza species found in the LRGV.  

A total of 20 parasitoid species were recorded, including new records for the 

LRGV. High diversity of parasitoid species was found attacking L. trifolii pepper crops in 

South Texas compared to other surveys in the United States. For example, in Florida 20 

parasitoid species attacking L. trifolii and L. sativae were found on tomato (Schuster et al. 

1991, Schuster and Wharton 1993) and eight different weed species and in Weslaco, 



 

 

26 
 

Texas, nine different parasitoid species reared from L. trifolii and L. sativae attacking 

peppers and cantaloupe (Chandler 1982, 1984a, 1985b). 

The number of Liriomyza specimens in Spring 2008 (288) was significantly lower 

than Fall 2007 (1146); however the same ratio difference was not recorded in parasitoid 

specimens. Parasitoids collected in Fall 2007 were 944 in comparison with 892 in Spring 

2008. A higher amount of parasitoid to leafminer ratio was found in Spring 2008. This 

may account for the reduction of the leafminer population in Spring 2008 compared to 

Fall 2007. 

Tray sampling method was originally established to monitor any potential 

parasitoid species attacking leafminers directly in the soil. Parasitoid species collected 

using this method, were not different from parasitoid species collected with infested 

foliage sampling. The presence of parasitoids specializing in pupae in the soil is not ruled 

out by this work, but direct evidence of this occurring was not obtained.   

Neochrysocharis formosa was present as the predominant parasitoid species 

collected in the survey (60%). The morphological characters of these specimens showed 

a high variation however they all fit into a N. formosa description.  Molecular studies for 

these specimens will reveal and clarify the existence of potential new Neochrysocharis 

species. 

A detailed survey of other agricultural crops and weeds will potentially increase 

the parasitoid species recorded in South Texas. A high diversity of parasitoid species 

contributes to the proper balance between pest and natural enemies, the conservation of 

biodiversity is essential to keep outbreaks from occurring (Altieri 1999, Landis et al. 

2000, Cai et al. 2007). Careful studies should be performed on the effects of current 
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Liriomyza management techniques in the LRGV, such as insecticide effects on natural 

enemies, and habitat conservation. In order to maintain and foster parasitoid biodiversity 

that contributes to leafminer pest management. 
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CHAPTER III 

FIELD EVALUATION OF INSECTICIDES ON LIRIOMYZA TRIFOLII AND ITS 
 

NATURAL ENEMIES ON PEPPERS 
 
INTRODUCTION 

Liriomyza trifolii leafminer can inflict damage to plants at two stages of its life 

cycle, adult and larval stage. The adult female can injure plant tissue using its ovipositor, 

which could be used for feeding and egg oviposition (Dimetry 1971, Bethke and Parella 

1985, Parella 1987). The eggs are inserted into the leaf tissue and after hatching the larvae 

start tunneling primarily on the palisade mesophyll and complete the feeding period of 

four larval instars in the leaf (Dimetry 1971, Parella et al. 1985). The tunneling causes 

damage to the plant by reducing the plant's photosynthesis capacity; abscission of leaves 

(Parella 1987); death of young seedlings (Elmore and Ranney 1954); reduced aesthetics 

(Parella et al. 1985); transmission of diseases (Zitter and Tsai 1977); and decline of crop 

yields (Wolfenbarger 1954, Ledieu and Heyler 1985, Weintraub and Horowitz 1995).  

Liriomyza trifolli has an extensive host range, including the families of 

Umbelliferae, Solanaceae, Malvaceae, Liliaceae, Leguminosae, Curcurbitaceae, 

Compositae, and Chenopodiaceae (Stegmaier 1966). Similarly in South Texas Liriomyza 

leafminers attack different agricultural crops, including celery, tomato, melon, cucumber, 

watermelon, cotton, and in particular, pepper. The only method for the control of 

Liriomyza leafminers in the Lower Rio Grande Valley (LRGV) is insecticidal application. 

Several formulations and mode of action insecticides are use to control L. trifolli, 

including pyrethroids, avermectins, cyromazine, permethrin, methamidophos, spinosyn 
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and neem-based insecticides (azadirachtin) (Schuster and Everett 1983, Trumble 1984, 

Hara 1986, Keil and Parrella 1990, Weintraub and Horowitz 1997, Mujica et al. 2000, 

Civelek and Weintraub 2003, Ferguson 2004). Several insecticide applications each season 

are applied to pepper in the LRGV to control Liriomyza (Chandler 1981, 1984a). 

  Extensive use of insecticides has resulted in development of Liriomyza resistance 

to most of the formulations such as pyrethroids, permethrin, methamidophos (Keil and 

Parrella 1990), avermectins, cyromazine, and spinosyn (Keil and Parrella 1990, Ferguson 

2004). In addition, insecticide applications have negatively affected survival and fitness 

of L. trifolii natural enemies (Trumble and Toscano 1983, Darvas and Polgar 1998, 

Weintraub 2001, Prijono et al. 2004, Bjorksten and Robinson 2005, Hidrayani et al. 2005, 

Kaspi and Parrella 2005, Tran et al. 2005a, Hossain and Poehling 2006).  

Some of the commonly used insectides on the LRGV are novaluron, spinetoram, 

abamectin and lambda-cyhalothrin. 

Novaluron (1-[chloro-4-(1,1,2-trifluoro-methoxyethoxy) phenyl]-3-(2,6-

difluorobenzoyl) which is a benzoylphenyl urea that inhibits chitin development (Ishaaya 

and Casida 1974), causes unsuccessful endocuticular deposition and disruptive molting 

(Mulder and Gijswijk 1973). It acts primarily by ingestion and contact, and it also has 

translaminar activity (Ishaaya et al. 2003). 

Spinetoram (mixture of spinosyn A and spinosyn D) is a nicotinic acetylcholine 

receptor agonist (mimic). This insecticide belongs to the family of spinosyns and it 

causes disruption of  the central nervous system by hyperexcitation (Sparks et al. 2001). 

Abamectin (avermectin B1a and avermectin B1b) belongs to the avermectin 

insecticides, and targets the nervous system as a chloride channel activator. Avermectins 
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bind to GABA on chloride channels blocking stimulation of the nervous system resulting 

in the insect’s death (Brown 2005). 

Lambda-cyhalothrin ([1a(S*),3a(Z)]-(±)-cyano-(3-phenoxyphenyl)methyl-3-(2-

chloro-3,3,3-trifluoro-1-propenyl)-2,2- dimethylcyclopropanecarboxylate) is a pyrethroid 

insecticide which acts on the nervous system as a sodium channel modulator. This axonic 

poison prevents sodium channels from closing, causing the insect to over-excite and 

subsequently paralyze (Narahashi 1971). 

The objective of this research is to evaluate the different insecticides commonly 

used for the control of Liriomyza trifolii. Their efficacy on controlling field leafminer 

populations and their effects on their natural enemies are of particular importance.  

 

MATERIALS AND METHODS 

Plot design 

Research field plots were established at the Research Farm, Texas AgriLife 

Center at Weslaco, TX (26o 09’33.01” N, 97o 57’32.67” W) in the Fall 2007 and Spring 

2008 growing seasons. Plots were in a complete randomized block design and the size of 

each plot was 9.14 x 20.42 m for a total of 15 plots in Fall 2007 (three replications) and 

20 plots in the Spring 2008 (four replications). Two rows of sorghum were planted as 

windbreak between the plots to avoid insecticide drift between the treatments. The pepper 

variety used was Jalapeño M (Seminis Vegetable Seeds, Oxnard, CA) and the seeds were 

planted inside a greenhouse with a management program similar to the one used by 

farmers. After the plants reached the fourth true leaf stage they were transplanted in a 
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single row to the plots at spacing of 12 cm. The plots were drip-irrigated and fertilized 

and no chemical insecticide was used except for the experimental treatments. 

 

Treatments  

In Fall 2007 and Spring 2008, four insecticides (abamectin, novaluron, 

spinetoram and lambda-cyhalothrin) were applied to peppers as treatments; the treatments 

were replicated three times on a total of 15 plots in Fall 2007 and four times for a total of 

20 plots in the Spring 2008. Plots were treated with insecticides using specific company 

recommended rates (Table 2).  

 

Table 6. Treatments, general mode action and application rates 
Treatment General Mode of Action Rate Used 
Abamectin 0.15 EC Chloride channel activator 4.25 g ai/ac 
Lambda-Cyhalothrin Sodium channel modulator 9.07 g ai/ac 
Novaluron 0.83 EC Chitin synthesis inhibitor (CSI) 23.53 g ai/ac 
Spinetoram  Nicotinic acetylcholine receptor agonist (mimic) 30 g ai/ac 
Untreated Control None Water 
 

 

In order to avoid insecticide drift, wind was monitored before application with a 

hand wind speed sensor and no application was made if the wind speed was greater than 

4.5 kph. In addition, the plots were surrounded by two rows of sorghum. The chemical 

sprayer was calibrated to deliver 76 liters per acre (GPA), with 13 nozzles separated at 51 

cm (TeeJet 8002VS) delivering 372 ml/30 sec/nozzle. Applications were made according 

to leafminer infestation pressure. In Fall 2007, two applications were made, one on 26 

October 2007, and a second one on 25 November 2007. In Spring 2008 the leafminer 

infestation was less severe requiring only one application on 8 April 2008.  
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Data collection 

In order to describe insecticide efficacy on controlling leafminers and its effects 

on parasitoids, two methods were used for sampling the plots.  The first one (a) helped to 

decide which insecticide was better at controlling leafminers. The leafminer density per 

treatment throughout time was calculated. In addition, insecticide efficacy compared to 

untreated control was also calculated. The second sampling method (b) helped to 

compute the number of parasitoids per leafminer larvae and compared the parasitoid 

species diversity from the different treatments in order to make conclusions of the effects 

of treatments to natural enemies.  

 

Random sampling method (a) 

In order to monitor the efficacy of each insecticide, 30 randomly selected leaves 

from the bottom (10), median (10), and top (10) portion of the plant were collected per 

plot bi-weekly for a total of 450 leaves per collection. The samples were taken on each 

crop leaving the margins un-sampled to avoid any “edge effect”; the sampling started 2 m 

from the borders of the plots. This space was in addition to the row of sorghum 

separating the plots (1 m). The leaves were examined and quantified for the total amount 

of occupied mines, empty mines and larvae. The leaves were placed in 1 gal zipper bags 

in groups of 10. The bags were labeled according to treatment and transported to the 

laboratory, and processed for emergence of specimens. In addition, total number of 

leaves from 20 randomly selected plants was counted bi-weekly to monitor plant 

phenology.  
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Leaves were arranged on a piece of paper towel avoiding contact among them. 

The paper towel was placed back inside the zipper plastic bag with a cup in the middle to 

prevent the top part of the bag from touching the leaves. The bags were sealed with the 

zipper, and cotton balls were used to allow air diffusion. The bags were held in an 

insectary at 28o C, at a photoperiod of 11:13 (L:D) hours. Bags were checked for adult 

emergence every 10 days (30 days total) and leafminer and parasitoids were collected. 

Leafminers and parasitoids were identified and separated by species. 

 

Infested foliage sampling (b) 

Infested foliage was sampled to monitor the number of parasitoids per leafminer 

larvae. Parasitoids per leafminer larvae (mean number of parasitoids/mean number of 

leafminer larvae) were calculated in order to monitor the effects of insecticides to the 

parasitoid larvae. This ratio was calculated instead of percent parasitism in order to avoid 

mis-representation by gregarious species.  

Furthermore, the leafminer species attacking pepper, parasitoid species 

composition, and the biodiversity among treatments was also recorded.  

Ten mined-leaves with larvae were collected from each plot at 2-week intervals. 

The leaves were placed in the plastic zipper bags and processed as mentioned above for 

adult emergence and identification. The number of larvae, mines, emerged leafminers, 

and emerged parasitoids were recorded. Specimens were sent to different experts for 

identification (see chapter II). 
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DATA ANALYSIS 

Random sampling  

The calculation of leafminer density was made using leafminers collected and 

plant number of leaves. Analysis of variance (ANOVA) using GLM procedure (alpha 0.1) 

was used to compare leafminer density among treatments on each sampling date. Total 

efficacy was calculated using Abbott formula (density of control – density of treatment / 

density of control) and analysis of variance (ANOVA) (GLM procedure alpha 0.1) was 

used to compare insecticide season efficacy per treatment from Fall 2007 and Spring 

2008 samples (SAS institute 2000). 

 

Infested foliage sampling 

The number of parasitoids per leafminer larva (ratio) was calculated to determine 

the effects of insecticides to larval parasitoid species (mean number of parasitoids/mean 

number of leafminer larvae). Analysis of variance (ANOVA) (GLM procedure alpha 0.1) 

was used to compare parasitoid per leafminer larvae among different treatments each 

sampled date. Furthermore, Shannon-Wiener diversity index (H’) was calculated per 

treatment to analyze the effects of different insecticides on parasitoid diversity. Analysis 

of variance (ANOVA) (GLM procedure alpha 0.1) was used to compare H’ among 

treatments (SAS institute 2000). 
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RESULTS 

Insecticide evaluation for leafminer management 

In Fall 2007, novaluron showed lower leafminer larvae density per plant than 

control seven and 17 days from first application. After a second application a similar 

trend followed on 30 November 2007 and on 13 December 2007 novaluron showed the 

lowest larvae per plant among treatments. Novaluron was the only insecticide showing 

significant lower density than control 25 and 35 days from second application (Figure 1) 

(Table 7). In Spring 2008, novaluron reduced leafminer density after the first application 

(8 April 2008). Novaluron showed numerical differences from the control 22 days from 

application, but not statistical differences. No statistical difference was shown on 

subsequent samplings (Figure 2) (Table 8).  

In Fall 2007, spinetoram showed lower leafminer larvae density per plant than the 

control seven days from first application. Similarly, spinetoram showed lower larvae per 

plant than control, abamectin and lambda-cyhalothrin after the second application on 30 

November 2007 and 13 December 2007. Furthermore, larvae density in the spinetoram 

treated plants increased from the previous sample from 13 December 2007 to 20 

December 2007 (F = 14.16; df = 7, 3; P < 0.0001). Spinetoram showed density reduction 

following application; however density increased on the following samples compared to 

novaluron (Figure 1) (Table 7). In Spring 2008 season, spinetoram reduced leafminer 

density compared to control after the first application on 8 April 2008. No statistically 

significant differences were shown on subsequent samplings (Figure 2) (Table 8).  
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Figure 1. Leafminer larvae density per plant Fall 2007. Arrows represent application date. Different letters 

represent statistical differences among treatments. Star (*) represents statistical differences from previous 

sample date within treatments .  
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Figure 2. Leafminer larvae density per plant Spring 2008. Arrows represent application date. Different 

letters represent statistical differences among treatments. Star (*) represents statistical differences from 

previous sample date within treatments.  
 
 
   Table 7. Leafminer density statistics Fall 2007            Table 8. Leafminer density statistics Spring 2008                                                             

 Date F-value Pr<F df 

10/25/07 1.37 0.2621 4 

11/02/07 4.07 0.0074 4 

11/12/07 4.25 0.0059 4 

11/30/07 6.61 0.0004 4 

12/13/07 9.5 0.0001 4 

12/20/07 17.02 0.0001 4 

01/10/08 4.68 0.0034 4 

 

 Date F-value Pr<F df 

04/04/08 0.39 0.8145 4 

04/16/08 8.21 0.0001 4 

04/30/08 1.61 0.1859 4 

05/14/08 0.23 0.9212 4 

05/30/08 0.77 0.5501 4 

06/09/08 . . 4 

06/26/08 1.14 0.3473 4 
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Abamectin did not show statistical differences from control the entire Fall 2007 

sampling season. In addition an increase of leafminer density was recorded with 

abamectin (F = 12.17; df = 7, 3; P < 0.0001) from sample day 30 November 2007 to 

sample day 13 December 2007 (Figure 1) (Table 7). In spring 2008, after the first 

application on 8 April 2008 abamectin reduced leafminer density compared to the control. 

Abamectin showed numerical differences from the control 22 days from application, but 

not statistical differences. No statistically significant differences were found on 

subsequent samplings (Figure 2) (Table 8). 

In Fall 2007, lambda-cyhalothrin did not show leafminer reduction compared to 

the control seven days from first application. Lambda-cyhalothrin showed a significantly 

higher density than all treatments including control 17 days after first application. 

Lambda-cyhalothrin was statistically higher than control after a second application on 30 

November 2007 and 13 December 2007. In addition an increase of leafminer density was 

recorded in the lambda-cyhalothrin treatment from sample day 30 November 2007 to 

sample day 13 December 2007 (F = 17.56; df = 7, 3; P < 0.0001). On 20 December 2007, 

lambda-cyhalothrin showed a higher density than untreated control and in 10 January 

2008 no difference from the control. (Figure 1) (Table 7). In Spring 2008, lambda-

cyhalothrin did not have an effect on leafminer density compared to the control (Figure 2) 

(Table 8). 
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In addition to leafminer density, total insecticide efficacy was calculated in Fall 

2007 and Spring 2008 using the Abbott formula (density of control – density of treatment 

/ density of control). In Fall 2007, total insecticide efficacy showed that the most 

effective insecticide was novaluron followed by spinetoram. Abamectin did not show any 

effect on leafminers compared to the control.  Lambda-cyhalothrin increased leafminer 

density with a potential hormoligosis effect (F = 19.11; df = 3, 3; P < 0.0001) (Figure 3). 

In Spring 2008, novaluron was the treatment with the highest efficacy, and was 

significantly higher than lambda-cyhalothrin (F = 1.38; df = 3, 3; P < 0.2790) (Figure 4).  

 

 

 

Figure 3. Percent efficacy compared to control on Fall 2007. 

Different letters represent statistical differences among treatments.  
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Figure 4. Percent efficacy compared to control on Spring 2008. 

Different letters represent statistical differences among treatments.  

 

 

Notes on insecticide effects to natural enemies 

In Fall 2007, novaluron and spinetoram showed statistical significant lower 

parasitoids per leafminer larvae than the control 16 days after the first application (12 

November 2007). Abamectin and lambda-cyhalothrin did not show differences from the 

control (F = 6.38; df = 4, 3; P < 0.0081) (Figure 5). Novaluron showed lower parasitoid 

per leafminer larvae after the second application on 13 December 2007 (F = 3.64; df = 4, 

3; P < 0.0442), 20 December 2007 (F = 4.48; df = 4, 3; P < 0.0247), and 10 January 2008 

(F = 1.20; df = 4, 3; P < 0.3697). 
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Figure 5. Ratio of parasitoids per leafminer larvae Fall 2007. Arrows represent application date. 

 Different letters represent statistical differences among treatments.  
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In Spring 2008, novaluron showed a lower parasitoid leafminer ratio 8 days after 

the first application (16 April 2008) (F = 2.65; df = 4, 3; P < 0.0747) (Figure 6).  Twelve 

days after application (30 April 2008) spinetoram and novaluron showed lower 

parasitoids per leafminer larvae (F = 1.60; df = 4, 3; P < 0.2245). 

 

 

 

Figure 6. Ratio of parasitoids per leafminer larvae Spring 2008. Arrows represent application date. 

 Different letters represent statistical differences among treatments.  
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 Natural enemy diversity is an important factor for conservation biological control 

(Altieri 1999, Landis et al. 2000, Cai et al. 2007). 

In Fall 2007, the control had the highest Shannon-Wiener diversity index (H’) 

(Table 9). In addition, spinetoram and novaluron were the only two insecticides with 

statistically lower indecies compared to the control. Novaluron had the lowest diversity 

index in Fall 2007 (F = 5.37; df = 4, 3; P < 0.0029).  

 
 
Table 9. Shannon-Wiener diversity index Fall 2007 

Treatment  Mean H’  StdErr  

Control  0.6161 (a)  0.02  

Abamectin  0.5607 (ab)  0.06  

Lambda -cyhalothrin  0.4369 (ab)  0.07  

Spineto ram 0.3774 (b)  0.13  

Novaluron  0.1516 (c)  0.07  

F= 5.37,   df = 4,   P< 0.0029    

 

 
 

In Spring 2008, the H’ in the untreated control was numerically higher than other 

treatments (Table 10). However no significant difference was found among treatments (F 

= 0.80; df = 4, 3; P < 0.5349).  

 

Table 10. Shannon-Wiener diversity index Spring 2008 
Treatment  Mean H’  StdErr  

Control  0.5596 (a)  0.09  

Abamectin  0.5375 (a)  0.09  

Lambda -cyhalothrin  0.4673 (a)  0.06  

Spineto ram 0.4165 (a)  0.05  

Novaluron  0.4122 (a)  0.08  

F= 0.80,   df = 4,   P< 0.5349    
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Liriomyza and parasitoid species composition 

The Liriomyza species composition in the Fall 2007 was found to be 454 

specimens of L.  trifolii, one L. sativae, while 33 specimens were unidentifiable due to 

the lack of morphological characters. In spring 2008, 144 specimens belonged to L. 

trifolii and 23 specimens were unidentifiable. Liriomyza sativae was not found in Spring 

2008.  

Several parasitoid species were found in the Jalapeño M insecticidal plots.  In Fall 

2007, 13 species were found: Neochrysocharis formosa (278), Closterocerus cinctipennis 

(41), Diglyphus isaea (12), Cirrospilus spp. (30), and Asecodes spp. (3) from the 

Eulophidae family. Opius dissitus (21), O. dimidiatus (3), O. browsvillensis (7), and 

Opius spp 1 (1), from Braconidae family. Ganaspidium pusillae (4), G. nigrimanus (39), 

and Agrostocynips robusta (3), from the Figitidae family and Halticoptera circulus (20) 

from Pteromalidae. The total number of specimens collected in this season was 438 

(Table 11). 

In Spring 2008, 15 species were found: Neochrysocharis formosa (351), 

Closterocerus cinctipennis (28), Diglyphus isaea (32), Pnigalio spp. (13), 

Zogrammosoma spp.  (2), Chrysocharis spp (10), from the Eulophidae family. Opius 

dissitus (59), O. dimidiatus (9), O. browsvillensis (8), O. bruneipes (15), and Opius spp 2 

(4), from the Braconidae family. Ganaspidium pusillae (19), G. nigrimanus (17), 

Agrostocynips robusta (1), and Disorygma pacifica (6), from the family Figitidae. The 

total number of  specimens collected in Spring 2008 was 620 (Table 12). 

 

 



 

 

45 
 

 

 

Table 11. Insecticide evaluation parasitoid species composition Fall 2007 
Sampling 
method 

Parasitoid 
Family 

Genus Species No. of 
specimens 

% of 
total  

Infested Eulophidae Neochrysocharis Kurdjumov N. formosa 278 63.5 
Foliage  Closterocerus Westwood C. cinctipennis 41 9.4 
Sampling  Diglyphus Walker D. isaea 12 2.7 
  Cirrospilus variegatus group Cirrospilus spp. 30 6.8 
  Asecodes Förster Asecodes spp. 3 0.7 
 Braconidae Opius Wesmael O. dissitus 21 4.8. 
   O. dimidiatus 3 0.7 
   Opius spp 1 1 0.2 
   O. nr browsvillensis 7 1.6 
 Figitidae Ganaspidium Weld G. pusillae 4 0.9 
   G. nigrimanus  39 8.9 
  Agrostocynips A. robusta 3 0.7 
 Pteromalidae Halticoptera nr. circulus 

Walker 
Halticoptera nr. 
circulus spp. 

20 
4.6 

 

 

 

Table 12. Insecticide evaluation parasitoid species composition Spring 2008 
Sampling 
method 

Parasitoid 
Family 

Genus Species No. of 
specimens 

% of 
total  

Infested Eulophidae Neochrysocharis Kurdjumov N. formosa 351 56.6 
Foliage  Closterocerus Westwood C. cinctipennis 28 4.5 
Sampling  Diglyphus Walker D. isaea 32 5.2 
  Cirrospilus variegatus group Cirrospilus spp. 46 7.5 
  Pnigalio Schoranx Pnigalio spp.  13 2.1 
  Zogrammosoma Ashmead Zogrammosoma spp. 2 0.3 
  Chrysocharis Förster Chrysocharis spp. 10 1.6 
 Braconidae Opius Wesmael O. dissitus 59 9.5 
   O. dimidiatus 9 1.5 
   O. bruneipes 15 2.4 
   Opius spp 2 4 0.6 
   O. nr browsvillensis 8 1.3 
 Figitidae Ganaspidium Weld G. pusillae 19 3.1 
   G. nigrimanus  17 2.7 
  Disorygma Foerster D. pacifica  6 1.0 
  Agrostocynips A. robusta 1 0.2 
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DISCUSSION 

The main difference between the two season trials was the leafminer pressure, 

reaching 300 leafminers per plant in Fall 2007 in contrast to ~ 15 leafminers per plant in 

Spring 2008. Both season results agreed that novaluron was effective against leafminers, 

while lambda-cyhalothrin increased leafminer density or had no effect. Spinetoram was 

also efficacious against leafminers, while efficacy of abamectin varied in both seasons.    

Novaluron was the insecticide showing lower leafminer density as well as the 

highest efficacy in Fall 2007 and Spring 2008. This compound provided control to high 

densities of leafminers throughout Fall 2007 and in Spring 2008 after application. 

Resistance to it has not been found so far.  

Some resistance of Liriomyza species to spinosad has been documented. 

(Ferguson 2004), however no resistance was detected in this field evaluation.  Spinetoram 

reduced Liriomyza field populations after applications in Fall 2007 and Spring 2008. 

However its control persistence appears to be lower than novaluron. In Fall 2007 

spinetoram leafminer density increased from 13 December 2007 to 20 December 2007 

(Figure 1) and in Spring 2008, leafminer density in the treatment of spinetoram was 

higher on 30 April 2008 compared to novaluron on 30 April 2008 (Figure 2). This lower 

control persistence may be influenced by the effects of spinetoram on the natural enemies, 

or lower plant residue for the control of emerging leafminers.  

In Fall 2007, overall efficacy of abamectin was nil, showing zero efficacy 

compared to control. In spring 2008 when leafminer density was lower, abamectin 

reduced leafminer density after application and appeared efficacious. Liriomyza 

resistance to abamectin has been documented (Ferguson 2004). Abamectin is a widely 
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used insecticide in South Texas primarily for the control of mites and on a lesser extend 

for the control of Liriomyza leafminers. More careful studies need to be done in order to 

make conclusions of abamectin resistance and efficacy in the LRGV.   

Lambda-cyhalothrin, as with other pyrethroids, has a documented resistance in 

several agricultural pests (Rodriguez et al. 2001, Ahmad et al. 2002).  

A developed insecticide tolerance by L. trifolii, in addition to its negative effects 

on natural enemies (lethal, sublethal, repellant), may be the reason for the increase in 

Liriomyza density compared to the control in Fall 2007 (Figure 1) and no reduction on 

density in Spring 2008 (Figure 2) as well as its low efficacy in both seasons (Figure 3, 

Figure 4).  Studies on the resistance to lambda-cyhalothrin by L. trifolii from South Texas 

will help to explain the increase of Liriomyza density in the Lower Rio Grande Valley. 

Lambda-cyhalothrin results are consistent in both seasons. This insecticide did not cause 

reduction of the leafminer population and did have a positive effect on the population by 

increasing the numbers of leafminers. Leafminers in the LRGV are tolerant to lambda-

cyhalothrin.  

A rotation of insecticides such as novaluron, spinetoram and abamectin could help 

in the management of the pest. Lambda-cyhalothrin should be avoided for the control of 

Liriomyza.  

 
Notes on insecticide effects on natural enemies 

Based on the field evaluation data, novaluron had negative effects on immature 

parasitoid stages. Novaluron toxicity may directly or indirectly affect parasitoid species 

because it was effective against the Liriomyza leafminers. No research has been done on 

this insecticide’s effects on natural enemies. Spinetoram also negatively affect parasitoid 
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immature stages. Previous research has shown that this insecticide is harmful to natural 

enemies (Hossain and Poehling 2006). 

Lambda-cyhalothrin showed no effect on parasitoid species in this study, the 

tolerance of Liriomyza leafminers to this compound may affect the parasitoid 

susceptibility.  In the parasitoid survey N. formosa was the most abundant parasitoid. 

This parasitoid is a larval parasitoid and has a close association with leafminer larvae 

biology at the larval stage. This association could potentially have resulted in parasitoid 

tolerance to the compound. N. formosa represented 60% of the total collected parasitoid 

species and a developed tolerance of N. formosa to lambda-cyhalothrin could explain the 

lack of a difference on parasitoid abundance and diversity between control and lambda-

cyhalothrin in the research plots.  

 

Species composition 

Liriomyza trifolii was the species that caused damage to Jalapeño M in the 

insecticide plots. It accounted for 99 percent of the identified specimens.  

In this evaluation, 19 different parasitoid species were collected from the families of 

Eulophidae, Braconidae, Figitidae and Pteromalidae. The number of leafminers collected 

in Fall 2007 was 488 in contrast with 167 in Spring 2008. The number of parasitoids 

collected in Fall 2007 was 438, in contrast with 620 in Spring 2008. The number of 

parasitoids per leafminer ratio was much higher in Spring 2008 than Fall 2007. The 

higher abundance of parasitoids in Spring 2008, potentially contributed to the lower 

amount of leafminers in the experimental plots during this season. 
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Using the results of this study, a diversity of hymenopterous parasitoids of 

Liriomyza is present in the LRGV and it appears they were able to control Liriomyza 

infestations, I will recommend to avoid the application of any insecticide and allow this 

natural enemies to establish and control the pest. If insecticide application is required to 

control L. trifolii outbreaks, one time application of novaluron should be used. If 

infestation requires more applications, a sustainable insecticide program should be planed 

to avoid resistance development. Lambda-cyhalothrin should be avoided for the 

management of L. trifolii due to the tolerance of this pest to the compound. 
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CHAPTER IV 

INSECTICIDAL EFFECTS ON TWO ADULT PARASITOIDS OF LIRIOMYZA 

TRIFOLII: GANASPIDIUM NIGRIMANUS (FIGITIDAE) AND NEOCHRYSOCHARIS 

FORMOSA (EULOPHIDAE) 

 
INTRODUCTION 

 
Liriomyza trifolii causes damage to plants by its adult and larval feeding behavior. 

Adult females pierce the leaf cuticle for feeding and oviposition. Hatched larvae feed by 

making tunnels into the leaf mesophyll and complete the larval stages (Dimetry 1971, 

Parella et al. 1985). At the last larval instars, the larvae exit the mine and usually pupate 

in the soil (Dimetry 1971, Parella 1987, Malais and Ravensberg 1992). Leafminers such 

as L. trifolii damage plants by excessive mining and feeding wounds. This behavior 

causes a reduction of plant photosynthesis and yield (Wolfenbarger 1954, Ledieu and 

Heyler 1985, Weintraub and Horowitz 1995), killing of small seedlings (Elmore and 

Ranney 1954), transmitting of plant diseases (Zitter and Tsai 1977), reducing quality of 

ornamental crops and creating quarantine issues (Parella et al. 1985).  

 One of the methods to manage the pest is by chemical control. Several 

compounds are being used for the management of Liriomyza, such as abamectin, 

spinetoram, lambda-cyhalothrin and novaluron. 

Abamectin (avermectin B1a and avermectin B1b) belongs to avermectin 

insecticides and it targets the nervous system as a chloride channel activator (Brown 

2005). This insecticide is commonly used to control sucking pests such as spider mites, 

broad mites, thrips, chewing insects such as Plutella xylostella, and Liriomyza leafminers. 
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Spinetoram (a mixture of spinosyn A and spinosyn D) is a nicotinic acetylcholine 

receptor agonist (mimic) causing disruption of the central nervous system by 

hyperexcitation (Sparks et al. 2001). It has been effectively used to control armyworms, 

thrips, leafminers, and Colorado potato beetle among others. 

Lambda-cyhalothrin belongs to synthetic pyrethroids group. It acts on the nervous 

system as a sodium channel modulator by preventing sodium channels from closing 

causing the insect to over-excite and paralyze (Narahashi 1971) and is labeled to control 

many insect species including leafminers, aphids, armyworms, grasshoppers, mites, thrips, 

and whiteflies among others. 

Novaluron is a benzoylphenyl urea and inhibits chitin formation (Ishaaya and 

Casida 1974) causing suppression of endocuticular deposition and molting (Mulder and 

Gijswijk 1973). This insecticide is labeled to control leafrollers, loopers, Colorado potato 

beetle, armyworms, whiteflies, cucumber beetles, and leafminers, among others.  

 Biological control is a naturally occurring practice in most agricultural systems 

and can be enhanced by manipulation of environment and farming techniques 

(conservation biological control) (Barbosa 1998). It can also be highly specialized as 

classical biological control and augmentative biological control (Yano 2004). In addition 

to chemical control, biological control is another less recurrent management practice for 

leafminers. Parasitoid species are commonly associated with leafminer on crops around 

the world helping in the management of the pest (Zehnder and Trumble 1984, 

Neuenschwander et al. 1987, Sivapragasam et al. 1999, Xu et al. 1999, Rauf et al. 2000, 

Yano 2004, Talebi et al. 2005, Tran et al. 2006). Among parasitoids, two species of 
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parasitoids commonly found in surveys and successfully used for biological control 

programs are Neochrysocharis formosa and Ganaspidium nigrimanus. 

Neochrysocharis formosa is an endoparasitoid, and prefers second and early third 

instar leafminers (Wang et al. 2007). Host killing by feeding and oviposition in 

laboratory conditions can reach up to 317 leafminers in their whole life (Chien et al. 

2005). N. formosa has been used as a biological control agent on several crops including 

bean, eggplant and tomatoes (Arakaki and Kinjo 1998, Maryana 2000, Shimomoto 2005, 

Hondo et al. 2006). N. formosa was also the most abundant parasitoid collected on South 

Texas (Chapter II). 

Ganaspidium nigrimanus is a synonym of G. utilis (Buffington 2004), which is a 

solitary larval-pupal endoparasitoid. The efficacy of Ganaspidium nigrimanus is 

independent of temperature, for example it can oviposit on ~ 20 L. trifolii larvae  in adult 

life over a wide range of temperatures (Kafle et al. 2005). This parasitoid has been used 

for several biological control programs against Liriomyza species in Guam, Hawaii, 

Marianas, Tonga, and Taiwan (Lai and Funasaki 1986, Johnson 1993, Kafle et al. 2005). 

G. nigrimanus was also one of the most abundant larval-pupal parasitoid collected in 

South Texas (Chapter II). 

Chemical and biological control tactics can be integrated to achieve better success, 

but harmful effects of widely used synthetic insecticides can disrupt natural biological 

control (Bjorksten and Robinson 2005, Hidrayani et al. 2005, Kaspi and Parrella 2005, 

Tran et al. 2005a, Hossain and Poehling 2006). To achieve an integrated pest 

management (IPM) approach for the control of Liriomyza pest, the effects of commonly 

used insecticides on natural enemies should be addressed for a better management 
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recommendation. Insecticides can affect both immature and adult stages. The objectives 

of the present studies were to determine the lethal impact of abamectin, spinetoram, 

lambda-cyhalothrin and novaluron on the adult stage of the two important parasitoids of 

Liriomyza species: Neochrysocharis formosa and Ganaspidium nigrimanus.  

 

MATERIALS AND METHODS 

 
Parasitoid colonies  
 

Liriomyza trifolii was collected from pepper fields located at Weslaco Texas (26o 

09’33.01” N, 97o 57’32.67” W) in January and February 2008 due to L. trifolli high 

specialization on this host in South Texas (see Chapter II). Adults collected were released 

and reared on Jalapeño M peppers (Seminis Vegetable Seeds, Oxnard, CA) in cages  (61 

x 66 x 61 cm) held in an insectary at 28oC, at a photoperiod of 11:13 (L:D) hours.  

Neochrysocharis formosa and G. nigrimanus were collected from L. trifolii from 

Weslaco, Texas (26o 09’33.01” N, 97o 57’32.67” W) in February 2008 and they were 

introduced to cages with second and third instar leafminer larvae. After the colonies were 

established, introduction of fresh peppers, infested with L. trifolii larvae was done bi-

weekly for maintaining the population. 

To obtain sufficient N. formosa specimens of the same age for experiments, 

pepper plants from the greenhouse were transferred to L. trifolii cages for 12 hours to 

allow oviposition. The plants were then placed in clean cages for 3-5 days to allow larval 

development to the second and third larval instars. These plants were transferred to 

parasitoid cage to allow parasitoid oviposition and development. After ~ 15 days the 

leaves from the plants were excised and placed on styrofoam trays in lidded cylindrical 
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containers (25.4 cm diameter, 30.5 cm height) with a removable clear plastic cup.  These 

containers were placed at a controlled temperature in an insectary at 28oC, with a 

photoperiod of 11:13 (L:D) hours. Every day emerged parasitoids were collected, 

separated by sex (using abdominal structures) into culture tubes and fed with 20% honey 

water when appropriate.   

To obtain G. nigrimanus specimens of the same age for experiments, the 

parasitoids were reared as described above. Furthermore, parasitoids were allowed to 

oviposit. The cages used for this parasitoid species had a removable laminated paper at 

the bottom of the cage. After leafminer larvae exited from the leaves and pupated on the 

paper, the paper was removed from the cage and the pupae were collected by running 

water through the paper, washing the pupae onto a sieve. Pupae were then transferred to a 

Petri dish to allow parasitoid emergence. Every day, emerged parasitoids were collected, 

separated by sex using antennal segments (15 males, 13 females) into glass tubes (13 x 

100 mm) and were fed with 20% honey water when appropriate. 

 

Treatments  

 Abamectin, novaluron, spinetoram, lambda-cyhalothrin and water were used as 

treatments using specific company recommended rates (Table 11). 

 

 
Table 13. Insecticide treatments 
Treatment General Mode of Action Rate Used 
Abamectin 0.15 EC Chloride channel activator 4.25 g ai/ac 
Lambda-cyhalothrin Sodium channel modulator 9.07 g ai/ac 
Novaluron 0.83 EC Chitin synthesis inhibitor (CSI) 23.53 g ai/ac 
Spinetoram  Nicotinic acetylcholine receptor agonist (mimic) 30 g ai/ac 
Untreated Control None Water 
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Direct insecticide application on adult N. formosa and G. nigrimanus 

 Neochrysocharis formosa and G. nigrimanus males and females (1-2 days old) 

were placed individually in Petri-dishes (8.9 cm diameter, 1.27 cm height). The Petri 

dishes were place under  the sprayer (Potter precision laboratory spray tower) and the top 

lead was removed and adults were sprayed with 2 ml of abamectin (n male = 20, n female = 

20), lambda-cyhalothrin (n male = 20, n female = 20), novaluron (n male = 20, n female = 20), 

spinetoram (n male = 20, n female = 20), and water  (n male = 40, n female = 40) in addition an 

untreated control (n male = 20, n female = 20) was placed as treatment. After treatment, the 

treated parasitoids were transferred to Petri dishes with a perforated lid and another 

aperture covered with a small plug for feeding. Petri dishes were placed randomly in an 

insectary (28oC, 11:13 (L:D) and were provided with feeding solution (1:1 honey/water) 

as needed. N.  formosa and G. nigrimanus survival was monitored daily for 30 days. 

 

Effects of insecticide intake by N. formosa and G. nigrimanus 

 Male and female N. formosa and G. nigrimanus were starved for 24 hours after 

emergence and placed separately in Petri dishes (8.9 cm diameter, 1.27 cm height). The 

treatments consisted of parasitoid feeding on honey:water (1:1) solution (n male = 20, n 

female = 23), honey: abamectin (1:1) solution (n male = 20, n female = 20), honey: lambda-

cyhalothrin (1:1) solution (n male = 20, n female = 20), honey: novaluron (1:1) solution (n 

male = 19, n female = 24), and a honey: spinetoram (1:1) solution (n male = 20, n female = 20). 

Feeding time of individual parasitoids was recorded. After feeding ceased, parasitoids 

were transferred to Petri dishes with a perforated lid and another aperture covered with a 

small plug for feeding. Petri dishes were placed randomly in an insectary (28oC, 11:13 
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(L:D)) and were provided with feeding solution (1:1 honey/water) as needed. N. formosa 

and G. nigrimanus survival was monitored daily for 30 days. 

  

Effects of insecticide leaf residue on N. formosa and G. nigrimanus 

 Pepper plants (var. Jalapeño M) (n = 12 per treatment) were sprayed to run off 

using a hand sprayer (The-bottle-crew ppg-32) with water or insecticide treatments. After 

24 hours from application, clip cages (2.5 cm diameter, 3.8 cm height) were fastened to 

the treated leaves. N. formosa and G. nigrimanus females were individually introduced 

into the cages: water (n female = 24), abamectin (n female = 24), lambda-cyhalothrin (n female 

= 24), novaluron (n female = 24), and spinetoram (n female = 24). Plants were arranged 

randomly in an insectary (28oC, 11:13 L:D) and parasitoids were provided with a honey 

water solution (1:1). N. formosa and G. nigrimanus mortality was recorded for 20 days. 

 

DATA ANALYSIS 

 Parasitoid survival differences among treatment were calculated using Kaplan-

Meier survival curves. The curves were compared for statistical differences using Log-

rank (Mantel-Cox) and Breslow (generalized Wilcoxon) tests (alpha 0.05) (SPSS 14.0).  
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RESULTS  

Direct insecticide application on adult N. formosa and G. nigrimanus 

 For N. formosa, no significant difference was found between water treatment and 

untreated (1) (numbers correspond to Table 12). In addition, novaluron and lambda-

cyhalothrin did not show negative effects compared to water (2, 3 respectively). Lambda-

cyhalothrin showed statistical differences compared to untreated (4). Spinetoram showed 

negative survival effects compared to untreated (5), water (6), novaluron (7) and lambda-

cyhalothrin (8). The most harmful insecticide in terms of parasitoid mortality by direct 

application was abamectin that showed lower cumulative survival compared to untreated 

(9), water (10), novaluron (11), lambda-cyhalothrin (12) and spinetoram (13) (Figure 7, 

Table 9). 

 On males, untreated control showed statistical differences from water control (14). 

Novaluron and lambda-cyhalothrin showed no significant difference from water (15, 16, 

respectively). Similarly, spinetoram showed negative effects on females compared to 

untreated control (17), water control (18), novaluron (19), and lambda-cyhalothrin (20). 

Abamectin was the most harmful insecticide compared to all the treatments: untreated 

(21), water (22), novaluron (23), lambda-cyhalothrin (24) and spinetoram (25) (Figure 7, 

Table 12). 
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Figure 7. Effects of topical insecticide applications on N. formosa. Females (F) and males (M). 

Different letters represent statistical differences among treatments.  

 
 

Table 14. Log-rank and Wilcoxon for effects of topical insecticide applications on N. formosa 
1 log rank: χ2 = 0.192, df = 1, P< 0.661; Wilcoxon: χ2 = 1.253, df = 1, P< 0.263 
2 log rank: χ2 = 1.761, df = 1, P< 0.184; Wilcoxon: χ2 = 1.151, df = 1, P< 0.283 
3 log rank: χ2 = 2.674, df = 1, P< 0.102; Wilcoxon: χ2 = 1.394, df = 1, P< 0.238 
4 log rank: χ2 = 4.336, df = 1, P< 0.037; Wilcoxon: χ2 = 5.119, df = 1, P< 0.024 
5 log rank: χ2 = 43.620, df = 1, P< 0.0001; Wilcoxon: χ2 = 37.944, df = 1, P< 0.0001 
6 log rank: χ2 = 58.882, df = 1, P< 0.0001; Wilcoxon: χ2 = 56.765, df = 1, P< 0.0001 
7 log rank: χ2 = 41.083, df = 1, P< 0.0001; Wilcoxon: χ2 = 36.735, df = 1, P< 0.0001 
8 log rank: χ2 = 30.770, df = 1, P< 0.0001; Wilcoxon: χ2 = 24.883, df = 1, P< 0.0001 
9 log rank: χ2 = 39.000, df = 1, P< 0.0001; Wilcoxon: χ2 = 39.000, df = 1, P< 0.0001 
10 log rank: χ2 = 59.000, df = 1, P< 0.0001; Wilcoxon: χ2 = 59.000, df = 1, P< 0.0001 
11 log rank: χ2 = 39.000, df = 1, P< 0.0001; Wilcoxon: χ2 = 39.000, df = 1, P< 0.0001 
12 log rank: χ2 = 28.826, df = 1, P< 0.0001; Wilcoxon: χ2 = 28.826, df = 1, P< 0.0001 
13 log rank: χ2 = 4.333, df = 1, P< 0.037; Wilcoxon: χ2 = 4.333, df = 1, P< 0.037 
14 log rank: χ2 = 10.569, df = 1, P< 0.001; Wilcoxon: χ2 = 11.329, df = 1, P< 0.001 
15 log rank: χ2 = 0.231, df = 1, P< 0.631; Wilcoxon: χ2 = 0.471, df = 1, P< 0.493 
16 log rank: χ2 = 1.960, df = 1, P< 0.161; Wilcoxon: χ2 = 6.373, df = 1, P< 0.012 
17 log rank: χ2 = 40.064, df = 1, P< 0.0001; Wilcoxon: χ2 = 36.126, df = 1, P< 0.0001 
18 log rank: χ2 = 51.826, df = 1, P< 0.0001; Wilcoxon: χ2 = 48.671, df = 1, P< 0.0001 
19 log rank: χ2 = 27.768, df = 1, P< 0.0001; Wilcoxon: χ2 = 25.382, df = 1, P< 0.0001 
20 log rank: χ2 = 7.263, df = 1, P< 0.007; Wilcoxon: χ2 = 4.931, df = 1, P< 0.026 
21 log rank: χ2 = 39.000, df = 1, P< 0.0001; Wilcoxon: χ2 = 39.000, df = 1, P< 0.0001 
22 log rank: χ2 = 54.786, df = 1, P< 0.0001; Wilcoxon: χ2 = 54.786, df = 1, P< 0.0001 
23 log rank: χ2 = 35.286, df = 1, P< 0.0001; Wilcoxon: χ2 = 35.286, df = 1, P< 0.0001 
24 log rank: χ2 = 18.778, df = 1, P< 0.0001; Wilcoxon: χ2 = 18.778, df = 1, P< 0.0001 
25 log rank: χ2 = 11.323, df = 1, P< 0.001; Wilcoxon: χ2 = 11.323, df = 1, P< 0.001 
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On female G. nigrimanus untreated and water did not show any statistical 

differences (26) (numbers correspond to Table 13). Novaluron survival curve was 

statistically lower than untreated (27) and water (28). Lambda-cyhalothrin survival was 

statistically lower than untreated (29), water (30) and novaluron (31). Abamectin showed 

negative effects compared to untreated (32), water (33) and novaluron (34). Abamectin 

and lambda-cyhalothrin showed no statistical difference on survival (35). Spinetoram 

showed the shortest survival compared to untreated (36), water (37), novaluron (38), 

lambda-cyhalothrin (39) and abamectin (40) (Figure 8) (Table 13). 

 On male G. nigrimanus, novaluron showed no statistical differences compared to 

untreated (41) and water (42). Abamectin showed negative effects compared to untreated 

(43), water (44), and novaluron (45). Lambda-cyhalothrin showed statistical differences 

compared to untreated (46), water (47) and novaluron (48). However, lambda-cyhalothrin 

did not show differences with abamectin (49) and spinetoram (50). Spinetoram showed 

negative effects compared to untreated (51), water (52), novaluron (53) and abamectin 

(54) (Figure 8, Table 13). 
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Figure 8. Effects of topical insecticide applications on G. nigrimanus. Females (F) and males (M). 

Different letters represent statistical differences among treatments.  

  
 
Table 15. Log-rank and Wilcoxon for effects of topical insecticide applications on G. nigrimanus 

26 log rank: χ2 = 0.531, df = 1, P< 0.466; Wilcoxon: χ2 = 0.653, df = 1, P< 0.425 
27 log rank: χ2 = 18.027, df = 1, P< 0.0001; Wilcoxon: χ2 = 15.678, df = 1, P< 0.0001 
28 log rank: χ2 = 12.126, df = 1, P< 0.0001; Wilcoxon: χ2 = 9.793, df = 1, P< 0.002 
29 log rank: χ2 = 25.088, df = 1, P< 0.0001; Wilcoxon: χ2 = 22.703, df = 1, P< 0.0001 
30 log rank: χ2 = 24.781, df = 1, P< 0.0001; Wilcoxon: χ2 = 24.103, df = 1, P< 0.0001 
31 log rank: χ2 = 15.717, df = 1, P< 0.0001; Wilcoxon: χ2 = 19.389, df = 1, P< 0.0001 
32 log rank: χ2 = 43.319, df = 1, P< 0.0001; Wilcoxon: χ2 = 36.021, df = 1, P< 0.0001 
33 log rank: χ2 = 48.732, df = 1, P< 0.0001; Wilcoxon: χ2 = 41.602, df = 1, P< 0.0001 
34 log rank: χ2 = 49.631, df = 1, P< 0.0001; Wilcoxon: χ2 = 42.890, df = 1, P< 0.0001 
35 log rank: χ2 = 1.593, df = 1, P< 0.207; Wilcoxon: χ2 = 0.005, df = 1, P< 0.944 
36 log rank: χ2 = 42.458, df = 1, P< 0.0001; Wilcoxon: χ2 = 36.598, df = 1, P< 0.0001 
37 log rank: χ2 = 46.953, df = 1, P< 0.0001; Wilcoxon: χ2 = 41.005, df = 1, P< 0.0001 
38 log rank: χ2 = 48.436, df = 1, P< 0.0001; Wilcoxon: χ2 = 42.461, df = 1, P< 0.0001 
39 log rank: χ2 = 10.151, df = 1, P< 0.001; Wilcoxon: χ2 = 7.791, df = 1, P< 0.005 
40 log rank: χ2 = 13.751, df = 1, P< 0.0001; Wilcoxon: χ2 = 12.625, df = 1, P< 0.0001 
41 log rank: χ2 = 3.591, df = 1, P< 0.058; Wilcoxon: χ2 = 1.691, df = 1, P< 0.193 
42 log rank: χ2 = 0.028, df = 1, P< 0.867; Wilcoxon: χ2 = 0.027, df = 1, P< 0.869 
43 log rank: χ2 = 42.174 df = 1, P< 0.0001; Wilcoxon: χ2 = 35.188, df = 1, P< 0.0001 
44 log rank: χ2 = 42.922, df = 1, P< 0.0001; Wilcoxon: χ2 = 35.758, df = 1, P< 0.0001 
45 log rank: χ2 = 40.510, df = 1, P< 0.0001; Wilcoxon: χ2 = 33.587, df = 1, P< 0.0001 
46 log rank: χ2 = 23.157, df = 1, P< 0.0001; Wilcoxon: χ2 = 25.951, df = 1, P< 0.0001 
47 log rank: χ2 = 26.533, df = 1, P< 0.0001; Wilcoxon: χ2 = 27.962, df = 1, P< 0.0001 
48 log rank: χ2 = 25.496, df = 1, P< 0.0001; Wilcoxon: χ2 = 26.171, df = 1, P< 0.0001 
49 log rank: χ2 = 1.969, df = 1, P< 0.161; Wilcoxon: χ2 = 4.206, df = 1, P< 0. 040 
50 log rank: χ2 = 0.579, df = 1, P< 0.447; Wilcoxon: χ2 = 0.341, df = 1, P< 0.560 
51 log rank: χ2 = 35.176, df = 1, P< 0.0001; Wilcoxon: χ2 = 32.022, df = 1, P< 0.0001 
52 log rank: χ2 = 35.891, df = 1, P< 0.0001; Wilcoxon: χ2 = 32.965, df = 1, P< 0.0001 
53 log rank: χ2 = 33.797, df = 1, P< 0.0001; Wilcoxon: χ2 = 30.669, df = 1, P< 0.0001 
54 log rank: χ2 = 8.259, df = 1, P< 0.004; Wilcoxon: χ2 = 8.108, df = 1, P< 0.004 
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Effects of insecticide consumption by N. formosa and G. nigrimanus 

 Novaluron (55) and lambda-cyhalothrin (56) (numbers correspond to Table 14) 

showed no statistical differences from control on female N. formosa. Abamectin showed 

negative effects compared to control (57), novaluron (58), and lambda-cyhalothrin (59). 

Abamectin and spinetoram showed no statistical differences (60). Spinetoram showed 

negative effects compared to control (61), novaluron (62), and lambda-cyhalothrin (63) 

(Figure 9) (Table 14). 

 A similar trend was present on male N. formosa feeding effects, where control 

showed no difference from novaluron (64), and lambda-cyhalothrin (65). Abamectin 

showed statisticant differences compare to control (66), novaluron (67) and lambda-

cyhalothrin (68). Similarly to females, abamectin showed no differences from spinetoram 

(69). Spinetoram showed negative effects compared to control (70), novaluron (71) and 

lambda-cyhalothrin (72) (Figure 9, Table 14). 

 

 

Figure 9. Effects of insecticide intake on adult N. formosa. Females (F) and males (M). 

Different letters represent statistical differences among treatments.  
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Table 16. Log-rank and Wilcoxon for effects of insecticide intake by N. formosa 
55 log rank: χ2 = 0.195, df = 1, P< 0.659; Wilcoxon: χ2 = 0.140, df = 1, P< 0.708 
56 log rank: χ2 = 1.160, df = 1, P< 0.281; Wilcoxon: χ2 = 0.973, df = 1, P< 0.324 
57 log rank: χ2 = 46.492, df = 1, P< 0.0001; Wilcoxon: χ2 = 39.860, df = 1, P< 0.0001 
58 log rank: χ2 = 45.485, df = 1, P< 0.0001; Wilcoxon: χ2 = 39.501, df = 1, P< 0.0001 
59 log rank: χ2 = 42.656, df = 1, P< 0.0001; Wilcoxon: χ2 = 37.221, df = 1, P< 0.0001 
60 log rank: χ2 = 0.360, df = 1, P< 0.548; Wilcoxon: χ2 = 0.190, df = 1, P< 0.663 
61 log rank: χ2 = 38.374, df = 1, P< 0.0001; Wilcoxon: χ2 = 35.532, df = 1, P< 0.0001 
62 log rank: χ2 = 38.374, df = 1, P< 0.0001; Wilcoxon: χ2 = 35.532, df = 1, P< 0.0001 
63 log rank: χ2 = 36.383, df = 1, P< 0.0001; Wilcoxon: χ2 = 34.114, df = 1, P< 0.0001 
64 log rank: χ2 = 0.826, df = 1, P< 0.363; Wilcoxon: χ2 = 1.054, df = 1, P< 0.305 
65 log rank: χ2 = 3.156, df = 1, P< 0.076; Wilcoxon: χ2 = 2.231, df = 1, P< 0.135 
66 log rank: χ2 = 42.247, df = 1, P< 0.0001; Wilcoxon: χ2 = 37.485, df = 1, P< 0.0001 
67 log rank: χ2 =37.167, df = 1, P< 0.0001; Wilcoxon: χ2 = 33.392, df = 1, P< 0.0001 
68 log rank: χ2 = 43.412, df = 1, P< 0.0001; Wilcoxon: χ2 = 38.669, df = 1, P< 0.0001 
69 log rank: χ2 = 1.979, df = 1, P< 0.160; Wilcoxon: χ2 = 1.979, df = 1, P< 0.160 
70 log rank: χ2 = 40.830, df = 1, P< 0.0001; Wilcoxon: χ2 = 34.818, df = 1, P< 0.0001 
71 log rank: χ2 = 34.508, df = 1, P< 0.0001; Wilcoxon: χ2 = 29.466, df = 1, P< 0.0001 
72 log rank: χ2 = 42.221, df = 1, P< 0.0001; Wilcoxon: χ2 = 36.140, df = 1, P< 0.0001 

 

 

On G. nigrimanus female feeding, novaluron did not show differences compared 

to control (73) (numbers correspond to Table 15). Lambda-cyhalothrin did not show 

significant difference from control (74), however it showed a significant difference 

compared to novaluron (75). Abamectin showed negative effects compared to control 

(76), novaluron (77) and lambda-cyhalothrin (78). Spinetoram was the most harmful 

insecticide on female ingestion, showing negative effects compared to control (79), 

novaluron (80), lambda-cyhalothrin (81) and abamectin (82) (Figure 10) (Table 15). 

 The effects on G. nigrimanus male feeding were similar to those for females. 

Novaluron did not show differences from control (83). Abamectin showed negative 

effects compared to control (84), and novaluron (85). Abamectin showed no differences 

compared to lambda-cyhalothrin (86). As with females, spinetoram showed negative 
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effects compared to control (88), novaluron (89), lambda-cyhalothrin (90) and no 

difference compared to abamectin (87): (Figure 10, Table 15). 

  

Figure 10. Effects of insecticide intake on adult G. nigrimanus. Females (F) and males (M). 

Different letters represent statistical differences among treatments.  

 

  Table 17. Log-rank and Wilcoxon for effects of insecticide intake by G. nigrimanus 
73 log rank: χ2 = 0.158, df = 1, P< 0.691; Wilcoxon: χ2 = 0.339, df = 1, P< 0.560 
74 log rank: χ2 = 3.788, df = 1, P< 0.052; Wilcoxon: χ2 = 3.223, df = 1, P< 0.073 
75 log rank: χ2 = 6.216, df = 1, P< 0.013; Wilcoxon: χ2 = 6.480, df = 1, P< 0.011 
76 log rank: χ2 = 11.697, df = 1, P< 0.001; Wilcoxon: χ2 = 13.403, df = 1, P< 0.0001 
77 log rank: χ2 = 14.198, df = 1, P< 0.0001; Wilcoxon: χ2 = 15.868, df = 1, P< 0.0001 
78 log rank: χ2 = 3.267, df = 1, P< 0.071; Wilcoxon: χ2 = 5.719, df = 1, P< 0.017 
79 log rank: χ2 = 26.575, df = 1, P< 0.0001; Wilcoxon: χ2 = 27.447, df = 1, P< 0.0001 
80 log rank: χ2 = 27.521, df = 1, P< 0.0001; Wilcoxon: χ2 = 27.752, df = 1, P< 0.0001 
81 log rank: χ2 = 15.050, df = 1, P< 0.0001; Wilcoxon: χ2 = 20.239, df = 1, P< 0.0001 
82 log rank: χ2 = 7.862, df = 1, P< 0.005; Wilcoxon: χ2 = 11.271, df = 1, P< 0.001 
83 log rank: χ2 = 0.696, df = 1, P< 0.404; Wilcoxon: χ2 = 1.769, df = 1, P< 0.183 
84 log rank: χ2 = 4.713, df = 1, P< 0.030; Wilcoxon: χ2 = 9.626, df = 1, P< 0.002 
85 log rank: χ2 = 6.496, df = 1, P< 0.011; Wilcoxon: χ2 = 11.811, df = 1, P< 0.001 
86 log rank: χ2 = 0.114, df = 1, P< 0.736; Wilcoxon: χ2 = 1.412, df = 1, P< 0.235 
87 log rank: χ2 = 1.655, df = 1, P< 0.198; Wilcoxon: χ2 = 2.243, df = 1, P< 0.134 
88 log rank: χ2 = 11.120, df = 1, P< 0.001; Wilcoxon: χ2 = 18.545, df = 1, P< 0.0001 
89 log rank: χ2 = 15.846, df = 1, P< 0.0001; Wilcoxon: χ2 = 22.609, df = 1, P< 0.0001 
90 log rank: χ2 = 3.599, df = 1, P< 0.058; Wilcoxon: χ2 = 7.172, df = 1, P< 0.007 
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Effects of insecticide leaf residue on N. formosa and G. nigrimanus 

 There were no residual effects of abamectin (91) or novaluron (92) (numbers 

correspond to Table 16) on N. formosa compared to the control. Novaluron did show a 

small difference with abamectin (93). Spinetoram showed negative effects compared to 

control (94), novaluron (95), and abamectin (96) and no difference compared to lambda-

cyhalothrin (97). Lambda-cyhalothrin showed negative effects compared to control (98), 

novaluron (99) and abamectin (100) (Figure 11, Table 16). 

 

 

 

Figure 11. Effects of insecticide residue on adult N. formosa females (F) and males (M). 

Different letters represent statistical differences among treatments.  
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           Table 18. Log-rank and Wilcoxon for effects of leaf residue to N. formosa 

91 log rank: χ2 = 1.120, df = 1, P< 0.290; Wilcoxon: χ2 = 1.488, df = 1, P< 0.222 
92 log rank: χ2 = 0.470, df = 1, P< 0.493; Wilcoxon: χ2 = 0.690, df = 1, P< 0.406 
93 log rank: χ2 = 3.542, df = 1, P< 0.060; Wilcoxon: χ2 = 4.342, df = 1, P< 0.037 
94 log rank: χ2 = 21.181, df = 1, P< 0.0001; Wilcoxon: χ2 = 18.160, df = 1, P< 0.0001 
95 log rank: χ2 = 35.463, df = 1, P< 0.0001; Wilcoxon: χ2 = 30.255, df = 1, P< 0.0001 
96 log rank: χ2 = 17.990, df = 1, P< 0.0001; Wilcoxon: χ2 = 14.145, df = 1, P< 0.0001 
97 log rank: χ2 =0.001, df = 1, P< 0.979; Wilcoxon: χ2 = 2.176, df = 1, P< 0.140 
98 log rank: χ2 = 11.262, df = 1, P< 0.001; Wilcoxon: χ2 = 18.312, df = 1, P< 0.0001 
99 log rank: χ2 =15.197, df = 1, P< 0.0001; Wilcoxon: χ2 = 21.237, df = 1, P< 0.0001 
100 log rank: χ2 = 6.330, df = 1, P< 0.012; Wilcoxon: χ2 = 11.556, df = 1, P< 0.001 
 

With G. nigrimanus, the control and novaluron showed no significant differences 

for residual effects (101) (numbers correspond to Table 17). Abamectin had a negative 

effect compared to control (102) and novaluron (103). Spinetoram also showed a 

negative effect on the survival compared to the control (104) and novaluron (105), and no 

difference compared to abamectin (106). Lambda-cyhalothrin showed the highest 

negative effect to parasitoids compared to all treatments: control (107), novaluron (108), 

abamectin (109) and spinetoram (110) (Figure 12) (Table 17). 

 

 

Figure 12. Effects of insecticide residue on adult G. nigrimanus  females (F) and males (M). 

Different letters represent statistical differences among treatments.  
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           Table 19. Log-rank and Wilcoxon for effects of leaf residue to G. nigrimanus 

101 log rank: χ2 = 1.506, df = 1, P< 0.220; Wilcoxon: χ2 = 1.461, df = 1, P< 0.227 
102 log rank: χ2 =5.556, df = 1, P< 0.018; Wilcoxon: χ2 = 5.587, df = 1, P< 0.018 
103 log rank: χ2 = 7.664, df = 1, P< 0.006; Wilcoxon: χ2 = 7.542, df = 1, P< 0.006 
104 log rank: χ2 = 6.891, df = 1, P< 0.009; Wilcoxon: χ2 = 7.613, df = 1, P< 0.006 
105 log rank: χ2 = 8.518, df = 1, P< 0.004; Wilcoxon: χ2 = 8.557, df = 1, P< 0.003 
106 log rank: χ2 = 0.066, df = 1, P< 0.797; Wilcoxon: χ2 = 0.120, df = 1, P< 0.729 
107 log rank: χ2 = 72.553, df = 1, P< 0.0001; Wilcoxon: χ2 = 61.279, df = 1, P< 0.0001 
108 log rank: χ2 = 45.786, df = 1, P< 0.0001; Wilcoxon: χ2 = 34.723, df = 1, P< 0.0001 
109 log rank: χ2 = 36.150, df = 1, P< 0.0001; Wilcoxon: χ2 = 30.819, df = 1, P< 0.0001 
110 log rank: χ2 = 31.193, df = 1, P< 0.0001; Wilcoxon: χ2 = 27.624, df = 1, P< 0.0001 

 

DISCUSSION 

 Research on the lethal and sublethal effects of novaluron to natural enemies is 

limited. The insect growth regulator appears to be safe for natural enemies (Alston and 

Lindstrom 2002, Chappell et al. 2005). Alston and Lindstrom (2002) showed an increase 

in predator densities in novaluron-treated plants compared with other insecticides. They 

found that higher densities of the aphid parasitoid Aphelinus mal were present on 

novaluron treatments compared with control and other treatments.  

In the present studies, novaluron appears to be the safest insecticide to N. 

formosa and G. nigrimanus male. However, direct application of novaluron to G. 

nigrimanus females had significantly higher mortality than the controls. In the intake 

experiment (novaluron/honey solutions) cumulative survival of N. formosa and G. 

nigrimanus males and females was not affected compared with the controls. The direct 

consumption of honey and insecticides suggest that novaluron would be the safest 

pesticide when sprayed on floral structure in the field. In addition, leaf residue studies 

imply that novaluron residues are the safest for the parasitoids when the insecticide is 

applied in the field to control leafminer.  

Spinetoram has a very low mammalian toxicity (Breslin et al. 2000) and fast 
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environment breakdown (Cleveland et al. 2002). It also has a low impact on predator 

populations (Williams et al. 2003). However a literature review on the effects of the 

insecticide to parasitoids, rates spinosad as a class 3 and 4, the latter being the most 

harmful class against parasitoids (Williams et al. 2003). In the present study spinetoram 

showed harmful effects and reduction of cumulative survival to N. formosa and G. 

nigrimanus males and females compared with controls on topical applications, feeding 

and leaf residue. Field and greenhouse adult parasitoid populations may be eliminated if 

sprayed with this insecticide, in addition parasitoid species feeding from contaminated 

honey sources will also perish.  Parasitoids entering a zone after spinetoram application 

will also face mortality due to its residue.  This insecticide was the most harmful to adult 

parasitoids in this study. Similarly to spinosad, spinetoram also showed harmful effects 

on adult parasitoids and it should be cautiously used in pest management systems.  

Reports on abamectin effects on natural enemies vary in the literature. In field 

conditions abamectin treatments appear not to affect parasitoid populations on celery 

(Trumble 1984, Weintraub 1999), and chrysanthemum (Hara 1986) and peppers (see 

chapter III). In contrast, under laboratory conditions abamectin showed negative effects 

on parasitoid species. Schuster (1994) recounted high percentage mortality of Diglyphus 

species.  My findings showed a high mortality of N. formosa and G. nigrimanus males 

and females by topical application of abamectin. Furthermore, abamectin also showed 

high mortality when N. formosa and G. nigrimanus males and females that were fed with 

honey/abamectin solution. These results support previous research that showed high 

toxicity of direct application and feeding of abamectin (Kaspi and Parrella 2005).  In the 

residual effects study, abamectin showed negative effects on G. nigrimanus. However, 
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no-significant harmful effects were present on N. formosa compared to control. The 

results suggest that abamectin should only be used with caution in IPM programs to avoid 

high mortality of parasitoid species. 

Lambda-cyhalothrin has been reported to have harmful effects on natural enemies 

(White et al. 1990, Prasifka et al. 2005, Devotto et al. 2007). In the present studies 

however, topical application showed no harmful effect on N. formosa. In contrast, it had 

negative effects on males and females of G. nigrimanus. In the direct consumption, the 

insecticide was safe to both parasitoids species. The residual study gave opposite results 

and had negative impacts on survival of both parasitoids species.  

It has been reported that lambda-cyhalothrin topical applications and residue are 

harmful to natural enemies. For example, Tillman and Mulrooney (2000) showed that 

topical applications of lambda-cyhalothrin negatively affected natural enemies 

Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), 

Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor (Hymenoptera: 

Braconidae). In the same study, lambda-cyhalothrin residue was toxic to B. mellitor, C. 

nigriceps, C. maculata, and G. punctipes after treatment.  

Lambda-cyhalothrin topical application differences between N. formosa (no 

harmful effects) and G. nigrimanus (harmful effects) found in this study may be related 

to a potential development of N. formosa resistance to this compound. Neochrysocharis 

formosa is a larval endoparasitoid completing all its development in close association 

with Liriomyza larvae, in contrast to G. nigrimanus, a larval pupal parasitoid that starts its 

development on Liriomyza pupal stage. Liriomyza from field investigations appear to be 

resistant to lambda-cyhalothrin, potentially leading to resistance to this parasitoid species. 
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In addition, N. Formosa was the most abundant parasitoid present on peppers in South 

Texas ~ 60% of the collected specimens; this could also be influenced by its potential 

resistance to pyrethroid insecticides. 

The results of present findings on insecticidal effects on the adult parasitoids N. 

formosa and G. nigrimanus showed that novaluron had no lethal effects to adult 

parasitoid species, lambda-cyhalothrin, abamectin and spinetoram should be used 

cautiously because they could disrupt natural enemies’ populations. In order to have a 

better understanding of these compounds and their compatibility to biological control it is 

imperative to research the sub-lethal effects on adults and on immature parasitoid stages. 
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CHAPTER V 

GENERAL CONCLUSIONS 
 
 Liriomyza leafminers on South Texas are causing damage to vegetable crops 

particularly in pepper. According to this study L. trifolii is the only leafminer causing 

economic damage to pepper fields showing specialization on this host.  

Liriomyza leafminers in South Texas are attacked by a large diversity of 

parasitoid species. In our survey, 20 different parasitoid species were collected from 

Liriomyza feeding on peppers. The parasitoids belong to the hymenopterous families of 

Eulophidae, Braconidae, Figitidae, and Pteromalidae. The most abundant parasitoid was 

N. formosa with 60 % of the total collected specimens. In addition, 15 species were 

recorded for the first time in South Texas attacking L. trifolii: D. isaea (65), Cirrospilus 

spp. (46), Asecodes spp. (4), and Pnigalio spp. (17) from Eulophidae family. Opius 

dissitus (174), O. dimidiatus (12), Opius spp 1 (1), Opius spp 2 (7), O. bruneipes (26), O. 

browsvillensis (20), and O. thoracosema (2) from Braconidae family. Ganaspidium 

pusillae (118), G. nigrimanus (86), D. pacifica (16), and A. robusta (6) from the Figitidae 

family. 

 In order to have a better understanding of the Liriomyza and parasitoid 

populations present in the LRGV, a survey of other agricultural and weeds hosts should 

be performed. 

 Insecticidal control is the main management method for Liriomyza pests in South 

Texas. A variety of chemical compounds are available on the market for the control of 

leafminers. Among them, novaluron, spinetoram, abamectin and lambda-cyhalothrin are 
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commonly used in South Texas and their efficacy, as well as their effects on natural 

enemies, was investigated.  

According to our field evaluation, novaluron was the most effective insecticide 

for the management of L. trifolii pest, followed by spinetoram and abamectin. Lambda-

cyhalothrin showed no efficacy on the control of L. trifolii. A potential development of 

resistance to lambda-cyhalothrin in L. trifolii populations in the LRGV may be the reason 

for the lack of insecticide efficacy. It is recommended to avoid the use of this compound 

in South Texas. 

In field evaluations, novaluron showed the least amount of parasitoid per 

leafminer:larvae ratio and the smallest diversity index among treatments. This low 

parasitoid ratio and low biodiversity index may be explained by a potential toxicity of 

novaluron to the immature stages of leafminer parasitoids and it may be directly 

correlated to its efficacy on controlling Liriomyza trifolii. 

In order to increase the understanding of insecticide effects on natural enemies, 

adult parasitoids Neochrysocharis formosa (Eulophidae) and Ganaspidium nigrimanus 

(Figitidae) were used for insecticide bioassays using novaluron, spinetoram, abamectin 

and lambda-cyhalothrin. Among the treatments, spinetoram showed the greater negative 

effects on N. formosa and G. nigrimanus adult parasitoids followed by abamectin and 

lambda-cyhalothrin. Novaluron did not show any lethal effects on adult parasitoids of the 

two species. Lambda-cyhalothrin did not show negative effects on N. formosa directly 

applied with this compound. In contrast, it showed harmful effects on G. nigrimanus. The 

survival of N. formosa exposed to lambda-cyhalothrin may be explained by a potential 

development of resistance of this parasitoid to this compound. 
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In order to better understand the insecticidal effects on the natural enemies it is 

necessary to investigate the sub-lethal effects of these compounds on adult parasitoids 

and the effects on immature parasitoid stages. 

To conclude, parasitoid populations are present in the LRGV helping on the 

control of Liriomyza pest, and the management programs currently used in this area 

should be redefined in order to incorporate the important contribution of this natural 

occurring pest management tool. My advice will be to allow these natural enemies to 

develop and establish on L. trifolii infested fields and avoid the used of insecticides. If 

insecticide application is require, one application of novaluron per season can be done.  

Insecticides and natural enemies are important tool in IPM. Understanding their 

compatibility will help improve IPM in vegetables. Results in this study indicate a 

complex interaction is occurring including differences of natural enemy’s responses and 

possibly resistant effects of insecticides on adult and larval populations. Further studies 

of these interactions will help refine IPM programs in vegetables. 
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