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ABSTRACT 

 
Algorithms and Software Tools for Extracting Coastal Morphological Information 

from Airborne LiDAR Data. (May 2009) 

Yige Gao, B.S.; B.S., Peking University, Beijing, China 

       Chair of Advisory Committee:  Dr. Hongxing Liu 
  

With the ever increasing population and economic activities in coastal areas, coastal 

hazards have become a major concern for coastal management.  The fundamental 

requirement of coastal planning and management is the scientific knowledge about 

coastal forms and processes. This research aims at developing algorithms for 

automatically extracting coastal morphological information from LiDAR data. The 

primary methods developed by this research include automated algorithms for beach 

profile feature extraction and change analysis, and an object-based approach for spatial 

pattern analysis of coastal morphologic and volumetric change. 

 Automated algorithms are developed for cross-shore profile feature extraction 

and change analysis. Important features of the beach profile such as dune crest, dune toe, 

and beach berm crest are extracted automatically by using a scale-space approach and by 

incorporating contextual information. The attributes of important feature points and 

segments are derived to characterize the morphologic properties of each beach profile. 

Beach profiles from different time periods can be compared for morphologic and 

volumetric change analysis.  
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 An object-oriented approach for volumetric change analysis is developed to 

identify and delineate individual elevation change patches as discrete objects. A set of 

two-dimensional and three-dimensional attributes are derived to characterize the objects, 

which includes planimetric attributes, shape attributes, surface attributes, volumetric 

attributes, and summary attributes.  

 Both algorithms are implemented as ArcGIS extension modules to perform the 

feature extraction and attribute derivation for coastal morphological change analysis. To 

demonstrate the utility and effectiveness of algorithms, the cross-shore profile change 

analysis method and software tool are applied to a case study area located at southern 

Monterey Bay, California, and the coastal morphology change analysis method and 

software tool are applied to a case study area located on Assateague Island, Maryland. 

The automated algorithms facilitate the efficient beach profile feature analysis 

over large geographical area and support the analysis of the spatial variations of beach 

profile changes along the shoreline. The explicit object representation of elevation 

change patches makes it easy to localize erosion hot spots, to classify the elevation 

changes caused by various mechanisms, and to analyze spatial pattern of morphologic 

and volumetric changes. 
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1 INTRODUCTION 

1.1 Background 

Coastal areas sustain a wealth of natural resources and economic activities. More than 

half of the world’s population currently lives within 60 km of the coastline, and the 

coastal concentration of population is expected to increase dramatically in the future 

(CCSR, 2006). In the U.S., it is estimated approximately 53% percent of the nation’s 

population lived in coastal counties in 2003, which is expected to increase by 12 million 

by 2015 (Crossett et al., 2004). With the ever increasing population and economic 

activities in coastal areas, coastal hazards have become a major concern for coastal 

management.  The fundamental requirement of coastal management and planning is the 

scientific knowledge about coastal morphology and processes. The information about the 

coastal morphology change could facilitate decision-makers to better understand coastal 

process, to assess and predict the impacts of coastal hazards, and to formulate better 

management decisions regarding sustainable coastal developments.  

Traditionally, coastal mapping has been based on ground surveys of transects 

perpendicular and parallel to the shoreline. In most cases it is time-consuming and labor-

intensive. Transects are usually widely spaced due to time and cost restrictions. In recent 

years, airborne LiDAR remote sensing technology has been widely used in surveying, 

mapping and monitoring coastal environmental conditions and changes. LiDAR 

technique provides a much more cost-effective and efficient means of collecting 

topographic information, which allows a detailed analysis of micro-geomorphology of 

______________ 
This thesis follows the style of Annals of the Association of American Geographers. 
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the coastal area over a broad region (White and Wang, 2003; Brock et al., 2004; Zhang 

et al., 2005; Finkl et al., 2005). The technological advancements present both 

opportunities and challenges. One of the major challenges brought by the LiDAR 

technology is to develop methods to fully explore high resolution LiDAR data for 

information and knowledge extraction.  

Cross-shore profile change analysis provides an important dimension in 

understanding morphological and volumetric changes in coastal area.  Beach profiles can 

be extracted from the LiDAR surveys at a much higher resolution than those from 

traditional ground-based surveys for detailed change analysis (Brock et al., 2004). The 

available analytical techniques for beach profile change analysis include the comparison 

of successive surveys in terms of beach height, width, gradient, and shape, as well as the 

beach profile areas and volumes (Cooper et al., 2000).  However, previous studies are 

primarily based on the visual interpretation of profiles and simple statistical analysis for 

extracting morphologic features of beach profiles such as dune crests and toes (Elko et 

al., 2002; Judge et al., 2003; Zhang et al., 2005; Gares et al., 2006; Robertson et al., 

2007). This research intends to develop automated algorithms for extracting cross-shore 

profiles, identifying critical points, and calculating important cross-shore morphological 

properties from LiDAR data. 

 Information about spatial patterns of erosion and deposition and corresponding 

volumetric changes of the coastal zone are important for coastal hazard evaluation and 

coastal management. Previously, a cell-by-cell differencing method was commonly used 

for the volumetric change analysis based on LiDAR surveys (Woolard and Colby, 2002; 
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White and Wang, 2003; Shrestha et al., 2005; Zhang et al., 2005; Gares et al., 2006). The 

volume change is evaluated on a cell-by-cell basis by subtracting the LiDAR DEM 

acquired at an earlier time from the LiDAR DEM acquired at a later time. However, 

such an approach suffers from the difficulty in deriving localized information to analyze 

spatial patterns of morphologic and volumetric changes. It is also difficult to recognize 

elevation changes induced by factors other than erosion and deposition. In addition, it is 

not convenient with the cell-by-cell differencing method to associate the volumetric 

change information with other data for interpreting the causes and impacts of volumetric 

changes. This research aims to develop an object-based approach to morphologic and 

volumetric change analysis, which explicitly identifies each individual erosion and 

deposition patch as discrete object, and derive a set of spatial and volumetric attributes to 

characterize each object. 

1.2 Objectives 

The general goal of this research is to develop algorithms for automatically extracting 

coastal morphological change information. Specific objectives include:  

• Develop automated algorithms for beach profile feature extraction and change 

analysis 

• Develop an object-based approach for coastal morphological and volumetric 

change analysis  

• Implement software tools for coastal morphological change analysis 

• Test and validate coastal morphological change analysis methods for case study 

areas 
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1.3 Methodology 

1.3.1 Automated feature extraction and change analysis for cross-shore profiles 

This research will develop numerical algorithms for cross-shore profile feature 

extraction and change analysis based on repeat LiDAR data. Beach profiles 

perpendicular to the shoreline will be automatically generated at a given interval. The 

Gaussian filter will be applied to smooth the beach profiles.  Slope and curvature values 

will be calculated for different sections of the beach profile.  The dune crest and toe, as 

well as the beach berm crest will be identified based on the slope and curvature values. 

The attributes such as slopes for dune face and beach, as well as the heights and 

horizontal positions for dune crest and berm crest will be derived to characterize the 

morphologic properties of beach profile. To refine and improve the computation results 

from individual profiles, which are usually noisy, the contextual information of adjacent 

profiles are incorporated in the computation. The beach profiles from successive LiDAR 

surveys are compared for morphological and volumetric change analysis. This 

automated profile analysis method will be implemented as ArcGIS extension module to 

perform the feature extraction and attribute derivation from LiDAR beach profiles. 

1.3.2 Object-based morphological and volumetric change analysis 

This research will develop an object-based approach for volumetric change analysis 

using repeat LiDAR data. This approach automatically identifies and delineates 

individual erosion and deposition patches as discrete objects. These erosion and 

deposition objects, instead of individual cells in the elevation differencing grid, are used 

as basic spatial units for volumetric analysis. A set of two-dimensional and three-
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dimensional attributes will be derived to characterize and quantify erosion and 

deposition objects, which includes planimetric attributes, shape attributes, volumetric 

attributes, and summary statistical attributes. The explicit object representation of 

erosion and deposition patches makes it easy to localize hot spots, to analyze spatial 

pattern of morphologic and volumetric changes, to discriminate the erosion and 

deposition caused by different factors, and to incorporate other GIS data to explore the 

causes and impacts of the changes. This method will be implemented as an ArcGIS 

extension module to perform the object identification and attribute derivation.   

1.4 Organization of the thesis 

This thesis consists of six sections. The present section introduces the research 

background, objectives, and methodology. 

 Section 2 reviews the existing coastal topography mapping techniques, the pixel-

based method for coastal morphological and volumetric analysis, and the existing 

methods and softwares for feature extraction and change analysis of beach profile. 

 Section 3 introduces the airborne LiDAR remote sensing system and basic data 

products, and discusses the workflow for LiDAR data preprocessing. 

Section 4 presents the automated method for beach profile feature extraction and 

attribute derivation, as well as the approach for profile change analysis based on 

sequential LiDAR data.  

Section 5 presents the object-based method, which includes the identification and 

delineation of erosion and deposition objects, as well as the derivation of attributes for 

characterizing these objects.  
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Section 6 applies the change analysis method described in Section 4 and Section 

5 to case study areas.  

The last section summarizes the research findings and discusses the future 

research directions. 
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2 LITERATURE REVIEW  

This section reviews the coastal mapping techniques and discusses the comparative 

advantages of airborne LiDAR technology. The pixel-based approach for coastal 

morphological and volumetric analysis is introduced and its limitations are discussed. In 

addition, the visual interpretation and conventional methods for feature extraction from 

beach profiles, and the existing change analysis methods and software tools are reviewed 

and summarized. 

2.1 Coastal topography mapping techniques 

The coastal topography measurements are required by many studies such as coastal 

flood forecasting, coastal defence structure design against flooding and erosion, coastal 

environmental management, and environment impact assessment for economic 

exploitation (Mason et al., 2000). Traditionally, coastal topography mapping is based on 

methods such as ground survey and photogrammetry. In recent years, the development 

of airborne LiDAR remote sensing technology provides a much more cost-effective and 

efficient method to acquire elevation information in coastal area.  

Ground surveys for coastal areas are usually based on transects perpendicular 

and/or parallel to the shoreline. The elevation measurements along transects are acquired 

by using instruments such as engineer’s levels, total stations, or Global Positioning 

System (GPS) instruments (Cooper et al., 2000). The ground surveys can obtain highly 

accurate elevation measurements along transects and are repeatable at different time 

periods, which is necessary for change analysis. The topography of the near-shore zones 
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can be monitored by extending transects below water surface. However, in most cases 

this method is time-consuming and labor-intensive. When a large area needs to be 

covered, it means either a significant increase in cost, time, and labor to measure 

sufficient number of transects to represent the topography, or a sparse sampling rate, 

which may not be representative of the topography in details, and thus compromise the 

objective of study. In addition, the ground surveys are always constrained by the tidal 

and weather conditions, as well as the safety and accessibility of the survey area. 

The photogrammetric approach extracts the elevation information from 

stereoscopic aerial photography. By acquiring aerial photographs from different vantage 

view points of the landscape, the elevation measurements of the terrain surface in the 

overlapping areas of multiple photographs could be calculated based on stereoscopic 

parallax, which is the change of its viewing position from one photograph to the next 

relative to its background. The resulting digital elevation model (DEM) derived by 

photogrammetric approach could be at various scales (Jensen, 2007). This method could 

derive highly accurate elevation measurements and the data collection is repeatable. 

Depending on the required flying scale and level of accuracy, the cost could vary for 

both flying and image interpretation. Compared to ground survey methods, stereoscopic 

aerial photography could cover a large area with much better spatial resolution. However, 

the difficulty in identifying match points on featureless areas like beaches and dunes has 

seriously hindered photogrammetry application in coastal areas (Mason et al., 2000). 

The elevation extraction process from photogrammetry is relatively costly and time 

consuming. It cannot obtain the elevation measurements under water and cannot be used 
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for topography mapping in the near-shore zone. The flying missions are seriously 

constrained by weather and lighting conditions. 

The airborne LiDAR technology is based on accurate measurements of the laser 

pulse travel time from the transmitter to the target and back to the receiver. The laser 

scanner sends thousands of laser beams per second to the ground. Using the sensor 

position derived from differential Global Positioning System (GPS) and the sensor 

orientation derived from Inertial Measurement Unit (IMU), the laser range 

measurements can be converted to highly accurate elevation values. For coastal 

topography mapping, most LiDAR systems use near-infrared laser light in the region 

from 1045 to 1065 nm, which may also be used for mapping topography in the near-

shore zone depending on the water clarity. The LiDAR techniques could achieve high 

vertical accuracy of approximately 15 cm and horizontal accuracy of less than 1m 

(NOAA, 2008). Compared to ground surveys and photogrammetric data, LiDAR data 

can be collected at night if necessary because it is an active system and does not rely on 

the solar illumination. The requirements of LiDAR system for weather and lighting 

conditions are not as strict as that of aerial photography, and the data processing 

procedure is much simpler and more efficient. Overall, it provides a cost-effective and 

efficient way to collect detailed elevation measurements over a large coastal region.  

2.2 Methods and software for beach profile feature extraction and change 

analysis 

Beach profile surveying is a long-established and widely used technique for coastal 

monitoring. Cooper et al. (2000) provided a summary of the key elements of the beach 
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profile measurement, theory and analysis. They classified the beach profile change 

analysis methods into two categories: temporal analytical methods that assesses changes 

along one particular beach profile with respect to time, and spatial analytical methods 

that assesses variations between different profiles. The temporal analytical method can 

be used to identify the shore-term variation and long-term trends at a specific location 

and the spatial analytical method can be used to determine the spatial pattern of beach 

profile changes along the coastline. They summarized the available analytical techniques 

for comparison of successive surveys along a beach profile.  The profiles can be 

compared in terms of beach level and width, which are regarded as the standard of 

natural coastal defence. Also, the profiles can be compared in terms of beach gradient to 

understand the trends for beach steepening or flattening, and in terms of beach profile 

areas and volumes to evaluate the ‘health’ of beach. 

Most of the previous studies used visual interpretation approach to extract 

morphological features from beach profiles. In recent years, some efforts have been 

made to develop numerical methods to identify and extract features from beach profiles. 

Brock et al. (2004) developed LiDAR metrics for barrier island elevation profiles to 

analyze morphological changes. For each LiDAR-based cross-shore profile, they 

determined the ocean shoreline point, bay shoreline point, and the volume balanceline 

point. The LiDAR change metrics were developed to describe the ocean shoreline 

displacement, bay shoreline displacement, volume balanceline displacement, and the 

slice volume change. A morphodynamic classification was presented based on LiDAR 

change metrics. To support a storm impact scaling model for analyzing dune 
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vulnerability to storm-induced erosion (Sallenger, 2000), a semi-automated algorithm 

was developed for extracting dune crest and dune toe from LiDAR data (Elko et al., 

2002). First, the approximate locations of the dune crest and toe line had to be digitized 

manually. The dune crest line or berm crest line were visually recognized and manually 

digitized from the aspect image as the transition line from seaward-sloping to landward-

sloping regions. The dune base line was delineated from the slope image as the transition 

line between the flat beach and the steep dune face. The authors pointed out that the 

dune base delineation were generally more difficult because there might not be distinct 

break between dune face and beach. Then, a searching algorithm was utilized to 

automatically determine the actual heights of dune crests and toes within a buffer around 

the digitized line. To obtain the dune crest height, a neighborhood function was applied 

to select the pixel with maximum elevation value within the 7 m wide buffer around the 

digitized dune crest line. To avoid small perturbations with rapidly changing slopes near 

the dune toe, a smaller buffer area of 3-m wide was created around the digitized dune toe 

line, and a neighborhood function was applied to select the pixel with maximum value of 

the second derivative of elevation as the dune toe pixel. Stockdon et al. (2007) adopted 

this method to identify the pre-storm elevation of the dune crest and toe, which were 

used in conjunction with expected water levels to predict the spatially-varying storm-

impact regime.  

A quantitative method has been developed by USGS Center for Costal and 

Regional Marine Studies to automatically extract the location and elevation of the “first 

line of defense”, which could be the dune crest/ beach berm, or the top of the coastal 
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defense structures (USGS, 2008). First, this method smoothes the profile extracted from 

LiDAR data so as to eliminate the small variations in elevation measurements. Second, 

elevation peaks are identified based on the changes in direction of slope, and the “first 

line of defense” is identified as the first elevation peak landward of the shoreline on the 

profiles. 

Coastal morphology analysis software such as the Beach Morphology Analysis 

Package (BMAP) (Wise, 1995) and Regional Morphology Analysis Package (RMAP) 

(Batten and Kraus, 2005) have been widely used by coastal community. Both of them 

are part of the Coastal Engineering Design and Analysis System (CEDAS), which is an 

interactive coastal design and analysis software developed by the U.S. Army Engineer 

Waterways Experiment Station (Veri-Tech, 2006). CEDAS includes four modules: the 

General module contains the numerical methods for coastal and hydraulic engineering 

applications, the Inlet module contains the models for tidal inlet analysis, the Beach 

module contains the tools for beach process analysis, and the Surface-water Modeling 

System is a graphical user environment for accessing a multi-dimensional hydrodynamic 

model ADCIRC and a variety of multi-dimensional surface water modeling programs.  

Beach Morphology Analysis Package (BMAP) is an integrated set of interactive 

tools developed to support the analysis of the morphologic and dynamic properties of 

beach profiles. It is dynamically linked with SBEACH (Storm-induced BEAch CHange), 

which simulates cross-shore beach, berm, and dune erosion. The capabilities of BMAP 

in analyzing static properties of profiles include (Wise, 1995): plotting individual or 

multiple beach profile surveys, averaging multiple profile surveys within a given spatial 
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range, generating best-fit equilibrium profile for a single grain size, calculating profile 

volume with respect to specified reference elevation along the profile, generating 

synthetic profiles, as well as calculating bar properties such as minimum depth and 

location, maximum height and location, volume, and the center of mass. As for the 

beach profile change analysis, the capabilities of BMAP include: determining cut and fill 

areas with respect to cross-shore distance, calculating volume change and elevation 

change between two successive profiles, and calculating cross-shore sand transport rate 

by integrating the equation for conservation of sand. 

The Regional Morphology Analysis Package (RMAP), which is evolved from 

BMAP, also belongs to the Beach module of CEDAS (Batten and Kraus, 2005). While 

BMAP is limited in distance-elevation space, RMAP can manipulate, visualize, and 

analyze shoreline data and beach profiles spatially. Particularly, the shoreline positions 

and beach profiles can be projected and displayed on aerial photographs or maps. Data 

can be examined in both beach profile view and map view, which facilitates the quality 

control, visualization, and analysis process. RMAP has the capability to import beach 

profiles, shorelines, and baselines data from ASCII files, BMAP files, and spreadsheets. 

It can also import shorelines and baselines from ESRI Shapefiles. Since the distance and 

elevation values of each point along the profile are required to analyze the beach 

morphology, RMAP can  calculate the distance from the known profile origin 

coordinates for each point along the transect using its XY coordinates. In order to locate 

points along the profile on the map, RMAP can also calculate the XY coordinates for 

each point using its distance and elevation values.  
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The Beach Profile Analysis Toolbox (BPAT) is a software for archiving, viewing, 

and analyzing beach profile information, which has been developed by the National 

Institute of Water and Atmospheric Research (NIWA) and Katoa Software in New 

Zealand. It includes an Archive mode and an Analysis mode. The Archive mode is used 

to view existing data and enter new data. The surveys within a study area are arranged 

hierarchically by regions, cross-sections, and the benchmarks. The Analysis mode is 

used to analyze beach profiles, which supports plotting groups of surveys for a specified 

cross section, aligning surveys at a given elevation or on the basis of common marker, 

calculating the slope and volume for each horizontal slice for selected single survey by 

choosing a starting elevation and an elevation increment, calculating the slope and 

volume for each vertical slice for selected single survey by choosing a starting offset and 

an offset increment, and calculating cut/fill volume of surveys taken at different times.  

The Shoreline and Nearshore Data System (SANDS) is a coastal data capture, 

monitoring and analysis software developed by Halcrow Group Ltd, UK (Halcrow, 

2008). It is capable of importing beach profile survey data as well as time series wave, 

wind or tide level records. In SANDS, beach profile surveys can be analyzed using 

different methods. The standard beach profile analysis method include the “chainage” 

method, which works by dividing profile into vertical sections and calculating the beach 

level at each section, and the “level” method which looks at the horizontal strips of 

profile. In addition, SANDS can calculate the cross-sectional areas and volumes in 

relation to a ‘master profile’, which is a rock or clay bed layer under the beach material. 

As for volumetric analysis, SANDS enables the ability to group specific beach profile 
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locations to form a “Coastal Process Unit” and calculate volumes of beach materials for 

these units. In SANDS, maps can be imported as backdrop for reference and may also 

have data attached to it. However, SANDS is not a GIS system and the map data needs 

to be prepared using other GIS software. 

The visual interpretation of beach profile extracted from LiDAR data provides an 

intuitive way to analyze the beach morphological change. Despite the recent 

development of semi-automated algorithms, more efficient and accurate methods are 

needed for automatically extracting beach profiles, identifying critical points, calculating 

important morphological properties, and extracting profile change information from 

LiDAR data. The available software provide useful tools for beach profile data 

management and analysis. However, they failed to take advantage of dense datasets 

collected by LiDAR systems to analyze data spatially. First, the elevation measurements 

along beach profiles can only be imported from existing text files and be displayed on 

the background map, but cannot be directly extracted from LiDAR DEM. Second, the 

important features such as dune crest and toe, and berm crest are identified based on 

visual interpretation, which restricts a quantitative change analysis of profiles for a large 

geographic area. Third, although the beach profiles could be displayed spatially on the 

background map, it is still difficult to visualize and analyze the spatial variations of 

changes between different profiles along the shoreline. Fourth, the beach profile 

information is not fully integrated with geographic information system and cannot be 

edited and visualized interactively. 
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 To address the above research gaps, this research presents automated algorithms 

for cross-shore profile feature extraction and change analysis. Important features of the 

beach profile are identified automatically based on the calculation of slope and curvature 

values. The attributes such as slopes for dune face and beach, as well as the heights and 

horizontal positions for dune crest and berm crest are derived to characterize the 

morphologic properties of each beach profile. The quantitative identification and 

attributes derivation of profile features enables more efficient coastal morphology 

analysis for a large geographic area. The spatial patterns of the beach profile features and 

the related changes can be visualized and analyzed along the shoreline. The object 

representation of profile features could also facilitate the analysis in conjunction with 

other GIS data for exploring the causes and impacts of the morphological and volumetric 

changes at the cross-shore dimension.  

2.3 Pixel-based morphological change analysis 

Traditionally, the pixel-based differencing method was commonly used for the 

morphological and volumetric change analysis based on LiDAR surveys (Meredith et al., 

1999; Woolard and Colby 2002; White and Wang 2003; Zhang et al. 2005; Gares et al. 

2006). The volumetric change is evaluated by subtracting the LiDAR DEM acquired at 

an earlier time from the LiDAR DEM acquired at a later time. A negative elevation 

difference of a cell indicates that the surface material was eroded during the time span 

between two LiDAR surveys. A positive elevation difference indicates that the sediment 

accretion occurred, and a zero value indicates that there was no net change.  
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 For the traditional pixel-based approach, the spatial pattern of morphological 

changes can be visually interpreted. However, it cannot explicitly represent individual 

elevation change patches and extract information for each patch. For early coastal 

change studies based on LiDAR data, the morphological change information was usually 

only derived for the entire study area. In recent years, some efforts have been made to 

localize the change information. Woolard and Colby (2002) evaluated dune volume 

changes for two small study sites (100 x 200 m) located in Cape Hatteras National 

Seashore, North Carolina for a 1-year period of time using sequential LiDAR DEM. The 

volumetric change measurements were compared at spatial resolutions ranging from 1 x 

1 to 20 x 20 m to decide which resolution provides the most reliable representation of 

coastal dunes and the most accurate change measurements. In their study, only the total 

volume of erosion, deposition, and net change results were calculated and compared.  

Meredith et al. (1999) assessed hurricane-induced beach erosion between fall 

1997 and fall 1998 along the entire North Carolina coastline (approximately over 500 

km long). Their research use LiDAR technology for regional-scale volumetric change 

analysis. The beach sections were arbitrarily divided by inlets. For 21 beach sections, the 

volume of sediment gain or loss by unit length of each beach section was determined, 

and the spatial patterns of erosion were analyzed. Several parameters were calculated for 

each beach section to describe a regional pattern of volumetric change including the 

average sand gain or loss per unit length, the total volume of erosion, deposition, and net 

change, as well as the average volume change over each beach area.  
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White and Wang (2003) used LiDAR DEM to study an approximately 70-km 

stretch of the southern North Carolina coastline and investigated the spatial patterns of 

morphologic change occurred to five barrier islands between 1997 - 2000. First, the 

spatial pattern of morphologic changes was analyzed by a visual comparison of DEMs 

for different years. Then, the total volumetric change was quantified by using pixel-by-

pixel differencing method. To facilitate the spatial analysis of erosion and deposition, 

areas of interests (AOIs) were created for each island. Each AOI “designates a particular 

segment of coastline and consists of the primary portion of the dune line and dry beach”. 

The total volumetric change of the beach and sand dunes within each AOI was 

summarized from the cell-by-cell differencing results. Statistics of net volumetric change 

per unit area of all AOIs on each island were calculated. The means of net volumetric 

change per unit area of AOIs were calculated for three categories of management 

practices (developed, undeveloped, and nourished) to facilitate the comparison of 

morphological changes that occur naturally or human-induced. 

Zhang et al. (2005) compared 40km of beaches along the central Florida Atlantic 

coast surveyed before and after Hurricane Floyd in 1999. The whole study area was split 

into 35 separate tiles, each 1km long in the north-south direction.  Net beach volume 

change for each tile was calculated using the pixel-based differencing method. The 

along-shore spatial pattern of net volume change and net volume changes per unit 

shoreline of all the tiles was analyzed. Within each tile, the volume changes occurred 

between adjacent transects with an interval of 10 m were calculated and depicted.  
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Gares et al. (2006) used LiDAR surveys to monitor a beach nourishment project 

at Wrightsville Beach, North Carolina, from 1997 to 2000. The study area was divided 

into beach and dune zones based on specific elevations. Each zone was further divided 

into several segments including non-nourished, transition, and nourished zones. The 

volumetric changes in the beach and dune zones were summarized for each individual 

area of interest. The spatial variations of volumetric change per shoreline length were 

analyzed by examining all the nourishment zones in both beach and dune zones.  

Coastal elevation changes can be caused by many factors other than erosion and 

deposition, such as vegetation dynamics, human impacts, and data noise. The traditional 

pixel-based method has difficulty in recognizing changes caused by various mechanisms. 

As pointed out by Woolard and Colby (2002), the laser pulses returned from the 

vegetations or man-made structures could result in artifact changes. To avoid the 

complexity in evaluating the dune volume changes, they selected the Cape Hatteras 

National Seashore as the experiment sites for their research. In this area, the vegetation 

may have introduced spurious changes, but the issue of man-made structure were not of 

concern because the development in that area is sparse and tightly controlled. A further 

example comes from the research by White and Wang (2003), in which areas of interests 

(AOIs) were initially used to localize the information about erosion and deposition, the 

authors pointed out that another important purpose of using AOIs is to exclude the 

heavily vegetated areas and man-made structures such as houses and piers, which may 

introduce significant error into the analysis. 
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In summary, for traditional pixel-based differencing method, the spatial pattern 

of volumetric changes can be visually interpreted for a qualitative analysis. However, the 

pixel-based differencing method suffers from several problems. First, most previous 

studies only calculate and report overall erosion, deposition and net volume change for 

the entire study area, but since the individual erosion and deposition patches were not 

explicitly represented, the localized information about distinct erosion and deposition 

regions cannot be derived. Second, the elevation changes could be introduced by many 

factors other than erosion and deposition. The cell-by-cell differencing is subject to data 

noise and data processing errors involving the accuracy of the horizontal and vertical 

data values. In vegetated and developed areas, laser pulses may be returned from the 

dense vegetation cover, or the top of man-made structures instead of the ground surface, 

which may introduce the spurious elevation changes. Using pixel-based differencing 

method, it is difficult to recognize and correct artifact changes caused by various factors. 

The splitting of the beach into sections or tiles in the previous research is often arbitrary, 

and each section or tile may contain beach erosion and deposition patches. The statistical 

summary for each section/tile may be misleading or difficult to interpret. 

To address the above research gaps, this research presents an object-based 

method for morphological and volumetric change analysis. Individual erosion and 

deposition patches are automatically identified and delineated as discrete objects, which 

are used as basic spatial units for morphologic and volumetric analysis. A set of two-

dimensional and three-dimensional attributes are derived to characterize and quantify 

erosion and deposition objects, which provide comprehensive quantitative information 
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for various aspects of coastal morphology.  The localized attributes about individual 

patches provides a higher level of information about volumetric change, which could 

facilitate the analysis of various properties of each patch and the spatial pattern of these 

patches. In addition, the quantitative analysis of attributes could support the 

discrimination and classification of individual change objects into different classes to 

achieve a better understanding of the nature and characteristics of morphological 

changes for each class. The derived information could be used for a more detailed 

assessment of the impacts of hazardous coastal events such as storms and hurricanes and 

the effects of human interventions such as the beach nourishments and constructions of 

costal defense structures.  
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3 LiDAR DATA PREPROCESSING 

This section introduces the airborne LiDAR survey technology and the basic LiDAR 

data products. Commonly used operations and algorithms for preprocessing LiDAR data 

are discussed. 

3.1 Airborne LiDAR remote sensing system  

The airborne LiDAR, an acronym for Light Detection and Ranging, is an integrated 

system consisting of laser scanner, differential Global Positioning System (GPS), and 

Inertial Measurement Unit (IMU). The laser scanner sends thousands of laser beams per 

second to the ground and measures the time it takes each laser beam to reflect back to 

the sensor receiver. The onboard differential GPS and IMU are used to determine the 

precise position and attitude of the laser scanner. Using the aircraft position and 

orientation information from GPS and IMU, the laser range measurements can be 

converted to highly accurate elevation values. 

In coastal areas, the high-resolution topographic data provided by LiDAR is 

important for human/ property safety and coastal habitat management. LiDAR data has 

been used for coastal applications such as floodplain mapping, storm surge and tsunami 

modeling, sea level rise scenarios analysis, shoreline mapping and change analysis, 

coastal planning and development, and emergency response (NOAA, 2008b). Since 

1996, to address the needs in coastal communities, NOAA Coastal Service Center has 

been collecting and delivering coastal LiDAR data through working with state and local 

programs. LiDAR data along the U.S. coast are archived and available online at NOAA 
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Coastal Service Center (http://maps.csc.noaa.gov/TCM/).  The coastal LiDAR surveys 

usually occurred during the fall because the beach is generally at its widest after sand 

accumulation over the summer months. Survey flights are often scheduled within a few 

hours of low tide so that the maximum extent of the beach is exposed.  

For coastal topographic mapping, most LiDAR systems use near-infrared laser 

light in the region from 1045 to 1065 nm (NOAA, 2008b). The flight altitude is usually 

in the range of 300-2000 m. The range of spatial resolution is usually between 0.75 m 

and 2 m. The horizontal position accuracy of measurement point data is less than 1 m 

and vertical accuracy is approximately 15 cm.  

3.2 Basic LiDAR products 

LiDAR technology is based on the accurate laser range measurement R between the 

LiDAR sensor and the object, which is determined by: 

  tcR
2

1=          (3.1) 

where t  is the traveling time of a pulse of laser light from the transmitter to the target 

and back to the receiver, and c is the speed of light.  

 By combining the information from the GPS-derived antenna position (latitude, 

longitude, and ellipsoidal height), IMU-derived antenna orientation (roll, pitch, and 

heading), and the range measurement, LiDAR post-processing system could produce an 

array of points defined by its latitude, longitude, and altitude (x, y, z) coordinates, which 

is known as mass points. Since each laser pulse transmitted from the aircraft could 

generate multiple returns when encountering materials with local relief, the mass points 
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are associated with multiple returns files such as first return, possible intermediate 

returns, and last return file. The first return comes from the materials with local relief, 

such as the canopy top, building roof, and other unobstructed surfaces. The last return 

comes from the laser pulse that reaches the ground and is backscattered toward the 

receiver. 

 The initial LiDAR mass points are irregularly spaced and can be interpolated to 

create a regular grid of elevation values. The values for each given cell in the elevation 

grid can be determined by using an Inverse Distance (IDW) method,  by averaging all of 

the point elevation values in that cell, or by taking the minimum/ maximum value of all 

the point elevation values in that cell. The elevation grid can also be created using a 

Triangular Irregular Network (TIN) which is generated from mass points.  

The mass points associated with first return could be interpolated into a Digital 

Surface Model (DSM), which contains elevation information about all features in the 

landscape, such as vegetation and man-made structures. A bare-Earth Digital Terrain 

Model (DTM), which contains elevation information about the bare-Earth surface, could 

be created by extracting and removing mass points that come from features extending 

above the bare ground. A semiautomatic filtering algorithm can be first applied to 

identify the mass points that are vegetation and man-made structures. Visual 

interpretation and manual editing are then performed to create the final bare-Earth 

elevation model. 
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3.3 LiDAR data preprocessing 

To conduct coastal morphological change analysis, a number of pre-processing 

operations are needed for the repeat LiDAR surveys separated in time. LiDAR datasets 

acquired at different time should first be referenced to a common datum and projection, 

and then be horizontally co-registrated and vertically calibrated.  

The measurements of both the horizontal coordinates and the elevation of laser 

points are subject to errors due to the uncertainties in determination of aircraft trajectory, 

orientation, and laser ranging. The total error of LiDAR measurement could be 

decomposed into two components: random error and mean error (Sallenger et al., 2003). 

The mean error refers to the systematic bias, which is indicated by the mean difference 

between two datasets. The random error is indicated by the variation about the mean of 

differences between datasets. The mean error, which is often attributed to drift in the 

differential GPS, is the major error source and vary between different flight missions.  

 The reliability and accuracy of volumetric change analysis depends on the 

relative accuracy between two successive LiDAR surveys used for the comparison. By 

conducting horizontal co-registration and vertical calibration, we could remove the 

systematic mean errors and enhance the accuracy of morphological and volumetric 

change analysis. The horizontal misalignment of two LiDAR datasets could generate 

misleading changes, especially in the areas with high surface slope or man-made 

structures. If the horizontal alignment error hσ  is significantly larger than the LiDAR 

DEM cell size, a horizontal co-registration of two LiDAR datasets will be necessary to 

avoid the possible artifact changes induced by the misalignment. The vertical error in 
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each LiDAR dataset could also directly generate errors in resulting elevation changes. 

Given a nominal vertical accuracy vσ of LiDAR elevation measurements, the error of the 

elevation differences can be as large as2 vσ . It is necessary to perform vertical 

calibration to avoid the possible artifact changes in volumetric analysis. 

The horizontal registration and vertical calibration can be conducted by using 

pseudo invariant features as tie points. Pseudo invariant features are stable natural or 

man-made objects whose planimetric position and elevation are known and can be 

assumed unchanged over the time between LiDAR surveys at different time. The good 

candidates for pseudo invariant features could be large buildings with a flat roof, parking 

lots, paved roads, airport runways, etc. Horizontal co-registration requires point features 

like the corners of building and the intersections of roads. Vertical calibration requires 

linear features such as paved roads and polygon features such as parking lots if no tilt is 

present. The pseudo invariant features can be identified from hill-shaded images and 

LiDAR intensity images.  

For horizontal co-registration, a similarity (conformal) transform in Equations 

(3.2) and (3.3) or an affine transform in Equations (3.4) and (3.5) can be fitted to correct 

the horizontal misalignment. The similarity (conformal) transform accounts for the 

translational, rotation and scale differences. The affine transform accounts for additional 

skew shape (aspect ratio) changes. In most cases, similarity transform is adequate to 

meet the requirements of horizontal co-registration. 

Similarity transforms: 
 
   cybxax +′+′=           (3.2) 
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   fyaxby +′+′−=        (3.3) 
 
Affine transforms: 
 
   cybxax +′+′=         (3.4) 
 
   fyexdy +′+′=        (3.5) 
 

where (x, y) are the planimetric coordinates of the first LiDAR data set, (x’,y’) are 

planimetric coordinates of the second LiDAR data set, and a, b, c, d, e,  and f are 

coefficients to be fitted from pseudo invariant features using the least-squares method.  

For vertical calibration, a linear plane surface in Equation (3.6) can be fitted to 

correct the vertical errors. 

   CByAxz ++=δ        (3.6) 
 
where zδ is the correction value of the second LiDAR data set relative to the first LiDAR 

data set, (x,y) are the planimetric coordinates after horizontal co-registration, and A, B, 

C are the coefficients to be fitted through pseudo invariant features. The coefficients A 

and B represent the gradients of the tilt plane along the x and y directions, which are 

equal to zero if no tilt is detected between two LiDAR surfaces. The coefficient C 

represents the systematic offset between two LiDAR surfaces. 

Horizontal co-registration should be performed before vertical calibration. After 

vertical calibration, the accuracy of volumetric change analysis would be only 

influenced by the random errors of the LiDAR measurements, which is indicated by the 

standard deviation about the mean of differences between datasets. The level of random 

errors can be reduced by applying low-pass filter such as median filter or Gaussian filter. 

The median filter and Gaussian filter are edge-preserving. They can remove data noise 
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without distorting the object boundaries, which represents an advantage over linear 

filters. The random error after filtering can be estimated by calculating the standard 

deviation of elevation change along a pseudo invariant feature such as a paved road. The 

resulting error will be used to establish the range of possible variation about the mean 

volumetric changes, and to determine the thresholds for assuming that elevation change 

has occurred between successive LiDAR surveys. 
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4 MORPHOLOGIC ATTRIBUTES EXTRACTION AND CHANGE 

ANALYSIS BASED ON BEACH PROFILES 

In this section, the concepts and definitions of beach morphological features are 

reviewed, and basic mathematical principles for extracting these morphological features 

from a hypothetical beach profile are discussed. Numerical algorithms are designed and 

refined to handle complex real world beach profiles. A scale-space approach is 

introduced to identify critical morphological feature points on each beach profile, and 

the profile is subsequently divided into a number of sections. A set of morphological 

attributes are derived for characterizing the beach profile and the corresponding changes. 

Numerical algorithms are implemented as an ArcGIS extension module-Profile Analyst, 

to perform the morphological profile feature extraction and change analysis from the 

LiDAR-derived beach profiles. 

4.1 Mathematical principles for extracting morphological features from beach 

profiles  

4.1.1 Typical beach profile and definition of morphological features 

Beach profile analysis represents one-dimensional approach to the studies of coastal 

geomorphology, which is widely used by geomorphologists.  A beach profile shows 

elevation variations along a cross-section which is usually perpendicular to the shoreline.  

A profile often extends from the backshore cliff or dune to the shoreline. It may also 

extend seaward across the foreshore into the inner continental shelf of the nearshore 

zone where waves and currents do not transport sediment to and from the beach (Figure 
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4.1). Beach profiles extracted from airborne LiDAR data often cover part of upland and 

the entire backshore up to the shoreline, and the foreshore under water surface is not 

included due to lack of the water penetration capability of topographical LiDAR systems. 

The shape of the beach profile determines the vulnerability of the coast to storms, the 

extent of usable beach for habitat and creation, and the legal boundary distinguishing 

public and private ownership of land. Profiles taken at different dates can be compared 

to illustrate and quantify storm, seasonal, and longer-term changes in beach width, 

height, volume, and shape. 

The Atlantic and Gulf coasts of North America are characterized by gently 

sloping seashores as the result of gradual submergence of the continent's edges. Coastal 

dunes and sandy beaches are common and extensive along most of the coastline. In 

contrast, much of the west coast of North America is characterized by the precipitous 

cliffs, steep-walled bluffs, and rocky headlands. Coastal bluffs and sea cliffs are the 

seaward edges of marine terraces, shaped by ocean waves and currents, and uplifted 

from the ocean floor. Rocky headlands are composed of igneous rocks that are resistant 

to wave erosion. Coastal bluffs are composed mainly of sedimentary rocks that are 

particularly prone to erosion. To design numerical algorithms for coastal feature 

extraction, we need to define and characterize morphological features associated with 

two different types of profiles: sandy beach profile and bluff profile. The former prevails 

in the Atlantic and Gulf coasts of North America, and the latter in the west Pacific coast 

of North America. A typical beach profile is adapted from the Coastal Engineering 

Manual by US Army Corps of Engineers (Morang and Parson, 2002) (Figure 4.1) to 
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illustrate and define beach morphological features (Morang and Parson, 2002; Schwartz, 

2005). 

 

 

(a) 

 

(b) 

Figure 4.1  Illustration of morphological features of the coastal zone. (a) A typical beach 
profile; (b) A typical bluff profile (Adapted from Coastal Engineering Manual by US 
Army Corps of Engineers) 
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The backshore runs from the seaward-most dune to the land and water 

intersection. The backshore is the more landward and higher part of the beach and is 

typically a near-horizontal to gently landward-sloping surface. The backshore is not 

affected by the run-up of waves except during storm events and so it is the typical dry 

part of the beach. The landward limit of the active beach (beach head) includes dunes, 

cliffs/ bluffs, or engineered structures such. Dunes are windblown sand mounds on the 

backshore, usually in the form of small hills or ridges, stabilized by vegetation or control 

structures. The dune crest is the ridge line, and the dune toe is the point of break in slope 

between a dune and a backshore. Beach berms are broad, near-horizontal areas and are 

depositional features created from the wave-induced onshore accumulation of sediment, 

typically during summer. One or more berms may appear on a beach, depending on 

seasonal changes in water level. Beach scarps are nearly vertical slopes produced by 

wave erosion, which occur when the slope of the beachface is lowered during storm 

events. The height of a beach scarp may be just a few centimeters or a meter, depending 

on the degree of wave action and the type of beach material. Beach scarps may disappear 

by the return of sand onshore during berm accretion. The seaward margin of the berm is 

typically defined by a rather abrupt change in slope from the near horizontal surface of 

the berm to the inclined surface of the beachface. The line defined by this change in 

slope is called the berm crest or berm edge. The beach intersects the water at the 

foreshore, and the foreshore (beachface) is the more seaward part of the beach and 

typically a plane slope that extends over a water level range from low tide to high tide.  
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Figure 4.1b shows a typical bluff profile, in which bluff crest, bluff toe, berm, 

berm crest, and step are illustrated. A coastal bluff is an escarpment or high, steep face 

of rock, decomposed rock, or soil rising above the shore, caused by wave undercutting of 

the cliff toe. A bluff crest is the upper edge or margin of a bluff. Bluff toe is the base of a 

bluff where it meets the beach. A bluff face is the sloping portion of a high bank 

between bluff crest and toe. A seacliff beach berm is a flat and narrow stretch of sand 

between the bluff (cliff) and the ocean, and beach berm crest is the seaward limit of the 

flat berm with a rather abrupt change in slope to the inclined beachface. 

4.1.2 Morphological feature extraction from an ideal beach profile 

For each location on a beach profile, several indicators could be derived to quantify the 

morphological characteristics of major beach features at that location: 

1) 
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the curve has at this point.  
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 The extraction of critical feature points such as dune crest, dune toe, and berm 

crest can be based on the combination of second derivative and curvature, which could 

also be represented as signed curvature: 

  
02/32)1( xxz

z
=′+

′′
=κ           (4.1) 

 
The sign of κ  indicates the direction of slope change, and the absolute value of κ  

indicates the sharpness of the curve.  

 The concepts and algorithms for feature extraction are illustrated using a 

simplified beach profile shown in Figure 4.2. Based on discrete distance measurements 

whose resolution is determined by cell sizex∆ , the elevation of the beach profile is 

defined as: 

)(xfz =   K,2,,0 xxx ∆∆=                    (4.2) 
 
where x is the horizontal distance from current location to the shoreline, and z is the 

elevation measurement at current location. For each point on this simplified beach 

profile, first derivative (slope) is calculated based on central difference using one point 

on each side of the current point:  
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The second derivative is also calculated based on central difference, using slope value of 

one point on each side of the current point: 
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For each point, the signed curvature is calculated as: 
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By applying Equation (4.3) and (4.5), slope and signed curvature value are calculated for 

the simplified hypothetic beach profile. The results are shown in Figure 4.3. 

 

 

Figure 4.2  A simplified hypothetic beach profile 
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Figure 4.3  Slope and curvature derived for a simplified hypothetic beach profile 
 
 

The geometric characteristics of morphological features on the beach profile are 

summarized as follows: 

1) Dune/bluff crest: High elevation value, abrupt slope change, and negative signed 

curvature with high absolute value; 

2) Dune/bluff toe: A sudden slope increase from the beach berm to the dune/bluff face, 

and positive signed curvature with relatively high value; 

3) Beach berm: Low surface slope value;  

4) Beach scarp: High positive slope value;   

5) Berm crest: Relatively low elevation and a sharp break in slope from near-vertical 

surface of scarp or the inclined surface of beachface to the near horizontal surface of 

berm. 
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To constrain the search space for morphological features, a vertical threshold is 

given to roughly divide the beach zone and dune zone. When searching in the direction 

from the shoreline to the dune, the berm crest corresponds to the point with the 

minimum signed curvature value in the beach zone, and the dune/bluff crest corresponds 

to the point with the minimum signed curvature value in the dune zone. Once the 

locations of dune crest and berm crest are determined, the dune/bluff toe can be 

identified by searching for the point with maximum signed curvature between the 

dune/bluff crest and the berm crest, which indicates a dramatic slope change and a 

substantially concave profile shape.  

4.2 Morphological feature extraction from natural beach profiles 

The real-world natural beach profiles are far more complex than the simplified 

hypothetic profile illustrated above in Section 4.1. If the same algorithm is applied to 

natural beach profile (Figure 4.4), many peak and trough points may be identified in 

terms of the first derivative (slope) and signed curvature criteria, which will be confused 

with the actual dune/bluff crest, dune/bluff toe, and berm crest. This is because the 

natural beach profiles are noisy and contain the small-scale local variations (Figure 4.5). 

The challenge is how to make algorithms robust to data noise and to be able to 

differentiate dune/bluff crest, dune/bluff toe and beach berm crest from micro-level 

topographic variations.  This research develops a scale-space approach to the analysis of 

beach profile at various scales, and the contextual information is also utilized to achieve 

a robust detection of morphological features. 
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Figure 4.4  A natural beach profile 
 
 
 

 

Figure 4.5  Slope and curvature derived for a natural beach profile
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4.2.1 Scale-space approach to feature extraction from beach profiles 

A successful extraction of the important morphological features from the natural beach 

profiles depends upon the selection of appropriate scale of analysis. The need for a 

multi-scale signal analysis method arises when we need to automatically derive 

information from real world measurement (Lindeberg, 1994). The scale-space approach 

(Witkin, 1983) is one of the most well-developed and commonly used methods of multi-

scale analysis, which can be used to represent a curve as a family of curves smoothed at 

various detail levels. The essential requirement for multi-scale analysis is that new 

structures, which do not correspond to the simplifications of corresponding structures at 

finer scale, should not be created at a coarser scale. A set of standard scale-space axioms 

has been used to derive the appropriate low-pass kernel type. The uniqueness of 

Gaussian kernel result in its suitability for the scale-space approach, which includes 

linearity, shift invariance, the semi-group structure, scale invariance, rotational 

invariance, non-creation of local extrema, and non-enhancement of local extrema.  

A Gaussian kernel follows the Gaussian distribution. For continuous variable x, 

the standard Gaussian distribution )(xG  with mean µ = 0 and standard deviation σ is 

given by:   

)
2

exp(
2

1
),(

2

2

σσπ
σ x

xG −=        (4.6) 

Gaussian distributions centered at mean of zero with different standard deviations are 

graphed in Figure 4.6. As shown, the larger the standard deviation valueσ , the more 

spread out the kernel distribution is.  
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Figure 4.6  Gaussian distributions with different standard deviations 

 
For a given curve u(x), its Gaussian scale-space representation is a family of 

curves defined by its convolution with the Gaussian kernel with varying standard 

deviation values: 

),()(),( σσ xGxuxU ∗=        (4.7) 

The standard deviation σ controls the smoothing degree of the filter. The larger the 

standard deviation, the larger the scale of analysis and the less details (local variations) 

will remain in the curve.  

The critical features of the elevation curve correspond to the points of dramatic 

slope changes, which are associated with the extreme points on the curvature curve. By 

selecting different standard deviation values for Gaussian filter, the elevation curve can 

be smoothed at different scales, so that the critical features can be extracted at different 

scale from the resulting curvature curve. 
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When dealing with elevation curve based on discrete distance measurements, the 

Gaussian distribution ),( σnG  needs to be discretized: 

 )
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nG
∆−=        n = KK ,2,1,0,1,2, −−    (4.8) 

where σ is standard deviation and x∆ is the cell size. Since the Gaussian function decays 

rapidly, 95.45% of the area in the Gaussian function is contained in the window 

[ 02σ− , 02σ ], given an analysis scale0σ . Therefore, to construct a discrete Gaussian 

filter, the filter window could be truncated and be implemented as [ b− ,b ], where b is 

the minimum integer that satisfies 02σ≥∆xb . For each pixel ∈n  [ b− ,b ] in the filter 

window, its value for the Gaussian filter could be calculated as:    
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Given the elevation curve )(nfz = , the smoothed curve of )(nf  at specific 

scale 0σ is defined by its convolution with the Gaussian kernel: 

),()(),( 00 σσ nGnfnF ∗=  = ),()( 0σmnGmf
b

bm

−∗∑
−=

     (4.10) 

 n = bbbb ,1,,1,0,1,,1, −−+−− KK  

After smoothing elevation curve )(nfz =  at scale 0σ , the first derivative, second 

derivative, and curvature could be calculated for the smoothed elevation curve ),( 0σnF . 

The critical features of the elevation curve could be identified as extreme points on 

curvature curve at various analysis scales. 
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 For example, when a Gaussian filter with standard deviation σ =1 is applied to 

smooth the elevation curve shown in Figure 4.4, the resulting slope and curvature curves 

(Figure 4.7) are much smoother than the results from the original elevation dataset 

(Figure 4.5). On the curvature curve, the points corresponding to the critical features 

could be recognized as the extreme points, although there are some local extreme points 

in the neighborhood with very high curvature value, which may still cause confusion in 

the feature extraction process. 

 

Figure 4.7  Feature extraction of beach profile at smooth scale σ =1 

 
When a Gaussian filter with standard deviation σ =2 is applied to smooth the 

elevation curve shown in Figure 4.4, the resulting slope and curvature curve are even 

more smooth (Figure 4.8). On the curvature curve, the points corresponding to the 
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important features could be easily distinguished as the extreme points, and there is 

almost no local extreme point in the neighborhood that could cause confusion when 

identifying the important features. 

 

Figure 4.8  Feature extraction of beach profile at smooth scale σ =2 

 
When a Gaussian filter with standard deviation σ =4 is applied to smooth the 

elevation curve shown in Figure 4.4, the slope and curvature curve are further smoothed 

(Figure 4.9). On the curvature curve, the points corresponding to the important features 

still can be recognized as the extreme points, but are not as distinctive as they were when 

σ =2. Besides, the extreme points shift from the locations that exactly correspond to the 

original slope change point of the elevation curve, which is caused by the larger analysis 

window.  
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Figure 4.9  Feature extraction of beach profile at smoothing scale σ =4 

 
Overall, analyzing the original beach profile at different detail levels will create 

different results for feature extraction. At a small scale of analysis, the local variations of 

elevation curve will result in the unwanted fluctuations in the slope and curvature curve, 

which may cause difficulty in distinguishing the critical feature points from many other 

local extreme points in the neighborhood. By increasing the scale of analysis, the 

curvature curve will become smoother, which will make the points that correspond to 

critical features more prominent. However, when the scale of analysis is further 

increased and becomes too large, the original elevation curve will be over smoothed, 

which may result in serious shift of the detected location of the critical features or even 

the failure in detecting certain features. The determination of appropriate scale of 

analysis is critical to achieve a desired result of beach profile feature extraction.  
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4.2.2 Incorporate contextual information for feature extraction of beach profile 

The scale-space approach presented above works well in most cases, especially when the 

beach profiles have a relatively regular shape. However, in some cases the information 

about elevation, slope, and curvature of a single beach profile is not sufficient to 

determine the critical feature points satisfactorily, especially when some other points 

with a dramatic slope change exist. For example, for the profile shown in Figure 4.10, 

using a scale-space approach at smooth scale σ =2, the dune crest will be located on the 

back of the dune because of the presence of the lowest signed curvature value, which 

means a sharper slope change. 

 

Figure 4.10  Mistakenly identified dune crest (smoothing scale σ =2) 

 
 

To improve the accuracy and reliability in locating the feature points, the 

contextual information from the neighboring profiles could be incorporated based on the 
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assumption that the horizontal distance from origin point and the elevation of feature 

points are continuous or change gradually along a small segment of shoreline.  

For the dune crest point identified based on curvature property for the profile 

shown in Figure 4.10. Its elevation and the horizontal distance from the shoreline are not 

consistent and compatible with its neighbors (Figure 4.11).   

Figure 4.11  Example of dune crest identification based on information from individual 
beach profile. (a) Mistakenly identified dune crest (Profile ID = 170); (b) Inconsistency 
in horizontal distance from shoreline; (c) Inconsistency in elevation values 

 

To incorporate the contextual information from the neighboring profiles, the 

compatibility and consistency analysis is performed for morphological points extracted 

for each beach profile in comparison with its neighboring profiles. If a dramatic 

difference exists between the location (horizontal and/or vertical) of its dune crest and 

the neighboring dune crests, the current location of the dune crest on profile is identified 
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as a potential error. Then several other locations which meet the elevation and curvature 

criteria are selected as candidate dune crest points on the beach profile. The 

compatibility of each candidate dune crest point with the dune crests on neighboring 

profiles is calculated based on both the horizontal distance to the origin point and the 

elevation. The dune crest point will be adjusted to the candidate location with most 

compatible horizontal distance and elevation value. Gaussian distribution is assumed for 

both the horizontal distances and elevation values of the dune crests of beach profiles 

within a given neighborhood of the shore segment. For each individual beach profile, the 

algorithms are as follows: 

Step 1: Calculate the means and standard deviations of elevation and horizontal distance 

of the neighboring dune crest points in the given neighborhood: 
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where N is the total number of neighboring profiles in the given window size. DCz  is the 

average elevation of all the neighboring dune crests in this given window; i
DCz  is the 

elevation of the dune crest on profile i. Similarly, DCx  is the average horizontal distance 

from each neighboring dune crests to its corresponding origin point; i
DCx  is the 

horizontal distance from the dune crest on profile i to its origin point.  
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where N is the total number of neighboring profiles in the given window size; )( DCzσ is 

the standard deviation of elevation of all the neighboring dune crests in the given 

neighborhood; )( DCxσ is the standard deviation of horizontal distance from all the 

neighboring dune crests to the corresponding origin point.  

Step 2: Determine if the elevation and/or horizontal distance of the dune crest is 

compatible with its neighborhood. UseDCz  to denote the elevation of the dune crest on 

current profile, and DCx  to denote the horizontal distance from the dune crest to its 

origin point.  The location of the dune crest will be identified as incompatible if the 

difference between the current location and the mean value of the neighborhood exceeds 

a certain threshold, i.e.: 

 )(|| DCDCDC zkzz σ≥−   or 

)(|| DCDCDC xkxx σ≥−                                                                                     (4.15) 

where k is the multiplicative factor (usually ranging from 1.0 to 3.0). Once a dune crest 

location is identified as incompatible and thus may need to be adjusted, the following 

steps need to be executed.  

Step 3: Determine the candidate locations for dune crest. The candidate location for 

dune crest could be selected based on combination of several criteria: (1) having an 

elevation above the minimum threshold; (2) having a signed curvature value lower than 

the maximum threshold; and (3) being the local minimum curvature point.  
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Step 4: Calculate the compatibility of each candidate dune crest with other dune crests 

on the neighboring profiles based on Gaussian distribution. 

The probability density function of the standard Gaussian distribution with mean 

µ = 0 and standard deviation σ =1 is given by:   
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π
ϕ         (4.16) 

The cumulative distribution function of a probability distribution is the probability of the 

event that a random variable X with that distribution is less than or equal to x. The 

cumulative distribution function of standard Gaussian distribution is given by: 
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Thus the probability of the event that a random variable X with standard Gaussian 

distribution has an absolute value larger than x  is: 

 )(2)(1)( 1,01,01,0 xxXxPxXP −Φ=<<−−=>     (4.18) 

For a random variable X that follows Gaussian distribution with mean µ  and standard 

deviationσ , the probability of the event that X has an absolute value larger than x  is: 

)(2)()( 1,01,0 σ
µ

σ
µ

σ
µ −−Φ=−>−=> xxX

PxXP    (4.19) 

When x equals toµ , the probability equals to 1. The larger the distance of x from mean 

value µ , the lower the probability of the event that X has an absolute value large than x , 

and the probability is approaching to 0 when x is moving further away from the mean 

value µ . 
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Assuming the elevation and horizontal distance measurements of dune crest 

follows Gaussian distribution, the normalized measurements follows a standard 

Gaussian distribution, which means: 
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The compatibility of the dune crest on current beach profile with the dune crests in the 

neighborhood could be derived based on both the elevation and horizontal distance 

measurements: 
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The commonly used algorithm to approximate the cumulative distribution function of 

standard Gaussian distribution is from Abramowitz and Stegun (1964). Given: 
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The cumulative normal distribution is given by: 
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where )2316419.01/(1 xt += , 1b =0.319381530, 2b =-0.356563782, 3b = 1.781477937, 

4b = -1.821255978, 5b = 1.330274429. This approximation has a maximum absolute 

error of 85.7 −e .  

Step 5: Adjust the dune crest point to the location that has the highest compatibility. 
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As shown in Figure 4.10, the compatibility function is calculated for the local 

minimum points which satisfy the requirement of elevation and curvature (in this case 

elevation > 10m and curvature < -0.1). The local minimum point with the highest 

compatibility value is identified as dune crest (Figure 4.12 and Table 4.1). The relocated 

dune crest is more consistent with its neighbors in terms of elevation and distance from 

origin point on the shoreline (Figure 4.13).  

 

 

Figure 4.12 Adjustment of dune crest location using compatibility values 
 
 
 

Table 4.1 Compatibility values calculated based on contextual information 
  

 

Local minimum 
point 

Curvature Distance 
(meter) 

Elevation 
(meter) 

Compatibility 

1 -0.3505 119 31.79 0.00064 
2 -0.2569 54 12.45 0.00021 
3 -0.2336 82 30.12 0.25300 
4 -0.1101 136 23.97 1.91E-05 
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Figure 4.13  Example of dune crests identification. (a) Comparison between dune crests 
identified before and after incorporating contextual information; (b) Improved 
consistency in horizontal distance from origin point; (c) Improved consistency in 
elevation values 
 
 

Using the similar algorithm, the location of the beach berm crest of each profile 

can be adjusted by incorporating the contextual information. Then the dune toe can be 

relocated based on the updated location of berm crest and dune crest. 



53 

 

4.2.3 Procedures for deriving morphologic attributes for beach profiles along the 

shoreline 

The traditional ground survey transects are approximately perpendicular to the shoreline. 

Similarly, to automatically generate beach profiles from LiDAR DEM, the first step is to 

extract the shoreline as the reference to orientate transects. Shoreline is the spatially 

continuous line of contact between the land and the sea. More accurately, shoreline is 

defined as the intersection line between the land and the mean high water level (MHWL). 

This definition is adopted by many US agencies such as the United States Army Corps 

of Engineers, Federal Emergency Management Agency, and U.S. Census Bureau 

(Graham et al., 2003). Based on LiDAR elevation data, shoreline can be extracted using 

object-based or contour-based approach. In most cases, the shoreline extracted from high 

resolution LiDAR data contains too much spatial detail for generating perpendicular 

transects. The shoreline needs to be smoothed to eliminate the unnecessary details to 

ensure the orientation of transects vary smoothly and gradually. 

 After the shoreline is extracted and smoothed, the location of the starting point of 

each transect can be determined along the shoreline at a regular interval. The length of 

the transects can be specified according to the practical needs at particular study area. 

The orientation of each transect is calculated based on the local segments of the 

shoreline. A moving window with a selected size is centered at the starting point of each 

profile. A linear regression line is fit for the shoreline within the window. The 

orientation of the profile is then set to be perpendicular to this local regression line.  
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 After the transects are located, the corresponding elevation values can be 

extracted from the LiDAR DEM along each transect line. The Gaussian filter at 

optimum scale is applied to smooth the elevation curve. The first derivative, second 

derivative, and curvature are then derived for the smoothed elevation curve to extract the 

critical beach features from each individual beach profile. Then the contextual 

information from the neighborhood of each beach profile can be incorporated to identify 

the feature points that are not consistent with its neighbors in terms of elevation and/or 

horizontal distance. The locations of those incompatible feature points can be adjusted 

based on the compatibility analysis of candidate locations.  

 After the feature points for each beach profile are derived, the feature points on 

beach profile and the segments between feature points can be converted from raster-

based grid format to vector-based point and polyline format. Both the raster and vector 

representations of the points and segments of the profile are maintained in the database. 

For raster representation, each profile is stored as a series of grid cells with the ID 

number of feature points. For vector representation, the feature points and segments are 

located on the profile using linear referencing and dynamic segmentation techniques. By 

definition, linear referencing is the method of storing geographic location by using 

relative positions along a measured linear feature, while the dynamic segmentation refers 

to the process of calculating the absolute locations of events using linear referencing 

system and locating them on the map (Brennan and Harlow, 2002). First, a route can be 

created from each profile line by using profile length to accumulate the route measures. 

Then a point event table can be created for all the feature points, which records the ID of 
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the profile that each point belongs to, as well as the distance of the feature point to the 

origin point of the profile. At last, a route event layer can be generated based on profile 

routes and point event table by linking the points to the corresponding profile using route 

ID, and locating the points on the profile using its distance from the origin point as 

measure values. Similarly, a line event table can be created for all the segments between 

feature points.  A route event layer can be generated using profile routes and line event 

table by linking each segment to its corresponding profiles using route ID, and locating 

the segments on the profile using the distance measurement of its from-point and to-

point. Compared to raster representation, the vector format of feature points and 

segments of profile is much easier to be displayed, edited, and analyzed in a GIS 

environment in association with other data layers. 

4.2.4 Derivation of attributes for characterizing beach profiles and profile changes 

Based on the object representation of feature points and segments of each profile, a set 

of attributes can be extracted to support a detailed quantitative analysis of coastal 

morphology in the cross-shore direction. For beach feature points such as berm crest, 

dune crest, and dune toe, the elevation of the points and their horizontal distance from 

the origin point of corresponding profile can be calculated. For segments between the 

point features, such as dune face and beach berm, the corresponding height, width, and 

slope of each segment can be derived.  

If time series of profiles from repeat LiDAR surveys are available, the magnitude 

of changes can be calculated for each attributes, such as the horizontal and vertical 

displacement of each feature point, as well as the change in height, width, and slope of 
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each segment along the profile. The dune volumetric change is calculated based on the 

horizontal position of pre-surface dune toe and the dune crest location that is furthest 

from shoreline among different time periods. Limited by the water penetration ability of 

topographic LiDAR system, the beach volumetric change can only be calculated from 

the position of shoreline to the horizontal position of pre-surface dune toe.  

4.3 ArcGIS extension module for beach profile analysis 

To support the beach profile feature extraction and attribute derivation, an ArcGIS 

extension module – Profile Analyst, is developed in the environment of Microsoft Visual 

Studio .NET 2003. The core algorithms are programmed as a series of DLLs using the 

C++ language, and the graphical interface is developed by VB .NET and the relevant 

ArcObjects. This extension module can be used seamlessly with ArcGIS package. The 

graphical interface for Profile Analyst is shown in Figure 4.14. The capabilities of this 

module include: 

(1) Generate cross sections: This software routine has a customized dialogue menu 

which guides the user to load the input data and to set the relevant parameter values to 

delineate cross sections (Figure 4.14b). The required input data are LiDAR DEM and 

shoreline, which may be extracted or digitized based on LiDAR data and /or high-

resolution remote sensing imagery. The parameters to be specified include the beach 

profile length and profile interval. Transects perpendicular to the shoreline can be 

automatically generated at the specified interval. The elevation values for all the grids on 

each transect can be sampled from the LiDAR DEM and be stored as a list in memory. 
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Figure 4.14  ArcGIS extension module – Profile Analyst. (a) Pull-down menu for the 
extension module; (b) Dialogue form for generating cross sections; (c) Dialogue form 
for extracting feature points from single profile; (d) Dialogue form for extracting feature 
points for all profiles; (e) Dialogue form for editing feature points; (f) Dialogue form for 
calculating morphologic attributes; (g) Dialogue form for generating cross sections for 
change analysis; (h) Dialogue form for comparing profiles; (i) Dialogue form for 
calculating change attributes;(j) Dialogue form for calculating volumetric attributes; (k) 
Dialogue form for visualizing morphological changes along shoreline 
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Figure 4.14  (Continued) 
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  Figure 4.14  (Continued) 
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(2) Interactively extract feature points from single profile: This routine allows the 

user to preview selected profile curve and to determine appropriate parameters for 

feature extraction (Figure 4.14c).  First, the selected profile curve can be displayed. The 

standard deviation value can be set for the Gaussian filter to smooth the original 

elevation curve at different scales, and the resulting signed curvature curve can be 

displayed in a separate window. By setting a vertical threshold to roughly divide the 

profile into beach zone and dune zone, the resulting feature points could be derived and 

displayed on the beach profile. After several experiments on various profiles, the 

optimum scale of analysis and the elevation threshold can be determined. The elevation 

values along the profile and the coordinates for identified feature points can be exported 

to Excel for a detailed analysis. 

(3) Extract feature points for all profiles: After the optimal parameters are determined 

based on experiments on representative profiles, this software routine allows users to 

apply these parameters for the case study area to extract critical features (Figure 4.14d).  

Feature points can be extracted based on geometric information of each individual beach 

profile, and can also be adjusted by incorporating the contextual information from the 

neighboring profiles. To incorporate the contextual information, the user needs to set the 

number of profiles in the neighborhood to calculate the compatibility value. 

The resulting feature points such as beach berm crest, dune/bluff crest and 

dune/bluff toe are initially stored in memory as distance-elevation pair for each profile. 

By using a set of ArcObjects related to linear referencing and dynamic segmentation in 
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ArcGIS, the feature points and segments can be saved in event tables and be displayed in 

vector format.  

(4) Edit feature points: After the automatic profile feature extraction, the manual 

editing can fix feature points that are not correctly located by the automatic algorithms 

(Figure 4.14e).  For a selected profile, the distance-elevation pair of feature points can be 

read from the feature point layer created by previous steps and be displayed on the 

corresponding elevation curve. With this software routine, the location of the feature 

points can be interactively edited, added, or deleted. The feature point layer can be 

updated after the new location of feature point is determined.  

(5) Calculate morphologic attributes: After the automatic feature extraction and 

manual editing, a set of morphological attributes can be derived for each beach profile 

(Figure 4.14f).  The attributes for feature point include the elevation and the horizontal 

distance to the shoreline. The attributes for dune/bluff face and beach berm include the 

height, width, and slope. The feature points of the same type can be connected to form 

the feature line, such as dune crest line, dune toe line, and berm crest line. 

(6) Generate cross sections for change analysis: This routine allows user to perform 

change analysis between two successive LiDAR surveys (Figure 4.14g).  The user can 

specify the two LiDAR DEMs to be compared and the reference shoreline. Similar to the 

single DEM analysis, the user is allowed to set the beach profile length and profile 

interval. After transects are generated, the elevation values can be extracted for two 

DEMs along each transect. 
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(7) Compare profiles: This routine allows user to compare the elevation profiles 

measured at two different time periods (Figure 4.14h).  The identified feature points can 

be displayed on the profiles to reveal their displacements. The cut and fill areas can be 

displayed on the cross-shore view and the total volumetric change for each profile can be 

calculated.  

 (8) Calculate change attributes: This routine allows user to calculate the attribute 

changes during the temporal span between two LiDAR surveys (Figure 4.14i).  The 

change attributes include the horizontal distance and elevation changes for feature points, 

as well as the height, width, and slope change for dune/bluff face and beach berm. The 

volumetric change attributes are also derived for beach and dune sections (Figure 4.14j). 

(9) Spatial pattern of profile feature attributes and change attributes: This routine 

facilitates the visualization of the spatial variations of morphologic attributes for each 

survey and the analysis of change attributes between two surveys (Figure 4.14k).  

Several attributes can be selected and displayed at the same time, which is helpful in 

interpreting and analyzing coastal morphological change patterns. 
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5 OBJECT-BASED METHOD FOR MORPHOLOGICAL AND 

VOLUMETRIC CHANGE ANALYSIS 

This section presents the object-based method for morphological and volumetric change 

analysis. The object-oriented method represents a two-dimensional approach to the 

analysis of coastal morphology and its changes. The basic spatial units for object-

oriented analysis method are the erosion and deposition patches and zones, in contrast to 

the profiles in the one-dimensional profile analysis approach. This section starts with the 

presentation of algorithms for identifying and delineating the positive change and 

negative change objects. Then, algorithms and software tools are presented for deriving 

attributes for characterizing these morphological change objects. 

5.1 Identification and delineation of elevation change objects 

The main procedures of change object identification and delineation include three steps: 

pixel-based elevation differencing, morphological change classification, and object 

identification.   

For change analysis, LiDAR surveys at two different times for the same region 

needs to be preprocessed, including geo-referencing, horizontal co-registration, vertical 

adjustment, and low-pass filtering. Then, the two LiDAR DEMs can be differenced for 

change analysis as in Equation (5.1): 

12 t
ij

t
ijij zzz −=∆            (5.1) 

where 1t
ijz  and 2t

ijz  are the elevation measurements for the cell (i, j) respectively at the 

early time t1 and the late time t2, and ∆zij is the elevation difference for the cell (i, j). A 
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positive elevation difference value indicates that the surface materials have been added 

at this location, while a negative elevation difference value indicates that the surface 

materials have been removed (Figure 5.1c).  

 
Figure 5.1 Identification of elevation change objects. (a) DEM at the time t2; (b) DEM at 
the time t1; (c) Elevation difference values; (d) Morphological change classification 
values; (e) Resulting objects with ID numbers 
 
 

In the resulting pixel-based elevation difference imagery, the cells with elevation 

change value can be further classified into three morphological change categories: 

positive change cells, negative change cells, and unchanged cells (Figure 5.1d). As 

discussed in Section 3, “Unchanged” can be defined as the case when elevation change 

value is within a range of the measurement error. Given dσ  as the random error for 

elevation difference measurements and k as the multiplicative factor (usually ranging 

from 1.0 to 3.0), the elevation differencing image could be reclassified into three 

categories: positive change (1), negative change (-1), and unchanged (0) according to 

Equation (5.2): 
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    (5.2) 

where ijc is the morphological change code for the grid cell (i, j).  

In this object-based volumetric change analysis method, the unchanged cells are 

considered as background and the individual positive change and negative change 

patches are considered as objects (Figure 5.1e). For example, a positive change object is 

defined as a continuous spatial aggregation of cells with a positive elevation change 

value, in which any two cells are spatially connected. Two cells are considered to be 

spatially connected if there exits a path between two cells that consists of a series of 

adjacent cells. In this case, two cells are defined as adjacent to each other when one cell 

is the four immediate neighbor of the other. A recursive connected-component 

expansion algorithm (Sonka et al., 1999; Liu and Jezek, 2004) is used to identify and 

index positive change objects based on the spatial connectivity of cells. First, the 

elevation difference grid is scanned in a row-wise manner, and a seed is set at the first 

cell with a positive elevation change value. Second, this seed is expanded to include all 

the positive change cells located in the four immediate neighborhood of the current cell. 

The expansion is continued recursively until all the spatially connected positive change 

cells are included in the current patch. In this way, the first positive change object is 

delineated and indexed. As repeating this recursive expansion process to identify 

positive change objects one-by-one, the objects are indexed incrementally with a unique 

identification number. Following the same procedure, the negative change objects could 
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be delineated and indexed. Positive (negative) change objects with different 

identification numbers are spatially detached to each other, which is guaranteed by the 

algorithm. However, a positive change object and a negative change object might be 

adjacent to each other. As a final result, the recursive connected-component expansion 

algorithm creates a series of discrete elevation change objects which are embedded in the 

background of unchanged cells. 

When applying the algorithm to real LiDAR data, the identification of objects 

may be subject to errors for various reasons such as data noise, residual horizontal 

alignment error, and resolution limitation during image acquisition. The delineated 

objects may have small holes and breaks, and their boundaries may have a rough and 

jagged shape. To generalize the shape of the objects, three steps of morphology 

operations are applied. First, a closing operation (Sonka et al., 1999) is applied to 

smooth the object boundaries and close the small gaps in objects. The closing operation 

consists of a dilation operation followed by an erosion operation. The dilation operation 

adds cells to the perimeter of each object, and thus potentially closes broken areas. 

Erosion operation etches cells away from the perimeter of each object and therefore 

shrinks the object. Second, a fill operation is applied to close small interior holes and 

cavities whose size is smaller than a specified threshold. Third, a trim operation is 

applied to eliminate those isolated objects whose size is smaller than the specified 

threshold.  

After the discrete objects are generalized by the morphologic operations, they are 

converted from raster-based grid format to vector-based polygon format. Both the raster 
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and vector representations of the objects are maintained in the database. For raster 

representation, each object is stored as a list of spatially-connected grid cells with a same 

identification number, and the object attributes are stored in an associated attribute table 

with the same identification number. For vector representation, each object is stored as a 

polygon, and a feature attribute table is associated with the polygon layer. The feature 

attribute table contains object identification numbers and various spatial and volumetric 

properties of corresponding objects as described in the next section. The vector format of 

elevation change objects can be directly displayed, edited and analyzed in a GIS 

environment in association with other data layers. 

5.2 Attribute derivation for characterizing erosion and deposition objects 

Based on the object representation of elevation change patches, a set of spatial and 

volumetric attributes can be derived to support a detailed quantitative analysis of coastal 

morphology change. Individual elevation change patch is treated as the basic spatial 

units for morphological and volumetric change analysis. First, the internal composition 

and heterogeneity for each object can be characterized by a set of variables. For example, 

the range and standard deviation of vertical elevation changes could describe the internal 

heterogeneity of elevation changes within an object. Second, each object could be 

treated as homogenous entities and be characterized by a set of spatial and volumetric 

properties. Third, the spatial pattern of erosion and deposition objects could be measured 

by aggregation and distribution properties, over specified sub-regions or across the entire 

landscape. 
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From successive LiDAR datasets, five categories of attributes are calculated for 

each elevation change object, which include planimetric attributes, shape attributes, 

surface attributes, volumetric attributes, and summary statistical attributes. The 

combination of these attributes could provide comprehensive quantitative information 

for investigating morphological and volumetric characteristics of elevation change 

patches. Thematic attributes could also be calculated for each object if other ancillary 

data sources such as multi-spectral remote sensing imagery are incorporated. A 

combination of various attributes could facilitate the classification of elevation changes 

caused by different mechanisms. 

This research aims at providing an analytical framework and software tool for 

object-based morphological and volumetric change analysis, so that a large list of 

attributes are deduced and calculated. For specific research purpose or specific study 

area, the users may select the attributes that are most useful for characterizing particular 

aspects of coastal morphology.  

5.2.1 Planimetric attributes 

The planimetric attributes describe the geographical position, horizontal dimensions and 

size of the elevation change objects. Those include the coordinates ( yx, ) of centroid 

point, perimeter (p), area (A), thickness (THK), as well as the length (l) and width (w) of 

the minimum bounding rectangle. The numerical definitions of these attributes are listed 

in Table 5.1. The centroid point is the gravity center of the object and indicates the 

geographical location of the object. The perimeter measures the length of the object 

boundary. The thickness of an object is defined as the maximum distance of interior cells 
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of the object to its nearest boundary, namely the distance of the deepest cell inside the 

object to its boundary. The length and width of the minimum bounding rectangle gives 

the measurements on the horizontal dimensions of the object. 

 

Table 5.1 Definitions of planimetric attributes 
Attributes Definition 

Centroid point ( yx, ) 
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n is the number of cells consisting of an object, (xi, yi) are the horizontal and 
vertical coordinates of the ith cell of the object 

Perimeter (P) 

rmrmp 21 2+=  

m2 is the number of boundary cell in diagonal step, m1 is the number of 
boundary cell in horizontal or vertical orientation, and r is the grid cell size 

Area (A) 

2nrA =  

n is the number of cells consisting of an object, and r is the grid cell size. 
 

       Thickness (THK) 
}max{ idTHK =  

di is the distance of the cell i to the nearest boundary. 
 

       Length (l)       
length of the minimum bounding rectangle  enclosing the object 

       Width (w) 

 
width of the minimum bounding rectangle  enclosing the object 

 

5.2.2 Shape attributes 

Shape attributes describe the planar geometric shape of the objects. Due to the 

differences in the nature of changes and diverse coastal processes, the elevation change 

objects may have different shape characteristics and complexity. Some have compact 

forms, while others have narrow and elongated shapes. Some have simple, regular, and 
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smooth boundaries, while others have convoluted, rugged and complex boundaries. The 

different shape characteristics of elevation change objects could be used to facilitate the 

inference of the underlying coastal processes. A set of attributes are calculated for 

characterizing different aspects of the shape property, including compactness index (CI), 

elongatedness (ELG), asymmetry (ASM), orientation (φ ), fractal dimension (D), 

rectangularity (REC), ellipticity (ELP), and triangularity (TRI) (Table 5.2).  

Compactness index (CI) is a widely used shape indicator (Davis, 2002), which is 

defined based on the perimeter and area measure of the object. The most compact object 

in a Euclidean space is a circle. A circle-shaped object has a compactness index of one, 

and so that the compactness index is also known as the circularity measure (Pratt, 1991). 

Elongatedness is defined as a ratio between the length and width of the fitted minimum 

bounding rectangle. The circle and square have the smallest value for the elongatedness, 

which equals to one. The asymmetry is defined based on the best-fit ellipse of the object, 

which is the ratio of the major and minor axes of the ellipse. The circle and square have 

an asymmetry value of zero. The orientation is defined as an angle in degree between the 

horizontal axis and the major axis of the best-fit ellipse measured counterclockwise from 

0 to 180.  

Rectangularity, ellipticity and triangularity respectively measure the similarity of 

the shape of an object to typical rectangle, ellipse and triangle shapes. The rectangularity 

is defined by the ratio between the area of the object to the area of the minimum 

bounding rectangle. The ellipticity and triangularity are defined based on the affine 

moment invariant (Flusser and Suk, 1993; Rosin, 1993). All the rectangularity, ellipticity, 
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and triangularity values range from 0 to 1. The larger the value, the more similar an 

object is to the corresponding typical shape. 

Table 5.2  Definitions of shape attributes 
Attributes Definition 
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a and b are the semi-major and semi-minor of the best-fit ellipse, µpq are the 
central moments. 
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r is the width of box, N(r) is the counts of the boxes contain the object. 
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µpq are the central moments and I1 is the affine moment invariant. 
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I1 is the affine moment invariant. 
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The shape complexity of object boundary can be measured in terms of a 

perimeter-to-area ratio or fractal dimension (Mandelbrot 1983, Burrough 1981). Both the 

perimeter-to-area ratio and the fractal dimension increase with the increasing complexity 

of the object boundary. The problem with the perimeter-area ratio method is that it is 

size dependent. For two objects of the same shape, the larger object has a lower 

perimeter-area ratio than that of the smaller object. To avoid the size dependency 

problem of perimeter-area ratio, the fractal dimension is selected as the indicator to 

measure the complexity of object boundary. The fractal dimension is calculated for each 

object using the box-counting method, which includes the following steps (Foroutan-

pour, 1999): 

Step 1: Use a grid with a cell size ir  to cover the object, and then count the number of 

cells iN that contain part of the boundary of object. 

Step 2: Vary the cell size and record a series of counts { 1r , 1N }, { 2r , 2N }, …, { mr , mN }. 

Step 3: Fit a linear regression line of points { )log( 1r , )log( 1N }, { )log( 2r , )log( 2N }, …, 

{ )log( mr , )log( mN }. 

Step 4: Determine the fractal dimension D using the linear regression equation: 

  )log()log())(log( rDKrN +=                    (K is a constant)    (5.3) 

 

To generalize the shape and orientation of each object, a minimum bounding 

rectangle could be fitted to enclose the object, which is the smallest rectangle that 

contains all cells of the object and aligned with the major and minor principal axes of the 
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object (Figure 5.2). The algorithms of determining minimum bounding rectangle include 

the following steps (Chaudhuri and Samal 2007; Suesse and Voss, 2001): 

Step 1: Compute the centroid point (yx, ) of object and the angle of the major axis with 

the horizontal axis θ (Figure 5.3a). 

Step 2: Compute the upper and lower furthest boundary points with respect to both 

major and minor axes (Figure 5.3b). Each boundary point ( ii yx , ) can be 

classified to be upper, lower, and on with respect to the major axis using: 

  )(tan)( xxyyV ii −−−= θ         (5.4) 

Boundary point ( ii yx , ) is an upper boundary point with respect to major axis 

when V > 0, a lower boundary point when V < 0, and on the major axis if V = 0. 

Then the upper and lower furthest boundary points with respect to major axis 

could be determined within each groups. Similarly, by using 

)(cot)( xxyyU ii −+−= θ , the upper and lower furthest boundary points with 

respect to minor axis could be determined.  

Step 3: Compute the vertices of the four corners of the minimum bounding rectangle 

(Figure 5.3c). Let ( 11, yx ) and ( 22, yx ) be the upper and lower furthest boundary 

points with respect to major axis, and let ( 33, yx ) and ( 44, yx ) be the upper and 

lower furthest boundary points with respect to minor axis. The vertices are 

determined by finding the intersections of four lines: two lines are parallel to 

major axis and respectively pass through (11, yx ) and ( 22, yx ); another two lines 
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are parallel to minor axis and respectively pass through ( 33, yx ) and ( 44, yx ). The 

resulting coordinates of the four corners are: 

Top left corner A:   

   
θθ

θθ
cottan

cottan 1331

+
−++= yyxx

x     (5.5) 

   
θθ
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Top right corner B:   
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Bottom left corner C:   
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       Bottom right corner D:   
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Step 4: Connect the corresponding vertices to get the minimum bounding rectangle of 

the current object. 
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Figure 5.2  A minimum bounding rectangle and its parameters 
 
 
 
 
 

 

 

 

 
(a)      (b)    (c) 
 

Figure 5.3  Steps of fitting minimum bounding rectangle. (a) Centroid and axes; (b) 
Upper and lower furthest points; (c) Vertices of minimum bounding rectangle 
 
 

The best-fit ellipse of an object can be determined using all the cells within the 

object (Figure 5.4). The center of the ellipse is located at the centroid point. The 

principal axes of the ellipse are the eigenvector of the covariance matrix obtained by 

treating the cells within the object as random variables. The major principal axis 

corresponds to the eigenvector of the larger eigenvalue. Three parameters of the ellipse 

including semi-major axis (a), semi-minor axis (b), and orientation (φ) can be calculated 
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using the lower-order central moments of the objects (Teague, 1980; Mulchrone and 

Choudhury, 2004). The algorithms of determining best-fit ellipse include the following 

steps: 

Step 1: Compute the centroid point (yx, ) of the object. 

Step 2: Compute the central moments of the object:  

 q
i

n

i

p
ipq yyxx )()(

1

−−=∑
=

µ   (p = 0, 1; q = 0, 1)   (5.13) 

Step 3: Compute the semi-major axis, semi-minor axis, and orientation of the ellipse 
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Step 4: Draw the best-fit ellipse. 

 

Figure 5.4  Best-fit ellipse and its parameters 
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5.2.3 Surface attributes 

Surface attributes describe the three-dimensional surface morphology and its changes in 

terms of slope, aspect and curvature. To support the exploration of the interaction and 

relationship between surface geomorphology and the coastal processes, a set of surface 

attributes are calculated for each elevation change object, which includes: original-

surface average elevation (AV_EL1), subsequent-surface average elevation (AV_EL2), 

average elevation difference (AV_EL_DIF), original-surface average slope (AV_SL1), 

subsequent-surface average slope (AV_SL2), surface slope difference (AV_SL_DIF), 

original-surface average aspect (AV_AS1), subsequent-surface average aspect (AV_AS2), 

average surface aspect difference (AV_AS_DIF), original-surface curvature (AV_CV1), 

subsequent- surface curvature (AVF_CV2), and average surface curvature difference 

(AV_CV_DIF) (Table 5.3). The average value for surface elevation, slope (in percent 

rise), or curvature for original and subsequent surfaces are simply calculated as the 

arithmetic mean of all the cells within the object. The average value for surface aspect is 

calculated through trigonometric operations as it is a circular direction measure in degree 

(Davis, 2002). For aspect values1θ , 2θ , …, nθ , the average aspect is calculated as: 

∑
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Table 5.3  Definitions of surface attributes 
Attributes Definition 
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5.2.4 Volumetric attributes 

The volumetric attributes gives direct measurements on the magnitude and variation of 

elevation change within an object, which include average vertical change (∆zav), 

maximum vertical change (∆zmax), standard deviation of vertical change (∆zstd), vertical 

change rate (ZR), volume change (VOL), and volume change rate (VR) (Table 5.4). The 

average vertical change (∆zav) measures the central tendency of the elevation change for 

each object. The maximum vertical change (∆zmax) and the standard deviation of vertical 

change (∆zstd) measure the variation and the internal heterogeneity of the elevation 

change within each object. The vertical change rate (ZR) quantifies the average elevation 

change rate at a certain temporal scale. The volume change (VOL) and volume change 

rate (VR) quantify the total change in the volume of surface material during the time 

span between two surveys and the averaged change rate for each object. 

5.2.5 Summary statistical attributes 

After the erosion and deposition objects are identified based on a combination of 

planimetrc, shape, surface, and volumetric attributes, summary statistics can be 

calculated to quantify the extent, amount, spatial composition and configuration of 

overall erosion, deposition, and net change for a certain region. Summary statistical 

attributes include the number of erosion object (NUM_ER), average size of erosion 

objects (AV_AREA_ER), total erosion area (AREA_ER), total erosion volume (VOL_ER), 

the number of deposition object (NUM_DE), average size of deposition object 

(AV_AREA_DE), total deposition area (AREA_DE), total deposition volume (VOL_DE), 
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net volume change (NET_VOL), and annual net volume change rate (NET_VOL_RT) 

(Table 5.5). 

 

Table 5.4  Definitions of volumetric attributes 
Attributes Definition 
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Table 5.5  Definitions of summary statistical attributes 
Attributes Definition 

Number of erosion objects  
(NUM_ER) 
  
Number of deposition objects 
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5.3 ArcGIS extension module for volumetric change analysis 

To support the object-based morphological and volumetric change analysis method, an 

ArcGIS extension module – Coastal Volumetric Analyst, is developed under the 

environment of Microsoft Visual Studio .NET 2003. The core algorithm, including 

object identification and attribute derivation, are programmed as a series of DLLs 

(Dynamic-Link Library) using the C++ language. The graphical interface for the 

Volumetric Analyst extension module is developed through a VB .NET program that 

calls the DLLs and the relevant ArcObjects. The ArcObjects are a set of platform 

independent software components designed by ESRI Inc. specifically for programming 

with ArcGIS applications. This extension module can be used seamlessly with ArcGIS 

package. 

The graphical interface for Coastal Volumetric Analyst is shown in Figure 5.5. 

This customized dialogue menu guides the user to load the input data, to set the relevant 

parameter values, and to select the attributes to be calculated for each objects. The 

required input data are two LiDAR DEMs, which are acquired at different time and 

cover the same area. After calculating the pixel-based elevation difference, the users 

could set the parameter of the relative error and multiplicative factor to determine the 

threshold of three morphological categories: positive change, negative change and 

unchanged. Before the object identification, the minimum object size could be 

determined to remove small noisy objects. The users can decide which groups of 

attributes are going to be calculated and included in the attribute table. In addition, the 
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user can choose to output the minimum bounding rectangles and the best-fit ellipses for 

all the elevation change objects as separate polygon layers.  

The initial set of objects identified may include many change patches that were 

induced by various factors other than erosion and deposition. A combination of different 

attributes could be used to accomplish the classification of elevation change objects and 

distinguish the changes caused by erosion and deposition. Once the erosion and 

deposition objects are identified, the attributes can be selected and calculated for these 

objects again, so as to support the spatial analysis of morphological and volumetric 

change. 

 

 

  
                                 (a)                                 (b) 

 
 
Figure 5.5  ArcGIS extension module - Coastal Volumetric Analyst. (a) Pull-down menu 
for the extension module; (b) Dialogue form for identifying elevation change objects; (c) 
Dialogue form for computing planimetric attributes; (d) Dialogue form for computing 
shape attributes; (e) Dialogue form for computing surface attributes; (f) Dialogue form 
for computing volumetric attributes; (g) Dialogue form for computing summary 
statistical attributes; (h) Dialogue form for linking attribute tables with object polygon 
layer 
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(c) (d) 

                                (e)                                 (f) 

                                (g)                                 (h) 
  
Figure 5.5 (Continued)  
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6 CASE STUDIES 

To demonstrate the utility and effectiveness of algorithms, this section applies the 

analysis method and software tool to case study areas. The cross-shore profile change 

analysis method is applied to a case study area located at southern Monterey Bay, 

California, and the coastal morphology change analysis method is applied to a case study 

area located on Assateague Island, Maryland. 

6.1 A case study for beach profile feature extraction and change analysis 

The automated algorithm for beach profile feature extraction and change analysis is 

applied to a case study area located at southern Monterey Bay, California, in the Pacific 

coast of the US (Figure 6.1). Southern Monterey Bay is characterized by a sandy 

shoreline backed by extensive bluffs. Beach sands are originated from the sediments of 

Salinas River and blown onshore by wind. It is a characteristic erosive coastline and on 

average, the dunes south of the Salinas River are eroding at the highest rate in California 

(Hapke et al., 2006). Bluff erosion occurs when storm waves coincide with high tides. 

During the 1997-1998 El Nino winter, significant bluff recessions were observed, as a 

result of anomalously high tides and high wave energy (Thornton et al., 2006). 
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Figure 6.1 The geographical settings of Marina, southern Monterey Bay, California 
 

6.1.1 LiDAR data preprocessing 

Two successive LiDAR surveys are used in this case study. The first survey was 

conducted on October 13th, 1997, and the second was on April 18th, 1998. Both two 

LiDAR surveys were acquired by NASA Airborne Topographic Mapper (ATM) LiDAR 

system through the NOAA/USGS/NASA Airborne LiDAR Assessment of Coastal 

Erosion (ALACE) Project. The raw LiDAR measurements have a vertical accuracy 

within 0.15 m and a horizontal accuracy around 0.8 m. The raw LiDAR measurement 

points were interpolated into Digital Elevation Model (DEM) grid at 1 m spatial 

resolution.  
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Two LiDAR DEMs were projected to the UTM (zone 10) coordinate system and 

horizontally referenced to North American Datum of 1983 (NAD83). The vertical datum 

is North American Vertical Datum of 1988 (NAVD88). The overlapping areas were 

extracted from two LiDAR surveys to conduct change analysis. The hillshading images 

were created for both DEMs to provide a three-dimensional view of the topography, 

which could also facilitate the horizontal registration and vertical calibration. The 

vertical calibration was conducted by using the asphalt parking lot behind Stillwell Hall 

as a pseudo invariant feature (Figure 6.2).  

 

 

 
 
Figure 6.2 Stillwell Hall, Marina, CA. Photograph copyright © 2002 Kenneth & 
Gabrielle Adelman (http://www.californiacoastline.org/) 
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Figure 6.3 LiDAR DEMs and the elevation difference grid. (a) DEM acquired in 1997; 
(b) DEM acquired in 1998; and (c) Cell-by-cell elevation changes during 1997-1998 
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6.1.2 Beach profile feature extraction and change analysis 

The elevation change grid was created by subtracting the 1997 LiDAR DEM (Figure 

6.3a) from the 1998 LiDAR DEM (Figure 6.3b) as in Equation (6.1): 

    19971998
ijijij zzz −=∆                     (6.1) 

where 1998
ijz  and 1997

ijz  are the elevation measurements for the cell (i, j) respectively at the 

year 1998 and the year 1997, and ∆zij is the elevation difference for the cell (i, j).  

Figure 6.3c shows the spatial pattern of elevation changes. Given a vertical accuracy of 

0.15m, the random error of elevation differences could be as large as dσ = 0.21m 

( 15.02 × m). In Figure 6.3c, the absolute elevation change less than 0.42m is 

represented in white color. Blue-green color represents a decrease in elevation and red-

yellow color represents an increase in elevation. Strong erosion occurred both in the 

bluff face and beach zone. Also, on the south side of Stillwell Hall, a breach was opened 

in the coastal bluff. 

Bluff recession can be better measured and analyzed from the cross-shore 

profiles. To determine the location of beach transects, the shoreline was extracted based 

on a monthly mean high water level of 1.417 m in April 1998 (Figure 6.4). The beach 

transects were generated normal to shoreline at a regular interval of 10m, with a uniform 

width of 150 m (Figure 6.5).  



90 

 

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Sep-97 Oct-97 Nov-97 Dec-97 Jan-98 Feb-98 Mar-98 Apr-98 May-98

Month

M
ea

n
 H

ig
h

 W
at

er
 r

el
at

iv
e 

to
 N

A
V

D
88

 
(m

)

 

Figure 6.4 Monthly mean high water level relative to NAVD88 during 1997-1998 winter 
(Source: NOAA historical water level data for NOS station 9413450 – Monterey, CA. 
http://tidesandcurrents.noaa.gov) 

 
 

Figure 6.5 Beach transects generated along the shoreline 
 
 

After several experiments, the standard deviation of Gaussian filter to smooth the 

beach profile was determined as σ = 2. Based on the calculation of slope and curvature, 

the feature points including bluff crest, bluff toe, and beach berm crest were identified 

for each beach profile (Figure 6.6a). The contextual information was incorporated to 

improve the feature point identification (Figure 6.6b). By incorporating the information 
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from neighboring profiles, most errors in the feature extraction results were corrected 

(Figure 6.7a, Figure 6.7b, and Figure 6.7c). However, in some specific areas, a few 

feature points were still problematic, which may need to be manually edited or deleted 

(Figure 6.7d and Figure 6.7e).  

 

Figure 6.6  Beach feature extraction from spring 1998 LiDAR data. (a) Feature points 
identified without using contextual information; (b) Comparison between the feature 
points identified with and without using contextual information 
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(a) 

 

   (b)      (c)  

 
Figure 6.7 Comparison between the feature points identified with and without using 
contextual information (Spring 1998; Profile 158 – 206). (a) 3D view of feature points 
comparison; (b) Profile 169; (c) Profile 180; (d) Profile 30; (e) Profile 120 
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                                      (d)      (e) 

Figure 6.7 (Continued) 

 

For the 2.1km coastal stretch of the case study area, the algorithms were applied 

to extract features from each of the 206 profiles for both years (Figure 6.8). As noticed 

by Thornton et al. (2006), the dune crest in 1998 is relative easy to identify because of 

the severe erosion during the winter, but the identification of dune crest in fall 1997 is 

relative difficult because the erosion has not occurred and the edge has been rounded by 

wind and rain. Also, the dune toe is easier to be identified in spring 1998 because winter 

waves have cleared off the beach waste, while in fall 1997 the toe has been rounded. For 

most profiles, the dune crest and toe, as well as the berm crest can be located at 

reasonable positions. While in some cases, the feature points, especially the berm crest, 

cannot be clearly identified even by visual interpretation. For each year of study, the 

distance and elevation of dune crest, dune toe, and berm crest, the slope and height of 
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dune face, as well as the slope and width of berm were calculated for each individual 

profile (A portion of results are illustrated in Figure 6.9 and Table 6.1).  

 

 

Figure 6.8  Beach feature extraction from fall 1997 and spring 1998 LiDAR data.  (a) 
Feature points identified for fall 1997 LiDAR data; (b) Feature points identified for 
spring 1998 LiDAR data 
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Figure 6.9  Beach feature extraction from fall 1997 and spring 1998 LiDAR data (Profile 
93 - 152) 
 

Table 6.1  Beach profile attributes derived for (a) year 1997; (b) year 1998; and (c) 
changes 

(a) Year 1997 
ID Berm 

crest  
distance 
(m) 

Berm  
crest  
elevation  
(m) 

Bluff 
crest  
distance  
(m) 

Bluff 
crest  
elevation  
(m) 

Bluff toe 
distance 
(m) 

Bluff toe 
elevation 
(m) 

Bluff 
height  
(m) 

Bluff  
slope 

Berm  
width  
(m) 

Berm 
slope 

94 24 4.7 74 18.9 49 6.3 12.6 0.50 25 0.07 

95 32 5.4 78 26.6 48 6.7 20.0 0.67 16 0.08 

96 30 5.3 74 28.0 45 6.8 21.3 0.73 15 0.09 

97 28 5.3 76 29.4 45 6.7 22.7 0.73 17 0.08 

98 29 5.3 76 29.8 42 5.9 23.9 0.70 13 0.05 

99 30 5.3 76 29.7 43 5.9 23.8 0.72 13 0.05 

100 25 4.6 76 28.7 44 5.7 23.0 0.72 19 0.06 

101 16 3.8 71 25.9 45 6.0 19.9 0.77 29 0.07 

102 14 3.4 72 24.1 47 6.1 18.0 0.72 33 0.08 

103 17 3.4 73 20.6 50 6.1 14.4 0.63 33 0.08 

104 13 3.5 76 21.0 52 6.0 15.0 0.62 39 0.06 
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Table 6.1 (Continued) 

(b) Year 1998 
ID Berm 

crest  
distance 
(m) 

Berm  
crest  
elevation  
(m) 

Bluff 
crest  
distance  
(m) 

Bluff  
crest  
elevation  
(m) 

Bluff toe 
distance 
(m) 

Bluff toe 
elevation 
(m) 

Bluff 
height  
(m) 

Bluff  
slope 

Berm  
width  
(m) 

Berm 
slope 

94 32 1.9 79 20.5 53 4.8 15.8 0.61 21 0.14 

95 36 2.5 82 27.4 53 5.9 21.5 0.74 17 0.20 

96 31 2.2 85 29.2 56 5.1 24.1 0.83 25 0.12 

97 29 1.8 87 30.7  55 5.2 25.5 0.80 26 0.13 

98 30 2.6 89 31.6 53 5.1 26.5 0.74 23 0.11 

99 34 3.4 90 32.5 54 5.2 27.3 0.76 20 0.09 

100 35 4.0 85 29.9 54 5.3 24.6 0.79 19 0.07 

101 33 3.5 85 27.7 55 5.5 22.2 0.74 22 0.09 

102 30 3.0 76 24.8 54 5.3 19.6 0.89 24 0.10 

103 32 3.1 75 20.4 58 6.0 14.5 0.85 26 0.11 

104 34 3.1 78 21.3 59 5.5 15.9 0.84 25 0.10 

 

(c) Change (Year 1998 – Year 1997) 
ID Berm 

crest  
distance 
(m) 

Berm  
crest  
elevation  
(m) 

Bluff 
crest  
distance  
(m) 

Bluff 
crest  
elevation  
(m) 

Bluff toe 
distance 
(m) 

Bluff toe 
elevation 
(m) 

Bluff 
height  
(m) 

Bluff  
slope 

Berm  
width  
(m) 

Berm 
slope 

Bluff 
volume  
(m3) 

94 8 -2.8 5 1.6 4 -1.5 3.2 0.10 -4 0.07 -46.8 

95 4 -2.9 4 0.8 5 -0.8 1.6 0.08 1 0.12 -130.5 

96 1 -3.2 11 1.2 11 -1.7 2.8 0.10 10 0.02 -233.2 

97 1 -3.5 11 1.3 10 -1.5 2.8 0.07 9 0.05 -261.7 

98 1 -2.7 13 1.9 11 -0.8 2.7 0.03 10 0.06 -308.3 

99 4 -1.9 14 2.9 11 -0.6 3.5 0.04 7 0.05 -306.8 

100 10 -0.5 9 1.2 10 -0.4 1.6 0.07 0 0.01 -260.2 

101 17 -0.3 14 1.8 10 -0.5 2.3 -0.03 -7 0.02 -212.3 

102 16 -0.5 4 0.8 7 -0.8 1.6 0.17 -9 0.01 -119.5 

103 15 -0.3 2 -0.1 8 -0.2 0.0 0.22 -7 0.03 -82.2 

104 21 -0.4 2 0.4 7 -0.6 0.9 0.21 -14 0.03 -70.7 

 

The bluff rise up to 39.1m within the 2.1km coast in Fort Ord and Marina area 

and the seaward face of the bluffs is an eroding bluff. A 200m long rock rubble seawall 

was constructed to protect Stillwell Hall in 1978 and then fixed in 1985 to stop erosion 

(Figure 6.2). In 1997, along the whole coastline within the study area, the bluff top 

elevation varies from 10.5m to 39.1m and the bluff height varies from 3.3m to 30.0m. 
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Within the coastal area nearby Stillwell Hall, although the algorithms identified bluff 

toes at some profiles across the seawall, part of them were deleted manually because 

they are not supposed to be located on the seawall. Most part of the seawall plunges 

directly into the ocean without beach at the foot of the wall. However, some bluff toe 

points identified on the seawall were kept because they indicate the height of riprap that 

was used to protect the base of seawalls (Figure 6.10). In this area nearby seawall, the 

bluff top elevation varies from 16.0m to 33.4m and the bluff height varies from 10.2m to 

27.5m (Figure 6.11 and Figure 6.12).  The elevation of the bluff toe is relatively 

consistent. 

Figure 6.10  Profiles across seawall (fall 1997). (a) Profile 121: bluff toe was identified 
by the algorithms on the top of the riprap; (b) Profile 130: bluff toe was not identified by 
the algorithms  
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(a)  

 

(b) 

Figure 6.11  Variations of bluff crest elevation, bluff toe elevation, and bluff height 
along shoreline in the area nearby seawall (fall 1997) 
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Figure 6.12  Example of high bluff and low bluff. (a) Example of high bluff: profile 112; 
(b) Example of low bluff: profile 103 
 
 

After the beach profile feature points were extracted for two successive LiDAR 

surveys, the change information for the selected attributes was derived for each profile. 

From the profiles that across Stillwell Hall and the seawall in front of it, the accuracy 

and repeatability of the LiDAR data are demonstrated (Figure 6.13). The spatial 

variations of the change attributes can be inspected along the shoreline. The bluff 

volumetric change was calculated based on the horizontal positions of pre-El Nino bluff 

toe and the horizontal positions of pre- or post-El Nino bluff crest, whichever is further 

landward. The beach volumetric change was calculated based on the shoreline position 

and the horizontal position of pre-El Nino bluff toe. 
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Figure 6.13  Elevation change for Profile 130 (across Stillwell Hall) 
 
 

The bluff crest recession is the horizontal difference in bluff crests between two 

surveys, which varies alongshore from -7m to 21m after removing the outliers (Figure 

6.14). The bluff toe recession follows the similar trend as bluff crest. The large recession 

in this area may be explained by the concentration of wave energy at Fort Ord, as well as 

the storms and higher sea level during El Nino events.  From the cross-shore perspective, 

no obvious erosion is detected for the beach profiles through the Stillwell Hall (Figure 

6.13). However, the profile to the north and south of Stillwell Hall shows up to 16m 

bluff crest recession (Figure 6.15). The bluff toe elevations generally decreased and the 

bluff crest elevations generally increased (Figure 6.16). The mean toe elevation changes 

from an average of 6.6 m in 1997 to 5.4m in 1998. The height of bluff toe indicates that 

the bluff erosion would only occur when the storm waves coincide with high tides.  
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Figure 6.14  Change of bluff crest and bluff toe’s distance to the shoreline (year 1998 – 
year 1997) 
 

 

Figure 6.15  Bluff crest and toe recession next to the seawall. (a) Profile101: 200m north 
to the seawall; (b) Profile139: 50m south to the seawall 
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Figure 6.16  Change of bluff crest and bluff toe’s elevation (year 1998 – year 1997) 
 
 

Along the shoreline, the bluff volume change range from an accretion of 3.6 m3 

per meter of shoreline, which is small enough to be considered within error threshold, to 

erosion up to 468 m3 per meter of shoreline (Figure 6.17). The total volume loss is about 

20910 m3.Given the limitation of topographic LiDAR system in terms of its water 

penetration ability, the volume change of the beach portion is only determined above the 

monthly mean high water level in April 1998. Within this area, the total beach volume 

loss is about 13518 m3, with much less variation along shore than the bluff volume 

change. The beach volume loss is mainly caused by the seasonal beach change, when 

sand goes offshore in the winter, but there is still some permanent loss to the offshore. 
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Figure 6.17  Change in bluff and beach volume (year 1998 – year 1997) 
 

6.2 A case study for object-based morphological and volumetric change analysis 

The object-based coastal morphological and volumetric change analysis method is 

applied to a case study area located at Assateague Island, Maryland, in the central 

Atlantic coast of the US (Figure 6.18). Assateague Island is a barrier island built as wave 

action piles up sand from the ocean floor, and has been constantly reshaped by the 

currents, winds, and tides. Barrier islands are characteristic depositional coastal 

landforms that are quite common all over the world, lying offshore of more than 10% of 

the world’s coastlines. They are most extensive along the east coast of the US, extending 

from New England down the Atlantic Coast, and south to the Gulf of Mexico.  
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Figure 6.18 The geographical settings of Whittington Point of Assateague Island, 
Maryland 
 

6.2.1 LiDAR data preprocessing 

The analysis on morphological and volumetric change is performed based on two 

successive LiDAR surveys – the first survey was conducted on September 15th, 1997, 

and the second was on Septmber 20th, 2000. Both two LiDAR surveys were acquired by 

NASA’s Airborne Topographic Mapper (ATM) LiDAR system through the 

NOAA/USGS/NASA Airborne LiDAR Assessment of Coastal Erosion (ALACE) 

Project. The raw LiDAR measurements have a vertical accuracy within 0.15m and a 

horizontal accuracy around 0.8m. The raw LiDAR points were interpolated into Digital 

Elevation Model (DEM) at 1m spatial resolution.  

Two LiDAR DEMs were projected to the UTM (zone 18) coordinate system and 

horizontally referenced to North American Datum of 1983 (NAD83). The vertical datum 

is North American Vertical Datum of 1988 (NAVD88). The overlapping areas were 
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extracted from two LiDAR surveys to conduct change analysis. The hillshading images 

were created for both DEMs using common gray scale to provide a three-dimensional 

perspective of the topography, which could also facilitate the horizontal registration and 

vertical calibration (Figure 6.19a and Figure 6.19b). The vertical calibration was 

conducted by using the highway as invariant feature. After vertical adjustment, a 3× 3 

median filter was applied to both 1997 and 2000 LiDAR DEMs to reduce the random 

errors.   

6.2.2 Morphological and volumetric change analysis  

The elevation change grid was created by subtracting the 1997 LiDAR DEM from the 

2000 LiDAR DEM as in Equation (6.2): 

    19972000
ijijij zzz −=∆                     (6.2) 

where 2000
ijz  and 1997

ijz  are the elevation measurements for the cell (i, j) respectively at the 

year 2000 and the year 1997, and ∆zij is the elevation difference for the cell (i, j). 
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Figure 6.19  LiDAR DEMs and the elevation difference grid. (a) DEM acquired in 1997; 
(b) DEM acquired in 2000; and (c) Cell-by-cell elevation changes during 1997-2000 



107 

 

Given a vertical accuracy of 0.15 m, the random error of elevation differences 

could be as large as dσ = 0.21 m ( 15.02 × m). By setting the multiplicative factork  to 

2.0, the criterion of assuming that elevation change has occurred is an absolute change 

value larger than dkσ = 0.42m. According to this criteria, the elevation differencing 

image could be reclassified into three categories: positive change (+1), negative change 

(-1), and unchanged (0).  
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where ijc is the morphological change code for the grid cell (i, j).  

 Based on the classified elevation change imagery, the positive change and 

negative change objects were identified and delineated automatically (Figure 6.20). The 

planimatric attributes, shape attributes, surface attributes, and volumetric attributes were 

calculated for each individual object to perform a further classification.  

The initial set of objects identified includes many change patches that were 

induced by factors other than erosion and deposition, such as vegetation dynamics and 

wave run-up. In order to focus on the sediment-induced morphological and volumetric 

changes, the change patches induced by various factors were classified based on the 

combination of selected attributes. For the change patches induced by vegetation 

dynamics, they commonly have irregular and rough boundaries as well as many holes 

and gaps, and therefore have a large fractal dimension. In addition, the changes within 

vegetation patches are usually discontinuous and hence have a much larger vertical 



108 

 

standard deviation. For the change patches induced by wave run-up, they commonly 

have a relatively small size. Based on these observations, three attributes were used for 

the classification in this case study: fractal dimension, standard deviation of vertical 

changes, and size. A set of criteria was defined to identify and remove change patches 

induced by vegetation dynamics, wave run-up, and other data noise, which includes: 

Fractal Dimension (D) > 1.4, or standard deviation of vertical change ( stdz∆ ) > 0.6, or 

Size (A) < 190 m2. The remaining objects are considered to be changes caused by 

erosion and deposition. Morphological operations were applied to smooth the remaining 

erosion and deposition objects (Figure 6.21).  

       

Figure 6.20  Negative change and positive change objects 
 

    

Figure 6.21  Erosion and deposition objects after smoothing 



109 

 

For the 1.85 km coastal stretch of the case study area, totally 34 erosion objects 

and 23 deposition objects were identified. All the planimetric, shape, surface, and 

volumetric attributes were calculated for these objects again (Figure 6.22 and Table 6.2). 

The minimum bounding rectangles and best-fit ellipse were created for each object to 

generalize the shape (Figure 6.23). The summary statistics were calculated to describe 

the total erosion, deposition, and net volume change in this area.  

 

 

Figure 6.22  Erosion and deposition objects overlaid on the hill-shaded relief images. (a) 
Relief image derived from 1997 LiDAR data; (b) Relief image derived from 2000 
LiDAR data 
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Table 6.2 Derived attributes values for erosion and deposition objects 
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Figure 6.23  Fitted rectangles and ellipse for erosion and deposition objects. (a) 
Minimum bounding rectangles; (b) Best-fit ellipses 
 

 

The results indicate severe erosion and morphological change along the beach 

zone. A continuous, long erosion zone (Object 563) (Figure 6.22 and Table 6.2) is 

oriented along the shoreline with an azimuth angle of 62° from the true north. This 

elongated erosion zone has a largest width of 35.7 m and an average erosion depth of 

0.73 m. The average elevation of this zone has been reduced from 1.09 m to 0.37 m. The 

total erosion volume is 10,064 m3
 during 1997-2000, which is 5.448 m3

 per meter of 
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shoreline stretch. Erosion processes have modified the beach from its slightly convex 

downward shape (average curvature = 0.56) in 1997 to a concave upward shape (average 

curvature = -0.97) in 2000. There is landward berm migration (Figure 6.22). Along the 

back beach, there is a narrow deposition zone (Object 571). It was a long depression 

feature in 1997 (Figure 6.22a), which was almost filled by sediment in 2000 (Figure 

6.22b).This zone has a maximum width of 16.4 m and an average deposition thickness of 

0.47 m. The concave surface curvature (-1.40) along the depression disappeared by 2000. 

Both the erosion and deposition objects in the beach zone have elongated shapes and are 

oriented parallel to the shoreline (Table 6.2). 

The results also indicate significant morphological changes in the dune zone 

between 1997 and 2000 (Figure 6.22), which shows a general pattern of the dune 

migration to the southwest direction. Plume-like features can be observed in the south 

side of many dunes in the 2000 hill-shaded relief image (Figure 6.22b). The significant 

dune movement is most likely caused by the northeast winds. These winds erode and 

transport sand from the dune’s upwind side and deposit on the leeward side, causing 

downwind dune migration. Local redistribution of sand has produced many discrete 

erosion and deposition patches in the dune zone. As expected, erosion patches occurred 

on the upwind side of dunes, and deposition patches are located on the leeward side of 

dunes (Figure 6.22a). The erosion patches are interspersed with deposition patches. The 

position and shape of many dunes were changed considerably by erosion and deposition 

processes. Compared to the elongated erosion and deposition patches in the beach, most 

erosion and deposition patches in the dune zone have a more compact shape and are 
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oriented approximately perpendicular to the shoreline. The surface shape of all erosion 

patches has been changed from convex to concave (Table 6.2), while the deposition 

patches generally changed from concave to convex. In the dune zone, the average depth 

of erosion patches reaches 0.85 m (Object 461).  

For the 34 erosion objects and 23 deposition objects within the 1.85 km coastal 

stretch, the average object size is 3221 m2
 for erosion objects and 2378 m2 for deposition 

objects. The total erosion area is 109,506 m2, and the total erosion volume is estimated 

to be 66,594 m3. The total deposition area is 54,699 m2, and the total deposition volume 

is estimated to be 28,223 m3. The net erosion volume is 38,371 m3. The normalized 

annual net erosion volume rate is 6.9 m3
 per meter of the shoreline stretch for the case 

study area. The localized information could be useful for measuring, understanding and 

predicting coastal morphological changes and designing future erosion control projects, 

such as beach nourishments and dune management. 
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7 CONCLUSIONS  

Compared to traditional ground survey and photogrammetry techniques, airborne 

LiDAR remote sensing technology provides a much more cost-effective, efficient means 

of collecting coastal topography information. This research has developed an analytical 

framework to extract information and knowledge from the dense datasets acquired by 

LiDAR surveys, which converts a large volume of raw data into meaningful and 

organized information that is ready to be used in a variety of studies related to coastal 

topography.  

This research has developed an analytical framework for extracting coastal 

morphology information. A set of algorithms and tools have been developed for 

automated extraction of coastal morphological change information from LiDAR data. 

The methodological contributions of this research include a set of algorithms for 

automated beach profile feature extraction and change analysis, and an object-based 

approach for spatial pattern analysis of morphological and volumetric change. The 

algorithms and tools for automated beach profile feature extraction and change analysis 

provides the cross-shore view to understand coastal morphological changes.  The 

algorithms and tools provide more efficient means for identifying morphological 

features and deriving morphological attributes in a large geographic area. The beach 

profile features and the spatial patterns of the related changes can be visualized and 

analyzed along the shoreline. The representation of profiles as routes and important 

features as point events also facilitates the analysis in conjunction with other GIS data 
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for exploring the causes and impacts of the morphological and volumetric changes in the 

cross-shore direction.  

The object-based methods for morphological and volumetric change analysis 

provides an explicit object representation of erosion and deposition patches, which 

makes it easy to localize attributes about individual erosion or deposition hot spots and 

to analyze the spatial pattern of morphological changes. The comprehensive quantitative 

information about each individual change object could facilitate the classification of 

changes induced by various mechanisms, as well as support a better understanding of the 

characteristics of morphological changes caused by erosion and deposition. The 

representation of erosion and deposition patches as polygonal objects could also 

facilitates the analysis in conjunction with other GIS data for exploring the causes and 

impacts of the morphological and volumetric changes.  

 Both one-dimensional profile analysis and two-dimensional object-oriented 

analysis algorithms have been implemented as ArcGIS extension modules. Embedding 

these algorithms into ArcGIS software allows users to be able to take advantages of the 

existing powerful ArcGIS functions such as data management, visualization, and spatial 

analysis. The input raw LiDAR data can be directly loaded, displayed, and pre-processed 

using core functions of ArcGIS and specialized extensions developed by other 

organizations. The processed LiDAR datasets can be directly ingested by the volumetric 

analysis module and the beach profile analysis module. The morphological change 

analysis results can be immediately displayed and validated using the available ArcGIS 
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visualization functions. Also, the analysis results can be compared and integrated with 

other GIS data for map composition and further numerical analysis and modeling. 

LiDAR technology makes it possible to create accurate and dense datasets for 

costal topography mapping and change analysis in a cost-effective manner. However, the 

LiDAR surveys also suffer from some limitations. For topographic LiDAR systems, the 

topography mapping in the near-shore zone is limited by its capability of penetrating 

water. In terms of temporal scale, a complete understanding of the changing coastal 

morphology may require more frequent surveys such as monthly or quarterly surveys 

spanning all seasons. The traditional ground survey approach is able to measure the 

beach up to the wading depth of the near-shore zone. It offers more flexibility in the 

choice of appropriate survey time. In this sense, the traditional techniques for coastal 

topography survey are still indispensable to validate, calibrate, and supplement LiDAR 

data. This research focuses on the methodology for characterizing and analyzing the 

coastal morphological changes based on airborne LiDAR data. By supplementing the 

LiDAR datasets with other data sources, the methodology developed in this research 

could be used to support the change analysis at various temporal scales, such as storm-

related changes, seasonal variations, and the long-terms changes caused by sea level rise.    

The visual interpretation and automated algorithms for beach profile analysis are 

complementary. The automated profile analysis algorithms are helpful in extracting 

information over a large geographic area and locating the area of interests, but visual 

interpretation is essential for determining reasonable thresholds, validating and adjusting 

the results from algorithms. In the future, based on the vector representation of cross-
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shore morphological features and properties, other ancillary data sources could be 

incorporated to perform analysis such as conducting coastal classification, evaluating 

storm hazard vulnerability, as well as evaluating the impacts of human interventions on 

coastal morphology changes. 

 The pixel-based and object-based representations of elevation change patches are 

also complementary. The pixel-based representation provides spatially distributed 

information of erosion and deposition. The object-based representation is helpful in 

locating hot spots and classifying the change patches, but a detailed analysis within each 

erosion and deposition patches is based on the pixel-based elevation change information. 

In the future, other ancillary data sources such as multispectral remote sensing imagery 

could be incorporated to derive the thematic attributes of discrete change patches 

(object). This will be useful for achieving a better classification of change patches 

induced by various mechanisms and for gaining a better understanding of the causes and 

impacts of coastal morphological changes.  
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