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ABSTRACT

Algorithms and Software Tools for Extracting Coastarphological Information
from Airborne LIDAR Data. (May 2009)
Yige Gao, B.S.; B.S., Peking University, BeijindhiGa

Chair of Advisory Committee: Dr. HongxinguL

With the ever increasing population and economitviies in coastal areas, coastal
hazards have become a major concern for coastahgearent. The fundamental
requirement of coastal planning and managemenhasstientific knowledge about
coastal forms and processes. This research aimsleagloping algorithms for
automatically extracting coastal morphological mfation from LIDAR data. The
primary methods developed by this research inclad®mated algorithms for beach
profile feature extraction and change analysis, @mabject-based approach for spatial
pattern analysis of coastal morphologic and voluimehange.

Automated algorithms are developed for cross-sipoodile feature extraction
and change analysis. Important features of thetbpaafile such as dune crest, dune toe,
and beach berm crest are extracted automaticallysimg a scale-space approach and by
incorporating contextual information. The attritaitef important feature points and
segments are derived to characterize the morplologiperties of each beach profile.
Beach profiles from different time periods can bmmpared for morphologic and

volumetric change analysis.



An object-oriented approach for volumetric charagealysis is developed to
identify and delineate individual elevation chamggches as discrete objects. A set of
two-dimensional and three-dimensional attributesdarived to characterize the objects,
which includes planimetric attributes, shape attels, surface attributes, volumetric
attributes, and summary attributes.

Both algorithms are implemented as ArcGIS extensimdules to perform the
feature extraction and attribute derivation forstahmorphological change analysis. To
demonstrate the utility and effectiveness of alfons, the cross-shore profile change
analysis method and software tool are applied tase study area located at southern
Monterey Bay, California, and the coastal morphgl@apange analysis method and
software tool are applied to a case study aredddaan Assateague Island, Maryland.

The automated algorithms facilitate the efficieetath profile feature analysis
over large geographical area and support the daealyshe spatial variations of beach
profile changes along the shoreline. The explibjeot representation of elevation
change patches makes it easy to localize erosiorspts, to classify the elevation
changes caused by various mechanisms, and to ansihatial pattern of morphologic

and volumetric changes.
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1 INTRODUCTION

1.1 Background

Coastal areas sustain a wealth of natural resoamgseconomic activities. More than
half of the world’s population currently lives with60 km of the coastline, and the
coastal concentration of population is expectedntvease dramatically in the future
(CCSR, 2006). In the U.S,, it is estimated appratety 53% percent of the nation’s
population lived in coastal counties in 2003, whigkexpected to increase by 12 million
by 2015 (Crossett et al., 2004). With the ever easing population and economic
activities in coastal areas, coastal hazards haoerbe a major concern for coastal
management. The fundamental requirement of coastahgement and planning is the
scientific knowledge about coastal morphology aratesses. The information about the
coastal morphology change could facilitate decisiakers to better understand coastal
process, to assess and predict the impacts ofatdaetards, and to formulate better
management decisions regarding sustainable cakestalopments.

Traditionally, coastal mapping has been based onrgt surveys of transects
perpendicular and parallel to the shoreline. Inthgases it is time-consuming and labor-
intensive. Transects are usually widely spacedtduiene and cost restrictions. In recent
years, airborne LIDAR remote sensing technology been widely used in surveying,
mapping and monitoring coastal environmental coowkét and changes. LIDAR
technique provides a much more cost-effective afittient means of collecting

topographic information, which allows a detailedalgsis of micro-geomorphology of

This thesis follows the style @nnals of théAssociation of American Geographers.



the coastal area over a broad region (White andg\V2003; Brock et al., 2004; Zhang
et al., 2005; Finkl et al., 2005)The technological advancements present both
opportunities and challenges. One of the majorlehgés brought by the LIDAR
technology is to develop methods to fully exploighhresolution LIDAR data for
information and knowledge extraction.

Cross-shore profile change analysis provides anoitapt dimension in
understanding morphological and volumetric change®astal area. Beach profiles can
be extracted from the LIDAR surveys at a much higtesolution than those from
traditional ground-based surveys for detailed cleaagalysis (Brock et al., 2004). The
available analytical techniques for beach profilarge analysis include the comparison
of successive surveys in terms of beach heighthwgtadient, and shape, as well as the
beach profile areas and volumes (Cooper et al.0R0Blowever, previous studies are
primarily based on the visual interpretation offpes and simple statistical analysis for
extracting morphologic features of beach profilashsas dune crests and toes (Elko et
al., 2002; Judge et al., 2003; Zhang et al., 2@#&res et al., 2006; Robertson et al.,
2007). This research intends to develop automdtgtitnms for extracting cross-shore
profiles, identifying critical points, and calculay important cross-shore morphological
properties from LIiDAR data.

Information about spatial patterns of erosion degosition and corresponding
volumetric changes of the coastal zone are impbftancoastal hazard evaluation and
coastal management. Previously, a cell-by-celked#ficing method was commonly used

for the volumetric change analysis based on LIiDAR/ays (Woolard and Colby, 2002;



White and Wang, 2003; Shrestha et al., 2005; Zledrd,, 2005; Gares et al., 2006). The
volume change is evaluated on a cell-by-cell basissubtracting the LIDAR DEM
acquired at an earlier time from the LIDAR DEM arqd at a later time. However,
such an approach suffers from the difficulty inidieg localized information to analyze
spatial patterns of morphologic and volumetric e It is also difficult to recognize
elevation changes induced by factors other thasi@maand deposition. In addition, it is
not convenient with the cell-by-cell differencingethod to associate the volumetric
change information with other data for interpretthg causes and impacts of volumetric
changes. This research aims to develop an objsetdbapproach to morphologic and
volumetric change analysis, which explicitly idéies each individual erosion and
deposition patch as discrete object, and derivat afsspatial and volumetric attributes to

characterize each object.

1.2 Objectives
The general goal of this research is to developralgns for automatically extracting
coastal morphological change information. Speabgectives include:
* Develop automated algorithms for beach profiledsaextraction and change
analysis
» Develop an object-based approach for coastal mévgival and volumetric
change analysis
* Implement software tools for coastal morphologatznge analysis
» Test and validate coastal morphological changeyaizamethods for case study

areas



1.3 Methodology
1.3.1 Automated feature extraction and change analysis for cross-shore profiles

This research will develop numerical algorithms foross-shore profile feature
extraction and change analysis based on repeat RiDdata. Beach profiles
perpendicular to the shoreline will be automaticgénerated at a given interval. The
Gaussian filter will be applied to smooth the bepatfiles. Slope and curvature values
will be calculated for different sections of theablk profile. The dune crest and toe, as
well as the beach berm crest will be identifieddaben the slope and curvature values.
The attributes such as slopes for dune face andhbess well as the heights and
horizontal positions for dune crest and berm cvafitbe derived to characterize the
morphologic properties of beach profile. To refar@ improve the computation results
from individual profiles, which are usually noighe contextual information of adjacent
profiles are incorporated in the computation. Thadh profiles from successive LIiDAR
surveys are compared for morphological and volumethange analysis. This
automated profile analysis method will be impleneeinds ArcGIS extension module to

perform the feature extraction and attribute dervafrom LIDAR beach profiles.

1.3.2 Object-based morphological and volumetric change analysis

This research will develop an object-based apprdachvolumetric change analysis
using repeat LIDAR data. This approach automaticatlentifies and delineates
individual erosion and deposition patches as dieci@bjects. These erosion and
deposition objects, instead of individual cellghe elevation differencing grid, are used

as basic spatial units for volumetric analysis. & ef two-dimensional and three-



dimensional attributes will be derived to charaewerand quantify erosion and
deposition objects, which includes planimetric ibttres, shape attributes, volumetric
attributes, and summary statistical attributes. Hx@licit object representation of
erosion and deposition patches makes it easy tizechot spots, to analyze spatial
pattern of morphologic and volumetric changes, tecrtminate the erosion and
deposition caused by different factors, and to ipomate other GIS data to explore the
causes and impacts of the changes. This methodbwiliimplemented as an ArcGIS

extension module to perform the object identificatand attribute derivation.

1.4 Organization of the thesis

This thesis consists of six sections. The preseatian introduces the research
background, objectives, and methodology.

Section 2 reviews the existing coastal topograplpping techniques, the pixel-
based method for coastal morphological and volumetnalysis, and the existing
methods and softwares for feature extraction amat@h analysis of beach profile.

Section 3 introduces the airborne LIDAR remotessen system and basic data
products, and discusses the workflow for LIDAR dat@processing.

Section 4 presents the automated method for beaditefeature extraction and
attribute derivation, as well as the approach foofilg change analysis based on
sequential LIDAR data.

Section 5 presents the object-based method, whatides the identification and
delineation of erosion and deposition objects, a§ as the derivation of attributes for

characterizing these objects.



Section 6 applies the change analysis method descin Section 4 and Section
5 to case study areas.
The last section summarizes the research findings discusses the future

research directions.



2 LITERATURE REVIEW

This section reviews the coastal mapping technicared discusses the comparative
advantages of airborne LIDAR technology. The pbated approach for coastal
morphological and volumetric analysis is introdueadl its limitations are discussed. In
addition, the visual interpretation and conventianathods for feature extraction from
beach profiles, and the existing change analysthods and software tools are reviewed

and summarized.

2.1 Coastal topography mapping techniques

The coastal topography measurements are requirechdny studies such as coastal
flood forecasting, coastal defence structure deamminst flooding and erosion, coastal
environmental management, and environment impadesasment for economic
exploitation (Mason et al., 2000). Traditionallpastal topography mapping is based on
methods such as ground survey and photogrammetmgcent years, the development
of airborne LIDAR remote sensing technology progidéemuch more cost-effective and
efficient method to acquire elevation informationcoastal area.

Ground surveys for coastal areas are usually basettansects perpendicular
and/or parallel to the shoreline. The elevation sneements along transects are acquired
by using instruments such as engineer’s levels| tstations, or Global Positioning
System (GPS) instruments (Cooper et al., 2000).grband surveys can obtain highly
accurate elevation measurements along transectam@ndepeatable at different time

periods, which is necessary for change analysis.tdpography of the near-shore zones



can be monitored by extending transects below waigace. However, in most cases
this method is time-consuming and labor-intensi#hen a large area needs to be
covered, it means either a significant increasecost, time, and labor to measure
sufficient number of transects to represent thedogphy, or a sparse sampling rate,
which may not be representative of the topographgetails, and thus compromise the
objective of study. In addition, the ground surveye always constrained by the tidal
and weather conditions, as well as the safety andssibility of the survey area.

The photogrammetric approach extracts the elevatioformation from
stereoscopic aerial photography. By acquiring aphatographs from different vantage
view points of the landscape, the elevation measents of the terrain surface in the
overlapping areas of multiple photographs couldchkeulated based on stereoscopic
parallax,which is the change of its viewing position fromeophotograph to the next
relative to its background. The resulting digitévation model (DEM) derived by
photogrammetric approach could be at various s¢aérssen, 2007). This method could
derive highly accurate elevation measurements aeddata collection is repeatable.
Depending on the required flying scale and levehoduracy, the cost could vary for
both flying and image interpretation. Compared rtougd survey methods, stereoscopic
aerial photography could cover a large area witkshmuetter spatial resolution. However,
the difficulty in identifying match points on featless areas like beaches and dunes has
seriously hindered photogrammetry application iastal areas (Mason et al., 2000).
The elevation extraction process from photogramynetrrelatively costly and time

consuming. It cannot obtain the elevation measunésnender water and cannot be used



for topography mapping in the near-shore zone. flyiag missions are seriously
constrained by weather and lighting conditions.

The airborne LIDAR technology is based on accuna¢asurements of the laser
pulse travel time from the transmitter to the targed back to the receiver. The laser
scanner sends thousands of laser beams per semahé ground. Using the sensor
position derived from differential Global Positiogi System (GPS) and the sensor
orientation derived from Inertial Measurement UnitMU), the laser range
measurements can be converted to highly accuraeatedn values. For coastal
topography mapping, most LIDAR systems use neaaiiall laser light in the region
from 1045 to 1065 nm, which may also be used foppiray topography in the near-
shore zone depending on the water clarity. The [RD&chniques could achieve high
vertical accuracy of approximately 15 cm and hartab accuracy of less than 1m
(NOAA, 2008). Compared to ground surveys and phatognetric data, LIDAR data
can be collected at night if necessary becauseal iactive system and does not rely on
the solar illumination. The requirements of LiDARstem for weather and lighting
conditions are not as strict as that of aerial pt@phy, and the data processing
procedure is much simpler and more efficient. O\,eltaprovides a cost-effective and

efficient way to collect detailed elevation measoeats over a large coastal region.

2.2 Methods and software for beach profile feature extction and change
analysis
Beach profile surveying is a long-established andely used technique for coastal

monitoring. Cooper et al. (2000) provided a sumnaryhe key elements of the beach
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profile measurement, theory and analysis. Theysiflad the beach profile change
analysis methods into two categories: temporalydical methods that assesses changes
along one particular beach profile with respectinee, and spatial analytical methods
that assesses variations between different profilae temporal analytical method can
be used to identify the shore-term variation antyiterm trends at a specific location
and the spatial analytical method can be used terdee the spatial pattern of beach
profile changes along the coastline. They summdrilze available analytical techniques
for comparison of successive surveys along a bgumofile. The profiles can be
compared in terms of beach level and width, whioh @egarded as the standard of
natural coastal defence. Also, the profiles candrapared in terms of beach gradient to
understand the trends for beach steepening oetliaty, and in terms of beach profile
areas and volumes to evaluate the ‘health’ of heach

Most of the previous studies used visual interpi@taapproach to extract
morphological features from beach profiles. In récgears, some efforts have been
made to develop numerical methods to identify axtchet features from beach profiles.
Brock et al. (2004) developed LIDAR metrics for fo@r island elevation profiles to
analyze morphological changes. For each LIDAR-basesks-shore profile, they
determined the ocean shoreline point, bay shorglomet, and the volume balanceline
point. The LIDAR change metrics were developed &sctdibe the ocean shoreline
displacement, bay shoreline displacement, volunanbaline displacement, and the
slice volume change. A morphodynamic classificaticas presented based on LIDAR

change metrics. To support a storm impact scalingdeh for analyzing dune
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vulnerability to storm-induced erosion (Salleng2000), a semi-automated algorithm
was developed for extracting dune crest and duaefrtom LIDAR data (Elko et al.,
2002). First, the approximate locations of the darest and toe line had to be digitized
manually. The dune crest line or berm crest lineewasually recognized and manually
digitized from the aspect image as the transitioa from seaward-sloping to landward-
sloping regions. The dune base line was delindabed the slope image as the transition
line between the flat beach and the steep dune Twoe authors pointed out that the
dune base delineation were generally more diffibeltause there might not be distinct
break between dune face and beach. Then, a seagretgorithm was utilized to
automatically determine the actual heights of denests and toes within a buffer around
the digitized line. To obtain the dune crest heighheighborhood function was applied
to select the pixel with maximum elevation valuehwi the 7 m wide buffer around the
digitized dune crest line. To avoid small perturdrag with rapidly changing slopes near
the dune toe, a smaller buffer area of 3-m wide evaated around the digitized dune toe
line, and a neighborhood function was applied tecteéhe pixel with maximum value of
the second derivative of elevation as the dunepioel. Stockdon et al. (2007) adopted
this method to identify the pre-storm elevationtloé dune crest and toe, which were
used in conjunction with expected water levels tedt the spatially-varying storm-
impact regime.

A quantitative method has been developed by USG&teCdor Costal and
Regional Marine Studies to automatically extraet litcation and elevation of the “first

line of defense”, which could be the dune crestcheberm, or the top of the coastal
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defense structures (USGS, 2008). First, this metimdothes the profile extracted from
LIDAR data so as to eliminate the small variatiam&levation measurements. Second,
elevation peaks are identified based on the chamgdsection of slope, and the “first
line of defense” is identified as the first elewatipeak landward of the shoreline on the
profiles.

Coastal morphology analysis software such as treclB&lorphology Analysis
Package (BMAP) (Wise, 1995) and Regional Morpholdgalysis Package (RMAP)
(Batten and Kraus, 2005) have been widely useddagtal community. Both of them
are part of the Coastal Engineering Design and ysmalSystem (CEDAS), which is an
interactive coastal design and analysis softwakeldped by the U.S. Army Engineer
Waterways Experiment Station (Veri-Tech, 2006). @&Dincludes four modules: the
General module contains the numerical methods dastal and hydraulic engineering
applications, the Inlet module contains the modeistidal inlet analysis, the Beach
module contains the tools for beach process arsalgsid the Surface-water Modeling
System is a graphical user environment for accgssimulti-dimensional hydrodynamic
model ADCIRC and a variety of multi-dimensionalfsge water modeling programs.

Beach Morphology Analysis Package (BMAP) is angné¢ed set of interactive
tools developed to support the analysis of the mmgmic and dynamic properties of
beach profiles. It is dynamically linked with SBERGStorm-induced BEAch CHange),
which simulates cross-shore beach, berm, and dwsgoa. The capabilities of BMAP
in analyzing static properties of profiles inclu@®&ise, 1995): plotting individual or

multiple beach profile surveys, averaging multiptefile surveys within a given spatial
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range, generating best-fit equilibrium profile frsingle grain size, calculating profile
volume with respect to specified reference elevatadong the profile, generating
synthetic profiles, as well as calculating bar gmies such as minimum depth and
location, maximum height and location, volume, dhd center of mass. As for the
beach profile change analysis, the capabilitieBMAP include: determining cut and fill
areas with respect to cross-shore distance, céluglaolume change and elevation
change between two successive profiles, and caloglaross-shore sand transport rate
by integrating the equation for conservation oftsan

The Regional Morphology Analysis Package (RMAP),clhis evolved from
BMAP, also belongs to the Beach module of CEDAStt@raand Kraus, 2005). While
BMAP is limited in distance-elevation space, RMABncmanipulate, visualize, and
analyze shoreline data and beach profiles spatiBHyticularly, the shoreline positions
and beach profiles can be projected and displayedeoial photographs or maps. Data
can be examined in both beach profile view and may, which facilitates the quality
control, visualization, and analysis process. RM#d3 the capability to import beach
profiles, shorelines, and baselines data from ASi@4$, BMAP files, and spreadsheets.
It can also import shorelines and baselines froRIEshapefiles. Since the distance and
elevation values of each point along the profile aequired to analyze the beach
morphology, RMAP can calculate the distance frone tknown profile origin
coordinates for each point along the transect ugs¥Y coordinates. In order to locate
points along the profile on the map, RMAP can alatzulate the XY coordinates for

each point using its distance and elevation values.
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The Beach Profile Analysis Toolbox (BPAT) is a sadte for archiving, viewing,
and analyzing beach profile information, which heeen developed by the National
Institute of Water and Atmospheric Research (NIWakd Katoa Software in New
Zealand. It includes an Archive mode and an Analysode. The Archive mode is used
to view existing data and enter new data. The sgrvathin a study area are arranged
hierarchically by regions, cross-sections, and lbachmarks. The Analysis mode is
used to analyze beach profiles, which supportgiptpgroups of surveys for a specified
cross section, aligning surveys at a given elematioon the basis of common marker,
calculating the slope and volume for each horidosliee for selected single survey by
choosing a starting elevation and an elevationement, calculating the slope and
volume for each vertical slice for selected sirgllevey by choosing a starting offset and
an offset increment, and calculating cut/fill voleof surveys taken at different times.
The Shoreline and Nearshore Data System (SANDSH isoastal data capture,
monitoring and analysis software developed by HalciGroup Ltd, UK (Halcrow,
2008). It is capable of importing beach profilevay data as well as time series wave,
wind or tide level records. In SANDS, beach proflerveys can be analyzed using
different methods. The standard beach profile amalgnethod include the “chainage”
method, which works by dividing profile into vergicsections and calculating the beach
level at each section, and the “level” method whicbks at the horizontal strips of
profile. In addition, SANDS can calculate the crgsstional areas and volumes in
relation to a ‘master profile’, which is a rock day bed layer under the beach material.

As for volumetric analysis, SANDS enables the &apilo group specific beach profile
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locations to form a “Coastal Process Unit” and glte volumes of beach materials for

these units. In SANDS, maps can be imported asdoapkfor reference and may also

have data attached to it. However, SANDS is nol& €stem and the map data needs
to be prepared using other GIS software.

The visual interpretation of beach profile extrack®m LIiDAR data provides an
intuitive way to analyze the beach morphologicalarae. Despite the recent
development of semi-automated algorithms, moreciefit and accurate methods are
needed for automatically extracting beach profil@sntifying critical points, calculating
important morphological properties, and extractprgfile change information from
LIDAR data. The available software provide usefobls for beach profile data
management and analysis. However, they failed ke &dvantage of dense datasets
collected by LIDAR systems to analyze data spatidirst, the elevation measurements
along beach profiles can only be imported from taxgstext files and be displayed on
the background map, but cannot be directly extchétem LIDAR DEM. Second, the
important features such as dune crest and toepand crest are identified based on
visual interpretation, which restricts a quantitatchange analysis of profiles for a large
geographic area. Third, although the beach protitadd be displayed spatially on the
background map, it is still difficult to visualizend analyze the spatial variations of
changes between different profiles along the shwrelFourth, the beach profile
information is not fully integrated with geographidormation system and cannot be

edited and visualized interactively.
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To address the above research gaps, this resg@shnts automated algorithms
for cross-shore profile feature extraction and dgeaanalysis. Important features of the
beach profile are identified automatically basedtencalculation of slope and curvature
values. The attributes such as slopes for dunedadebeach, as well as the heights and
horizontal positions for dune crest and berm ci@®t derived to characterize the
morphologic properties of each beach profile. Theamjitative identification and
attributes derivation of profile features enablesran efficient coastal morphology
analysis for a large geographic area. The spadidéms of the beach profile features and
the related changes can be visualized and analgiedy the shoreline. The object
representation of profile features could also ftg the analysis in conjunction with
other GIS data for exploring the causes and impadise morphological and volumetric

changes at the cross-shore dimension.

2.3 Pixel-based morphological change analysis

Traditionally, the pixel-based differencing methadas commonly used for the
morphological and volumetric change analysis basediDAR surveys (Meredith et al.,
1999; Woolard and Colby 2002; White and Wang 2&8ng et al. 2005; Gares et al.
2006). The volumetric change is evaluated by subirg the LIDAR DEM acquired at
an earlier time from the LIDAR DEM acquired at delatime. A negative elevation
difference of a cell indicates that the surfaceemat was eroded during the time span
between two LIDAR surveys. A positive elevationfelience indicates that the sediment

accretion occurred, and a zero value indicatestfieaé was no net change.
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For the traditional pixel-based approach, the iapgiattern of morphological
changes can be visually interpreted. However, fino& explicitly represent individual
elevation change patches and extract informationefaich patch. For early coastal
change studies based on LIiDAR data, the morphabgltange information was usually
only derived for the entire study area. In recesdrg, some efforts have been made to
localize the change information. Woolard and Co(B902) evaluated dune volume
changes for two small study sites (100 x 200 mpted in Cape Hatteras National
Seashore, North Carolina for a 1-year period oétiming sequential LIDAR DEM. The
volumetric change measurements were compared gals@solutions ranging from 1 x
1 to 20 x 20 m to decide which resolution provitles most reliable representation of
coastal dunes and the most accurate change measusernm their study, only the total
volume of erosion, deposition, and net change reswdre calculated and compared.

Meredith et al. (1999) assessed hurricane-indu@sttib erosion between fall
1997 and fall 1998 along the entire North Carolooastline (approximately over 500
km long). Their research use LIDAR technology fegional-scale volumetric change
analysis. The beach sections were arbitrarily égiby inlets. For 21 beach sections, the
volume of sediment gain or loss by unit length atle beach section was determined,
and the spatial patterns of erosion were analy@ederal parameters were calculated for
each beach section to describe a regional patterolometric change including the
average sand gain or loss per unit length, thé votame of erosion, deposition, and net

change, as well as the average volume change aukreach area.
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White and Wang (2003) used LIiDAR DEM to study ampragimately 70-km
stretch of the southern North Carolina coastling evestigated the spatial patterns of
morphologic change occurred to five barrier islabgsween 1997 - 2000. First, the
spatial pattern of morphologic changes was analyged visual comparison of DEMs
for different years. Then, the total volumetric sha was quantified by using pixel-by-
pixel differencing method. To facilitate the sph@malysis of erosion and deposition,
areas of interests (AOIs) were created for eaemds|Each AOI “designates a particular
segment of coastline and consists of the primartiggoof the dune line and dry beach”.
The total volumetric change of the beach and samdesl within each AOI was
summarized from the cell-by-cell differencing reésubtatistics of net volumetric change
per unit area of all AOIs on each island were dated. The means of net volumetric
change per unit area of AOIs were calculated foeehcategories of management
practices (developed, undeveloped, and nourishedjatilitate the comparison of
morphological changes that occur naturally or huindaced.

Zhang et al. (2005) compared 40km of beaches dlmgentral Florida Atlantic
coast surveyed before and after Hurricane FloytB®0. The whole study area was split
into 35 separate tiles, each 1km long in the nedith direction. Net beach volume
change for each tile was calculated using the ghaskd differencing method. The
along-shore spatial pattern of net volume chang# et volume changes per unit
shoreline of all the tiles was analyzed. Withinlegite, the volume changes occurred

between adjacent transects with an interval of AM@ere calculated and depicted.
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Gares et al. (2006) used LIDAR surveys to monitbeach nourishment project
at Wrightsville Beach, North Carolina, from 19972000. The study area was divided
into beach and dune zones based on specific edegatEach zone was further divided
into several segments including non-nourished,sttemm, and nourished zones. The
volumetric changes in the beach and dune zones suenenarized for each individual
area of interest. The spatial variations of volurmnethange per shoreline length were
analyzed by examining all the nourishment zondsth beach and dune zones.

Coastal elevation changes can be caused by matoydaather than erosion and
deposition, such as vegetation dynamics, humandtapand data noise. The traditional
pixel-based method has difficulty in recognizingebes caused by various mechanisms.
As pointed out by Woolard and Colby (2002), theetapulses returned from the
vegetations or man-made structures could resulartifact changes. To avoid the
complexity in evaluating the dune volume changbsytselected the Cape Hatteras
National Seashore as the experiment sites for thegarch. In this area, the vegetation
may have introduced spurious changes, but the mso@n-made structure were not of
concern because the development in that area isespad tightly controlled. A further
example comes from the research by White and W2003), in which areas of interests
(AOIs) were initially used to localize the inforn@at about erosion and deposition, the
authors pointed out that another important purpolsesing AOIs is to exclude the
heavily vegetated areas and man-made structurésasubouses and piers, which may

introduce significant error into the analysis.
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In summary, for traditional pixel-based differergimethod, the spatial pattern
of volumetric changes can be visually interpretadaf qualitative analysis. However, the
pixel-based differencing method suffers from selv@rablems. First, most previous
studies only calculate and report overall erosasposition and net volume change for
the entire study area, but since the individuaber and deposition patches were not
explicitly represented, the localized informatiopoat distinct erosion and deposition
regions cannot be derived. Second, the elevatiangds could be introduced by many
factors other than erosion and deposition. Thelmpeltell differencing is subject to data
noise and data processing errors involving the racguof the horizontal and vertical
data values. In vegetated and developed areas, patses may be returned from the
dense vegetation cover, or the top of man-madetstes instead of the ground surface,
which may introduce the spurious elevation changesng pixel-based differencing
method, it is difficult to recognize and corredifact changes caused by various factors.
The splitting of the beach into sections or tileshe previous research is often arbitrary,
and each section or tile may contain beach eraamindeposition patches. The statistical
summary for each section/tile may be misleadindificult to interpret.

To address the above research gaps, this reseaeskengs an object-based
method for morphological and volumetric change wsial Individual erosion and
deposition patches are automatically identified deliheated as discrete objects, which
are used as basic spatial units for morphologic \atdmetric analysis. A set of two-
dimensional and three-dimensional attributes amével@ to characterize and quantify

erosion and deposition objects, which provide cahensive quantitative information
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for various aspects of coastal morphology. Thealleed attributes about individual
patches provides a higher level of information dbaalumetric change, which could
facilitate the analysis of various properties aflepatch and the spatial pattern of these
patches. In addition, the quantitative analysis aifributes could support the
discrimination and classification of individual cigge objects into different classes to
achieve a better understanding of the nature aratacteristics of morphological
changes for each class. The derived informatioridcte used for a more detailed
assessment of the impacts of hazardous coastdisemsgrh as storms and hurricanes and
the effects of human interventions such as thetbeaarishments and constructions of

costal defense structures.
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3 LiDAR DATA PREPROCESSING

This section introduces the airborne LIDAR surveghinology and the basic LIDAR
data products. Commonly used operations and afgositfor preprocessing LIDAR data

are discussed.

3.1 Airborne LIDAR remote sensing system

The airborne LIiDAR, an acronym for Light Detectiand Ranging, is an integrated
system consisting of laser scanner, differentiadb@l Positioning System (GPS), and
Inertial Measurement Unit (IMU). The laser scansends thousands of laser beams per
second to the ground and measures the time it &&es laser beam to reflect back to
the sensor receiver. The onboard differential GR® IMU are used to determine the
precise position and attitude of the laser scanksing the aircraft position and
orientation information from GPS and IMU, the lagange measurements can be
converted to highly accurate elevation values.

In coastal areas, the high-resolution topographita ¢orovided by LIDAR is
important for human/ property safety and coastaithtbmanagement. LIDAR data has
been used for coastal applications such as floadpl@apping, storm surge and tsunami
modeling, sea level rise scenarios analysis, sinereghapping and change analysis,
coastal planning and development, and emergengomes (NOAA, 2008b). Since
1996, to address the needs in coastal communNi@®A Coastal Service Center has
been collecting and delivering coastal LIDAR ddteotigh working with state and local

programs. LIDAR data along the U.S. coast are sechand available online at NOAA



23

Coastal Service Center (http://maps.csc.noaa.gdw/].C The coastal LIDAR surveys

usually occurred during the fall because the basdenerally at its widest after sand
accumulation over the summer months. Survey fligisoften scheduled within a few
hours of low tide so that the maximum extent oflikach is exposed.

For coastal topographic mapping, most LIDAR systerss near-infrared laser
light in the region from 1045 to 1065 nm (NOAA, 3). The flight altitude is usually
in the range of 300-2000 m. The range of spatisbltgion is usually between 0.75 m
and 2 m. The horizontal position accuracy of meam@nt point data is less than 1 m

and vertical accuracy is approximately 15 cm.

3.2 Basic LIDAR products

LIDAR technology is based on the accurate lasegeameasuremerR between the

LiDAR sensor and the object, which is determined by
1
R==tc 3.1
5 (3.1)

wheret is the traveling time of a pulse of laser ligharfr the transmitter to the target
and back to the receiver, aads the speed of light.

By combining the information from the GPS-derivaatenna position (latitude,
longitude, and ellipsoidal height), IMU-derived anha orientation (roll, pitch, and
heading), and the range measurement, LIDAR postesing system could produce an
array of points defined by its latitude, longituded altitude (x, y, z) coordinates, which
is known as mass points. Since each laser pulssniitted from the aircraft could

generate multiple returns when encountering mdsew#h local relief, the mass points



24

are associated with multiple returns files suchfieg return, possible intermediate
returns, and last return file. The first return @mnfrom the materials with local relief,
such as the canopy top, building roof, and otherbstructed surfaces. The last return
comes from the laser pulse that reaches the gramaddis backscattered toward the
receiver.

The initial LIDAR mass points are irregularly spdcand can be interpolated to
create a regular grid of elevation values. The emlior each given cell in the elevation
grid can be determined by using an Inverse Distéi®@/) method, by averaging all of
the point elevation values in that cell, or by takthe minimum/ maximum value of all
the point elevation values in that cell. The el®mratgrid can also be created using a
Triangular Irregular Network (TIN) which is genezdtfrom mass points.

The mass points associated with first return cdaddinterpolated into a Digital
Surface Model (DSM), which contains elevation imfi@tion about all features in the
landscape, such as vegetation and man-made swsictirbare-Earth Digital Terrain
Model (DTM), which contains elevation informatiohaut the bare-Earth surface, could
be created by extracting and removing mass polrats dome from features extending
above the bare ground. A semiautomatic filteringoathm can be first applied to
identify the mass points that are vegetation andn-made structures. Visual
interpretation and manual editing are then perfarn® create the final bare-Earth

elevation model.
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3.3 LIDAR data preprocessing

To conduct coastal morphological change analysishuanber of pre-processing
operations are needed for the repeat LIDAR surgeyarated in time. LIDAR datasets
acquired at different time should first be refeshto a common datum and projection,
and then be horizontally co-registrated and vdljicalibrated.

The measurements of both the horizontal coordinaelsthe elevation of laser
points are subject to errors due to the uncertsnti determination of aircraft trajectory,
orientation, and laser ranging. The total error LWDAR measurement could be
decomposed into two components: random error arahregor (Sallenger et al., 2003).
The mean error refers to the systematic bias, wisichdicated by the mean difference
between two datasets. The random error is indidayetthe variation about the mean of
differences between datasets. The mean error, whicifiten attributed to drift in the
differential GPS, is the major error source and/\matween different flight missions.

The reliability and accuracy of volumetric changealysis depends on the
relative accuracy between two successive LIDAR eygwsed for the comparison. By
conducting horizontal co-registration and verticallibration, we could remove the
systematic mean errors and enhance the accuraegogihological and volumetric
change analysis. The horizontal misalignment of tilDAR datasets could generate
misleading changes, especially in the areas witth tsurface slope or man-made

structures. If the horizontal alignment ermy is significantly larger than the LIiDAR

DEM cell size, a horizontal co-registration of twiDAR datasets will be necessary to

avoid the possible artifact changes induced byntisalignment. Thevertical error in
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each LIDAR dataset could also directly generatersrm resulting elevation changes.

Given a nominal vertical accuraey, of LIDAR elevation measurements, the error of the

elevation differences can be as Iarge\/ﬁsav. It is necessary to perform vertical

calibration to avoid the possible artifact chanigegolumetric analysis.

The horizontal registration and vertical calibratican be conducted by using
pseudo invariant features as tie points. Pseudarigmvt features are stable natural or
man-made objects whose planimetric position andatéilen are known and can be
assumed unchanged over the time between LIiDAR gsaraedifferent time. The good
candidates for pseudo invariant features couldatelbuildings with a flat roof, parking
lots, paved roads, airport runways, etc. Horizootategistration requires point features
like the corners of building and the intersecti@igoads. Vertical calibration requires
linear features such as paved roads and polygaarésasuch as parking lots if no tilt is
present. The pseudo invariant features can beiigehfrom hill-shaded images and
LiDAR intensity images.

For horizontal co-registration, a similarity (confwal) transform in Equations
(3.2) and (3.3) or an affine transform in Equati¢®l) and (3.5) can be fitted to correct
the horizontal misalignment. The similarity (confal) transform accounts for the
translational, rotation and scale differences. &tfime transform accounts for additional
skew shape (aspect ratio) changes. In most caseargy transform is adequate to
meet the requirements of horizontal co-registration

Similarity transforms:

x=ax +by +c (3.2)
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y=-bx'+ay + f (3.3)

Affine transforms:

Xx=ax +hy' +c (3.4)

y=dX +e/ + f (3.5)
where (X, y) are the planimetric coordinates of finst LIDAR data set, (x',y’) are
planimetric coordinates of the second LIiDAR datg sed a, b, c, d, e, and f are
coefficients to be fitted from pseudo invarianttéeas using the least-squares method.

For vertical calibration, a linear plane surfaceEiquation (3.6) can be fitted to
correct the vertical errors.

&z = Ax+By+C (3.6)
where ozis the correction value of the second LIDAR datarekative to the first LIDAR
data set, (x,y) are the planimetric coordinatesrdibrizontal co-registration, and A, B,
C are the coefficients to be fitted through pseum@riant features. The coefficients A
and B represent the gradients of the tilt planeglthe x and y directions, which are
equal to zero if no tilt is detected between tw®AR surfaces. The coefficient C
represents the systematic offset between two LiBARaces.

Horizontal co-registration should be performed befeertical calibration. After
vertical calibration, the accuracy of volumetric aoge analysis would be only
influenced by the random errors of the LIDAR measuents, which is indicated by the
standard deviation about the mean of differencésd®n datasets. The level of random
errors can be reduced by applying low-pass filtehsas median filter or Gaussian filter.

The median filter and Gaussian filter are edgegurasg. They can remove data noise
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without distorting the object boundaries, which ressgnts an advantage over linear
filters. The random error after filtering can bdimsted by calculating the standard
deviation of elevation change along a pseudo ianafieature such as a paved road. The
resulting error will be used to establish the ran§@ossible variation about the mean
volumetric changes, and to determine the threshioldassuming that elevation change

has occurred between successive LIDAR surveys.
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4 MORPHOLOGIC ATTRIBUTES EXTRACTION AND CHANGE

ANALYSIS BASED ON BEACH PROFILES

In this section, the concepts and definitions ofadbe morphological features are
reviewed, and basic mathematical principles foraeting these morphological features
from a hypothetical beach profile are discussedn#tical algorithms are designed and
refined to handle complex real world beach profilds scale-space approach is
introduced to identify critical morphological featupoints on each beach profile, and
the profile is subsequently divided into a numbgsections. A set of morphological

attributes are derived for characterizing the bgaofile and the corresponding changes.
Numerical algorithms are implemented as an ArcGdteresion module-Profile Analyst,

to perform the morphological profile feature extrae and change analysis from the

LiDAR-derived beach profiles.

4.1 Mathematical principles for extracting morphological features from beach

profiles

4.1.1 Typical beach profile and definition of morphological features

Beach profile analysis represents one-dimensiopptaach to the studies of coastal
geomorphology, which is widely used by geomorphisiisg A beach profile shows
elevation variations along a cross-section whialmsigally perpendicular to the shoreline.
A profile often extends from the backshore cliff dune to the shoreline. It may also
extend seaward across the foreshore into the iooetinental shelf of the nearshore

zone where waves and currents do not transponneadito and from the beach (Figure
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4.1). Beach profiles extracted from airborne LiDARta often cover part of upland and
the entire backshore up to the shoreline, and aheshore under water surface is not
included due to lack of the water penetration cédppplbf topographical LIDAR systems.
The shape of the beach profile determines the valhl@y of the coast to storms, the
extent of usable beach for habitat and creatiod, the legal boundary distinguishing
public and private ownership of land. Profiles take different dates can be compared
to illustrate and quantify storm, seasonal, andgdéosterm changes in beach width,
height, volume, and shape.

The Atlantic and Gulf coasts of North America ateam@cterized by gently
sloping seashores as the result of gradual submezgef the continent's edges. Coastal
dunes and sandy beaches are common and extensivg mlost of the coastline. In
contrast, much of the west coast of North Amerga&haracterized by the precipitous
cliffs, steep-walled bluffs, and rocky headlandsa&tal bluffs and sea cliffs are the
seaward edges of marine terraces, shaped by ocaaesvand currents, and uplifted
from the ocean floor. Rocky headlands are compo$égheous rocks that are resistant
to wave erosion. Coastal bluffs are composed manfilgedimentary rocks that are
particularly prone to erosion. To design numerieddorithms for coastal feature
extraction, we need to define and characterize hwggical features associated with
two different types of profiles: sandy beach pefhd bluff profile. The former prevails
in the Atlantic and Gulf coasts of North Americadahe latter in the west Pacific coast
of North America. A typical beach profile is adaptfom the Coastal Engineering

Manual by US Army Corps of Engineers (Morang ands®&a 2002) (Figure 4.1) to
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illustrate and define beach morphological featyhsrang and Parson, 2002; Schwartz,

2005).
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Figure 4.1 lllustration of morphological featushe coastal zone. (a) A typical beach
profile; (b) A typical bluff profile (Adapted fror@oastal Engineering Manual by US

Army Corps of Engineers)
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The backshore runs from the seaward-most dune ¢o ldhd and water
intersection. The backshore is the more landwant lagher part of the beach and is
typically a near-horizontal to gently landward-stap surface. The backshore is not
affected by the run-up of waves except during stexants and so it is the typical dry
part of the beach. The landward limit of the actbeach (beach head) includes dunes,
cliffs/ bluffs, or engineered structures such. Daiaee windblown sand mounds on the
backshore, usually in the form of small hills atges, stabilized by vegetation or control
structures. The dune crest is the ridge line, Aeddtine toe is the point of break in slope
between a dune and a backshore. Beach berms @@, Ior@ar-horizontal areas and are
depositional features created from the wave-indwehore accumulation of sediment,
typically during summer. One or more berms may apme a beach, depending on
seasonal changes in water level. Beach scarpseamtyrvertical slopes produced by
wave erosion, which occur when the slope of thecle&e is lowered during storm
events. The height of a beach scarp may be justvaé&ntimeters or a meter, depending
on the degree of wave action and the type of be@atirial. Beach scarps may disappear
by the return of sand onshore during berm accrefibe seaward margin of the berm is
typically defined by a rather abrupt change in sléfm the near horizontal surface of
the berm to the inclined surface of the beachfade line defined by this change in
slope is called the berm crest or berm edge. Tleehbentersects the water at the
foreshore, and the foreshore (beachface) is thee rmeaward part of the beach and

typically a plane slope that extends over a wateellrange from low tide to high tide.
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Figure 4.1b shows a typical bluff profile, in whidtuff crest, bluff toe, berm,
berm crest, and step are illustrated. A coastdf duan escarpment or high, steep face
of rock, decomposed rock, or soil rising aboveshere, caused by wave undercutting of
the cliff toe. A bluff crest is the upper edge aangin of a bluff. Bluff toe is the base of a
bluff where it meets the beach. A bluff face is @leping portion of a high bank
between bluff crest and toe. A seacliff beach beyra flat and narrow stretch of sand
between the bluff (cliff) and the ocean, and belaehm crest is the seaward limit of the

flat berm with a rather abrupt change in slopétinclined beachface.

4.1.2 Morphological feature extraction from an ideal beach profile

For each location on a beach profile, several atdis could be derived to quantify the

morphological characteristics of major beach fesdwat that location:

1) z=f(x) |X:XO defines the elevation of the profile at locatign

, _ df(x) |

2) 7= ‘o is the first derivative of the profile at locatioq, which defines the

slope at this location. Wheri > 0, the elevation is increasing {; while whenz'< 0,

the elevation is decreasing J.

7 df (X) |

3) is the second derivative of the profile at locatiq , which defines

the rate of slope change at this location. When 0, the profile is concave upl();

while when z" < 0, the profile is concave down (convex) J.

z' . : .
4) |«| = ¢ | __is the curvature of the profile at locatiogy. The smaller the
(1+ 212)3/2 X=Xg

curvature, the flatter the curve is at this poirite larger the curvature, the sharper turn

the curve has at this point.
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The extraction of critical feature points suchdame crest, dune toe, and berm
crest can be based on the combination of secondatiee and curvature, which could
also be represented as signed curvature:

"

VA
K= (l+ 212)3/2 |x:x0

(4.1)
The sign ofx indicates the direction of slope change, and bselate value ok
indicates the sharpness of the curve.

The concepts and algorithms for feature extractewa illustrated using a
simplified beach profile shown in Figure 4Rased on discrete distance measurements
whose resolution is determined by cell dixe the elevation of the beach profile is
defined as:

z=1(x) X =0, Ax, 2AX, ... (4.2)
wherex is the horizontal distance from current locationthe shoreline, and z is the
elevation measurement at current location. For gamiht on this simplified beach
profile, first derivative (slope) is calculated bdson central difference using one point

on each side of the current point:

f(x+Ax) - f(x—AX)

F(x= 2(A)

(4.3)

The second derivative is also calculated baseceaotral difference, using slope value of
one point on each side of the current point:

f'(x+Ax) - f'(x—Ax)

o= 2(8%)

(4.4)

For each point, the signed curvature is calculased
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By applying Equation (4.3) and (4.5), slope anahe@jcurvature value are calculated for

the simplified hypothetic beach profile. The resate shown in Figure 4.3.

Elevation{mj

Distance(m)

Figure 4.2 A simplified hypothetic beach profile
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Figure 4.3 Slope and curvature derived for a siiredl hypothetic beach profile

The geometric characteristics of morphological desg on the beach profile are
summarized as follows:
1) Dune/bluff crest: High elevation value, abrupipe change, and negative signed
curvature with high absolute value;
2) Dune/bluff toe: A sudden slope increase fromhlibach berm to the dune/bluff face,
and positive signed curvature with relatively higiue;
3) Beach berm: Low surface slope value;
4) Beach scarp: High positive slope value;
5) Berm crest: Relatively low elevation and a shlrgak in slope from near-vertical
surface of scarp or the inclined surface of beahta the near horizontal surface of

berm.
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To constrain the search space for morphologicdlfesa, a vertical threshold is
given to roughly divide the beach zone and dunesz@vhen searching in the direction
from the shoreline to the dune, the berm crestesponds to the point with the
minimum signed curvature value in the beach zoné,the dune/bluff crest corresponds
to the point with the minimum signed curvature ealm the dune zone. Once the
locations of dune crest and berm crest are detednithe dune/bluff toe can be
identified by searching for the point with maximusigned curvature between the
dune/bluff crest and the berm crest, which indisadedramatic slope change and a

substantially concave profile shape.

4.2 Morphological feature extraction from natural beach profiles

The real-world natural beach profiles are far maamplex than the simplified
hypothetic profile illustrated above in Section .4iflthe same algorithm is applied to
natural beach profile (Figure 4.4), many peak awdgh points may be identified in
terms of the first derivative (slope) and signedvature criteria, which will be confused
with the actual dune/bluff crest, dune/bluff to@daberm crest. This is because the
natural beach profiles are noisy and contain thallsseale local variations (Figure 4.5).
The challenge is how to make algorithms robust &badnoise and to be able to
differentiate dune/bluff crest, dune/bluff toe ahdach berm crest from micro-level
topographic variations. This research developsatesspace approach to the analysis of
beach profile at various scales, and the contextdaimation is also utilized to achieve

a robust detection of morphological features.
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4.2.1 Scale-space approach to feature extraction from beach profiles

A successful extraction of the important morphatagjifeatures from the natural beach
profiles depends upon the selection of approprsate of analysis. The need for a
multi-scale signal analysis method arises when wednto automatically derive
information from real world measurement (Lindebet§94). The scale-space approach
(Witkin, 1983) is one of the most well-developed amommonly used methods of multi-
scale analysis, which can be used to representva as a family of curves smoothed at
various detail levels. The essential requirememt rfaulti-scale analysis is that new
structures, which do not correspond to the singaifons of corresponding structures at
finer scale, should not be created at a coarséz.s&aet of standard scale-space axioms
has been used to derive the appropriate low-passekeype. The uniqueness of
Gaussian kernel result in its suitability for theale-space approach, which includes
linearity, shift invariance, the semi-group struetu scale invariance, rotational
invariance, non-creation of local extrema, and anhancement of local extrema.

A Gaussian kernel follows the Gaussian distributieor continuous variabbe
the standard Gaussian distributiefx with meanu = 0 and standard deviatianis
given by:

2

G(x,0) = F IO(— ) (4.6)

Gaussian distributions centered at mean of zefo aifferent standard deviations are
graphed in Figure 4.6. As shown, the larger thedsied deviation valug , the more

spread out the kernel distribution is.
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Figure 4.6 Gaussian distributions with differetainglard deviations

For a given curvau(x), its Gaussian scale-space representation is dyfarhi
curves defined by its convolution with the Gausskernel with varying standard
deviation values:

U(x,0) =u(x) CLG(x,0) 4.7)
The standard deviatiorr controls the smoothing degree of the filter. Thegda the
standard deviation, the larger the scale of analgsd the less details (local variations)
will remain in the curve.

The critical features of the elevation curve cqoesl to the points of dramatic
slope changes, which are associated with the ertgints on the curvature curve. By
selecting different standard deviation values faussian filter, the elevation curve can
be smoothed at different scales, so that the alifeatures can be extracted at different

scale from the resulting curvature curve.
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When dealing with elevation curve based on disaletiance measurements, the

Gaussian distributios(n,o heeds to be discretized:

1 . (nAx)?
J2mo exp( 20° )

G(n,0) = n=...,-2-21012... (4.8)

where o is standard deviation anix is the cell size. Since the Gaussian function decay
rapidly, 95.45% of the area in the Gaussian functi® contained in the window
[-20,,20,], given an analysis scatg. Therefore, to construct a discrete Gaussian
filter, the filter window could be truncated and ingplemented as{b,b], wherebis

the minimum integer that satisfie&x = 2g,. For each pixehU [-b,b] in the filter

window, its value for the Gaussian filter coulddadculated as:

2
G(n,a,) = exp(- (gsz ) n=-b,-b+l..,-101.. b-1b (4.9)

1
N 2o, g,
Given the elevation cunz= f (n , Yhe smoothed curve df(n 3t specific

scaleg, is defined by its convolution with the Gaussianniedr

F(n,og,) = f(n) OG(n,0,) = Zb: f (m) OG(n—m, g,) (4.10)

m=-b

n=-b,-b+1...,-101...,b-1b
After smoothing elevation curve= f(n 3t scaler,, the first derivative, second
derivative, and curvature could be calculated liergmoothed elevation curkén,o, . )

The critical features of the elevation curve cduddidentified as extreme points on

curvature curve at various analysis scales.
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For example, when a Gaussian filter with standirdationo =1 is applied to
smooth the elevation curve shown in Figure 4.4 réselting slope and curvature curves
(Figure 4.7) are much smoother than the results ftbe original elevation dataset
(Figure 4.5). On the curvature curve, the pointgegponding to the critical features
could be recognized as the extreme points, althtlugite are some local extreme points
in the neighborhood with very high curvature valwhjch may still cause confusion in

the feature extraction process.
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Figure 4.7 Feature extraction of beach profilsmaboth scales =1

When a Gaussian filter with standard deviatmr?2 is applied to smooth the
elevation curve shown in Figure 4.4, the resulshgpe and curvature curve are even

more smooth (Figure 4.8). On the curvature curhe, points corresponding to the
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important features could be easily distinguishedthes extreme points, and there is

almost no local extreme point in the neighborholat tcould cause confusion when

identifying the important features.
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Figure 4.8 Feature extraction of beach profilsraboth scaler =2

Slope / Curvature

When a Gaussian filter with standard deviatmr4 is applied to smooth the

elevation curve shown in Figure 4.4, the slope @andature curve are further smoothed

(Figure 4.9). On the curvature curve, the pointsesponding to the important features

still can be recognized as the extreme pointsabeinot as distinctive as they were when

o =2. Besides, the extreme points shift from the tiocs that exactly correspond to the

original slope change point of the elevation cuwbich is caused by the larger analysis

window.
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Figure 4.9 Feature extraction of beach profilsmabothing scaler =4

Overall, analyzing the original beach profile affetient detail levels will create
different results for feature extraction. At a shsahle of analysis, the local variations of
elevation curve will result in the unwanted fludioas in the slope and curvature curve,
which may cause difficulty in distinguishing thetical feature points from many other
local extreme points in the neighborhood. By insie@ the scale of analysis, the
curvature curve will become smoother, which willkeahe points that correspond to
critical features more prominent. However, when #eale of analysis is further
increased and becomes too large, the original etevaurve will be over smoothed,
which may result in serious shift of the detectechtion of the critical features or even
the failure in detecting certain features. The wmeteation of appropriate scale of

analysis is critical to achieve a desired resultedch profile feature extraction.
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4.2.2 Incorporate contextual information for feature extraction of beach profile

The scale-space approach presented above workenwedist cases, especially when the
beach profiles have a relatively regular shape. él@r, in some cases the information
about elevation, slope, and curvature of a singlach profile is not sufficient to
determine the critical feature points satisfacypridspecially when some other points
with a dramatic slope change exist. For examplefHe profile shown in Figure 4.10,
using a scale-space approach at smooth scaf® the dune crest will be located on the
back of the dune because of the presence of theslosigned curvature value, which
means a sharper slope change.
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Figure 4.10 Mistakenly identified dune crest (sthatg scaleo =2)

To improve the accuracy and reliability in locatitige feature points, the

contextual information from the neighboring pradileould be incorporated based on the
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assumption that the horizontal distance from origaint and the elevation of feature
points are continuous or change gradually alongalsegment of shoreline.

For the dune crest point identified based on cureaproperty for the profile
shown in Figure 4.10. Its elevation and the horiabdistance from the shoreline are not

consistent and compatible with its neighbors (Fegull).
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Figure 4.11 Example of dune crest identificati@sdd on information from individual
beach profile. (a) Mistakenly identified dune cr@Btofile ID = 170); (b) Inconsistency
in horizontal distance from shoreline; (c) Incotesi€y in elevation values

To incorporate the contextual information from theighboring profiles, the
compatibility and consistency analysis is perfornfi@dmorphological points extracted
for each beach profile in comparison with its néigting profiles. If a dramatic

difference exists between the location (horizoatadl/or vertical) of its dune crest and

the neighboring dune crests, the current locatidhe dune crest on profile is identified



a7

as a potential error. Then several other locatwimeh meet the elevation and curvature
criteria are selected as candidate dune crest oomt the beach profile. The

compatibility of each candidate dune crest pointhwhe dune crests on neighboring
profiles is calculated based on both the horizodisiance to the origin point and the
elevation. The dune crest point will be adjustedhte candidate location with most

compatible horizontal distance and elevation vategussian distribution is assumed for
both the horizontal distances and elevation vabfethe dune crests of beach profiles
within a given neighborhood of the shore segmeumit.each individual beach profile, the

algorithms are as follows:

Step 1:Calculate the means and standard deviations eoétb® and horizontal distance

of the neighboring dune crest points in the givemginborhood:

1Y
Zoc ZWZ Zne (4.11)

13
Xpc ZNZXDC (4.12)

where N is the total number of neighboring profileshe given window sizeg is the
average elevation of all the neighboring dune erastthis given windowzj. is the
elevation of the dune crest on profileéSimilarly, E is the average horizontal distance

from each neighboring dune crests to its corresjpgnarigin point; x,. is the

horizontal distance from the dune crest on profiits origin point.

0(zoc) =JN%12(£DC “2,0)" = JNi_l[Z(zgc)z N (41



48

0(c) = JNi_lZ(ng ~Xoe)? = JNi_l[Z(xgc)z NG (414)

where N is the total number of neighboring profileshe given window sizeg(z,. i$

the standard deviation of elevation of all the hbigying dune crests in the given

neighborhood;o(x,. )s the standard deviation of horizontal distancemfrall the

neighboring dune crests to the corresponding opgint.

Step 2: Determine if the elevation and/or horizontal dist of the dune crest is

compatible with its neighborhood. Uag to denote the elevation of the dune crest on

current profile, andx,. to denote the horizontal distance from the durestcto its

origin point. The location of the dune crest vl identified as incompatible if the
difference between the current location and themwvadue of the neighborhood exceeds

a certain threshold, i.e.:

| Zoc _g B ko(zyc) or

[Xoc = Xoc P KO(Xpc) (4.15)
wherek is the multiplicative factor (usually ranging froh0 to 3.0). Once a dune crest
location is identified as incompatible and thus nm@gd to be adjusted, the following
steps need to be executed.
Step 3: Determine the candidate locations for dune crélse candidate location for
dune crest could be selected based on combinafi@eweral criteria: (1) having an

elevation above the minimum threshold; (2) havirgigmed curvature value lower than

the maximum threshold; and (3) being the local mumn curvature point.
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Step 4: Calculate the compatibility of each candidate darest with other dune crests
on the neighboring profiles based on Gaussianiloligion.
The probability density function of the standardu&san distribution with mean

4 =0 and standard deviatiam=1 is given by:

¢01(X) = \/_7Texp( _) (416)

The cumulative distribution function of a probatyildistribution is the probability of the
event that a random variab} with that distribution is less than or equalXoThe

cumulative distribution function of standard Gaassilistribution is given by:

Pu(X<x)=® exp(——)du (4.17)

(=" J—
Thus the probability of the event that a randomiade X with standard Gaussian
distribution has an absolute value larger tbe}irils:

Pos(|X[ >[X) = 1= Py, (X < |X| <[X)) = 2@ 1, (X)) (4.18)
For a random variablX that follows Gaussian distribution with meanand standard

deviationo , the probability of the event thithas an absolute value larger ttﬁnis:

x — —
P(X|> ) = (X > ) <2 -

X_”b (4.19)
ag

Whenx equals tqu, the probability equals to 1. The larger the distgaofx from mean
value 1, the lower the probability of the event tixahas an absolute value large tﬁqn

and the probability is approaching to 0 whers moving further away from the mean

value .
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Assuming the elevation and horizontal distance mmemsents of dune crest
follows Gaussian distribution, the normalized measents follows a standard

Gaussian distribution, which means:

P(Z| > [zoc]) = 200, (22 —2)) (4.20)
' 0(Zpc)

PX| > [xoc]) = 200, (<722 =02 (4.21)
’ I(Xpe)

The compatibility of the dune crest on current epofile with the dune crests in the
neighborhood could be derived based on both theatte and horizontal distance

measurements:

Xoc ~ Xpe
0(Xoc)

Zpc ~ Zpc

Quc = PUZ|> 2o PX|> o = 40, (252

) @ (- ) (4.22)

The commonly used algorithm to approximate the datiue distribution function of

standard Gaussian distribution is from Abramowitd Stegun (1964). Given:

2

$0200) = o exp(= ) (4.2

The cumulative normal distribution is given by:

Dy, (X) =1- @, () (It +b,t* +bt® +bt* +bt®) + ¢ (4.24)
wheret =1/(1+0.231641% ), b,=0.319381530pb, =-0.356563782h,= 1.781477937,
b, = -1.821255978p, = 1.330274429. This approximation has a maximunolabs

error of 75e®.

Step 5:Adjust the dune crest point to the location that tie highest compatibility.
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As shown in Figure 4.10, the compatibility functiencalculated for the local
minimum points which satisfy the requirement ofvakgon and curvature (in this case
elevation > 10m and curvature < -0.1). The locahimum point with the highest
compatibility value is identified as dune crestyflifie 4.12 and Table 4.1). The relocated

dune crest is more consistent with its neighbor®ims of elevation and distance from

origin point on the shoreline (Figure 4.13).
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Figure 4.12 Adjustment of dune crest location usiagpatibility values

Table 4.1 Compatibility values calculated basedamextual information

Local minimum Curvature | Distance Elevation Compatibility
point (meter) (meter)
1 -0.3505 119 31.79 0.00064
2 -0.2569 54 12.45 0.00021
3 -0.2336 82 30.12 0.25300
4 -0.1101 136 23.97 1.91E-05
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Figure 4.13 Example of dune crests identificati@.Comparison between dune crests
identified before and after incorporating contekingormation; (b) Improved
consistency in horizontal distance from origin gp(n) Improved consistency in
elevation values

Using the similar algorithm, the location of theable berm crest of each profile

can be adjusted by incorporating the contextuarméation. Then the dune toe can be

relocated based on the updated location of berst arel dune crest.
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4.2.3 Proceduresfor deriving morphologic attributes for beach profiles along the
shoreline
The traditional ground survey transects are apprately perpendicular to the shoreline.
Similarly, to automatically generate beach proffiesn LIDAR DEM, the first step is to
extract the shoreline as the reference to orierttatesects. Shoreline is the spatially
continuous line of contact between the land andstee More accurately, shoreline is
defined as the intersection line between the lartithe mean high water level (MHWL).
This definition is adopted by many US agencies saglhe United States Army Corps
of Engineers, Federal Emergency Management Ageang, U.S. Census Bureau
(Graham et al., 2003). Based on LIiDAR elevatioradahoreline can be extracted using
object-based or contour-based approach. In mossctse shoreline extracted from high
resolution LIDAR data contains too much spatialadefor generating perpendicular
transects. The shoreline needs to be smoothedninate the unnecessary details to
ensure the orientation of transects vary smoothtiygradually.

After the shoreline is extracted and smoothed|dbation of the starting point of
each transect can be determined along the shomiaeegular interval. The length of
the transects can be specified according to thetipah needs at particular study area.
The orientation of each transect is calculated dase the local segments of the
shoreline. A moving window with a selected sizeastered at the starting point of each
profile. A linear regression line is fit for the akeline within the window. The

orientation of the profile is then set to be perpeular to this local regression line.
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After the transects are located, the correspondilayation values can be
extracted from the LIDAR DEM along each transecteli The Gaussian filter at
optimum scale is applied to smooth the elevatiorveuThe first derivative, second
derivative, and curvature are then derived forsgim®othed elevation curve to extract the
critical beach features from each individual begmtofile. Then the contextual
information from the neighborhood of each beacHilgerean be incorporated to identify
the feature points that are not consistent witméghbors in terms of elevation and/or
horizontal distance. The locations of those incaiibpe feature points can be adjusted
based on the compatibility analysis of candidatations.

After the feature points for each beach profile derived, the feature points on
beach profile and the segments between featuredspoan be converted from raster-
based grid format to vector-based point and patyformat. Both the raster and vector
representations of the points and segments of ribfédepare maintained in the database.
For raster representation, each profile is stored aseries of grid cells with the ID
number of feature points. For vector representatiom feature points and segments are
located on the profile using linear referencing dgdamic segmentation techniques. By
definition, linear referencing is the method ofrstg geographic location by using
relative positions along a measured linear featuhgle the dynamic segmentation refers
to the process of calculating the absolute locatiohevents using linear referencing
system and locating them on the map (Brennan amb\wa2002). First, a route can be
created from each profile line by using profileddnto accumulate the route measures.

Then a point event table can be created for alféhture points, which records the ID of
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the profile that each point belongs to, as weltheesdistance of the feature point to the
origin point of the profile. At last, a route evdayer can be generated based on profile
routes and point event table by linking the pototghe corresponding profile using route
ID, and locating the points on the profile using distance from the origin point as
measure values. Similarly, a line event table cawcrieated for all the segments between
feature points. A route event layer can be geedrasing profile routes and line event
table by linking each segment to its correspondgirgfiles using route ID, and locating
the segments on the profile using the distance measent of its from-point and to-
point. Compared to raster representation, the vefdomat of feature points and
segments of profile is much easier to be displaystited, and analyzed in a GIS

environment in association with other data layers.

4.2.4 Derivation of attributes for characterizing beach profiles and profile changes

Based on the object representation of feature p@ntl segments of each profile, a set
of attributes can be extracted to support a detafeantitative analysis of coastal
morphology in the cross-shore direction. For befsature points such as berm crest,
dune crest, and dune toe, the elevation of thetp@ind their horizontal distance from
the origin point of corresponding profile can bécated. For segments between the
point features, such as dune face and beach beentotresponding height, width, and
slope of each segment can be derived.

If time series of profiles from repeat LIDAR sungegre available, the magnitude
of changes can be calculated for each attributesh ss the horizontal and vertical

displacement of each feature point, as well astage in height, width, and slope of
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each segment along the profile. The dune volumetrange is calculated based on the
horizontal position of pre-surface dune toe anddbee crest location that is furthest
from shoreline among different time periods. Lirditey the water penetration ability of
topographic LIDAR system, the beach volumetric geagan only be calculated from

the position of shoreline to the horizontal positad pre-surface dune toe.

4.3 ArcGIS extension module for beach profile analysis

To support the beach profile feature extraction atitibute derivation, an ArcGIS
extension module — Profile Analyst, is developethim environment of Microsoft Visual
Studio .NET 2003. The core algorithms are prograthae a series of DLLs using the
C++ language, and the graphical interface is d@esidby VB .NET and the relevant
ArcObijects. This extension module can be used sesmiyl with ArcGIS package. The
graphical interface for Profile Analyst is shownkigure 4.14 The capabilities of this
module include:

(1) Generate cross sectionsThis software routine has a customized dialogueumen
which guides the user to load the input data ansetahe relevant parameter values to
delineate cross sections (Figure 4.14b). The reduimput data are LIDAR DEM and
shoreline, which may be extracted or digitized dase LIiDAR data and /or high-
resolution remote sensing imagery. The parametetsetspecified include the beach
profile length and profile interval. Transects pargicular to the shoreline can be
automatically generated at the specified interVae elevation values for all the grids on

each transect can be sampled from the LIDAR DEMlandtored as a list in memory.
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Figure 4.14 ArcGIS extension module — Profile Amsal(a) Pull-down menu for the

extension module; (b) Dialogue form for generatingss sections; (c) Dialogue form
for extracting feature points from single profi(d) Dialogue form for extracting feature
points for all profiles; (e) Dialogue form for eidity feature points; (f) Dialogue form for
calculating morphologic attributes; (g) Dialoguenfofor generating cross sections for

change analysis; (h) Dialogue form for comparingfipes; (i) Dialogue form for

calculating change attributes;(j) Dialogue form ¢atculating volumetric attributes; (k)

Dialogue form for visualizing morphological changdsng shoreline
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(2) Interactively extract feature points from singke profile: This routine allows the
user to preview selected profile curve and to deitez appropriate parameters for
feature extraction (Figure 4.14c). First, the sid profile curve can be displayed. The
standard deviation value can be set for the Gaushli@r to smooth the original
elevation curve at different scales, and the ragpulsigned curvature curve can be
displayed in a separate window. By setting a vaitibreshold to roughly divide the
profile into beach zone and dune zone, the regufgature points could be derived and
displayed on the beach profile. After several expents on various profiles, the
optimum scale of analysis and the elevation thriglsban be determined. The elevation
values along the profile and the coordinates fenidied feature points can be exported
to Excel for a detailed analysis.
(3) Extract feature points for all profiles: After the optimal parameters are determined
based on experiments on representative profiles,sibftware routine allows users to
apply these parameters for the case study areedracecritical features (Figure 4.14d).
Feature points can be extracted based on geonmd@timation of each individual beach
profile, and can also be adjusted by incorporativg contextual information from the
neighboring profiles. To incorporate the contexingrmation, the user needs to set the
number of profiles in the neighborhood to calcutate compatibility value.

The resulting feature points such as beach bermst,cdeine/bluff crest and
dune/bluff toe are initially stored in memory astdnce-elevation pair for each profile.

By using a set of ArcObjects related to linear mefieing and dynamic segmentation in
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ArcGIS, the feature points and segments can balsavevent tables and be displayed in
vector format.

(4) Edit feature points: After the automatic profile feature extraction, thwnual
editing can fix feature points that are not collseticated by the automatic algorithms
(Figure 4.14e). For a selected profile, the dista@levation pair of feature points can be
read from the feature point layer created by previsteps and be displayed on the
corresponding elevation curve. With this softwaoetine, the location of the feature
points can be interactively edited, added, or éedlefThe feature point layer can be
updated after the new location of feature poimtatermined.

(5) Calculate morphologic attributes: After the automatic feature extraction and
manual editing, a set of morphological attributas be derived for each beach profile
(Figure 4.14f). The attributes for feature poimtiude the elevation and the horizontal
distance to the shoreline. The attributes for doloé/ face and beach berm include the
height, width, and slope. The feature points ofshme type can be connected to form
the feature line, such as dune crest line, dunérteeand berm crest line.

(6) Generate cross sections for change analysibhis routine allows user to perform
change analysis between two successive LIDAR ssr{Eigure 4.14g). The user can
specify the two LIDAR DEMs to be compared and tbkerence shoreline. Similar to the
single DEM analysis, the user is allowed to set lbeach profile length and profile
interval. After transects are generated, the elevatalues can be extracted for two

DEMs along each transect.
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(7) Compare profiles: This routine allows user to compare the elevatioafiles
measured at two different time periods (Figure B)14The identified feature points can
be displayed on the profiles to reveal their dispfaents. The cut and fill areas can be
displayed on the cross-shore view and the totalmelric change for each profile can be
calculated.

(8) Calculate change attributesThis routine allows user to calculate the attribute
changes during the temporal span between two LiBAReys (Figure 4.14i). The
change attributes include the horizontal distamzkedevation changes for feature points,
as well as the height, width, and slope changeddoe/bluff face and beach berm. The
volumetric change attributes are also derived &adh and dune sections (Figure 4.14)).
(9) Spatial pattern of profile feature attributes and change attributes:This routine
facilitates the visualization of the spatial vanas of morphologic attributes for each
survey and the analysis of change attributes betwee surveys (Figure 4.14Kk).

Several attributes can be selected and displayde atame time, which is helpful in

interpreting and analyzing coastal morphologicarade patterns.
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5 OBJECT-BASED METHOD FOR MORPHOLOGICAL AND

VOLUMETRIC CHANGE ANALYSIS

This section presents the object-based method éoplmological and volumetric change
analysis. The object-oriented method representsvadimensional approach to the
analysis of coastal morphology and its changes. B&sic spatial units for object-
oriented analysis method are the erosion and dsmpogiatches and zones, in contrast to
the profiles in the one-dimensional profile anayspproach. This section starts with the
presentation of algorithms for identifying and delting the positive change and
negative change objects. Then, algorithms and soéwools are presented for deriving

attributes for characterizing these morphologiterge objects.

5.1 Identification and delineation of elevation changebjects

The main procedures of change object identificatiod delineation include three steps:
pixel-based elevation differencing, morphologicdlacge classification, and object
identification.

For change analysis, LIDAR surveys at two differemtes for the same region
needs to be preprocessed, including geo-referenbomigontal co-registration, vertical
adjustment, and low-pass filtering. Then, the twDAR DEMs can be differenced for

change analysis as in Equation (5.1):

Az, = zi? - z; (5.1)

where ;‘jl and ;‘f are the elevation measurements for the ¢gll fespectively at the

early timet; and the late timg, andAz; is the elevation difference for the celljj. A
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positive elevation difference value indicates that surface materials have been added
at this location, while a negative elevation diéiece value indicates that the surface

materials have been removed (Figure 5.1c).

34 3747 |44 |96 (|98 12 23 34 43 55 0.6 2.2 1.4 13 |01 |41 |32
40 |35 (406 |52 | 76|80 21 32 4.4 50 6.1 53 19 |03 |02 0.2 15 2.7
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Figure 5.1 Identification of elevation change obge¢a) DEM at the timg; (b) DEM at
the timet;; (c) Elevation difference values; (d) Morpholodicdange classification
values; (e) Resulting objects with ID numbers

In the resulting pixel-based elevation differencagery, the cells with elevation
change value can be further classified into thremphmological change categories:
positive change cells, negative change cells, amhanged cells (Figure 5.1d). As

discussed in Section 3, “Unchanged” can be defasthe case when elevation change

value is within a range of the measurement ef@veno, as the random error for

elevation difference measurements &wals the multiplicative factor (usually ranging
from 1.0 to 3.0),the elevation differencing image could be reclasdifinto three
categories: positive change (1), negative chanfe &nd unchanged (0) according to

Equation (5.2):
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1 if Az, > ko,
c, =171 if Az, <-ko, (5.2)
0, if —ko, <Az <ko,

wherec; is the morphological change code for the grid Ggj).

In this object-based volumetric change analysishogktthe unchanged cells are
considered as background and the individual pa@sithange and negative change
patches are considered as objects (Figure 5.1epxXample, a positive change object is
defined as a continuous spatial aggregation of oglth a positive elevation change
value, in which any two cells are spatially coneéctTwo cells are considered to be
spatially connected if there exits a path between ¢ells that consists of a series of
adjacent cells. In this case, two cells are defmea@ddjacent to each other when one cell
is the four immediate neighbor of the other. A msowe connected-component
expansion algorithm (Sonka et al., 1999; Liu anzelie 2004) is used to identify and
index positive change objects based on the spatinhectivity of cells. First, the
elevation difference grid is scanned in a row-wisgnner, and a seed is set at the first
cell with a positive elevation change value. Sec¢dhid seed is expanded to include all
the positive change cells located in the four imiaiedneighborhood of the current cell.
The expansion is continued recursively until aét gpatially connected positive change
cells are included in the current patch. In thisywthe first positive change object is
delineated and indexed. As repeating this recurgxpansion process to identify
positive change objects one-by-one, the objectsnalexed incrementally with a unique

identification number. Following the same procedtine negative change objects could
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be delineated and indexed. Positive (negative) ghambjects with different
identification numbers are spatially detached tcheather, which is guaranteed by the
algorithm. However, a positive change object andegative change object might be
adjacent to each other. As a final result, the nssea connected-component expansion
algorithm creates a series of discrete elevati@mgé objects which are embedded in the
background of unchanged cells.

When applying the algorithm to real LIDAR data, tldentification of objects
may be subject to errors for various reasons suclla@a noise, residual horizontal
alignment error, and resolution limitation duringnage acquisition. The delineated
objects may have small holes and breaks, and bloeindaries may have a rough and
jagged shape. To generalize the shape of the sbj#latee steps of morphology
operations are applied. First, a closing operatianka et al., 1999) is applied to
smooth the object boundaries and close the smpll gaobjects. The closing operation
consists of a dilation operation followed by ansswa operation. The dilation operation
adds cells to the perimeter of each object, and ttentially closes broken areas.
Erosion operation etches cells away from the pdgamef each object and therefore
shrinks the object. Second, a fill operation islegopto close small interior holes and
cavities whose size is smaller than a specifie@stiold. Third, a trim operation is
applied to eliminate those isolated objects whadge s smaller than the specified

threshold.

After the discrete objects are generalized by tbephmologic operations, they are

converted from raster-based grid format to vecewed polygon format. Both the raster
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and vector representations of the objects are miagd in the database. For raster
representation, each object is stored as a lispatially-connected grid cells with a same
identification number, and the object attributes stiored in an associated attribute table
with the same identification number. For vectorresgntation, each object is stored as a
polygon, and a feature attribute table is assatiatéh the polygon layer. The feature
attribute table contains object identification nierdband various spatial and volumetric
properties of corresponding objects as describéldemext section. The vector format of
elevation change objects can be directly displaysdited and analyzed in a GIS

environment in association with other data layers.

5.2 Attribute derivation for characterizing erosion and deposition objects

Based on the object representation of elevatiomghgatches, a set of spatial and
volumetric attributes can be derived to supporetaited quantitative analysis of coastal
morphology change. Individual elevation change Ipatctreated as the basic spatial
units for morphological and volumetric change asalyFirst, the internal composition

and heterogeneity for each object can be charaettby a set of variables. For example,
the range and standard deviation of vertical elemathanges could describe the internal
heterogeneity of elevation changes within an obj&scond, each object could be
treated as homogenous entities and be charactdrizadset of spatial and volumetric

properties. Third, the spatial pattern of erosiod deposition objects could be measured
by aggregation and distribution properties, overcsfed sub-regions or across the entire

landscape.
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From successive LIDAR datasets, five categorieatibutes are calculated for
each elevation change object, which include platmmattributes, shape attributes,
surface attributes, volumetric attributes, and samymstatistical attributes. The
combination of these attributes could provide carhpnsive quantitative information
for investigating morphological and volumetric cheteristics of elevation change
patches. Thematic attributes could also be caledl&r each object if other ancillary
data sources such as multi-spectral remote sensiagery are incorporated. A
combination of various attributes could facilitéltee classification of elevation changes
caused by different mechanisms.

This research aims at providing an analytical frar& and software tool for
object-based morphological and volumetric changalyars, so that a large list of
attributes are deduced and calculated. For spe@f8earch purpose or specific study
area, the users may select the attributes thanhast useful for characterizing particular

aspects of coastal morphology.

5.2.1 Planimetric attributes

The planimetric attributes describe the geograplmoaition, horizontal dimensions and

size of the elevation change objects. Those incthdecoordinatesX,y) of centroid

point, perimeterg), area ), thickness THK), as well as the lengtl) @nd width () of

the minimum bounding rectangle. The numerical diédins of these attributes are listed
in Table 5.1. The centroid point is the gravity teenof the object and indicates the
geographical location of the object. The perimeterasures the length of the object

boundary. The thickness of an object is definethagnaximum distance of interior cells
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of the object to its nearest boundary, namely tistadce of the deepest cell inside the
object to its boundary. The length and width of th@imum bounding rectangle gives

the measurements on the horizontal dimensionseodibfect.

Table 5.1 Definitions of planimetric attributes
Attributes Definition

n

RO WO

X==
N

Centroid point &,y )

n is the number of cells consisting of an objext,\) are the horizontal and
vertical coordinates of thi¢h cell of the object

p=mr++/2myr

Perimeter IP)
m, is the number of boundary cell in diagonal stepis the number of

boundary cell in horizontal or vertical orientati@nd r is the grid cell size

A=nr?
Area () , - : : : :
n is the number of cells consisting of an object @&is the grid cell size.
THK = max{d }
ThicknessTHK)
d; is the distance of the celto the nearest boundary.
Lengthl) length of the minimum bounding rectangle enclosheobject
Width w)

width of the minimum bounding rectangle encloding object

5.2.2 Shape attributes

Shape attributes describe the planar geometric estdpthe objects. Due to the
differences in the nature of changes and diversstabprocesses, the elevation change
objects may have different shape characteristick amplexity. Some have compact

forms, while others have narrow and elongated sh&peme have simple, regular, and
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smooth boundaries, while others have convoluteglyed and complex boundaries. The
different shape characteristics of elevation chasigects could be used to facilitate the
inference of the underlying coastal processes. tAo$eattributes are calculated for
characterizing different aspects of the shape ptpp@cluding compactness indeglj,
elongatednessE(LG), asymmetry ASM), orientation (¢ ), fractal dimension ),
rectangularity REQ, ellipticity (ELP), and triangularity TRI) (Table 5.2.

Compactness index (Cl) is a widely used shape @toliqDavis, 2002), which is
defined based on the perimeter and area meastine object. The most compact object
in a Euclidean space is a circle. A circle-shape@a has a compactness index of one,
and so that the compactness index is also knowimeasircularity measure (Pratt, 1991).
Elongatedness is defined as a ratio between tlgtheand width of the fitted minimum
bounding rectangle. The circle and square havertiedlest value for the elongatedness,
which equals to one. The asymmetry is defined bagdtie best-fit ellipse of the object,
which is the ratio of the major and minor axesh# €llipse. The circle and square have
an asymmetry value of zero. The orientation isra&fias an angle in degree between the
horizontal axis and the major axis of the beseéitipse measured counterclockwise from
0 to 180.

Rectangularity, ellipticity and triangularity respiwely measure the similarity of
the shape of an object to typical rectangle, edligsd triangle shapes. The rectangularity
is defined by the ratio between the area of theeabjo the area of the minimum
bounding rectangle. The ellipticity and triangutarare defined based on the affine

moment invariant (Flusser and Suk, 1993; Rosin31L98Il the rectangularity, ellipticity,
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and triangularity values range from 0 to 1. Theyéarthe value, the more similar an
object is to the corresponding typical shape.

Table 5.2 Definitions of shape attributes

Attributes Definition
47A
Compactness index() | Cl = o7
Elongatednes€E(. G) ELG= lW
= b 15 )P )4
ASM=1-— Mo =26 =0 (% - 9)
i-1

a= \/ 220+ Hop + (Moo = Hop)” +44451)

Hoo
Asymmetry ASM

b= \/2(/120 + oy = (B — Hop)? + Apty)

Hioo

a andb are the semi-major and semi-minor of the beslipse, 14,4 are the
central moments.

2 Moo~ Hop

Hnq are the central moments.

Orientation @)

N(r) =cr™®

Fractal dimension
! lont) r is the width of box, N(r) is the counts of the bexcontain the object.

A
RectangularityREQ REC=+
C[rer s K
ELP= ! otherwise
16771,
Ellipticity
(ELP) | = Hoothy = 4
1 4
Hoo

Mng are the central moments ahds the affine moment invariant.

1 otherwise
108,

I, is the affine moment invariant.

Triangularity

108, i I, < ¥op
TRI =
(TRI)
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The shape complexity of object boundary can be oredsin terms of a
perimeter-to-area ratio or fractal dimension (Mdhos 1983, Burrough 1981). Both the
perimeter-to-area ratio and the fractal dimensrmmmdase with the increasing complexity
of the object boundary. The problem with the petenarea ratio method is that it is
size dependent. For two objects of the same shidugelarger object has a lower
perimeter-area ratio than that of the smaller dbjdo avoid the size dependency
problem of perimeter-area ratio, the fractal dim@mds selected as the indicator to
measure the complexity of object boundary. Thet&latimension is calculated for each
object using the box-counting method, which inchidlee following steps (Foroutan-
pour, 1999):

Step I Use a grid with a cell size to cover the object, and then count the number of
cells N, that contain part of the boundary of object.

Step 2 Vary the cell size and record a series of co@intsN, }, { r,, N, }, ..., {r,, N, }.

Step 3 Fit a linear regression line of pointf(r,) ,log(N,) }, { log(r,) ,log(N,)}, ...,

{log(r,) ,log(N,)}-

Step 4 Determine the fractal dimensi@husing the linear regression equation:

log(N(r)) =log(K) + D log(r) K is a constant) (5.3)

To generalize the shape and orientation of eachcgbg minimum bounding
rectangle could be fitted to enclose the objecticlvhs the smallest rectangle that

contains all cells of the object and aligned with thajor and minor principal axes of the
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object (Figure 5.2). The algorithms of determinmgnimum bounding rectangle include

the following steps (Chaudhuri and Samal 2007; Saiesd Voss, 2001):

Step I Compute the centroid poink(y) of object and the angle of the major axis with
the horizontal axi® (Figure 5.3a).

Step 2 Compute the upper and lower furthest boundarytpowith respect to both
major and minor axes (Figure 5.3b). Each boundantp(x,y, ) can be
classified to be upper, lower, and on with respethe major axis using:

V =(y, - y) —tand(x —X) (5.4)
Boundary point &, Y,) is an upper boundary point with respect to majgis
whenV > 0, a lower boundary point wh&h< 0, and on the major axis\f= 0.
Then the upper and lower furthest boundary poirith wespect to major axis
could be determined within each groups. Similarlypy using
U =(y, - y) +cotd(x —X), the upper and lower furthest boundary points with
respect to minor axis could be determined.

Step 3 Compute the vertices of the four corners of thaimum bounding rectangle

(Figure 5.3c). Let X,,y,) and (x,,Y,) be the upper and lower furthest boundary
points with respect to major axis, and leg,(y,) and (x,,y,) be the upper and

lower furthest boundary points with respect to mimxis. The vertices are
determined by finding the intersections of fourebn two lines are parallel to

major axis and respectively pass through ¢,) and (x,, y,); another two lines



74

are parallel to minor axis and respectively passugh (x,, y;) and (X,, y,)- The
resulting coordinates of the four corners are:
Top left corner A:

w=X tand+ x,cotf+y, -y,

(5.5)
tar@+col@
_ Yy cotd+y tanfd + x, — X, (5.6)
tar @ +col @ .
Top right corner B:
(=X tand + x,coté+y, -y, (5.7)
tar @ +col@
_ yycotd+y,tand +x, - x (5.8)
tar @+ col 8 .
Bottom left corner C:
(=X tang + x,cotd +y, -y, (5.9)
tar @+ col@
_ Y, cotd+y tanfd +x, - X, (5.10)
tar @+ col 8 .
Bottom right corner D:
(=X tand + x,coté+y, -y, (5.11)
tar @ +col@
_ Y,cotf+y,tand +x, - x, (5.12)

tar 8 +cotéd
Step 4 Connect the corresponding vertices to get thamim bounding rectangle of

the current object.
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Figure 5.2 A minimum bounding rectangle and itsapzeters

[pe]

(a) (b) (c)
Figure 5.3 Steps of fitting minimum bounding rege. (a) Centroid and axes; (b)
Upper and lower furthest points; (c) Vertices ohimum bounding rectangle

The best-fit ellipse of an object can be determinskhg all the cells within the
object (Figure 5.4). The center of the ellipse asated at the centroid point. The
principal axes of the ellipse are the eigenvecfothe covariance matrix obtained by
treating the cells within the object as random aklgs. The major principal axis
corresponds to the eigenvector of the larger eiglelev Three parameters of the ellipse

including semi-major axis (a), semi-minor axis @)d orientation¢) can be calculated
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using the lower-order central moments of the obj€dtague, 1980; Mulchrone and
Choudhury, 2004). The algorithms of determiningtifiellipse include the following
steps:

Step 1 Compute the centroid poink(y) of the object.

Step 2 Compute the central moments of the object:

n

M =26 =R (% =9 (=0,19=0,1) (5-13)

i=1

Step 3 Compute the semi-major axis, semi-minor axis, @amehtation of the ellipse

a= \/Z(ﬂzo tHp \/(:uzo ~ Ho)” +44453) (5.14)
Haa
b= \/Z(quo"',uoz _\/(,uzo_,uoz)2 +4/1121) (5.15)
Hia
= ltan_l(ﬁj (5 16)
2 Hoo ~ Hop

Step 4 Draw the best-fit ellipse.

¥

Figure 5.4 Best-fit ellipse and its parameters
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5.2.3 Surface attributes

Surface attributes describe the three-dimensiamdéhce morphology and its changes in
terms of slope, aspect and curvature. To supperegploration of the interaction and
relationship between surface geomorphology ancctiastal processes, a set of surface
attributes are calculated for each elevation chamigject, which includes: original-
surface average elevatioA\( ELi), subsequent-surface average elevatidW EL),
average elevation differencd&\{_EL_DIP, original-surface average slopA\V_ Sl),
subsequent-surface average slop&/ (Sk), surface slope differenceAY_SL_DIB,
original-surface average aspedM_AS), subsequent-surface average aspivt AS),
average surface aspect differenged/ (AS_DIR, original-surface curvatureAy_CM),
subsequent- surface curvatuVE_C\8), and average surface curvature difference
(AV_CV_DIF (Table 5.3). The average value for surface elematslope (in percent
rise), or curvature for original and subsequenfas@s are simply calculated as the
arithmetic mean of all the cells within the objetihe average value for surface aspect is
calculated through trigonometric operations as & circular direction measure in degree
(Davis, 2002). For aspect valugs 4, , ..., 8,, the average aspect is calculated as:

isiné?i

6, = arctan=—— (5.17)
> cosf
i=1
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able 5.3 Definitions of surface attributes

Attributes

Definition

Original-surface average
elevation AV_EL)

Subsequent-surface avera
elevation AV_EL)

Average elevation
difference (AV_EL_DIB

18, _1{
AV_ELizﬁzl:# AV_ELZ—H;;‘Z

9€AV_EL_DIF =AV_EL, -AV_EL

zi‘1 and zi12 are the elevation of cdllof the object respectively at timie andt2

Original-surface average
slope AV_SL)

Subsequent-surface averag
slope AV_SL)

Average slope difference
(AV_SL_DIf

AV _SL :%Zs,‘l AV _SL, :%Zsﬁ
i=1 i=1

e

AV_SL DIF =AV_SL-AV_SL

si‘1 and sfz are the slope of cellof the object respectively at tinie andt2

Original-surface average
aspect AV_AR)

Subsequent-surface average
aspect AV_AR)

Average aspect difference
(AV_AP_DIp

isiné’fz

AV _ABR =tan™| 2L ——
ZcoseilZ
i=1

Zn:sinei‘l

AV_AR=tan"| 22—
Zcoseitl
i=1

AV_AP_DIF = AV_AR-AV_AR

Hi‘l and Hi‘z are the aspect of célbf the object respectively at tinhk andt2

Original-surface average
curvature AV_CV)

Subsequent-surface average
curvature AV_CV)

Average curvature
difference (AV_CV_DIR

n n
AV_CV, = 1Zv}l AV_CV, = %Zv;2
n

i=1 i=1

AV_CV_DIF =AV_CV,-AV_CV,

\/itl and \/it2 are the curvature of callof the object respectively at tinie andt2
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5.2.4 Volumetric attributes

The volumetric attributes gives direct measurementshe magnitude and variation of
elevation change within an object, which includeerage vertical changedt,,),
maximum vertical changedtn.y), standard deviation of vertical changfzy(y), vertical
change rateZR), volume changeMOL), and volume change rat€R) (Table 5.4). The
average vertical changél4,,) measures the central tendency of the elevatiangs for
each object. The maximum vertical change.fy and the standard deviation of vertical
change {ziy) measure the variation and the internal heterdgersd the elevation
change within each object. The vertical change (&R quantifies the average elevation
change rate at a certain temporal scale. The voklmage YOL) and volume change
rate YR) quantify the total change in the volume of suefawaterial during the time

span between two surveys and the averaged chameg®raach object.

5.25 Summary statistical attributes

After the erosion and deposition objects are idieti based on a combination of
planimetrc, shape, surface, and volumetric attebutsummary statistics can be
calculated to quantify the extent, amount, spat@nposition and configuration of
overall erosion, deposition, and net change foredat region. Summary statistical
attributes include the number of erosion objedU_ER, average size of erosion
objects AV_AREA _ER total erosion areédAREA_ER total erosion volumeOL_ER,

the number of deposition objecNWM_DE), average size of deposition object

(AV_AREA_DF; total deposition aresAREA_DB, total deposition volume/OL_DBE),
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net volume changeNET_VOL, and annual net volume change rat{={_VOL_RT

(Table 5.5).

Table 5.4 Definitions of volumetric attributes
Attributes Definition

1 n
Average vertical change AZ"‘V - E;AZ‘

(A7) A4z is the elevation change of cebf the object

Maximum vertical change | Az, = max{Az}
(A2inay)

n
Standard deviation of Az, = 1 \/ z (Az -Dz,)?
vertical changes n-1\i=

(4241

7R= 8%y
, At
Vertical change rate

(ZR At is the elapsed time between two successive tophygrsurveys (t2-t1)

— 2 5
Volume chang VOL=r ZAZi

i=1
VoD r is the grid cell size

Volume change ra _VOL
VR) VR=—"r—
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Table 5.5 Definitions of summary statistical dtiies

Attributes

Definition

Number of erosion objects
(NUM_ER

Number of deposition objects
(NUM_DE)

NUM_ER = Number of erosion objects

NUM_DE = Number of deposition objects

Total erosion area
IAREA_ER

Total deposition area
(AREA_DB

NUM_ER

AREA ER= > A°
j=1

NUM _DE
AREA DE= ) A
j=1

A is the area of thgth erosion object

Adj is the area of thgth deposition object

Average size of erosion object
(AV_AREA_ER

Average size of deposition object
(AV_AREA_DE

1 NUM _ER

AV_AREA ER= ——~—— »A°
NUM_ER “F

1 NUM _DE

AV_AREA DE=——F— M A
NUM_DE 43

Total erosion volume
VOL_ER

Total deposition volurr
(vOL_DB

nl
VOL_ER= Zvot;
:\I_SM_DE
VOL_DE = Z_lvou;
VOL ¢ is the voluln_1e change of thign erosion object.
VOLd,- is the volume change of tiigh deposition object.

Net volume change
INET_VOL)

NET_VOL=VOL_DE - VOL_ER

Net volume change rate
NET_VOL_RY

NET _VOL

NET_VOL_RT=
- - At
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5.3 ArcGIS extension module for volumetric change analsis

To support the object-based morphological and veluig change analysis method, an
ArcGIS extension module — Coastal Volumetric Anglys developed under the
environment of Microsoft Visual Studio .NET 2003h€l core algorithm, including
object identification and attribute derivation, ggeogrammed as a series of DLLs
(Dynamic-Link Library) using the C++ language. Tlgeaphical interface for the
Volumetric Analyst extension module is developerbtigh a VB .NET program that
calls the DLLs and the relevant ArcObjects. The @bjects are a set of platform
independent software components designed by ESRIspecifically for programming
with ArcGIS applications. This extension module ¢tenused seamlessly with ArcGIS
package.

The graphical interface for Coastal Volumetric Arsalis shown in Figure 5.5.
This customized dialogue menu guides the userad tbe input data, to set the relevant
parameter values, and to select the attributesetadiculated for each objects. The
required input data are two LIDAR DEMSs, which amqgaired at different time and
cover the same area. After calculating the pixsleblaelevation difference, the users
could set the parameter of the relative error andtiplicative factor to determine the
threshold of three morphological categories: pwesitthange, negative change and
unchanged. Before the object identification, thenimum object size could be
determined to remove small noisy objects. The usars decide which groups of

attributes are going to be calculated and includetthe attribute table. In addition, the
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user can choose to output the minimum boundin@ngtes and the best-fit ellipses for
all the elevation change objects as separate poligye@rs.

The initial set of objects identified may includeany change patches that were
induced by various factors other than erosion ambsdition. A combination of different
attributes could be used to accomplish the clasdifin of elevation change objects and
distinguish the changes caused by erosion and diepmosOnce the erosion and
deposition objects are identified, the attributas be selected and calculated for these
objects again, so as to support the spatial arsalysimorphological and volumetric

change.

™ | coastanalyst - ArcMap - Arcinfo Identify objects B|

File Edit Wiew Insert Selection Tools Window Help

Pre-surface DEM:
= = B + 4 I
Post-surface DEM:
Coastal Volumetric Analyst +
Identifiy erosion/deposition objects Relative error (Sigma:
Compute planimefric atributes Multiplicative factor g

Compute shape atiributes

Minimum object size (# cells):

Compute surface atiributes

Compute volumetric attributes

. Cutput object (Pokgon):
Compute summary atributes BIUES
Link atiributes with object polygons it elayzi (Ragi). Browse. ..
/ O | Cancel |
(a) (b)

Figure 5.5 ArcGIS extension module - Coastal Vadtne Analyst. (a) Pull-down menu
for the extension module; (b) Dialogue form forntfying elevation change objects; (c)
Dialogue form for computing planimetric attributgsl) Dialogue form for computing
shape attributes; (e) Dialogue form for computingace attributes; (f) Dialogue form
for computing volumetric attributes; (g) Dialoguerrh for computing summary
statistical attributes; (h) Dialogue form for limj attribute tables with object polygon
layer
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Input objects {regions):
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I Centroid point

[ Perimeter [ &rea

I width

Browse...
Cancel

[ Thickness [ Length

Output attribute file:
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Compute shape attributes
—

Input objects regions):
Shape atiributes

[ Compactess index I Elongatedness [ asymmetry

I Crientation I Fractal dimension | Rectangularity

I Ellipticity [ Triangularity

(c)

Input objects (regions):

—
—
—

Pre-surface DEM:

Post-surface DEM:

Surface atiributes

[ Average Elevation: Pre-surface; Post-surface; Difference
[ &verage Slope: Pre-surface; Post-surface; Difference

| | Average Aspect: Pre-surface; Post-surface; Difference
[ &verage Curvature: Pre-surface; Post-surface; Difference

Output atributs fils:

—

Browse...

Cancel |

Output atiribute file: Browse. .

Output mimum bounding rectengles: [ Browse. ..

Output best-fit ellpses: r Browse...
== 0)( = I pr— |

(d)

Compute surface attributes \ Compute velumetric attributes R|

Input objects (regions):

—
—
——

Pre-surface DEM:

Post-surface DEM:

Yalumetric atributes

[ awerage vertical change [ Maximum vertical change

[ standard deviation of vertical changes | vertical change rate

[ volume change | volume change rate

Browse...

Output atribute file:

—

Cancel |

(€)

Input ohjects {regions):

—
—
—

Pre-surface DEM:

Post-surface DEM:

Summary attributes
| Wumber of erosion objects; Kumber of deposition ohjects

[ Total erosion area; Total deposition area

[ average size of erosion objects; Average size of deposition objects
[ Total erosion volume; Total depasition volurme

| Metvolume change

| Metvolume change rate

Output atiribute file:

—

Cancel

Browse...

(f)

Join lets you append additional data to this layer's aftribute table so you can, for
example, symbaolize the layer's features using this data.

“What do wou want to join to this layer?

|J0|n attributes from atable ﬂ

1. Choose the field in this layer that the join will be based on
| [=]
2. Choose the table to join to this layer, or load the takle fram disk:

| =] =

[v Showthe aftribute tables of layers in this list

3. Choose the field in the table to base the join on:

| [~
Achvanced
Ok Cancel ‘

About Joining Data

(9)

Figure 5.5 (Continued)

(h)
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6 CASE STUDIES

To demonstrate the utility and effectiveness ofoatgms, this section applies the
analysis method and software tool to case studgsaréhe cross-shore profile change
analysis method is applied to a case study areatddcat southern Monterey Bay,
California, and the coastal morphology change amsiyethod is applied to a case study

area located on Assateague Island, Maryland.

6.1 A case study for beach profile feature extraction ad change analysis

The automated algorithm for beach profile featux&ragtion and change analysis is
applied to a case study area located at southemtevley Bay, California, in the Pacific
coast of the US (Figure 6.1). Southern Monterey Bayharacterized by a sandy
shoreline backed by extensive bluffs. Beach sanel®raginated from the sediments of
Salinas River and blown onshore by wind. It is arabteristic erosive coastline and on
average, the dunes south of the Salinas Riverraténg at the highest rate in California
(Hapke et al., 2006). Bluff erosion occurs whernrmetevaves coincide with high tides.
During the 1997-1998 EI Nino winter, significanufil recessions were observed, as a

result of anomalously high tides and high wave gnéfrhornton et al., 2006).
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Figure 6.1 The geographical settings of Marinatiseun Monterey Bay, California

6.1.1 LiDAR data preprocessing

Two successive LIDAR surveys are used in this cstsely. The first survey was
conducted on October £31997, and the second was on Aprif"18998. Both two

LiDAR surveys were acquired by NASA Airborne Topaghic Mapper (ATM) LIDAR

system through the NOAA/USGS/NASA Airborne LIDAR #essment of Coastal
Erosion (ALACE) Project. The raw LIDAR measuremehi@ve a vertical accuracy
within 0.15 m and a horizontal accuracy aroundrf.8The raw LIDAR measurement
points were interpolated into Digital Elevation Mod(DEM) grid at 1 m spatial

resolution.
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Two LIDAR DEMs were projected to the UTM (zone I@ordinate system and
horizontally referenced to North American Datunlé83 (NAD83). The vertical datum
is North American Vertical Datum of 1988 (NAVD88Jhe overlapping areas were
extracted from two LiDAR surveys to conduct chaagealysis. The hillshading images
were created for both DEMs to provide a three-disiemal view of the topography,
which could also facilitate the horizontal registva and vertical calibration. The
vertical calibration was conducted by using thehasipparking lot behind Stillwell Hall

as a pseudo invariant feature (Figure 6.2).

Figure 6.2 Stillwell Hall, Marina, CA. Photograpbpyright © 2002 Kenneth &
Gabrielle Adelman (http://www.californiacoastlinegf
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Elevation (Mater)

Elevation Difference
1998-1997 (Meter)

<4 -3 2 -1 0 1 2 >3

Figure 6.3LiDAR DEMs and the elevation difference grid. (agM acquired in 1997;
(b) DEM acquired in 1998; and (c) Cell-by-cell eddion changes during 1997-1998
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6.1.2 Beach profile feature extraction and change analysis

The elevation change grid was created by subtadtie 1997 LIDAR DEM (Figure
6.3a) from the 1998 LIiDAR DEM (Figure 6.3b) as iquation (6.1):
AZ“ — Zi:jL998 _ Zi:}.997 (6.1)

where z;** and z;**’ are the elevation measurements for the &g) (espectively at the

year 1998 and the year 1997, & is the elevation difference for the celljj.
Figure 6.3c shows the spatial pattern of elevatisenges. Given a vertical accuracy of

0.15m, the random error of elevation differencesld¢die as large ag, = 0.21m

( J2x 015 m). In Figure 6.3c, the absolute elevation changgs Ithan 0.42m is
represented in white color. Blue-green color repmés a decrease in elevation and red-
yellow color represents an increase in elevatidnorf§ erosion occurred both in the
bluff face and beach zone. Also, on the south sidstillwell Hall, a breach was opened
in the coastal bluff.

Bluff recession can be better measured and analymed the cross-shore
profiles. To determine the location of beach tratsethe shoreline was extracted based
on a monthly mean high water level of 1.417 m iniAp998 (Figure 6.4). The beach
transects were generated normal to shoreline egwdar interval of 10m, with a uniform

width of 150 m (Figure 6.5).
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Figure 6.4 Monthly mean high water level relatisgeNNAVD88 during 1997-1998 winter
(Source: NOAA historical water level data for NG&t®n 9413450 — Monterey, CA.
http://tidesandcurrents.noaa.gov)

Figure 6.5 Beach transects generated along thelsier

After several experiments, the standard deviatiogBaussian filter to smooth the
beach profile was determined @s 2. Based on the calculation of slope and cureatu
the feature points including bluff crest, bluff fand beach berm crest were identified
for each beach profile (Figure 6.6a). The contdxioBrmation was incorporated to

improve the feature point identification (Figuréie). By incorporating the information
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from neighboring profiles, most errors in the featextraction results were corrected
(Figure 6.7a, Figure 6.7b, and Figure 6.7c). Howeue some specific areas, a few
feature points were still problematic, which maydéo be manually edited or deleted

(Figure 6.7d and Figure 6.7e).

e Bluff crest
< Blufftoe

Berm crest

. Using contexual information

Without using contextual information

Figure 6.6 Beach feature extraction from sprin8LRIDAR data. (a) Feature points
identified without using contextual information;) @omparison between the feature
points identified with and without using contextirgormation
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Using contextual information
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Figure 6.7Comparison between the feature points identifieith @nd without using
contextual information (Spring 1998; Profile 15206). (a) 3D view of feature points
comparison; (b) Profile 169; (c) Profile 180; (dpfle 30; (e) Profile 120
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Figure 6.7 (Continued)

For the 2.1km coastal stretch of the case study, @ine algorithms were applied
to extract features from each of the 206 profilmstoth years (Figure 6.8). As noticed
by Thornton et al. (2006), the dune crest in 1998elative easy to identify because of
the severe erosion during the winter, but the ifleation of dune crest in fall 1997 is
relative difficult because the erosion has not ommliand the edge has been rounded by
wind and rain. Also, the dune toe is easier todeatified in spring 1998 because winter
waves have cleared off the beach waste, whileliri®7 the toe has been rounded. For
most profiles, the dune crest and toe, as wellhaskterm crest can be located at
reasonable positions. While in some cases, theregints, especially the berm crest,
cannot be clearly identified even by visual intetption. For each year of study, the

distance and elevation of dune crest, dune toe,banth crest, the slope and height of
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dune face, as well as the slope and width of besrewalculated for each individual

profile (A portion of results are illustrated ingeire 6.9 and Table 6.1).

@ Bluff crest
< Bluff toe

® Berm crest

@ Bluff crest
< Bluff toe

® Berm crest

Figure 6.8Beach feature extraction from fall 1997 and spfif§8 LiDAR data. (a)
Feature points identified for fall 1997 LIDAR data) Feature points identified for
spring 1998 LIDAR data
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® Spring 1998 beach features
O Fall 1997 beach features
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Figure 6.9 Beach feature extraction from fall 189d spring 1998 LiDAR data (Profile
93 - 152)

Table 6.1 Beach profile attributes derived fory@ar 1997; (b) year 1998; and (c)
changes

(a) Year 1997
ID Berm Berm Bluff Bluff Bluff toe | Bluff toe | Bluff Bluff | Berm Berm
crest crest crest crest distance | elevation | height | slope | width slope
distance | elevation distance | elevation | (m) (m) (m) (m)
(m) (m) (m) (m)
94 24 4.7 74 18.9 49 6.3 12.6 | 0.50 25 | 0.07
95 32 5.4 78 26.6 48 6.7 20.0 | 0.67 16 | 0.08
96 30 5.3 74 28.0 45 6.8 21.3 | 0.73 15 | 0.09
97 28 5.3 76 29.4 45 6.7 22.7 | 0.73 17 | 0.08
98 29 5.3 76 290.8 42 5.9 23.9 | 0.70 13 | 0.05
99 30 5.3 76 29.7 43 5.9 23.8 | 0.72 13 | 0.05
100 25 4.6 76 28.7 44 5.7 23.0 | 0.72 19 | 0.06
101 16 3.8 71 25.9 45 6.0 199 | 0.77 29 | 0.07
102 14 3.4 72 24.1 47 6.1 18.0 | 0.72 33 | 0.08
103 17 3.4 73 20.6 50 6.1 14.4 | 0.63 33 | 0.08
104 13 3.5 76 21.0 52 6.0 15.0 | 0.62 39 | 0.06




Table 6.1 (Continued)

96

(b) Year 1998

ID Berm Berm Bluff Bluff Bluff toe | Bluff toe | Bluff Bluff | Berm Berm
crest crest crest crest distance | elevation | height | slope | width slope
distance | elevation distance | elevation | (m) (m) (m) (m)

(m) (m) (m) (m)

94 32 1.9 79 20.5 53 4.8 15.8 0.61 21 0.14

95 36 2.5 82 27.4 53 5.9 21.5 0.74 17 0.20

96 31 2.2 85 29.2 56 5.1 24.1 0.83 25 0.12

97 29 1.8 87 30.7 55 5.2 25.5 0.80 26 0.13

98 30 2.6 89 31.6 53 5.1 265 | 0.74 23| 011

99 34 34 90 325 54 5.2 27.3 | 0.76 20 | 0.09

100 35 4.0 85 29.9 54 5.3 246 | 0.79 19 | 0.07

101 33 35 85 27.7 55 5.5 222 | 074 22 | 0.09

102 30 3.0 76 24.8 54 5.3 19.6 | 0.89 24 | 0.10

103 32 3.1 75 20.4 58 6.0 145 | 0.85 26 | 0.11

104 34 3.1 78 21.3 59 5.5 15.9 0.84 25 0.10

(c) Change (Year 1998 — Year 1997)

ID Berm Berm Bluff Bluff Bluff toe | Bluff toe | Bluff Bluff | Berm Berm | Bluff
crest crest crest crest distance | elevation | height | slope | width slope | volume
distance | elevation distance | elevation | (m) (m) (m) (m) (m®
(m) (m) (m) (m)

94 8 -2.8 5 1.6 -1.5 3.2 | 0.10 -4 | 0.07 -46.8

95 4 -2.9 4 0.8 -0.8 16| 0.08 1| 012 ] -1305

96 1 -3.2 11 1.2 11 -1.7 28 | 0.0 10 | 0.02 | -233.2

97 1 -3.5 11 1.3 10 -1.5 28| 0.07 9| 0.05]| -261.7

98 1 -2.7 13 1.9 11 -0.8 2.7 0.03 10 0.06 | -308.3

99 4 -1.9 14 2.9 11 -0.6 3.5 0.04 7 0.05 | -306.8

100 10 -0.5 9 1.2 10 -0.4 1.6 0.07 0 0.01 | -260.2

101 17 -0.3 14 1.8 10 -0.5 2.3 | -0.03 -7 0.02 | -212.3

102 16 -0.5 4 0.8 -0.8 1.6 0.17 -9 0.01 | -1195

103 15 -0.3 2 -0.1 -0.2 0.0 0.22 -7 0.03 -82.2

104 21 -0.4 0.4 -0.6 09| 0.21 -14 | 0.03 -70.7

The bluff rise up to 39.1m within the 2.1km coastHort Ord and Marina area

and the seaward face of the bluffs is an erodingf.oA 200m long rock rubble seawall

was constructed to protect Stillwell Hall in 197&dahen fixed in 1985 to stop erosion

(Figure 6.2). In 1997, along the whole coastlinghua the study area, the bluff top

elevation varies from 10.5m to 39.1m and the bhéight varies from 3.3m to 30.0m.
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Within the coastal area nearby Stillwell Hall, altigh the algorithms identified bluff
toes at some profiles across the seawall, parhemtwere deleted manually because
they are not supposed to be located on the seaMa#it part of the seawall plunges
directly into the ocean without beach at the fobthe wall. However, some bluff toe
points identified on the seawall were kept becdhbsg indicate the height of riprap that
was used to protect the base of seawalls (Figur@).6ln this area nearby seawall, the
bluff top elevation varies from 16.0m to 33.4m dhe bluff height varies from 10.2m to
27.5m (Figure 6.11 and Figure 6.12). The elevatdrthe bluff toe is relatively

consistent.
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Figure 6.10Profiles across seawall (fall 1997). (a) Profild 1Bluff toe was identified
by the algorithms on the top of the riprap; (b)fiedl30: bluff toe was not identified by
the algorithms
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Figure 6.11 Variations of bluff crest elevatiofyfbtoe elevation, and bluff height
along shoreline in the area nearby seawall (fa97)9
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Figure 6.12 Example of high bluff and low bluf&) Example of high bluff: profile 112;
(b) Example of low bluff: profile 103

After the beach profile feature points were exwdctor two successive LIDAR
surveys, the change information for the select&ibates was derived for each profile.
From the profiles that across Stillwell Hall ance teeawall in front of it, the accuracy
and repeatability of the LIDAR data are demonstta{Eigure 6.13). The spatial
variations of the change attributes can be inspeeleng the shorelineThe bluff
volumetric change was calculated based on the ¢z positions of pre-El Nino bluff
toe and the horizontal positions of pre- or posiNilo bluff crest, whichever is further
landward. The beach volumetric change was calallbssed on the shoreline position

and the horizontal position of pre-El Nino blufeto
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Figure 6.13 Elevation change for Profile 130 (asr8tillwell Hall)

The bluff crest recession is the horizontal differe in bluff crests between two
surveys, which varies alongshore from -7m to 21taratemoving the outliers (Figure
6.14). The bluff toe recession follows the simtl@nd as bluff crest. The large recession
in this area may be explained by the concentraifomave energy at Fort Ord, as well as
the storms and higher sea level during El Nino &szeRrom the cross-shore perspective,
no obvious erosion is detected for the beach m®fihrough the Stillwell Hall (Figure
6.13). However, the profile to the north and soaotiStillwell Hall shows up to 16m
bluff crest recession (Figure 6.15). The bluff tdevations generally decreased and the
bluff crest elevations generally increased (Fighid6). The mean toe elevation changes

from an average of 6.6 m in 1997 to 5.4m in 199& Meight of bluff toe indicates that

the bluff erosion would only occur when the storaves coincide with high tides.
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Figure 6.14 Change of bluff crest and bluff togistance to the shoreline (year 1998 —
year 1997)
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Figure 6.15Bluff crest and toe recession next to the seaallProfile101: 200m north
to the seawall; (b) Profile139: 50m south to theawssl
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Figure 6.16 Change of bluff crest and bluff toefsvation (year 1998 — year 1997)

Along the shoreline, the bluff volume change rafrgen an accretion of 3.6 n
per meter of shoreline, which is small enough tedresidered within error threshold, to
erosion up to 468 fper meter of shoreline (Figure 6.17). The totdlxe loss is about
20910 m.Given the limitation of topographic LIDAR system terms of its water
penetration ability, the volume change of the bgamftion is only determined above the
monthly mean high water level in April 1998. Withimis area, the total beach volume
loss is about 13518 Inwith much less variation along shore than theffblolume
change. The beach volume loss is mainly causeddyseasonal beach change, when

sand goes offshore in the winter, but there isstine permanent loss to the offshore.
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6.2 A case study for object-based morphological and voietric change analysis

The object-based coastal morphological and volumethange analysis method is

applied to a case study area located at Assatelstpred, Maryland, in the central

Atlantic coast of the US (Figure 6.18). Assatealgland is a barrier island built as wave

action piles up sand from the ocean floor, and lbesn constantly reshaped by the

currents, winds, and tides. Barrier islands areradiaristic depositional coastal

landforms that are quite common all over the wdslohg offshore of more than 10% of

the world’s coastlines. They are most extensiva@lhe east coast of the US, extending

from New England down the Atlantic Coast, and sdatthe Gulf of Mexico.
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Figure 6.18 The geographical settings of WhittimgRwint of Assateague Island,
Maryland

6.2.1 LiDAR data preprocessing

The analysis on morphological and volumetric chamggerformed based on two
successive LiDAR surveys — the first survey wasdcmted on September 151997,
and the second was on Septmbéf, ZD00. Both two LiDAR surveys were acquired by
NASA’s Airborne Topographic Mapper (ATM) LIDAR sysn through the
NOAA/USGS/NASA Airborne LIDAR Assessment of CoastBrosion (ALACE)
Project. The raw LIDAR measurements have a verticgiuracy within 0.15m and a
horizontal accuracy around 0.8m. The raw LIiDAR p®iwere interpolated into Digital
Elevation Model (DEM) at 1m spatial resolution.

Two LIDAR DEMs were projected to the UTM (zone I®)ordinate system and
horizontally referenced to North American Datunlé83 (NAD83). The vertical datum

is North American Vertical Datum of 1988 (NAVD88Jhe overlapping areas were
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extracted from two LIDAR surveys to conduct chamagealysis. The hillshading images
were created for both DEMs using common gray stalprovide a three-dimensional
perspective of the topography, which could alsdifate the horizontal registration and
vertical calibration (Figure 6.19a and Figure 6)19Bhe vertical calibration was
conducted by using the highway as invariant featAfeer vertical adjustment, ax33

median filter was applied to both 1997 and 2000ARDDEMSs to reduce the random

errors.

6.2.2 Morphological and volumetric change analysis

The elevation change grid was created by subtmadtia 1997 LIDAR DEM from the
2000 LIiDAR DEM as in Equation (6.2):
AZ“ - ZiJZOOO _ Zi:]!.997 (6.2)

2000

where z; 1997

and z™" are the elevation measurements for the ¢gll (espectively at the

year 2000 and the year 1997, & is the elevation difference for the celljj.
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Figure 6.19 LIiDAR DEMs and the elevation differergrid. (a) DEM acquired in 1997,
(b) DEM acquired in 2000; and (c) Cell-by-cell edéion changes during 1997-2000
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Given a vertical accuracy of 0.15 m, the randonoreof elevation differences
could be as large as,= 0.21 m (\/Ex 015m). By setting the multiplicative fact&rto

2.0, the criterion of assuming that elevation cleahgs occurred is an absolute change

value larger tharko, = 0.42m. According to this criteria, the elevatidifferencing

image could be reclassified into three categopesitive change (+1), negative change
(-1), and unchanged (0).

L if Az > 042
c, ={-1 if Az <-042 (6.3)
0, if - 042< Az, < 042

wherec; is the morphological change code for the grid Ggj).

Based on the classified elevation change imag#ry, positive change and
negative change objects were identified and detaseautomatically (Figure 6.20). The
planimatric attributes, shape attributes, surfat@ates, and volumetric attributes were
calculated for each individual object to perforffugher classification.

The initial set of objects identified includes maaolgange patches that were
induced by factors other than erosion and deposiBach as vegetation dynamics and
wave run-up. In order to focus on the sediment-tedumorphological and volumetric
changes, the change patches induced by variougrsaatere classified based on the
combination of selected attributes. For the chapgé&hes induced by vegetation
dynamics, they commonly have irregular and roughnbaries as well as many holes
and gaps, and therefore have a large fractal dimenb addition, the changes within

vegetation patches are usually discontinuous amtendave a much larger vertical
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standard deviation. For the change patches indbgedave run-up, they commonly
have a relatively small size. Based on these obtens, three attributes were used for
the classification in this case study: fractal dasien, standard deviation of vertical
changes, and size. A set of criteria was definedieatify and remove change patches
induced by vegetation dynamics, wave run-up, arerotata noise, which includes:
Fractal Dimension (D) > 1.4, or standard deviatdrvertical change £z,) > 0.6, or
Size (A) < 190 rh The remaining objects are considered to be clsacgesed by

erosion and deposition. Morphological operationsenagpplied to smooth the remaining

erosion and deposition objects (Figure 6.21).

Il DNceative change [ Positive change

Figure 6.20 Negative change and positive changetsh

M Eosion I Deposition
A
Fos S
-_.W

Figure 6.21 Erosion and deposition objects aftevahing



109

For the 1.85 km coastal stretch of the case stuely, aotally 34 erosion objects
and 23 deposition objects were identified. All thenimetric, shape, surface, and
volumetric attributes were calculated for thesesoty again (Figure 6.22 and Table 6.2).
The minimum bounding rectangles and best-fit edlimgere created for each object to
generalize the shape (Figure 6.23). The summatiststa were calculated to describe

the total erosion, deposition, and net volume ckanghis area.

B
3 L'
= 5‘)!‘{2#5

g '
VAT ;{IZ’;’! 1
\ 4 3]

Figure 6.22 Erosion and deposition objects ovérten the hill-shaded relief images. (a)
Relief image derived from 1997 LIiDAR data; (b) Rélimage derived from 2000
LIiDAR data
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Table 6.2 Derived attributes values for erosion @plosition objects

1u] Typa %, (mj) ¥.m) pimp A m’)  MDE (m) ! (m] w [m) ] ELG ASM ¢
481 Eraskan 281363 AH2TT0 272 6L 16.8 850 392 045 247 b5 1705
456 Erosian 231488 4212750 337 i el 16.4 240 480 o 04 051 17
563 Eraskan 281774 A312650 3683 41549 187 18470 357 04 S1.6E ikl a2
s Erosian 281712 4212720 391 ez s io?.7 454 0323 23T 1649
408 Eraskan £81527 2312730 42 3 17.0 120.6 411 oA 284 154.4
445 Erosian £31324 4212750 To4 5838 335 188.3 604 o1z 31z 983
454 Eraskan 281607 AH2TT0 4 THEG 7y 96.7 483 oA 158 1235
a7E Eraskan £817E9 2312840 402 1524 a8 1113 323 014 345 126
457 Eraskan £81725 4212600 393 2180 a7 1077 363 018 l=F Ta2
I7e Eraskan £81583 A2ETD 153 =5 6.4 S0.5 257 048 156 544
258 Eraskan 231645 4212650 323 1424 92 Tr.A 324 0av 239 158.5
526 Eraskan £81289 22740 285 1344 0.5 ™7 285 oA 280 384
435 Eraskan £81725 4212750 407 03 145 1173 479 0323 248 a3
S50 Eraskan 281376 raberyli] 330 1220 a7 1536 1438 014 10.38 603
B Erosian 281573 4212700 112 49 3.5 50.2 127 043 386 652
570 Eraskan £31922 4212680 329 1544 34 115.2 243 018 455 S84
SEE Erosian £31643 4212700 174 SET 45 7o 13.4 024 SES 873
0z Depaositian 431453 £212770 =] 36 6.9 a7 13.4 0E7 152 1357
18 Depaosition 481735 4212760 17 £33 a7 40.5 233 043 1.74 S840
424 Depaositian 481509 £212820 =] 35T T4 arz 154 [1E3] 241 59
474 Depaosition 481935 4212730 245 1733 10.2 T4 388 038 pi=1] a0
438 Depaositian 481353 4212750 272 1863 134 929 345 032 270 1282
LT Deposition 431313 412670 2454 14539 9.5 13232 162 013 aizn 622
4T Depaosition 481156 4212710 790 5634 .y 4340 13.0 o 22586 612
414 Deposition 431306 4212600 361 rl-r 134 926 557 03z 1.66 14738
83 Depaosition 431430 4212800 B63 4533 7.y 1363 708 013 193 1314
423 Deposition 481657 412760 I Eakal 1a.5 1244 523 029 2 36 1208
451 Depaosition 481570 4212730 188 1288 134 354 328 047 170 150.5
434 Deposition 431346 4N ZT7D 152 1407 5.4 439 380 0735 129 157.3
Typa o REC ELR TRI AV EL, AV ELp AV EL_DIF AV 5L, AW SL; AV _SL DF AV AP

Erosian 1124 07z 0.8 0.El 278 183 -0.65 L33 325 -341 162.5

Erosion 1.161 DES 0.63 D.e9 3oz 219 073 520 2 36 -3z 168.7

Erosian 1.167 D53 0.5 054 1.02 037 073 427 418 -D.0E 1504

Erosion 1263 DE3 0.63 [1R=51 33z 282 -0.70 555 393 -162 163.3

Erosian 1175 05 0.5 0.E3 17 154 .63 470 33z -1.3E 154.1

Erosion 1250 051 043 D.E2 275 216 -0.53 5 386 -1.15 159.2

Eraskan 1230 ik 052 0.50 275 2148 -0.57 584 S0m -ba3 1558

Ergslan 1303 (g .42 0.El 234 140 -0.54 g.18 Eg3 -1.58 17349

Eraskan 1334 b56 0.5 [ 248 206 042 a 386 -L9E 1457

Ergslan 1378 DEs 0.7 0.69 2M 160 041 a2 5594 -Z0E 1646

Eraskan 1253 sy 0.52 0.6 165 126 -0.33 436 352 -b7s 1735

Ergslan 1214 (k0] 0.5 0.E3 268 232 -0.37 473 453 -n23 178.6

Eraskan 1247 b5 0.43 oo 192 158 -0.35 244 1.5 -L5E 1572

Eraskan 1213 054 0.47 [18==) 212 184 -0.33 1147 123 Loe 1803

Eraskan 1184 ] 0.50 O.ES 208 162 -0.28 18] 115 024 1524

Eraskan 12689 054 0.47 o.e2 220 182 -0.33 18] 120 b2 1771

Eraskan 1402 D58 0.55 0.E0 212 1.E7 024 0.7e 111 1528

Depasition 1124 .53 0.65 [1R==) 140 166 0.3z 148 11z 1546
Depaositian 1.319 052 .42 OES 218 245 0.3 472 453 BEE
Depashion 1212 052 0.63 oaz 173 246 043 5386 ES53 2
Depashion 1.236 061 0.61 0.89 2 315 045 573 204 1717
Deposhtion 1125 0.58 055 030 194 239 043 3ES 294 Z58.4
Depaoshiion 1213 0.58 0.74 naz 1.60 207 047 249 225 1745
Deposhtion 1159 0.59 [1ry 0a9 1.53 200 043 2320 1.67 173.7
Depaoshiion 1.280 054 0.65 0a7 M 357 053 723 E58 1923
Deposhtion 1.337 .48 0.33 0ss 245 308 0ED 585 12 1329
Depaoshiion 1178 0.48 0.33 056 el 2 ) 272 0.3 383 525 ey |
Deposhtion 1141 072 o.eL [LE:3 ] 214 297 D.B& 646 TEZ %540
Depashian 11 0.76 083 o7d 13 2482 0= 484 452 1578

o Type AV AP, AV AP DIF AV CV, AV OV, AV OV DIF az,(m) az. (m) &z..(m) ZR (mir) VOL (m*) VR [mym)
481 Eraskan 1653 4.2 1.13 -1.60 065 -2.60 055 -02E -227015 755,72
456 Eraskan 1436 -2 0.91 -1.10 073 -3.24 0.56 -024 -2054.TE -BE4.52
52 Eroskon 1326 22 0.58 -0.87 073 -2.05 028 -024  -3019350 -100E4.50
s Erosian 17ED 127 1.33 -1.74 -0.70 -2 058 -023 -2151.90 -T17.30
409 Eroskon 1526 -10.8 048 -1E3 0E3 -2 0.6 -021 -185195 -617.32
445 Erosian 154.5 4.7 1.26 -1.04 -0.58 -263 032 -02m -343381 114437
454 Eroskon 15004 -S54 0.85 -1.40 OEF -1.E0 021 -01a -1650.90 -853.63
37E Erosian 1569 130 343 -2.65 -84 -1 0.a7 -01E -2a0ag -330.33
457 Eroskon 1848 3.2 208 -2.07 -0.42 -1.23 0.7 -014 -a10:20 -303.40
I7e Eraskan 15649 -T.B 387 -1.70 041 -1.33 1] -014 -37002 -123.34
358 Erosian 1783 1B 1.33 -2.a2 -0.38 -1.12 0.8 013 -35Rad -1B5.E5
526 Eraskan 1767 -18 202 -2.37 -0.37 -1 030 o1z -43E6.58 -165.63
485 Erosian 1527 4.4 0.54 -1.05 -0.35 -1.62 014 -0z -1D5E.50 -386.17
S50 Eraskan 1813 15 116 -1.14 -0.35 045 0.os -noe -4 -113.62
B Erosian 196.5 161 1.34 -1.10 -0.38 -0.33 0as 00w -124.81 -41.54
ST Eraskan 1854 [:R-] 073 -0.64 -0.35 042 0.os -noe -427.00 -142.33
SE6E Erasian 17E.1 53 1.02 -1.5 -0.24 -0.35 003 -0.0E -14311 -47.70
0z Depaositian 1131 355 -1.47 1R oar 033 0as oow 9650 2.7
518 Depasitian 732 -134 -3.61 27 035 0E3 0as oow 137.66 43569
424 Depaositian 2525 213 -3.10 324 043 [y 0is 014 15264 5063
474 Depasitian 122 04 277 169 043 107 0i7 ois Tr320 25773
438 Depaositian 1.0 25 -1.87 084 043 0.%5 018 s B21.34 2E0.45
s Depasitian 178.6 43 -1.40 167 047 1.00 016 oie E84301 23434
a7 Depaositian 170.3 -34 -1.01 113 048 053 018 (i8] 2meaz 303.04
414 Depaositian a7 e BE -1.08 233 0.E3 167 023 D18 173617 s7aT2
83 Depaosition 1330 10.1 -2.55 172 060 163 037 o2m 277432 2477
443 Depaositian 2439 278 -1.04 1E7 [1F::] 181 040 D23 214626 Ti5.42
451 Depaosition 542 Juke -1.38 2 0.B4 2,00 048 D28 103E.06 3E2.E9
434 Depasitian 1433 -14.5 -3.55 0.33 0.5 171 044 030 123500 428.33
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Figure 6.23 Fitted rectangles and ellipse forieroand deposition objects. (a)
Minimum bounding rectangles; (b) Best-fit ellipses

The results indicate severe erosion and morphabgilsange along the beach
zone. A continuous, long erosion zone (Object 5@3yure 6.22 and Table 6.2) is
oriented along the shoreline with an azimuth argfléé2’ from the true north. This
elongated erosion zone has a largest width of Bband an average erosion depth of
0.73 m. The average elevation of this zone has berced from 1.09 m to 0.37 m. The

total erosion volume is 10,064°muring 1997-2000, which is 5.448%mper meter of
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shoreline stretch. Erosion processes have modifiedbeach from its slightly convex
downward shape (average curvature = 0.56) in 18@/concave upward shape (average
curvature = -0.97) in 2000. There is landward benigration (Figure 6.22). Along the
back beach, there is a narrow deposition zone (DBjél). It was a long depression
feature in 1997 (Figure 6.22a), which was almo&diby sediment in 2000 (Figure
6.22b).This zone has a maximum width of 16.4 mamdverage deposition thickness of
0.47 m. The concave surface curvature (-1.40) albeglepression disappeared by 2000.
Both the erosion and deposition objects in the heane have elongated shapes and are
oriented parallel to the shoreline (Table 6.2).

The results also indicate significant morphologichbnges in the dune zone
between 1997 and 2000 (Figure 6.22), which showgereral pattern of the dune
migration to the southwest direction. Plume-likatfees can be observed in the south
side of many dunes in the 2000 hill-shaded rehedge (Figure 6.22b). The significant
dune movement is most likely caused by the northwasds. These winds erode and
transport sand from the dune’s upwind side and siepm the leeward side, causing
downwind dune migration. Local redistribution ofndahas produced many discrete
erosion and deposition patches in the dune zon@xpscted, erosion patches occurred
on the upwind side of dunes, and deposition patehedocated on the leeward side of
dunes (Figure 6.22a). The erosion patches arespeesed with deposition patches. The
position and shape of many dunes were changeddmyably by erosion and deposition
processes. Compared to the elongated erosion grusitden patches in the beach, most

erosion and deposition patches in the dune zone hamore compact shape and are
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oriented approximately perpendicular to the shoesliThe surface shape of all erosion
patches has been changed from convex to concavde(Ba2), while the deposition
patches generally changed from concave to convethd dune zone, the average depth
of erosion patches reaches 0.85 m (Object 461).

For the 34 erosion objects and 23 deposition objedthin the 1.85 km coastal
stretch, the average object size is 32Zfamerosion objects and 2378 for deposition
objects. The total erosion area is 109,506 and the total erosion volume is estimated
to be 66,594 rh The total deposition area is 54,698, mnd the total deposition volume
is estimated to be 28,223%niThe net erosion volume is 38,37%.rThe normalized
annual net erosion volume rate is 6.9pmr meter of the shoreline stretch for the case
study area. The localized information could be wisfefr measuring, understanding and
predicting coastal morphological changes and desigfuture erosion control projects,

such as beach nourishments and dune management.
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7 CONCLUSIONS

Compared to traditional ground survey and photognatry techniques, airborne
LiDAR remote sensing technology provides a mucharomst-effective, efficient means
of collecting coastal topography information. Thesearch has developed an analytical
framework to extract information and knowledge frtime dense datasets acquired by
LiDAR surveys, which converts a large volume of raata into meaningful and
organized information that is ready to be used iraety of studies related to coastal
topography.

This research has developed an analytical frameviorkextracting coastal
morphology information. A set of algorithms and I[®dave been developed for
automated extraction of coastal morphological clkamjormation from LIiDAR data.
The methodological contributions of this researaklude a set of algorithms for
automated beach profile feature extraction and ghamalysis, and an object-based
approach for spatial pattern analysis of morphalalgiand volumetric change. The
algorithms and tools for automated beach profiluee extraction and change analysis
provides the cross-shore view to understand coamtaphological changes. The
algorithms and tools provide more efficient meaws identifying morphological
features and deriving morphological attributes itaie geographic area. The beach
profile features and the spatial patterns of tHated changes can be visualized and
analyzed along the shoreline. The representatioprofiles as routes and important

features as point events also facilitates the arsip conjunction with other GIS data
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for exploring the causes and impacts of the moquioal and volumetric changes in the
cross-shore direction.

The object-based methods for morphological and meliic change analysis
provides an explicit object representation of eynsand deposition patches, which
makes it easy to localize attributes about indigiderosion or deposition hot spots and
to analyze the spatial pattern of morphologicalngfes. The comprehensive quantitative
information about each individual change objectlddiacilitate the classification of
changes induced by various mechanisms, as wellg®s# a better understanding of the
characteristics of morphological changes causedelnsion and deposition. The
representation of erosion and deposition patchegpaggonal objects could also
facilitates the analysis in conjunction with otl@&IS data for exploring the causes and
impacts of the morphological and volumetric changes

Both one-dimensional profile analysis and two-digienal object-oriented
analysis algorithms have been implemented as Are&t8nsion modules. Embedding
these algorithms into ArcGIS software allows ugerbe able to take advantages of the
existing powerful ArcGIS functions such as data agment, visualization, and spatial
analysis. The input raw LIDAR data can be direttlgded, displayed, and pre-processed
using core functions of ArcGIS and specialized esiens developed by other
organizations. The processed LIiDAR datasets cafirbetly ingested by the volumetric
analysis module and the beach profile analysis meodlhe morphological change

analysis results can be immediately displayed aidiated using the available ArcGIS
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visualization functions. Also, the analysis resu#sn be compared and integrated with
other GIS data for map composition and further micakanalysis and modeling.

LiDAR technology makes it possible to create aceu@nd dense datasets for
costal topography mapping and change analysisostaeffective manner. However, the
LiDAR surveys also suffer from some limitations.rkopographic LIDAR systems, the
topography mapping in the near-shore zone is lonkig its capability of penetrating
water. In terms of temporal scale, a complete wtdrding of the changing coastal
morphology may require more frequent surveys sucimanthly or quarterly surveys
spanning all seasons. The traditional ground sueygyroach is able to measure the
beach up to the wading depth of the near-shore. Zbrdfers more flexibility in the
choice of appropriate survey time. In this senke, ttaditional techniques for coastal
topography survey are still indispensable to vadidaalibrate, and supplement LIDAR
data. This research focuses on the methodologyctaracterizing and analyzing the
coastal morphological changes based on airborn@RilDlata. By supplementing the
LIDAR datasets with other data sources, the metloggodeveloped in this research
could be used to support the change analysis aiugatemporal scales, such as storm-
related changes, seasonal variations, and thet&ynts changes caused by sea level rise.

The visual interpretation and automated algoritfimnseach profile analysis are
complementary. The automated profile analysis #@lgmis are helpful in extracting
information over a large geographic area and logathe area of interests, but visual
interpretation is essential for determining readtmghresholds, validating and adjusting

the results from algorithms. In the future, basedtlte vector representation of cross-
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shore morphological features and properties, othaillary data sources could be
incorporated to perform analysis such as conduatimgstal classification, evaluating
storm hazard vulnerability, as well as evaluating impacts of human interventions on
coastal morphology changes.

The pixel-based and object-based representatiogiewation change patches are
also complementary. The pixel-based representafimvides spatially distributed
information of erosion and deposition. The objeasdd representation is helpful in
locating hot spots and classifying the change matchut a detailed analysis within each
erosion and deposition patches is based on théIpesed elevation change information.
In the future, other ancillary data sources sucmakispectral remote sensing imagery
could be incorporated to derive the thematic aiteb of discrete change patches
(object). This will be useful for achieving a betteassification of change patches
induced by various mechanisms and for gaining tebahderstanding of the causes and

impacts of coastal morphological changes.
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