
A PHOTON MAPPING BASED APPROACH TO

COMPUTING CELESTIAL ILLUMINATION

A Thesis

by

JONATHAN PENNEY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2009

Major Subject: Visualization Sciences

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4279309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A PHOTON MAPPING BASED APPROACH TO

COMPUTING CELESTIAL ILLUMINATION

A Thesis

by

JONATHAN PENNEY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Ergun Akleman
Committee Members, Vinod Srinivasan

Daniele Mortari
Head of Department, Tim McLaughlin

May 2009

Major Subject: Visualization Sciences

iii

ABSTRACT

A Photon Mapping Based Approach to

Computing Celestial Illumination. (May 2009)

Jonathan Penney, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Ergun Akleman

For photographers to capture good pictures of their subjects, the lighting condi-

tions must be taken into account and adjusted for accordingly. The same holds true

for a satellite attempting to photograph another object in space: it must know the

lighting conditions to adjust camera settings and position itself properly to take the

best photograph. This thesis presents a photon mapping based algorithm to compute

a physically accurate representation of the illumination of objects in orbit around the

Earth, taking into account the effects that cause refraction in the atmosphere. I also

discuss the assumptions that I have made to utilize the algorithm in an interactive

3D visualization tool, which I implemented to view the illumination on objects at

arbitrary positions in space. Finally, I show that the photon mapping method offers

improvements over simpler methods of computing illumination.

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I.1. Terminology . 2

I.1.1. Illumination Terms 2

I.1.2. Astronomical Terms 3

I.2. Illumination Contributions 4

I.2.1. Direct Sunlight Contribution 4

I.2.2. Earth’s Contribution with Atmospheric

Considerations 4

I.2.3. Moon’s Illumination Contribution 6

II PRIOR WORK . 7

II.1. Ray Tracing . 8

II.2. Photon Mapping . 9

II.3. Rendering Atmospheric Phenomena 11

II.4. Phase Integral Function 12

III METHODOLOGY . 14

III.1. Analytical Lambertian Sphere Reflectance 14

III.1.1. A Single Sphere Illuminated by the Sun . . . 15

III.1.2. A Set of Spheres Illuminated by the Sun . . . 16

III.2. Analytical Model for Earthshine with No Atmosphere . 18

III.3. Computational Model for Earthshine with Atmo-

spheric Refraction . 19

III.3.1. Assumptions 20

III.3.2. An Overview of the Algorithm 21

III.3.3. The Structure of the Earthshine Table 23

III.3.4. The Process of the Algorithm 24

IV IMPLEMENTATION . 28

IV.1. Computing the Earthshine Table 28

IV.1.1. Computing the Photon Map 29

v

CHAPTER Page

IV.1.2. Final Gathering to Determine Illumina-

tion for the Table 31

IV.2. 3D Visualization Tool 33

IV.2.1. Interactive OpenGL Display 35

IV.2.2. Qt Graphical User Interface 37

V RESULTS . 39

VI CONCLUSIONS . 46

VII FUTURE WORK . 47

VII.1. Computational Model for Earthshine with Atmo-

spheric Refraction and Scattering 47

VII.2. Nested Atmospheric Shells 49

VII.3. Illumination of Extended Objects 50

VII.4. Considering Variable Surface Properties of Earth 51

VII.5. Improvements in Visualizer 52

REFERENCES . 55

VITA . 59

vi

LIST OF FIGURES

FIGURE Page

1 A single sphere illuminated by the Sun. 16

2 A set of spheres illuminated by the Sun. 18

3 A Lambertian sphere illuminated by earthshine. 19

4 A point in space illuminated by earthshine. 21

5 The structure of the earthshine table. 24

6 A screenshot from the 3D visualization tool. 34

7 The earthshine table for diffuse reflections (top) and refraction

(bottom). 40

8 A comparison of the analytical and computational earthshine

model with no refraction. 41

9 A comparison of the analytical and computational earthshine

model with refraction. 41

10 The shadow of the Earth with (bottom) and without (top) at-

mosphere. 43

11 A comparison of various altitudes from the computational earth-

shine table. 44

1

CHAPTER I

INTRODUCTION

In recent years, photon mapping has become a popular approach to creating pho-

torealistic computer generated imagery. With faster computers and more efficient

algorithms, it has become more and more possible to achieve realism on large scale

productions, such as film and television. By simulating the behavior of light, photon

mapping is able to create stunningly realistic imagery, and it is this physical realism

that is needed to accurately compute the effects of sunlight traveling through the

Earth’s atmosphere.

Since satellites are unmanned, onboard automation is a key element to a satel-

lite’s functionality and sustainability. Scientists are constantly looking to improve a

satellite’s ability to asses it’s situation and act accordingly to achieve some predeter-

mined goal; one such goal is to analyze other objects in the Earth’s orbit by taking

pictures of them. In order to do so, they must have a notion of where the light is

coming from. Therefore, a satellite that can consider the illumination contributions

from the Earth would be a huge improvement over one that only factors in direct

sunlight.

By developing an algorithm that determines how light interacts with the Earth

and atmosphere, major improvements can be made to the way satellites determine

the lighting conditions on a specific object. This provides the potential for drastic

The journal model is IEEE Transactions on Visualization and Computer
Graphics.

2

improvements to the ability of a satellite to asses its surroundings, determine its

position and orientation, and respond accordingly. The method described in this

thesis could be used to provide more complete lighting information, so that more

informed decisions can be made about the circumstances in which pictures are taken

in space. Not only will a satellite be able to use the optimal camera settings, but it

will be able to predict what the lighting conditions will be at any point in the future.

This allows it to know when a target object will be illuminated, how brightly it will

be illuminated, and how to set the camera for an appropriate exposure.

I.1. Terminology

In order to fully understand the processes described in this thesis, it is necessary

to understand several terms. I have divided them into sections on illumination and

astronomy.

I.1.1. Illumination Terms

Surfaces that reflect light uniformly in all directions are described as Lambertian

surfaces. These surfaces have only a diffuse component, so lighting is smooth and

gradual across the surface of the object.

Albedo describes the Lambertian reflectivity of a particular surface, where a

value of 0 means that no light is reflected from the surface, and a value of 1 means

that all light is reflected. For perfectly Lambertian surfaces, the albedo is constant

across the surface, but for non perfect surfaces, such as the Earth, the albedo varies.

A photon is a ray of light that is cast from a light source into a scene. Photons

3

interact with objects by reflection, refraction, or absorption, and are eventually stored

in a photon map as a representation of the distribution of light in the scene. The

process of casting photons into a scene and storing them is called photon mapping.

Global illumination describes any number of techniques that attempt to simulate

the realistic behavior of light within a scene. It considers not only direct lighting,

but indirect lighting as well, which comes from light bouncing off of other objects.

Photon mapping is one example of global illumination.

The phase angle is described as the angle that light bounces off of a Lambertian

surface in a certain direction. Imagine a line connecting a point on the surface of

an object to the light source, and a line in a given direction from that same surface

point. The angle between these two lines is the phase angle.

I.1.2. Astronomical Terms

Any arbitrary or unknown object in space is denoted as an RSO, which stands for

Resident Space Object. More specifically, in this thesis an RSO will be any object

in orbit around the Earth that is to be observed.

For any object orbiting the Earth, altitude is defined as the shortest distance

between the object and the Earth’s surface. Altitude will typically be denoted by

the symbol h, and will be an important part of defining an RSO’s position in space

for the sake of the algorithm implemented in this thesis.

4

I.2. Illumination Contributions

An accurate model of the illumination of objects in orbit around the Earth needs

to take into account all the significant light sources in the vicinity. For objects

close to the Earth, these sources are the Sun, Earth, and Moon. Each is computed

independently and becomes significant in different situations.

I.2.1. Direct Sunlight Contribution

Sunlight is the strongest source of illumination in outer space. In fact, it is so strong

that when an object is in direct sunlight, the effect of other celestial light sources

cannot be perceived by a typical camera without increasing the shutter speed and

blowing out the sunlit portion of the image. The only times when the Sun is not the

largest illumination contributor is when the observed object is in the shadow cast by

another large body, like the Earth, or when looking strictly at the dark side of the

observed object.

I.2.2. Earth’s Contribution with Atmospheric Considerations

When the Earth is considered as a source of illumination, the atmosphere’s effects

must be taken into account. Sunlight bends toward the Earth as it passes through

the atmosphere since it has an index of refraction greater than that of the vacuum of

space. According to [15], the refractive index of the atmosphere gradually gets closer

to zero the farther it gets from the Earth. This is due to the fact that the particles

making up the atmosphere are less and less attracted by the Earth’s gravitational

5

pull as their distance from the surface increases.

Any sunlight that interacts with the Earth or its atmosphere is considered earth-

shine. These influences can be broken into three cases:

• Diffuse reflections off of the Earth’s surface. This includes all light that bounces

off of land masses, bodies of water, clouds, etc.

• Refraction through the atmosphere. The atmosphere can be thought of as a

type of lens that bends the light towards the Earth, which actually causes the

shadow cast by the Earth to have a smaller footprint than if the atmosphere is

ignored.

• Scattering due to particles in the atmosphere. Rayleigh scattering occurs when

sunlight reflects off microscopic particles in the atmosphere [15]. The blue

wavelengths of light are scattered the most, and the red wavelengths the least.

This is the reason that the sky looks blue from Earth and the atmosphere

looks blue from space, and the reason that sunsets and the eclipsed Moon are

reddish.

The sum of these three phenomena make up the Earth’s illumination contri-

bution, however the model implemented in this thesis considers only refraction and

diffuse reflection. In order to take scattering into account, it is necessary to record

directional information of photons, which also requires changes in the way reflection

and refraction are computed. For more details on the changes that are required, see

Section VII.1 in Future Work.

6

I.2.3. Moon’s Illumination Contribution

Moonlight is the smallest contributor of the three illumination sources. This is

partially due to the large distance from the RSO with respect to the Earth, and

partially due to the low albedo of the Moon, which causes it to reflect little light.

The only time the Moon is a significant source of illumination is when it is the only

source, for instance, when the illuminated object is in the shadow of the Earth.

7

CHAPTER II

PRIOR WORK

This thesis uses photon mapping and final gathering to compute the illumination that

the Earth contributes to orbiting objects. To justify this approach, I will discuss the

origins of ray tracing and the major developments that led to its wide acceptance for

creating realistic images. Furthermore, since the Earth’s atmosphere is a continuous

volume, I will describe a brief history of ray tracing through volumes. I will also

outline how ray tracing gave rise to methods of global illumination, such as radiosity,

photon mapping, and final gathering. Since photon mapping and final gathering

are implemented in this thesis, I will go into specific details of their history. It is

important to understand the progression of these concepts in order to see how the

techniques are applied to this thesis.

Additionally, I will touch on a few of the works that simulate the effects of

Earth’s atmosphere to create rendered images. The majority of the work in this area

of computer graphics has been for the purposes of rendering images of the Earth

from space, or from the surface of the Earth, looking at the sky, sunset, or clouds; no

major work has been done to model the illumination of objects orbiting the Earth,

as this thesis does.

Finally, I will describe the phase integral equation, an analytical equation rep-

resenting the percentage of light that is reflected off a perfectly Lambertian sphere

in a given direction. This equation is used in this thesis to create an approximated

analytical model to determine the illumination of RSOs.

8

II.1. Ray Tracing

Ray casting was introduced by Appel [1] as a non-recursive algorithm that casts a

single ray from the eye, through a pixel on the image plane, and into the scene. If

the ray encounters an object, the color of the object is determined at the intersection

point based on the material properties and lighting of the scene, and then stored as

the color of the pixel.

As an extension to ray casting, Whitted [28] was the first to recursively trace

rays through a scene to compute reflections, refraction, and shadows. Rays are cast

into the scene, where they encounter the first surface and can be reflected or refracted

to encounter subsequent surfaces. All surfaces encountered along this tree of rays

contribute to the color of the pixel as seen by the viewer.

Both ray casting and ray tracing involve casting a single ray from the eye point

through each pixel into the scene. Distributed ray tracing, introduced by Cook et al.

[5], is an extension to these methods, that casts multiple rays across an interval and

computes their average. For example, depth of field is possible by distributing rays

across a lens instead of using a single eye point. A ray is cast from each sample on the

lens, through the desired pixel in the image plane, and into the scene. The average

color returned by those rays is stored in the pixel, and the process is repeated for each

pixel in the image. It is also possible to calculate soft shadows by distributing the

rays across an area light source, and blurry reflections can be obtained by randomly

varying the direction of the reflected ray within a range.

Further developments in ray tracing involve the rendering of volumes with vary-

ing density, such as clouds or smoke. Early approaches used analytical equations to

9

define a ray’s path through the volume [13]. Rays are cast through the volume, which

is divided into a grid. Each time a ray enters a new grid element, it is reevaluated,

iteratively adjusting the intensity, color, and direction based on the properties of

the volume in that element. By replacing the grid structure with a series of nested

spheres, this method can be used when casting rays through the Earth’s atmosphere

in order to account for its continuously varying refraction.

II.2. Photon Mapping

The properties of light are extremely complex and difficult to reproduce in computer

graphics, but in order to create more realistic images, the physical behavior of light

needs to be more accurately modeled. Radiosity is a global illumination rendering

approach to compute indirect lighting, based on an analytical model of heat transfer,

in scenes with perfectly diffuse surfaces. Developed at Cornell University [7], radiosity

only deals with light rays that leave the light source and are diffusely reflected off

of objects in the scene before reaching the eye. Although the radiosity algorithm is

relatively simple, it is only capable of handling diffusely reflected light and is not

structured to handle specular reflections or refractive objects very elegantly.

Photon mapping, developed by Jensen and Christensen [12], is a two-pass ap-

proach to rendering a scene that addresses the deficiencies of radiosity. In the first

pass, backward ray tracing [2] is used to cast light rays, called photons, into the

scene from a light source, where each photon interacts with the scene the way a light

ray would in real life. Photons can be absorbed by diffuse surfaces, reflected off of

specular surfaces or transmitted through refractive surfaces, such as glass, to form

10

caustics [25]. At each object intersection, a photon’s absorbed intensity is stored in

a photon map, while any remaining intensity is reflected or transmitted back into

the scene based on the surface properties of the object.

In the second stage of photon mapping, the scene is rendered as normal from the

eye point, but the photon map is used to supplement lighting information. When a

ray encounters an object, it looks at nearby photons in the photon map to approx-

imate the radiance at the point of intersection. This approach enables effects such

as color bleeding, caustics, and subsurface scattering, which drastically improve the

realism of the generated image.

Further work by Jensen [11] divides the photon map into two parts: a high

resolution caustics photon map and a low resolution global photon map. In the ren-

dering step, caustics are visualized directly from the caustics photon map, requiring

a high density of photons. The global photon map, however, can have a lower density

of photons since it is used as an approximation of the gradual changes of lighting

across a surface. A technique called final gathering, previously applied to radiosity

by [22, 19, 27] is used to determine the color of a point on a surface. Final gathering

rays are cast from the point into the scene, and when one of these rays intersects an

object, it uses nearby photons to determine the radiance coming from that direction.

Several final gathering rays are averaged together to get the color at the original

surface point. By sampling photons in the environment near the surface point, in-

stead of photons directly on the surface around the point, the noise is significantly

reduced, providing a much cleaner image.

11

II.3. Rendering Atmospheric Phenomena

Most of the work that has been done in computer graphics to simulate the effects

of the Earth’s atmosphere has been for the purposes of rendering images of the sky,

sunset, or clouds from the surface of the Earth [3, 14, 20, 23, 18, 8]. A few have been

optimized to primarily render images of the Earth from space [21, 9], and some can

handle both situations [6, 4]. Some deal only with scaterring [9, 10, 23], while others

consider only the effects of refraction [17, 3, 18, 24]. A few take both scattering

and refraction into account [8]. A comprehensive survey of many of these methods

is provided in [26], but none were designed to model the illumination of objects in

orbit around the Earth. Nonetheless, a brief history serves as a solid foundation for

the model described in this thesis.

The first method for modeling the effects of the atmosphere was proposed by

Klassen [16]. His model assumed that light scattered only once at each of the two

atmospheric layers he used: one for the outer layer and one for the more dense layer

near the ground. An improved method was developed by Kaneda et al. [14] which

employed a layered atmosphere with exponentially varying density based on altitude.

Berger et al. [3] applied the same layered technique to the refractive properties of

the atmosphere, which vary along with density, as scattering does.

Building upon these methods, Nishita et al. [21] was the first to utilize a set of

concentric spherical layers, each with a constant density. Here, scattering happens

at the edge of each layer, where the density of the layer is dependent on it’s altitude.

In a similar approach, Irwin [9] considers only Rayleigh scattering, which is caused

by air particles smaller than the wavelength of light. Jackèl and Walter [10] followed

12

suit with a method that only uses Mie scattering, which is caused by particles larger

than the wavelength of light, such as rain, clouds, and haze. Both types of scatter-

ing are implemented by Riley et al. [23] and Dobashi et al. [6], although several

simplifications are made to accelerate render times.

In [20], Nishita et al. introduced a two-pass method that subdivides each at-

mospheric shell into a number of spherical volume units. In the first pass, these

spheres record the distribution and direction of the scattered light, and the second

pass gathers the scattered light along the viewing direction.

II.4. Phase Integral Function

Since Lambertian objects reflect light uniformly in all directions, there is an inherent

structure to Lambertian spheres that gives them the smooth gradation of light when

rotating around the sphere. There is a well known equation that models this struc-

ture, based on the direction of incoming light and the viewing direction. It assumes

that the light source is a point source, and that the light source, illuminated sphere,

and viewing position are considerably far away from each other with respect to the

radius of the sphere. Let d0 be the direction from the sphere to the light source and

let d1 be the direction from the sphere to the viewing position. Then let the angle

between d0 and d1 be ξ, the phase angle. The phase integral function is given by:

p(ξ) =
2

3π
((π − ξ) cos ξ + sin ξ) (2.1)

13

The phase integral is a function of the phase angle ξ. It gives the percentage of light

that is reflected off of the Lambertian sphere in a direction that forms the angle ξ

with d0. This function will be the basis of the analytical models presented in this

thesis.

14

CHAPTER III

METHODOLOGY

There are two basic approaches presented in this thesis to computing the illumination

of objects orbiting the Earth, each with it’s own advantages and disadvantages. An

analytical approach is to assume that the Sun, Earth, and RSO are at infinity with

respect to each other, so that the illumination sources can be considered to be point

sources and the light rays can be considered parallel. Under these assumptions, an

approach called the Lambertian sphere reflectance model can be used to quickly

compute the illumination. However, it is a very limited model that is not completely

accurate when objects are close relative to their size, like orbiting satellites are to

the Earth.

Another approach is to use ray tracing to computationally approximate the

behavior of sun rays as they travel from the Sun, bounce off of the Earth, and

illuminate an RSO. Ray tracing is extremely slow compared to the Lambertian sphere

reflectance model, but it is very versatile, allowing complicated atmospheric effects

to be taken into account. This will be the main approach taken in this thesis.

III.1. Analytical Lambertian Sphere Reflectance

Since a Lambertian sphere reflects light uniformly in all directions, it’s illumination

can be represented analytically. This idea can then be extended to the general case

of a set of Lambertian spheres illuminating each other down the chain.

15

III.1.1. A Single Sphere Illuminated by the Sun

In the simplest case, the Sun illuminates a Lambertian sphere, which reflects some

of that light toward the observer, as denoted in Fig. 1.

• Let α, r, and A = πr2 be the albedo, radius, and apparent area of the sphere,

respectively.

• Let
−→
d0 and d0 denote the vector and distance between the centers of the Sun

and the sphere.

• Similarly, let
−→
d1 and d1 denote the vector and distance between the centers of

the sphere and the observer.

• Finally, let ξ be the angle between −
−→
d0 and

−→
d1 , where p(ξ) is the phase integral

function.

The equation signifying the illumination of the sphere as observed by the ob-

server is then:

1

4πd2
0

Ap(ξ)α

2πd2
1

(3.1)

In order to take into account the case where the sphere is in the shadow of the Earth1,

a value, shadow, is computed as a number between 0 and 1 that denotes how much

total sunlight the sphere receives, due to the Earth’s occlusion of the Sun, where 0

1Shadows cast by the Moon and other large bodies are ignored due to their infre-
quent occurrence.

16

Fig. 1. A single sphere illuminated by the Sun.

means the Sun is fully occluded, and 1 means the Sun is not occluded at all. When

factored into equation (3.1), the illumination equation becomes:

1

4πd2
0

Ap(ξ)α

2πd2
1

shadow (3.2)

This will give the percentage of light emitted from the Sun that bounces off of the

sphere and reaches the observer.

III.1.2. A Set of Spheres Illuminated by the Sun

A set of Lambertian spheres illuminating each other is merely a general case of

the single sphere case. Here, sphere 1 is illuminated by the Sun, and sphere i is

17

illuminated only by sphere i − 1. Let there be n number of spheres, where the nth

sphere is actually the observer2 (Fig. 2). In this approach, sphere 1 is the only sphere

illuminated by the Sun, so the sunlight is essentially being traced along the chain of

spheres, at the end of which it finally reaches the observer.

• Let αi, ri, and A = πr2
i be the albedo, radius, and apparent area of sphere i,

respectively.

• Let
−→
d0 and d0 denote the vector and distance between the centers of the Sun

and sphere i.

• Let
−→
di and di denote the vector and distance between the centers of sphere i

and sphere i+ 1 for all i = 1, 2, . . . , n− 1.

• Let
−→
dn and dn denote the vector and distance between the centers of sphere n

and the observer.

• Finally, let ξi be the angle between −
−−→
di−1 and

−→
di , for all i = 1, 2, . . . , n.

If we make the assumption that for all i, di � ri, the illumination can be com-

puted as follows:

1

4πd2
0

n∏
i=1

Aip(ξi)αi
2πd2

i

(3.3)

This will give the percentage of light emitted from the Sun that bounces off of sphere

1, onto sphere 2, . . . , onto sphere n, and finally arriving at the observer.

2Note that n = 1 is the single sphere case.

18

Fig. 2. A set of spheres illuminated by the Sun.

III.2. Analytical Model for Earthshine with No Atmosphere

In a simplified case of the multiple-sphere model with n = 2 spheres, earthshine can

be computed analytically by taking the Earth as sphere 1 and the RSO as sphere 2

(Fig. 3). Then the illumination of the RSO due to the Earth is given by:

IEarth =
1

4πd2
0

A1p(θ1)α1

2πd2
1

A2p(θ2)α2

2πd2
2

(3.4)

This function represents the percentage of total sunlight that bounces off of the Earth,

19

then off of the RSO, and finally arrives at a point in space at the observer’s location.

However, since the Lambertian reflectance model has no capability to handle spheres

Fig. 3. A Lambertian sphere illuminated by earthshine.

surrounded by an atmosphere, a computational approach must be used to account

for the refraction due to the Earth’s atmosphere.

III.3. Computational Model for Earthshine with Atmospheric Refrac-

tion

Although the analytical model for earthshine is simple and quick to compute, objects

orbiting the Earth are too close for it to be accurate, and there is no way to handle

20

the effects of the atmosphere. The computational model, however, can handle both

of these problems by employing ray tracing to perform photon mapping and final

gathering. Photons will be cast from the Sun towards the Earth, where they will

be refracted through the atmosphere and will ultimately be recorded in a photon

map. Then, final gathering will be used to determine the amount of light diffusely

reflected off of the Earth to specified points in space. Rays that pass directly through

the atmosphere without touching the Earth are recorded directly in a photon map,

since directional information is required to perform final gathering on these rays.

III.3.1. Assumptions

In order for the computational model to work, we must make a few assumptions about

the Earth and its atmosphere. First, the Earth will be represented as a perfectly

spherical Lambertian sphere with a uniform albedo. Although the Earth’s albedo is

constantly varying (e.g. cloud cover and snow fall), and the Earth’s radius is not

constant, these assumptions allow us to ignore the orientation of the Earth. This will

reduce the problem space, which will become important when storing the earthshine

radiance values.

Furthermore, the Earth’s atmosphere will be represented as a set of nested

spheres, each with a constant index of refraction. A discretized, layered approach

will be used to trace rays through the atmosphere, so refraction will occur only at

the boundaries of the spherical regions. Although the properties of the Earth’s at-

mosphere vary with temperature, altitude, and fluctuating environmental conditions,

these assumptions, once again, simplify the algorithm by allowing the orientation of

21

the Earth to be ignored.

III.3.2. An Overview of the Algorithm

Thanks to the above assumptions, for any object at position P in space, the earth-

shine function will depend on only two variables (see Fig. 4):

1. the angle θ, defined as the angle between a line connecting the Sun to the Earth

and a line connecting the Earth and P , and

2. the altitude h, defined as the distance from the Earth’s surface to P .

Fig. 4. A point in space illuminated by earthshine.

Then the illumination of point P due to earthshine is given by the function I(θ, h).

This function can be represented as a texture file T (u, v), where 0 ≤ u < 1 and

22

0 ≤ v < 1. For a given pair (u, v), the actual angle and altitude can be computed as:

θ = uπ and h = (1− v)hmin + vhmax (3.5)

where hmin and hmax are the minimum and maximum altitudes that are defined. For

instance, if the desired region is between LEO3 and GEO4, simply choose hmin as

the minimum LEO altitude and hmax as the maximum GEO altitude.

Note that a texture file is essentially an image, therefore its quality is based

on its resolution. Let the integer pair (M,N) denote the horizontal and vertical

resolution of the image, and let a single pixel be denoted by the integer pair (i, j),

located in the lower left corner of the pixel. Let i = buNc and j = bvMc. Finally,

let x = u − i and y = v − j. Using this information, a continuous function can be

reconstructed using bilinear reconstruction. The value of T (u, v) is computed from

the texture file using bilinear reconstruction as follows:

T (u, v) = (1− x)(1− y) I(i, j) + (1− x)y I(i, j + 1)

+ xy I(i+ 1, j + 1) + x(1− y) I(i+ 1, j) (3.6)

Once we compute I(θ, h), this provides a way to compute accurate lighting infor-

3Low Earth Orbit
4Geostationary Orbit

23

mation for any (θ, h) pair from a discrete texture file. Although I(θ, h) cannot be

written as a simple equation, the process for computing it will be described shortly.

But we must first understand how the data structure will be represented.

III.3.3. The Structure of the Earthshine Table

Since the previously mentioned assumptions about the Earth allow its orientation to

be ignored, the three-dimensional space around the Earth can be cleanly represented

with the two-dimensional table T (u, v), as shown in Fig. 5. To understand how this

works, first imagine a single row from the table; across the row, the altitude, hj,

remains constant, and the phase angle varies. Now, in three-dimensions, imagine

every point in space at an altitude of hj, but that vary in their phase angles; all of

these points form a spherical shell with radius re + hj that encloses the earth. So a

single row in the table with altitude hj corresponds to a spherical shell at altitude

hj in three-dimensional space.

Likewise, a single column in the table shares a common phase angle, but ranges

in altitude from hmin to hmax. Imagine every point in three-dimensional space that

satisfies these two conditions and the result takes on the form of thick disk. So each

column of the table corresponds to a disk between hmin and hmax in three-dimensions.

The intersection of a row and a column in the table produces a single pixel. So

in three-dimensions, a pixel corresponds to the intersection of a spherical shell at hj

and a thick disk at θi, which is a thin disc with radius re + hj at phase angle θi.

24

Fig. 5. The structure of the earthshine table.

III.3.4. The Process of the Algorithm

The values of the table are computed using a Monte Carlo algorithm that casts

rays from the Sun towards the Earth, where each ray interacts with the Earth and

atmosphere before being stored at pixel I(i, j). The process of the algorithm is

described below.

1. Shoot a ray from the Sun towards the Earth. Let Ce represent a circle sharing

its center with the Earth and with a radius slightly larger than the outermost

atmospheric shell. Similarly, let Cs represent a circle that shares it’s center

and radius with the Sun. Choose two random points pe and ps inside Ce and

25

Cs, respectively. The vector between these two points, vse = pe − ps, gives

the direction of a ray emanating from the Sun and striking either the Earth or

atmosphere. For now, the ray carries unit radiance for all wavelengths.

2. Intersect the ray with the Earth and/or any atmospheric shells it encounters.

At each intersection, reflect, refract, or scatter, all or some of the ray’s radiance,

based on the properties of the intersected object. Continue until the ray exits

the outermost atmospheric shell.

3. Store the ray’s radiance in the photon map. Rays that have been reflected off

of the Earth are stored in a separate photon map from those that pass straight

through the atmosphere so that the albedo of the Earth can be adjusted without

recomputing the earthshine table.

4. Go to (1) until the specified number of rays, K, have been cast.

5. Perform final gathering for each pixel in the earthshine table. For each pair

(θi, hj), cast rays from the corresponding position pf in space to a random

point pe inside the circle Ce, where Ce is oriented to point in the direction of

θi. Sample the photon map in this way for several rays, and take their average

to determine the amount of diffusely reflected light that reaches pf . Store this

radiance in pixel (i, j) of the earthshine table.

Since each ray carries a unit radiance, the results must be calibrated so that

each carries the correct percentage of the Sun’s total luminosity. Let Isun denote

the luminosity of the Sun, dse denote the distance between the Earth and Sun, hatm

26

denote the altitude of the outermost atmospheric shell, re denote the radius of the

Earth, and Iunit(i, j) denote the radiance value computed with rays that carry unit

radiance. Finally, let Aatm = π(re + hatm)2 be the apparent area of the outermost

atmospheric shell from the Sun. Then each pixel in the table is calibrated with:

Itotal(i, j) =
IsunAatm
2πd2

seK
Iunit(i, j) (3.7)

Note that this assumes that each ray carries the same amount of energy. Even though

the rays are not parallel, the distance between the Earth and Sun makes the parallel

ray assumption acceptable; thus, it can safely be assumed that each ray carries the

same amount of energy.

Based on the representation of the photon map, each pixel represents the radi-

ance that reaches a circular band on the surface of an atmospheric shell that is hj

above the Earth’s surface. To compute the radiance per unit area, the total radiance

should be divided by the area of this band. The radius of the circular band is given

by re + hj, where hj is the altitude of the outermost shell, and the band is bounded

by the angles θi = iπ/N and θi+1 = (i + 1)π/N . The total area between two angles

θi and θi+1 on the surface of a sphere with radius re + hj can be computed with the

following integral:

27

A(i, j) =

∫ θi+1

θi

π(re + hj)
2 sin θ dθ

= (cos θi+1 − cos θi) π(re + hj)
2 (3.8)

Thus, the radiance per unit area is computed as:

I(i, j) =
Itotal(i, j)

A(i, j)
(3.9)

Now, I(i, j) gives the percentage of total sunlight that bounces off of the Earth and

reaches an RSO at a position θi degrees from the Sun-to-Earth axis and hj units

above the Earth’s surface. This value can then be used to determine how bright an

object at that position will appear to a camera or observer.

28

CHAPTER IV

IMPLEMENTATION

In this thesis, I developed two separate C++ applications to (1) compute the earth-

shine table and (2) display it’s effects on objects in orbit around the Earth. The first

application computes the earthshine table using photon mapping to cast Sun rays

towards the Earth. The second application is a 3D visualizer that utilizes OpenGL,

nested inside a Qt1 window, to display a satellite with accurate lighting information

based on its current position relative to the Sun, Earth, and Moon. The earthshine

contribution comes from the table computed offline with the first application.

IV.1. Computing the Earthshine Table

To compute the earthshine table, I use a two stage process. First, photons are cast

from the Sun towards the Earth, where they interact with the Earth’s atmosphere

until they exit the outermost shell and are stored in a photon map. Then, I use the

diffuse photon map from the outermost atmospheric shell to do final gathering for

each pixel of the earthshine table.

Before detailing the semantics of the algorithm, we must understand how light

reflects off of a surface patch based on its orientation. In a simple Lambertian surface

model, the amount of light reflected off of a flat surface patch toward the viewer is

determined by the product of cosθ cosφ, where θ is the angle between the surface-

1Qt is a cross-platform API for creating graphical user interfaces that can utilize
OpenGL functionality in a special widget.

29

light line and the surface normal, and φ is the angle between the surface-viewer line

and the surface normal. Let the unit vector pointing from the surface patch to the

light be
−→
l , let the unit vector pointing from the surface patch to the viewer be −→v ,

and let the unit surface normal be −→n . Then θ is the angle between
−→
l and −→n , and

φ is the angle between −→v and −→n . When the surface patch is facing toward the light

such that
−→
l = −→n , the patch’s surface area is fully exposed to the light and cosθ = 1.

As the patch rotates away from the light, it’s surface area appears smaller from the

light’s perspective, so the patch receives less light as
−→
l and −→n become closer to

perpendicular and cosθ approaches 0. A similar situation occurs with cosφ, with the

viewer in place of the light.

When casting light rays from the Sun towards the Earth, the Earth will receive

fewer rays per unit of surface area as θ increases. If many rays are used, this effect

replaces the need to multiply by cosθ. Similarly, when casting final gathering rays

from the world position corresponding to a pixel in the earthshine table towards the

Earth, the area of a surface patch on the Earth will appear smaller to the incoming

rays. By making this connection, we verify that the method coincides with the

physical behavior of light, and we can describe the algorithm with confidence.

IV.1.1. Computing the Photon Map

To compute the diffuse photon map, a specified number of rays are cast from the Sun

towards the Earth. Since the Earth and Sun are spherical, they can be represented

by discs instead of full planes; this prevents rays from originating at or being cast to

any sample that is outside of the object, reducing the number of intersection tests.

30

The Sun is represented by a disc shaped area light on a square plane with N × N

samples, centered at the center of the Sun and facing the Earth. The target plane is

represented by a disc on a square plane with N ×N samples, centered at the center

of the Earth and facing the Sun. Since a disc is used instead of the full square, only

about πN2/4 of the N2 samples are used. A ray is cast from each Sun sample to

each target sample, producing a total of approximately π2N4/16 rays. The origin

and target of the ray are jittered within each sample.

Since the earth is surrounded by a series of nested atmospheric shells, the first

object that the ray will intersect is always the outermost shell. The ray’s direction

and intensity is adjusted based on the properties of that shell, then it is recursively

cast in the new direction. Note that any given ray can only intersect the shell it just

intersected or the objects immediately inside it and outside it (either another shell or

the Earth). So based on this structure, the ray is only tested for intersections with

these three objects, making the intersection calculation O(1), constant with respect

to the number of atmospheric shells.

A ray is recursively traced through the atmosphere until it hits the Earth, at

which point it is diffusely reflected in a random direction. Randomly reflected diffuse

rays are cast in such a way that they are evenly distributed on the surface of a sphere

centered at the intersection point. The reflected rays are traced back out through

the atmosphere until they encounter the outermost atmospheric shell.

When a ray exits the outermost shell, it needs to be stored in the photon map.

Note that when the photon map is computed with no atmosphere, it will be stored on

the surface of the Earth; therefore, to generalize, the photon map is always stored on

31

the outermost object. Let P be the intersection position of the ray on the outermost

object’s surface, let −→n be the surface normal of the object at that position, and let

−→
d0 denote the vector pointing from the center of the Earth to the center of the Sun.

Since the Earth and atmosphere are assumed to be perfectly spherical and uniform

across the surface, P can be indexed in the photon map simply by the angle, θ,

between −→n and
−→
d0 . As a texture file, this can be represented by an image that is

one pixel high and w pixels wide, where w simply relates to the desired precision of

the photon map.

IV.1.2. Final Gathering to Determine Illumination for the Table

Now that we know the distribution of sunlight reaching the Earth, we can use the

photon map to do final gathering and determine the illumination at any given point

in space. This will be done for each pixel in the earthshine table in order to compute

the image. Remember that each pixel is represented by a pair (θ, h), and that the

world position of each pixel can be extracted from this information.

Let the earthshine table be U pixels wide and V pixels high. To loop through

all of the pixels, let u be the current index along the width and v be the current

index along the height, where 0 ≤ u < U and 0 ≤ v < V . Finally, let hmin and hmax

be the minimum and maximum altitudes defined by the table. Then, the pair (θ, h)

can be computed as follows:

32

θ = u
π

U − 1

h = hmin + v
hmax − hmin

V − 1
(4.1)

From (θ, h), the world position can now be identified and used as the origin of the

final gathering rays.

Let P be the position of the current pixel in world space, corresponding to (θ,

h). Also, let
−→
dS be a unit vector pointing from the center of the Earth to the cen-

ter of the Sun, and let
−−→
dS⊥ be a unit vector perpendicular to

−→
dS. Create a vector

−→
dP , pointing from the center of the Earth to P , that forms the angle θ with

−→
dS, where

−→
dP =

−−→
dS⊥ sin θ +

−→
dS cos θ (4.2)

Now, let CE and rE be the center and radius of the Earth, respectively. Then, P can

be computed as

P = CE +
−→
dP (rE + h) (4.3)

Since P represents the position of the current pixel of the table in world space, this

is where all of the final gathering rays for this pixel will originate.

To determine the target position for the final gathering rays, a target plane

33

with the specified number of final gathering samples must be created. Let x̂ and ŷ

be perpendicular unit vectors that form a plane perpendicular to
−→
dP , such that x̂, ŷ,

and
−→
dP are orthonormal vectors. Then, the plane defined by x̂ and ŷ will serve as

the target plane, through which the final gathering rays will be cast.

The plane is centered at the center of the Earth, and we will use a target disc to

sample the photon map on the outermost object. The size of this disc is dependent

on the the distance that P is from the object. For positions closer to the object, the

field of view must be larger than for positions far from the object. So the radius of

the target disc must increase as P becomes closer to the object.

Now, a ray is cast from P to a jittered position within each of the disc’s roughly

πN2/4 samples. When it intersects the outermost object, the coordinating color

from the photon map is found2. The intensities from all intersecting final gatherings

averaged and attenuated for distance falloff by dividing by 4πh2, where h is the

altitude of P . This gives the color in the earthshine table at pixel (u, v).

IV.2. 3D Visualization Tool

In order to visualize the computed earthshine affecting real objects, I implemented

a C++ application to display a scene using the earthshine table to supplement the

lighting (see Fig. 6 for a screenshot). Qt was used for the windowing, and OpenGL

handles the interactive visualization viewport. The Sun, Earth, Moon, and an RSO

are all displayed in a 3D scene against a background of stars, and lights are placed

at each of the primary sources of illumination: the Sun, Earth and Moon. The user

2See Section IV.1.1 on page 29 for an explanation of indexing the photon map.

34

can interactively move around the scene and change the position of the Moon and

RSO, which automatically adjusts the lighting.

Fig. 6. A screenshot from the 3D visualization tool.

35

IV.2.1. Interactive OpenGL Display

The OpenGL window consists of two viewports: an RSO centric viewport on the left

and an independent scene viewport on the right. When the RSO is moved around its

orbit, the RSO centric camera stays fixed on the RSO. This camera can only zoom

and rotate around the RSO, which always stays in the center of the view. On the

other hand, the main viewport camera, can be moved freely around the scene and is

not tied to any of the objects. A wireframe representation of the RSO centric camera

is visible in the main viewport for reference. Both cameras can be moved around in

the same way as the camera in Maya, with the exception that panning is not allowed

in the RSO centric viewport.

Four main pieces of geometry are displayed in the two viewports. The Sun,

Earth, and Moon are all drawn as spheres made of polygonal triangles, where the

polygon count is lower for the Sun and Moon than it is for the Earth. The RSO’s

shape is read from an external OBJ file; initially a sphere is read in, but several other

files can be chosen via a drop down box. The Earth and Moon are textured with

external PNG images, while the RSO color is plain white.

A pseudo star field is generated randomly around the scene, of which the density

can be adjusted interactively. The stars are stored in a list that contains the position,

intensity, and visibility of each star, and they are rendered as points based on this

information. Although the star field is completely fabricated, it gives a point of

reference when moving the camera and helps add depth to the scene.

In space, all of the natural light originates from the Sun and is reflected off of

planets, satellites, etc. To simulate this in the interactive environment, I place a light

36

source not only at the Sun, but at each major reflector as well (in this case, the Earth

and Moon). Since objects are at different distances from a specific light source, the

intensity of the light that reaches each object is different. Instead of using OpenGL

lights with distance attenuation to control the falloff of the intensity, I use a separate

light with no falloff at each source to illuminate each object. For example, there are

two lights at the Moon: one to illuminate the RSO and one to illuminate the Earth.

Each has the appropriate intensity to illuminate it’s target object at that distance

from the source. This gives me complete control over the amount of falloff and its

coefficients, since it must be physically accurate. There is also a small ambient light

in the scene representing the light coming in all directions from the many stars in

the universe.

The albedo of an object in the scene is a scalar representing the percentage of

incoming light that is reflected off of the object’s surface. This has two effects on the

visual output: (1) if the object is a reflector, the intensity of the lights located at the

object are scaled by the albedo, and (2) the amount of light received by the object

is scaled by the albedo. So as a reflector’s albedo is lowered, less and less light will

reach the objects that it illuminates, and it will become dimmer in the viewport.

The light at the Earth that illuminates the RSO (referred to in this thesis

as earthshine) can be determined from either the computational earthshine model

described in Section III.3 or the analytical model for earthshine from Section III.2.

The user is offered this option as a way to compare the two models, which provide

a different illumination distribution for objects close to the Earth. Since all other

objects are significantly far from each other, the intensities of the other light sources

37

are determined from the Lambertian sphere reflectance model, discussed in Section

III.1.

IV.2.2. Qt Graphical User Interface

Three sections are available at the bottom of the window to adjust the albedo,

position, and shape of the RSO, Moon, and Earth. Each object has a spinbox to

change the corresponding albedo. The RSO and Moon can be rotated around the

Earth in a circular orbit using either the Angle slider or the text box next to it.

Furthermore, there is a drop down box to change the shape of the RSO by reading in

a new OBJ file, and the scale of the RSO can be changed with the available spinbox.

A default number of stars are generated when the program is first executed,

but there is a spinbox to adjust the star count interactively. When the star count is

increased from the default, new stars are randomly generated and added to the list

of existing stars. If the count is decreased, stars from the list are hidden, and when

the count is again increased, the previously generated stars are made visible.

In OpenGL, 1.0 is the full intensity of a light, and anything above that has the

possibility of blowing out the lighting on an object. So in order to achieve the best

visual results, the largest illumination source, the Sun, is initially scaled to have an

intensity of 1.0. Using the illumination contribution checkboxes, each source can be

toggled on or off, rescaling the intensities such that the maximum is 1.0 and scaling

the other lights to maintain the same relative intensities. So, for example, when the

Sun is toggled off, the Earth becomes the largest illumination source and is scaled

accordingly to 1.0. This allows the user to single out one particular source, if so

38

desired.

Another option to manipulate the observed intensity of light in the scene is to

use the Integration Time slider. Moving the slider to the right increases the intensity

of the lights by a factor of two for each notch, while moving the slider to the left

decreases the intensities by a factor of two. This simulates an exposure setting on

a camera. With a longer integration time (or shutter speed), the film is exposed to

more light and the pictures become brighter, but a shorter integration time produces

dimmer pictures. By moving the slider, it is possible to capture more light on the

virtual film and see the effects of lower intensity light sources.

The earthshine contribution can either be based on the computational or ana-

lytical model. Selecting the Lambertian radio button uses the analytical model to

determine the earthshine intensity, while the Pre-Tabulated radio button uses the

computational model. Both models are applied in real-time, since the computational

model just requires a lookup in the earthshine table.

39

CHAPTER V

RESULTS

The objective of the computational model for earthshine is to create a table rep-

resenting the illumination of a discrete region around the Earth. Remember from

Section III.3.3 that the horizontal axis represents the sun-earth-object angle from 0

on the left to π on the right, and the vertical axis represents the altitude from hmin

at the bottom to hmax at the top. The result of the computed earthshine table is

shown in Fig. 7.

The table is represented visually and internally to the algorithm as two separate

images: one for diffuse reflections off of the Earth’s surface, and one for refracted rays

that never touch the Earth. The two images are kept separate because the diffuse

reflections are influenced by the albedo of the Earth, which can be varied in the 3D

visualizer application. Albedo has no effect on refracted rays that never touch the

Earth’s surface, so they are stored and visualized in a separate block of data.

The top image represents the table for diffuse reflections off of the surface of

the Earth. Note that as the altitude increases along the vertical axis, the values

decrease due to the quadratic falloff of intensity with distance. Also note that as the

angle increases along the horizontal axis, the values decrease because they represent

positions moving toward the back side of the Earth in relation to the Sun.

In the bottom image is the table representing refraction of rays through the

atmosphere that don’t touch the Earth’s surface. The edges of the illuminated region

are jagged because this file represents the photon map without a final gathering pass.

40

Fig. 7. The earthshine table for diffuse reflections (top) and refraction (bottom).

Since refracted rays illuminate only along the direction of their path (unlike diffuse

reflections which radiate uniformly in all directions), directional information must

be stored in the photon map in order to perform final gathering. However, this is

left as a task for future work.

An ASCII version of each table is stored on disk, along side the images, which

is used to initialize the data in the visualizer. These data files are the true repre-

sentation of the earthshine tables. It is important to store the data in this form

to maintain its full precision, since the numbers must be compressed to create a

corresponding image that fits nicely in the displayable color range.

To compare the results with the analytical model for earthshine, I extract the

41

Fig. 8. A comparison of the analytical and computational earthshine model with no

refraction.

Fig. 9. A comparison of the analytical and computational earthshine model with re-

fraction.

42

values from a row of the diffuse earthshine table. A row varies only with the phase

angle, and if the altitude in the analytical equation is fixed, it too varies only with

the phase angle. In this manner, the earthshine values from the computational and

analytical models can be charted from 0 to π for equal altitudes. A chart of this

form is given in Fig. 8 for the computational model with no atmosphere, and in Fig.

9 for the computational model with atmosphere.

The curves match nicely for the case with no atmosphere, aside from the slight

noise in the computational curve. And in the case with atmosphere, the compu-

tational curve is only slightly higher before π/2 and slightly lower from there until

π. This means that refraction due to the atmosphere has a very small affect on the

diffusely reflected light; however, refracted light that doesn’t hit the Earth’s surface

does have a considerable affect of reducing the size of the shadow cast by the Earth.

Since the index of refraction is higher in the atmosphere than it is in space,

rays are refracted towards the Earth as they pass through the atmosphere. Some of

these rays illuminate a small region behind the Earth that would be in shadow if the

atmosphere was not there. Fig. 10 shows this effect.

The outer edge of the penumbra stays in about the same place, but the inner

edge is nearly 3◦ further into the umbra. With the penumbra being about 2.5◦ larger

and the umbra being smaller, this increases the region of space that is illuminated

by direct sunlight, offering another advantage of the computational model over the

analytical model.

One thing to note about Figures 8 and 9 is that the altitude used in these graphs

is nearly 400 times the Earth’s radius. Since the analytical model is only accurate

43

Fig. 10. The shadow of the Earth with (bottom) and without (top) atmosphere.

44

Fig. 11. A comparison of various altitudes from the computational earthshine table.

when the distance between the illuminated object and the Earth is much larger

than the Earth’s radius, the shape of the computational and analytical models will

only match at large altitudes. However, objects orbiting the Earth are much closer,

anywhere from less than a tenth to just over six times the radius of the Earth. Fig.

11 shows a row from the earthshine table (with no atmosphere) at four different

altitudes, ignoring the distance falloff so we can compare the shape of the curves

instead of the relative intensities.

Notice that as the altitude approaches zero, the curve becomes closer to the

cosine curve between 0 and π/2. This is because the cosine curve represents the

value of the photon map at a given phase angle (when no atmosphere is present).

45

The intensity of the light that reaches a portion of the surface is proportional to the

cosine of the angle the incoming light forms with the surface normal. So, when the

altitude approaches zero, the position is closer and closer to the surface of the Earth,

and a more restricted local area is all that contributes to the illumination.

46

CHAPTER VI

CONCLUSIONS

When a satellite is attempting to photograph an object in orbit, it needs to know

the lighting conditions so it can position itself and adjust camera settings to take

the best photograph. A satellite that has an accurate method to determine how

a subject is lit will be more capable of capturing good pictures than one with a

less accurate method. Based on the algorithm presented in this thesis, we have a

physically accurate method for computing the illumination of objects in orbit that

is more accurate than previous methods.

This model utilizes photon mapping and takes into account diffuse reflection

from the Earth’s surface and refraction in the atmosphere to compute a table repre-

senting the Earth’s illumination contribution at a desired point in space; this table

can then be used as lighting input when visualizing an illuminated object. A satellite

attempting to take pictures with this information at its disposal will be able to make

the most informed decision possible.

Knowing how atmospheric refraction reduces the size of the Earth’s shadow is

also important, as it increases the area that a picture can be taken. This effect is by

far the most important one that refraction has on earthshine, since its effect on the

diffusely reflected light was not significant. However, until atmospheric scattering is

taken into account, no conclusion can be made on the atmosphere’s effect as a whole

on the distribution of earthshine.

47

CHAPTER VII

FUTURE WORK

VII.1. Computational Model for Earthshine with Atmospheric Refrac-

tion and Scattering

The Earth’s atmosphere has two major effects on incoming light: refraction and

scattering. However, the computational model described in this thesis only considers

refraction. By adding scattering effects, it will be possible to get a more accurate

approximation to the actual illumination that would be observed in space. Further-

more, Rayleigh scattering, the main scattering that would be of concern, scatters

light differently based on its wavelength. This has the effect of scattering blue light

more than red light, so an incoming sun ray would transfer more red light through

the atmosphere, while scattering the blue in all directions; this is the reason that the

sky is blue and sunsets are orange and red.

In order to compute scattering, a few modifications must be made to the algo-

rithm:

1. Each atmospheric shell will be composed of a number of spheres, called pho-

ton spheres. Each photon sphere is composed of segments that represent the

direction and intensity of rays that pass through the sphere’s center.

2. During the computation of the photon map on the surface of the Earth, rays

must be scattered each time they hit an atmospheric shell.

48

3. Between the photon mapping step and the final gathering step to compute the

earthshine table, a step must be added to iteratively recompute the photon

map as seen by each atmospheric shell.

First, each atmospheric shell will be made up of K photon spheres. Think of

the spheres as being divided into polygonal segments of equal area, where the color

of each segment denotes the color of a ray whose direction is equal to that of the

surface normal of the segment.

Now, as photons are cast from the sun to compute the photon map, each photon

will be recorded in a photon sphere on each atmospheric shell. When the photon

intersects a shell, the color of the photon will first be scattered based on a Rayleigh

scattering distribution and recorded on the photon sphere. Then, the remaining

photon intensity will be recorded on the photon sphere in the direction that the

photon is refracted. The photon is then cast in the refracted direction with the

intensity of the non-scattered light. This process is repeated at each atmospheric

shell until the photon finally hits the Earth and is recorded in the photon map.

Next, an additional final gathering step is performed, before computing the

earthshine table, to capture the behavior of photons as they are diffusely reflected

off the surface of the Earth. The existing photon spheres will be supplemented to

record the direction and color of the reflected photons.

For the first (innermost) atmospheric shell, the colors of the segments on photon

sphere k are adjusted by casting rays from the center of the sphere towards the Earth.

The position that a ray intersects the surface of the Earth is used to look up the

intensity in the photon map at that position. This intensity is attenuated based on

49

the distance of the ray and added to the color of the segment with a surface normal

equal to the negative of the ray’s direction. After the specified number of rays have

been cast from sphere k, the process is repeated with sphere k+1, until all K spheres

on the innermost atmospheric shell have been touched.

For the remaining shells, the process is slightly different because rays will inter-

sect the shell immediately inside the current shell, instead of the Earth. Let i be the

current shell, and let i− 1 be the shell immediately inside it. Like above, a number

of rays are cast from the center of sphere k on shell i towards shell i−1. When a ray

intersects shell i − 1, it first determines the closest photon sphere. Then, it deter-

mines the color of the segment that has a surface normal equal to the negative of the

ray’s direction. This color is attenuated based on the length of the ray, then added

to sphere k on shell i in the segment with a surface normal equal to the negative of

the ray’s direction. This process is repeated for each photon sphere on shell i.

Once final gathering has been done for all of the photon spheres on shell i, the

process is repeated for shell i + 1, until the outermost shell is complete. Then, this

shell, instead of the Earth’s photon map, can be used in the final gathering step to

compute the illumination for the earthshine table at any position around the Earth.

VII.2. Nested Atmospheric Shells

A related area that would require more research involves the nested shell approach

to representing the atmosphere. Ideally, one would like to represent the atmosphere

as a continuous volume, rather than approximate it with a series of shells. Since the

assumption is made that the atmosphere is uniform and varies only with altitude,

50

that may offer a structure that can be used to develop a method that more closely

approximates a continuous volume. However, without an existing continuous model

with which to compare, it’s difficult to know how significant the results would ulti-

mately be. It is also difficult to compare with experimental data since the properties

of the atmosphere are constantly varying with changing environmental conditions,

temperature, etc., contrary to the assumption made in this thesis.

VII.3. Illumination of Extended Objects

One assumption that was made in order to simplify the computational earthshine

algorithm was to store one radiance value in the earthshine table for each position

in space. This is essentially equivalent to approximating the Earth as a point light

source, when in actuality, it is an area light source. For objects that are small

with respect to the size of the Earth, this is a reasonable approach; however, when

considering larger extended objects, the direction and origin of incoming light also

become important. For significantly small objects at a significant distance from

Earth, the error is probably small, but for larger objects in orbits closer to the

Earth, it may be important to store direction information in addition to intensities

in order to get accurate lighting information.

One approach to lighting an extended object would be to use the value in the

earthshine table as the intensity of an area light, and then do ray tracing to compute

the lighting across the surface of the object. This would give a soft gradation of

light, and would allow shadows to be computed on the object. However, the light

source itself, Earth, does not radiate light evenly across it’s surface, so the lighting

51

would not be completely accurate.

Another idea is to record the distribution of reflected light intensity across the

surface of the Earth, instead of just recording the average intensity. This would

require significant changes to the structure of the earthshine table to the point that

it couldn’t actually be represented by a two-dimensional image. For each pixel in

the table, there would instead need to be some set of data that described both the

intensity and direction of light coming from any desired point on the Earth’s surface.

However, by not being able to use the average reflected intensity that reaches a given

point, the final gathering step would become much more complicated, and the result

could be much noisier.

VII.4. Considering Variable Surface Properties of Earth

Another assumption was made that the Earth is a uniform sphere with a uniform

albedo, when in actuality, both vary greatly over the surface of the Earth. Clouds

and snow have a high albedo, while some land masses have a relatively low albedo.

Currently, the best way to handle these varying surface properties is to use the

average albedo of the Earth on the side that faces the illuminated object at the

desired instant in time. The average albedo can be computed relatively easily from

satellite imagery of the Earth, but this may not be accurate enough, especially when

considering extended objects close to the Earth.

The most obvious way to account for the Earth’s varying surface properties

would be to determine the albedo of the Earth each time a photon hits the surface,

and attenuate its intensity accordingly. However, this would require that the earth-

52

shine table be a three-dimensional representation, since the symmetry around the

axis pointing from the Earth to the Sun no longer exists (which is what allowed all

of the positions around Earth to be represented simply by the pair (θ, h)). Fur-

thermore, the Earth is not always in the same orientation with respect to the Sun;

the Earth rotates and orbits around the Sun, constantly causing a different portion

of the surface to be illuminated. So the earthshine table would need to be calcu-

lated on a case-by-case basis for each object that the illumination is desired, which

is unreasonable with the algorithm’s lengthy computation times.

VII.5. Improvements in Visualizer

Several improvements can be made to the 3D visualizer to improve its visual appear-

ance and add desirable functionality. Although the application currently serves the

core purpose of displaying the illumination of an object orbiting the Earth, it could

become much more versatile and polished with a few additional features.

One such improvement is to have camera parameters, such as aperture, shutter

speed, field of view, noise level, etc. be input by the user, filtering the OpenGL

viewport through those parameters accordingly. Currently, the integration time can

be adjusted, simulating the shutter speed on a real camera. The difference is that

the integration time uses a somewhat arbitrary scale, where as most cameras have a

specific set of shutter speeds available. Also, the effect of a specific integration time

currently changes relative to the most intense light source, where as shutter speeds

are absolute. Limiting these type of parameters to real world constraints will not

only make the results look more like an actual picture of the scene, but it will also

53

help determine when an object can actually be seen by a physical camera.

Another feature that would be useful in the visualizer would be high dynamic

range (HDR) visualization capabilities. Even the most advanced cameras can’t cap-

ture the range of light that the human eye is able to perceive, since it can adjust to

various lighting conditions. Tone mapping algorithms can be used to make HDR im-

ages visible on a conventional computer monitor, so a similar method could be used

to compress the huge range of light intensities in space to a displayable range. This

would make the effects of smaller illumination contributions more noticeable than

they would be otherwise, and would more closely resemble what a human might see

if he or she were to observe the scene in person.

In order to make the physical layout more accurate, the true orbits of each celes-

tial body could be used, as well as the true positions of stars. Currently, the objects

are placed somewhat arbitrarily (although the distances between them are accurate),

and the star positions are randomly generated. By entering a date or providing a

slider to scrub through time, the visualizer could use the orbital information of each

celestial body to place it at the exact position it would be on that particular date.

Additionally, the positions and intensities of the visible stars are documented in star

catalogs, so by incorporating that data, the star field generated in the viewport would

be accurate to real life, and constellations would be discernible. These features could

serve important when planning a satellite’s course by maximizing the encounter time

under good lighting conditions or minimizing the occurrences where the Sun is in

the frame, for example.

Finally, the shading of the objects, especially the RSO and Earth could be

54

significantly improved to provide a more visually pleasing result. Material properties

could be read from the RSO’s OBJ file and applied to the model in the viewport;

simply by adding a specular component and texturing, the currently Lambertian

shading would look much more realistic. More work could also be done to add a

specular component to the Earth, and although it wouldn’t be completely realistic,

adding city lights to the night side of the Earth would be a nice addition.

55

REFERENCES

[1] A. Appel. Some techniques for shading machine renderings of solids. In Proc.

of AFIPS Spring Joint Computer Conference, pages 37–45, May 1968.

[2] J. Arvo. Backward ray tracing. In Developments in Ray Tracing, Siggraph

Course Notes, pages 259–263, August 1986.

[3] M. Berger, T. Trout, and N. Levit. Ray tracing mirages. IEEE Computer

Graphics and Applications, 10(3):36–41, 1990.

[4] E. Bruneton and F. Neyret. Precomputed atmospheric scattering. Computer

Graphics Forum, 27(4):1079–1086, 2008.

[5] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. Computer

Graphics, 18(3):137–145, 1984.

[6] Y. Dobashi, T. Yamamoto, and T. Nishita. Interactive rendering of atmo-

spheric scattering effects using graphics hardware. In Proc. of ACM Sig-

graph/Eurographics Conference on Graphics Hardware, pages 99–107, Septem-

ber 2002.

[7] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modeling the

interaction of light between diffuse surfaces. Computer Graphics, 18(3):213–222,

1984.

[8] D. Gutierrez, F. J. Seron, A. Munoz, and O. Anson. Simulation of atmospheric

phenomena. Computers & Graphics, 30(6):994–1010, 2006.

56

[9] J. Irwin. Full-spectral rendering of the earth’s atmosphere using a physical

model of rayleigh scattering. In Proc. of Eurographics UK Conference, pages

103–115, June 1996.

[10] D. Jackèl and B. Walter. Modeling and rendering of the atmosphere using

mie-scattering. Computer Graphics Forum, 16(4):201–210, 1997.

[11] H. W. Jensen. Global illumination using photon maps. In Proc. of Eurographics

Workshop on Rendering, pages 21–30, June 1996.

[12] H. W. Jensen and N. J. Christensen. Photon maps in bidirectional monte carlo

ray tracing of complex objects. Computers & Graphics, 19(2):215–224, 1995.

[13] J. T. Kajiya and B. P. V. Herzen. Ray tracing volume densities. Computer

Graphics, 18(3):165–174, 1984.

[14] K. Kaneda, T. Okamoto, E. Nakamae, and T. Nishita. Photorealistic image syn-

thesis for outdoor scenery under various atmospheric conditions. Visual Com-

puter, 7(5):247–258, 1991.

[15] M. Kerker. The Scattering of Light and Other Electromagnetic Radiation. Aca-

demic Press, 1969.

[16] R. V. Klassen. Modeling the effect of the atmosphere on light. ACM Transac-

tions on Graphics, 6(3):215–237, 1987.

[17] W. H. Lehn. A simple parabolic model for optics of the atmospheric surface

layer. Applied Mathematical Modeling, 9(6):447–453, 1985.

57

[18] A. Lintu, J. Haber, and M. Magnor. Realistic solar disc rendering. In Proc. of

International Conference in Central Europe on Computer Graphics, Visualiza-

tion and Computer Vision, pages 79–86, February 2005.

[19] D. Lischinski, F. Tampieri, and D. P. Greenberg. Combining hierarchical radios-

ity and discontinuity meshing. In Proc. of Siggraph ’93, pages 199–208, August

1993.

[20] T. Nishita, Y. Dobashi, K. Kaneda, and H. Yamashita. Display method of the

sky color taking into account multiple scattering. In Proc. of Pacific Graphics,

pages 117–132, August 1996.

[21] T. Nishita, T. Sirai, K. Tadamura, and E. Nakamae. Display of the earth taking

into account atmospheric scattering. In Proc. of Siggraph ’93, pages 175–182,

August 1993.

[22] M. C. Reichert. A two-pass radiosity method driven by lights and viewer position.

Master’s thesis, Cornell University, 1992.

[23] K. Riley, D. S. Ebert, M. Kraus, J. Tessendork, and C. Hansen. Efficient ren-

dering of atmospheric phenomena. In Proc. of Eurographics Symposium on

Rendering, pages 375–386, June 2004.

[24] F. J. Seron, D. Gutierrez, G. Gutierrez, and E. Cerezo. Implementation of a

method of curved ray tracing for inhomogeneous atmospheres. Computers &

Graphics, 29(1):95–108, 2005.

58

[25] P. Shirley. A ray tracing method for illumination calculation in diffuse-specular

scenes. In Proc. of Graphics Interface, pages 205–212, June 1990.

[26] J. Sloup. A survey of the modelling and rendering of the earth’s atmosphere. In

Proc. of Spring Conference on Computer Graphics, pages 141–150, April 2002.

[27] B. E. Smits. Efficient hierarchical radiosity in complex environments. PhD

thesis, Cornell University, 1994.

[28] T. Whitted. An improved illumination model for shaded display. Communica-

tions of the ACM, 23(6):343–349, 1980.

59

VITA

Jonathan Penney

C108 Langford Center

3137 TAMU

College Station, TX 77843-3137

jpenney@viz.tamu.edu

Education

M.S. in Visualization Sciences Texas A&M University, May 2009

B.S. in Computer Science Texas A&M University, May 2006

