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ABSTRACT

Tool Support for Axiomatic Programming. (April 2010)

Carla Villoria
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Gabriel Dos Reis
Department of Computer Science and Engineering

Many problems arising from spectacular error messages involving C++ templates are re-

lated to the fact that assumptions made by the C++ standard algorithms are stated in infor-

mal comments, not in code that is checked by the compiler. Some of those properties are

syntactic, meaning that the compiler can do syntax and type checking and reject erroneous

constructs. Others are semantics, e.g. that a type is regular. Such assumptions can be

checked only if programmers have ways to express those assumptions in code.

My project proposes the use of two features in C++, concepts and axioms, that would allow

programmers to express semantic requirements in code. To show the benefits that this

approach could have we have developed an interpreter, Liz, capable of handling a subset of

C++ augmented with concepts and axioms.

Liz has been successful in demonstrating how these new features could save a lot of time

and effort to programmers, and more importantly, how they could make templates less

intimidating, more accessible, and truly mathematically accurate.
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CHAPTER I

INTRODUCTION

Over the last decade, thanks to the trail blazing work of Alex Stepanov (Stepanov & Lee,

1994; Dehnert & Stepanov, 1998; Musser & Stepanov, 1994), the ISO C++ programming

language has significantly contributed to making generic programming a sound and viable

programming methodology. Generic programming (Musser & Stepanov, 1988; Gibbons &

Jeuring, 2003) focuses on useful, practical and efficient abstract procedures, and on how to

provide abstractions in order to use a single algorithm in several different implementations.

Reusability is a fundamental aspect of this discipline. The C++ programming language

directly supports generic programming through templates, special functions that operate

with generic types and are reused with different instantiations.

Generic programming with C++ templates

C++ templates are the basis of many programming techniques and a key element in the

construction of libraries (Stepanov & Lee, 1994; Siek & Lumsdaine, 1998; Gärtner &

Veltkamp, 2007; Veldhuizen, 1998; Czarnecki et al., 2000). The success of templates is

mainly due to their flexibility. They allow functions and classes to operate with generic

types. They work for built-in types as well as user-defined types without requiring inheri-

tance from some predefined class; they allow independent libraries to be composed. More-

over, templates provide near optimal efficiency, which means, the elimination of function

calls in favor of inlining, the avoidance of code generation for unused functions, etc. This

This thesis follows the style of Journal of Functional Programming (JFP).
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near optimal efficiency is realized by combining information available at both the template

definition site and template use sites.

The practice of generic programming, according to Stepanov and Musser (Stepanov &

Lee, 1994; Musser & Stepanov, 1994), essentially relies on the notion of gradual lifting

of algorithms. This process starts with concrete algorithms, and iteratively abstract over

various computational aspects until sufficiently general, yet efficient, abstract procedures

are obtained. Let’s take a look at the following example. Consider you have an array of

integers and two pointers, “first” and “last”, pointing to the beginning and end of a sub-

sequence of the array, and you want to know the number of elements between these two

pointers, you could write the following function:

int array_distance(const int* first, const int* last) {
int n =0;
while (first != last) {
first = first+1;
n = n+1;

}
return n;

}

On the other hand, if you would like the same functionality for a linked list of integers then

you would probably write:

int list_distance(const LinkedListNode* first, const LinkedListNode last) {
int n =0;
while (first != last) {
first = first->next;
n = n+1;

}
return n;

}

Note that these two programs look very much alike. They differ only in the way one moves

from one array slot (or linked list node) to the next. We can avoid writing twice almost the

same piece of code by abstracting over some details, e.g. introducing a function parameter
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that encapsultes the knowledge of moving from one cell to the next. C++ templates allows

a simple expression of this idea:

template<typename Iter, typename NextItem>
int distance(Iter first, Iter last, NextItem next_cell) {
int n = 0;
while(first != last) {
first = next_cell(first);
n = n + 1;

}
return n;

}

We can now instantiate this abstract procedure with several kind of arguments. For arrays,

we need to supply a value for NextItem that essentially implements pointer increment.

This is done as follows:

struct NextIntPointer {
const int* operator()(const int* p) const {
return p + 1;

}
};

int main() {
int array[] = { 4, 2, 95 };
return distance(&array[0], &array[2], NextIntPointer());

}

This is just as efficient as the original hard-coded function array_distance. Similarly,

we can recover the function list_distance when we use an objet of the class:

struct NextLinkedListNode {
const LinkedListNode* operator()(const LinkedListNode* p) const {
return p->next;

}
};

In summary, the same abstract procedure distance can be instantiated (with appropriate

arguments) to different, useful and efficient algorithms, with no loss in efficiency. As you

can see, this template example is simple to follow and simple to write.
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Flexibility: A two-sided sword

The flexibility offered by templates, although extremely useful as we saw in the previous

section, also poses some challenges. As of right now, template definitions are not checked

independently of their uses. This implies that most of the type-checking is delayed until

template instantiation time. Because of this, successful compilation and linking only shows

that the template instantiations were type correct for the arguments used during testing.

However, instantiation may fail for other set of arguments that were not tested. Spectacu-

larly poor messages will be result from this delayed checking. The issue is compounded by

the fact that the assumptions made by the C++ standard algorithms are stated in informal

comments, not in code that is checked by the compiler. In some cases, this can hinder the

adoption of Generic Programming methodologies, mainly because these error messages

are intimidating to many users. For example, trying to sort a list with the general standard

sort function

list<int> l;
...
sort(l.begin(), l.end());

leads to quite obscure and hard to understand error messages (at least with GCC-4.x.y.) In

summary, there is currently no simple, convenient, and scalable way to express assumptions

that a parameterized algorithm makes on its template parameters.

Axiomatic programming

For generic programming to become mainstream, it is essential that programming lan-

guages offer adequate and direct linguistic support. In recent past, there had been promis-

ing work, especially in the C++ community, for what is now known as concepts (Gregor
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et al., 2006; Stroustrup & Dos Reis, 2003a; Dos Reis & Stroustrup, 2006; Stroustrup &

Dos Reis, 2003b). However, despite all best efforts, concepts will not be part of C++0x

(Stroustrup, 2009b; Stroustrup, 2009a). Among the various novelties that were proposed is

the notion of axioms.

An axiom (Dos Reis et al., 2009) states what an algorithm implementation may assume

of values, but also what properties a user could assume about values. The axiom feature

allows us to state in code what we currently state in comments. Concretely, they would

permit the addition of requirements on template definitions, and by doing so they would

allow the compiler to check (where possible) whether a generic function (or generic class)

is used according to the expectations it has on its arguments.

Let’s take the distance function template. When instantiated with the right combination

of arguments, we get useful algorithms. However, mistakes are common, and the following

program fragment:

std::list<int> l;
distance(array, array + 3, Nextlinkedlistnode());

will generate confusing error messages. The reason is that in

return p->next;

an int object is not a structure and does not have next member. The real problem here is

that we do not have a separate way of saying how the functional parameter next_cell re-

lates to the iterator parameters. Axioms and concepts would allow programmers to express

those requirements explicitly in the code itself. More specifically, the distance function

could be written (following page 19):



6

template<typename F>
requires(Transformation(F))

DistanceType(F) distance(Domain(F) x, Domain(F) y, F f)
{
//Precondition: y is reachable from x under f
typedef DistanceType(F) N;
N n(0);
while (x != y) {
x = f(x);
n = n + N(1);

}
return n;

}

Take a closer look to the following line:

requires(Transformation(F))

This line states that F is a transformation on some space. Furthermore, the declaration

of the parameters x and y explicitly says that they are suitable type (as arguments) to the

functional parameter f.

The interpreter

Alexander Stepanov and Paul McJones recently published a magnificent book (Stepanov &

McJones, 2009) on structured generic programming titled Elements of Programming. They

show-case programming as a mathematical activity, a wonderful journey in the land of sim-

plicity and generality. Their approach makes essential use of axioms (and more generally

properties) and concepts. In spite of this reliance on concepts, all of their codes is compi-

lable as almost C++03 (ISO, 2003) program fragments. That is accomplished essentially

by use of a few simple macros. In particular, the requires “keyword” is actually a C99

variadic macro defined Appendix B.2 to ignore its arguments. Consequently, one of the
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benefits of concepts — turning informal descriptions into code so that they can be verified

and used for type checking template definitions and uses — is not realized.

In this thesis, I propose to investigate how an interactive tool, in the form of an interpreter

for a subset of C++ appropriately extended, supports effective practice of structured pro-

gramming with axioms as advocated by Alex Stepanov and McJones. This interpreter is

called Liz.
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CHAPTER II

LIZ

Liz is made of several different components. Each of its parts are responsible for specific

tasks; together, they form an interpreter. In this chapter, I will present the internal workings

of Liz, which offers linguistic support for the style of structured generic programming

advocated in the Elements of Programming.

Liz internal design is shown in Fig. 1.

?> =<89 :;Program // Lexer //76 5401 23Token stream EDBC
GF��

Parser //?> =<89 :;AST sequence // Elaborator EDBC
GF�� vv?> =<89 :;Expressions // Evaluator //76 5401 23Value

Fig. 1. General Overview of Liz’s Architecture

Let me explain what the major components in Fig. 1 mean.

Lexer

Lexing is the process of converting a sequence of characters into a sequence of tokens. The

lexer will receive a source program from the user, either directly from standard input or

imported as a file. After this, and by following certain rules or regular expressions, the

source program will be decomposed into a series of tokens that will eventually become a

token stream and will be passed to the parser. In the following function,
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int id(int x) { return x; }

the resulting token stream will be:

"int" id "(" "int" x ")" "" "return" x ";"

where words that are not in quotes represent identifiers, and will be handle different from

everything else in the Parser and in subsequent steps throughout Liz. This token stream

will be then pass to the parser.

Parser

This section is partially based on a previous report on the Liz parser (Villoria & Dos Reis,

2009). We refer to the reader to that technical report for details that are omitted here.

The parser will received the token stream from the Lexer and will convert it into an Ast

Sequence following Liz grammar. It is a recursive descent parser, written in Standard C++,

using parser combinator technology.

Parser combinators

The grammar and semantics sketch for the subset of C++ used in Elements of Programming

is described on less than ten pages pp 233–241. This terse description relies on knowledge

available elsewhere in the literature. The grammar was designed to be almost context-

free — this is to be contrasted with Standard C++ grammar which necessitates semantics

processing. As explained in p. 239, the only exception is the usual case where a template

specialization is explicitly named: an identifier followed by the less-than symbol followed
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by an additive expression is a valid production (a relational expression). The ambiguity is

resolved by checking whether the identifier names a template. This is the only case where

context matters during parsing.

The grammar put forward in the Elements of Programming uses the extended Backus–

Naur form advocated by Niklaus Wirth (Wirth, 1977). The essential feature of EBNF is the

introduction of an explicit iteration construct {a} to stand for ε|a|aa|aaa| . . . EBNF also

introduced optionality of a rule a by [a]. We follow suit. We also introduce shortcuts for

some syntactic patterns that appear over and over again. All of these shortcuts are express-

ible in the EBNF at the expense of repetition and poor abstraction of commonalities. We

will use usual alphanumeric identifiers in functional notation for those meta constructions.

To keep the notation uniform, we also introduce a functional notation for the essential meta

constructs of EBNF:

• ZeroOrMore(a) is EBNF’s iteration {a} of rule a.

• OneOf([a1, a2]) is EBNF’s choice a1|a2. More generally OneOf([a1,a2, . . . , an]) is

a1|a2| . . . |an in EBNF notation.

There are places in the grammar where a production is enclosed in “brackets”; for example:

• function argument lists are enclosed in parenthesis

• compound statements are lists of statement enclosed in curly braces

• indexing into an array is an expression in square brackets

• template argument lists are expressions enclosed in angle brackets
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All of these instances of bracketing are captured by the combinator Enclosed which can

be instantiated with two arguments: the first is a rule and the second is a bracket token.

The instantiation is a rule consisting of the terminal bracket followed by rule, followed

by a matching bracket:

Enclosed(rule, bracket) =
bracket rule Closer(bracket)

Parenthesized(rule) =
Enclosed(rule, OPEN_PAREN)

Bracketed(rule) =
Enclosed(rule, OPEN_BRACKET)

Braced(rule) =
Enclosed(rule, OPEN_BRACE)

Angled(rule) =
Enclosed(rule, LT)

The meta combinator Closer is defined by cases on “bracket” tokens:

Closer(OPEN_PAREN) = CLOSE_PAREN
Closer(OPEN_BRACKET) = CLOSE_BRACKET
Closer(OPEN_BRACE) = CLOSE_BRACE
Closer(LT) = GT

Another combinator that is useful to describe the syntactic structure of expressions is

LeftAssociative:

LeftAssociative(rule, ops) =
rule ZeroOrMore(OneOf(ops) rule)

This combinator describes binary expressions where the operator associates to the left, as

is traditionally the case for additive expressions. A dual combinator, RightAssociative is

also defined. Finally, we also used comma-separated items:
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CommaSeparatedList(rule) =
rule ZeroOrMore(COMMA rule)

Liz’s grammar

Toplevel statements

toplevel =
OneOf(template, concept, axiom, structure, procedure, statement)

The language described in Appendix B.1 of Elements of Programming does not include

any production for the toplevel. In particular, no description is given for the structure of a

program. This is probably because the book concentrates only on algorithms, e.g. program

fragments as opposed to complete applications. However, after the initial completion of

this work, Sean Parent indicated that the toplevel was envisioned to consist of template,

structure and procedure. We included statement at the toplevel because Liz is primarily

designed for interactive use and we did not find it a good design to invent an entirely new,

different language for interactive uses. We also note that the inclusion of statement at

toplevel (which includes simple statements) provides a convenient way to work around the

C preprocessor #include directive; e.g. we write

import("eop.h");

instead of

#include "eop.h"
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We are loath to implement a C preprocessor, and we would prefer a compile-time evaluation

mechanism for the programming style advocated in Elements of Programming.

The grammar for axiom and concept definitions are not in the Elements of Programming.

They are our proposal for Liz, and the focus of this thesis. The concept production differs

from past proposals (Dos Reis & Stroustrup, 2006; Gregor et al., 2006). The rule for axiom

also differs from what was described in the technical report Axioms:Semantics Aspects

of C++ Concepts (Dos Reis et al., 2009). It particular, it contains explicit support for

universal quantification, instead of relying on indirect encoding through Skolemization.

In this section, we will focus on the grammar of templates, concepts, axioms, structures,

and procedures; as some are of the outermost importance, others are new and unexplored,

and the rest differ from what is on the Elements of Programming in some way or another.

Templates

template =
TEMPLATE Angled(Optional(parameter_list))

Optional(constraint) OneOf(axiom, structure, procedure, specialization)

constraint =
REQUIRES condition

condition =
Parenthesized(expression)

specialization =
STRUCT structure_name Angled(additive_list)

Optional(structure_body) SEMICOLON

Note that the grammar for template declarations has changed from the Elements of Pro-

gramming. We accept axiom templates. I will show examples of this new feature under the
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axioms section.

Concepts

concept =
CONCEPT identifier Parenthesized(parameter_list)

Braced(ZeroOrMore(concept_clause))

concept_clause =
OneOf(formula, axiom, procedure)

Concepts are part of our new proposal. Let take a look at a few examples. The Transformation

concept p. 17 will be written in Liz as following:

concept Transformation(Operation F) {
UnaryFunction(F);
Integer DistanceType(Transformation);

}

where p. 12,

concept UnaryFunction(Function F) {
Arity(F) == 1;

}

Here is another example, the definition of the HomogeneousFunction concept p. 12,

which is written in Liz as

concept HomogeneousFunction(Function F) {
Arity(F) > 0;
forall(int i, int j) i < Arity(F) and j < Arity(F) =>

InputType(F, i) == InputType(F, j);
}

Note that in the Elements of Programming, there is one more requirement, Domain,
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Regular Domain(HomogeneousFunction T) {
return InputType(T, 0);

}

that we do not take into account in Liz, mainly because we are trying to embodied the min-

imal requirements, and we consider the notion of homogeneous functional procedure still

properly conveyed by the other two requirements. The function Domain is more of a conve-

nience function than an assumption that cannot be derived from the other two assumptions.

As ever, there is a balance to strike between minimality and practicality, or convenience.

A more interesting example, MultiplicativeGroup p. 68, would be written in Liz as,

concept MultiplicateGroup(MultiplicateMonoid T) {
T multiplicative_inverse(T);
inverse_operation(multiplicative_inverse,1,*);

}

where the meaning of the inverse_operation axiom will be discussed further down.

Note that for this example, the Elements of Programming also has one more requirement,

operator/,

template<MultiplicativeMonoid T>
T operator/(T a, T b) {

return a * multiplicative_inverse(b);
}

that we do not take into account for the same reasons as in the previous example, concept

HomogeneousFunction.
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Axioms

axiom =
AXIOM identifier Optional(Parenthesized(parameter_list)) Braced(formula)

formula =
Braced(quantifier Parentized(parameter_list))

OneOf(proposition, Braced(ZeroOrMore(concept_clause)))

proposition =
RighAssociative(expression, [IMPLIES]) SEMICOLON

The axiom constructs lets programmers express properties in a program. As I stated un-

der the templates section, in Liz we can define template axioms, or parameterized axioms,

and we consider most of the properties showed in the Elements of Programming represent-

ing that — parameterized axioms. We find them useful, not only because they allow us

to express simply and elegantly many axioms, but also because they allow us to translate

and show general ideas — properties — into code, and make them accessible and easy

to use by ordinary programmers. Let me explain this further with examples. The regu-

lar_unary_function p.14 property is expressed in the Elements of Programming as,

property (F : UnaryFunction)

regular_unary_function : F

f 7→ (∀f ′ ∈ F) (∀x, x ′ ∈ Domain (F))

(f = f ′ ∧ x = x ′) ⇒ (f (x) = f ′ (x ′))

It would be tempting to write the above property in code as,

axiom regular_unary_function(UnaryFunction F) {
forall(F f1, F f2) forall(Domain(F) x1, Domain(F) x2)

f1 == f2 and x1 == x2 => f1(x1) == f2(x2);
}
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However, this particular expression of the property may not be quite accurate. Let me

explain this further. If we had a function twice,

int twice(int x) {
return x + x;

}

and we wanted it to follow the axiom regular_unary_function, we would call the ax-

iom as,

regular_unary_function(twice);

This call will create a type checking problem with the parameter type, and the type of

the argument twice. Furthermore, and more importantly, that definition of the property

is saying that all values of type F have some property. That is not correct. The concept

UnaryFunction takes a FunctionalProcedure, and this is defined on types, not func-

tions. In concrete terms, the call above would be a type violation because twice is a

function, not a type. One solution to this problem could be to define the axiom as,

axiom regular_unary_function(UnaryFunction F, F f1) {
forall(F f2) forall(Domain(F) x1, Domain(F) x2)

f1 == f2 and x1 == x2 => f1(x1) == f2(x2);
}

where we would call,

regular_unary_function((int)->int, twice);

and it would be type correct, but its readability and scalability would suffer. As we are

writing real software for real programmers, we want these two characteristics to be of the

outmost importance. In the case above, the first parameter of the call would represent

nothing else but a distraction. With that in mind, we conclude that solution would not
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be scalable in mainstream use. We would like the system to, in an automated way, take

care of deducing the value (int)->int for the first axiom parameter, but how? That is

when parameterized axioms, also called axiom templates, come into place. Following the

exact mathematical expression of the regular_unary_function property in the book the

translation into Liz would be,

template<UnaryFunction F>
axiom regular_unary_function(F f1) {

forall(F f2) forall(Domain(F) x1, Domain(F) x2)
f1 == f2 and x1 == x2 => f1(x1) == f2(x2);

}

However, when we try this piece of code in Liz we run into a couple of issues. One of those

is the following error,

no match for operation ’Domain’ with argument type list (UnaryFunction)
candidate is: Domain:(HomogeneousFunction) -> Regular

which occurs during type checking of the uses of type function Domain in the definition of

the regular_unary_function axiom. Notice that earlier, we defined the type function

Domain as specified in the book,

Regular Domain(HomogeneousFunction T) {
return InputType(T, 0);

}

but for the axiom to make sense using the above definition of Domain there is an implication

in the Elements of Programming p. 13 that needs to be followed,

(forall FunctionalProcedure F) UnaryFunction(F) => HomogeneousFunction(F)
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However, it is unclear how the expression Domain(F) is well-formed when F satisfies only

UnaryFunction, which is defined unrelated to HomogeneousFunction. After discussing

this bug with the authors of the book, we decided that the correct solution to this prob-

lem was to overload the type function Domain for all Unary Functions instead of only for

Homogeneous Functions as follow,

Regular Domain(UnaryFunction T) {
return InputType(T,0);

}

Moreover, there is still one more issue with this axiom. The English interpretation of the

property regular_unary_function can be thought of as: "A function applied to equal

arguments yields the same result". But if we look at the body of the axiom carefully,

forall(F f2) forall(Domain(F) x1, Domain(F) x2)
f1 == f2 and x1 == x2 => f1(x1) == f2(x2);

we can clearly see this is not what is being described. What the above says is: "If two func-

tions, f1 and f2, are equal, and two arguments, x1 and x2, are equal, the result of applying

one of those arguments, x1, to one function, f1, should be equal to applying the other argu-

ment, x2, to the second function, f2." That is very different from our English interpretation

of the regular_unary_function. If we want to represent, without ambiguities, exactly

what the general interpretation is saying we should write the following,

template<UnaryFunction F>
axiom regular_unary_function(F f) {

forall(Domain(F) x1, Domain(F) x2)
x1 == x2 => f(x1) == f(x2);

}

which says exactly what we need; and now we could call,

regular_unary_function(twice);
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without it being a type violation and without running into problems along the way.

Now that we have resolved the issues with the regular_unary_function axiom we can

take a look at the example mentioned in section Concepts, inverse_operation, that will

be written in Liz as,

template<Transformation F, Regular T, BinaryOperation Op>
requires (Domain(F) == T and T == Domain(Op))

axiom inverse_operation(F inv, T e, Op op) {
forall(T a) (op(a, inv(a)) == op(inv(a), a) and op(inv(a), a) == e);

}

where the BinaryOperation concept will be,

concept BinaryOperation(Operation Op) {
Arity(Op) == 2;

}

and the Operation concept will be written as,

concept Operation(HomogenousFunction Op) {
Codomain(Op) == Domain(Op);

}

Another example of parameterized axioms, identity_element p. 65 would be expressed

as,

template<Regular T, BinaryOperation Op>
requires (T == Domain(Op))

axiom identity_element(T e, Op op) {
forall(T a) op(a, e) == a and op(e, a) == a;

}

Lastly, the associative p. 31 property will be written in Liz as,

template<BinaryOperation Op>
axiom associative(Op op) {
forall(Domain(Op) a, Domain(Op) b, Domain(Op) c)

op(op(a,b),c) == op(a,op(b,c));
}
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Many people tend to underestimate the value of template argument deduction, but this

is of incredible importance for the use and convenience that brings to code organization,

composition, and scalability.

Structures

structure =
STRUCT structure_name Optional(structure_body) SEMICOLON

structure_name =
identifier

structure_body =
Braced(ZeroOrMore(member))

member =
OneOf(data_member, constructor, destructor, assign, apply, index, typedef)

data_member =
expression identifier

Bracketed(OPEN_BRACKET expression CLOSE_BRACKET)
SEMICOLON

constructor =
structure_name Parenthesized(Optional(parameter_list))

Optional(COLON CommaSeparatedList(initializer)) body

destructor =
TILDA structure_name Parenthesized() body

construct =
OPERATOR Braced() Parenthesized(Optional(parameter_list))

Optional(COLON initializer_list) body

assign =
VOID OPERATOR EQ Parenthesized(parameter) body

apply =
expression OPERATOR Parenthesized()

Parenthesized(Optional(parameter_list)) body
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index =
expression OPERATOR Bracketed()

Parenthesized(parameter_list) body

initializer =
identifier Parenthesized(Optional(expression_list))

Procedures

procedure =
expression procedure_name Parenthesized(Optional(parameter_list))

OneOf(body, SEMICOLON)

procedure_name =
OneOf(identifier, operator)

operator =
OPERATOR OneOf([DOUBLE_EQ, LT, PLUS, MINUS, STAR, SLASH, PERCENT])

parameter_list =
CommaSeparatedList(parameter)

parameter =
expression Optional(identifier)

body =
Compound

Note that in Elements of Programming, the type void was not considered an expression.

However, we believe that a uniform treatment of type expressions benefits from viewing

void just as any other type expression.

Elaborator

Elaboration is the process of type checking an input source program and de-sugaring it into

a simpler language. The Elaborator essentially receives a piece of code that manipulates
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in great detail, and at the end, it produces the main matter for the next component in the

process, the evaluator. The elaborator brings together the process of type checking a pro-

gram fragment, and the notion of making explicit what was once implicit in a source code.

The specific functions include the generation of code, a medium level language that will

eventually get evaluated, and the type checking of a given ast sequence. Sometimes, it can

also serve the function of evaluator, but only on type expressions.

Function elaboration

The elaboration of functions is straightforward. We type check the type of the function

along with the return type, and then we type check the parameters used in the body of

the function. After that, the medium level language code is generated and passed to the

evaluator.

Template elaboration

Templates, although similar to functions in many aspects, are handle very differently from

them, and their elaboration is far more complicated. Given the fact that the type, or types,

used on a template could be diverse, the type checking is not as straight forward, and other

things have to be taken into account. For example, take a look at the next two templates:

template<typename T, typename U>
void bar(T,U);

template<typename U, typename T>
void bar(U,T);
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According to C++ semantics, these two templates declare the same function. The name of

the parameters does not matter much; only their position and consistent uses. The Elabo-

rator has to take into account that the template parameter declaration is far more important

than the name they are given. The elaborator looks not only at the names of the typenames,

but also at their position in the template-parameter.

Scopes

For the first time in Liz, the notion of scope and scope management come into the picture

with the elaborator. This notion is crucial for both the elaborator and the evaluator. A scope

can be defined as a map from symbols to values, in a given context; while scope rules tell

us how to relate symbols to entities they designate. We use two different types of scopes in

Liz, lexical and dynamic. In a lexical scope, the scope of an identifier is fixed at compile

time, and if the symbol is not found in a scope, the search continues in its enclosing lexical

scope and so on, until either the global scope or a dynamic scope contour is reached. On

the other hand, a dynamic scope is implied by a call to a function during run-time, and if

a symbol is not found in a given dynamic scope, it is not search in its enclosing dynamic

scope; rather, the symbol is searched in the global scope, and if not found, then it is reported

as “undefined” or “unbound”.

In the evaluator, we use both lexical and dynamic scope, while in the elaborator we mostly

use lexical scope. However, a special case arises when the elaborator deals with type

functions and it finds itself in need of evaluating the expression and using an indirect type

of dynamic scope. Let me explain this further with the following example,

int i = 5;
pointer(int) p = addressof(i);
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When the elaborator sees pointer(int), it needs to determine what type it designates,

and that implies some form of evaluation. It elaborates the expression to determine if

it designates a type. Then, it checks whether the full declaration is valid, but for this it

needs the value of that expression. That is when it calls the evaluator, which will implicity

establish a dynamic scope for the purpose of the call evaluator. If the value returned has

type typename, then we know it is a type, and that the declaration makes sense This is the

only time where evaluation, and dynamic scope, take place in the elaborator. At any other

time, a lexical scope is used. More concretely, this means that when you see an identifier

in the code, you can tell what variable it refers to just by looking at the source code. The

meaning of the name of the identifier is determined by which variable binding constructs

its used inside. Take a look at the following template,

template<typename T>
T id(T x) {

return x;
}

when this template gets elaborated there will be four different lexical scopes in place. The

first scope, or the global scope, will hold global variables. The second scope will hold the

typename and the identifier of the template. The third scope will hold the parameters of the

template, and finally, the fourth scope will hold the body.

C++ compatibility

We wanted Liz programs to be compatible with C++, but at the same time the aim was

to showcase the new features of axioms and concepts, which are not part of C++. While

working on the elaborator we realized that in order to add these new features we would

have to somehow depart from C++ full compatibility. Take a look at these two templates:
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template<typename T>
T id(T x) {

return x;
}

template<typename T>
T twice(T x) {

return x + x;
}

These two function templates are perfectly valid C++, but let us analyze them. For the

function template id, the operation applied to parameter x is copy, and as long as we

assume that everything is regular, then it is correct, and it will work with any instantiated

type. For the function template twice it is different. We are using the operator plus, +,

which is defined for some types, but not all. This means that if in C++ we were to call this

template with any datatype for which there is no appropriate operator+ we would get into

trouble. This is an important issue in my thesis, and partly explained in the introduction.

In Liz, you could write the first program without problems, but the second one will not

typecheck. More specifically:

no match for call to ‘operator+’ with argument type list (T, T)
candidates are
operator+: (int, int) -> int
operator+: (double, double) -> double

This error informs the programmer what the problem is, essentially that there is a type

checking issue with the expression x + x, which implicitly calls the function operator+.

However, the types of the arguments do not match any known operator+ in scope, as

reported in the "candidates are:" part of the diagnostic. The error also clearly states the

reasons for this problem, by specifying that it cannot chose from the list, in this case com-

posed of int or double, to make the expression type correct. More importantly, Liz does

not trick the programmer into believing that the template will work with any type template

argument. That is when concepts come into action. In Liz, if you write:
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concept Addable(typename T) {
T operator+(T,T);

}

and then use it to define the function template twice as,

template<Addable T>
T twice(T x) {

return x + x;
}

it will work just fine, and most importantly, it will not generate spectacular error messages

if you tried to call the template with a non-correct parameter type.

Types and concepts

In the example explained in the last section, in particular in the body of function template

twice, we apply the operation + to two parameters x of type T, and we allow only those

T that satisfy the concept Addable constraints to represent x. In this case, the constraint

will be operator+. This constraint represents an implicit parameter, or in other words, an

abstract operation. This means we cannot call the operator+ directly in the evaluation.

Due to this, a very important question arises: How does a type satisfy a concept? There are

a couple of debates about how this question should be answered; I will concentrate on how

we choose to handle it in our interpreter, Liz.

Imagine you had the following:

struct Complex { ... };

Complex operator+(Complex x, Complex y) { ... }

and you make the call,
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twice(Complex(2, 3), Complex(2, 3));

then Liz will follow by:

1. Deducing values for explicit parameters

In this particular case we only have one explicit parameter, T, and Liz will deduce its

value is equal to Complex

2. Deducing values for implicit parameters

An implicit parameter will be any signature declaration we have in the concept, in this

case operator+ will be the only one. Liz uses the explicit parameters from the first

step to substitute in the concept definition and deduce that the value for operator+

is the operator+ from the Complex struct.

After deducing all values for the parameters, Liz makes the appropriate substitutions, and

the type, implicitly, satisfy the requirements imposed by the concept. We choose this kind

of conformance, the implicit rather than explicit conformance, mainly because if program-

mers have to always specifically say what type satisfy some concept, then it will become

very difficult to scale and essentially, a burden. We note that there would be cases where

programmers have to explicitly say something in case of ambiguities. However, our hope

is that a good system should make ambiguities rare.

Evaluator

After it performs the type checks, the elaborator will generate some code that will even-

tually be fed into the evaluator. This intermediate language is much simpler than Liz’s
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language, and unlike the language explained in the Parser section, it will be composed of

the values and expressions shown in Fig. 2:

Value:
Bool
Int
Double
String
Function
Type
Concept
Axiom

Expression:
SymbolicReference(identifier, type)
Bind(identifier, type)
Write(address, value)
Read(expression)
If(condition, expression)
While(expression, condition)
Block(expression sequence)
Call(expression, expression sequence)
Break
Return(expression)

Fig. 2. Liz’s Intermediate Language

The grammar of the intermediate language produced by the elaborator is substantially

smaller than the grammar for C++. This makes the evaluation process, and actual code,

much simpler.

The evaluator uses a Visitor Design Pattern (Gamma et al., 1995), in which a visitor class

is created and it implements all of the appropriate specializations of a virtual function. This

is done in order to allow the adding of new virtual functions to a family of classes without

modifying the classes themselves.

Control flow

Our evaluator can make a recursive call to itself in order to evaluate parts of a statement. If

a control operator, like a return-statement, is encountered, we ran into an issue: to which

point in the recursive call chain should control be transferred? It is not necessarily correct,

and in fact almost always wrong, for the evaluator to just return to its caller. Rather, it must

return to the point where the evaluator started evaluating the most recent function call.
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To understand how we dealt with this issue let us take a look at a simple example. Suppose

you had the following function,

int factorial(int n) {
if (n < 2)

return 1;
else return n * f(n-1);

}

and you called the self evaluated expression,

factorial(3);

the evaluator will follow by,

1. Binding 3 to n

2. Evaluating n < 2, and if holds evaluating return 1

3. If not, evaluating return n * f(n-1)

In this example, the second step would not hold, as 3 is not less than 2, and the expression

n * f(n-1) will be evaluated. A recursive call to factorial(2) will be made and the

three steps stated above will be executed one more time. As 2 < 2 is false, there will be a

third recursive call to factorial(1), in which 1 < 2 will hold, and the statement return 1

will be executed; but where exactly does the machine return 1 to? As we explained earlier,

it is not to the last caller, but to the most recent dynamic scope set, in this case to the call

to factorial(1). We achieve this with exceptions, which in C++ are treated as non-local

goto’s.

In liz, we have two additional non-local goto types, which are not yet completely imple-

mented:
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1. goto, which at this moment is not handled

2. break, which can be used in while, switch, and do statements. At this moment,

the evaluator does not take into account if the break is used inside of the appropriate

expressions or not.
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CHAPTER III

USABILITY

We are now aware of the parts that conform Liz, and its internal workings. However, you

may be wondering: how do we make use of concepts and axioms in Liz? In this chapter,

we show how to accurately express our ideas in Liz using these features. The examples

discussed in this chapter are based on algorithms from the Standard Template Library, as

these are widely used and understood.

Once again: The problem

Let us take a simple algorithm, copy, and analyze it. The abstract idea of this algorithm is

to essentially copy a sequence of elements into another sequence of elements. However, if

we take the STL version of the algorithm,

template<class InputIterator, class OutputIterator>
OutputIterator copy ( InputIterator first, InputIterator last,

OutputIterator result )
{

while (first != last)
*result++ = *first++;

return result;
}

although it seems to express an abstract idea of what copy is supposed to do, it actually

leaves out several important assumptions. Let us see a simple example of how this can lead

to problems. Using the above code, if a programmer writes,

vector<int> v(10);
copy(7,17,v.begin());



33

where a value of type int has been used as an iterator, a huge and very hard to understand

message will result. Although it seems like a perfectly honest and simple mistake, the

programmer would get bombarded by many error lines seemingly referring to nothing in

particular. If we were able to express our ideas clearly in the actual code, then we would

be able to avoid these type of errors. Liz can help us achieve this.

Finding solutions

Let’s analyze a simple example, the find algorithm of the STL. The abstract idea of this

algorithm is, as it names indicates, to find the first position of a specific value in a list of

elements. For this algorithm to function we need a sequence of elements and the value

we are trying to find in that sequence. Let’s take iterators to the sequence, and call the

iterator to the beginning of the sequence first and the one-past-the-end iterator of the

sequence last. We will refer to the value that we are trying to find as value. What

properties should these iterators posses? What assumptions should we make? In order to

match the value given with one of the elements of the sequence, we need to read from the

sequence. Therefore, iterators first and last should be Readable, which according to

the definition in the Elements of Programming, refers to the ability to obtain the value of

an object denoted by another. Let’s take a look at the STL version of this algorithm,

template<class InputIterator, class T>
InputIterator find ( InputIterator first, InputIterator last, const T& value )
{
while (first != last && *first != value)
++first;

return first;
}

It is straight forward and easy to follow, but some requirements are missing. The fact

that first and last should be Readable and Iterators is not expressed as part of the
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algorithm. As we saw in the previous section this can lead to problems.

Let’s analyze how we will write Iterator and Readable as concepts in Liz. The Iterator

concept p. 91 will be written as,

concept Iterator(Regular T) {
Integer DistanceType(Iterator);
T successor(T);

}

where template successor, as its name specifies, is more or less like the "++" (or "+1")

operation in C++, which lets you transition to the next item in a sequence. The type function

DistanceType returns an integer type large enough to measure any number of applications

of successor. A reduced version of concept Integer can be written as,

concept Integer(Regular I) {
I successor(I);

}

which specifies that an integer type must provide the successor capability. According to

the Elements of Programming a type T is readable if a unary function source defined on

it returns an object of type ValueType(T). If we mirror what is in the book, the concept

Readable p. 90 will be written in Liz as,

concept Readable(Regular T) {
Regular ValueType(Readable);
ValueType(T) source(T);

}

but how do we type check that concept? how do we find the definition of ValueType, and

if we do, what should it look like? We do not have answers for these questions, but we have

implemented a different system to deal with this issue. Let us take a look at the English

specification: A type T is readable if there exists a function source taking an iterator of
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the type T and returning a value of type depending on T, which is called ValueType in the

book. If we translate this into code it would look like this,

concept Readable(Regular T) {
exists(Regular V) {

V source(T);
ValueType = V;

}
}

which is exactly what we want to say. In this case, we would not need to type check a

function called ValueType because it will be implicitly defined by the compiler through

the return type of the function source. This solution is based on Skolemization. Currently,

this is implemented in the parser, but not yet in the type checker. However, we strongly

believe it will work as predicted.

The unary function source is defined for all pointer types and returns a corresponding

constant reference. We can write source in terms of function deref, which is built-in. The

only difference between them is that deref is defined only for pointer types to nonconstant

objects and it returns a nonconstant reference. We can define source as,

template<typename T> requires Mutable(pointer(T))
const T& source (pointer(T) p) {

return deref(p);
}

where mutability refers to the combination of readability and writability in a consistent

way. We need pointer(T) to be Mutable because this will allow the replacement of

source with deref, as we have done in the body of the template, without affecting a

program’s meaning. Now that we have defined the concepts and template functions used

by our algorithm, we can write our version of find in Liz,
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template<typename InputIterator>
requires(Readable(InputIterator) && Iterator(InputIterator))

InputIterator find(InputIterator first, InputIterator last,
const ValueType(InputIterator)& value)

{
//Precondition: readable_bounded_range(first,last)
while (first != last && source(first) != value)

first = successor(first);
return first;

}

The above code, to the contrary of the STL algorithm, clearly specifies all requirements.

The correspondence between the abstract idea of find and our computer program is obvi-

ous.

Wrapping it up

Let’s go back to our first example, copy: What do we need to write such an algorithm with

concepts and axioms? First of all, we require the sequence that we want to copy, and the

sequence that we want to copy it to. Let’s take iterators to these sequences, and we will

call the iterator pointing to the first element in the sequence we want to copy first, and

the iterator pointing to the last element in the sequence we want to copy last. We will call

the iterator pointing to first slot of the result sequence result. Now, what kind of iterators

should first, last, and result be? What properties should they follow? Remember that

we are trying to read from one sequence and write to another one. Following that, iterators

first and last should be Readable. In the same manner, iterator result should be

Writable, which would allow its value to be modified.

The STL algorithm for copy, shown in the first section of this chapter, is missing a few

requirements. The fact that first and last are Readable and result is Writable is not

part of the algorithm; along with the fact than first, last, and result are Iterators.
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Writability allows the value of some iterators to be modified. According to the definition

of the Elements of Programming, a type is writable if a unary procedure sink is defined

on it. Based on our previous explanation of the Readable concept, the Writable concept

will be expressed in Liz as,

concept Writable(Regular T) {
exists(Regular V) {

V sink(T);
ValueType = V;

}
}

where function sink can be defined as follow,

template<typename T>
T& sink(pointer(T) p) {

return deref(p);
}

We have already discussed the requirements we need to have in order to express our ab-

stract idea of copy correctly. We can now discuss what we would need in the body of

our algorithm. As we have said previously, we want to copy a sequence of elements into

another sequence of elements. For that we need to be able to move through the sequences,

which we can do with successor; to read from the input sequence, which we can do with

source; and to write to the output sequence, which we can do with sink. Finally, we can

write our Liz version of copy p. 151-152,

template< Iterator InputIterator, Iterator OutputIterator >
requires(Readable(InputIteator) && Writable(OutputIterator) &&

ValueType(InputIterator) == ValueType(OutputIterator))
OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator result)
requires (not_overlapped_forward(first, last, result, result + (last-first)))

{
while (first != last) {

sink(pointer(result)) = source(pointer(first));
pointer(first) = successor(pointer(first));
pointer(result) = successor(pointer(result));

}
return result;

}
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where function not_overlapped_forward ensures that if the input and output ranges

overlap, no input iterator is read after an aliased output iterator is written. Going back to

our original problem, if we try to write the faulty program with the above code,

vector<int> v(10);
copy(7,17,v.begin());

you would get a clear error message stating that the arguments for copy do not match the

definition. As we had said before, concepts and axioms would allow the exact translation

of an abstract idea into code. More importantly, this exact translation would allow the

compiler to see simple errors, like the above, and catch them on time. Saving a lot of time

and effort to the programmer.
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CHAPTER IV

CONCLUSION

Throughout this thesis we have discussed an important issue, proposed a solution, and

implemented a tool to support it: our interpreter Liz. In Chapter I, we got an overview of

the problem and its importance; in Chapter II, we got to know the internal workings of Liz;

and finally, in Chapter III, we got to see examples of how to use Liz, and the benefits that

we can get when using concepts and axioms.

The importance of these new features can be clearly observed when faced with an obscure

messages after an unsuccessful linking. Concepts and axioms could save programmers a

lot of time and effort by making those type of error disappear. Furthermore, this addition

could make templates less intimidating. Overall, this project concretely shows, through

Liz, the benefits that axioms and concepts could bring.

Currently, there is still much work to be done to Liz, and much more to be learned. How-

ever, I believe this project will continue to evolve and grow during the next couple of years.
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