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Figure 4. Raised  Cosine Transmitter Spectrum. 

raised  cosine  transmitted  spectrum  shown  in  Figure  4.  No 
decision  errors  were  experienced  in  an  interval of 2000 symbols 
compared  to  17  errors  in  the  same  interval  for  the  structure 
used in [ 101.  Furthermore,  the  effective  SNR was 25.4  dB 
using  the  phase  estimates  from  the  VA.  This is superior  to  the 
24.1  dB  SNR  which  was  experienced  with  the  receiver  using 
tentative  decisions.  Because of the large number of opera- 
tions  necessary  for  the  algorithm,  the  computer  simulation of 
the  receiver  structure was very  time  consuming.  For  this 
reason no  further  testing was done  but  the  results  are  suffi- 
cient t o  give us  confidence  that  over  representative  telephone 
channels  reliable  data  transmission  at  speeds  up to  14,400 
per  second is possible. 

IV.  CONCLUSIONS 

A  new  algorithm  for  the  simultaneous  tracking of phase 
jitter  and  detection of data  has  been  developed.  Reception  of 
signals from  a  simulated  voiceband  channel  indicates  that  good 
performance  can  be  obtained  by  this  algorithm  over  typical 
channels  at  14,400  bits/s.  For  a  practical  receiver  structure, 
it is likely  that  some  further  approximation  to  this  phase- 
tracking  algorithm  would  be  necessary. 
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Results on Discrete-Time, Decision-Directed Integrated 
Detection, Estimation, and Identification 

JOHN  H.  PAINTER,  SENIOR MEMBER, IEEE, 
AND STEPHEN K. JONES,  MEMBER,  IEEE 

Abstract-New  results  are  presented for symbol-by-symbol detection 
with  decision-directed  tracking of colored  channel  disturbances.  Recur- 
sive  sampled-data  algorithms  are  shown for Maximum  A Posteriori 
Probability of detection under colored additive  and  multiplicative  Gaus- 
sian  noises along with white Gaussian  noise.  Preliminary  evaluation of 
the algorithms  via  Monte  Carlo  simulation  shows  good  performance 
compared to standard white-noise only algorithms. 

INTRODUCTION 

The  problem  of M-ary detection  in  channels  subject  to 
colored  additive  and  multiplicative  disturbances, as  well  as 
additive  white  noise, is reexamined  below.  New  algorithms  for 
symbol-by-symbol  detection  are  obtained  from  a  simplifica- 
tion of the  Maximum A Posteriori Probability  (MAP)  strategy 
for  detecting  sequences,  or  blocks, of symbols.  A  requirement 
is assumed t o  process  the  received  waveform  on  a  sample-by- 
sample  (recursive) basis. The  algorithms  resulting  from  this 
requirement  yield  a  new view of the  detection  process  itself. 
There  results  an  imbedding  in  the  detection  algorithms of esti- 
mation  algorithms  for  real-time  tracking of the  colored  chan- 
nel  distrubance  waveforms.  The  optimum  tracking  for  detec- 
tion  also  requires  identification of the  statistics  (bandwidths, 
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strengths,  etc.) of the  colored  disturbances.  Thus,  the  total 
process  described  below  is  called  Integrated  Detection,  Estima- 
tion,  and  Identification  (IDEI). 

Early  theoretical  work  on  detection  in  channels  perturbed 
by  more  than  just  additive  white  Gaussian  noise [ 1,  2, 31 led 
to such  developments  as  the  “RAKE”  receiver  [4]  and  diver- 
sity  reception [ 5 ] . The  idea of adjusting  the  detector  to  chang- 
ing  channel  conditions  led  to  adaptive  detection [ 6,7] ,  wherein 
channel  parameters  are  estimated.  An  idea  dual  to  adaptive 
detection,  that of estimating  the  waveform  of  a  signal  whose 
presence is uncertain,  was  explored  in [8, 91.  A  related  idea, 
that of differentiating  between  several  possible  signals,  and 
simultaneously  estimating  some  signal  parameters was ex- 
plored  in [ 10, 1 1 ] . The  first  recursive  sampled-data  algorithms 
for  M-ary  detection  in  colored  multiplicative  noise  and  white 
additive  noise,  using  the MAP strategy,  were  presented  in 
[ 121.  Simulation  results  for  those  algorithms,  plus  an  ad  hoc 
treatment  of  the  required  identification  problem,  were given 
in [ 131. 

The  present  paper  extends  the  work  in [ 121  and [ 131 t o  
include  colored  additive  noise  along  with  colored  multiplica- 
tive  noise,  together  with  white  additive  noise.  Also,  the  iden- 
tification  problem is formally  imbedded  into  the  detection/ 
estimation  problem  by  applying  the  composite  detection 
strategy.  The  resulting  formal  solution  to  the  integrated  detec- 
tion/estimation/identification (IDEI)  problem  extends  the 
“Marginal ML Estimation”  approach of [ 141 to  the  detection 
problem  and  employs  decision-direction  estimation [ 151 t o  
combat  the  problem  of  exponentially  growing  processor  mem- 
ory.  The  formal  solution  obtained  in  this  paper  is  a  suboptimal 
one  based  on  assumed  availability of sufficiently  good  identi- 
fication  of  the  colored  noise  statistics.  For  identification  esti- 
mates.  not  satisfying  the  assumption  an  extended  solution 
based on  the  “partitioning”  approach of [ 161 is indicated. 

In  the  present  paper  are  presented  the  first  Monte  Carlo 
simulation  results  for  the IDEI algorithms  for  binary  Phase- 
shift-keying  and  Frequency-shift-keying,  assuming  perfect 
identification of the  statistics  of  the  channel  disturbances.  The 
error  rate  performance  indicated  by  the  curves  in  this  paper 
may  be  viewed  as  the  best  performance  possible  for  the  IDEI 
algorithms  using  standard  FSK  and PSK signal  waveforms.  Per- 
formance  data  are  presently  being  gathered  and will be  re- 
ported  later  for  IDEI  using  practical  identification  algorithms. 

Symbol-by-Symbol  Detection 
The  problem is to  detect  the  occurrence of a  transmitted 

symbol, m, which  is  the  Jth  symbol  in  a  sequence.  The  symbol 
is an  element  of  the  M-ary  alphabet,  as 

m E ( 0 ,  1, ..., M - I}. (1) 

The  decision  on m is to  be  made  after  a  fixed  number, K,  of 
received  data  samples, z ( k ) ,  has  been  collected  during  the 
present  symbol  period.  It is assumed  that  information is  avail- 
able  from  the  detection  processing  over  the  previous J - 1 
symbol  periods. 

The  data  vector, z ( k ) ,  is assumed to  be  generated  by  a’state- 
variable  model  as  shown  in  Figure 1 .  Such  a  model  is  useful 
for  many  different  signal  forms,  as  shown  in  the  example 
below.  In  Fig. 1 ,  w ( k )  is a  white  zero-mean  Gaussian  noise 
vector  of  unit  variance. p ( k )  is a  deterministic  vector. r( ), 
Ca( ), and A( ) are  input,  transition,  and  output  matrices  of 
appropriate  dimensions. HY(  ) and H,,( ) are  matrices  for 
introducing  modulation  into  the  model. n(k)  is an  additive 

Rkeived 
Data 

Figure 1. Received  Data Generator Model. Characters with underbars 
are boldface in text. 

white,  zero-mean,  Gaussian  noise  vector,  independent  of w(k) .  
The  stochastic  output  vector, Y ( k ) ,  generated  from  the  state- 
vector, X ( k ) ,  accounts  for  both  additive  and  multiplicative 
colored  noise  in  the  received  data, z ( k ) .  Ho(k)  is a  stochastic 
rotation  matrix. 

The  governing  equations  for  the  assumed  data  generator  of 
Figure  1  are 

As an  example,  the  In-phase/Quadrature  data  channels  for  a 
radio  signal  consisting  of  a  line-of-sight  component,  diffuse 
reflection  component  with  multiplicative  noise,  additive  col- 
ored  noise,  and  white  noise  may  be  modeled,  as  in (2), by 

In (3) ,  z ( k )  is  a  two-vector  with  components z I ( k ) ,  z Q ( k ) .  
H o ( k )  is the  unitary  matrix  function  of &(IC), a  postulated 
phase  perturbation  in  the I-Q demodulation  reference  sine 
wave. Y ( k )  is a  partitioned  vector  containing y , ( k )  and y j ( k ) ,  
each of which  are  2-vectors. y , (k)  represents  a  multiplicative 
noise  process,  produced  by  a  diffuse  multipath  reflection. 
y j ( k )  represents  an  additive  colored  interference. A ( k ;  rn) and 
@ ( k ;  m )  are  the  envelope  and  phase  functions,  respectively,  for 
the  transmitted  signal,  during  the  Jth  symbol  interval. p ( k )  is 
[ 1,  1 ] in ( 3 ) ,  and  represents  the  direct  path. n(k)  is a  two- 
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vector  with  components n I ( k )  and n g ( k ) ,  which  are  independ- the  reader  not  used  to  discrete-time  state-variable  models.  For 
ent,  white,  zero-mean,  Gaussian,  with  equal  variances. the  interested  reader,  the  derivation is recorded  in  Reference 

Y(k) ,  are  generated  according  to (2) as independent Gauss- 
Markov  processes.  The  orders  of  the  Markov  processes  are S ( m )  = d m  I ~) * n [ p ( z ( k )  1 m, h k  I k - 11, 4, 8, z)1 
set  by  choosing  the  dimension  of  the  state  vector, X ( k ) ,  as K 
appropriate to the  problem  being  modeled.  The  example  of 

(5) 

equation (3)  has  been  simplified  for  the  sake  of  clarity. Quasi- In  equation (S), p(m 1 M )  is a  conditional  probability of the 
specular  reflections  and/or  frequency-selective  channels  with  a  occurrenceAof  the  present  symbol, m ,  given the  estimate  (by 
,delay-spread  reflection  may  be  modeled  within  the  framework  decision), M,  of all the  previous  symbols  in  the  sequence.  The 
of (2 ) ,  but  with  more  structure  than  in (3). product, n, is over  the K sample  times  in  the  present  symbol 

Given  knowledge  of  the  transmitted  symbol, m, the  matrix  period.  The  probability  density  function,  p(z(k) I ( I), is a 
sampled-data  functions, H Y (  ) and H p (  ), are  known  for  all  conditional  density  on  the  received  data  vector  at  sample 
sample  times, k,  in  the  symbol  period.  This  assumes  known  number k ,  within  the  present  symbol  period.  The  conditioning 
symbol  timing.  The  functions r( ), @( ), and A( ) are  not  lariable, m ,  is one of the M possible  values of  the  symbol. 
necessarily  known, A Priori, since  they  determine  such  statis- P(k I k - 1) is a  conditional-mean  estimate of the  unknown 
tics as strength  and  band  width of the  colored  channel  disturb-  channel  structure  at  sample  number k ,  given  all the  received 
ances  in Y(k) .  The  vector p( ) is not  known  since  it  represents  data  samples  from  sample  number k - 1 backAward in  time  to 
the  strength of any signal components  subject  only  to  additive  the  beginning  of  the  symbol  sequence.  The P( ) estimator i: 
noise.  Likewise,  the  variance  matrix, V n f l ( k ) ,  corresponding t o  decision-directed  at  the  beginning of each  symbol  period. R 
the  additive  white  noise, n(k) ,  is not  necessarily  known.  The i,s the  collection  of all decision-directed  filtered  estimates, 
rotation  matrix is assumed  known,  since &(k) is assumed t o  P(k - 1 I k - 1 ) .  Z is the  collection of  all data  vectors,  back- 
be  created  in  the  receiver  and,  hence, is measurable.  ward  in  time,  commencing  with z ( k  - 1). 

Let  a  vector, P(k), be  defined  which  contains  the  finite  Equation (5) was  obtained  by  application of the  composite 
number of unknown  elements  in r( ), @( ), A, p( ), and  detection  strategy,  averaging  an  intermediate  decision  statistic 
Vflfl( ). P(k) is assumed t o  be  either  constant  or  slowly  time-  over  the  stochastic P( ) vectors.  An  ?ssumption was employed 
varying  with  respect to  the  period of a  transmitted  symbol.  that  the  estimates ) (k  I k - 1)  and P(k - 1 1 k - 1)  have  suit- 
The  data  vector, z ( k ) ,  is vector-Markov  and  Gaussian,  when  ably  small  variances. As the variances of the  identification 
conditioned  on P(k) and m. estimates  increase  it  can  be  expected  that  the  performance of 

The  decision  on  the  symbol, m, which is the  Jth  symbol the  detection  algorithms will degrade. If sufficiently  good 
in  a  sequence,  is  made  by  forming  and  testing  decision  statis- identification  estimates  cannot  be  obtained,  then  an  algorithm 
tics, S ( m )  for  each  value of m = 0, 1, -.., M - 1. The data should be used, based on the  Partitioning  Theorem of [ 161. 
processing  algorithm  which  produces  the M statistics, S(m) ,  With the  data  generated  as  in (2) and  under  the  above 
is derived  by  first  considering  detection of the  symbol se- assumptions on the  composition of P(k), the  density, 
quence as a  whole,  under  the MAP strategy.  This  entails  pro- p ( z ( k )  I ( )), required  in  the  detection  algorithm  of ( 5 )  is 
ducing  detection  statistics conditionally  Gaussian,  of  the  form 

1 The  two  colored  processes, y , (k)  and  yj(k),  comprising [ 171 . The  final  resulting  algorithm is  given as 

1 

2n 
(4) p ( z ( k )  I ( )) = - [det V V J k  I k - 1)]-1'2 

where M is  the  collection of  all J symbols  in  the  sequence  and 
z is the  collection of  all KJ data  samples, z( ). The  function, - e x p   [ - + ~ T ( k ) ~ , , - l ( k  I k - 1)v(k)1 
p (  ), is the  conditional  probability.  Obviously M J  such  statis- 
tics  must  be  computed  and  compared  to  decide  on  the  symbol 
sequence as a  whole. 

Because  it  requires  a  processor  whose size expands  expo- 
nentially  with  the  length  of  the message sequence,  decision  on ~ , , ( k  I k - 1 )  = ~ { ~ ( k ) v T ( k )  I ( )}. ( 6 )  
the  sequence as a  whole is undesirable.  Although  short se- 
quences  could  be  tolerated,  the  approach  in  this  paper is When z ( k )  is conditioned  on  the m truly  present, v(k) is  the 
simply to  make  symbol-by-symbol  decisions.  In  the  presence  Innovations  Process [ 181 . In  computing  the M statistics, S(m) ,  
of white  noise  only,  with  no  channel  memory,  such  a  decision  as  in (5), the  true m is  used  in  only  one of the v(k).  Thus, v ( k )  
strategy is optimum,  since  data  from  other  symbol  periods  do  is  called  here  the  Pseudo-Innovations.  Since z ( k )  is condition- 
not  aid  detection of the  present  symbol.  However,  in  the  ally  Gaussian,  both v ( k )  and V,,(k I k - 1)  may  be  obtained 
presence of multiplicative or additive  colored  noise,  previous  from  Kalman  filters.  In  the  Kalman  filter, v(k)  is the  dynamic 
data  may  be  used to improve  the  present  decision.  Thus,  in  the  feedback  tracking  error,  formed  in  the  filter.  Each  filter 
present  case,  a  symbol-by-symbol  decision  technique  is  em-  attempts to  track Y ( k ) ,  the  vector of colored  channel dis- 
ployed  which  does  use  information  from  previous  symbol  turbances. 
times.  The  physical  operation of the  optimum  detection  algo- 

Symbol-by-symbol  decision is a  recursive  procedure  with  rithms  is  now  explained,  with  reference t o  Figures 2 and 3 .  
respect to  the  occurrance  of  the  symbols.  Further,  however,  During  the  Jth  symbol  period, M unique  detection  statistics 
it is desired t o  process  the  data  samples  recursively  within  each S ( m )  are  computed  in  parallel,  one  for  each  of  the  possibly 
symbol  period.  The  procedure  in  deriving  the  required  symbol-  present m. Each  separate  statistic  generator  contains  its  own 
by-symbol  decision  statistics, S(m),  for  a  fully  recursive  proc-  Linear  (Kalman)  Filter,  Gaussian  Function  Generator, 
essor is straightforward,  but  notationally  tiring,  especially t o  Conditional-Mean  Predictor/Filter,  and  Product  Accumulator. 

v(k) = z ( k )  - i ( k  I k - 1 )  

i(k 1.k - 1) = E { z ( k )  I ( )} 
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Figure 2. Decision-Directed MAP Detector (IDEI). Characters with 
underbars are boldface in text. 
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At  the  end  of  the  Jth  symbol  period,  the  nonnegative  statis- 
tics, S ( m ) ,  are compared  in  magnitude: If S ( n )  is largest,  then 
the  decision is made $I = n. 

At  the  end  of  the  Jth  symbol  period,  the  decision  direction 
feature is employed  as  follows.  When  the  decision  is  made, 
&i = n, it is inferred  that  the  nth  detection  statistic  generator 
has  been  processing  the  data  using  the  true  value  of m.  Thus, 
it is inferred  that  the  Kalman  filter  and  Conditional-Mean 
Identifying  filter  in  the  pth statisti: generator  contain  good 
final  filtered  estimates,  X(JK),  and s ( J K ) ,  respectively.  These 
final  filtered  estimates  are  then  routed  to  the  other M - 1 
statistic  generators  to  reset  their  initial  predicted  estimates  for 
t h e   ( J  -k 1)st  symbol  period. 

The  present  results  on  discrete-time  detection  theory  are 
also  quite  analogous  to  some  previous  continuous-time  work 
of  Kailath [ 191,  concerning  the  Likelihood  Ratios  (LR)  for 
detection of binary  random  signals  in  Gaussian  noise.  The 
problem  analyzed  by  Kailath was initially  that of detection of 
an  “on-off  keyed”  (OOK)  colored  stochastic  signal  in  white 
Gaussian  noise.  The  continuous-time  formulation  for  the 
‘LR  was 

where z ( t )  was the  observed  data  process  on  the  time  interval 
[O,  TI and $( t )  was the causal  conditional-mean  estimate of 
the  colored  signal,  under  the  conditioning  that  the  signal  was 
present.  The  barred  integral  denotes  the  stochastic  Ito  integral. 

t 

Ouiput 

DecsM 
Bi t  

Statistic 

b r i e r  
d 

Carrfir 
Phose 

From 

Reference Reference 
Level Decision 

(Coherent)  (Coherent) 
Direction 

Figure 4. Interference-Tracking PSK Detector. 

The  limiting  discrete-time  result  as  the  sampling  becomes 
dense  in  the [0, TI interval  for  Kailath’s  problem,  using  the 
approach  of  the  present  paper, is 

j ( k  I k - l ) z ( k )  -- j 2 ( k  I k - 1) . 
m 1 -  

k = l  1 
The  correspondence  to  Kailath’s  result is clear.  For  practical 
implementations,  the  summation  index will remain  finite  and 
n o  convergence  difficulties will exist. 

Example 
Figures 4 and 5 relate  to a  highly  simplified  example,  pre- 

sented  here  to  clarify  some of the  preceding  ideas. Assume 
binary  phase-shift-keying  with f90°  phase  shift  in  the  presence 
of  an  additive  colored  interference  process  and  white  noise. No 
multiplicative  channel  disturbance is assumed.  Also,  postulate 
phase  coherent  translation  of  the  band-pass  data  to  baseband, 
using  an  unperturbed  phase  reference  (a  highly  idealized  case). 
Under  these  assumptions,  the  desired  signal is resident  in  the 
quadrature  channel  only,  and  the  data  are  scalar,  continuous- 
time,  taken  here  as z ( t ) .  Instead  of  Kalman  filters,  subopti- 
mum  stationary  Wiener  filters  may  be  postulated  in  the  feed- 
back  canonical  form  of  Figure 5. If Charge-Coupled-Device1 
implementation is assumed  for  these  filters,  then  the  conver- 
sion  from  continuous  time  to  discrete  time is inherent  in  the 
filter  structure. 

For  this  example,  the  components  of (2) are’ 

H y ( k ; m ) =  1 

Y ( k )  = y j ( k ) :  a  scalar  function 

H,(k;  m = 0 )  = +A:  O < A  

’ The recursive structure indicated in  Figure 5 is not the usual CCD 
transversal filter structure common to the CCD art. The state-variable 
feed-back structure is required so that the states may be reset at the end 
of each symbol period. The design of such  a CCD device is presently 
being pursued a t  Texas A&M University. 
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Figure 5. Recursive State-Variable Filter. 

H,(k ;  m = 1)  = -A 

M k )  = 1 

n ( k ) =  n ( k ) :  a  scalar  function. (9) 

The  required  identification  for  this  example  includes  the 
carrier  reference  level, A ,  and  the  set of constants  in {r( ), 
@e ), A( )}. Identifying {I’( ), @( ), A( )} is essentially  identify- 
ing the  power  spectrum of the  colored  additive  interference 
(not  necessarily  narrow  band)  and  then  synthesizing  a  suitable 
minimum-phase  recursive  filter  for  tracking y j ( k ) .  

In  Figure 5,  the  upper  filter is for ?I = 0. The  lower  filter is 
for m = 1. In the  upper  channel, A is subtracted !ram the 
scalar  data  when m = 0. In the  lower  channel ( - A )  is sub- 
tracted  from  the  scalar  data  to  produce y j ( k )  + n ( k )  when 
m = 1.  Each  filter  then  attempts  to  track y j ( k )  under  the  dif- 
fering  assumptions on m. For this  case  the  sum of the  squares 
of  the  pseudoinnovations  forms  a  sufficient  statistic  for  detec- 
tion.  Thus,  the  sum  of  squares is accumulated  recursively  using 
the  scheme  shown  in  Figure 4. After  each  symbol  decision  the 
final  states  in  the  incorrect  filter  are  reset  using  the  final  states 
in  the  correct  filter. 

It  can  be  seen  clearly  from  this  example  that  the  “correct” 
filter is driven  simply  by  the  colored  interference  plus  white 
noise,  since  the  desired signal waveform  has  been  subtracted 
out  of the  in-coming  data.  Moreover,  the  filter is optimized  to 
track  the  colored  waveform  with  minimum  mean-squared 
error.  Thus,  theoretically  there is no restriction  on  use  of  the 
algorithm  due  to  colored  interference  bandwidth.  This  detec- 
tor  will, in  fact,  operate  with  colored  interference  whose 
power  spectrum  exactly  overlays  the  spectrum of the desired 
signal,  albeit  with  greater  error  rate  than  for  narrow-band 
interference. All that  is  required is that  the  colored  interfer- 
ence  and  desired signal be  uncorrelated. 

It  can  also  be  seen  that  the  statistic  produced  by  the “in- 
correct”  filter is larger  due  to  that  filter’s  error  response  to  the 
difference of the  two possible  desired signals. 

Thus,  closed-form  numerical  evaluations of the  error-rate 
performance of the  IDEI  detector  must  necessarily  be  made 
for  particular  interference cases. The  present  paper  shows 
some  Monte  Carlo  simulation  evaluations  of  error  rate  per- 
formance, leaving closed-form  results  for  subsequent  reporting. 

SIMULATION  RESULTS 

Reported  herein  are  the  first  simulation  results  for  the  IDEI 
binary  detection  for  Frequency-Shift-Keying  (FSK)  and  for 
Phase-Shift-Keying  (PSK).  The  simulation is structured  as  per 

E.M. Reflection 

1 c I 
Modulation chmne I IDEl 
Generator Ramsor 

Error Rote - 
Receive7 Generotw 

5 

Figure 6 .  Computer Simulation Structure. 

Figure 6. In operation,  the Message Generator  produces  a 
sequence of independent  binary  digits  in  the  zero/one  alpha- 
bet.  The  Modulation  Generator  produces  either  a PSK or  FSK 
waveform  with  continuous  phase.  The  modulation  indices  are 
selectable  for  either PSK or FSK. 

The signal modulation is routed  through  a  Channel  Proc- 
essor  which  may  provide  a  delayed  diffuse  multipath  with 
Doppler-spreading  colored  multiplicative  noise  and/or  delay- 
spreading  filtering,  in  addition  to  an  unperturbed  direct  path. 
The  parameters of the  Channel  Processor  are  set  according  to 
the  results of a  computerized  solution of the  rough  surface 
electromagnetic  bistatic  scattering  problem. 

An  Interference  Generator  produces  a  zero-mean  Gaussian 
colored  noise  process  with  selectable  bandwidth  and  variance. 
A  White  Noise  Generator  produces  a  zero-mean  Gaussian  white 
noise  process  with  selectable  variance. All of  the  stochastic 
process  generators  are  driven  by  independent  pseudorandom 
number  sequences. 

The  outputs  of  the  Channel  Processor,  Interference  Gener- 
ator,  and  White  Noise  Generator  are  summed to  produce  the 
simulated  data  process,  which is routed  in  parallel  to  the  IDEI 
Receiver  and  a  Standard  Receiver.  The  IDEI  Receiver  em- 
bodies  the  algorithms  of (5) and (6) as illustrated  in  Figures 2 
and 3. The  Standard  Receiver  employs  nonadaptive,  discrete 
time,  recursive  algorithms, as discussed  below.  The  detected 
symbols  at  the  output  of  the  Optimum  and  Standard  Receivers 
are  compared  to  the  transmitted  symbols  to  derive  the  error 
rate  curves  shown  below.  A  measure of the  statistical signifi- 
cance  of  the  error  rates is also  derived. 

The  simulation is run  entirely  in  In-phase/Quadrature  form. 
Thus,  the  various signal and  noise  sampled-data  waveforms  are 
generated  and  processed  in  2-vector  form,  corresponding t o  
the  model  of (2). The  constant  envelope  of  the  modulated 
signal  is normalized to  unity.  Thus,  the signal t o  noise  ratios  in 
the receivers  are  adjusted  by  setting  the levels  of the  various 
interferences. 
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For  the  presently  reported cases, the  symbol  rate was 
chosen  to  be  2500  per  second,  which is the  same  rate as for 
the previously  reported  simulation  for  a  quaternary  hybrid 
modulation  in  multipath [ 131.  The PSK phase  deviation  was 
chosen  at  0.785  radians,  for  a  reason  to  be discussed  below. 
The  equivalent  phase  deviation  for  FSK was also  taken  at 
0.785  radians, so as t o  be  compar,able  with  the PSK case. 
Thus,  the  frequency  shifts,  with  respect  to  the  carrier  fre- 
quency,  were  plus  and  minus  1962.5  Hz,  for m = 0 and  1, 
respectively. 

THe present  results  were  obtained  for  two  particular  chan- 
nel  conditions.  Either  colored  multiplicative  noise  with  white 
additive  noise  were  present  or.  colored  plus  white  additive 
noises  were  present  but  simultaneous  colored  additive  and 
multiplicative  noises  were  not  used.  For  the  multipath  case, 
zero  differential  group  delay was assumed  between  the  direct 
and  unreflected  paths.  This  is  equivalent  to  an  assumption of 
non-frequency-selective  'fading.  The I/Q low-pass  components 
of the  multiplicative  noise  were  obtained  by passing independ- 
e n t  scalar  white  noise  processes  through  two  separate  un- 
coupled  low-pass  filters,  each  having  the  same  transfer  func- 
tion.  This is  equivalent to  an  assumption  that  the  Doppler 
spectrum of the  unmodulated  carrier  displays  even  symmetry 
about  the  carrier  frequency.  The  discrete-time  filter  algorithms 
were  obtained  by driving  a continuous-time  filter  with  a  sam- 
pler  and  Zero-Order-Hold.  The  continuous-time  filter  has  three 
adjustable  real  pole  frequencies  and  one  adjustable  real  zero 
frequency.  For  the  present  results,  the  pole  frequencies  were 
selected  as  25@  Hz,  625 HZ, and  2500 HZ. The  zero  frequency 
was  selected  as 10,000 Hz, giving the  filter  an  equivalent  noise 
bandwidth  (one-sided) of 275.7  Hz.  For  the  present  multipath 
case, no  delay-spreading.filtering was  assumed. 

For  the  colored  additive  noise  case,  the  same  filter  structure 
was used  as  for  multipath,  driven  by  two  independent  scalar 
white  noise  pro'cesses.  Thus  the  colored  additive  spectrum  was 
assumed  to"be  eve'n-symmetric  about  the  carrier  frequency 
with a n  equivalent  width  at  radio  frequencies  of  55 1.4 Hz. The  
additive  white.noise'consisted of t w o  scalar  white  noise  proc- 
esses of equal  variance  which,  were  independent of each  other 
and  all  the  other  white  noise driving functions. 

The  standard  receiver  algorithms  produce  the  required  de- 
tection  statistics  recursively  as  follows,  during  the Jth  symbol 
period. 

PSK: 

S ( k )  = zT(k) - [ol + S(k  - 1): k = ( J  - l )K + 1 ,  ..., J K  
L'. 1 S((J - 1)K) = 0. (10) 

The  decision  rule is 

O < S ( J K ) + m  = 0 

S ( J K ) < O + m  = 1 .  (1  1) 

FSK: 

cos (Aw t ( k ) )  

sin (Aw t ( k ) )  
a(/<; m = 0 )  = z T ( k )  * + a ( k -   1 ; m = 0 )  

sin (Aw * t ( k ) )  

-cos (Aw * t ( k ) )  1 ~ ( I c ;  m = 0 )  = z T ( k )  + b ( k -  1 ; m  = 0 )  

cos (Aw t ( k ) )  
a ( k ;  rn = 1) = z T ( k )  * + a ( k - l ; r n = l )  

b ( k ;  m = 1) = z T ( k )  c ,  1 -sin (Aw - t ( k ) )  

-cos (Aw * t ( k ) )  
+ b ( k  - 1;rn = 1)  

a((J  - 1)K; rn = i) 

= b ( ( J -  l ) K ; r n = i ) = O :  i = p ,  1 

t ( k ) =  [ 9 - Int (*)I . - 1' 
2500 

k = ( J -   I ) K +   1 ,  
..., J K  

0.785 
A#.= 2 7 ~  - - 

2500 

~ i ( k )  = u2(k;  m = i) + b 2 ( k ;  m = i). 

The decision  rule  is 

S 1 ( K ) < S o ( K ) + m = O  

S o ( K ) < S I ( K ) + m  = 1.  (13) 

In  order  to  calibrate  the  simulation,  runs  were  first  made 
using  PSK  modulation  and  white  noise  only.  Results  of  four 
runs  were  plotted  in  Figure  7  u'pon  the  theoretical  error  rate 
curve, given by 

2 

sin2 (A@) 
" 

E/No = 
0n2IK ' 

p = - I ; P S K  

1- -  1 K  2 cos2 (:(/-+)A@) 

E/No = 
K k = l  

On IK 
' .  9 

p = 0: FSK.  (14) 

In  (14)  K is the  number of samples  per  symbol  (taken  here  as 
(1 a)), A$ is  equivalent  phase  deviation  in  radians,  and un is 
the  variance of each  scalar  component of the I-Q white  noise 
2-vector'. Not  'only  did  the  simulated  error  rates  fall  on  the 
theoretical  PSK'cdrve,,  but  the  standard PSK detector  and  the 
IDEI  detector  made  precisely  the sa'me errors,  symbol'  for 
symbol. 

In  attempting  to  obtain  simulation  results  for PSK in  multi- 
plicative  noise,  it  was  observed  that  the  error  rate  was  0.5 for 
all  values of E/No. In  retrospect,  this  behavior  may  be  pre- 
dicted  analytically.  To  remedy  this  situation,  the  signal  phase 
deviation  was  reduced  from n/2 radians  in  order to produce  an 
unmodulated  carrier  component  in  the  transmitted signal. 
Such  a  component serves  as  a  channel  probe  and  enables  the 
optimum  de?ector  to  track  the  multiplicative noise:  Figure 8 
shows  the  minimization of the  error  rate  as  a  function of -phase 
deviatio'n. 

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 17:27:24 EST from IEEE Xplore.  Restrictions apply. 



CONCISE PAPERS 72 i 

b 

2500  Symbolr /Semd 
1.0. Samples /Symbol 
Bbnry PSK 
Modulation  index = l.57(r/2 ) 

-15 -Io -5 o 5 IO n 20 25 30 35 40 

Figure 7. Simulated Error Rate Check Case-White  Noise Only. 
Symbol Energy to Noise  Spectral  Density Ratlo.E/N..dB 

lo-’ I 
10-2 r 

10” F 

IO hmples/Symbol 
2 5 0 0  Symbols/Sacond 

Bimry P S K ,  Mod. indea Variable 
E / N  = lOdB 
Mult.’Noise Band  Width = 275 Hr 

- - 

Modulation  Index , Radians 

Figure 8.  Minimization of Error Rate Versus Modulation Index. 

Simulation  runs  were  made  for.  both PSK and  FSK  with 
either  multiplicative  noise or additive  colored  noise  interfer- 
ence.  For  these  runs;  the  IDEI  detection  algorithms of ( 5 )  and 
(6) were used without  using  the  Identification  Predictor/ 
Filter  shown  in  Figure 3. Rather,  the  Kalman  filter  was  imple- 
mented  with  the  exact  components, F( ), (a( ), A( ), p( ), 

White  Noise 
Detection 

b MPR= 0 dB SJRS t 5 3 d B  

2%0 Symbols / Second 
10 Son le /Symbol 

Multiplicative Noise Bondwidth = 275 M 
Perfect  Idmtificotion 

kSK,Mod.  lndex=0.785 

-15 -10 -5 0 5 IO 15 20 2 5  30 35 40 

Symbol  Energy to Noise Spectrol  Density Ratio, € / N o  , dB. 

Figure 9. Simulated Error  Rate-PSK  and  Multiplicative  Noise. 

H Y (  ), H,( ), and an2 used to  generate  the  data as per (2) and 
Figure 1.  Thus,  the  IDEI  detector  was  furnished  with  “perfect 
identification”  of  the  statistics  of  the  channel.  For  these  runs, 
Ho( ) was set to the 2 X 2 identity matrix. Thus, the data were 
generated  without  any  phase  perturbations in the I-Q demodu- 
lator.  Perfect  symbol  synchronization  and  no  quantization  of 
the  data  waveforms  were  assumed.  These  runs  served  to  deter- 
mine  the  greatest  lower  bound  for  the  error  rate of the  IDEI 
detector,  without  possible  degradation  due  to  imperfect  iden- 
tification  estimators. 

As  the  simulation  progresses,  a  raw  error  rate is cgmputed 
recursively  from  the  transmitted  and  detected message sym- 
bols.  From  the  raw  error  rate,  recursive  estimates of the  mean 
and  variance  of  the  error  probabilities  are  computed  using 
vanishing  memory  estimators.  Two  different  convergence  tests 
are  used  jointly to  terminate  the  simulation  run.  The  first  test 
is that  the  ratio of sample-mean  value  of  error  rate t o  sample 
standard  deviation  must  be  greater  than  10.  The  second  test is 
that  the  ratio of the  difference  of  the  last  two  sample-mean 
error  rates  to  the  last  sample-mean  error  rate  must  be less than 
lop4.  It is generally  the  last  Cauchy  convergence  criterion 
which  terminates  the  simulation  run.  This  simulation  routine 
has  been devised for  running  on  minicomputers  with  limited 
memory.  The  trade-off is that  long  run  times  are  required. 

Results  for PSK with  multiplicative  noise  are  shown  in Fig- 
ure 9. The  multiplicative  noise level is set as though  the  diffuse 
reflected  path  were  equal  in  strength to  the  direct  path.  Addi- 
tive  colored  noise is set 53 dB  below  the  direct  path signal 
level. The  standard  detector  error  rate  saturates  at  an  irreduci- 
ble level approximating IOp1. Tlfe IDEI  detector  error  rate 
decreases  exponentially  with  increasing E/No. 

Figure 10 shows  results  for PSK with  colored  additive 
noise.  The  multipath is set 47 dB  below  the  direct  path signal. 
The  colored  noise is set  equal  in  power  to  the  direct  path 
signal.  The  standard  detector  operates  at  an  irreducible  error 

\ 
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Figure 10. Simulated Error Rate-PSK and Colored Interference. 

rate  level,  similar to  the  multipath  results.  The  IDEI  detector 
error  rate  decreases  exponentially  with  increasing E/No; how- 
ever the  penalty  in E/No is not  as  large  as  in  the  multipath 
case.  The  slope of the  optimum  error  rate  curve  appears  to 
approach  that  of  the  white  noise  only  case. 

Figure  11  shows  the  results  for  FSK  with  multipath of the 
same  strength as for  the PSK case.  It is apparent  that  FSK is a 
more  robust  modulation  than PSK in multiplicative  noise, 
since  both  the  standard  detector  and  optimum  detector  per- 
form  markedly  better  than  in  the PSK case. For  error  rates 
greater  than  the  standard  detector  performs  almost  as 
well as the  optimum  detector.  Divergence  in  performance  be- 
tween  the  two  detectors  can  be  seen  beginning  for  error  rates 
less than 1 O-3. 

Figure  12  shows  the  results  for  FSK  with  additive  colored 
noise of the  same  strength  as  for  the PSK case.  Here  again  the 
standard  detector  performs  considerably  better  than  in  the 
PSK case.  However,  the  optimum  detector  comparison is much 
more  impressive.  For PSK at  error  rate,  the  additive 
colored  noise  was  equivalent  to  a 12 dB  increase  in  the  white 
noise level. For  FSK  at  lop3  error  rate,  the  same  colored 
noise is equivalent to  only a  1  dB  increase  in  white  noise level. 
Part of the  explanation  for  the  better  performance of FSK 
over PSK in  this  simulation is that   the 550 Hz wide  additive 
interference  sits  between  the  two  FSK  tones. If the  colored 
noise  were  wider  the  FSK  performance  would  decrease.  For 
PSK,  the  interference  sits  in  the  maximum  portion of the PSK 
signal  spectrum.  This  superiority  should  not  be  expected  for 
wider  bandwidth  colored  interference. 

CONCLUSION 

This  paper  has  presented  new  recursive  sampled-data algo- 
rithms  for  M-ary MAP detection  in  channels  subject  to  both 
additive  and  multiplicative  colored  noise,  as well as  additive 
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B iwy  FSK, Mod. lndex=0.785 

Perfect ldentiflmtiw 
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Figure 11. Simulated Error Rate-FSK and Multiplicative  Noise. 
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Figure 12. Simulated Error Rate-FSK and Colored Interference. 

white  noise.  The  recursive  formulation  formally  resulted  in 
the  imbedding of M.M.S.E. tracking  and  identification of the 
colored  disturba.nces  in  the  detection  algorithms.  Although 
hard  symbol  decisions  were  used  in  the  present  work, the 
decisions  are  not  independent  from  symbol to symbol,  since 
decision-directed  disturbance  tracking is employed. 
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The  recursive  algorithms  provide a different view of  the 
detection  problem,  especially  for  additive  colored  and  white 
noise.  For  instance,  it  seems  that  the  error  rate is not  con- 
trolled  by  the  power  of  the  additive  colored  disturbance 
directly,  but  only  by  the  mean-squared-error of the  filter 
which  tracks  the  disturbance.  Also,  the  colored  disturbances, 
multiplicative  or  additive,  are  not  restricted  to  be  narrow-band 
with  respect to   the desired signal. 

The  IDEI  algorithms  yield  gain  against  colored  disturb- 
ances,  for  standard  modulations  without  spectrum  spreading. 
Where  standard  detector  error  rates  saturate,  the  IDEI  error 
rate,  at  least  for  perfect  identification,  decreases  rapidly  with 
decreasing  white  noise level. 

Whether  these  new  theoretical  results  become of practical 
interest  hinges on the  answers  to  two  key  questions.  The  key 
theoretical  question  is, “What identification  accuracy is re- 
quired  to  produce  acceptable  error  rates  with  the  new algo- 
rithms?”  The  key  practical  question  is,  “Can  low-cost  linear 
tracking  filters  with  sufficient  processing  speed  be  imple- 
mented in hardware?”  The  answer  to  the  hardware  question 
depends on the  nature  of  the  channel  itself.  For  colored  chan- 
nel  disturbances  with  bandwidths  less  than,  say 1 kHz,  digital 
filter  implementation  seems  indicated.  For  wide  bandwidth 
channel  disturbances,  hybrid  processing  hardware,  perhaps 
employing  CCD  devices,  may  be  the  answer. 
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Loop-Induced Magnetic Fields with 
Negligible Side-Lobes 

F. W. UMBACH 

Abstruct-In schools for the hard-of-hearing where adjacent class- 
rooms are equipped with non-carrier induction loop systems, it is 
necessary to realize a geometric discrimination between the classroom- 
fields.  One approach to reaching the required 24  dB  per meter roll- 
off at the boundaries is the orthogonal field principle reported first in 
1965 by de  Boer, Bosman and Joosten (ref.  2, 3, 4). In this paper a 
method is described  and results are given for an heuristic development 
of this principle in the case of classrooms about 8 m in length  with 
permissible  roll-off  ranges  of 2 m. It is  shown that it is also  possible 
to discriminate in a vertical direction if a secondary field at the ceil- 
ing  is  used. The heuristic approach achieves  very  good results in this 
case and  overcomes the mathematical difficulties arising  when the 
field  is calculated analytically. 

I. THE ORTHOGONALITY  PRINCIPLE 

A single  wire  loop, as pictured  in Fig. 1, gives rise t o  a 
vertical  field  strength  as  shown  in Fig. 2. 

Also shown  in Fig. 2 is the  cross-talk  that  arises  in  the 
adjacent  classroom  from  such a loop. A loop  with 6 m diameter 
has a maximum  field  strength  for 1 m listening-height at   about 
2 m out  of the  center of the  field.  The  field  strength  decreases 
t o  zero  at 3 . 2  m out  of  the  center  and  reaches a second  maxi- 
mum of 4 m distance.  This  second  maximum is 60% of the 
field  strength  at  the  loop’s  center.  At 8 m distance  (in  the 
center of the  adjacent  classroom)  the  residual  field  strength is 
15%.  It is clear  from  these  figures  that  such a situation is 
unallowable. 

The  vertical  field  strength H y  caused  by a current I through 
a wire on the  floor is, a t  a horizontal  distance of x m and  at a 
height  of h, m, 

I X 
H =-- 

~ T I  x2 + h L 2  . 
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