
DECOMPOSITION BASED SOLUTION APPROACHES FOR

MULTI-PRODUCT CLOSED-LOOP SUPPLY CHAIN

NETWORK DESIGN MODELS

A Dissertation

by

GOPALAKRISHNAN EASWARAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2008

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4278292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DECOMPOSITION BASED SOLUTION APPROACHES FOR

MULTI-PRODUCT CLOSED-LOOP SUPPLY CHAIN

NETWORK DESIGN MODELS

A Dissertation

by

GOPALAKRISHNAN EASWARAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Sıla Çetinkaya
Halit Üster

Committee Members, Elif Akçalı
Brett Peters
Jennifer L Welch

Head of Department, Brett A. Peters

August 2008

Major Subject: Industrial Engineering



iii

ABSTRACT

Decomposition Based Solution Approaches for Multi-product Closed-Loop

Supply Chain Network Design Models. (August 2008)

Gopalakrishnan Easwaran, B.E., PSG College of Technology, Coimbatore, India;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Sıla Çetinkaya
Dr. Halit Üster

Closed-loop supply chain (CLSC) management provides opportunity for cost

savings through the integration of product recovery activities into traditional supply

chains. Product recovery activities, such as remanufacturing, reclaim a portion of the

previously added value in addition to the physical material.

Our problem setting is motivated by the practice of an Original Equipment Man-

ufacturer (OEM) in the automotive service parts industry, who operates a well es-

tablished forward network. The OEM faces customer demand due to warranty and

beyond warranty vehicle repairs. The warranty based demand induces part returns.

We consider a case where the OEM has not yet established a product recovery net-

work, but has a strategic commitment to implement remanufacturing strategy. In

accomplishing this commitment, complications arise in the network design due to ac-

tivities and material movement in both the forward and reverse networks, which are

attributed to remanufacturing. Consequently, in implementing the remanufacturing

strategy, the OEM should simultaneously consider both the forward and reverse flows

for an optimal network design, instead of an independent and sequential modeling ap-

proach. In keeping with these motivations, and with the goal of implementing the

remanufacturing strategy and transforming independent forward and reverse supply

chains to CLSCs, we propose to investigate the following research questions:



iv

1. How do the following transformation strategies leverage the CLSC’s overall cost

performance?

• Extending the already existing forward channel to incorporate reverse

channel activities.

• Designing an entire CLSC network.

2. How do the following network flow integration strategies influence the CLSC’s

overall cost performance?

• Using distinct forward and reverse channel facilities to manage the corre-

sponding flows.

• Using hybrid facilities to coordinate the flows.

In researching the above questions, we address significant practical concerns in

CLSC network design and provide cost measures for the above mentioned strategies.

We also contribute to the current literature by investigating the optimal CLSC net-

work design. More specifically, we propose three models and develop mathematical

formulations and novel solution approaches that are based on decomposition tech-

niques, heuristics, and meta-heuristic approaches to seek a solution that character-

izes the configuration of the CLSC network, along with the coordinated forward and

reverse flows.



v

To My Family



vi

ACKNOWLEDGMENTS

I express my sincere gratitude to my co-advisors, Dr. Sıla Çetinkaya and Dr.

Halit Üster, for their guidance and encouragement during my graduate studies at

Texas A&M University. I am indebted for their support and advice for my professional

and personal development.

I am grateful to Dr. Elif Akçalı, Dr. Brett A. Peters and Dr. Jennifer L. Welch

for serving as members of my advisory committee and providing valuable comments

on my dissertation. I would like to thank my officemates: Fatih, Burcu, Homarjun,

Hui, Ken, Joaquin, Liqing, Xinghua and Su. Their friendship and support have been

invaluable to me. I wish to thank Judy Meeks, Claudia Samford, Michele Bork, Lesly

Bell, Letty Benning, and Katherine Edwards for administrative help, and Mark Henry,

Mark Hopcus and Dennis Allen for their prompt support in technical assistance.

I am grateful to my family and friends for all their affection, encouragements

and patience. I could not have completed this work without their support and love.

I thank them for extending their unconditional love to me.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.1. Motivation and Scope of the Dissertation . . . . . . . . . 2

I.2. Description of Problem Settings . . . . . . . . . . . . . . 5

I.2.1. An Uncapacitated Remanufacturing Network

Design Problem . . . . . . . . . . . . . . . . . . . 10

I.2.2. A Capacitated Remanufacturing Network De-

sign Problem . . . . . . . . . . . . . . . . . . . . . 11

I.2.3. A Closed-Loop Network Design Problem . . . . . 12

I.3. Solution Methodologies . . . . . . . . . . . . . . . . . . . 13

I.4. Organization of the Dissertation . . . . . . . . . . . . . . 14

II LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . 15

III AN UNCAPACITATED REMANUFACTURING NETWORK

DESIGN PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . 20

III.1. Assumptions and Operational Characteristics . . . . . . . 21

III.2. Problem Formulation . . . . . . . . . . . . . . . . . . . . 22

III.3. Solution Approach Using Benders Decomposition . . . . . 27

III.3.1. Benders Subproblem . . . . . . . . . . . . . . . . . 29

III.3.2. Solving the Subproblems . . . . . . . . . . . . . . 32

III.3.3. Benders Master Problem . . . . . . . . . . . . . . 40

III.4. Computational Experiments . . . . . . . . . . . . . . . . 44

III.4.1. Random Test Instance Generation . . . . . . . . . 45

III.4.2. Computational Results . . . . . . . . . . . . . . . 48

III.4.3. Balanced Costs . . . . . . . . . . . . . . . . . . . . 49

III.4.4. Unbalanced Costs . . . . . . . . . . . . . . . . . . 52

III.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 53

IV A CAPACITATED REMANUFACTURING NETWORK DE-

SIGN PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . 56

IV.2. Heuristic Solution Methods . . . . . . . . . . . . . . . . . 60

IV.2.1. Solution Representation . . . . . . . . . . . . . . . 61



viii

CHAPTER Page

IV.2.2. Objective Function Evaluation . . . . . . . . . . . 61

IV.2.3. Construction Heuristics . . . . . . . . . . . . . . . 65

IV.2.4. Neighborhood Functions . . . . . . . . . . . . . . 67

IV.2.5. Sequential Neighborhood Search Procedure . . . . 68

IV.2.6. Random Neighborhood Search Procedure . . . . . 71

IV.2.7. An Alternative Parallel Neighborhood Search

and Other Variations . . . . . . . . . . . . . . . . 72

IV.3. Benders Decomposition Framework . . . . . . . . . . . . 74

IV.3.1. Benders Subproblem . . . . . . . . . . . . . . . . . 74

IV.3.2. Benders Master Problem . . . . . . . . . . . . . . 80

IV.3.3. Heuristic-Enhanced Benders Decomposition . . . . 82

IV.4. Computational Experiments . . . . . . . . . . . . . . . . 84

IV.4.1. Random Test Instance Generation . . . . . . . . . 85

IV.4.2. Computational Results . . . . . . . . . . . . . . . 86

IV.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 92

V A CLOSED-LOOP NETWORK DESIGN PROBLEM . . . . . . 94

V.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . 95

V.2. Solution Approach Using Benders Decomposition . . . . . 100

V.2.1. Benders Subproblem . . . . . . . . . . . . . . . . . 100

V.2.2. Solving the Subproblems . . . . . . . . . . . . . . 103

V.2.3. Benders Master Problem . . . . . . . . . . . . . . 105

V.3. An Alternative Formulation . . . . . . . . . . . . . . . . . 107

V.3.1. Dual Subproblem for Alternative Formulation . . . 108

V.3.2. Solving the Subproblems . . . . . . . . . . . . . . 110

V.3.3. Another Alternative Formulation . . . . . . . . . . 114

V.4. Computational Experiments . . . . . . . . . . . . . . . . 114

V.4.1. Random Test Instance Generation . . . . . . . . . 115

V.4.2. Computational Results . . . . . . . . . . . . . . . 115

V.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 119

VI CONCLUSIONS AND FUTURE DIRECTIONS . . . . . . . . . 120

VI.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . 120

VI.2. Foundation for Future Research . . . . . . . . . . . . . . 122

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



ix

LIST OF TABLES

TABLE Page

1 URP: Problem Classes Used in Computational Testing. . . . . . . . 45

2 URP: Distributions for Sets, Demand, Return Fraction, and Re-

covery Fraction Values. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 URP: Average Realized Percentage Contribution of Cost Com-

ponents in the Test Instances. . . . . . . . . . . . . . . . . . . . . . . 48

4 URP: Comparison of the Optimality Gaps upon Termination for

Balanced Instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 URP: Comparison of the Solution Times for Balanced Instances. . . 51

6 URP: Comparison of the Number of Iterations for Balanced Instances. 52

7 URP: Comparison of the Solution Times for Unbalanced Instances. . 53

8 CRP: Problem Classes Used in Computational Testing. . . . . . . . 86

9 CRP: Distributions for Product Capacity Coefficients and Stor-

age Capacity Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10 CRP: Optimality Gaps for Setting I. . . . . . . . . . . . . . . . . . . 88

11 CRP: Solution Runtimes for Setting I. . . . . . . . . . . . . . . . . . 89

12 CRP: Optimality Gaps and the Number of Instances with the

Best Objective Value for Setting II. . . . . . . . . . . . . . . . . . . . 90

13 CRP: Comparison of the Solution Runtimes for Setting II Instances. 91

14 CRP: Computational Performance of the HBD Approach. . . . . . . 92

15 CLP: Problem Classes Used in Computational Testing. . . . . . . . 116



x

TABLE Page

16 CLP: Distributions for Demand, Return Fraction, Recovery Frac-

tion, Product Capacity Coefficients and Storage Capacity Values. . . 117

17 CLP: Comparison of the Optimality Gaps Upon Termination. . . . . 117

18 CLP: Comparison of the Solution Times. . . . . . . . . . . . . . . . 118

19 CLP: Comparison of the Number of Iterations. . . . . . . . . . . . . 119



xi

LIST OF FIGURES

FIGURE Page

1 General Structure of the CLSC Network. . . . . . . . . . . . . . . . . 20

2 Underlying Structure of the CLSC Network for URP. . . . . . . . . 24

3 Underlying Structure of the CLSC Network for CRP. . . . . . . . . 56

4 CLP: Underlying Structure of the CLSC Network. . . . . . . . . . . 97



1

CHAPTER I

INTRODUCTION

Closed-loop supply chain management provides ample opportunity for cost savings

through the integration of product recovery activities into traditional supply chains

(a.k.a. forward supply chain). It has recently received research focus in the context

of reverse logistics and recovery activities such as remanufacturing. Remanufacturing

processes used products to reclaim a portion of the previously added value in the form

of cost of energy, labor, and manufacturing operations in addition to the physical

material (Parkinson and Thompson, 2003).

A number of firms have focused on remanufacturing initiatives over the past

years. Dell, GM, Caterpillar, and HP are a few prominent examples. Kodak and

Xerox became pioneers in their industries by adopting successful remanufacturing

practices for single-use cameras and refillable toner cartridges, respectively. The fi-

nancial success, coupled with the environmental benefits, attained by these companies

has been instrumental to the current interest in remanufacturing practices. In the

United States, automotive parts remanufacturing market was estimated to be $36 bil-

lion, which accounts for a significant share of the $56 billion remanufacturing sector

(Lund, 1996; Giuntini, 2001). However, widespread adoption and successful integra-

tion of remanufacturing strategy into closed-loop supply chains (CLSC) still encounter

obstacles, which include a lack of quantitative decision-making tools to address the

unique challenges of the underlying CLSC network.

The business decisions pertaining to the issues and challenges in CLSC net-

works follow a three-part hierarchy consisting of the strategic, tactical and opera-

This dissertation follows the style and format of Operations Research.



2

tional level decisions (Langevin and Riopel, 2005). Guide et al. (2003) report the

unique challenges facing the CLSC networks and they emphasize the need for build-

ing quantitative business models to address the larger strategic issues. Within the

above decision hierarchy, the logistic network design is considered a strategic issue of

prime importance, since it impacts the performance and economic viability of CLSCs

(Fleischmann, 2001).

The goal of the network design is to facilitate an appropriate logistics infrastruc-

ture for the underlying CLSC by examining the alternate network structures, out-

sourcing strategies, locations and capacities of supply chain facilities, product flow

patterns, and transportation strategies. An optimal network design improves the

competitive advantage of a firm through increased supply chain performance in terms

of higher customer service and reduced operational costs. In general, optimal network

design for the traditional supply chains involves complex optimization problems and

requires advanced technology and solution approaches (Simchi-Levi et al., 2004). In

the case of CLSCs, further complications arise due to the simultaneous consideration

of forward and reverse flows in the underlying network and these complicating factors

are primarily attributed to the product recovery and reuse activities.

I.1. Motivation and Scope of the Dissertation

Our problem of interest is motivated by the setting where an original equipment man-

ufacturer (OEM) produces and distributes products, which are characterized by high

durability, long life cycles, and high recovery value, via an established forward channel

with new product plants and distribution centers (DCs) to satisfy the demand at the

retail locations. Due to the economic incentives and the environmental benefits, the

OEM has a strategic commitment to implement remanufacturing practices and es-



3

tablish a reverse channel network. In accomplishing this commitment, complications

arise in the network design due to different kinds of flows in the network, and these

are primarily attributed to remanufacturing.

Remanufacturing extends the scope of traditional manufacturing and logistics to

include not only forward, but also reverse, flows along with the corresponding for-

ward and reverse channel activities. Although adopting a remanufacturing strategy

requires a significant initial investment to establish and manage a reverse channel

in addition to a forward channel, in general, this investment can be justified by the

effective recovery of high value components via an integrated CLSC network.

Since remanufacturing processes returned parts, the efficiency with which the

OEM collects these returned parts has a direct impact on the profitability of the

remanufacturing operations. Moreover, the remanufactured products can be used to

satisfy a portion of the customer demand in the forward channel. This impacts the

forward channel flows and introduces a strong interdependence between the forward

and the reverse flows in the underlying CLSC network. Consequently, in implement-

ing the remanufacturing strategy, the OEM should simultaneously consider both the

forward and reverse flows for an optimal network design, instead of an independent

and sequential modeling approach to the forward and reverse network design. In

keeping with these motivations, and with the goal of implementing the remanufac-

turing strategy and transforming independent forward and reverse supply chains to

closed-loop supply chains, in this dissertation, we investigate the following research

questions:



4

(i) How do the following transformation strategies leverage the CLSC’s overall cost

performance?

• Extending the already existing forward channel to incorporate reverse

channel activities.

• Designing an entire CLSC.

(ii) How do the following network flow integration strategies influence the CLSC’s

overall cost performance?

• Using distinct forward and reverse channel facilities to manage the forward

and reverse flows, respectively.

• Using hybrid facilities to coordinate the forward and reverse flows.

In researching the above questions, our main goal is to address significant practi-

cal concerns in the CLSC network design (in terms of facility location and forward and

reverse flow integration) and provide cost measures (in terms of total cost of facility

location, processing and transportation) for different transformation strategies. We

also contribute to the current literature by investigating the optimal network design

for CLSCs. More specifically, we propose three models and develop mathematical for-

mulations and novel solution approaches that are based on decomposition techniques,

heuristics, and meta-heuristic approaches to seek a solution that characterizes

(i) the configuration of the CLSC, that is, the locations of forward and reverse

channel facilities, and

(ii) the integrated and coordinated forward and reverse flows in this network.



5

I.2. Description of Problem Settings

In our network design problem the OEM operates a forward channel for producing and

distributing multiple types of products. Specifically, we focus on the network design

for remanufacturable/refurbishable durable products/parts, i.e., consumer, commer-

cial, and industrial equipment such as automotive parts, photocopying equipment,

ships, and aircraft engines. Products in this category are characterized by their

high recoverable value, long product life cycles, and well-established forward networks.

For example, consider a photocopying equipment manufacturer managing a well-

established forward network with manufacturing facilities, DCs, and customer/retail

locations. Due to increasing popularity of leasing practices in this industry, the man-

ufacturer faces two streams of demand:

(i) new demand, i.e., new equipment acquisitions, and

(ii) replacement demand, i.e., leased equipment renewals.

Adopting a remanufacturing strategy, the manufacturer can satisfy both streams

of demand using new or remanufactured products, i.e., the forward flows. In this

setting, the customers do not distinguish between the two types of products. The

replacement demand generates a return stream, i.e., the reverse flow, which, in turn,

can be transformed into remanufactured products.

Likewise, in the automotive industry, the OEMs operate well-established service

parts networks that consist of part suppliers, DCs, and retail locations. The spare

parts that are required for vehicle maintenance and repair operations are sold through

service shops at car dealerships and warehousing distributors, which we refer to as

the retailers. The OEM faces two streams of service parts demand:



6

(i) warranty based vehicle repair demand, and

(ii) beyond warranty vehicle repair demand.

Both streams of demand are satisfied by new or remanufactured service parts, due

to the part warranties offered by the manufacturer. The main distinction between

warranty and beyond warranty vehicle repairs is that the former generates a part

return–the failed part that should be replaced due to warranty obligations–whereas

the latter may or may not generate a return. We refer to the stream that generates

part returns as the induced demand stream, and the one that does not generate part

returns as the new demand stream. The new parts are either produced by the OEM or

purchased from an outside supplier. Each supplier provides a particular type of new

part, but the OEM may purchase a particular type of part from multiple suppliers.

The DCs, which act as breakbulk and packaging locations between the manufacturing

and the retail locations, perform operations that facilitate the economies-of-scale in

transportation. Typically, a DC receives new parts from multiple suppliers and serves

multiple retailers within its geographical proximity.

At the retailer locations, the induced demand stream generates parts returns

that can be used for remanufacturing. In establishing a reverse channel, the OEM

can locate the collection centers (CCs) between the retail locations and the product

recovery plants to perform sorting and consolidation of parts returns. Similar to the

DCs, the CCs provide opportunities to benefit from economies-of-scale in transporta-

tion in the reverse channel. Although remanufacturing is a popular practice in the

automotive industry, the reverse channel activities such as the collection of used parts,

disassembly of recoverable components, and remanufacturing are often performed by

small or medium size remanufacturing firms, on an ad-hoc basis. Also, since the re-

manufacturable parts are sold and purchased as commodities, the retailers may sell



7

some of the parts returns directly to independent remanufacturers and, hence, return

only a fraction of the parts returns, which we refer to as the return fraction, to the

CCs managed by the OEM. At a CC location, the returned parts received from the

retailers are cleaned, sorted, and consolidated into individual parts streams.

In practice, there are two common alternatives for retailer assignments. The

single-sourcing assignment is where a retailer works with only one CC (i.e., it sends

all of the returns it receives to its dedicated CC) and with only one DC (i.e., it receives

all of its demand from its dedicated DC). Whereas, the multi-sourcing assignment

is where a retailer works with many CCs and DCs. A single-sourcing requirement

may be preferable by the DCs, CCs and the retailers due to operational ease of its

implementation. However, the advancements in the information technology to effec-

tively track shipments and deliveries, which are available as a software module in

enterprise resource planning software applications, provide opportunities to benefit

from possible cost savings of the multi-sourcing strategy without additional opera-

tional burden. Moreover, in practice, retailers may prefer to procure service parts

from multiple locations to alleviate the difficulties during unforeseen supply interrup-

tions. Furthermore, in practice, a combination of single-sourcing and multi-sourcing

strategies may be preferred by the retailers.

After sorting the retailer returns into individual parts stream, the CC locations

send the returns stream to the associated remanufacturing locations. The facilities,

namely the remanufactured product plants (RPPs), reclaim the components and sub-

assemblies from the consumer returned parts. The remanufacturing process deems

some of the parts as unrecoverable, and only a fraction of the parts returns received

at a remanufacturing facility can be remanufactured. We refer to this fraction as the

recovery fraction. The OEM in the automotive industry can invest in remanufacturing

facilities or outsource the remanufacturing for a particular type of part. In doing so,



8

the OEM can select a single remanufacturing location to take advantage of learning-

by-doing effects, core competencies, quality assurance, and lower unit costs due to

consolidated volume. Alternatively, the OEM can select multiple remanufacturing

locations for a particular type of part. These alternatives essentially constitute the

outsourcing strategies for the remanufacturing operations. The RPPs reclaim the

components and sub-assemblies from the consumer returned parts, which, in turn,

are used in the remanufactured parts.

The problem setting associated with the CLSC network described above, can

be characterized by inclusion or exclusion of finite capacity restrictions on the facili-

ties. The restrictions can be excluded when we have sufficient processing and storage

capacities at all the facilities in the CLSC network. Also, the exclusion of the ca-

pacity restrictions enables us to develop mathematical models and solution methods

that provide insights for the relatively hard-to-solve problems that assume capacity

restrictions. Alternatively, the inclusion of the capacity restrictions enables us to con-

sider a significant practical assumption where there are finite processing capacities in

production, distribution, and collection activities. In practice, we have capacity lim-

itations due to either the storage space limitation, the finite resources for processing

and handling, the manpower, or a combination of these factors.

Based on the above description, we identify the following important features that

characterize the network design problems for CLSCs.

(i) Transformation strategies

• Extending the already existing forward channel to incorporate reverse

channel activities.

• Designing an entire CLSC.

(ii) Network flow integration strategies



9

• Using hybrid facilities such as hybrid plants (that are capable of producing

new service parts in addition to performing remanufacturing operations)

and hybrid centers (that are capable of handling both forward and reverse

flow of service parts) to coordinate the forward and reverse flows.

• Using distinct forward and reverse channel facilities to manage the forward

and reverse flows, respectively.

(iii) Retailer assignment strategies

• Single-sourcing, where each retailer works with a unique DC to receive all

types of service parts and a unique CC to send all types of product returns.

• Multi-sourcing, where a retailer can work with multiple DC and CC loca-

tions to receive and send service parts, respectively.

(iv) Remanufacturing location selection strategies

• Selecting a single remanufacturing location for each type of service part.

• Selecting multiple remanufacturing locations for each type of service part.

Based on these features, in this dissertation, we consider three different practical set-

tings for the underlying multi-product CLSC and define the corresponding network

design problems, namely an Uncapacitated Remanufacturing Network Design Problem

(URP), Capacitated Remanufacturing Network Design Problem (CRP), and Closed-

Loop Network Design Problem (CLP). More specifically, in the first two problem

settings (i.e., in URP and CRP), we extend the existing forward channel infrastruc-

ture to accommodate distinct reverse channel infrastructure to coordinate the forward

and reverse flows. In the latter setting (CLP), we design the entire CLSC network

by considering hybrid facilities. We next describe these three problem settings.



10

I.2.1. An Uncapacitated Remanufacturing Network Design Problem

Under this setting, we assume that the manufacturers operate well-established for-

ward networks, i.e., the locations of the new product manufacturing facilities, DCs,

and retailers are known. It is worthwhile to note that this is the case for an OEM

who has not yet established a reverse network for remanufacturing but has a strate-

gic commitment to do so. In order for the OEM to realize the full potential of

remanufacturing, the interdependence between reverse and forward networks should

be considered explicitly and the OEM should modify the forward network operations

and accommodate reverse flows to transform the existing supply chain into CLSC.

As a result, there is a strong motivation to develop quantitative modeling tools that

consider the existing infrastructure while designing the reverse network and modify-

ing the flows on the forward network accordingly. Moreover, in order to realize the

full potential of remanufacturing, the interdependence between reverse and forward

networks should be considered explicitly. The network design issues associated with

designing the reverse network, while simultaneously coordinating the forward and

reverse flows on the CLSC network, pertain to the following questions:

(i) How should the existing forward network be extended to accommodate the

remanufacturing processes, i.e., where should the CCs and RPP facilities be

installed?

(ii) How should the forward and reverse flows be routed/coordinated in this ex-

tended network?

In this problem, we assume single-sourcing assignments for the retailers in both

the forward and reverse channels. This network setting–where the demand at each

retailer is satisfied via a single DC (rather than direct shipments) and the returns at

each retailer is collected via a single CC (rather than via multiple collection centers per



11

retailer)–captures important practical characteristics of such problems, particularly

in the automotive industry.

I.2.2. A Capacitated Remanufacturing Network Design Problem

We consider two important extensions to URP. The first one is the inclusion of finite

capacity restrictions on the facilities. This inclusion generalizes the CLSC network

design problem to consider a significant practical concern associated with finite pro-

cessing capacities in production, distribution, and collection activities. In practice,

we have capacity limitations due to finite resources for processing and handling the

forward and reverse flows. Moreover, the inclusion of capacity restrictions influences

the network flow of a product relative to the others.

Secondly, we relax the single-sourcing assumption in which a retailer works with

only one CC (i.e., it sends all of the returns it receives to its dedicated CC) and

with only one DC (i.e., it receives all of its demand from its dedicated DC). More

specifically, we consider multi-sourcing for the corresponding relations in the CLSC

network. A single-sourcing requirement may be preferable to the DCs, CCs and

retailers due to the operational ease of its implementation. However, advancements

in information technology for effectively tracking shipments and deliveries (available

as a software module in enterprise resource planning software applications) provide

opportunities to benefit from possible cost savings from the multi-sourcing strategy

without additional operational burdens. Moreover, in practice, retailers may prefer

to procure products from multiple locations to alleviate difficulties from unforeseen

supply interruptions. Therefore, in the CRP problem setting, a retailer can receive

shipments from multiple DCs and send the customer returned products to multiple

CCs.



12

I.2.3. A Closed-Loop Network Design Problem

In this problem setting, we generalize the URP and CRP settings by deciding on

the locations of the forward channel facilities, i.e., we determine the optimal locations

of the manufacturing/remanufacturing facilities, DCs and CCs. We note that this is

the case for an OEM who wishes to establish an entire CLSC network for managing

multiple types of service parts. Under this setting, we coordinate the forward and

reverse flows using hybrid plants and hybrid centers. The network design issues

associated with designing the entire CLSC network, pertain to the following questions:

(i) How should the CLSC network be configured, i.e., where should the hybrid

plants and hybrid centers be commissioned?

(ii) How should the forward and reverse flows be routed/coordinated in this CLSC

network?

In this problem, we assume single-sourcing assignments for the retailers in both the

forward and reverse channels. Moreover, we select a single hybrid plant from a set of

candidate locations available for each type of service part.

For the sake of clarity in model development and analysis, we refer to the parts

as products in the remainder of this document. Also, a supply location that provides

new products is referred to as a new product plant (NPP), a supply location where

remanufacturing takes place is referred to as a remanufactured product plant (RPP), a

supply location where both manufacturing and remanufacturing takes place is referred

to as hybrid product plant (HPP), and an intermediate center where both collection

and distribution operations are performed is referred to as hybrid center (HC).



13

I.3. Solution Methodologies

For the three problem settings of interest, we formulate mixed integer linear programs

(MILP) to determine the optimal locations of the network facilities along with the

integrated forward and reverse flows such that the total cost of facility location,

processing and transportation is minimized. These CLSC network design problems

dictate large scale MILPs. Furthermore, we can clearly see that these network design

problems are generalization of the traditional Uncapacitated Facility Location Problem

(UFLP), which belongs to the class of NP-hard problems (Garey and Johnson,

1979). As a consequence of the combinatorial nature of these problems, obtaining

an optimal or near-optimal solution, in general, requires very high computational

runtimes, specifically for large scale problem instances. However, the network flow

structures underlying our models make them amenable for Benders decomposition

(BD).

For the first setting (URP), we develop an efficient dual solution approach to

generate strong Benders cuts. In addition to the classical single Benders cut approach,

we propose three different approaches for adding multiple Benders cuts. We present

computational results that illustrate the superior performance of the proposed solu-

tion methodology with multiple Benders cuts in comparison to the branch-and-cut

(B&C) approach and the traditional BD approach with a single cut.

For the second setting (CRP), we devise two tabu search heuristics in which

we effectively combine simple neighborhood search functions utilizing moves and ex-

changes to improve the efficiency of exploration. We propose a transshipment heuris-

tic to quickly, but effectively, estimate the objective function value of a feasible solu-

tion in the course of a tabu search. We also present a BD approach that incorporates

the tabu search heuristics and the strong Benders cuts to facilitate faster convergence



14

and improve computational efficiency, especially for large scale instances. We present

our computational results illustrating the superior performance of the solution algo-

rithms developed based on the heuristics and BD approach in terms of both solution

quality and computation time.

For the third setting (CLP), we propose a BD approach that utilizes the dual

solution approach for obtaining strong cuts, developed in the first setting. In addition

to this method, we present alternate formulations for this problem and develop alter-

nate strong cuts. We also present different approaches for combining the strong cuts

and alternate strong cuts to facilitate improvements in computational efficiency. We

present computational results and compare the computational performance among

the BD approach with strong, alternate strong and combined strong cuts.

I.4. Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter II, we provide

a brief overview of related literature in CLSC network design. In Chapter III, we

present the mathematical model and develop the components of the BD approach

for URP. In Chapter IV, we discuss the model formulation for CRP along with

the components of Tabu search heuristics and the heuristics-enhanced BD approach.

Chapter V focuses on the problem setting for CLP. In this chapter, we present

alternative formulations for CLP and develop a BD approach to obtain strong cuts

using these alternative formulations. Conclusions and future research directions are

summarized in Chapter VI.



15

CHAPTER II

LITERATURE REVIEW

The general topic of network design for product recovery has received considerable

attention in recent years. For a comprehensive review of the literature, refer to

Bloemhof-Ruwaard et al. (1999), Dekker et al. (2004), Fleischmann (2001), Fleis-

chmann et al. (1997), and Fleischmann et al. (2000). A most recent comprehensive

review that exclusively focuses on network design for reverse and CLSC systems is

presented in Akçalı et al. (2007).

The existing network design models can be classified according to underlying

network structure by making a distinction between reverse supply chain models and

CLSC models. Reverse supply chain models only consider reverse flows: The source

nodes are the collection locations; the sink nodes are the disposal or re-use locations;

and, since the forward network is excluded in these models, the transportation links

are solely for the reverse flows. CLSC models consider both the reverse and forward

flows: The locations on the corresponding network may serve as sink and source

nodes, and the transportation links are for both the forward and reverse flows. Since

our model belongs to the class of CLSC models, we focus our review of the literature

on this line of work which consists of case-based (Krikke et al., 2003) and generic

(Beamon and Fernandes, 2004; Fleischmann et al., 2001; Lu and Bostel, 2007; Sim

et al., 2004) models.

Krikke et al. (2003) propose to integrate product design and CLSC design, and

they present a case study analyzing the interaction between the two design aspects.

Beamon and Fernandes (2004) consider a generic network structure, which consists

of capacitated hybrid manufacturing/remanufacturing facilities, uncapacitated distri-



16

bution centers, capacitated collection centers, and retailers, with the following flow

characteristics:

(i) a single product is produced at several hybrid manufacturing/remanufacturing

facilities,

(ii) the known demand at the retailers is satisfied by shipping via distribution cen-

ters,

(iii) the known returns at the retailers are shipped via collection centers to hybrid

manufacturing and remanufacturing facilities, and

(iv) each node on the network can be supplied by, and can supply, multiple nodes.

Their model seeks the optimal location of distribution and collection centers (be-

tween the known locations of manufacturing/remanufacturing facilities and retailers)

and the routing of forward and reverse flows throughout the corresponding network.

An MILP model is formulated and solved using the B&C approach that is available

in commercial software. The network structure considered by Fleischmann et al.

(2001) and Sim et al. (2004) is similar to the one considered by Beamon and Fernan-

des (2004). More specifically, Fleischmann et al. (2001) consider the uncapacitated

version of the Beamon and Fernandes (2004) model, where the locations of the hy-

brid manufacturing/remanufacturing facilities are also decision variables. They use

commercial software to obtain the optimal solution. Sim et al. (2004) extend the

Fleischmann et al. (2001) model to consider the multi-product case where all nodes

of the network are capacitated. They develop a genetic algorithm-based heuristic

approach for computing a solution.

Lu and Bostel (2007) consider a different network structure consisting of sepa-

rate manufacturing and remanufacturing facilities as well as collection centers and



17

retailers. Specifically, they develop a facility location model for remanufacturing with

the following flow characteristics:

(i) demand for a single product can be satisfied by new or remanufactured products

produced at manufacturing and remanufacturing facilities, respectively,

(ii) the known demand at the retailers is satisfied by direct shipments to each re-

tailer,

(iii) the known returns at the retailers are shipped via collection centers to reman-

ufacturing facilities, and

(iv) each node on the network can be supplied by, and can supply, multiple nodes.

They develop a heuristic approach, based on Lagrangian relaxation, which searches

for the location of manufacturing facilities, remanufacturing facilities, and collection

centers and routes the forward and reverse flows through the corresponding network.

Recently, Sahyouni et al. (2007) consider an uncapacitated fixed-charge location

model that decides on the locations of collection centers and distribution centers, in

addition to the retailer assignments. They propose a solution algorithm based on La-

grangian relaxation and provide a comparison between the sequential and integrated

decision making approaches.

The traditional production/distribution system design literature is also closely

related to network design for CLSC systems. There is a considerable amount of

previous work in this area Brown et al. (1987); Geoffrion and Graves (1974); Jayara-

man and Pirkul (2001); Pirkul and Jayaraman (1996); Pyke and Cohen (1994) that

analyzes the optimal locations of manufacturing facilities and distribution centers.

Although a detailed review of this literature is beyond the scope of this dissertation,

it is worthwhile to note that the forward network structure we consider is based on



18

the classical production/distribution system design modeled in Geoffrion and Graves

(1974); Keskin and Üster (2007).

More specifically, Geoffrion and Graves (1974) consider a network structure,

which consists of capacitated manufacturing facilities, capacitated distribution cen-

ters, and retailers, with the following flow characteristics:

(i) multiple products are produced at several manufacturing facilities, and

(ii) the known demand for multiple products at the retailers is satisfied by shipping

via distribution centers where each retailer is served exclusively by a distribution

center, i.e., each retailer is supplied via a single-source.

Their model seeks the optimal location of distribution centers (between the known

locations of manufacturing facilities and retailers/customers) and the assignment of

retailers to distribution centers under single-sourcing restrictions. Keskin and Üster

(2007) employ a multi-sourcing strategy for retailer assignments as opposed to the

single-sourcing assumption in Geoffrion and Graves (1974). In our models, the com-

monality with these traditional production/distribution system design models lies in

the consideration of multiple products and the capacitated NPPs and DCs, single-

sourcing (as in Geoffrion and Graves (1974)), and multi-sourcing strategy (as in Ke-

skin and Üster (2007)). We consider a general network structure, which consists

of manufacturing facilities, remanufacturing facilities, distribution centers, collection

centers, and retailers. We develop MILP formulations that seek an optimal solution,

which characterizes

(i) the location of facilities,

(ii) the assignment of retailers,

(iii) the assignment of products to remanufacturing/manufacturing facilities, and



19

(iv) the coordinated forward and reverse flows in the CLSC network.

From the modeling perspective, we extend the previous work by considering

multiple products (Beamon and Fernandes, 2004; Fleischmann et al., 2001; Lu and

Bostel, 2007), separate manufacturing and remanufacturing facilities (Beamon and

Fernandes, 2004; Fleischmann et al., 2001; Sim et al., 2004), and indirect shipments

via distribution centers (Lu and Bostel, 2007).

From the methodological perspective, the previous work mainly relies on the

use of commercial software (Beamon and Fernandes, 2004; Fleischmann et al., 2001;

Krikke et al., 2003) or the development of heuristic approaches (Lu and Bostel, 2007;

Sim et al., 2004) for CLSC design, whereas we propose heuristic approaches in addition

to exact solution methodologies that build on the BD framework (Benders, 1962).



20

CHAPTER III

AN UNCAPACITATED REMANUFACTURING NETWORK DESIGN

PROBLEM

In the URP, given the locations of the suppliers (NPPs) and the distribution centers

(DCs), the objective is to determine the locations of the collection centers (CCs) and

remanufacturing facilities (RPPs) along with the forward and reverse flows such that

the processing costs (associated with manufacturing, remanufacturing, collection, and

distribution), the transportation costs (associated with forward distribution and re-

verse collection), and the facility location costs (associated with establishing collection

centers and remanufacturing facilities) are minimized. A general network structure

is depicted in Figure 1.

Figure 1 General Structure of the CLSC Network.

Remanufactured
Product
Plants (RPPs)

Retailers

Collection 
Centers (CCs)

Distribution
Centers (DCs)

New
Product
Plants
(NPPs)



21

III.1. Assumptions and Operational Characteristics

We provide a detailed exposition of the specific underlying assumptions and opera-

tional characteristics of the URP:

1. Each retailer satisfies the new and the induced demand for all types of products

and, hence, may receive all types of product returns. The location of the retailers

as well as the new product demand, the induced demand due to product returns,

and the returns for each product type at each retailer are known.

2. Each retailer works with one CC and sends product returns to its CC (i.e.,

single reverse link assignment per retailer).

3. Each retailer returns a fraction of the product returns received to its CC, and

the return fraction of a retailer for each product type is known.

4. There is a potential set of locations where the CCs can be opened. Opening a

CC incurs a fixed location cost. Each CC sorts and performs other processes

on returns, incurring a variable processing cost.

5. Each CC can receive returns from multiple retailers, but is assigned to exactly

one RPP per product (as a consequence of having a single RPP per product as

we explain next).

6. Exactly one RPP location per product is to be determined from the set of

potential product-specific RPP locations. Opening a RPP incurs a fixed location

cost. Each RPP remanufactures a single type of product, incurring a variable

remanufacturing cost for each product shipped out of the remanufacturing plant.

Without loss of generality, we assume that disposal cost associated with each

product is zero as this is a sunk cost.

7. The recovery fraction at a RPP is known. Furthermore, all remanufactured

products should be used to satisfy the demand (i.e., there is no planned disposal



22

at the RPPs).

8. Each NPP can supply one type of product, but there may be multiple NPPs

for each product. The locations of NPPs for each product are known.

9. Each DC can receive products from either a RPP or a NPP or both. The

DC locations are known and the product flow through a DC incurs a variable

processing cost.

10. Each DC can supply multiple retailers with any type of product, but each

retailer can receive its products from only one DC (i.e., single forward link

assignment per retailer).

11. Transportation costs are linear and based on direct shipments on the network

illustrated in Figure 1.

III.2. Problem Formulation

We proceed with a discussion of the objective function and constraints of the math-

ematical formulation of the URP. For this purpose, first we introduce the following

notation for model development. In Figure 2, we depict the underlying network struc-

ture and illustrate the location sets along with the flow, assignment, and location

variables in the CLSC under consideration.

Sets and Indices

P set of products, p ∈ P.

R set of retailers, r ∈ R.

K set of candidate CC locations, k ∈ K.

D set of DCs, d ∈ D.

Sp set of candidate RPP locations for p ∈ P, s ∈ Sp.

Tp set of NPP locations for p ∈ P, t ∈ Tp.



23

Parameters

Dpr induced demand at retailer r ∈ R for product p ∈ P.

D′pr new demand at retailer r ∈ R for product p ∈ P.

F ′k fixed cost of opening a CC at location k ∈ K.

Fps fixed cost of opening a RPP for product p ∈ P at location s ∈ Sp.

Gij unit transportation cost from a location i to a location

j for i, j ∈ R ∪D ∪ K ∪ Sp ∪ Tp.

ηpd unit processing cost of product p ∈ P at DC d ∈ D.

κpk unit processing cost of product p ∈ P at CC k ∈ K.

νpt unit manufacturing cost of product p ∈ P at NPP t ∈ Tp.

ρps unit remanufacturing cost of product p ∈ P shipped out of RPP s ∈ Sp.

δpr return fraction at retailer r ∈ R for product p ∈ P.

αps recovery fraction for product p ∈ P at RPP s ∈ Sp.

Decision Variables

vps 1 if RPP s ∈ Sp is used for product p ∈ P, 0 otherwise.

ck 1 if CC k ∈ K is opened, 0 otherwise.

urk 1 if retailer r ∈ R is assigned to CC k ∈ K, 0 otherwise.

wdr 1 if retailer r ∈ R is assigned to DC d ∈ D, 0 otherwise.

xpks quantity of product p ∈ P shipped from CC k ∈ K to RPP s ∈ Sp.

ypsd quantity of product p ∈ P shipped from RPP s ∈ Sp to DC d ∈ D.

zptd quantity of product p ∈ P shipped from NPP t ∈ Tp to DC d ∈ D.



24

Figure 2 Underlying Structure of the CLSC Network for URP.

PSfrag

Tp

Sp

D

K

R

vps ck

urk

wdr

ypsd

zptd

xpks

Objective Function

min
∑

p∈P

∑

s∈Sp

Fpsvps +
∑

k∈K

F ′kck +
∑

p∈P

∑

r∈R

∑

k∈K

(Grk + κpk) δprDprurk

+
∑

p∈P

∑

k∈K

∑

s∈Sp

Gksxpks +
∑

p∈P

∑

s∈Sp

∑

d∈D

(Gsd + ρps) ypsd

+
∑

p∈P

∑

t∈Tp

∑

d∈D

(Gtd + νpt) zptd

+
∑

p∈P

∑

d∈D

∑

r∈R

(Gdr + ηpd)
(
Dpr +D′pr

)
wdr. (3.1)

The first term in the objective function represents the fixed costs associated with

locating the product-specific RPPs for each type of product. The second term rep-

resents the fixed costs of locating the CCs. The third and the fourth terms are

associated with the reverse flows, and they represent transportation costs from the

retailers to the CCs and from the CCs to the RPPs, respectively. The third term also

includes the processing costs at the CCs. The fifth and the sixth terms are associated

with the forward flows, and they represent the transportation costs from the RPPs

to the DCs and from the NPPs to the DCs along with the associated processing costs

at the RPPs and NPPs, respectively. Finally, the last term corresponds to the trans-



25

portation costs from the DCs to the retailers and the processing costs at the DCs. In

order to simplify the expressions representing the flow and processing costs, in this

chapter, henceforth we employ the notation Gprk, Gpsd, Gptd and Gpdr to represent

the sums (Grk + κpk), (Gsd + ρps), (Gtd + νpt) and (Gdr + ηpd), respectively.

Constraints

∑

k∈K

urk = 1 ∀ r ∈ R, (3.2)

∑

s∈Sp

vps = 1 ∀ p ∈ P, (3.3)

∑

d∈D

wdr = 1 ∀ r ∈ R, (3.4)

urk ≤ ck ∀ r ∈ R, k ∈ K, (3.5)

xpks ≤M vsp ∀ p ∈ P, k ∈ K, s ∈ Sp, (3.6)

∑

s∈Sp

xpks −
∑

r∈R

δprDpr urk = 0 ∀ p ∈ P, k ∈ K, (3.7)

∑

d∈D

ypsd − αps

∑

k∈K

xpks = 0 ∀ p ∈ P, s ∈ Sp, (3.8)

∑

s∈Sp

ypsd +
∑

t∈Tp

zptd =
∑

r∈R

(
Dpr +D′pr

)
wdr ∀ p ∈ P, d ∈ D, (3.9)

xpks, ypsd, zptd ≥ 0 ∀ p ∈ P, k ∈ K, d ∈ D, s ∈ Sp, t ∈ Tp,

(3.10)

vps, ck, wdr, urk ∈ {0, 1} ∀ p ∈ P, r ∈ R, k ∈ K, d ∈ D, s ∈ Sp.

(3.11)

Constraint set (3.2) ensures that each retailer r is assigned to exactly one CC k.

Constraint set (3.3) guarantees that, for each product p, a RPP location s is estab-

lished. Constraint set (3.4) represents the requirement that each retailer r is uniquely



26

assigned to one DC d. Constraint set (3.5) forces the creation of a CC k if a retailer

r is assigned to that location. Similarly, constraint set (3.6) makes sure that a RPP

is established for a product p at location s if there is flow of product p from a CC

k to this candidate RPP location. Since xpks represent non-negative continuous flow

variables and vps represent binary location variables, M simply represents a suffi-

ciently large scalar. Constraint sets (3.7) and (3.8) represent the flow conservation

(mass balance) for each product type at the CCs and RPPs, respectively. Constraint

set (3.8) implicitly guarantees that the remanufactured products are returned to the

system in their entirety to satisfy customer demand. Constraint set (3.9) ensures that

the customer demand is completely satisfied using the remanufactured products (as

implied by constraint set (3.8)) and new products as necessary.

Note that, for product p, the total reverse flow on the links from CCs to the

corresponding RPP must be equal to the total amount returned by the retailers.

This observation leads us to a more efficient formulation of the problem that lends

itself to a decomposition in terms of the forward and reverse flow problems. More

specifically, we have

∑

k∈K

xpks =
∑

r∈R

δprDpr vps ∀ p ∈ P, s ∈ Sp, (3.12)

and, hence, constraint set (3.8) can be restated as

∑

d∈D

ypsd − αps

∑

r∈R

δpr Dpr vps = 0 ∀ p ∈ P, s ∈ Sp. (3.13)

Furthermore, we observe that constraint set (3.12) effectively addresses the RPP lo-

cation constraints given by (3.6). Thus, by including constraint sets (3.12) and (3.13)

and eliminating constraint sets (3.6) and (3.8), we not only obtain a formulation with

constraints that are separable in terms of the forward and the reverse flow variables,



27

but also eliminate the M from the formulation and thereby facilitate the availability

of stronger linear programming relaxation bounds. In particular, constraint sets (3.9)

and (3.13) involve only forward flow variables, and constraint sets (3.7) and (3.12)

involve only reverse flow variables. We note that the revised formulation relies on

the assumption that there is a single, dedicated RPP for each product, and, as will

be clear in the following section, it is is very helpful for developing efficient solution

algorithms to solve the subproblems in a BD framework.

III.3. Solution Approach Using Benders Decomposition

BD approach (Benders, 1962) relies on forming two problems, a master problem and

a subproblem based on the original formulation, and on solving these problems in an

iterative fashion. The master problem typically involves the set of integer variables

in the original problem and an auxiliary continuous variable that relates it to the

subproblem. On the other hand, the subproblem is created as a relatively easier

problem that involves only continuous variables. At each iteration, the master and

the subproblem are solved to obtain lower and upper bounds on the objective value

of the original problem. The objective function of the dual subproblem is utilized

to add the so-called Benders cuts to the master problem and, thus, to strengthen

the bounds at each iteration. It is exactly these cuts that introduce the auxiliary

continuous variables to the master problem.

For our formulation, the master problem mainly includes the binary variables as-

sociated with the locations of the RPPs and CCs, the assignment of retailers to CCs,

and the assignment of retailers to DCs. Given the values of these binary location and

assignment variables, the subproblem includes the continuous variables representing

the forward and reverse flows. We start the iterative procedure by solving the master



28

problem without any Benders cuts. Next, we solve the dual subproblem by incorpo-

rating the initial master problem solution, and, thus, we obtain the first set of Benders

cuts. Afterwards, at each iteration, we add a new set of cuts into the master problem,

obtain its solution, and use it to solve the dual subproblem, which provides a new set

of Benders cuts. We also update the lower and upper bound values of the objective

function value of the original problem in order to decide if the iterations should be

terminated. In order to develop the components of this iterative framework, first we

provide the underlying Benders reformulation and introduce the subproblem. More

specifically, the original problem can be restated as follows.

min Z =
∑

p∈P

∑

s∈Sp

Fpsvps +
∑

k∈K

F ′kck +
∑

p∈P

∑

r∈R

∑

k∈K

Gprk δpr Dpr urk

+
∑

p∈P

∑

d∈D

∑

r∈R

Gpdr(Dpr +D′pr)wdr + SP (x,y, z|v̂, û, ŵ) (3.14)

subject to (3.2), (3.3), (3.4), (3.5) and (3.11).

where SP (x,y, z|v̂, û, ŵ) represents the Benders subproblem whose formulation and

solution procedure are discussed next. Observe that it is not necessary to include the

information on open collection centers, ĉ, in the Benders subproblem since it can be

derived from the retailer assignments to collection centers, û. It is thus not included

in the Benders subproblem. As we demonstrate in Sections III.3.1 and III.3.2, the

Benders subproblem is separable and, hence, can be solved efficiently based on the

forward flows, the reverse flows, and the product types. Utilizing this property, in

Section III.3.3, we introduce four different alternatives for generating effective Benders

cuts.



29

III.3.1. Benders Subproblem

The subproblem SP (x,y, z|v̂, û, ŵ) is essentially a minimization problem that deter-

mines the optimum values of the flow variables for fixed values of the location and

assignment variables, and it can be stated as

minZSP =
∑

p∈P

∑

k∈K

∑

s∈Sp

Gks xpks +
∑

p∈P

∑

s∈Sp

∑

d∈D

Gpsd ypsd +
∑

p∈P

∑

t∈Tp

∑

d∈D

Gptd zptd (3.15)

subject to

∑

d∈D

ypsd =
∑

r∈R

αps δpr Dpr v̂ps ∀ p ∈ P, s ∈ Sp, (3.16)

∑

s∈Sp

ypsd +
∑

t∈Tp

zptd =
∑

r∈R

(
Dpr +D′pr

)
ŵdr ∀ p ∈ P, d ∈ D, (3.17)

∑

k∈K

xpks ≥
∑

r∈R

δpr Dpr v̂ps ∀ p ∈ P, s ∈ Sp, (3.18)

∑

s∈Sp

xpks ≤
∑

r∈R

δprDpr ûrk ∀ p ∈ P, k ∈ K, (3.19)

xpks, ypsd, zptd ≥ 0 ∀ p ∈ P, k ∈ K, d ∈ D, s ∈ Sp, t ∈ Tp.

(3.20)

We note that, without any effect on the final optimal solution, the equality

constraints (3.7) and (3.12) are represented by inequalities (3.18) and (3.19). This

alternative representation does not affect the solution space, but it does facilitate an

easy exposition for the solution of the dual of the subproblem to generate Benders

cuts as explained below.

As mentioned above, in the BD framework, we employ the solution and the

objective function of the dual subproblem in order to generate the Benders cuts.

We define dual variables βps associated with constraints (3.16), γpd associated with



30

constraints (3.17), λps associated with constraint (3.18), and µpk associated with

constraints (3.19). Then, the dual of the subproblem, DSP (β, γ, λ, µ|v̂, û, ŵ), can

be stated as

max ZDSP =
∑

p∈P

∑

s∈Sp

∑

r∈R

αps δpr Dpr v̂ps βps +
∑

p∈P

∑

d∈D

∑

r∈R

(
Dpr +D′pr

)
ŵdr γpd

+
∑

p∈P

∑

s∈Sp

∑

r∈R

δpr Dpr v̂ps λps −
∑

p∈P

∑

k∈K

∑

r∈R

δpr Dpr ûrk µpk (3.21)

subject to

βps + γpd ≤ Gpsd ∀ p ∈ P, s ∈ Sp, d ∈ D, (3.22)

γpd ≤ Gptd ∀ p ∈ P, t ∈ Tp, d ∈ D, (3.23)

λps − µpk ≤ Gks ∀ p ∈ P, s ∈ Sp, k ∈ K, (3.24)

βps, γpd unrestricted and µpk, λps ≥ 0 ∀ p ∈ P, s ∈ Sp, k ∈ K, d ∈ D. (3.25)

In order to efficiently solve the subproblem and obtain its optimum dual solution

for a given set of values for the integer variables, i.e., for given v̂, û, and ŵ, we

observe that the subproblem SP (x,y, z|v̂, û, ŵ) is separable in terms of the forward

flow variables, y and z, and the reverse flow variables, x. This observation implies that

the dual of the subproblem is also separable according to the direction of flow, i.e.,

forward and reverse flows, resulting in forward and reverse subproblems. As we have

mentioned before, this separability is due to the requirement of a single, dedicated

RPP per product. Furthermore, we observe that the forward and reverse subproblems

are separable for each product leading to single product forward and single product

reverse subproblems. Next, we state the subproblems and their formulations.



31

III.3.1.1. Single Product Forward Subproblem

The subproblem SP (x,y, z|v̂, û, ŵ) yields |P| - singe product forward subproblems.

Each such subproblem, denoted by FSPp̄(y, z|v̂, ŵ), p̄ ∈ P, is given by

min
∑

s∈Sp̄

∑

d∈D

Gp̄sd yp̄sd +
∑

t∈Tp̄

∑

d∈D

Gp̄td zp̄td (3.26)

subject to

∑

d∈D

yp̄sd =
∑

r∈R

αp̄sδp̄rDp̄rv̂p̄s ∀ s ∈ Sp̄, (3.27)

∑

s∈Sp̄

yp̄sd +
∑

t∈Tp̄

zp̄td =
∑

r∈R

(
Dp̄r +D′p̄r

)
ŵdr ∀ d ∈ D, (3.28)

yp̄sd, zp̄td ≥ 0 ∀ d ∈ D, s ∈ Sp̄, t ∈ Tp̄. (3.29)

As a result, the dual of the single product forward subproblem above, denoted by

DFSPp̄(β, γ|v̂, ŵ), is given by

max
∑

s∈Sp̄

∑

r∈R

αp̄s δp̄r Dp̄r v̂p̄s βp̄s +
∑

d∈D

∑

r∈R

(
Dp̄r +D′p̄r

)
ŵdr γp̄d (3.30)

subject to

βp̄s + γp̄d ≤ Gp̄sd ∀ s ∈ Sp̄, d ∈ D, (3.31)

γp̄d ≤ Gp̄td ∀ t ∈ Tp̄, d ∈ D, (3.32)

βp̄s, γp̄d unrestricted ∀ s ∈ Sp̄, d ∈ D. (3.33)



32

III.3.1.2. Single Product Reverse Subproblem

Similarly, we have |P| - single product reverse subproblems, and each such subprob-

lem, denoted by RSPp̄(x|v̂, û), p̄ ∈ P, is given by

min
∑

k∈K

∑

s∈Sp̄

Gks xp̄ks (3.34)

subject to

∑

k∈K

xp̄ks ≥
∑

r∈R

δp̄r Dp̄r v̂p̄s ∀ s ∈ Sp̄, (3.35)

∑

s∈Sp̄

xp̄ks ≤
∑

r∈R

δp̄r Dp̄r ûrk ∀ k ∈ K, (3.36)

xp̄ks ≥ 0 ∀ k ∈ K, s ∈ Sp̄, (3.37)

whereas its dual, denoted by DRSPp̄(λ, µ|v̂, û), is given by

max
∑

s∈Sp̄

∑

r∈R

δp̄r Dp̄r v̂p̄s λp̄s −
∑

k∈K

∑

r∈R

δp̄r Dp̄r ûrk µp̄k (3.38)

subject to

λp̄s − µp̄k ≤ Gks ∀ s ∈ Sp̄, k ∈ K, (3.39)

µp̄k, λp̄s ≥ 0 ∀ s ∈ Sp̄, k ∈ K. (3.40)

III.3.2. Solving the Subproblems

In order to solve DSP (β, γ, λ, µ|v̂, û, ŵ) efficiently, we first examine the solutions of

DFSPp̄(β, γ|v̂, ŵ) and DRSPp̄(λ, µ|v̂, û) for all p̄ ∈ P. These solutions lead directly

to the solution of DSP (β, γ, λ, µ|v̂, û, ŵ) and, hence, the solution and the objective

function value of SP (x,y, z|v̂, û, ŵ). Next, we discuss in detail how we obtain the

solutions of each of these dual subproblems.



33

III.3.2.1. Solving the Single Product Forward Subproblems

For a given product p̄ ∈ P, the single product forward subproblem, which is repre-

sented by FSPp̄(y, z|v̂, ŵ), is given by (3.26)-(3.29). This is similar to a transporta-

tion problem with side constraints that define specific shipment requirements. More

specifically, the set of source nodes includes (i) the specific RPP location s ∈ Sp̄ to

which product p̄ is assigned according to v̂, i.e., s ∈ Sp̄ such that v̂p̄s = 1, and (ii) the

set of NPP locations Tp̄. Similarly, the set of sink nodes is given by the DC locations

d ∈ D for which at least one retailer r ∈ R is assigned according to ŵ, i.e., d ∈ D such

that ŵdr = 1 for at least one retailer r ∈ R. Let (s) denote the RPP location s ∈ Sp̄

to which product p̄ is assigned according to v̂, i.e., v̂p̄(s) = 1. By (3.27), the RPP

location (s) has a supply that is equal to the αp̄(s) fraction of the total return flow

it receives. Moreover, (3.28) ensures that the incoming flow is equal to the outgoing

flow at each DC. Clearly, the total outgoing flow at the DCs is greater than the total

flow that the RPP location (s) can provide. Thus, each DC may fulfill its additional

requirement for product p̄ ∈ P, if any, from a NPP location t ∈ Tp̄, where there is

ample supply. That is, we have

∑

s∈Sp̄

∑

r∈R

αp̄s δp̄r Dp̄r v̂p̄s ≤
∑

d∈D

∑

r∈R

(
Dp̄r +D′p̄r

)
ŵdr,

which verifies the feasibility of the single product forward subproblem, FSPp̄(y, z|v̂, ŵ),

and the boundedness of its dual problem, DFSPp̄(β, γ|v̂, ŵ), given by (3.30)-(3.33).

We note that DFSPp̄(β, γ|v̂, ŵ) also has a special structure as it resembles the

dual of the well-known transportation problem. Specifically, DFSPp̄(β, γ|v̂, ŵ) may

have multiple alternative optimal solutions due to inherent degeneracy, and each of

these alternative solutions characterizes a cut that can be used in the iterative BD

framework. However, to increase the efficiency of this approach, it is worthwhile



34

to identify the dominating solutions for DFSPp̄(β, γ|v̂, ŵ) which, in turn, helps us

to work with corresponding strong (i.e., dominating) cuts. The benefits of strong

Benders cuts have been investigated and established in other problem settings that

arise in the context of capacitated facility location and network design Magnanti and

Wong (1981); Van Roy (1986); Wentges (1996).

Magnanti and Wong (1981) define the strongness (or dominance) of a cut (con-

straint) in a general optimization problem (e.g., in our master problem in which we

incorporate the cuts in the BD framework) given by miny∈Y, z∈ℜ{z : f(u) + y g(u) ≤

z ∀u ∈ U} as follows: The cut f(u1) + y g(u1) ≤ z dominates (is stronger than)

the cut f(u2) + y g(u2) ≤ z, if f(u1) + y g(u1) ≥ f(u2) + y g(u2) ∀ y ∈ Y with a

strict inequality for at least one y ∈ Y . Then, clearly, due to the existence of mul-

tiple solutions as discussed above, it is important that we determine the solution to

the DFSPp̄(β, γ|v̂, ŵ) in such a way that we can incorporate strong cuts in our BD

framework. In order to obtain these strong Benders cuts, we propose a two-phase

solution approach to DFSPp̄(β, γ|v̂, ŵ). In the first phase, we concentrate on deter-

mining the optimal values of the dual variables (βp̄s and γp̄d) associated with v̂p̄s and

ŵdr variables whose values are equal to 1. Notice that, for the rest of the dual vari-

ables, the associated v̂p̄s and ŵdr variable values are 0, and, hence, these can assume

any value without affecting the objective function value (3.30). As a result, in order

to obtain strong cuts, in the second phase, we solve a maximization problem that

produces dual variable values generating the strong cuts with respect to the above

definition of strong cuts. We proceed with a detailed discussion of the two-phase

approach.



35

First Phase for Solving DFSPp̄(β, γ|v̂, ŵ)

In the first phase, we only consider the variables βp̄s, s ∈ Sp̄, and γp̄d, d ∈ D, whose

associated v̂p̄s and ŵdr (for at least one r ∈ R) values, respectively, are equal to 1 in

(3.30)-(3.33), i.e., according to v̂ and ŵ. Recall that subscript (s) denotes the RPP

location assigned to product p̄ according to v̂, i.e., v̂p̄(s) = 1. Also, let Du ⊆ D denote

the set of DCs that are utilized according to ŵ, i.e., Du = {d ∈ D| ŵdr = 1, ∃ r ∈ R}.

Finally, let R(d) ⊆ R denote the set of retailers assigned to DC location (d) ∈ Du

according to ŵ, i.e., R(d) = {r ∈ R|ŵ(d)r = 1}. Noting that constraint set (3.32) can

be rewritten as in (3.42), we have the following first phase problem:

max
∑

r∈R

αp̄(s) δp̄r Dp̄r βp̄(s) +
∑

(d)∈Du

∑

r∈R(d)

(
Dp̄r +D′p̄r

)
γp̄(d)

subject to

βp̄(s) + γp̄(d) ≤ Gp̄(s)(d) ∀ (d) ∈ Du, (3.41)

γp̄(d) ≤ min
t∈Tp̄

{Gp̄t(d)} ∀ (d) ∈ Du, (3.42)

βp̄(s), γp̄(d) unrestricted ∀ (d) ∈ Du.

Examining the structure of the above formulation, we have the following important

observations which lead to an efficient solution approach for the first phase problem:

1. Constraint set (3.41) implies that each unit of increase in the value of βp̄(s) over

and above Gp̄(s)(d) for (d) ∈ Du requires a unit decrease in the values of the

corresponding γp̄(d) for (d) ∈ Du. Thus, an excessively high βp̄(s) value would

lead to decreases in the γp̄(d) values so that none of the constraints in (3.42)

are binding. Such increments in the value of βp̄(s), that decrease γp̄(d) values,

only result in decreases in the objective function value since for each such unit



36

change in the value of the variables the objective function value changes by

∑

r∈R

αp̄(s) δp̄r Dp̄r −
∑

(d)∈Du

∑

r∈R(d)

(
Dp̄r +D′p̄r

)
,

which is a negative value (note that
⋃

d∈DR
(d) = R and

⋂
d∈DR

(d) = ∅). Thus,

the value of βp̄(s) is bounded from above such that at least one of the constraints

in set (3.42) is binding.

2. Likewise, constraint set (3.41) implies that each unit decrease in the value of

βp̄(s) necessitates a unit increase in the values of γp̄(d) for (d) ∈ Du, which are

bounded by (3.42). Thus, excessive decreases in the value of βp̄(s) only result in

decreases in the objective function value. Thus, the value of βp̄(s) is bounded

from below such that all of the constraints in set (3.42) are binding.

These observations suggest an efficient procedure to solve the first phase problem

optimally. For product p̄ with RPP location (s), let β d̄
p̄(s) =

{
Gp̄(s)d̄ − mint∈Tp̄

{Gp̄td̄}
}

for d̄ ∈ Du. Similarly, for a given product p̄ and a fixed DC location d̄, let γp̄(d) =

min
{

(Gp̄(s)(d) − β d̄
p̄(s)),mint∈Tp̄

{Gp̄t(d)}
}

for (d) ∈ Du. The following procedure pro-

vides the optimal solution to the first phase problem:

Step 1. For each d̄ ∈ Du, determine β d̄
p̄(s). Sort β d̄

p̄(s) values in non-decreasing order.

Step 2. Starting with the first element on the list, i.e., the smallest β d̄
p̄(s) value,

determine the value of γp̄(d) for all (d) ∈ Du and evaluate the corresponding

objective function value and delete β d̄
p̄(s) from the list. If a decrease in the

objective function value occurs, go to Step 3. Otherwise, repeat Step 2.

Step 3. Report the solution with the maximum objective function value, which is

the optimal solution to the first phase problem.



37

Second Phase for Solving DFSPp̄(β, γ|v̂, ŵ)

In the second phase, we compute the values of the remaining variables in (3.30)-(3.33)

so as to obtain strong Benders cuts for DFSPp̄(β, γ|v̂, ŵ). That is, we now consider

the variables βp̄s, s ∈ Sp̄, and γp̄d, d ∈ D, whose associated v̂p̄s and ŵdr (for at least

one r ∈ R) values, respectively, are equal to 0 according to v̂ and ŵ. To this end, we

first note that if v̂p̄s = 0, s ∈ Sp̄, in (3.30)-(3.33) then the corresponding βp̄s values do

not impact the objective value of DFSPp̄(β, γ|v̂, ŵ). Likewise, if ŵdr = 0, d ∈ Du

and r ∈ R, in (3.30)-(3.33), then the corresponding γp̄d values do not impact the

objective value of DFSPp̄(β, γ|v̂, ŵ). In order to obtain the values of the remaining

variables in (3.30)-(3.33) that provide strong Benders cuts, we consider the following

linear programming problem in the second phase:

max
∑

s∈Sp̄

∑

r∈R

αp̄s δp̄r Dp̄r βp̄s +
∑

d∈D

∑

r∈R

(
Dp̄r +D′p̄r

)
γp̄d (3.43)

subject to (3.31) − (3.33)

Here, to ensure feasibility, we have to take into account the values of βp̄(s) and γp̄(d)

that are fixed in the first phase. After substituting these values, we solve problem

(3.43) to find the values of the βp̄s and γp̄d variables, i.e., remaining variables in

(3.30)-(3.33). We note that the cardinality of these two sets of remaining variables

are |Sp̄| − 1 and |D \ Du|, respectively. Thus, the size of the above linear program is

considerably smaller than that of DFSPp̄(β, γ|v̂, ŵ).

III.3.2.2. Solving the Single Product Reverse Subproblems

For a given product p̄ ∈ P, now consider the single product reverse subproblem

RSPp̄(x|v̂, û) given by (3.34)-(3.37). Similar to the single product forward subprob-

lem analyzed in Section III.3.2.1, this subproblem also resembles a transportation



38

problem with a special structure. More specifically, the set of source nodes is given

by the CC locations k ∈ K for which at least one retailer r ∈ R is assigned ac-

cording to û, i.e., k ∈ K such that ûrk = 1 for at least one r ∈ R. There is a

single sink node s ∈ Sp̄ which is the RPP location for product p̄ according to v̂, i.e.,

s ∈ Sp̄ such that v̂p̄s = 1. The problem RSPp̄(x|v̂, û) is clearly feasible. Thus, its

dual DRSPp̄(λ, µ|v̂, û), given by (3.38)-(3.40), is bounded. In order to obtain strong

cuts, we again solve DRSPp̄(λ, µ|v̂, û) in two phases.

First Phase for Solving DRSPp̄(λ, µ|v̂, û)

In the first phase, we only consider the variables λp̄s, s ∈ Sp̄, and µp̄k, k ∈ K, whose

associated v̂p̄s values and ûrk values for at least one r ∈ R, respectively, are equal

to 1 in (3.38)-(3.40), i.e., according to v̂ and û. As before, let (s) denote the RPP

location s ∈ Sp̄ to which product p̄ is assigned according to v̂, i.e., v̂p̄(s) = 1. Also,

let Ku ⊆ K denote the set of CC locations that are open according to û, i.e., Ku =

{k ∈ K| ∃ r ∈ R : ûrk = 1}. Finally, let R(k) for R(k) ⊆ R denote the set of retailers

assigned to CC location (k) ∈ Ku according to û, i.e., R(k) = {r ∈ R|ûr(k) = 1}.

Then, we have the following first phase problem:

max
∑

r∈R

δp̄r Dp̄r λp̄(s) −
∑

(k)∈Ku

∑

r∈R(k)

δp̄r Dp̄r µp̄(k) (3.44)

subject to

λp̄(s) − µp̄(k) ≤ G(k)(s) ∀ (k) ∈ Ku, (3.45)

µp̄(k), λp̄(s) ≥ 0 ∀ (k) ∈ Ku. (3.46)

The solution of the above first phase problem is given by λp̄(s) = max(k)∈Ku{G(k)(s)}

and µp̄(k) = λp̄(s) − G(k)(s) for all (k) ∈ Ku. In this solution, all of the µp̄(k) variables

are positive but one, which is zero. Thus, we observe that if the values of λp̄(s) and



39

µp̄(k), for all (k) ∈ Ku, are further increased by one unit, the value of the objective

function as well as the left-hand side of the constraints in (3.45) do not change.

Second Phase for Solving DRSPp̄(λ, µ|v̂, û)

In the second phase, we again focus on the variables λp̄s, s ∈ Sp̄, and µp̄k, k ∈ K,

whose associated v̂p̄s values and ûrk values for at least one r ∈ R, respectively, are

equal to zero according to v̂ and û. These values provide the coefficients for strong

Benders cuts. To this end, we consider the following linear programming problem in

the second phase:

max
∑

s∈Sp̄

∑

r∈R

δp̄r Dp̄r λp̄s −
∑

k∈K

∑

r∈R

δp̄r Dp̄r µp̄k (3.47)

subject to (3.39) − (3.40)

Here, to ensure feasibility, we have to take into account the values of λp̄(s) and µp̄(k)

for all (k) ∈ Ku that are fixed in the first phase. After substituting these values, we

solve the problem (3.47) to find the values of the λp̄s and µp̄k variables, i.e., remaining

variables in (3.38)-(3.40). We note that the cardinality of these two sets of remaining

variables are |Sp̄| − 1 and |K \ Ku|, respectively.

III.3.2.3. Solving the Benders Subproblem

Using the solutions of the single product forward subproblems, DFSPp̄(β, γ|v̂, ŵ)

for p̄ ∈ P, we set βps = βp̄s for all p ∈ P and s ∈ Sp and γpd = γp̄d for all p ∈ P

and d ∈ D. Similarly, using the solutions of the single product reverse subproblems,

DRSPp̄(λ, µ|v̂, û) for p̄ ∈ P, we set µpk = µp̄k for all p ∈ P and k ∈ K and λps = λp̄s

for all p ∈ P and s ∈ Sp. Hence, we obtain the solution of DSP (β, γ, λ, µ|v̂, û, ŵ)

by combining the solutions of DFSPp̄(β, γ|v̂, ŵ) and DRSPp̄(λ, µ|v̂, û).



40

III.3.3. Benders Master Problem

The master problem in the BD framework is directly based on the formulation given

in (3.14). As mentioned before, in a typical BD framework, the master problem

includes the integer variables of the original model in addition to an auxiliary con-

tinuous variable introduced to incorporate Benders cuts via the solution of the dual

subproblem. However, our above discussion on alternative separation schemes, i.e.,

flow and product separation, for the overall subproblem provides us with alternative

representations of Benders cuts in the master problem. In order to explore these

alternative Benders cuts, we first state the master problem MP (v, u, w|β̂, γ̂, λ̂, µ̂)

using general cut related terms as follows.

min ZMP =
∑

p∈P

∑

s∈Sp

Fpsvps +
∑

k∈K

F ′kck +
∑

p∈P

∑

r∈R

∑

k∈K

Gprk δpr Dpr urk

+
∑

p∈P

∑

d∈D

∑

r∈R

Gpdr(Dpr +D′pr)wdr + SumLHS(BCuts) (3.48)

subject to

∑

k∈K

urk = 1 ∀ r ∈ R, (3.49)

∑

s∈Sp

vps = 1 ∀ p ∈ P, (3.50)

∑

d∈D

wdr = 1 ∀ r ∈ R, (3.51)

urk ≤ ck ∀ r ∈ R, k ∈ K, (3.52)

(Constraints for the Set of BCuts) (3.53)

vps, ck, wdr, urk ∈ {0, 1} ∀ p ∈ P, r ∈ R, k ∈ K, d ∈ D, s ∈ Sp.

(3.54)



41

Alternative Benders Cuts (BCuts)

Since the Benders subproblem is separable according to the direction of flow leading

to single product forward and reverse subproblems, it is possible to generate different

sets of cuts employing the solutions obtained for these individual subproblems. In

our work we consider four different types of Benders cuts. The first set of cuts are

obtained using flow and product separation. We use only product separation for the

second set of cuts. The third set of cuts are obtained using only flow separation.

For the fourth set of cuts, we do not employ any separation scheme. We discuss in

detail below how we obtain the cuts, i.e., the Set of BCuts in (3.53), and the term

SumLHS(BCuts) that is included in the objective function of the Benders master

problem. We note that the use of separation schemes is similar to the use of multiple

cuts in the multicut L-shaped method developed in the context of two-stage stochastic

linear programs (Birge and Louveaux, 1988).

Type 1: For each product type p ∈ P, we derive a forward and a reverse cut using

the solutions of DFSPp̄(β, γ|v̂, ŵ) and DRSPp̄(λ, µ|v̂, û), respectively. To

this end, we define two new decision variables, ψF
p ≥ 0 and ψF

p ≥ 0, for each

p ∈ P. Then, the constraints that correspond to the |P| single product forward

cuts and |P| single product reverse cuts are given by

ψF
p ≥

∑

s∈Sp

∑

r∈R

αpsδprDprβ̂psvps +
∑

d∈D

∑

r∈R

(
Dpr +D′pr

)
γ̂pdwdr ∀ p ∈ P, and

ψR
p ≥

∑

s∈Sp

∑

r∈R

δprDprλ̂psvps −
∑

k∈K

∑

r∈R

δprDprµ̂pkurk ∀ p ∈ P,

respectively. In order to formulate the master problem that is based on this type

of Benders cuts, the above two sets of constraints and ψF
p , ψ

R
p ≥ 0, ∀ p ∈ P are

considered in constraint set (3.53) of MP (v, u, w|β̂, γ̂, λ̂, µ̂) given by (3.48)-

(3.54). Also, the SumLHS(BCuts) term in the objective function (3.48) of



42

MP (v, u, w|β̂, γ̂, λ̂, µ̂) is replaced with
∑

p∈P ψ
F
p +

∑
p∈P ψ

R
p .

Type 2: Using the solutions of DFSPp̄(β, γ|v̂, ŵ) for p̄ ∈ P DRSPp̄(λ, µ|v̂, û) for

p̄ ∈ P, we derive a single cut for each product p ∈ P. To this end, we define

a new decision variable ψp ≥ 0 for each p ∈ P. Then, the constraints that

correspond to the |P| single product cuts are given by

ψp ≥
∑

s∈Sp

∑

r∈R

δprDpr

(
αpsβ̂ps + λ̂ps

)
vps +

∑

d∈D

∑

r∈R

(
Dpr +D′pr

)
γ̂pdwdr

−
∑

k∈K

∑

r∈R

δprDprµ̂pkurk ∀ p ∈ P.

In order to formulate the master problem that is based on Type 2 Benders cuts,

the above set of constraints and ψp ≥ 0, ∀ p ∈ P are considered in constraint

set (3.53). Finally, the SumLHS(BCuts) term in the objective function (3.48)

is replaced with
∑

p∈P ψp.

Type 3: Using the solutions of DFSPp̄(β, γ|v̂, ŵ) for p̄ ∈ P, we derive a forward

flow cut. Likewise, using the solutions of DRSPp̄(λ, µ|v̂, û) for p̄ ∈ P, we

derive a reverse flow cut. Defining two new decision variables, ψF ≥ 0 and

ψR ≥ 0, the constraints that correspond to the forward and reverse flow cuts

can be expressed as

ψF ≥
∑

p∈P

∑

s∈Sp

∑

r∈R

αpsδprDprβ̂psvps +
∑

p∈P

∑

d∈D

∑

r∈R

(
Dpr +D′pr

)
γ̂pdwdr, and

ψR ≥
∑

p∈P

∑

s∈Sp

∑

r∈R

δprDprλ̂psvps −
∑

p∈P

∑

k∈K

∑

r∈R

δprDprµ̂pkurk,

respectively. Consequently, in the master problem that is based on Type 3

Benders cuts, constraint set (3.53) consists of the above two constraints along

with ψF , ψR ≥ 0 whereas the SumLHS(BCuts) term in the objective function

(3.48) is given by ψF + ψR.



43

Type 4: We derive a single cut using the solution of DSP (β, γ, λ, µ|v̂, û, ŵ). We

note that this approach corresponds to the typical use of the BD framework

where there is only one cut added at each iteration. In order to include the cut

in the master problem, we define a new decision variable, ψ ≥ 0. The constraint

that corresponds to the cut is then given by

ψ ≥
∑

p∈P

∑

s∈Sp

∑

r∈R

δprDpr

(
αpsβ̂ps + λ̂ps

)
vps +

∑

p∈P

∑

d∈D

∑

r∈R

(
Dpr +D′pr

)
γ̂pdwdr

−
∑

p∈P

∑

k∈K

∑

r∈R

δprDprµ̂pkurk.

In the master problem that is based on this cut type, we consider the above con-

straint and ψ ≥ 0 in constraint set (3.53) and substitute ψ for the SumLHS(BCuts)

term in the objective function (3.48).

In Display 1, we present the general procedure we use to solve the CLSC network

design problem of interest using particular types of cuts. We note that, in Display 1,

ε > 0 is the tolerance for stopping criterion; IterNo is the iteration counter; and

MaxIter is the maximum number of Benders iterations considered. Also, UB and

LB denote the current upper and lower bounds on the objective function value,

respectively. Recall that ZDSP and ZMP correspond to the objective function values

of the dual of the Benders subproblem and the Benders master problem as defined

in (3.21) and (3.48), respectively. Finally, we note that, at each iteration of the

procedure, the use of Type 1, 2, 3, and 4 cuts adds 2|P| cuts, |P| cuts, two cuts, and

a single cut, respectively.



44

Display 1 Pseudo-code of the BD Approach.

1: Set UB = ∞, IterNo = 0, and β̂=γ̂=µ̂=λ̂=0. Initialize MaxIter.

2: Solve the master problem MP (v, u, w|β̂, γ̂, λ̂, µ̂) to obtain the values for

v̂, û, ŵ, and ZMP . Set LB = ZMP .

3: while (((UB − LB)/LB ≥ ε) and (IterNo<MaxIter)) do

4: IterNo=IterNo + 1

5: Solve the DSP (β, γ, λ, µ|v̂, û, ŵ) to obtain the values for β̂, γ̂, λ̂, µ̂, and

ZDSP .

6: if ((ZMP + ZDSP - SumLHS(BCuts)) < UB) then

7: UB = (ZMP + ZDSP - SumLHS(BCuts))

8: end if

9: Add the (Set of BCuts) to the master problem using the β̂, γ̂, λ̂, µ̂ values.

10: Solve the master problem MP (v, u, w|β̂, γ̂, λ̂, µ̂) to obtain the values for

v̂, û, ŵ, and ZMP . Set LB = ZMP .

11: end while

12: Find the values for x,y, z corresponding to v̂, û, ŵ (i.e., solve

SP (x,y, z|v̂, û, ŵ)).

13: Report v,u,w,x,y, z and the objective function value for (3.1).

III.4. Computational Experiments

In order to examine the computational performance of the proposed BD approach

using alternative types of cuts and benchmark it against the B&C approach, we

carry out a computational study. In order to solve the test instances and the master

problem using the B&C approach, we employ CPLEX 9.0 and Concert Technology 1

with default settings for cut generation, preprocessing, and upper bound heuristics.

The cuts that are utilized by CPLEX include clique, cover, disjunctive, flow cover,

flow path, Gomory fractional, generalized upper bound cover, implied bound, and

mixed integer rounding cuts. We implement our solution approaches using the C++

programming language and perform the runs on a machine with a 3 GHz Intel XEON

1CPLEX and Concert Technology are trademark of ILOG, Inc.



45

processor and 6 GB RAM.

III.4.1. Random Test Instance Generation

In order to develop a set of test instances that are of realistic size, we vary the number

of products |P|, the number of retailers |R|, and the number of potential CC locations

|K|. In particular, we consider two levels for |P| (5 and 10), three levels for |R| (60,

90, and 120), and two levels for |K| (25 and 35). Hence, we have 2×3×2 = 12 different

problem classes as shown in Table 1. We generate 10 random instances for each of

these problem classes. For each instance, we generate the number of NPP locations

|Tp| and the number of potential RPP locations |Sp| for all of the products using

uniform distributions as shown in Table 2. In generating the number of DC locations

|D|, we induce correlation between |R| and |D| as in Table 2. For each retailer, we

randomly generate the new demand Dpr, the induced demand D′pr, and the return

fraction δpr for each product p using uniform distributions as shown in Table 2. We

randomly generate the recovery fraction αps at each potential RPP location for each

product also as in Table 2.

Table 1 URP: Problem Classes Used in Computational Testing.

Class |P| |R| |K| Class |P| |R| |K|

C1 5 60 25 C7 10 60 25

C2 5 60 35 C8 10 60 35

C3 5 90 25 C9 10 90 25

C4 5 90 35 C10 10 90 35

C5 5 120 25 C11 10 120 25

C6 5 120 35 C12 10 120 35

The URP has three major cost categories that represent processing, transporta-

tion, and facility location costs. Associated with each major cost category, we have

several cost components. More specifically, we have four cost components associated



46

Table 2 URP: Distributions for Sets, Demand, Return Fraction, and Recovery Frac-

tion Values.

Parameter Value

|Tp| Uniform[1, 5]

|Sp| Uniform[2, 10]

|D| ⌊|R|/12⌋

Dpr Uniform[250, 300]

D′pr Uniform[450, 500]

δpr Uniform[0.7, 0.9]

αps Uniform[0.8, 0.98]

with processing (corresponding to manufacturing, remanufacturing, DC processing,

and CC processing activities), five cost components associated with transportation

(corresponding to NPP-DC, RPP-DC, CC-RPP, DC-Retailer, and Retailer-CC flows

on the network), and two cost components associated with facility location (corre-

sponding to collection center and remanufacturing facility location decisions), result-

ing in a total of eleven cost components. In our preliminary computational exper-

iments, we observed that the relative contribution of each major cost category to

the overall cost in the optimal solution has an impact on the difficulty of the test

instance. Therefore, we distinguish between two settings where (i) each cost category

contributes significantly to the overall cost, i.e., balanced case, and (ii) a cost category

dominates over the others in the overall cost, i.e., unbalanced case. It is worthwhile

to note that in the balanced case the trade-offs involved in realistic decision-making

situations are better reflected in the data, and, in fact, this case corresponds to more

difficult test instances as will be clear while we present our computational results in

the following discussion.

For the purpose of generating test instances corresponding to balanced and un-

balanced cases, we follow a specific procedure that is guided by the estimated per-



47

centage contribution (EPC) of the above mentioned eleven cost components in the

optimal overall objective function value. More specifically, we utilize the EPC of the

cost components to induce correlation between different cost components so that we

exercise some control over the percentage contribution of each cost category in the

optimal overall objective function value for each randomly generated test instance.

We begin by generating the unit manufacturing cost for each product randomly and

obtain an estimate of the total manufacturing cost for each product. Then, we use the

total manufacturing cost for each product in conjunction with the EPC of the cost

components to randomly generate other processing cost parameters for each product,

transportation cost parameters for each transportation link on the network, and fixed

location cost parameters for potential RPP and CC locations. The complete test bed

includes a total of 120 instances with balanced costs and a total of 60 instances with

unbalanced costs (see Table 3 for details).

Our main objective in considering the balanced and unbalanced cases is to exam-

ine the performance of both the B&C and BD approaches under these scenarios for

the same size problems, and thus, to highlight the impact of the input data on algo-

rithmic performance. For each problem instance we first obtain the optimal objective

function value using the B&C approach and evaluate the percentage contribution of

the individual cost components. Table 3 reports the average realized percentage con-

tribution (ARPC) of the cost components where we use the following notation. We

note that each cell for the balanced case is the average of 120 observations, each cell

for each unbalanced case is the average of 20 observations.



48

ϕ̂ν ARPC of manufacturing cost of the products,

ϕ̂ρ ARPC of remanufacturing cost of the products,

ϕ̂η ARPC of DC processing cost of the products,

ϕ̂κ ARPC of CC processing cost of the products,

ϕ̂F ARPC of fixed cost of opening the RPP locations,

ϕ̂F ′ ARPC of fixed cost of opening the collection centers,

ϕ̂TD ARPC of transportation cost associated with the NPP-DC flows,

ϕ̂SD ARPC of transportation cost associated with the RPP-DC flows,

ϕ̂KS ARPC of transportation cost associated with the CC-RPP flows,

ϕ̂DR ARPC of transportation cost associated with the DC-Retailer flows, and

ϕ̂RK ARPC of transportation cost associated with the Retailer-CC flows.

Table 3 URP: Average Realized Percentage Contribution of Cost Components in the

Test Instances.

Processing costs Transportation costs Location costs

bϕν bϕρ bϕη bϕκ Total bϕTD bϕSD bϕKS bϕDR bϕRK Total bϕF bϕ
F

′ Total

Balanced Case (based on 120 instances–10 in each of the 12 problem classes in Table 1.)

18 4 2 1 25 4 2 1 19 8 34 23 18 41

Unbalanced Case 1: Processing cost dominant (based on 20 instances–10 in each of C11 and C12)

39 14 8 6 67 2 2 1 11 8 24 5 4 9

Unbalanced Case 2: Transportation cost dominant (based on 20 instances–10 in each of C11 and C12)

7 2 1 1 11 1 1 1 48 21 72 8 9 17

Unbalanced Case 3: Facility location cost dominant (based on 20 instances–10 in each of C11 and C12)

6 2 2 1 11 1 1 1 2 2 7 60 22 82

III.4.2. Computational Results

As we have noted earlier, we solve each instance using the B&C approach and the BD

approach with the alternative types of cuts developed in Section III.3. In obtaining

the optimal solution to an instance using the B&C approach for the test instances,

we observe that reducing the optimality gap below 1 percent requires considerable

computational effort. Thus, to avoid this tail-off effect, we set the tolerance for



49

stopping criterion to 1 percent gap between the incumbent and the best lower bound.

As mentioned earlier, while solving the master problem in the BD approach, we use

the B&C approach as implemented in CPLEX. In order to quickly generate initial

Benders cuts, at the first iteration of BD, we employ an early stopping criterion for

the master problem. For this purpose, we set the optimality gap to 30% at this

iteration. In successive iterations, we set the stopping criterion to 0.009% optimality

gap. This way of handling the master problem also helps us to circumvent the tail-

off effect with only a small compromise in the quality of the bound values. We use

the corresponding upper and lower bounds of the master problem (obtained upon

termination of the B&C ) to calculate the upper (ZMP in line 7 of Display 1) and

lower (ZMP in lines 2 and 10 of Display 1) bounds in the BD approach. Furthermore,

we limit the maximum number of iterations (MaxIter) in the BD approach to five and

set the the tolerance for stopping criterion (ε) to 1 percent as in the B&C approach

(line 3 of Display 1). In the following, we compare the B&C and BD approaches with

alternative types of cuts in terms of the solution quality and the time required to

obtain the solution as well as the number of iterations required to obtain the optimal

solution.

III.4.3. Balanced Costs

Considering the 120 instances corresponding to the case of balanced costs, we sum-

marize the average and the maximum optimality gaps (100(UB − LB)/LB) upon

termination of the approaches in Table 4. We note that, in Tables 4, 5, and 6, row

minimums for the BD related results are listed in bold. As expected, in the B&C ap-

proach, the maximum optimality gap for almost all instances are at most 1% except

for one instance in problem class C12. In this instance, the run was terminated due to

memory limitations with an optimality gap of 2.8%. The overall average optimality



50

gap for the B&C approach is 1% (which is the stopping criterion) whereas the average

gaps for the BD approach with Type 1, 2, 3, and 4 cuts are 0.6%, 0.8%, 0.8%, and

1.0%, respectively. Although we use the termination criteria of 1% optimality gap or

5 iterations for the BD approach, we observe that the optimality gap is still smaller

than 1% in many instances. Notably, the use of Type 1 cuts in the BD approach

appears to be the most effective, as the BD with Type 1 cuts provides the lowest av-

erage optimality gap in all of the problem classes and the lowest maximum optimality

gap in most classes. This provides empirical evidence as to the potential benefit of

using disaggregated cuts in the BD framework.

Table 4 URP: Comparison of the Optimality Gaps upon Termination for Balanced

Instances.

Class
Average Optimality Gap (%) Maximum Optimality Gap (%)

B & C Type 1 Type 2 Type 3 Type 4 B & C Type 1 Type 2 Type 3 Type 4

C1 1.0 0.3 0.7 0.7 0.8 1.0 0.7 1.0 1.0 1.0

C2 1.0 0.4 0.8 0.6 1.0 1.0 0.8 1.3 1.0 1.8

C3 0.9 0.5 0.6 0.7 0.7 1.0 0.9 1.0 1.0 0.9

C4 1.0 0.6 0.8 0.8 0.7 1.0 1.0 1.0 1.0 1.0

C5 1.0 0.6 0.7 0.8 0.8 1.0 1.0 0.9 1.0 1.0

C6 1.0 0.7 0.7 0.7 0.8 1.0 1.0 1.0 1.0 1.1

C7 1.0 0.6 0.9 0.7 1.0 1.0 1.0 1.2 0.9 1.7

C8 1.0 0.7 1.0 0.9 1.0 1.0 1.0 1.1 1.0 1.5

C9 1.0 0.7 0.8 0.7 0.9 1.0 1.0 1.0 1.0 1.0

C10 1.0 0.8 1.3 0.8 1.6 1.0 1.0 2.1 1.7 2.8

C11 1.0 0.6 0.7 0.9 1.1 1.0 1.0 1.0 1.1 1.3

C12 1.2 0.7 0.7 1.1 1.2 2.8 1.0 1.0 2.4 2.3

In Table 5, we present a comparison of the time required to obtain the solution by

the B&C approach and the BD approach with alternative types of cuts. The results

show that the BD approach with Type 1 or Type 2 cuts performs better in terms of

solution times than the BD approach with Type 3 and Type 4 cuts. Except in C12,

the BD approach with these types of cuts provides either the shortest, or the second

shortest, solution time in all of the problem classes. We note that the time required

to solve the master problem with Type 1 and Type 2 cuts is marginally longer than



51

the time required with Type 3 and Type 4 cuts. This can clearly be attributed to the

higher number of inequalities being added to the master problem at each iteration

due to the disaggregation of cuts, i.e., the BD approach with Type 1 cuts adds 2|P|

inequalities whereas the approach with Type 2 cuts adds |P| inequalities as opposed

to two inequalities and one inequality added in the BD with Type 3 and Type 4

cuts, respectively. For even larger size instances (especially ones with larger |K|),

the solution times with the BD approach are expected to increase mainly due to the

solution time of the master problem. On the other hand, the results reported in

Table 5 indicate that the solution times with the B&C approach will increase very

dramatically for those instances.

Table 5 URP: Comparison of the Solution Times for Balanced Instances.

Class
Average of Solution Times (sec.) Maximum of Solution Times (sec.)

B & C Type 1 Type 2 Type 3 Type 4 B & C Type 1 Type 2 Type 3 Type 4

C1 36.2 13.6 16.1 16.1 18.3 75.5 24.7 23.9 23.9 38.2

C2 164.2 47.7 42.1 82.0 58.5 642.2 157.9 160.3 293.0 190.5

C3 134.8 29.2 26.1 52.8 52.7 251.1 56.4 41.4 100.3 116.9

C4 447.2 96.8 207.0 207.0 291.2 828.1 143.4 458.0 458.0 925.0

C5 166.5 29.8 80.2 58.0 58.0 304.5 50.3 286.2 164.3 164.3

C6 1194.9 132.7 419.0 295.3 377.4 3224.3 263.6 1592.7 1131.0 1014.5

C7 162.4 18.3 13.6 34.0 24.5 404.0 39.8 29.5 59.9 38.6

C8 475.0 46.5 38.1 96.5 70.7 924.6 105.8 74.4 371.8 126.2

C9 1006.0 51.9 56.7 129.7 106.7 6223.8 134.4 194.0 251.3 274.2

C10 9629.2 480.1 355.2 1362.9 569.8 42763.8 1356.1 738.2 3063.1 1419.5

C11 8080.8 181.7 472.7 249.2 399.1 34073.7 374.4 1175.4 918.8 1404.8

C12 42614.4 1800.8 3810.6 785.9 1769.5 120226.0 7318.4 19066.6 2059.3 3359.5

Table 6 reports the average and the maximum number of iterations required by

the BD approach with alternative types of cuts. We observe that Type 1 cuts provide

the smallest values for the average and the maximum number of iterations.



52

Table 6 URP: Comparison of the Number of Iterations for Balanced Instances.

Class
Average Number of Iterations Maximum Number of Iterations

Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4

C1 1.7 1.7 1.7 2.3 2 2 2 4

C2 1.9 2.4 2.2 2.4 3 5 4 5

C3 1.1 1.2 1.3 1.5 2 2 2 3

C4 1.1 1.5 1.5 2.2 2 2 2 4

C5 1.0 1.4 1.4 1.4 1 2 2 2

C6 1.2 1.9 1.5 2.6 2 4 3 5

C7 1.6 2.3 2.3 2.8 3 5 4 5

C8 1.7 2.6 2.2 3.3 2 5 4 5

C9 1.4 2.2 2.1 2.7 2 5 3 5

C10 2.6 4.3 3.8 4.7 5 5 5 5

C11 1.6 2.2 2.4 3.4 2 3 5 5

C12 2.1 2.6 3.1 3.9 5 5 5 5

We also note that a detailed analysis of the upper and lower bounds obtained

by the BD approach upon termination reveals that the use of Type 1 cuts provides

the best lower bound in 75 of the total 120 random test instances. This is followed

by Type 3, Type 2 and Type 4 cuts with 29 instances, 18 instances, and 1 instance,

respectively. The B&C approach provides the best lower bound in only one instance.

Furthermore, although the upper bounds obtained by all of the approaches are very

close, we observe that the B&C approach provides the lowest upper bound in 94 of

the instances followed by 15, 5, 6, and 7 instances with the BD approach using Type

1, 2, 3, and 4 cuts, respectively.

III.4.4. Unbalanced Costs

Considering the 60 instances corresponding to the case of unbalanced costs, we present

a summary of our experimental results in In Table 7. Interestingly, the experimental

results show that the time required to obtain the optimal solution for all of the

approaches decreases considerably when one of the cost components is dominant.

This observation can be directly attributed to the performance of the upper and

lower bounds generated both in the B&C and BD approaches since the bounds are



53

determined primarily by the solution related only to the dominant cost category.

We note that, as opposed to the balanced cost case, the results in Table 7 do not

provide any evidence that the larger problem size instances cause increased solution

times, independent of the solution approach. It appears that, once the cost data is

unbalanced, the instance becomes very easy to solve with both the BD and the B&C

approaches.

Table 7 URP: Comparison of the Solution Times for Unbalanced Instances.

Processing Cost Dominant (on average, 67% of the total cost)

Class
Average of Solution Times (sec.) Maximum of Solution Times (sec.)

B & C Type 1 Type 2 Type 3 Type 4 B & C Type 1 Type 2 Type 3 Type 4

C11 1.43 0.42 0.51 0.36 0.37 3.05 0.75 1.17 0.63 0.59

C12 1.11 0.53 0.53 0.43 0.43 1.55 0.59 0.56 0.48 0.45

Transportation Cost Dominant (on average, 72% of the total cost)

Class
Average of Solution Times (sec.) Maximum of Solution Times (sec.)

B & C Type 1 Type 2 Type 3 Type 4 B & C Type 1 Type 2 Type 3 Type 4

C11 1.44 0.48 0.49 0.42 0.43 1.66 0.50 0.52 0.44 0.44

C12 1.55 0.50 0.58 0.47 0.48 2.50 0.78 0.75 0.63 0.63

Facility Location Cost Dominant (on average, 82% of the total cost)

Class
Average of Solution Times (sec.) Maximum of Solution Times (sec.)

B & C Type 1 Type 2 Type 3 Type 4 B & C Type 1 Type 2 Type 3 Type 4

C11 1.25 0.48 0.49 0.41 0.43 1.34 0.50 0.52 0.42 0.44

C12 1.62 0.72 0.74 0.64 0.65 1.80 0.75 0.77 0.67 0.66

III.5. Concluding Remarks

In this chapter, we considered the URP, which is a multi-product CLSC network

design problem where we locate the collection centers and remanufacturing facilities

while determining the material flows in the whole network so as to minimize the pro-

cessing, transportation, and fixed location costs. Although our work was primarily

motivated by the practice of an OEM in the automotive service parts industry, we

developed a generic model that can be used in establishing CLSC networks for other

consumer, commercial, and industrial products/parts, where the products/parts have



54

high recoverable value, long product life cycles, and well-established forward networks.

We developed an efficient mathematical formulation that models the flow variables

separately for each stage in the network. In our preliminary computational studies,

we found that this type of formulation performs better with the B&C approach as

opposed to a formulation that uses four-index multi-stage variables, similar to the

multi-stage flow variables given in Geoffrion and Graves (1974), that specify prod-

uct flow from the retailers to the RPPs and from NPPs and RPPs to the retailers.

Furthermore, the formulation considered here also lends itself to an efficient Benders

reformulation and solution approach. Therefore, on the modelling side, we presented

an efficient mathematical formulation for a generic model for CLSC network design.

On the methodological side, we provided an exact solution approach based on BD,

which performs faster than the B&C approach. In this context, we provided efficient

dual problem solution methods that generate strong Benders cuts. Furthermore, we

determined that, in our problem setting, the use of multiple Benders cuts, as opposed

to the classical single Benders cut approach, generated stronger lower bounds and

promoted faster convergence.

On the empirical side, we used the model and solution approach that we de-

veloped to understand the impact of problem data characteristics on solution per-

formance. For this purpose, we generated a test-bed of problem instances with cost

structures underlining the trade-off considerations. In this case, our tests clearly

showed the efficiency of the BD approach with strong and, also with disaggregated,

cuts. Interestingly, we also determined that if the input parameters are such that the

different cost components are not balanced, but, rather, are biased towards one of the

major cost categories, the time required to obtain the optimal solution decreased con-

siderably when using the B&C approach and the proposed BD approach as compared

to problem instances of the same size with balanced costs.



55

CHAPTER IV

A CAPACITATED REMANUFACTURING NETWORK DESIGN PROBLEM

In this chapter, we first extend the problem setting of URP to the CRP by incorpo-

rating capacity constraints and multi-sourcing requirements for retailer assignments.

As a consequence of these two extensions, each retailer receives incoming product

shipments from multiple DCs and sends product returns to multiple CCs, both of

which operate under certain capacity restrictions. Moreover, in the forward channel,

a DC may receive shipments from multiple capacitated product-specific NPPs, in ad-

dition to the open product-specific RPPs. We note that the capacities at the DCs

and the CCs represent aggregate capacities that can be shared by all products. Thus,

for the purpose of incorporating the non-uniformity in capacity usage, we utilize a

coefficient specified separately for each product as a modifier to one capacity use unit.

Moreover, since we can estimate the remanufacturing capacity for each product by us-

ing the estimated return quantity and return fraction as well as the recovery fraction,

and we furthermore assume a single RPP per product, we can identify the feasible

RPP candidate sites for each product (and consider these the only candidates) before

attempting to solve any specific instance. Thus, we do not consider any capacity

limitations on candidate RPP sites in this model.

In CRP, as in URP, we are interested in determining the best locations of the

RPPs and the CCs (out of their respective set of candidate sites) with respect to the

NPPs, DCs and the retailers at known locations, and the best flow of products in

both the forward and reverse channels so that the total cost of location, processing

(at NPPs, RPPs, CC, and DCs) and transportation is minimized.



56

IV.1. Problem Formulation

We next give the additional notation and the model, referred in this chapter hence-

forth as MP. Figure 3 depicts the underlying network structure with the flow, as-

signment, and location variables in the CLSC network.

Additional Parameters

Cd aggregate processing/storage capacity at DC d ∈ D.

Bk aggregate processing/storage capacity at CC k ∈ K.

Qpt production/supply capacity to produce/supply p ∈ P at NPP t ∈ Tp.

γp processing/storage capacity coefficient at the DCs for product p ∈ P.

βp processing/storage capacity coefficient at CCs for product p ∈ P.

Mprk constraint parameters whose values are min{δprDpr, Bk}

for p ∈ P, r ∈ R, k ∈ K.

Additional Decision Variables

uprk quantity of product p ∈ P shipped from retailer r ∈ R to CC k ∈ K.

wpdr quantity of product p ∈ P shipped to retailer r ∈ R from DC d ∈ D.

Figure 3 Underlying Structure of the CLSC Network for CRP.

Tp

Sp

D

K

R

vps ck

uprk

wpdr

ypsd

zptd

xpks



57

Objective Function

min
∑

p∈P

∑

s∈Sp

Fpsvps +
∑

k∈K

F ′kck +
∑

p∈P

∑

r∈R

∑

k∈K

(Grk + κpk) uprk

+
∑

p∈P

∑

k∈K

∑

s∈Sp

Gksxpks +
∑

p∈P

∑

s∈Sp

∑

d∈D

(Gsd + ρps) ypsd

+
∑

p∈P

∑

t∈Tp

∑

d∈D

(Gtd + νpt) zptd +
∑

p∈P

∑

d∈D

∑

r∈R

(Gdr + ηpd)wpdr (4.1)

The first two terms in the objective function represent the fixed costs associated

with locating the RPPs and the CCs, respectively. The next two terms give the

reverse channel cost including the retailer-to-CC and the CC-to-RPP transportation

costs, respectively, with the third term also including the processing costs at the

CCs. The following fifth and the sixth terms represent the transportation cost in the

forward channel that is on the RPP-to-DC and the NPP-to-DC links, along with the

processing costs at the RPPs and NPPs, respectively. The last term calculates the

transportation cost on the DC-to-retailer links and the processing cost at the DCs. In

the following, we assume that, for the sake of simplicity, the notation Gprk, Gpsd, Gptd

and Gpdr correspond to the terms (Grk +κpk), (Gsd +ρps), (Gtd +νpt), and (Gdr +ηpd),

respectively.



58

Constraints

∑

s∈Sp

vps = 1 ∀ p ∈ P, (4.2)

∑

k∈K

uprk = δprDpr ∀ p ∈ P, r ∈ R, (4.3)

∑

s∈Sp

xpks −
∑

r∈R

uprk = 0 ∀ p ∈ P, k ∈ K, (4.4)

∑

k∈K

xpks −
∑

r∈R

δpr Dpr vps = 0 ∀ p ∈ P, s ∈ Sp, (4.5)

∑

d∈D

ypsd − αps

∑

r∈R

δpr Dpr vps = 0 ∀ p ∈ P, s ∈ Sp, (4.6)

∑

s∈Sp

ypsd +
∑

t∈Tp

zptd −
∑

r∈R

wpdr = 0 ∀ p ∈ P, d ∈ D, (4.7)

∑

d∈D

wpdr =
(
Dpr +D′pr

)
∀ p ∈ P, r ∈ R, (4.8)

∑

p∈P

∑

r∈R

βp uprk ≤ Bk ck ∀ k ∈ K, (4.9)

uprk ≤Mprk ck ∀ p ∈ P, r ∈ R, k ∈ K, (4.10)

∑

d∈D

zptd ≤ Qpt ∀ p ∈ P, t ∈ Tp, (4.11)

∑

p∈P

∑

r∈R

γpwpdr ≤ Cd ∀ d ∈ D, (4.12)

uprk, wpdr, xpks, ypsd, zptd ≥ 0 ∀ p ∈ P, k ∈ K, d ∈ D, r ∈ R, s ∈ Sp, t ∈ Tp,

(4.13)

vps, ck ∈ {0, 1} ∀ p ∈ P, s ∈ Sp. (4.14)



59

Constraint set (4.2) guarantees that a single RPP location is established for each

product p. Constraint set (4.3) ensures that the return quantity for product p at

each retailer r is shipped to the CCs. Constraint sets (4.4), (4.5), (4.6) and (4.7)

represent the flow conservation (mass balance) for each product type at the CCs,

RPPs, and the DCs. Constraint set (4.5) also makes sure that, for a product p, a

RPP is established at a location s if there is flow of this product from a CC k to the

location s. Constraint set (4.6) enforces that the remanufactured products are totally

returned into the system. Constraint set (4.8) ensures that the customer demand is

satisfied using new and/or remanufactured products. Constraint set (4.9) serves to

create a CC k if that location is set to receive some product returns from the retailers,

and it also ensures that the aggregate processing capacity limitation at k is honored.

Constraint set (4.10) is redundant; however, it provides a tighter formulation as in

the case of capacitated facility location problem Van Roy (1986). Constraint sets

(4.11) and (4.12) enforce the capacity restrictions at the NPP locations and the DCs,

respectively. Constraint sets (4.13) and (4.14) are the restrictions on the decision

variables.

As mentioned earlier, this formulation can be implemented and solved using stan-

dard MILP optimizers that are readily available. However, since the computational

time to obtain optimal or near optimal solutions increases prohibitively as the size of

the problem instance increases, we utilize such an optimizer only in order to obtain

benchmark results, and we focus our efforts on devising efficient heuristic approaches

that provide good feasible solutions (upper bounds) in reasonable runtimes. For this

purpose, we propose two tabu search meta-heuristics, Sequential and Random Neigh-

borhood Search procedures (SNS() and RNS(), respectively) in which we combine

search functions utilizing three simple neighborhoods in particular ways to improve

efficiency in exploring the solution space. The neighborhood functions include moves



60

on CCs, and exchanges on CCs and RPPs. A Tabu search framework has been

employed and proved itself a powerful approach for solving various combinatorial op-

timization problems Glover (1989, 1990); Glover and Laguna (1997). In addition,

we also propose an effective transhipment heuristic to quickly estimate the goodness

(objective function value) of a feasible solution so that our search procedures execute

with improved solution times with little impact on final solution quality.

We then apply the BD approach presented in Section III.3 to the current problem

setting and observe that, although the BD approach exhibits superior performance for

small scale instances, it becomes highly impractical for large scale instances. Thus,

to improve its computational efficiency, we incorporate a tabu search heuristic to

provide an initial solution to use while solving the initial subproblem in the Benders

decomposition scheme. Such an heuristic-enhanced Benders decomposition (denoted

by HBD) framework greatly facilitates a faster convergence of the Benders decom-

position, which is otherwise impossible for larger instances. On the other hand, the

lower bounds thus obtained provide benchmarks that illustrate the high quality of the

heuristic solutions. We present computational results to illustrate the efficient per-

formance of the tabu search heuristics as well as the HBD framework in comparison

to an exact B&C approach as implemented in CPLEX.

IV.2. Heuristic Solution Methods

In this section, we first describe the main components of the improvement heuris-

tics, including a solution representation, a method for evaluating the goodness of a

solution quickly and effectively, the initial solution construction heuristics, and the

neighborhood functions used to explore the solution space.



61

IV.2.1. Solution Representation

We characterize a solution by a pair of integer vectors (Su,Ku), where Su and Ku

represent the set of open RPPs and open CCs, respectively. Since there is a single

and dedicated RPP for each type of product, as stated in constraint (4.2), the set

Su consists of |P| elements, where the pth element is referred to as s[p] in Su, and it

represents the open RPP that processes the product p. On the other hand, the set

Ku consists of elements that refer to the open CCs; thus, it is a subset of the set K.

We note that a feasible solution (Su,Ku) should satisfy the following conditions.

∑

k∈Ku

Bk ≥
∑

r∈R

∑

p∈P

βp δpr Dpr (4.15)

vps[p] = 1 and
∑

s∈Sp\{s[p]}

vps = 0 ∀ p ∈ P. (4.16)

The inequality (4.15) states that a feasible solution must imply a network configura-

tion with enough aggregate storage/processing capacity at the open CCs to accom-

modate the reverse flow of products from the retailers. The equalities in (4.16) dictate

that, for each product p, the RPP location s[p] is the only open RPP location for pro-

cessing returns. This, in turn, satisfies the restrictions represented by the constraints

(4.2).

IV.2.2. Objective Function Evaluation

A given feasible solution (Su,Ku) implies fixed binary values for the location variables

in MP. Specifically, for each product p, we set vps[p] to 1 for the candidate RPP

location s[p] included in Su, and for all s ∈ Sp \ {s[p]}, we have a vps value of 0.

Similarly, for each k ∈ Ku, we have a ck value equal to 1, and for all other candidate

CC locations given by K\Ku, the ck is zero. Then, the resulting linear program, which



62

we denote by SP(u, w, x, y, z|Su,Ku), can be solved using any linear programming

(LP) solver (e.g. CPLEX) to obtain the optimal value for the rest of the variables

(u, w, x, y, z) and the objective function. However, in a heuristic neighborhood

search framework, since the goodness of a solution needs to be evaluated many times

(specifically, for each solution encountered in the process), the use of an LP solver

for this purpose results in excessively high runtimes for the heuristics, especially

for large problem instances. Hence, we next describe a transshipment heuristic to

quickly estimate the objective value or goodness of a given feasible solution in the

course of the solution improvement procedure. We note that a similar procedure was

used previously for the same purpose while solving a production/distribution system

problem in (Keskin and Üster, 2007).

Given a feasible solution (Su,Ku), the SP(u, w, x, y, z|Su,Ku) can be solved

in five stages as shown in Display 2. In the first stage (lines 1-12), we solve for the

flow variables uprk in a greedy fashion, based on the unit costs θ1
prk, and the capacity

of the open CCs. In the second stage (lines 13-14), we solve for the flow variables xpks.

For each product p, once we know the quantities collected at the CC locations from

the previous stage, the CCs should ship the entire quantity of returns to the open

RPP location. This can be easily calculated as shown on line 14. In the third stage

(lines 15-27), we solve the transportation problem between the DCs and the retailers.

We assign the flows wpdr in a greedy fashion, based on the unit cost θ2
pdr, and the

capacities at the DCs. The last two stages solve a transportation problem from NPP-

RPP locations to the DCs for each product p separately. In such a problem for a

fixed p, the open RPP location and the NPP locations constitute the set of supply

locations. We represent this set by T ′p = Tp ∪ {s[p]}, where the first |Tp| elements of

the set T ′p correspond to the NPPs and the (|Tp| + 1)-st element corresponds to the

open RPP s[p]. We define an index T ∈ T ′p that refers to the open RPP s[p]. The



63

RPP can use all of the remanufactured products to cater to the requirements at the

DCs, and hence, we define its capacity as QpT = αps[p]

∑
r∈R δpr Dpr. Associated with

the index T , we also define flow variables zpTd, and unit costs θ3
pTd (line 31). We

assign the flows zptd in a greedy fashion, based on the unit costs θ3
ptd, and the supply

capacities Qpt. At the end of these assignments, the RPP may have some unused

remanufactured products, in which case QpT > 0. To ensure the usage of the entire

quantity of remanufactured products to satisfy the DC demands, in the fifth stage

(lines 42-57), we increase the flow from the RPP s[p] while simultaneously reducing

the flows from the NPP locations by an equivalent amount, in a greedy fashion based

on the unit cost θ4
ptd, until constraint (4.6) is satisfied. Finally, the values of the

flow variables u, w, x, y, z, together with the values of the binary variables c and

v, are used to estimate the objective function value Z(Su,Ku) of a feasible solution

(Su,Ku).

We also implement a variation to the above heuristic by replacing stages I and

II with a single stage consisting of all the reverse channel flow variables and by

replacing stages III and IV with a single stage consisting of all the forward channel

flow variables. In this variation, instead of solving flow variables related to a given

channel in two distinct stages, we include all of the channel locations for consideration

at once. In this alternative implementation, stage V of the above heuristic is also

modified to include the flow variables w with the corresponding unit costs and the

capacities. This variation provides better objective function estimates, but at the

expense of higher computational times.



64

Display 2 Procedure ObjectiveEval()
1: Stage I - Flows from Retailers to CCs
2: Calculate RDpr = δprDpr and θ1

prk
= Gprk ∀p ∈ P, r ∈ R, k ∈ Ku

3: List θ1
prk

in non-decreasing order

4: for each θ1
prk

in this list do

5: if RDpr > 0 then

6: if Bk ≥ βp RDpr then

7: uprk ← uprk + RDpr ; Bk ← Bk − (βp RDpr); RDpr = 0
8: else if Bk > 0 then

9: uprk ← uprk + (Bk/βp); RDpr ← RDpr − (BK/βp); Bk = 0

10: end if

11: end if

12: end for

13: Stage II - Flows from CCs to RPPs
14: xpks ←

P
r∈R

δprDpr vps ck ∀p ∈ P, k ∈ K, s ∈ Sp

15: Stage III - Flows from DCs to Retailers
16: Calculate FDpr = D′

pr + Dpr and θ2
pdr

= Gpdr ∀p ∈ P, r ∈ R, d ∈ D

17: List θ2
pdr

in non-decreasing order

18: for each θ2
pdr

in this list do

19: if FDpr > 0 then

20: if Cd ≥ γp FDpr then

21: wpdr ← wpdr + FDpr; Cd ← Cd − (γp FDpr); FDpr = 0
22: else if Cd > 0 then

23: wpdr ← wpdr + (Cd/γp); FDpr ← FDpr − (Cd/γp); Cd = 0

24: end if

25: end if

26: end for

27: for each product p ∈ P do

28: Stage IV - Flows from NPP/RPP to DCs

29: Set T ′
p = Tp

S
{s[p]} and let T = |Tp|+ 1 represent the RPP location s[p] in set T ′

p

30: Calculate DCDdp =
P

r∈R
wpdr∀p ∈ P, d ∈ D and θ3

ptd
= Gptd ∀p ∈ P, d ∈ D, t ∈ Tp;

31: Set θ3
pTd

= G
ps[p]d

; QpT = α
ps[p]

P
r∈R

δpr Dpr ; zpTd = y
ps[p]d

;

32: List θ3
ptd

in non-decreasing order, where t ∈ T ′
p

33: for each θ3
ptd

in this list do

34: if DCDdp > 0 then

35: if Qpt ≥ DCDdp then

36: zptd ← zptd + DCDdp; Qpt ← Qpt −DCDdp; DCDdp = 0
37: else if Qpt > 0 then

38: zptd ← zptd + Qpt; DCDdp = Qpt; Qpt = 0
39: end if

40: end if

41: end for

42: Stage V - Flow Adjustments
43: if QpT > 0 then

44: Calculate θ4
ptd

= G
ps[p]d

−Gptd ∀p ∈ P, d ∈ D, t ∈ Tp

45: List θ4
ptd

in non-decreasing order, where t ∈ Tp

46: for each θ4
ptd

in this list do

47: if QpT > 0 then

48: if QpT > zptd then

49: y
ps[p]d

← y
ps[p]d

+ zptd; QTp ← QpT − zptd; zptd = 0

50: else

51: y
ps[p]d

← y
ps[p]d

+ QTp; zptd ← zptd −QpT ; QpT = 0

52: end if

53: else

54: break;
55: end if

56: end for

57: end if

58: end for

59: return Z(Su,Ku)



65

IV.2.3. Construction Heuristics

Due to our solution representation, the construction of a feasible solution corresponds

to finding a set of locations for the CCs and the product RPPs. For this purpose, we

utilize a partially randomized algorithm, given in Display 3, that aims to identify the

most favorable set of RPP locations for each product by randomly sampling over the

possible selections of the CC locations (i.e., a subset of K). More specifically, first,

we pick a set of CCs at random to form the set Ku, such that the condition (4.15) is

satisfied. Then, for each k ∈ Ku, we fix the values of the location variables ck to 1 in

the formulation MP. Similarly, for each k ∈ K \Ku, we fix the values of the location

variables ck to 0. We then relax the binary restrictions on the location variables vps to

obtain a LP which we denote by SPK(u, v, w, x, y, z|Ku). We solve this LP, and

for each RPP location, we record a score(p, s) parameter value determined by the the

value of the associated vps variables in the solution. We repeat this process to a preset

number of iterations, represented by CTR. After performing CTR iterations, for each

product p ∈ P, we choose the RPP with the maximum cumulative score(p, s) and

use it in the construction of the set Su of the initial feasible solution. Furthermore,

while performing the iterations, we record a set Ku∗ corresponding to the least cost

objective value Z∗(Ku) for the SPK(u, v, w, x, y, z|Ku). We then use the set Ku∗

as the Ku in the initial feasible solution.

We note that alternatively to the above implementation, we can construct a

feasible solution by fixing the RPP locations instead of the open CC locations. In this

case, for each product p, we randomly choose one RPP location to be opened. We set

the values of the binary variables vps accordingly to 1 or 0. We then relax the binary

restrictions on the ck variables to obtain a LP SPS(c, u, w, x, y, z|Su). We measure

the popularity of the CCs using a parameter score(k) that cumulatively holds the



66

values of the ck variables obtained at each iteration. After a number of iterations over

the sets of open RPP locations, we construct the set Ku as follows. We include the

CC location with the highest score(k) value in the set Ku. If the capacity constraint

(4.15) is violated, then we pick the CC with the next highest score(k) value, and

repeat this procedure until the constraint is satisfied. The resulting set Ku contains

the selected CC locations.

Based on our computational testing of both of the construction procedures, we

find that the former procedure exhibits superior performance, both in terms of com-

putational time and the quality of the solution (objective function value). Hence, we

employ the former procedure which is given in Display 3.

Display 3 Procedure Construct()

1: initialize CTR, i = 1, Su = ∅, Ku∗ = ∅, Zbest = ∞,

score(p, s) = 0, ∀p ∈ P, s ∈ Sp

2: while itr ≤ CTR do

3: K′ = K and Ku = ∅

4: while (
∑

k∈Ku Bk <
∑

r∈R

∑
p∈P βp δpr Dpr) do

5: Randomly pick a CC k ∈ K′

6: Ku = Ku ∪ {k} and K′ = K′ \ {k}

7: end while

8: Solve SPK(u, v, w, x, y, z|Ku) to find Z∗(Ku) and v∗

9: score(p, s) =score(p, s) + v∗ps, ∀p ∈ P, s ∈ Sp

10: if Z∗(Ku) < Zbest then

11: Zbest = Z∗(Ku) and Ku∗ = Ku

12: end if

13: itr = itr+ 1

14: end while

15: For each p, s[p] = arg max{score(p, s): s ∈ Sp}

16: Construct Su using the s[p], ∀p ∈ P

17: Solve SP(u, w, x, y, z|Su,Ku∗)

18: return (Su,Ku∗) and Z(Su,Ku∗).



67

IV.2.4. Neighborhood Functions

We employ three neighborhood functions which generate three distinct sets of neigh-

boring solutions.

CC-exchange neighborhood (ccx): Given a feasible solution (Su,Ku), the CC-

exchange neighborhood function considers only the set Ku to construct its neigh-

boring solutions. For each open CC in the set Ku, we randomly choose a preset

number ENL of CCs from the set K \ Ku to form the exchange pairs. That is,

an exchange simply refers to closing an open CC while opening a new one. If

an exchange implies a violation of the aggregate capacity constraint (4.15), we

simply ignore it and proceed to the next possible exchange. We denote the set

of neighboring solutions by Vccx which includes ENL|Ku| solutions. Note that

the |Vccx| can be at most |Ku||K\Ku|.

CC-move neighborhood (ccm): Given a feasible solution (Su,Ku), the CC-move

neighborhood function considers the set Ku similarly to the previous neighbor-

hood. However, in this case, a move operation corresponds to opening a closed

CC or closing an open CC. We randomly pick a preset number MNL of CCs to

perform move operations and ignore a move that implies a solution violating

the constraint (4.15). We denote the the set of MNL solutions thus obtained by

Vccm which can have a cardinality of at most |K|.

RPP-exchange neighborhood (rppx): Given a feasible solution (Su,Ku), the RPP-

exchange neighborhood considers the set Su to generate neighboring solutions.

In order to generate neighboring solutions by considering each product, we first

fix a product type p for which some RPP-exchanges are to be made. Then,

for the open RPP s[p], we randomly select a preset number RNLp of RPPs from



68

the set Sp\{s[p]} to form the exchange pairs and the corresponding neighboring

solutions. We repeat this process to form neighboring solutions for all of the

products. We denote the complete set of RNLp|P| neighboring solutions by Vrppx.

Note that, for each product p, the RNLp can have a maximum value of |Sp| − 1.

Note that, in the sequel, we use (Su,Ku)cur, (Su,Ku)new, and (Su,Ku)best to

represent the current, new, and incumbent solutions, respectively. Furthermore, for

brevity, we use the notation Znew and Zbest to represent the objective function values

of the new and incumbent solutions, respectively.

IV.2.5. Sequential Neighborhood Search Procedure

Observe that, in general, the CC-Exchange neighborhood is larger than the CC-

Move and RPP-Exchange neighborhoods. Following this observation, while devising

a heuristic search procedure, we assign different roles to these neighborhood functions

to facilitate the intensification and diversification characteristics. Specifically, we em-

ploy the former in a short-term memory tabu search framework where we emphasize

intensification, and the latter two successively in a perturb routine to facilitate diver-

sification. The overall search procedure SNS is outlined in Display 4.

First, we find an initial feasible solution using the construction heuristics out-

lined in Section IV.2.3. We then use this solution in the tabu search framework to

explore the neighborhood Vccx, and find an improvement in its objective value. The

tabu-search heuristic parameters include the aspiration level ASP and the number of

iterations MaxIter. We maintain a tabu list TabuLccx, in which an entry k corresponds

to a CC that is closed in a previous iteration and is prohibited to be opened unless

the corresponding CC-exchange yields an objective value better than the aspiration

level. Once we find a solution better than the incumbent, we update the aspiration



69

level with its objective value and the tabu list with the current exchange; we also

include the solution in a list EliteL of elite solutions. Upon completion of the the

tabu search after MaxIter iterations, we use the procedure outlined in Display 5 to

perturb the incumbent solution for possible improvements.

In the perturbation process, we first examine all of the solutions in the neighbor-

hood Vccm of the incumbent solution by setting the parameter MNL to |K|. We update

the incumbent, and, then, we examine all of the solutions in the neighborhood Vrppx

of the updated incumbent by setting the parameters RNLp to |Sp|−1 for each product

type p. Following the perturbation procedure, we update the current solution to the

new incumbent solution. Using this updated current solution as input, we repeat

the tabu search–perturbation search sequence in an outer loop. We terminate the

outer loop either if it exceeds a preset number of iterations (ITNLOOP) or if there is

no improvement in the objective value of the incumbent solution. Finally, after the

termination of the outer loop, we once again use the perturbation search to explore

the neighborhood of the incumbent solution. This final perturbation search often

provides improvement over the solution that results from the outer loop of the SNS

procedure.

In the above heuristic framework, to estimate the objective value of a solution,

we can use either a standard LP solver or the transportation heuristic described in

Section IV.2.2. We maintain a list EliteL only if we use the latter approach. This

is because the objective function value (obtained by the transportation heuristic) at

the end of the overall procedure is not necessarily optimal. In this case, the list

EliteL provides an advantage over a single incumbent solution since it often contains

solutions with better optimal objective values than that of the incumbent solution.

Hence, as a final step in the overall algorithm, we find the optimal objective values for

all of the solutions in the list EliteL using the LP solver and then pick the solution



70

that provides the least optimal objective value. We refer to the SNS procedure with

the transportation heuristic as the SNS-TH and as the SNS if we employ an LP solver

for objective function evaluations.

Display 4 Procedure SNS()

1: Construct an initial feasible solution (Su,Ku) using the procedure Construct()

2: Set (Su,Ku)cur = (Su,Ku) and (Su,Ku)best = (Su,Ku)cur

3: Initialize neighborhood parameters ENL, MNL, and RNLp

4: while No improvement on Zbest and otr ≤ ITNLOOP do

5: Initialize EliteL = ∅, TabuLccx = ∅, ASP = Zbest, itr = 0, and MaxIter

6: while itr ≤ MaxIter do

7: Generate Vccx for the (Su,Ku)cur with ENL

8: Find the best solution (Su,Ku)new in Vccx and Znew

9: if (Su,Ku)new is permitted by TabuLccx then

10: (Su,Ku)cur = (Su,Ku)new

11: if Znew < Zbest then

12: (Su,Ku)best = (Su,Ku)new, ASP = Zbest, and

EliteL = EliteL ∪ {(Su,Ku)best}

13: end if

14: Update TabuLccx; itr = itr + 1

15: else

16: if Znew < ASP then

17: (Su,Ku)cur = (Su,Ku)new; (Su,Ku)best = (Su,Ku)new

18: ASP = Zbest, and

EliteL = EliteL∪{(Su,Ku)best} and update TabuLccx; itr = itr+1

19: end if

20: end if

21: end while

22: (Su,Ku)best = PERTURB((Su,Ku)best, EliteL)

23: (Su,Ku)cur = (Su,Ku)best

24: otr = otr+ 1

25: end while

26: (Su,Ku)best = PERTURB((Su,Ku)best, EliteL)

27: Find the optimal objective values of the solutions in EliteL and pick best

solution as the (Su,Ku)best

28: Return (Su,Ku)best and Zbest.



71

Display 5 Procedure PERTURB((Su,Ku)best, EliteL)
1: PERTURB USING CC-MOVE

2: Generate Vccm for the (Su,Ku) with MNL = |K|

3: Find the best solution (Su,Ku)new in Vccm and Znew

4: if Znew < Zbest then

5: (Su,Ku)best = (Su,Ku)new, and EliteL = EliteL ∪ {(Su,Ku)best}

6: end if

7: PERTURB USING RPP-EXCHANGE

8: Generate Vrppx for the (Su,Ku)best with RNLp = (|Sp| − 1)∀p ∈ P

9: Find the best solution (Su,Ku)newin Vrppx and Znew.

10: if Znew < Zbest then

11: (Su,Ku)best = (Su,Ku)new, and EliteL = EliteL ∪ {(Su,Ku)best}

12: end if

13: Return (Su,Ku)best and EliteL.

IV.2.6. Random Neighborhood Search Procedure

In the SNS procedure described in the previous section, we combine the three simple

neighborhood functions in the tabu search–perturbation search sequence. Whereas, in

the RNS procedure (Display 6), we randomly choose a simple neighborhood function

each time within a tabu search heuristic framework.

First, we use construction heuristics to generate an initial solution. Using this

solution as input, we perform a random neighborhood tabu search procedure. In the

tabu search, we maintain three different tabu lists TabuLccx, TabuLccm, and TabuLrppx

corresponding to the CC-exchange, the CC-move, and the RPP-exchange neighbor-

hoods, respectively. An entry k in TabuLccx corresponds to a CC that is closed in a

previous CC-exchange. An entry k in TabuLccm corresponds to a CC location, which

cannot be opened (or closed) if it is closed (or opened) in a previous CC-move. The

tabu list TabuLrppx consists of |P| sub-lists corresponding to different product types.

An entry s in the pth sub-list corresponds to a RPP location capable of processing

product type p, which was closed in a previous iteration.



72

At any given iteration of the tabu search procedure, we randomly choose a neigh-

borhood function ω from the neighborhood functions ccx, ccm, and rppx. We then

explore the corresponding neighborhood Vω to find a new solution with a better ob-

jective value. If the new solution has an objective value better than the incumbent

value, we update the incumbent solution, the tabu list TabuLω corresponding to the

neighborhood ω, and the aspiration level ASP. We then include the updated incumbent

in the elite list EliteL. We consider the new solution for improvement and repeat the

process for MaxIter times. Following the termination of the tabu search, we use the

incumbent solution as input and repeat the search in an outer loop until the stopping

criteria are realized. Similarly to the SNS procedure, upon completion of the outer

loop, we use the perturbation search to explore the neighborhood of the incumbent

solution for further improvement.

Also as in SNS-TH, we use an elite list EliteL in conjunction with the trans-

portation heuristic and report the solution with the best optimally evaluated objective

value in EliteL as the final solution. We refer to the RNS procedure with the trans-

portation heuristic as the RNS-TH and as the RNS if we employ an LP solver for

objective function evaluations.

IV.2.7. An Alternative Parallel Neighborhood Search and Other Varia-

tions

We also implemented the parallel neighborhood search (PNS) procedure, which is

very similar to the RNS procedure. At each iteration of the tabu search, instead

of randomly choosing a simple neighborhood function to explore the neighborhood,

we use all the three simple neighborhood functions to perform the search and pick a

solution with the best objective function value over all the CC-exchanges, CC-moves

and the RPP-exchanges. Our computational experimentation of the PNS heuristic



73

resulted in a very poor performance, in comparison to the SNS and RNS heuristics,

both in terms of computational time and quality of the resulting solution. Moreover,

we examined the computational performance of the variations of the SNS procedure,

where we varied the sequence of execution of the simple neighborhood functions.

We found that the computational time and the quality of the solution in terms of

the objective function values for the SNS procedure, are better than those of its

variations. Hence for the sake of brevity, we report the computational performance

of the SNS and RNS procedures.

Display 6 Procedure RNS()

1: Construct an initial feasible solution (Su,Ku) using the procedure Construct()
2: Set (Su,Ku)cur = (Su,Ku) and (Su,Ku)best = (Su,Ku)cur

3: Initialize neighborhood parameters ENL, MNL, and RNLp
4: while No improvement on Zbest and otr ≤ ITNLOOP do
5: Initialize EliteL = ∅, TabuLccx = ∅, TabuLccm = ∅, TabuLrppx = ∅,

ASP = Zbest, itr = 0, and MaxIter

6: while itr ≤ MaxIter do
7: Let ω = random{ccx, ccm, rppx}
8: Generate Vω for the (Su,Ku)cur

9: Find the best solution (Su,Ku)new in Vω

10: if (Su,Ku)new is permitted by TabuLω then
11: (Su,Ku)cur = (Su,Ku)new

12: if Znew < Zbest then
13: (Su,Ku)best = (Su,Ku)new, ASP = Zbest, and

EliteL = EliteL ∪ {(Su,Ku)best}
14: end if
15: Update TabuLω; itr = itr+ 1
16: else
17: if Znew < ASP then
18: (Su,Ku)cur = (Su,Ku)new; (Su,Ku)best = (Su,Ku)cur

ASP = Zbest, and
EliteL = EliteL ∪ {(Su,Ku)best} and update TabuLω; itr = itr+ 1

19: end if
20: end if
21: end while
22: (Su,Ku)cur = (Su,Ku)best and otr = otr+ 1
23: end while
24: (Su,Ku)best = PERTURB((Su,Ku)best, EliteL)
25: Find the optimal objective values of the solutions in EliteL and pick best

solution as the (Su,Ku)best
26: Return (Su,Ku)best and Zbest.



74

IV.3. Benders Decomposition Framework

We extend the BD solution framework presented in Section III.3 for the problem

formulation MP. In this section, we describe the Benders subproblems, the associated

dual subproblems, the master problem, and an integration of the BD with the tabu

search heuristics described above.

IV.3.1. Benders Subproblem

The Benders subproblem BSP(u,w,x,y,z |ĉ, v̂) is a linear program obtained by fix-

ing the binary decisions pertaining to the CC and RPP locations in the MP. In the

iterative BD framework, the values of these binary variables are supplied to the sub-

problem by the Benders master problem (BMP) which we describe in Section IV.3.2.

The subproblem BSP(·) is given by

min
∑

p∈P

∑

r∈R

∑

k∈K

Gprkuprk +
∑

p∈P

∑

k∈K

∑

s∈Sp

Gksxpks +
∑

p∈P

∑

s∈Sp

∑

d∈D

Gpsdypsd

+
∑

p∈P

∑

t∈Tp

∑

d∈D

Gptdzptd +
∑

p∈P

∑

d∈D

∑

r∈R

Gpdrwpdr (4.17)

subject to

∑

k∈K

uprk = δprDpr ∀ p ∈ P, r ∈ R, (4.18)

∑

s∈Sp

xpks −
∑

r∈R

uprk = 0 ∀ p ∈ P, k ∈ K, (4.19)

∑

k∈K

xpks −
∑

r∈R

δpr Dpr v̂ps = 0 ∀ p ∈ P, s ∈ Sp, (4.20)

∑

p∈P

∑

r∈R

βp uprk ≤ Bk ĉk ∀ k ∈ K, (4.21)



75

uprk ≤Mprk ĉk ∀ p ∈ P, r ∈ R, k ∈ K, (4.22)

∑

d∈D

ypsd − αps

∑

r∈R

δpr Dpr v̂ps = 0 ∀ p ∈ P, s ∈ Sp, (4.23)

∑

s∈Sp

ypsd +
∑

t∈Tp

zptd −
∑

r∈R

wpdr = 0 ∀ p ∈ P, d ∈ D, (4.24)

∑

d∈D

wpdr =
(
Dpr +D′pr

)
∀ p ∈ P, r ∈ R, (4.25)

∑

d∈D

zptd ≤ Qpt ∀ p ∈ P, t ∈ Tp, (4.26)

∑

p∈P

∑

r∈R

γpwpdr ≤ Cd ∀ d ∈ D, (4.27)

uprk, xpks, wpdr, ypsd, zptd ≥ 0 ∀ p ∈ P, d ∈ D, k ∈ K, r ∈ R, s ∈ Sp, t ∈ Tp.

(4.28)

IV.3.1.1. Dual Subproblem

In order to generate cuts for the master problem BMP(·), we use the dual linear

program of BSP(u, w, x, y, z |ĉ, v̂). For this purpose, we define dual variables

λrp, θpk, ζps, ϕk, ιprk σps, µpd, εrp, τpt, and πd corresponding to the constraints (4.18),

(4.19), (4.20), (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), and (4.27), respectively.

The dual linear program DBSP(ε, λ, µ, π, ϕ, σ, τ, θ, ζ |ĉ, v̂) is stated as



76

max
∑

p∈P

∑

r∈R

δprDprλrp +
∑

p∈P

∑

s∈Sp

∑

r∈R

δprDprv̂psζps −
∑

k∈K

Bkĉkϕk

−
∑

p∈P

∑

r∈R

∑

k∈K

Mprkĉkιprk +
∑

p∈P

∑

s∈Sp

∑

r∈R

αpsδpr Dpr v̂psσps

+
∑

p∈P

∑

r∈R

(
Dpr +D′pr

)
εrp −

∑

p∈P

∑

t∈Tp

Qptτpt −
∑

d∈D

Cdπd (4.29)

subject to

λrp − θpk − βp ϕk − ιprk ≤ Gprk ∀ p ∈ P, r ∈ R, k ∈ K, (4.30)

θpk + ζps ≤ Gpks ∀ p ∈ P, k ∈ K, s ∈ Sp, (4.31)

σps + µpd ≤ Gpsd ∀ p ∈ P, s ∈ Sp, d ∈ D, (4.32)

µpd − τpt ≤ Gptd ∀ p ∈ P, t ∈ Tp, d ∈ D, (4.33)

εrp − µpd − γp πd ≤ Gpdr ∀ p ∈ P, d ∈ D, r ∈ R, (4.34)

ϕk, ιprk, τpt, πd ≥ 0 ∀ p ∈ P, d ∈ D, k ∈ K, t ∈ Tp, (4.35)

ζps, θpk, λrp, σps, µpd, εrp - free variables ∀ p ∈ P, d ∈ D, k ∈ K, r ∈ R, s ∈ Sp.

(4.36)

We note that the DBSP(·) is separable in terms of the dual variables associated

with the reverse flows (ι, λ, ϕ, θ, and ζ), and the dual variables associated with the

forward flows (ε, µ, π, σ, and τ ).



77

IV.3.1.2. Forward Dual Subproblem

The forward dual subproblem, FDBSP(ε, µ, π, σ, τ |v̂), is given by

max
∑

p∈P

∑

s∈Sp

∑

r∈R

αpsδpr Dpr v̂psσps +
∑

p∈P

∑

r∈R

(
Dpr +D′pr

)
εrp

−
∑

p∈P

∑

t∈Tp

Qptτpt −
∑

d∈D

Cdπd (4.37)

subject to (4.32)-(4.34)

σps, µpd, εrp - free variables, and τpt, πd ≥ 0 ∀ p ∈ P, d ∈ D, r ∈ R, s ∈ Sp, t ∈ Tp.

(4.38)

IV.3.1.3. Reverse Dual Subproblem

The reverse dual subproblem, RDBSP(ι, λ, ϕ, θ, ζ |ĉ, v̂), is given by

max
∑

p∈P

∑

r∈R

δprDprλrp +
∑

p∈P

∑

s∈Sp

∑

r∈R

δprDprv̂psζps

−
∑

k∈K

Bkĉkϕk −
∑

p∈P

∑

r∈R

∑

k∈K

Mprkĉkιprk (4.39)

subject to (4.30) and (4.31)

ζps, θpk, λrp - free variables, and ιprk, ϕk ≥ 0 ∀ p ∈ P, k ∈ K, r ∈ R, s ∈ Sp.

(4.40)

IV.3.1.4. Solving the Dual Subproblems

The forward and reverse dual subproblems can be solved using a standard LP solver

to obtain the corresponding optimal solutions. However, these problems have inherent

degeneracy, which results in alternate optimal solutions. Within the set of alternate



78

optimal solutions, some solutions dominate the rest. We utilize the two phase solution

approach presented in Section III.3.2 to identify the dominating optimal solutions, and

we add the corresponding strong cuts to the Benders master problem. As mentioned

earlier, such strong cuts increase the algorithm efficiency by facilitating better lower

bounds as shown in various network design problem settings in (Magnanti and Wong,

1981; Van Roy, 1986; Wentges, 1996).

Solving the Forward Subproblem FDBSP(·) - Phase I

In the first phase, we reduce the problem size in order to effectively find an optimal

solution to the problem. We achieve this by considering only the constraints (4.32)

for which the associated v̂p̄s, p ∈ P, s ∈ Sp value is equal to 1. Recall that for product

p, the index s[p] represents the RPP location s ∈ Sp whose v̂ps value is equal to 1.

Moreover, we consider only the dual variables σps[p], p ∈ P to obtain the following

first phase problem.

max
∑

p∈P

∑

r∈R

αps[p]δpr Dpr σps[p] +
∑

p∈P

∑

r∈R

(
Dpr +D′pr

)
εrp

−
∑

p∈P

∑

t∈Tp

Qptτpt −
∑

d∈D

Cdπd (4.41)

subject to

σps[p] + µpd ≤ Gps[p]d ∀ p ∈ P, d ∈ D, (4.42)

µpd − τpt ≤ Gptd ∀ p ∈ P, t ∈ Tp, d ∈ D, (4.43)

εrp − µpd − γp πd ≤ Gpdr ∀ p ∈ P, d ∈ D, r ∈ R, (4.44)

σps[p], µpd, εrp - free variables, and τpt, πd ≥ 0 ∀ p ∈ P, d ∈ D, r ∈ R, t ∈ Tp.

(4.45)



79

Solving the Forward Subproblem FDBSP(·) - Phase II

To find a dominating solution in the second phase, we compute the values of the σps

variables that were eliminated in the first phase. We use the following formulation to

obtain a dominating solution for the forward subproblem.

max
∑

p∈P

∑

s∈S

∑

r∈R

αpsδpr Dpr σps (4.46)

subject to (4.32)–(4.34), and (4.38).

In the above problem, we fix the values of the dual variables considered in the previous

phase to their respective optimal values. This ensures feasibility of the dominating

dual solution. Examining the structure of the above problem, we observe that the

optimal values for the remaining σps variables can be computed as follows.

σps = mind∈D{Gpsd − µpd} ∀ p ∈ P, s ∈ Sp\{s
[p]}. (4.47)

Solving the Reverse Subproblem RDBSP(·) - Phase I

Similarly to the forward phase I problem, we consider only the constraints and dual

variables for which the associated variables vps, p ∈ P, s ∈ Sp and ck, k ∈ K are equal

to 1. Recall that we use Ku to represent all of the CC locations k ∈ K whose ck value

is equal to 1. The first phase reverse subproblem is

max
∑

p∈P

∑

r∈R

δprDprλrp +
∑

p∈P

∑

r∈R

δprDprζps[p] −
∑

k∈Ku

Bkĉkϕk

−
∑

p∈P

∑

r∈R

∑

k∈Ku

Mprkĉkιprk (4.48)



80

subject to

λrp − θpk − βpϕk − ιprk ≤ Gprk ∀ p ∈ P, r ∈ R, k ∈ Ku, (4.49)

θpk + ζps[p] ≤ Gpks[p] ∀ p ∈ P, k ∈ Ku, (4.50)

ζps[p], θpk, λrp - free variables, and ιprk, ϕk ≥ 0 ∀ p ∈ P, k ∈ Ku, r ∈ R. (4.51)

Solving the Reverse Subproblem RDBSP(·) - Phase II

In the second phase, we compute the values for the ζps, ιprk, θpk, and ϕk variables that

were not considered in the first phase. We ensure feasibility by fixing the variables

considered in the previous phase to their respective optimal values. The second phase

reverse subproblem is given by

max
∑

p∈P

∑

s∈Sp

∑

r∈R

δprDprζps −
∑

k∈K

Bkϕk −
∑

p∈P

∑

r∈R

∑

k∈K

Mprkιprk (4.52)

subject to (4.30), (4.31) and (4.40).

IV.3.2. Benders Master Problem

The Benders master problem BMP(v, c|ε̂, λ̂, ι̂, ϕ̂, π̂, σ̂, τ̂ , ζ̂) solves the binary de-

cision variables v and c. In order to incorporate the Benders cuts in the mas-

ter problem, we can combine the solutions provided by the two dual subproblems

RDBSP(λ, ι, ϕ, θ, ζ |ĉ, v̂) and FDBSP(ε, µ, π, σ, τ |v̂) and obtain a single cut.

Alternatively, we can follow the the flow separation scheme described in Section

III.3.3, and obtain two cuts, namely, the forward and reverse cuts, corresponding to

the solutions of the forward and reverse dual subproblems, respectively.

Our preliminary experimentation reveals a superior performance of the flow sepa-

ration scheme, both in terms of lower bound quality and solution runtimes. Hence, for

brevity, we report only the computational performance of the flow separation scheme



81

in Section IV.4. To this end, we define two continuous variables ψF and ψR corre-

sponding to the forward and reverse cuts, respectively. Then, the BMP(·) problem

is given by

min
∑

p∈P

∑

s∈Sp

Fpsvps +
∑

k∈K

F ′kck + ψF + ψR (4.53)

subject to

∑

s∈Sp

vps = 1 ∀ p ∈ P, (4.54)

∑

k∈K

Bk ck −
∑

p∈P

∑

r∈R

βp δpr Dpr ≤ 0 (4.55)

∑

p∈P

∑

r∈R

δprDprλ̂rp +
∑

p∈P

∑

s∈Sp

∑

r∈R

δprDprζ̂psvps

−
∑

k∈K

Bkϕ̂kck −
∑

p∈P

∑

r∈R

∑

k∈K

Mprk ι̂prkck ≤ ψR (4.56)

∑

p∈P

∑

s∈Sp

∑

r∈R

αpsδpr Dpr σ̂psvps +
∑

p∈P

∑

r∈R

(
Dpr +D′pr

)
ε̂rp

−
∑

p∈P

∑

t∈Tp

Qptτ̂pt −
∑

d∈D

Cdπ̂d ≤ ψF (4.57)

vps, ck ∈ {0, 1} ∀ p ∈ P, s ∈ Sp, and ψF , ψR ≥ 0. (4.58)

Constraint set (4.55) is a surrogate constraint that ensures the availability of

minimum aggregate capacity at the CC locations. Specifically, it ensures that the

BMP(·) configures the network with sufficient collection capacity to accommodate

the reverse flow of products from the retailers. Thus, the constraint (4.55) ensures

the feasibility of the BSP(·) with respect to constraint set (4.21), which in turn, char-



82

acterizes the boundedness of the dual subproblem. Constraint sets (4.56) and (4.57)

represent the collection of forward and reverse cuts added to the master problem at

each iteration. Constraint set (4.58) gives the restriction on the decision variables.

IV.3.3. Heuristic-Enhanced Benders Decomposition

Our objective in considering the BD framework is two-fold. First, the BD yields

lower bounds for the formulation MP, which can be used to evaluate the quality of

the solutions provided by the heuristic methods described in the previous section.

Second, especially for larger instances, combining the heuristics and the BD frame-

work promotes faster convergence as we illustrate in our computational results in

Section IV.4.

In a typical BD implementation, we initially solve the master problem without

any dual Benders cuts. Following this, at any given iteration, we use the values of

master problem variables to solve the dual subproblems, and derive the Benders cuts

using the optimal dual subproblem solution values. We add these cuts to the master

problem and continue the iterative procedure until a preset stopping condition is

realized. In general, the aforementioned implementation requires multiple iterations

to significantly improve the upper and lower bounds. To improve the computational

efficiency of the typical implementation, we combine the BD framework with tabu

search heuristics. More specifically, we use the solution obtained from a heuristic

method in the first subproblem (instead of initially solving the BMP (·) without any

cuts as in a typical implementation) to generate the initial set of Benders cuts. For

this, we can use any of the heuristic methods developed in Section IV.2; however,

based on the relative performances reported in Section IV.4, we suggest the SNS-TH

heuristic for integration with the BD framework. The use of heuristic solutions to



83

derive initial Benders cuts in the context of the capacitated facility location problem

(CFLP) was introduced in Wentges (1996).

We outline the overall framework HBD in Display 7. We use the notation Tol,

BDMaxItr, ItrNo, UB, and LB to represent the stopping tolerance, maximum number

of iterations, iteration counter, upper bound, and lower bound, respectively. Fur-

thermore, Z(BMP) and Z(DBSP) represent the objective function values for the

BMP (·) and DBSP (·). In HBD, we first employ the SNS-TH heuristic to obtain

a good feasible solution. Recall that the solution vectors Su and Ku of the heuristics

represent the RPP and CC location decisions, respectively. We extract the values of

the location decision variables from the solution vectors and adopt them to solve the

forward and reverse dual subproblems using the method outlined in Section IV.3.1.4.

Then, we add the obtained forward and reverse cuts to the master problem BMP (·)

which we solve to obtain a lower bound. Once the initial Benders cuts are obtained

in this fashion, we discontinue the use of heuristics in successive iterations.

The HBD framework significantly improves the computational efficiency of the

typical implementation. Furthermore, the initial set of cuts generated using the

heuristic solution provides substantial improvements to the lower bound of the typical

implementation. We next summarize the computational results of the HBD approach

for large scale problem instances.



84

Display 7 Procedure HBD()

1: Initialize input parameters Tol, BDMaxItr

2: Initialize (Su,Ku)best = SNS-TH(), and obtain v̂, ĉ using (Su,Ku)best

3: Set UB = Zbest and ItrNo = 0

4: Solve the DBSP(ε, ι, λ, µ, π, ϕ, σ, τ, θ, ζ |ĉ, v̂) to obtain ε̂, ι̂, λ̂, π̂, ϕ̂, σ̂, τ̂ , ζ̂

and the Z(DBSP)

5: Add forward and reverse strong cuts to BMP(·) using ε̂, ι̂, λ̂, π̂, ϕ̂, σ̂, τ̂ , ζ̂

6: Solve BMP(v, c|ε̂, ι̂, λ̂, ϕ̂, π̂, σ̂, τ̂ , ζ̂), and set LB = Z(BMP)

7: while (UB− LB)/LB > Tol and ItrNo ≤ BDMaxItr do

8: ItrNo=ItrNo+1

9: Solve the DBSP(ε, ι, λ, µ, π, ϕ, σ, τ, θ, ζ |ĉ, v̂) to obtain

ε̂, ι̂, λ̂, π̂, ϕ̂, σ̂, τ̂ , ζ̂ and the Z(DBSP)

10: Calculate UB=Z(BMP)+Z(DBSP)−ψF − ψR

11: if UB < Zbest then

12: Zbest = UB

13: end if

14: Add forward and reverse strong cuts to BMP(·) using ε̂, ι̂, λ̂, π̂, ϕ̂, σ̂, τ̂ , ζ̂

15: Solve BMP(v, c|ε̂, ι̂, λ̂, ϕ̂, π̂, σ̂, τ̂ , ζ̂), and set LB = Z(BMP)

16: end while

17: Find u,w,x,y, z corresponding to v̂, ĉ (e.g. solve BSP(u,w,x,y,z |ĉ, v̂))

18: Return ĉ, û, v̂, ŵ, x̂, ŷ, ẑ and the Zbest.

IV.4. Computational Experiments

In this section, we first develop a testbed of random data instances and conduct a

computational study to establish the performance of the proposed solution method-

ologies. Since our problem setting is a generalization of the URP, while generating

our testbed, we utilize a similar approach as the one given in Section III.4. To bench-

mark the performance of our heuristics, we use the B&C approach for small scale

instances and the HBD approach for large scale instances. We employ the B&C im-

plementation in CPLEX with default settings for cut generation, preprocessing, and

upper bound heuristics. The default cut generation includes clique, cover, disjunc-

tive, flow cover, flow path, Gomory fractional, generalized upper bound cover, implied



85

bound, and mixed integer rounding cuts. We also employ CPLEX to solve the linear

program mentioned in Section IV.2.2, the forward and the reverse dual subproblems

mentioned in Section IV.3.1.4, and the Benders master problem presented in Sec-

tion IV.3.2. We implement the solution approaches using the C++ programming

language and perform the runs on a machine with a 3 GHz Intel XEON processor

and 6 GB RAM.

We set the construction heuristics parameter CTR to 50. For the tabu search, we

set parameters ENL, MNL, and RNLp to 3, the parameter MaxIter to 20, and use a fixed

length tabu lists of size 5. We set the parameter ITNLOOP to 10.

IV.4.1. Random Test Instance Generation

We generate test instances under two data settings (Setting I - Small instances and

Setting II - Large instances) by altering the number of products |P|, the number of

retailers |R|, and the number of potential CC locations |K|, as shown in Table 8. We

create 10 random instances for each class. We use uniform distributions to randomly

create the number of NPP and potential RPP locations for each product p, and

calculate the number of DC locations proportional to the number of retailer locations

as shown in Table 2. Uniform distributions are also employed, as shown in Table 2, to

generate the demands (Dpr and D′pr), the return fractions (δpr), the recovery fractions

(αps). Also as shown in Table 9, using uniform distributions, we randomly generate

the storage capacity coefficients (γp and βp) and storage and processing capacities

Cd, Bk, Qpt for the DCs, the CCs, and the NPPs, respectively. Note that we use the

notation TDp and TRp, ∀p ∈ P, to represent the total demand quantity given by

∑
r∈R(Dpr +D′pr) and the total return quantity given by

∑
r∈R δprDpr, respectively.



86

Table 8 CRP: Problem Classes Used in Computational Testing.

Setting I - Small Instances Setting II - Large Instances

Class |P| |R| |K| Class |P| |R| |K|

CS1 5 60 25 CL1 5 240 25

CS2 5 60 35 CL2 5 240 35

CS3 5 90 25 CL3 5 300 25

CS4 5 90 35 CL4 5 300 35

CS5 5 120 25 CL5 5 360 25

CS6 5 120 35 CL6 5 360 35

CS7 10 60 25 CL7 10 240 25

CS8 10 60 35 CL8 10 240 35

CS9 10 90 25 CL9 10 300 25

CS10 10 90 35 CL10 10 300 35

CS11 10 120 25 CL11 10 360 25

CS12 10 120 35 CL12 10 360 35

IV.4.2. Computational Results

We first summarize the computational results of the two tabu search based meta-

heuristics (i.e., SNS, RNS, SNS-TH, and RNS-TH) for Settings I and II. As noted ear-

lier, in the SNS and RNS implementations, we use CPLEX to solve the SP(u, w, x, y, z|Su,Ku)

whereas in SNS-TH and RNS-TH, we use the transportation heuristic for this pur-

pose. Later, we provide our results for our HBD framework which also incorporates

a heuristic to obtain an initial set of Benders cuts.

IV.4.2.1. Heuristic Results for Setting I - Small Instances

In addition to using the SNS, the RNS, the SNS-TH, and the RNS-TH heuristics,

in order to obtain some benchmark results as well as to observe the performance

of the B&C method, we also solve each problem instance using CPLEX. To this

end, we observe that reducing the optimality gap below 1% requires considerable



87

Table 9 CRP: Distributions for Product Capacity Coefficients and Storage Capacity

Values.

Parameter Distribution

γp Uniform[1, 10]

βp Uniform[1, γp]

Cd Uniform[0.1, 0.3] *
∑

p∈P γp TDp

Qpt Uniform[0.1, 0.4] *
∑

r∈R TDp

Bk Uniform[0.1, 0.3] *
∑

p∈P βp TRp

computational effort. Moreover, for some of the test instances, CPLEX takes an

excessively long time to converge even to an optimality gap of 1.0%. Therefore, to

avoid high computational times, we use a stopping criterion of a 1% optimality gap

between the incumbent and the best lower bound or a runtime of 36000 sec, whichever

comes first.

For each problem class, we summarize the average and the maximum optimality

gaps in Table 10. We calculate the optimality gap for a method as 100(Zbest−LB)/LB

where Zbest represents the objective value of the incumbent solution obtained using

the corresponding method and LB represents the lower bound obtained upon the

termination of the B&C method. In the tables presenting the computational results,

note that, the row minimums for the heuristics results are listed in bold. We observe

that the SNS heuristic is effective as it provides the lowest values for both the average

and the maximum optimality gaps in most classes. The use of the transportation

heuristic results in a slight increase in the optimality gaps. Also, the performance of

the SNS-TH heuristic is superior to the RNS-TH heuristic.

In Table 11, we present a comparison of the solution runtimes for the B&C

and the heuristic approaches. The results show that the SNS-TH heuristic performs

better than the other approaches. We note that, in general, solution runtime increases



88

Table 10 CRP: Optimality Gaps for Setting I.

Setting I Average Optimality Gap (%) Maximum Optimality Gap (%)

Classes BC SNS RNS SNS-TH RNS-TH BC SNS RNS SNS-TH RNS-TH

CS1 0.97 1.32 1.98 2.82 2.91 1.00 2.07 4.69 4.98 4.91

CS2 0.98 1.79 2.42 2.69 4.02 1.00 3.19 3.70 4.00 5.47

CS3 0.98 2.02 2.55 2.47 3.48 1.00 3.70 4.60 5.03 4.31

CS4 0.91 2.10 2.13 2.78 3.84 1.00 4.03 3.80 4.19 6.87

CS5 0.90 1.88 2.36 2.07 2.20 1.00 3.16 4.71 4.42 6.04

CS6 1.00 1.63 2.24 2.34 3.24 1.00 2.86 4.39 3.52 5.05

CS7 0.95 1.55 2.01 2.12 3.24 1.00 2.94 4.94 4.54 5.23

CS8 1.96 2.89 2.85 3.38 4.69 3.45 3.29 3.51 4.99 7.43

CS9 0.99 1.20 1.15 2.07 3.27 1.00 2.61 1.87 4.75 6.69

CS10 0.96 1.49 2.18 2.10 4.12 1.00 2.23 4.20 2.74 7.11

CS11 1.00 1.46 1.63 1.92 3.48 1.00 3.17 2.58 3.73 4.43

CS12 3.56 3.86 4.45 4.38 5.78 4.35 5.49 5.87 6.30 9.00

Average 1.26 1.93 2.32 2.60 3.69 1.48 3.23 4.07 4.43 6.04

with an increasing problem size, especially with increasing number of potential CC

locations. However, it is worth noting that with increasing problem size, the B&C

approach exhibits excessively high solution runtimes while the runtime increases in all

of the heuristic implementations stay at modest levels. In Tables 10 and 11, we also

observe that the solution times are significantly lower for heuristics in which solution

goodness evaluations are performed using the transportation heuristic (SNS-TH and

RNS-TH) while sacrificing solution quality only slightly.

IV.4.2.2. Heuristic Results for Setting II - Large Instances

In this case, we examine the heuristics based on the optimality gaps, the solution

times, and the number of times they provide the best objective value (upper bound).

We use the same algorithmic parameter values for the heuristics as mentioned before.

For the HBD approach, we initialize the parameters Tol and BDMaxItr to 0.02 and

250, respectively. That is, in HBD, we perform 250 iterations unless the optimality

gap reduces below 2%.

In Table 12, we compare the heuristics in terms of the average and the maximum



89

Table 11 CRP: Solution Runtimes for Setting I.

Setting I Average Runtimes (Secs.) Maximum Runtimes (Secs.)

Classes BC SNS RNS SNS-TH RNS-TH BC SNS RNS SNS-TH RNS-TH

CS1 76 55 120 4 4 141 87 198 8 6

CS2 447 69 159 7 9 718 154 201 10 13

CS3 608 139 421 13 12 1091 205 653 20 16

CS4 2754 128 436 23 25 5044 232 665 28 33

CS5 602 109 131 8 10 1000 138 175 11 16

CS6 3197 124 235 14 15 7430 193 321 23 21

CS7 9917 270 607 21 22 31159 439 925 29 30

CS8 29084 363 833 45 46 36001 620 1376 59 60

CS9 1651 64 166 9 11 4364 150 267 20 14

CS10 11141 263 331 33 30 25041 932 759 69 39

CS11 15641 313 986 36 39 34395 498 1600 46 50

CS12 35259 472 1254 59 72 36002 526 2286 71 87

Average 9198 197 473 23 25 15199 348 786 33 32

optimality gaps in which the lower bounds are calculated using the HBD approach.

The results show that, although the methods with exact objective evaluations (SNS

and RNS) perform well, the solution qualities provided by the heuristics are, in gen-

eral, comparable. When examined in detail by comparing the results with and with-

out the transportation heuristic, we observe that the deterioration in the optimality

gaps (both average and maximum) due to the use of the transportation heuristic

decreases as the problem size increases. Thus, it appears that the use of heuristic

cost evaluations is even more favorable for larger instances. This conclusion is further

corroborated in the light of better solution runtimes for the SNS-TH and RNS-TH

heuristics. Also in Table 12, we observe that the performance of the SNS-TH heuris-

tic in terms of optimality gaps is better than the RNS-TH heuristic. Similarly, the

SNS heuristic performs better than the RNS heuristic. Furthermore, for each class,

we also compare the performance of the heuristics using the number of instances for

which the best solution is provided. In our testbed, out of the 120 large instances,



90

the SNS, RNS, SNS-TH, and RNS-TH heuristics find the best objective value for 99,

20, 11, and 1 instances, respectively. In general, the SNS heuristics outperforms all

the other heuristics as indicated by the bold entries in Table 12.

Table 12 CRP: Optimality Gaps and the Number of Instances with the Best Objec-

tive Value for Setting II.

Setting II Average Optimality Gap (%) Maximum Optimality Gap (%) No. of Instances with min Zbest

Classes SNS RNS SNS-TH RNS-TH SNS RNS SNS-TH RNS-TH SNS RNS SNS-TH RNS-TH

CL1 2.03 2.26 2.31 3.77 2.18 3.62 3.62 4.80 9 3 2 0

CL2 2.16 2.43 2.45 4.33 2.63 3.08 3.40 6.08 8 1 1 0

CL3 1.87 1.96 2.24 3.56 2.94 3.09 3.24 5.54 7 2 1 0

CL4 2.19 2.33 2.62 3.82 2.62 3.16 3.40 4.66 6 2 2 0

CL5 1.61 2.13 2.25 3.16 2.13 3.51 3.52 3.75 9 3 1 0

CL6 2.21 2.39 2.80 3.95 2.55 3.29 3.72 5.31 7 3 0 0

CL7 1.79 1.91 2.11 2.95 2.07 2.62 2.75 4.50 9 1 0 0

CL8 2.24 2.34 2.80 3.83 2.62 2.96 3.47 4.26 8 1 1 0

CL9 1.75 1.91 2.21 2.88 2.06 2.14 2.81 3.60 10 1 1 0

CL10 2.07 2.33 2.39 3.87 2.63 2.84 3.48 4.61 9 0 1 0

CL11 1.66 1.75 2.00 2.96 2.19 2.34 2.48 3.52 10 2 0 0

CL12 2.14 2.21 2.39 3.28 2.57 2.55 2.89 4.62 7 1 1 1

Average 1.98 2.16 2.37 3.53 2.43 2.93 3.23 4.60

Table 13, where the runtimes of the heuristics are summarized, shows that the

RNS-TH heuristic outperforms the others in terms of both the average and the max-

imum values. Clearly, the use of the transportation heuristic results in a significant

decrease in computational time. The SNS-TH shows a modest increase over RNS-TH

in solution runtimes; however, as opposed to the RNS-TH, it finds better quality

solutions with relatively smaller solution gaps. More specifically, it appears that

the computational results justify the use of the transportation heuristic rather than

optimum objective evaluations in terms of both runtime and solution quality.

IV.4.2.3. HBD Approach Results for Setting II - Large Instances

We present the computational performance of the HBD approach in Table 14. Next to

the problem classes in the first two columns, we present the optimality gaps resulting

upon the termination of the HBD algorithm. We report the average and the maximum

HBD runtimes in the following two columns. We note that these runtimes do not



91

Table 13 CRP: Comparison of the Solution Runtimes for Setting II Instances.

Setting II Average Runtimes (Secs.) Maximum Runtimes (Secs.)

Classes SNS RNS SNS-TH RNS-TH SNS RNS SNS-TH RNS-TH

CL1 257.30 793.13 89.00 62.29 308.95 1095.45 166.39 108.63

CL2 342.14 1339.30 150.87 128.74 444.18 2036.15 196.24 170.31

CL3 979.76 3565.78 277.44 188.41 1687.42 7475.97 436.87 300.73

CL4 1186.29 4610.46 398.96 307.88 1930.85 8395.83 521.98 375.72

CL5 360.40 1075.96 139.23 103.39 699.94 1758.78 174.30 115.92

CL6 701.81 1786.17 241.72 191.29 1198.86 3178.14 304.18 241.58

CL7 1292.18 4790.67 414.83 272.50 1967.61 8152.68 557.76 300.38

CL8 2386.18 8835.36 683.71 441.03 3322.27 13134.70 1001.77 571.08

CL9 534.06 1851.96 176.13 141.15 756.85 2918.83 204.13 177.47

CL10 870.95 2538.23 266.90 230.27 1300.64 4915.02 454.71 410.69

CL11 2003.72 6950.21 482.27 402.71 2695.54 11448.30 621.98 468.08

CL12 2706.61 10382.39 787.56 645.65 3673.72 13857.10 1011.52 852.78

Average 1135.12 4043.30 342.38 259.61 1665.57 6530.58 470.99 341.11

include the SNS-TH heuristic runtimes. In the last two columns, we report the average

and maximum number of iterations performed by the HBD approach.

Recall that, in HBD, we first employ the SNS-TH heuristic to obtain an initial

upper bound as well as the initial Benders cuts by solving the BSP(·) using binary

variables obtained via the heuristic solution. We observe that the optimality gaps for

the SNS-TH heuristics (from the HBD lower bound), which are reported in Table 12,

are very close to the preset stopping tolerance parameter Tol of the HBD. Hence, the

runtimes in Table 14 essentially represent the time taken by the HBD approach to

tighten the lower bounds.

Finally, we note that an identical BD approach with all of the cut enhancements,

but without the initial use of a heuristic, was not able to produce any results in a

reasonable time frame. Thus, our above results show that the use of heuristics in

a BD framework improves the computational efficiency of the Benders implementa-

tion, thereby making the implementation a viable solution procedure for large-scale

problem instances. Moreover, the enhanced framework is beneficial in providing good

upper and lower bounds in a relatively short time span. The lower bounds thus ob-



92

tained also present efficient means for evaluating the quality of the heuristic solutions.

Table 14 CRP: Computational Performance of the HBD Approach.

Setting II Optimality Gap (%) HBD Runtimes (sec.) No. of Iterations
Classes Average Maximum Average Maximum Average Maximum

CL1 1.99 2.00 143.74 186.83 95.6 114
CL2 2.32 2.70 1166.27 1470.50 238.2 250
CL3 1.98 2.00 517.50 1124.22 122.8 186
CL4 2.35 3.10 2648.40 3919.78 237.6 250
CL5 2.00 2.00 304.40 415.23 132.9 164
CL6 2.24 2.50 1553.46 3188.89 243.9 250
CL7 2.00 2.00 729.12 1911.13 125.0 202
CL8 2.46 2.91 3076.89 5040.80 235.1 250
CL9 1.99 2.00 337.92 843.41 125.3 226
CL10 2.41 2.83 1537.54 1793.27 243.6 250
CL11 1.99 2.00 680.58 917.94 112.5 143
CL12 2.23 2.57 3222.39 4680.16 237.6 250

Average 2.16 2.38 1326.52 5040.80 179.2 212

IV.5. Concluding Remarks

In this chapter, we consider the CRP, for which, we develop a mixed integer lin-

ear program formulation to optimally extend an existing forward channel in order to

incorporate a reverse channel in the context of product reclamation through reman-

ufacturing. We observe that the B&C implementation (CPLEX) requires very high

computation times to solve the test instances. In order to find good feasible solu-

tions, we develop tabu search based meta-heuristics that combine search procedures

using three simple neighborhood functions. The heuristics are found to be effective

in terms of finding good feasible solutions and are also efficient in terms of the com-

putational time. Moreover, to evaluate the objective function value or goodness of

a feasible solution, we devise a transportation heuristic that can be used effectively

to replace an exact method for this purpose. The use of the transportation heuristic

significantly reduces the computational times but results in a modest deterioration in



93

the quality of the solutions. In addition, we also extend the BD framework presented

in Chapter III to this problem setting. We suggest the use of a heuristic within this

BD framework to obtain an enhanced approach HBD. We test our solution methods

on a testbed that we develop under two data settings that correspond to small and

large instances. Our computational results illustrate the superior performance of the

heuristic algorithms as well as the integrated HBD approach. In general, the heuris-

tics with sequential neighborhood search (SNS and SNS-TH) perform better than

the heuristics with the random neighborhood search (RNS and RNS-TH), which re-

semble a more typical implementation of a tabu search framework. The value of the

integrated HBD approach is two-fold. First, it provides good solutions with low opti-

mality gaps in reasonable runtimes, and second, its lower bound provides an excellent

means to measure the quality of the heuristic solutions for large instances.



94

CHAPTER V

A CLOSED-LOOP NETWORK DESIGN PROBLEM

In this problem setting, we generalize the URP and CRP settings by deciding on the

locations of the forward channel facilities, i.e., we determine the optimal locations of

the manufacturing/remanufacturing facilities, DCs and CCs. This setting is applica-

ble for an OEM who wishes to establish a new CLSC network for managing multiple

types of products. Under this setting, we coordinate the forward and reverse flows

using capacitated hybrid centers (HCs) and product-specific hybrid plants (HPPs),

which lead to a common infrastructure for managing the forward and reverse flows.

The operational characteristics of the CLP setting is similar to the ones considered

in the URP setting. More specifically, we first assume single-sourcing strategy for

retailers assignments. That is, for the reverse flows, each retailer works with a single

HC to send all the returned products, and similarly, for the forward flows, each re-

tailer works with a single HC to receive all of its requirements. However, a retailer

can be assigned to two different HCs, where each HC can manage the flows associated

with different channels. Secondly, we require a single HPP for each type of product,

as a consequence of which, each HC is assigned to exactly one product-specific HPP.

We note that the capacities at the HCs represent aggregate capacities that can

be shared by all products. Thus, for the purpose of incorporating the non-uniformity

in capacity usage, as before, we utilize product-specific coefficients as modifiers to

one capacity use unit. Moreover, since we can estimate the required manufactur-

ing/remanufacturing capacities for each product by using the estimated demand for

products, return quantity, return and recovery fractions, and we furthermore assume

a single HPP per product, we can identify the feasible HPP candidate sites for each



95

product (and consider only these candidates) before attempting to solve any specific

instance. Therefore, we do not consider any capacity limitation on the candidate

HPP sites. It is worthwhile to note that the inclusion of capacities on HCs induces

stronger relation among the forward and reverse flows associated with different types

of products.

In the CLP setting, we are interested in determining the best locations of the

HPPs and the HCs with respect to the known retailer locations, and the best flow of

products in the CLSC network such that the total cost of location, processing and

transportation is minimized.

V.1. Problem Formulation

We next give the additional notation and the mathematical formulation that is re-

ferred henceforth as MP − CL. Figure 4 depicts the underlying network structure

with the flow, assignment and location variables in the CLSC network.

Additional Sets and Indices

H set of candidate HC locations, h ∈ H.

Mp set of candidate HPP locations for p ∈ P, m ∈ Mp.



96

Additional Parameters

F ′h fixed cost of opening a HC at location h ∈ H.

Fpm fixed cost of opening a HPP for product p ∈ P at location m ∈ Mp.

ηph unit distribution processing cost of product p ∈ P at HC h ∈ H.

κph unit collection processing cost of product p ∈ P at HC h ∈ H.

νpm unit manufacturing cost of product p ∈ P shipped out of HPP m ∈ Mp.

ρpm unit remanufacturing cost of product p ∈ P shipped out of HPP m ∈ Mp.

Qh aggregate processing/storage capacity at HC h ∈ H.

αpm recovery fraction for product p ∈ P at HPP m ∈ Mp.

Decision Variables

bh 1 if HC h ∈ H is opened, 0 otherwise.

gpm 1 if HPP m ∈ Mp is used for product p ∈ P, 0 otherwise.

urh 1 if retailer r ∈ R is assigned to HC h ∈ H

for the reverse flow of products, 0 otherwise.

whr 1 if retailer r ∈ R is assigned to HC h ∈ H

for the forward flow of products, 0 otherwise.

xphm quantity of product p ∈ P shipped from HC h ∈ H to HPP m ∈ Mp.

ypmh total quantity of new and remanufactured product p ∈ P

shipped from HPP m ∈ Mp to HC h ∈ H.



97

Figure 4 CLP: Underlying Structure of the CLSC Network.

Mp H R

gpm bh
urh

whrypmh

xphm

Objective Function

min
∑

p∈P

∑

m∈Mp

Fpmgpm +
∑

h∈H

F ′hbh +
∑

p∈P

∑

r∈R

∑

h∈H

(Grh + κph)δprDprurh

+
∑

p∈P

∑

h∈H

∑

m∈Mp

(Ghm + αpmρpm)xphm +
∑

p∈P

∑

m∈Mp

∑

h∈H

νpm(ypmh − αpmxphm)

+
∑

p∈P

∑

m∈Mp

∑

H∈H

Gmhypmh +
∑

p∈P

∑

h∈H

∑

r∈R

(Ghr + ηph)
(
Dpr +D′pr

)
whr (5.1)

The first two terms in the objective function represent the fixed costs associated

with locating the product-specific HPPs and HCs, respectively. The third term repre-

sents the transportation costs from the retailers and collection processing costs at the

HCs. The fourth term represents the transportation costs from the HCs to the HPPs,

in addition to the remanufacturing costs at the HPPs. Notice that, for each product

p,
∑

h∈H ypmh represents the total shipment, which contains both new and remanufac-

tured products, from HPP m. Since we use all the remanufactured products to satisfy

the retailer demand, for each product p, the expression
∑

h∈H ypmh −αpm

∑
h∈H xphm

represents the quantity of newly manufactured products at HPP m. We use this

expression in the fifth term of the objective function to compute the total cost of

manufacturing the new products. The sixth term represents the transportation costs

from the HPPs to the HCs. The seventh term represents the transportation costs

from the HCs to the retailers, in addition to the distribution processing costs at the



98

HCs. For brevity, we employ the notation Gprh, Gphr, Gphm and Gpmh to represent the

sums (Grh+κph), (Ghr+ηph), (Ghm + αpm(ρpm − νpm)), and (Gmh+νpm), respectively.

Constraints

∑

h∈H

urh = 1 ∀ r ∈ R, (5.2)

∑

m∈Mp

gpm = 1 ∀ p ∈ P, (5.3)

∑

h∈H

whr = 1 ∀ r ∈ R, (5.4)

∑

m∈Mp

xphm =
∑

r∈R

δprDprurh ∀ p ∈ P, h ∈ H, (5.5)

∑

h∈H

xphm =
∑

r∈R

δprDprgpm ∀ p ∈ P, m ∈ Mp, (5.6)

∑

h∈H

ypmh =
∑

r∈R

(
Dpr +D′pr

)
gpm ∀ p ∈ P, m ∈ Mp, (5.7)

∑

m∈Mp

ypmh =
∑

r∈R

(
Dpr +D′pr

)
whr ∀ p ∈ P, h ∈ H, (5.8)

∑

p∈P

∑

r∈R

γp

(
Dpr +D′pr

)
whr

+
∑

p∈P

∑

r∈R

βp δprDprurh ≤ Qh bh ∀h ∈ H, (5.9)

xphm, ypmh ≥ 0 ∀ p ∈ P, h ∈ H, m ∈ Mp, (5.10)

gpm, bh, urh, whr ∈ {0, 1} ∀ p ∈ P, h ∈ H, m ∈ Mp. (5.11)



99

Constraint set (5.2) ensures that a retailer r is assigned to exactly one HC for

the reverse flow of products. Constraint set (5.3) guarantees that, for each product

p, a single dedicated HPP location m is established. Constraint set (5.4) ensures

that a retailer r is assigned to exactly one HC for the forward flow of products.

Constraint sets (5.5) and (5.6) represent the conservation (mass balance) of reverse

flows at the HCs and HPPs, respectively. Moreover, for each product p, constraint

set (5.6) ensures that all the returned products are sent to the open HPP. Constraint

sets (5.7) and (5.8) represent the conservation of forward flows at the HPPs and HCs,

respectively. We note that, for each product p, the coefficient
∑

r∈R

(
Dpr +D′pr

)

represents the total demand at the retailer locations, and, because of the single HPP

requirement, the total forward flow originating from an open HPP should be equal

to this coefficient, and, hence, we use equality in the constraint sets (5.7) and (5.8).

Constraint sets (5.6) and (5.7) forces the creation of a HPP m if a HC h has an

associated forward or reverse flow for product p. Constraint set (5.9) forces the

creation of a HC h if a retailer r has an associated forward or reverse flow for product

p with that location. Moreover, constraint set (5.9) ensures that the total forward

and reverse shipments at any HC does not exceed its aggregate processing capacity.

Constraint sets (5.10) and (5.11) are the restrictions on the decision variables.

We note that, constraint sets (5.5) and (5.6) are identical to constraint sets (3.7)

and (3.12), respectively, and they involve only the reverse flow variables. Furthermore,

constraint sets (5.7) and (5.8) involve only the forward flow variables and are identical

in structure to the constraint sets (3.7) and (3.12), respectively. This formulation

relies on the assumption that there is a single, dedicated HPP for each product, and,

it is very helpful for developing efficient solution algorithms to solve the subproblems

in the BD framework similar to the one developed in Section III.3.2.



100

V.2. Solution Approach Using Benders Decomposition

In order to develop the components of this iterative framework, first we present the

underlying Benders reformulation and state the subproblem. More specifically, the

original problem can be restated as follows.

min Z =
∑

p∈P

∑

m∈Mp

Fpmgpm +
∑

h∈H

F ′hbh +
∑

p∈P

∑

r∈R

∑

h∈H

GprhδprDprurh

+
∑

p∈P

∑

h∈H

∑

r∈R

Gphr

(
Dpr +D′pr

)
whr + BSP(x, y|ĝ, û, ŵ) (5.12)

subject to (5.2), (5.3), (5.4), (5.9) and (5.11).

where BSP(x, y|ĝ, û, ŵ) represents the Benders subproblem whose formulation and

solution procedure are discussed below.

V.2.1. Benders Subproblem

The subproblem BSP(x, y|ĝ, û, ŵ) is essentially a minimization problem that deter-

mines the optimum values of the flow variables for fixed values of the location and

assignment variables, and it can be stated as

min
∑

p∈P

∑

h∈H

∑

m∈Mp

Gphmxphm +
∑

p∈P

∑

m∈Mp

∑

H∈H

Gpmhypmh (5.13)



101

subject to

∑

m∈Mp

xphm ≤
∑

r∈R

δprDprûrh ∀ p ∈ P, h ∈ H, (5.14)

∑

h∈H

xphm ≥
∑

r∈R

δprDprĝpm ∀ p ∈ P, m ∈ Mp, (5.15)

∑

h∈H

ypmh ≥
∑

r∈R

(
Dpr +D′pr

)
ĝpm ∀ p ∈ P, m ∈ Mp, (5.16)

∑

m∈Mp

ypmh ≤
∑

r∈R

(
Dpr +D′pr

)
ŵhr ∀ p ∈ P, h ∈ H, (5.17)

xphm, ypmh ≥ 0 ∀ p ∈ P, h ∈ H, m ∈ Mp, (5.18)

We note that, without any effect on the final optimal solution, the equality

constraints (5.5), (5.6), (5.7) and (5.8) are represented by the inequalities (5.14),

(5.15), (5.16), and (5.17), respectivley. This alternative representation does not affect

the solution space, but it does facilitate an easy exposition for the solution of the dual

subproblem to generate Benders cuts as explained below.

V.2.1.1. Dual Subproblem

In order to generate Benders cuts for the master problem, we use the dual linear

program of BSP(x, y|ĝ, û, ŵ). For this purpose, we define dual variables µph, λpm,

τpm, and σph corresponding to the constraints (5.14), (5.15), (5.16), and (5.17), re-

spectively. The dual linear program DBSP(λ, µ, σ, τ |ĝ, û, ŵ) is stated as



102

max
∑

p∈P

∑

m∈Mp

∑

r∈R

δprDprĝpmλpm −
∑

p∈P

∑

h∈H

∑

r∈R

δprDprûrhµph

+
∑

p∈P

∑

m∈Mp

∑

r∈R

(
Dpr +D′pr

)
ĝpmτpm

−
∑

p∈P

∑

h∈H

∑

r∈R

(
Dpr +D′pr

)
ŵhrσph (5.19)

subject to

λpm − µph ≤ Gphm ∀ p ∈ P, m ∈ Mp, h ∈ H, (5.20)

τpm − σph ≤ Gpmh ∀ p ∈ P, m ∈ Mp, h ∈ H, (5.21)

λpm, µph, τpm, σph ≥ 0 ∀ p ∈ P, m ∈ Mp, h ∈ H. (5.22)

We observe that the subproblem BSP(x, y|ĝ, û, ŵ), and hence, the dual sub-

problem DBSP(λ, µ, σ, τ |ĝ, û, ŵ), are separable in terms of the forward flow vari-

ables, y and the reverse flow variables, x. This separability is due to the requirement

of a single, dedicated HPP per product. Furthermore, as in the case of the URP,

we observe that the forward and reverse subproblems are separable for each product

leading to single product forward and single product reverse subproblems. Next, we

state the corresponding dual subproblems and their formulations.

V.2.1.2. Single Product Forward Dual Subproblem

For each product, the dual program of the single product forward subproblem, denoted

by FDBSPp̄(σ, τ |ĝ, ŵ), is given by



103

max
∑

m∈Mp̄

∑

r∈R

(
Dp̄r +D′p̄r

)
ĝp̄mτp̄m −

∑

h∈H

∑

r∈R

(
Dp̄r +D′p̄r

)
ŵhrσp̄h (5.23)

subject to

τp̄m − σp̄h ≤ Gp̄mh ∀h ∈ H, m ∈ Mp̄, (5.24)

τp̄m, σp̄h ≥ 0 ∀h ∈ H, m ∈ Mp̄. (5.25)

V.2.1.3. Single Product Reverse Dual Subproblem

For each product, the dual program of the single product reverse dual subproblem,

denoted by RDBSPp̄(λ, µ|ĝ, û), is given by

max
∑

m∈Mp̄

∑

r∈R

δp̄rDp̄rĝp̄mλp̄m −
∑

h∈H

∑

r∈R

δp̄rDp̄rûrhµp̄h (5.26)

subject to

λp̄m − µp̄h ≤ Gp̄hm ∀h ∈ H, m ∈ Mp̄, (5.27)

λp̄m, µp̄h ≥ 0 ∀h ∈ H, m ∈ Mp̄. (5.28)

V.2.2. Solving the Subproblems

Examining the dual subproblems FDBSPp̄(σ, τ |ĝ, ŵ) and RDBSPp̄(λ, µ|ĝ, û), we

can clearly see that they are identical in terms of their problem structure. Moreover,

the single product reverse dual subproblem formulated in Section III.3.1.2 (for the

URP) is identical to the one formulated in the previous section. As a consequence

of these similarities, we can use the solution method developed in III.3.2.2 for solving

the FDBSPp̄(σ, τ |ĝ, ŵ) and RDBSPp̄(λ, µ|ĝ, û).

For each product p̄, we use the index m[p̄] to represent the HPP location m ∈

Mp̄ whose ĝp̄m value is equal to 1. Also, we let Hu ⊆ H to denote the set of HC



104

locations that are open according to û, i.e., Hu = {h ∈ H| ∃ r ∈ R : ûrh = 1}

and Hw ⊆ H to denote the set of HC locations that are open according to ŵ, i.e.,

Hw = {h ∈ H| ∃ r ∈ R : ŵhr = 1}.

The first phase optimal solution for the FDBSPp̄(σ, τ |ĝ, ŵ) is given by τp̄m[p̄] =

maxh∈Hw{Gp̄m[p̄]h} and σp̄h = τp̄m[p̄] −Gp̄m[p̄]h for all h ∈ Hw. Then, the corresponding

second phase problem is given by

max
∑

m∈Mp̄

∑

r∈R

(
Dp̄r +D′p̄r

)
τp̄m −

∑

h∈H

∑

r∈R

(
Dp̄r +D′p̄r

)
σp̄h (5.29)

subject to (5.24) and (5.25).

In the above problem, we fix the values of the dual variables considered in the first

phase to their respective optimal values.

Similarly to the FDBSPp̄(σ, τ |ĝ, ŵ), the first phase optimal solution for the

RDBSPp̄(λ, µ |ĝ, û) is given by λp̄m[p̄] = maxh∈Hu{Gp̄hm[p̄]} and µp̄h = λp̄m[p̄]−Gp̄hm[p̄]

for all h ∈ Hu. Then, we fix the values of these dual variables to their respective

optimal values in the first phase and solve the corresponding second phase problem,

given by

max
∑

m∈Mp̄

∑

r∈R

δp̄rDp̄rσp̄m −
∑

h∈H

∑

r∈R

δp̄rDp̄rµp̄h (5.30)

subject to (5.27) and (5.28).

Using the optimal dual solutions of the single product forward subproblems,

FDBSPp̄(σ, τ |ĝ, ŵ) for p̄ ∈ P, we set τpm = τp̄m for all p ∈ P and m ∈ Mp and

σph = σp̄h for all p ∈ P and h ∈ H. Similarly, using the optimal dual solutions of the

single product reverse subproblems, RDBSPp̄(λ, µ |ĝ, û) for p̄ ∈ P, we set µph = µp̄h

for all p ∈ P and h ∈ H and λpm = λp̄m for all p ∈ P and m ∈ Mp. Thus, we obtain

an optimal solution of DBSP(λ, µ, σ, τ |ĝ, û, ŵ).



105

V.2.3. Benders Master Problem

We can use the alternative separation schemes, i.e., flow and product separation, for

the overall subproblem and utilize the alternative representations of Benders cuts in

the master problem (as in Section III.3.3).

Our preliminary experimentation reveals a superior performance of the separa-

tion schemes corresponding to Type 1 (flow as well as product separation) and Type

2 (product separation), both in terms of lower bound quality and solution runtimes.

Hence, for brevity, we report only the computational performance of the Type 1

and Type 2 cuts, in Section V.4. To this end, we first state the master problem

BMP(g, b|λ̂, σ̂, µ̂, τ̂ ) using general cut related terms as follows.

min
∑

p∈P

∑

m∈Mp

Fpmgpm +
∑

h∈H

F ′hbh +
∑

p∈P

∑

r∈R

∑

h∈H

GprhδprDprurh

+
∑

p∈P

∑

h∈H

∑

r∈R

Gphr

(
Dpr +D′pr

)
whr + SumLHS(BCuts) (5.31)

subject to

∑

h∈H

urh = 1 ∀ r ∈ R, (5.32)

∑

m∈Mp

gpm = 1 ∀ p ∈ P, (5.33)

∑

h∈H

whr = 1 ∀ r ∈ R, (5.34)



106

∑

p∈P

∑

r∈R

γp

(
Dpr +D′pr

)
whr

+
∑

p∈P

∑

r∈R

βp δprDprurh ≤ Qh bh ∀h ∈ H, (5.35)

(Constraints for the Set of BCuts) (5.36)

gpm, bh, urh, whr ∈ {0, 1} ∀ p ∈ P, h ∈ H, m ∈ Mp. (5.37)

In Display 8, we present the BD implementation procedure. We note that, in

Display 8, ε(> 0), IterNo, MaxIter, UB, LB represent the stopping criteria, iteration

counter, maximum number of Benders iterations, upper bound, and lower bound,

respectively. We use Z(BDSP) and Z(BMP) to represent the objective function

values of the dual of the Benders subproblem and the Benders master problem as

defined in (5.19) and (5.31), respectively.

Display 8 Pseudo-code of the BD Approach.

1: Set Zbest = UB = ∞, IterNo = 0, and λ̂=σ̂=µ̂=τ̂=0. Initialize MaxIter and ε.
2: Solve BMP(g, b|λ̂, σ̂, µ̂, τ̂ ) and set LB = Z(BMP).
3: while (UB− LB)/LB ≥ ε) and (IterNo<MaxIter) do
4: IterNo=IterNo + 1
5: Solve the DBSP(λ, µ, σ, τ |ĝ, û, ŵ) to obtain λ̂, σ̂, µ̂, τ̂ , and Z(BDSP).
6: Calculate UB=Z(BMSP) + Z(BDSP)−SumLHS(BCuts)
7: if (Zbest > UB) then
8: Zbest = UB

9: end if
10: Add the (Set of BCuts) to BMP(.) using λ̂, σ̂, µ̂, τ̂ values.
11: Solve BMP(g, b|λ̂, σ̂, µ̂, τ̂ ) and set LB = Z(BMP).
12: end while
13: Find x,y corresponding to ĝ, û, ŵ (i.e., solve BSP(x, y|ĝ, û, ŵ)).
14: Report ĝ, b̂, û, ŵ, x̂, ŷ and the objective function value for (5.1).



107

V.2.3.1. Alternative Benders Cuts (BCuts)

The alternate multiple cuts for the master problem are given below.

Type 1: We define two new decision variables, ψF
p ≥ 0 and ψR

p ≥ 0, for each p ∈ P,

and add the following constraints that correspond to the |P| single product

forward cuts and |P| single product reverse cuts, given by

ψF
p ≥

∑

m∈Mp

∑

r∈R

(
Dpr +D′pr

)
τ̂pmgpm −

∑

r∈R

∑

h∈H

(
Dpr +D′pr

)
σ̂phwhr ∀ p ∈ P,

and

ψR
p ≥

∑

m∈Mp

∑

r∈R

δprDprλ̂pmgpm −
∑

r∈R

∑

h∈H

δprDprµ̂phurh ∀ p ∈ P.

The SumLHS(BCuts) term in the objective function (5.31) is replaced with
∑

p∈P ψ
F
p +

∑
p∈P ψ

R
p .

Type 2: We define a new decision variable ψp ≥ 0 for each p ∈ P. The constraints

that correspond to the |P| single product cuts are given by

ψp ≥
∑

m∈Mp

∑

r∈R

(
(Dpr +D′prτ̂pm) + δprDprλ̂pm

)
gpm

−
∑

r∈R

∑

h∈H

(
Dpr +D′pr

)
σ̂phwhr −

∑

r∈R

∑

h∈H

δprDprµ̂phurh ∀ p ∈ P.

The SumLHS(BCuts) term in the objective function (5.31) is replaced with
∑

p∈P ψp.

V.3. An Alternative Formulation

In formulation MP-CL, constraint sets (5.2) and (5.3), together with constraint set

(5.6), provide a special characterization on the reverse flows from the HCs to HPPs.

More specifically, constraint set (5.2) ensures, through single reverse-link assignment,



108

that all the returned products at each retailer location are sent to the set of open

HCs. Further, for each product, constraint sets (5.3) and (5.6) require all the returned

products be sent to the open HPP. As a consequence of these constraints, for each

product p, the total quantity of product returns available at all the open HCs is equal

to the quantity required at the open HPP. Hence, it suffices to the have the following

set of inequalities in formulation MP-CL instead of constraint set (5.5).

xphm ≤
∑

r∈R

δprDprurh ∀ p ∈ P, h ∈ H, m ∈ Mp. (5.38)

Using a similar argument for the forward flows, we can replace constraint set (5.8),

without affecting the feasible region of MP-CL, using the following set of inequalities.

ypmh ≤
∑

r∈R

(
Dpr +D′pr

)
whr ∀ p ∈ P, h ∈ H, m ∈ Mp. (5.39)

Replacing the constraint sets (5.5) and (5.8) with the inequalities (5.38) and (5.39),

we obtain an alternate formulation of MP-CL, which we denote by MP-CL-G.

This alternate formulation is very helpful for developing efficient solution algorithms

to solve the subproblems in the BD framework. We briefly describe the alternative

subproblems of the BD framework along with their properties and solution algorithms.

V.3.1. Dual Subproblem for Alternative Formulation

We define dual variables θpm, ϕpm, πphm, and ξphm corresponding to the constraints

(5.6), (5.7), (5.38), and (5.39), respectively. The alternative dual linear program

DBSP-G(θ, ξ, π, ϕ |ĝ, û, ŵ) is stated as



109

max
∑

p∈P

∑

m∈Mp

∑

r∈R

δprDprĝpmθpm −
∑

p∈P

∑

m∈Mp

∑

h∈H

∑

r∈R

δprDprûrhπphm

+
∑

p∈P

∑

m∈Mp

∑

r∈R

(
Dpr +D′pr

)
ĝpmϕpm

−
∑

p∈P

∑

m∈Mp

∑

h∈H

∑

r∈R

(
Dpr +D′pr

)
ŵhrξphm (5.40)

subject to

θpm − πphm ≤ Gphm ∀ p ∈ P, h ∈ H, m ∈ Mp, (5.41)

ϕpm − ξphm ≤ Gpmh ∀ p ∈ P, h ∈ H, m ∈ Mp, (5.42)

θpm, ϕpm - free variables and ξphm, πphm ≥ 0 ∀ p ∈ P, h ∈ H, m ∈ Mp. (5.43)

We observe that the dual subproblem DBSP-G(θ, ξ, π, ϕ |ĝ, û, ŵ), is separable

in terms of the forward flow variables (ξ and ϕ) and reverse flow variables (θ and

π). Furthermore, we observe that the forward and reverse dual subproblems are

separable for each product-specific HPP locations, which leads to single HPP forward

and single HPP reverse subproblems.

V.3.1.1. Single HPP Forward Dual Subproblem

For each product-specific HPP m̄, associated with product p̄, the dual program of the

single product forward subproblem, denoted by FDBSP-Gp̄m̄(ξ, ϕ |ĝ, ŵ), is given by

max
∑

r∈R

(
Dp̄r +D′p̄r

)
ĝp̄m̄ϕp̄m̄ −

∑

h∈H

∑

r∈R

(
Dp̄r +D′p̄r

)
ŵhrξp̄hm̄ (5.44)

subject to

ϕp̄m̄ − ξp̄hm̄ ≤ Gp̄m̄h ∀h ∈ H, (5.45)

ϕp̄m̄ - free variable and ξp̄hm̄ ≥ 0 ∀h ∈ H. (5.46)



110

V.3.1.2. Single HPP Reverse Dual Subproblem

For each product-specific HPP m̄, associated with product p̄, the dual program of the

single product reverse subproblem, denoted by RDBSP-Gp̄m̄(θ, π |ĝ, û), is given by

max
∑

r∈R

δp̄rDp̄rĝp̄m̄θp̄m̄ −
∑

h∈H

∑

r∈R

δp̄rDp̄rûrhπp̄hm̄ (5.47)

subject to

θp̄m̄ − πp̄hm̄ ≤ Gp̄hm̄ ∀h ∈ H, (5.48)

θp̄m̄ - free variable and πp̄hm̄ ≥ 0 ∀h ∈ H. (5.49)

V.3.2. Solving the Subproblems

For a given HPP, examining the dual subproblem FDBSP-Gp̄m̄(ξ, ϕ |ĝ, ŵ), we can

clearly see that the coefficient of ϕp̄m̄ variable is equal to the summation of the

coefficients of all the ξp̄hm̄ variables. Following this observation, for a given HPP, if

ĝp̄m̄ = 1, then an optimal solution to this problem is given by, ϕp̄m̄ = maxh∈H{Gp̄m̄h}

and ξp̄hm̄ = ϕp̄m̄ − Gp̄m̄h for all h ∈ H. Observe that, if the values of ϕp̄m̄ and ξp̄hm̄,

for all h ∈ H, are further increased by one unit, the value of the objective function

as well as the left-hand side of the constraints (5.45) do not change. However, if

ĝp̄m̄ = 0, the trivial solution to this problem is given by, ϕp̄m̄ = 0 and ξp̄hm̄ = 0 for all

h ∈ H. In this procedure, we obtain the values of all the dual variables associated with

FDBSP-Gp̄m̄(ξ, ϕ |ĝ, ŵ), and hence, there is no need for a second phase problem.

Similarly to the FDBSP-Gp̄m̄(ξ, ϕ |ĝ, ŵ), for a given HPP, if ĝp̄m̄ = 1, an

optimal solution to the dual subproblem RDBSP-Gp̄m̄(θ, π |ĝ, û), is given by θp̄m̄ =

maxh∈H{Gp̄hm̄} and πp̄hm̄ = θp̄m̄−Gp̄hm̄ for all h ∈ H. However, if ĝp̄m̄ = 0, the trivial

solution to this problem is given by, θp̄m̄ = 0 and πp̄hm̄ = 0 for all h ∈ H.



111

We note that, the optimal solutions thus obtained, do not depend on the values

of the assignment variables û and ŵ. As a result, for a given instance, we can solve

the dual subproblems associated with each HPP prior to solving the Benders master

problem (given by (5.31)-(5.32)) and obtain
∑

p∈P 2|Mp| Benders cuts, which we

refer as G-cuts (discussed in the following section). In such an implementation,

we can add all the G-cuts upfront to the master problem, and perform a single

iteration of the Benders algorithm to obtain an optimal solution to the model MP-

CL-G. However, preliminary test results clearly reveal that, such an implementation

leads to a large number of G-cuts (associated with each HPP) being added to the

master problem, which causes a steep increase in solution runtimes, especially for

large problem instances. Therefore, in order to reduce the number of G-cuts being

added to the master problem in each iteration of the algorithm, we add only the

G-cuts corresponding to the HPP locations that are associated with the solution

(ĝ) provided by the master problem. For this purpose, we modify the pseudo-code

in Display 8 as follows. We solve the DBSP-G(θ, ξ, π, ϕ |ĝ, û, ŵ) to obtain the

optimal values of the dual variables θ̂, ξ̂, π̂, and ϕ̂ corresponding to each HPP, in

line 1 of the pseudo-code. We replace line 5 with the following step.

Calculate Z(BSP) =
∑

p∈P

∑

m∈Mp

∑

h∈H

∑

r∈R

GphmδprDprûrhĝpm

+
∑

p∈P

∑

m∈Mp

∑

h∈H

∑

r∈R

Gpmh(Dpr +D′pr)ŵhrĝpm (5.50)

In line 10, instead of the (set of BCuts), at each iteration, we add the alternative

G-cuts that are described in the following section.



112

V.3.2.1. Benders Cuts (G-Cuts) Obtained Using the Alternative Formu-

lation

The alternate multiple cuts obtained using the dual subproblem DBSP-G(θ, ξ, π, ϕ

|ĝ, û, ŵ) are described below.

Type GA: For each HPP m ∈ Mp, p ∈ P, we derive forward and reverse cuts

using the solutions of FDBSP-Gp̄m̄(ξ, ϕ |ĝ, ŵ) and RDBSP-Gp̄m̄(θ, π |ĝ, û),

respectively. To this end, we define two new decision variables, ψF
p ≥ 0 and

ψR
p ≥ 0, for each p ∈ P. If ĝp̄m̄ = 1, then the constraints that correspond to the

|P| single HPP forward G-cuts and |P| single HPP reverse G-cuts are given by

ψF
p ≥

∑

r∈R

(
Dpr +D′pr

)
ϕ̂pmgpm −

∑

r∈R

∑

h∈H

(
Dpr +D′pr

)
ξ̂phmwhr

∀ p ∈ P, m ∈ Mp,

and

ψR
p ≥

∑

r∈R

δprDprθ̂pmgpm −
∑

r∈R

∑

h∈H

δprDprπ̂phmurh ∀ p ∈ P, m ∈ Mp.

The SumLHS(BCuts) term in the objective function (5.31) is replaced with
∑

p∈P ψ
F
p +

∑
p∈P ψ

R
p . However, if ĝp̄m̄ = 0, then the right-hand side of the afore-

mentioned G-Cuts evaluates to a negative value, and, thus, these cuts become

redundant. Moreover, utilizing the corresponding optimal solution (trivial) val-

ues of the subproblems for the case where ĝp̄m̄ = 0, we obtain G-Cuts (ψF
p ≥ 0

and ψR
p ≥ 0, for each p ∈ P, m ∈ Mp) that are redundant.

Type GB: Similarly, we derive a single cut for each HPP m ∈ Mp, p ∈ P. To this

end, we define a new decision variable ψp ≥ 0 for each p ∈ P. Then, if ĝp̄m̄ = 1,



113

the constraints that correspond to the |P| single HPP G-cuts are given by

ψp ≥
∑

r∈R

(
Dpr +D′pr

)
ϕ̂pmgpm −

∑

r∈R

∑

h∈H

(
Dpr +D′pr

)
ξ̂phmwhr

+
∑

r∈R

δprDprθ̂pmgpm −
∑

r∈R

∑

h∈H

δprDprπ̂phmurh ∀ p ∈ P, m ∈ Mp.

The SumLHS(BCuts) term in the objective function (5.31) is replaced with

∑
p∈P ψp. However, if ĝp̄m̄ = 0, as before, the right-hand side of the aforemen-

tioned G-Cuts evaluates to a negative value, and, these cuts become redundant.

Moreover, utilizing the corresponding optimal solution (trivial) values of the

subproblems, we obtain G-Cuts (ψp ≥ 0 for each p ∈ P, m ∈ Mp) that are

redundant.

Since the G-cuts corresponding the case where ĝp̄m̄ = 0 are redundant, we only

consider the G-cuts obtained using the optimal solution values corresponding to the

case where ĝp̄m̄ = 1.

V.3.2.2. Alternative Implementations of the G-Cuts

At each iteration of the Benders algorithm, similar to the Type 1 or Type 2 cuts

(presented in Section V.2.3.1), we can use either the Type GA or Type GB cuts in

the master problem. Another option is to use both the Type GA and Type 1 cuts

(or both the Type GB and Type 2 cuts), which we denote by Type GA&1 (or Type

GB&2).

On the other hand, we can further aggregate the Type GA or Type GB cuts to

obtain single product forward G-cuts and single product reverse G-cuts, single product

G-cuts, forward G-cut and reverse G-cut, and single G-cut.



114

V.3.3. Another Alternative Formulation

Another way to modify the formulation MP-CL, utilizing the previously mentioned

characterization of the flows between HCs and HPPs, is to replace constraint set (5.6)

and (5.7) with the following inequalities, in the formulation MP-CL.

xphm ≤
∑

r∈R

δprDprgpm ∀ p ∈ P, h ∈ H, m ∈ Mp, (5.51)

ypmh ≤
∑

r∈R

(
Dpr +D′pr

)
gpm ∀ p ∈ P, h ∈ H, m ∈ Mp. (5.52)

Replacing the constraint sets (5.6) and (5.7) with the inequalities (5.51) and (5.52),

we obtain another alternative formulation, which we denote by MP-CL-K. We can

apply the BD framework on formulation MP-CL-K, and, similar to the G-cuts, we

can obtain the K-cuts (for each product p ∈ P and HC location h ∈ H).

Our preliminary computational testing, in terms of both solution quality and

runtimes, shows poor performance of all types of the K-cuts, all combinations of the

K-cuts with the Type 1, Type 2, Type GA, Type GB, Type GA&1, and Type GB&2

cuts, as well as the single product forward G-cuts, single product reverse G-cuts,

single product G-cuts, single G-cut. Hence, for brevity, we report the computational

results of the algorithm implementations using only the Type 1, Type 2, Type GA,

Type GB, Type GA&1, and Type GB&2 cuts.

V.4. Computational Experiments

In this section, we first develop a testbed of random data instances and conduct a com-

putational study to establish the performance of the proposed solution approaches.

Since our problem setting is a generalization of the URP setting, while generating

our testbed, we utilize a similar approach as the one given in Section III.4. To bench-



115

mark the performance of the Benders implementation, we use the B&C approach

(CPLEX). We also employ CPLEX to solve the Benders master problem presented

in Section V.2.3. We implement the solution approaches and perform the runs on a

machine with a 2.66 GHz Intel XEON processor and 24 GB RAM.

V.4.1. Random Test Instance Generation

In order to develop a set of test instances that are of realistic size, we vary the number

of products |P|, the number of retailers |R|, and the number of potential HC locations

|H|. As in Section III.4, we consider two levels for |P| (5 and 10), three levels for |R|

(60, 90, and 120), and two levels for |K| (25 and 35) to obtain 10 different problem

classes as shown in Table 15. We generate 10 random instances for each of these

problem classes.

We use uniform distributions to randomly create the number of HPP for each

product p as shown in Table 16. Uniform distributions are also employed, as shown

in Table 16, to generate the demands (Dpr and D′pr), return fractions (δpr), recovery

fractions (αps), and storage capacity coefficients (γp and βp). Also as shown in Table

16, we randomly generate capacities Qh for the HCs. Note that we use the notation

TC, to represent the total capacity requirement, given by
∑

p∈P

∑
r∈R(γpDpr+γpD

′
pr+

βpδprDpr).

V.4.2. Computational Results

As we have noted earlier, we solve each instance using the B&C and the BD ap-

proaches with the alternative types of strong cuts developed in Sections V.2.3 and

V.3.2. As in the previous computational settings, we avoid the tail-off effect in the

B&C approach (CPLEX), by setting the tolerance for stopping criterion to 1 percent

gap. Also, as before, while solving the master problem in the BD approach, we employ



116

Table 15 CLP: Problem Classes Used in Computational Testing.

Class |P| |R| |H|

C1 5 60 25

C2 5 60 35

C3 5 90 25

C4 5 90 35

C5 5 120 25

C6 5 120 35

C7 10 60 25

C8 10 60 35

C9 10 90 25

C10 10 90 35

an early stopping criterion of 30% for the initial iteration. In successive iterations,

we set the stopping criterion to 0.009% optimality gap. Furthermore, we limit the

maximum number of iterations in the BD approach to five and set the the tolerance

for stopping criterion to 1 percent as in the B&C approach. In the following, we

compare the B&C and BD approaches with Type 1, Type 2, Type GA, Type GB,

Type GA&1, and Type GB&2 cuts.

Considering the 100 instances, we summarize the average and the maximum

optimality gaps upon termination of the approaches in Table 17. We note that, in

Tables 17, 18, and 19, row minimums for the BD related results are listed in bold.

Notably, the use of GB&2 in the BD approach appears to be the most effective, as

it provides the lowest average and maximum optimality gaps in all of the problem

classes. This provides empirical evidence as to the potential benefit of using Type

GB&2 in the BD framework.



117

Table 16 CLP: Distributions for Demand, Return Fraction, Recovery Fraction, Prod-

uct Capacity Coefficients and Storage Capacity Values.

Parameter Value

|Mp| Uniform[2, 15]

Dpr Uniform[250, 350]

D′pr Uniform[450, 550]

δpr Uniform[0.7, 0.9]

αpm Uniform[0.8, 0.98]

γp Uniform[1, 10]

βp Uniform[1, γp]

Qh Uniform[0.1, 0.3] * TC

Table 17 CLP: Comparison of the Optimality Gaps Upon Termination.

Class
Average Optimality Gap (%) Maximum Optimality Gap (%)

B&C
Cuts Type

B&C
Cuts Type

1 2 GA GB GA&1 GB&2 1 2 GA GB GA&1 GB&2

C1 1.0 0.5 0.5 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

C2 1.0 0.0 0.0 0.3 0.3 0.0 0.0 1.0 0.1 0.1 0.8 0.8 0.1 0.1

C3 1.0 0.0 0.0 0.4 0.4 0.1 0.0 1.0 0.1 0.1 1.0 1.0 0.3 0.1

C4 1.0 0.1 0.1 0.5 0.5 0.0 0.0 1.0 0.2 0.1 1.0 1.0 0.1 0.1

C5 0.7 0.1 0.1 0.4 0.4 0.1 0.1 1.0 0.3 0.3 0.9 0.9 0.3 0.3

C6 1.0 0.1 0.1 0.4 0.5 0.1 0.1 1.0 0.4 0.4 1.0 1.0 0.4 0.4

C7 1.0 0.1 0.1 0.6 0.6 0.1 0.1 1.0 0.2 0.2 0.9 0.9 0.2 0.2

C8 1.2 0.1 0.1 0.6 0.6 0.1 0.1 3.1 0.2 0.2 1.0 1.0 0.2 0.2

C9 1.0 0.1 0.1 0.6 0.6 0.1 0.1 1.0 0.2 0.2 0.9 0.9 0.3 0.2

C10 4.3 0.1 0.1 0.4 0.4 0.1 0.1 5.9 0.1 0.1 0.7 0.7 0.1 0.1

In Table 18, we present a comparison of the time required to obtain the solution

by the B&C approach and the BD approaches. The results show that the BD approach

with Type GA&1 or Type GB&2 cuts performs better in terms of solution times than

the BD approach with the other types of alternative cuts and the B&C approach.

Also, the results reported in Table 18 indicate that the solution times for the B&C

approach increases drastically for those larger instances.



118

Table 18 CLP: Comparison of the Solution Times.

Average of Solution Times (sec.)

Class B&C
Cuts Type

1 2 GA GB GA&1 GB&2

C1 299 45 46 51 47 28 26

C2 936 93 93 118 109 67 71

C3 857 142 142 99 110 90 91

C4 2367 346 343 502 459 216 225

C5 3927 836 760 630 636 435 415

C6 2428 299 329 681 876 264 218

C7 1467 79 85 244 197 58 68

C8 4198 184 179 444 364 184 151

C9 4955 305 352 643 694 257 242

C10 6480 2803 3356 5747 5984 866 914

Maximum of Solution Times (sec.)

Class B&C
Cuts Type

1 2 GA GB GA&1 GB&2

C1 877 102 106 170 159 58 59

C2 1540 152 152 223 204 103 98

C3 1312 207 207 170 175 150 159

C4 5082 548 531 939 826 411 371

C5 6291 1848 2494 1591 1017 1675 1229

C6 4239 489 468 2430 3233 626 328

C7 2494 246 364 699 382 139 180

C8 10800 584 579 782 596 362 348

C9 9430 1079 1364 2353 3256 669 689

C10 10801 9387 10801 10801 10801 6544 8803

Table 19 reports the average and the maximum number of iterations required by

the BD approach with alternative types of strong cuts. Recall that, at each iteration

of the BD approach, we add 2|P| cuts and |P| cuts using the Type 1 and Type 2

cuts, respectively. In the BD approaches using Type GA and Type GB cuts, at each

iteration, we add at most 2|P| cuts and |P| cuts, respectively. Moreover, in the case

of BD implementations using Type GA and Type GB cuts, the maximum number

of iterations are limited by the total number of G-cuts, which are
∑

p∈P 2|Mp| and

∑
p∈P |Mp|, respectively. In the BD approaches using Type GA&1 and Type GB&2

cuts, at each iteration, we add at most 4|P| cuts and 2|P| cuts, respectively. In Table

19, we observe that both the Type GA&1 and Type GB&2 cuts provide the smallest



119

values for the average and the maximum number of iterations.

Table 19 CLP: Comparison of the Number of Iterations.

Class
Average Number of Iterations Maximum Number of Iterations

Cuts Type Cuts Type

1 2 GA GB GA&1 GB&2 1 2 GA GB GA&1 GB&2

C1 1.0 1.0 2.1 2.1 1.0 1.0 1 1 3 3 1 1

C2 1.0 1.0 1.5 1.5 1.0 1.0 1 1 2 2 1 1

C3 1.0 1.0 1.2 1.2 1.0 1.0 1 1 2 2 1 1

C4 1.2 1.7 2.1 2.1 1.0 1.0 3 4 3 3 1 1

C5 1.1 1.3 1.8 1.8 1.0 1.0 2 3 2 2 1 1

C6 1.4 1.3 2.0 2.0 1.0 1.0 3 3 4 4 1 1

C7 1.3 1.5 1.9 1.9 1.0 1.0 3 4 3 3 1 1

C8 1.3 1.4 2.1 2.1 1.0 1.0 3 3 2 2 1 1

C9 1.4 1.2 2.0 2.0 1.0 1.0 4 3 2 2 1 1

C10 1.5 1.7 2.2 2.3 1.0 1.0 3 4 3 3 1 1

V.5. Concluding Remarks

In this chapter, we consider the CLP, which is a multi-product CLSC network design

problem, where we locate the network facilities while determining the material flows

in the whole network so as to minimize the processing, transportation, and fixed

location costs. We develop alternative mathematical formulations that models the

flow variables separately for each stage in the network. These formulations lend

themselves to efficient Benders reformulation.

On the methodological side, we provided exact solution approaches based on the

BD approach using alternative formulations of the CLP, which perform better than

the B&C approach. In this context, we provided efficient dual problem solution meth-

ods that generate strong Benders cuts for the alternative formulations. Furthermore,

we determined that, in this problem setting, different combinations of alternative

multiple Benders cuts, in comparison to the use of strong Benders cuts, generated

stronger lower bounds and promoted faster convergence.



120

CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

An optimal network design for the CLSCs requires simultaneous consideration of both

the forward and reverse flows, instead of an independent and sequential modeling

approach to the forward and reverse network design. This integrated approach is a

key to the network design as it impacts the economic viability and cost performance

of the underlying CLSC.

VI.1. Contributions

The models and solution approaches in this dissertation aim at developing quantita-

tive decision-making tools to evaluate different transformation strategies and provide

cost effective solutions to the integrated CLSC network design. From the modeling

perspective, this dissertation extends the previous work by considering multiple prod-

ucts, separate manufacturing and remanufacturing facilities, and indirect shipments

via distribution centers.

More specifically, in this dissertation, we consider three different practical settings

for the underlying multi-product closed-loop supply chain, namely an Uncapacitated

Remanufacturing Network Design Problem (URP), Capacitated Remanufacturing

Network Design Problem (CRP), and Closed-Loop Network Design Problem (CLP).

In the URP and CRP settings, we extend the existing forward channel infrastructure

to accommodate distinct reverse channel infrastructure to coordinate the forward and

reverse flows, where as, in the CLP setting, we design the entire CLSC network by

considering hybrid facilities.



121

For these three problems settings, we formulate MILPs to determine the optimal

locations of the network facilities along with the integrated forward and reverse flows

such that the total cost of facility location, processing and transportation is mini-

mized. The network flow structures underlying these models make them amenable

for efficient solution approaches using Benders decomposition (BD) framework.

For the first setting (URP), we develop an efficient dual solution approach to

generate strong Benders cuts. In addition to the classical single Benders cut approach,

we propose three different approaches for adding multiple Benders cuts. We present

computational results that illustrate the superior performance of the proposed solu-

tion methodology with multiple Benders cuts in comparison to the B&C approach

and the traditional BD approach with a single cut.

For the second setting (CRP), we devise two tabu search heuristics in which

we effectively combine simple neighborhood search functions utilizing moves and ex-

changes to improve the efficiency of exploration. We propose a transshipment heuris-

tic to quickly, but effectively, estimate the objective function value of a feasible solu-

tion in the course of a tabu search. We also present a BD approach that incorporates

the tabu search heuristics and the strong Benders cuts to facilitate faster convergence

and improve computational efficiency, especially for large scale instances. We present

our computational results illustrating the superior performance of the solution algo-

rithms developed based on the heuristics and BD framework in terms of both solution

quality and computation time.

For the third setting (CLP), considering different alternative formulations, we

present BD framework that utilizes the dual solution approach for obtaining strong

cuts. We also present different approaches for combining these alternate strong cuts

to increase computational efficiency. We present computational results and compare

the computational performance among the alternative strong cuts.



122

VI.2. Foundation for Future Research

Immediate extensions of our work, from the modeling perspective, would be to con-

sider the variants of our models that account for dynamic and stochastic demand

at the retailer locations, vehicle routing strategies instead of direct shipments, and

inclusion of inventory decisions in the design of CLSCs. The development of efficient

solution approaches for such variants would be an important contribution to the lit-

erature by expanding the set of quantitative decision-making tools available for the

design of CLSC networks.

In the same vein, investigating the efficiency of a Lagrangian heuristic–which is

known to be effective for forward facility location problems–for the CLSC network

design problems considered in this dissertation and a comparison of this approach

with BD framework may be informative.

A promising direction for future research is to concentrate on the methodologi-

cal contribution of our work and study the generalized use of multiple Benders cuts

on other optimization problems in which the subproblem is separable. We can also

examine the combined-use of simple neighborhoods in heuristic search and alterna-

tive ways of integrating heuristics within a BD framework as well as alternative cut

disaggregation schemes.

Another interesting direction for future research is to focus on the test instance

generation scheme we developed, and examine how it can be generalized for other

problem settings in which cost trade-offs are instrumental in decision-making.



123

REFERENCES

Akçalı, E., S. Çetinkaya, H. Üster. 2007. Network design for reverse and closed-

loop supply chains: An annotated bibliography of models and solution approaches.

Forthcoming in Networks.

Beamon, B.M., C. Fernandes. 2004. Supply-chain network configuration for product

recovery. Production Planning and Control 15 270–281.

Benders, J.F. 1962. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik 4 238–252.

Birge, J. R., F. Louveaux. 1988. A multicut algorithm for two-stage stochastic linear

programs. European Journal of Operational Research 34 384–392.

Bloemhof-Ruwaard, J.M., M. Fleischmann, J.A.E.E. van Nunen. 1999. Reviewing

distribution issues in reverse logistics. M.G. Speranza, P. Stähly, eds., New Trends

in Distribution Logistics . Springer-Verlag, New York, NY.

Brown, G.G., G.W. Graves, M. D. Honczarenko. 1987. Design and operation of a

multicommodity production/distribution system using primal goal decomposition.

Management Science 33 1469–1480.

Dekker, R., M. Fleischmann, K. Inderfurth, L.N. Van Wassennhove, eds. 2004. Re-

verse Logistics: Quantitative Models for Closed-Loop Supply Chains . Springer-

Verlag, Berlin.

Fleischmann, M. 2001. Reverse logistics network structures and design. ERIM Report

Series ERS-2001-52-LIS Erasmus Research Institute of Management. Available at

http://ideas.repec.org/p/dgr/eureri/2001109.html.



124

Fleischmann, M., P. Beullens, J.M. Bloemhof-Ruwaard, L.N. Van Wassenhove. 2001.

The impact of product recovery on logistics network design. Production and Oper-

ations Management 10 156–173.

Fleischmann, M., J.M. Bloemhof-Ruwaard, R. Dekker, E. van der Laan, J.A.E.E. van

Nunen, L. N. Van Wassenhove. 1997. Quantitative models for reverse logistics: A

review. European Journal of Operational Research 103 1–17.

Fleischmann, M., H.R. Krikke, R. Dekker, S.D.P. Flapper. 2000. A characterization

of logistics networks for product recovery. Omega 28 653–666.

Garey, M. R., D.S. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, CA.

Geoffrion, A. M., G. W. Graves. 1974. Multicommodity distribution system design

by Benders decomposition. Management Science 20 822–844.

Giuntini, R. 2001. The US Market Size of Capital Goods Remanufacturing Process

Expenditures . OEM Product-Services Institute, Lewisburg PA.

Glover, F. 1989. Tabu search - Part 1. ORSA Journal on Computing 1 190–206.

Glover, F. 1990. Tabu search - Part II. ORSA Journal on Computing 2 4–32.

Glover, F., M. Laguna. 1997. Tabu search. Kluwer Academic Publishers, Norwell,

MA.

Guide, V. D. R., T. P. R. Harrison, L. N. Van Wassenhove. 2003. The challenge of

closed-loop supply chains. Interfaces 33 3–6.



125

Jayaraman, V., H. Pirkul. 2001. Planning and coordination of production and dis-

tribution facilities for multiple commodities. European Journal of Operational Re-

search 133 394–408.

Keskin, B. B., H. Üster. 2007. Meta-heuristic approaches with memory and evolu-

tion for a multi-product production/distribution system design problem. European

Journal of Operational Research 127 663–682.

Krikke, H., J. Bloemhof-Ruwaard, L.N. Van Wassenhove. 2003. Concurrent product

and closed-loop supply chain design with an application to refrigerators. Interna-

tional Journal of Production Research 41(16) 3689–3719.

Langevin, A., S. Riopel. 2005. Logistics Systems: Design and Optimization. Springer,

New York, NY.

Lu, Z., N. Bostel. 2007. A facility location model for logistics systems including

reverse flows: The case of remanufacturing activities. Computers and Operations

Research 34 299–323.

Lund, R.T. 1996. The Remanufacturing Industry: Hidden Giant . Boston University,

Boston, MA.

Magnanti, T. L., R. T. Wong. 1981. Accelerating Benders decomposition: Algorithmic

enhancement and model selection criteria. Operations Research 29 464–484.

Parkinson, H. J., G. Thompson. 2003. Analysis and taxonomy of remanufacturing

industry practice. Part E-Journal of Process Mechanical Engineering 217 243–256.

Pirkul, H., V. Jayaraman. 1996. Production, transportation, and distribution plan-

ning in a multi-commodity tri-echelon system. Transportation Science 30 291–302.



126

Pyke, D. F., M. A. Cohen. 1994. Multiproduct integrated production-distribution

systems. European Journal of Operational Research 74 18–49.

Sahyouni, K., R. C. Savaskan, M. S. Daskin. 2007. A facility location model for

bidirectional flows. Transportation Science 41 484–499.

Sim, E., S. Jung, H. Kim, J. Park. 2004. A generic network design for a closed-loop

supply chain using genetic algorithm. Kalyanmoy D., Riccardo P., W. Banzhaf,

H.-G. Beyer, E.K. Burke, P.J. Darwen, D.Dasgupta, D. Floreano, J.A. Foster,

M. Harman, O. Holland, P.L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, A.M.

Tyrrell, eds., GECCO (2), Lecture Notes in Computer Science, vol. 3103. Springer,

Berlin. 1214–1225.

Simchi-Levi, D., P. Kaminsky, E. Simchi-Levi. 2004. Managing the Supply Chain.

McGraw-Hill, New York, NY.

Van Roy, T. J. 1986. A cross decomposition algorithm for capacitated facility location.

Operations Research 34 145–163.

Wentges, P. 1996. Accelerating Benders’ decomposition for the capacitated facility

location problem. Mathematical Methods of Operations Research 44 267–290.



127

VITA

Gopalakrishnan Easwaran earned his Bachelor of Engineering degree in mechan-

ical engineering (sandwich curriculum) from PSG College of Technology in 2000. He

joined the industrial engineering graduate program at Texas A&M University in 2001.

In August 2003, he earned his Master of Science degree in industrial engineering with

a thesis titled “Design and Development of a Vehicle Routing System under Capacity,

Time-windows and Rush-order Reloading Considerations,” under the guidance of his

advisor, Dr. Sıla Çetinkaya. In September 2003, Easwaran enrolled in the doctoral

program in the Department of Industrial and Systems Engineering at Texas A&M

University. He pursued research in the areas of supply chain logistics and applied

optimization.

During his studies, Easwaran has worked as a research assistant/associate on

research projects for a variety of firms including PSG Industrial Institute (India),

Pricol Inc. (India), Hindustan Aeronautics Limited (India), DRDL (India), Master

Halco (San Antonio and Dallas, TX, USA), Frito-Lays and PepsiCo (Plano, TX,

USA).

In August 2008, after completing his Ph.D., Easwaran will join the faculty in

the Department of Engineering at the St. Mary’s University, San Antonio, TX. As

a faculty member of the Industrial Engineering program, he will teach and perform

research in supply chain management and applied optimization. Easwaran can be

reached at the following address:

1. P. N. Street, S. S. Colony

Madurai 625 010.

India.


