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ABSTRACT 

Coupled Heat Conduction and Deformation in a Viscoelastic Composite Cylinder. 

(August 2008) 

Sneha B. Shah, B.E., Gujarat University, India 

Co-Chairs of Advisory Committee: Dr. Hanifah Muliana 
Dr. Kumbakonam Rajagopal           

 

 This study analyzes the thermo-mechanical response of a composite cylinder 

made up of two layers of linear isotropic viscoelastic materials that belong to the class of 

non-Thermorheologically Simple Material.  The effect of time-varying temperature field 

due to unsteady heat conduction phenomenon is analyzed on the short term and long 

term material response in terms of stress, strain and displacement fields.  The material 

properties of the two layers of the composite cylinder at any given location and time are 

assumed to depend on the temperature at that location at that given instant of time.  

Sequentially coupled analyses of heat conduction and deformation of viscoelastic 

composite cylinder is carried out to obtain the overall response.  The stress and strain 

field developed in the composite cylinder is evaluated as the discontinuity in hoop stress 

and radial strain at the interface of the two layers caused due to mismatch in material 

properties may lead to delamination if it exceeds critical value.  Analytical solution for 

the stress, strain and displacement fields of the viscoelastic composite cylinder is 

developed from the corresponding solution of linear elasticity problem by using the 

Correspondence Principle.  The analytical solution for determining the temperature 

dependent stress, strain and displacement fields is further developed by incorporating the 
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temperature dependence on the material properties and modeling the material as non-

TSM.  To analyze more complex geometry with general loading and boundary 

conditions, Finite Element(FE) analysis of the composite cylinder is performed and the 

results of analytical and FE method are found to be in good agreement.  Parametric 

studies are carried out to understand the effect of change in material parameters namely 

the Prony coefficients in the transient creep compliance, characteristic of creep time in 

transient creep compliance and the instantaneous elastic compliance, on the overall 

response of the composite cylinder.  The effect of different temperature dependent 

functions of the material properties, namely linear temperature variation and quadratic 

polynomial variation on the overall material response is also analyzed.  It is observed 

that the effect of change in elastic properties significantly increases the jump in hoop 

stress and radial strain.  It is also observed that when the materials are highly dependent 

on temperature the jump in radial strain and hoop stress increases significantly.  The 

radial displacement also increases by a significant amount in both the cases.   
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   CHAPTER I 

1. INTRODUCTION 

 The use of polymers in engineering applications has been tremendous as the 

desired properties of polymers can be achieved by altering their macromolecular 

(chemical) structures.  Their low manufacturing cost and light weight also make them 

very competitive with metals.  Polymers are used in the form of layered composites in 

various applications in aerospace, automotive, offshore and biomedical industries. 

Understanding the performance of polymers subjected to mechanical loads and exposed 

to varied environmental effects such as temperature and moisture is essential to increase 

the reliability of using polymers for structural applications.  Polymers exhibit 

viscoelastic responses.  The viscoelastic behavior is often intensified at higher stress 

levels and extreme environmental conditions.  

 Many studies have been done to investigate the effect of temperature changes on 

the material properties like creep and relaxation characteristics of viscoelastic materials.  

In some studies, a series of isothermal creep or relaxation tests are carried out.  A shift 

factor, which is a temperature dependent material property, denotes the amount of time 

shifting required to shift relaxation/creep moduli at certain temperature to the ones at the 

reference temperature.  The shift factors can be used to predict the material responses at 

other non-reference temperatures.  This type of materials is categorized as 

Thermorheologically Simple Material (TSM).  A more general class of materials that  

____________ 
This thesis follows the style of Composite Science and Technology. 
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does not belong to TSM constitutes a class known as non-thermorheologically simple 

materials.  

 The present study analyses the effect of temperature changes on mechanical 

response of a composite cylinder comprised of two layers of isotropic viscoelastic 

materials.  The composite cylinder is subjected to the internal pressure and external 

pressure on its innermost and outermost boundaries respectively and also a temperature 

field on its outermost boundary.  The studied viscoelastic materials belong to the class of 

non-thermorheologically simple material.  It is assumed that the material properties at 

any particular location in the viscoelastic body depend on the temperature at that 

location.  Since in this study, the materials comprising the inner and the outer layer are 

viscoelastic, their response to the thermo-mechanical loading is history dependent.  

Therefore, a sequentially coupled analysis of heat conduction and deformation is 

performed to evaluate the overall response of the viscoelastic composite cylinder.  The 

mechanical response in terms of stress, strain and displacement field is evaluated as 

higher amount of discontinuity in stress and strain field at the interface of two layers that 

arises due to mismatch in material properties may lead to delamination if exceeded 

beyond a certain value.  In problems of complex geometry and complex boundary 

conditions, it is not always possible to obtain an exact closed form analytical solution.  

For that purpose, a numerical analysis based on finite element (FE) approach is carried 

out to study the response of the composite structures.  A time-integration algorithm is 

formulated to link the constitutive model to the general FE framework. 
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 This chapter presents literature review of analytical, experimental and numerical 

works done on thermo-viscoelastic behavior of polymeric materials, followed by 

research objectives. 

1.1 STATE OF THE ART KNOWLEDGE ON THE THERMO-VISCOELASTIC 

BEHAVIOR OF POLYMERS 

1.1.1 ANALYTICAL AND EXPERIMENTAL STUDIES ON THERMO-

VISCOELASTIC BEHAVIOR OF POLYMERS 

 The use of polymers in many industrial applications has led to the need of 

understanding the polymer behaviors under general loading conditions and extreme 

environmental conditions.  The short term and long term behavior of polymers are 

significantly altered when subjected to temperature or moisture fluctuations.  Hence, 

many analytical as well as experimental studies have been carried out to gain detailed 

understanding of these effects on the overall performance of polymers. 

 For a large class of problems in linear viscoelasticity, a Correspondence Principle 

has been widely used, which enables the solution to a problem in linear viscoelasticity to 

be constructed from the solution to a corresponding problem in linear elasticity.  Alfrey 

[1] discussed two types of boundary value problems in linear viscoelasticity, the first one 

in which the tractions are given as the function of space and time variables for all the 

times and the second type in which the displacement at the boundary is given as the 

function of space and time variables for all the times considered.  He showed that for 

both types of boundary value problems the solution for the stress and displacement fields 

developed in the body is reduced to the solution of equivalent boundary value problems 
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of elasticity.  Lee et al. [2] discussed the method of stress analysis in bodies comprising 

of linear viscoelastic materials based on the Laplace Transform method.  They discussed 

that when the body under consideration has boundaries that remain invariant with time 

and also the prescribed traction and displacement conditions on the boundary do not vary 

with time, and undergoes infinitesimal displacement, then by applying the Laplace 

Transform, problems can be reduced to the corresponding problem in linear elasticity 

and the stress field can be obtained by subsequent Laplace inversion of the elastic 

problem.  They discussed the example of determination of stress field in a thick 

viscoelastic cylinder with an elastic shell, the outer boundary being subjected to internal 

pressure, using this Laplace Transform method.  Gurtin and Stenberg [3] discussed the 

constitutive relations for the linear isotropic viscoelastic materials using the convolution 

relation.  They discussed the general integral representation for the stress and strain 

constitutive law expressed in the relaxation form or creep integral form including the 

jump discontinuities.  They discussed the mixed boundary value problem in the quasi-

static linear theory of viscoelasticity and showed that the initial response of a 

viscoelastic solid is elastic.  They also discussed the solution of boundary value problem 

using the Laplace Transform method.  Lee and Rogers [4] discussed the solution of 

stress analysis for more general problems in the linear viscoelastic materials by 

discussing the constitutive relation given via an integral operator.  The time dependent 

parameters can be characterized using relaxation modulus or creep compliance directly 

measured experimentally for a finite time range.  The proposed integral operator form 

did not pose any limitation of fixed boundary or types of boundary conditions as posed 
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by the Laplace Transform method.  More general problems could be studied by this 

method which are not amenable to the Laplace Transform method.  Rajagopal and 

Wineman [5] discussed the generalization of the Correspondence Principle between 

linear elasticity and linear viscoelasticity established for classical Linear Viscoelastic 

(LV) solid model to Quasi-Linear Viscoelastic (QLV) model, which they refer to as 

Quasi-Correspondence Principle.  They discussed the cases of QLV model undergoing 

homogeneous uniaxial elongation and torsion and showed that the correspondence 

between LV and QLV models is applicable in these cases.  They also discussed case 

when this correspondence between LV and QLV models breaks down by showing an 

example of bending.  Though the Correspondence Principle has been gainfully used to 

solve many problems in viscoelasticity, there are certain situations when it breaks down.  

Rajagopal and Wineman [6] discussed in detail the conditions under which the 

Correspondence Principle breaks down.  They discussed that all the material points x 

must be a part of the body for all times t≥0 for applicability of the Correspondence 

Principle.  If any of the boundary is ablating or burning away like in a solid fuel 

propellant then, displacement is not defined for all times t≥0 as the particle x of the body 

has already burned away and the Correspondence Principle is no more applicable.  

Another condition when it breaks down is, when at a fixed point on the boundary, 

boundary condition changes from specified displacement to specified surface traction 

during the deformation or vice versa. i.e. the type of boundary condition specified 

changes with time.  Rajagopal and Srinivasa [7] showed that the Correspondence 

Principle proposed by Schapery [8] for problems of non-linear viscoelastic materials 
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undergoing large deformations does not satisfy the balance of angular momentum.  They 

discussed an example of Hadamard compressible material undergoing simple shear 

deformation to show the inapplicability of the Correspondence Principle to nonlinear 

viscoelastic materials undergoing large deformations. 

 While viscoelastic materials exhibit stress relaxation phenomenon, inherent 

viscoelasticity is not the only reason for it.  Rajagopal and Wineman [9] discussed that 

the materials can exhibit stress relaxation behavior due to variety of reasons like ageing 

or inherent viscoelastic nature and both stress relaxation phenomena are distinctly 

different.  They showed with an example of torsion of viscoelastic body capable of 

ageing that the stress relaxation due to classical viscoelastic nature and due to ageing can 

be delineated.  The material that they considered exhibited characteristic of faster ageing 

when exposed to higher strains and also faster ageing when subjected to same strains for 

longer time.  Thus they showed that classical viscoelasticity and ageing are distinct 

phenomena. 

 Rajagopal et al. [10] developed a thermodynamic framework to describe a 

transition of polymer melt to an elastic solid that happens over a narrow range of 

temperatures.  They studied the problem of fiber spinning in polymers like Polyethylene 

Terephthalate that are amorphous below the glass transition temperature and showed that 

the theoretical results predicted by their theory were in good agreement with the 

experimental results.  Rajagopal and Kannan [11] developed a thermo mechanical 

framework to describe the transition from a viscoelastic fluid to a viscoelastic solid 
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which was a generalization of [10].  They discussed the kinetics associated with the 

transition and the change of the response characteristics during the transition.   

 The viscoelastic behavior of the polymers strongly depends on the environmental 

conditions, i.e.  temperature and moisture to which it is subjected.  Several studies have 

been carried out to establish stress-strain-temperature-time relations.  For a class of 

linear viscoelastic materials time-temperature superposition principle (TTSP), as 

discussed by Leaderman [12], is used to describe the effect of temperatures on the 

responses of viscoelastic materials.  This principle is approximately valid for amorphous 

polymers.  The main implication of the TTSP is that material property (stress relaxation 

or creep compliance functions) at any temperature can be expressed in terms of the 

material property at reference temperature and another material property known as time-

shift function.  The method involves creating a master curve by shifting the relaxation 

moduli or creep compliance data obtained from short-term test duration at several 

elevated temperatures to the one at the reference temperature by horizontal time shifting 

along a logarithmic time scale.  Schwarzl and Staverman [13] discussed the applicability 

of time-temperature correspondence principle to various classes of linear viscoelastic 

materials. They proposed that if the change in the viscoelastic material behavior due to 

temperature is completely equivalent to a corresponding shift of the logarithmic time 

scale then it is categorized as Thermorheologically Simple Material (TSM).  The 

viscoelastic materials which do not fall in this category form another class known as 

Thermorheologically Complex Materials (TCM).  In TSM, the temperature dependent 

viscoelastic response can be characterized by one function of temperature, which is time 
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shift factor. It was discussed that in TSM the same molecular events took place but with 

different speeds at different temperatures while in TCM sequence of molecular events 

vary at different temperatures.  Lee and Morland [14] studied the stress-analysis in the 

linear viscoelastic materials subjected to varying temperature fields.  They showed that 

material characteristic functions like stress relaxation or creep compliance at any 

arbitrary uniform temperature can be expressed in terms of creep/relaxation behavior at 

the reference temperature by shifting the responses to a new time scale, known as 

reduced time.  They analyzed the effect of temperature changes on the overall stress 

fields of TSM assuming the material incompressible and thus not considering any 

thermal stresses that would arise during the transient temperature stage.  In particular 

they analyzed the plain strain problem of a hollow cylinder subjected to internal pressure 

and constant temperature difference across the cylinder.  Christensen and Naghdi [15] 

derived constitutive laws, dissipation function and the related thermodynamic 

restrictions for small non-isothermal deformation of linear viscoelastic materials. They 

used a representation of Helmholtz free energy and derived the constitutive laws for 

stress, entropy, and heat flux for continuous histories and also extended the same to non 

continuous kinematic and thermal histories.   

 Many experiments were also carried out to study the time-dependent behavior of 

viscoelastic materials.  Creep tests and relaxation tests at various temperatures were 

conducted to study the thermo-mechanical and long term responses of the viscoelastic 

materials.  Tobolsky and Catsiff [16] presented a summary of a series of stress relaxation 

experiments carried on polyisobutylene specimens.  It was shown that the data of stress 
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relaxation experiments carried out at various higher temperatures on the polyisobutylene 

does satisfy the time-temperature superposition principle when temperatures are close to 

the glass transition temperature.  Lai and Findley [17] conducted uniaxial tension creep 

tests on polyurethane specimens in the non linear range at varying temperatures.  They 

proposed two different methods based on a modified superposition principle to account 

for varying temperature.  One method consisted of a shift factor which is temperature 

and stress dependent.  The other involved stress and temperature dependent function of 

strain.  Ward and Onat [18] carried out tests to study isothermal extensional 

deformations of oriented polypropylene monofilament subjected to time-dependent 

loadings.  They further discussed that the elongation at a given time is a non-linear 

functional of the stress-rate history to which the filament is subjected prior this instance.  

They also showed that the experimental results could be represented within reasonable 

accuracy by this functional of stress-rate history.   

 Tschoegl and Fesko [19] studied the nature of the time-temperature superposition 

that can be applied to the Thermorheologically Complex Material and proposed a simple 

model applicable to two-phase materials.  They proposed that the shift factor should not 

only be a function of temperature but also of time or frequency so as to characterize 

TCM.  They used an additive compliance model which assumes that the compliance of 

the two phase materials have parallel coupling and thus is additive, to obtain the required 

time-temperature relations for superposition.  Caruthers and Cohen [20] carried out 

computer simulations on TCM at different temperatures instead of doing laboratory 

testing so as to bring out the complete nature of thermorheological complexities.  They 
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used an additive compliance model similar to that of Fesko and Tschoegl [15] and 

generated creep compliance isotherms. Their model also predicted time and temperature 

dependent shift factor applicable to the entire domain.  Weitsman [21] developed an 

experimental scheme for characterizing thermo-viscoelastic properties of adhesives and 

composites within linear range of stress-strain response.  He demonstrated that the 

isothermal creep data may not be adequate to characterize the thermoviscoelastic 

response of TCM.  He also emphasized on the importance of the complete thermo-

viscoelastic characterization by using the experimental creep and recovery data of FM-

73 adhesive and showed that in-complete characterization can give rise to discrepancies 

of up to 30%.  Harper and Weitsman [22] proposed a characterization method for a class 

of TCM and demonstrated it by conducting experiments on Hercules 3502 epoxy resin. 

Their technique included temperature effects by incorporating a vertical and horizontal 

shift factors which were temperature dependent.  They demonstrated that the 

characterization method that used only the data of isothermal creep tests showed large 

discrepancies of about 17% where as the method that was based on the results of the 

transient temperature and isothermal creep tests together showed good agreement with 

experimental data.   Knauss and Zhu [23] studied the non-linear thermo-mechanical 

creep behaviors of polycarbonate at temperatures between 0 to 140 ̊C under pure shear 

loading conditions.  The shear creep in the linear viscoelastic range was measured for 

reference.  The shear creep tests were conducted in the non linear viscoelastic range on 

the Arcan specimens at different temperatures and different stress levels.  It was shown 
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that the nonlinearity started at around 1% of strains at all temperatures.  It was shown 

that time-temperature superposition was not applicable in the non-linear range. 

1.1.2 NUMERICAL APPROACH WITHIN THE FE FRAMEWORK FOR 

THERMO-VISCOELASTIC BEHAVIOR OF POLYMERIC MATERIALS 

 The approach involving numerical techniques compatible with Finite Element 

Analyses has evolved in last few decades for analyzing viscoelastic response of 

polymeric materials.  Zienkiewicz et al. [24] developed an incremental algorithm for 

simulating creep behavior of quasi-static problems.  They used a constitutive model 

consisting of series of Kelvin elements coupled with an elastic spring.  The strain 

histories were stored only for the current time and strain rate was modeled as function of 

current stress and accumulated creep strains.  Taylor et al. [25] proposed a recurrence 

numerical algorithm for solution of uncoupled, quasi-static boundary value problem for 

a linear viscoelastic solid undergoing thermal and mechanical deformation.  The 

recursive algorithm formulated the current stress tensor as a function of the history 

variables stored at the previous time step, current time increment and the current strain 

increments.  Feng [26] considered viscoelastic constitutive equations in integral form 

and developed a recursive formula to evaluate the value of convolution integral at the 

current time using the values from the previous time step.  His recursive formulation was 

similar to that of Taylor [25].  He applied this recursive formula to the constitutive 

equation of linear viscoelastic material described by Boltzman’s superposition integral 

equation as a special case.  Henriksen [27] developed a recursive numerical algorithm 

for analyzing the non-linear viscoelastic materials.  The non-linear viscoelastic behavior 
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was mainly due to high stress magnitudes.  He used single integral constitutive law that 

was proposed by Schapery to describe the material.  In his approach, strain was defined 

by a stress operator that included instantaneous compliance and hereditary strain which 

was updated by recursive computation.  Lai and Bakker [28] developed a 3-D 

constitutive model based on 1-D representation given by Schapery for non-linear 

viscoelastic materials that incorporated temperature and physical ageing effects through 

reduced time.  Their model assumed deviatoric and hydrostatic responses to be 

uncoupled.  They expressed the constitutive equation in incremental form and employed 

recursive computation to update the values of hereditary integrals at end of each time 

step.  They integrated this model to Finite Element framework and showed that 

numerical predictions were within good agreement with the experimental data of glassy 

amorphous polymer PMMA.  Haj-Ali and Muliana [29] formulated a recursive-iterative 

algorithm for non-linear isotropic viscoelastic materials represented by Schapery’s 

model with stress-based state variables.  The constitutive equations were expressed in 

incremental form for each time step and constant incremental strain rate was assumed 

that was compatible with general displacement based FE network.  The numerical 

formulation derived by Taylor et al. [25], Henriksen [27], and Lai and Bakker [28] was 

used to update the linearized stress part.  Muliana and Khan [30] developed a combined 

recursive-iterative method for nonlinear thermo-viscoelastic analyses of isotropic 

polymers belonging to the class of TCM.  The time-integration algorithm developed 

could incorporate the stress and temperature dependence on the initial, long term and 

transient material properties.  Two types of iterative procedures based on Fixed point 
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method and Newton-Raphson method were examined within the recursive algorithm.  A 

consistent tangent stiffness matrix was formulated to accelerate the convergence at the 

material level.  The proposed numerical algorithm was verified using the thermo-

viscoelastic experimental data of Harper and Weitsman [22]. 

1.2 RESEARCH OBJECTIVES 

 This study analyzes the effect of temperature during transient heat transfer 

process on the deformations of the composite cylinder made up of two linear isotropic 

viscoelastic materials that belong to the class of non-thermorheologically simple 

material.  Time and temperature dependent constitutive model is used to characterize 

two materials.  It is assumed that the material properties at any particular location at any 

given time in the viscoelastic body depends on the temperature at that location at that 

given instant of time.  The elastic part, transient part and the characteristics of creep time 

in the time dependent compliances of the two materials are temperature dependent.  

Sequentially coupled analyses of heat conduction and deformation are carried out to 

predict the overall response of the viscoelastic composite cylinder.  For problems with 

complex geometry, loading histories, and boundary conditions, it is not always possible 

to obtain an exact closed form analytical solution.  It is due to this reason that a 

numerical analysis based on FE approach is carried out to study the response of the 

composite cylinder.  A time-integration algorithm is then formulated to implement the 

constitutive viscoelastic model in a general FE framework.  A parametric study is carried 

out to study the effect of the different parameters such as temperature dependent elastic 

part, transient part, and the characteristics of creep time of the creep compliance on the 
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displacement, stress and strain fields developed in the body.  The outline of this thesis is 

described as follows.   

 Chapter II presents a sequentially coupled analysis of heat conduction and 

deformation of a composite cylinder consisting of two layers of linear isotropic 

viscoelastic materials.  The constitutive relations are introduced and the appropriate 

governing equations along with the boundary and initial conditions for the deformation 

and conduction of heat are discussed.  The analytical solution for the stress, strain and 

displacement field is obtained from the corresponding problem in linear elasticity by 

using the Correspondence Principle. The effect of temperature is incorporated by 

considering material properties at any location to depend on the temperature at that 

location.  The solution for determining the temperature dependent stress, strain and 

displacement fields is developed by incorporating the temperature dependence on the 

material parameters and modeling the material as Thermorheologically Simple Material 

(TSM) and then as non TSM. 

 Chapter III describes the geometry, material parameters and loading conditions to 

which the composite cylinder is subjected.   The finite element (FE) method is employed 

to analyze the overall response of the composite cylinder.  FE software ABAQUS is 

used to obtain the solution for the heat conduction and the deformation of the composite 

cylinder.  The convergence study is also carried out to ensure that the time increment 

and the finite element mesh gives numerical results within adequate accuracy.  The 

analytical and the FE solutions for the field variables of stress, strain and displacement 

are compared. 
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 Chapter IV presents the parametric study carried out to understand the effect of 

different parameters on the overall response of the viscoelastic composite cylinder.  The 

effect of each individual material parameter namely instantaneous elastic part, Prony 

coefficients of the transient part of creep compliance and characteristic of creep time, on 

the stress, strain and displacement fields is studied.  In addition, the effect of temperature 

dependent functions i.e. linear and quadratic polynomial forms of temperature 

dependence of the material properties, on the overall response of the composite cylinder 

is investigated. 

 Chapter V describes the conclusions and further research. 
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 CHAPTER II 

2. THERMO-MECHANICAL BEHAVIOR OF A COMPOSITE 

CYLINDER COMPOSED OF LINEAR ISOTROPIC 

VISCOELASTIC CONSTITUENTS 

 This chapter presents a sequentially coupled analysis of heat conduction and 

deformation of a composite cylinder consisting of two layers of linear isotropic 

viscoelastic materials.  The constitutive relations are introduced and the appropriate 

governing equations along with the boundary and initial conditions for the viscoelastic 

deformation and conduction of heat are discussed.  The method involving 

Correspondence Principle is described to obtain the solution of viscoelastic problem 

from the corresponding problem in linear elasticity.  The effect of temperature is 

incorporated by considering material properties at any location to depend on the 

temperature at that location.  The solution for determining the temperature dependent 

stress, strain, and displacement fields is developed by incorporating the temperature 

dependence on the time-dependent material constants and modeling the material as 

Thermorheologically Simple Material (TSM) and then as non-TSM.  

2.1 PROBLEM DESCRIPTION 

 In this section the geometry of the composite cylinder along with the prescribed 

boundary and initial conditions is described. A layered hollow composite cylinder 

consisting of two linear isotropic homogeneous non ageing viscoelastic materials 

subjected to a temperature field on its outer boundary is considered.  The effect of 

temperature dependence on the response of composite cylinder is studied by considering 

 
 



17 
 

the material properties at a particular location to be dependent on the temperature at that 

location.  The coupled problem of conduction of heat and deformation is solved 

simultaneously. 

 The composite cylinder is subjected to pressure po on its outer boundary and pi on 

its inner boundary as shown in Fig. 2.1.  The pressure po is arbitrarily chosen to be 

higher than the pressure pi.  However any value of the pressure could have been chosen. 

It is assumed that the heat conduction takes place across the body in the radial direction 

from the outer boundary towards inner boundary due to temperature condition imposed 

on the outermost boundary.  Once the entire body reaches the steady state of temperature, 

it is assumed to remain in that state thereafter.  The bonding at the interface between the 

two layers is assumed to be sufficiently strong and to have a traction continuity and 

displacement continuity at all the times.   

 
 

 

Fig. 2.1. Schematic diagram of the composite cylinder of two layers 
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 The problem of radial heat transfer across the composite body is studied under 

the assumption that all the heat transfer occurs due to the conduction of heat across the 

solid body and convection and radiation effects are not considered.  In order to 

understand the effect of temperature dependent material properties on the overall 

response of the composite cylinder, the problem of radial heat conduction, balance of 

linear and angular momentum and the constitutive equations are solved simultaneously. 

The phenomenon of heat conduction is assumed to be governed by the Fourier’s heat 

conduction law in the radial direction.  All the time dependent terms in the heat 

conduction equation are retained so as to study the manner in which the heat is 

conducted along the body resulting in the temperature change in the composite body, but 

the inertial effects in the motion of the composite with regard to the balance of linear 

momentum are neglected and thereby only the equilibrium equations of the motion are 

considered.  The equations for the conduction of heat and the motion of the composite 

are coupled as the material properties depend on the temperature at that material point.   

 The composite cylinder is made up of two viscoelastic solid materials and hence 

it deforms continuously in time due to existence of constant stresses.  The attention is 

restricted to small deformation gradient problems.  Let xi, i=1,2,3 be the coordinates of a 

material particle in the undeformed state.  ui(x,t), i=1,2,3 denote the components of 

displacement of the material particle at x at time t.  εij(x,t) denote the strain history and 

σij(x,t) denote the Cauchy stress history for the particle at x at time t.  It is assumed that 

the composite cylinder is initially undisturbed, 

( , ) ( , ) ( , ) 0, 0i ij iju t t t tε σ= = = ∀x x x <  
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 T(x,t) denotes the temperature field at the material point x at time t.  All the 

quantities are expressed in the cylindrical polar co-ordinate system (r,θ,z).  The equation 

governing the phenomenon of conduction of heat has the following form: 

( )
( ) ( ) ,

j
j jT K T

t
∂

= Δ
∂

                                                                                                   (2.1) 

j=1,2 corresponds to the two layers of the composite 

where K is the thermal conductivity of the material of the jth layer which is assumed to 

be a constant scalar. In a more general case thermal conductivity K can depend on the 

position and temperature but in this study it is assumed to be a constant.  Layer 1 is the 

inner layer, while layer 2 is the outer layer.  Δ denotes the Laplacian operator.  In the 

cylindrical coordinates this equation becomes: 

( ) ( ) 2 ( ) 2 ( )
( )

2 2 2

1 1j j j
jT T TK r

t r r r r zθ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂

= +⎢ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

jT
+ ⎥                                                      (2.2) 

The displacement field at any material point is assumed to be of the following form: 

( ) ( ) ( , , , )j j r z tθ=u u                                                                                                         (2.3) 

 As mentioned earlier, while considering the equation of motion, the inertial 

effects involved are neglected and the equilibrium equations in absence of body forces 

are considered as: 

( )jdiv = 0σ                                                                                                                     (2.4)                            

where div denotes the divergence operator.  The linear strain and displacement relations 

are considered to be of the form:  

( )T( ) ( ) ( )1 grad grad 
2

j j ⎡= + ⎣ε u u j ⎤⎦                                                                                 (2.5) 
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where grad denotes the gradient operator. 

 The initial and boundary conditions used to solve the heat conduction equation 

and the displacement fields are: 

(2)
3 1( , , , ) ( ), 0T R z t T t tθ = ∀ ≥  

(1)
1 2( , , , 0) 0,T r z R r Rθ = ∀ ≤ ≤   

(2)
2 3( , , ,0) 0,T r z R r Rθ = ∀ ≤ <  

(1)

1( , , , ) 0T R z t
r

θ∂
=

∂
 

(1)
1( , , , )rr iR z t pσ θ = −           

(2)
3( , , , )rr oR z t pσ θ = −                                                                                                      (2.6) 

 The bonding between the two layers is assumed to be sufficiently strong and the 

following conditions of continuity are imposed on the interface.  Firstly it is assumed 

that the displacement field at each point at the interface is continuous resulting in: 

(1) (2)
2 2( , , , ) ( , , , )R z t R z tθ =u u θ                                                                                      (2.7) 

Second, the continuity of temperature and traction at the interface between the two 

layers is enforced: 

(1) (2)
2 2( , , , ) ( , , , )T R z t T R z tθ θ=  

(1) (2)
2 2( , , , ) ( , , , )rr rrR z t R z tσ θ σ θ=                                                                                     (2.8) 

 In the case of the composite cylinder of finite length, the condition of traction 

continuity at the interface also implies (1) (2)
2 2( , , , ) ( , , , )rz rzR z t R z tσ θ σ θ= .  Using the 

condition of the continuity of the heat flux at the interface we also get: 
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(1) (2)
(1) (2)

2( , , , ) ( , , , )T TK R z t K R
r r

θ∂ ∂
=

∂ ∂ 2 z tθ                                                                 (2.9) 

The temperature condition imposed at the outer most boundary of r=R3 is  

( )1

0 if 0,
1 if 0

t
T t

t
<⎧

= ⎨ ≥⎩
                                                                                                    (2.10) 

2.2 SOLUTION OF VISCOELASTIC COMPOSITE CYLINDER USING THE 

CORRESPONDENCE PRINCIPLE 

 For a class of problems in linear viscoelasticity, a general method has been 

developed which enables to solve problems in linear viscoelasticity from the solution of 

the corresponding problem in linear elasticity known as Correspondence Principle as 

discussed by Christensen [31] and Rajagopal and Wineman [6].  Consider a body that is 

initially undisturbed, in that the displacement, strain and stress fields are:  

( , ) ( , ) ( , ) 0, 0i ij iju t t t tε σ= = = ∀x x x <                                                                        (2.11) 

For all the times t≥0, the linearized strain-displacement relation, the balance of angular 

momentum which implies that stress tensor is symmetric at each instant of time and the 

balance of linear momentum in absence of inertial effects and body force, are given as: 

1
2

ji
ij

j i

uu
x x

ε
⎛ ⎞∂∂

= +⎜⎜ ∂ ∂⎝ ⎠
⎟⎟  i,j=1,2,3                                                                                      (2.12) 

ij jiσ σ=                                                                                                                        (2.13) 

0ij

jx
σ∂

=
∂

                                                                                                                      (2.14) 

 At each point of the surface either displacement or traction boundary conditions 

are specified for all times t≥0.  It is assumed that the boundary condition at a point, 
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whether it is prescribed traction or displacement, does not change with time.   That is, at 

a point on the boundary, displacement should not be specified for some part of time with 

traction condition specified for the rest of the time.   

 For the problems in linear viscoelasticity that satisfy the above conditions, a 

Laplace Transform of the governing field equations and the boundary conditions  will 

result in the similar set of equations as that of the corresponding boundary value problem 

for the equilibrium state of a linear elastic material.  This means that the Laplace 

transformed viscoelastic solution can be directly obtained from the solution of the 

corresponding elastic problem by multiplying the Laplace transform parameter to the 

Laplace Transform of the material properties and interpreting the elastic field variables 

as the transformed field variables.  The viscoelastic solution is then obtained by 

inverting the transformed solution back to the real time domain.  This generalized 

method that involves the replacement of  elastic material properties by appropriate forms 

of transformed viscoelastic properties and elastic field variables as transformed 

viscoelastic field variables and then followed by the inversion of the transformed 

equations to get the final solution of boundary value problem in viscoelasticity is known 

as the Correspondence Principle.  

 However, there are certain cases when the Correspondence Principle breaks 

down.  As discussed in chapter I, Wineman and Rajagopal [6] have discussed in detail 

the cases when the Correspondence Principle is no more applicable.  The studied 

composite cylinder does satisfy all the conditions necessary for the applicability of the 

Correspondence Principle, which is used to construct the solution of viscoelastic stress 
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and deformation fields developed on application of pressure on the boundaries on the 

cylinder.  The solution of the problem was constructed for the linear isotropic elastic 

composite cylinder subjected to same boundary conditions.  The solution for the 

deformation in viscoelastic cylinder was obtained using the Correspondence Principle.  

 For simplicity, the problem of plane strain conditions is considered by assuming 

the annular cylinder to be infinitely long.  Since the cylinder is assumed to be infinitely 

long the displacement and the temperature fields are considered to be independent of the 

z coordinate.  Also the displacement and temperature fields are taken to be symmetric 

with respect to the axis of the cylinder and so the displacement and temperature can be 

assumed of the form: 

( )( ) ( ) ,j j
r ru r t=u e  

(( ) ( ) ,j jT T r= )t                                                                                                            (2.15) 

Thus the equation governing the conduction of heat through the composite cylinder now 

takes the form: 

( ) ( )
( ) 1j j

jT K r
t r r r

⎡ ⎤⎛∂ ∂ ∂
= ⎢ ⎜∂ ∂ ∂⎝ ⎠⎣ ⎦

T ⎞
⎥⎟                                                                                      (2.16) 

The initial, boundary and interface conditions used are: 

(2)
3 1( , ) ( ), 0T R t T t t= ∀ ≥ ;     (1)

1 2( ,0) 0,T r R r R= ≤ ≤ ;     (2)
2 3( ,0) 0,T r R r R= ≤ <  

(1) (2)
(1) (2)

2 2( , ) ( , )T TK R t K R t
r r

∂ ∂
=

∂ ∂
;    

(1)

1( , ) 0T R t
r

∂
=

∂
;   1 2

2 2( , ) ( , )rr rrR t Rσ σ= t  

1 2
2 2( , ) ( , )rr rru R t u R t= ;  2

3( , )rr oR t pσ = − , 1
1( , )rr iR tσ p= −                                           (2.17) 
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 The solution of composite elastic cylinder is developed using the method 

employing the Airy Stress Function technique as discussed by Sadd [32].  As shown in 

the Fig. 2.2 below, the composite cylinder is thought of as being made up of two 

separate elastic cylinders having same pressure pc (which is to be determined)  at the 

interface i.e at R=R2 , 1 2
2 2( ) ( )rr rr cR R pσ σ= = −  

 

 

+ 

Fig. 2.2. Composite cylinder made up of two layers 
 

 

The non zero stresses and the radial displacements in the two cylinders are taken of the 

following form: ( Sadd [32] ) 

1
2( )rr

AR B
R

σ = +  ,    R1 ≤ R ≤ R2    

2
2( )rr

CR D
R

σ = + ,    R2 ≤ R ≤ R3                                                                                             
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2 2 2 2
1 1 2 1 1 21

2 2 2 2
1 2 1 2 1

( ) (1 2 )( )1( )
( ) ( )

c i i c
rr

R R p p R p R p Ru R
E R R R R R

νν ⎡ ⎤− − − −+
= +⎢ ⎥− −⎣ ⎦

,    R1 ≤ R ≤ R2    

2 2 2 2
2 3 2 2 2 32

2 2 2 2
2 3 2 3 2

( ) (1 2 )( )1( )
( ) ( )

o c c o
rr

R R p p R p R p Ru R
E R R R R R

νν ⎡ ⎤− − − −+
= +⎢ ⎥− −⎣ ⎦

,   R2 ≤ R ≤ R3       (2.18) 

where  σ1
rr  (R) denotes the radial stress in the cylinder 1 at any given radius R ; σ2

rr  (R) 

denotes the radial stress in the cylinder 2 at any given radius R.  A,B,C and D are the 

non-zero real  unknown constants; pc  denotes the radial pressure at the interface;  u1
rr (R) 

denotes the radial displacement of the material point at a given radius R in cylinder 1 

and u2
rr (R) denotes the radial displacement of the material point at a given radius R in 

the cylinder 2; ν1 denotes the Poisson’s ration for the material of cylinder1 and ν2 

denotes the Poisson’s ration for material of cylinder2. E1 is the Elastic modulus of 

material of cylinder 1 and E2 is the Elastic modulus of the material in cylinder 2. 

 The unknown constants A,B,C and D in Eq. (2.18) are determined by using the 

following boundary and traction and displacement continuity conditions at the interface: 

1
1( )rr iR pσ = −  

2
3( )rr oR pσ = −  

1 2
2 2( ) ( )rr rr cR R pσ σ= = −

2

 

1 2
2( ) ( )rr rru R u R=                                                                                                       (2.19) 

On determination of the above constants using the Eqs. (2.18) the radial stress developed 

at the interface is  

2 2 2 2 2 2 2 2
1 1 3 2 2 2 3 2 1 1

2 2 2 2 2 2 2 2
2 3 2 2 2 1 1 1 1 1 2 3 2 2

(2(1 ) ( ) ) (2(1 ) ( ) )
((1 )( (1 2 ) )( ) ) ((1 )( (1 2 ) )( ) )

i o
c

R R R E p R R R E pp
R R R R E R R R R

ν ν
ν ν ν ν

⎡ ⎤− − + − −
= ⎢ ⎥+ + − − + + + − −⎣ ⎦E

(2.20) 
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Now with the stress at the interface being known the stresses and the radial 

displacements in both the cylinders are obtained as: 

2 2 2 2
( )

2 2 2 2 2

( )( )
( ) ( )

j i o o i i i o o
rr

o i o i

R R P P R P R PR
R R R R R

σ − −
= +

− −
 

2 2 2 2
( )

2 2 2 2 2

( )( )
( ) ( )

j i o o i i i o o

o i o i

R R P P R P R PR
R R R R Rθθσ − − −

= +
− −

 

2 2 2 2
( )

2 2 2 2

1 ( ) (1 2 )( )( )
( ) ( )

jj i o o i i i i o o
rr

j o i o i

R R P P R P R P Ru R
E R R R R R
ν ν+ ⎡ ⎤− − − −

= +⎢ ⎥− −⎣ ⎦
                                   (2.21) 

where j=1 corresponds to the cylinder 1 for which 

1iR R= , , , , νj= ν1 and Ej= E1 2oR R= i iP p= oP p= c

o

 and  j=2 corresponds to the cylinder 2 for  

2iR R= , , , , νj= ν2 and Ej= E2` 3oR R= i cP p= oP p=

 As discussed earlier these elasticity solutions can be converted to the Laplace 

Transform of the solution of the problem for the viscoelastic material by making the 

following substitutions: 

Material Properties: 

1( )
( )

E aG a
aD a

→ =                                                                                                   (2.22) 

Where G denotes the stress relaxation modulus of the viscoelastic material and D 

denotes the creep compliance of the viscoelastic material; a is the Laplace Transform 

parameter.  In this study the Poisson’s ratio of the viscoelastic material is assumed to be 

time independent function.  However, the Poisson’s ratio for viscoelastic materials is a 

function of time and also the form of time dependence may vary with the type of test like 
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relaxation or creep tests.  If the Poisson’s ratio is taken to be time dependent material 

function then the analytical answer will have multiple integral involved which is not 

very easy to solve.  Hence in this study time independent function has been assumed. 

Field variables: 

( ) ( )( ) ( , )j j
rrrr

R R aσ σ→  

( ) ( )( ) ( , )j jR R aθθ θθσ σ→  

( ) ( )( ) ( , )j j
rr rru R u R a→                                                                                                      (2.23) 

Boundary equations: 

( ) ( )i iP t P a→  

( ) ( )o oP t P a→                                                                                                                (2.24) 

On substituting Eqs. (2.22)-(2.24) into the Eq. (2.21), the Laplace transformed stress and 

displacement fields are: 

2 2 2 2
( )

2 2 2 2 2

( )( , )
( ) ( )

j i o o i i i o o
rr

o i o i

R R P P R P R PR a
R R R R R

σ − −
= +

− −
 

2 2 2 2
( )

2 2 2 2 2

( )( , )
( ) ( )

j i o o i i i o o

o i o i

R R P P R P R PR a
R R R R Rθθσ − − −

= +
− −

 

( )
2 2 2 2

( )
2 2 2 2

( ( ) ( )) (1 2 )( ( ) ( ))( , ) 1 ( )
( ) ( )

j i o o i i i i o o
rr j j

o i o i

R R P a P a R P a R P a Ru R a aD a
R R R R R

νν
⎡ ⎤− − − −

= + +⎢ ⎥− −⎣ ⎦
  (2.25) 

 The Eq. (2.25) is inverted to get the final solution for the composite cylinder 

made up of linear viscoelastic material having time independent Poisson’s ratio as: 

2 2 2 2
( )

2 2 2 2 2

( ( ) ( )) ( ) ( )( , )
( ) ( )

j i o o i i i o o
rr

o i o i

R R P t P t R P t R P tR t
R R R R R

σ − −
= +

− −
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2 2 2 2
( )

2 2 2 2 2

( ( ) ( )) ( ) ( )( , )
( ) ( )

j i o o i i i o o

o i o i

R R P t P t R P t R P tR t
R R R R Rθθσ − − −

= +
− −

 

( )
2 2 2 2

( )
2 2 2 2

( ( ) ( )) (1 2 )( ( ) ( )( , ) 1 *
( ) ( )

j i o o i i i i o o
rr j j

o i o i

R R P t P t R P t R P t Ru R t dD
R R R R R

νν
⎡ ⎤− − − −

= + +⎢ ⎥− −⎣ ⎦
           (2.26) 

Where the Po*dD denotes the Stieltjes convolution of Po(t) and D(t) defined by 

0

* (0) ( ) ( ) (
t

o o oP dD P D t D t s P s ds= + −∫ )  and 

Pi*dD denotes the Stieltjes convolution of Pi(t) and D(t) defined by 

0

* (0) ( ) ( ) ( )
t

i i iP dD P D t D t s P s ds= + −∫  

The radial strain and hoop strain are given by: 

( )
2 2 2 2( )

( )
2 2 2 2 2

( ( ) ( )) (1 2 )( ( ) ( )( , ) 1 * ( )
( ) ( )

j
j i o o i i i i o orr

rr j j
o i o i

R R P t P t R P t R P tuR t dD t
R R R R R R

νε ν
⎡ ⎤− − −∂

= = + +⎢ ⎥∂ − −⎣ ⎦
 

( )
2 2 2 2( )

( )
2 2 2 2 2

( ( ) ( )) (1 2 )( ( ) ( )( , )( , ) 1 * ( )
( ) ( )

j
j i o o i i i i o orr

j j
o i o i

R R P t P t R P t R P tu R tR t d
R R R R R Rθθ

νε ν
⎡ ⎤− − − −

= = + +⎢ ⎥− −⎣ ⎦
D t

     
(2.27) 

 

2.3 TEMPERATURE DEPENDENT RESPONSE OF VISCOELASTIC 

COMPOSITE CYLINDER 

 The response of viscoelastic materials is strongly dependent on the temperature 

the material is subjected to.  Schwarzl and Staverman [9] introduced a terminology of 

Thermorheologically Simple Material (TSM) where change in the viscoelastic material 

behavior due to temperature is completely equivalent to a corresponding shift of the 

logarithmic time scale.  The time-temperature superposition proposed by Leaderman[8] 
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is applicable to describe the temperature dependent viscoelastic behavior of TSM.  

Morland and Lee [10] and Rajagopal and Wineman [30] discussed the extension of time-

temperature superposition principle applicable to TSM to time-varying temperature 

histories.  In summary, materials can be categorized as TSM when they exhibit the 

following features: 

1. The shape of stress relaxation/creep compliance curves on the log t scale at 

different temperatures is same. 

2. The initial and the long time values of the relaxation/creep compliance modulus 

are independent of temperature. 

3. During the creep or stress relaxation essentially the same macromolecular 

reconfigurations takes place at the speed that is temperature dependent. ( Higher 

temperature increases the speed and lower temperatures reduces the speed of 

molecular events) 

 Time-temperature superposition is applicable to TSM that describes viscoelastic 

behavior with respect to time and temperature.  It implies that stress relaxation/creep 

compliance at any temperature can be expressed by two terms: relaxation/creep 

compliance at a reference temperature and a function known as shift function (which is a 

material property that denotes the amount of time shifting to be done on the stress 

relaxation vs log time graph).  Using this time-temperature equivalence a relation is 

developed to evaluate stress relaxation at any temperature T from the known value of 

stress relaxation at a reference temperature To: 
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0 0

, ( ) ,
( ( ), )

tt

o
s o

dsG t T s G T
a T s T=

⎡ ⎤⎡ ⎤ = ⎢⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ⎥                                                                                 (2.28) 

where the integral 
0

( )
( ( ), )

t

o

dtt
a T t T

ξ = ∫  is known as ‘reduced time’ (Morland and Lee 

[10] ) and the function is the shift function which is a material property. ( ( ), )oa T t T

 When the temperature dependence on the material properties of the composite 

cylinder is modeled as TSM, the stress and displacement fields with time varying 

temperature represented by Eq. (2.27) have the following form: 

2 2 2 2
( )

2 2 2 2 2

( ( ( )) ( ( ))) ( ( )) ( ( ))( , )
( ) ( )

j i o o i i i o o
rr

o i o i

R R P t P t R P t R P tR t
R R R R R

ξ ξ ξ ξσ − −
= +

− −
 

2 2 2 2
( )

2 2 2 2 2

( ( ( )) ( ( ))) ( ( )) ( ( ))( , )
( ) ( )

j i o o i i i o o

o i o i

R R P t P t R P t R P tR t
R R R R Rθθ

ξ ξ ξ ξσ − − −
= +

− −
 

( )
2 22 2

( )
2 2 2 2

(1 2 )( ( ( )) ( ( ))( ( ( )) ( ( )))( , ) 1 *
( ) ( )

j i i o oj i o o i
rr j j

o i o i

R P t R P t RR R P t P tu R t dD
R R R R R

ν ξ ξξ ξν
⎡ ⎤− −− −

= + +⎢ ⎥
− −⎢ ⎥⎣ ⎦

                                                                                                                                      (2.29) 

Where 

0

* (0) ( ( )) ( ( ) ( )) ( )
t

o o oP dD P D t D t s dP sξ ξ ξ= + −∫  

0

* (0) ( ( )) ( ( ) ( ))
t

i iP dD P D t D t s dP sξ ξ ξ= + −∫ ( )i  

 A class of materials that exhibit more general thermo-viscoelastic behaviors are 

attributed as TCM.  The temperature has strong influence on the initial and long term 

properties of the material.  The effect of temperature dependence on the viscoelastic 

behavior of the composite cylinder is studied as TCM so as to study the significant effect 

of temperature on the overall response.  To this end the transient tensile creep 
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compliance of the material of two layers are chosen to have Prony series representation 

which consists of series of exponential forms.  The elastic and the transient parts are 

both made to be temperature dependent along with temperature dependent shift factor. It 

is assumed that all these material creep properties at a particular location depend on the 

instantaneous value of the temperature at a given location at a particular time and not the 

entire history of the temperature.   So creep compliance of the material has the form: 

(0
1

( , ) ( ) ( ) 1 exp ( )
n

n
n

D t T D T D T tλ ξ
=

= + − −⎡⎣∑ )n ⎤⎦                                                            (2.30) 

where 
0

( )
( , )

t

o

dst
a T T

ξ = ∫                                                                                                 (2.31) 

Where D0 denotes the elastic part; Dn denotes the coefficient of the nth term in the series 

of transient creep; nλ  denotes the reciprocal of the characteristic of creep time; ( )tξ  is 

the reduced time and a(T,To) is the shift factor.  

 To get the deformation and stress fields, the temperature value at a time instant 

and a given material point is obtained from solving the heat conduction equation.  The 

temperature dependent creep compliance in Eq. (2.30) is then calculated together with 

the reduced time in Eq. (2.31).  The Eqs. (2.30) and (2.31) are substituted to the Eq. 

(2.29) to obtain the stress, displacement and strain fields of the viscoelastic composite 

cylinder.  
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CHAPTER III 

3. ANALYTICAL AND NUMERICAL SOLUTION FOR THERMO-

MECHANICAL RESPONSE OF THE COMPOSITE CYLINDER 

 The first section of this chapter describes the geometry, material parameters and 

the mechanical loading conditions to which the composite cylinder is subjected.  The 

analytical and the FE solutions for the stress, strain and displacement fields are discussed.  

FE software ABAQUS is used to obtain the solution for the heat conduction and the 

deformation of the composite cylinder.  The convergence study is carried out to ensure 

that the time increment and the FE mesh gives numerical results within adequate 

accuracy.  In the final section, the analytical and numerical solutions for the stress, strain 

and displacement fields are compared. 

3.1 ANALYTICAL SOLUTION OF THE FIELD VARIABLES FOR THE 

VISCOELASTIC COMPOSITE CYLINDER  

 The composite cylinder consisting of two layers of linear viscoelastic materials is 

considered which is assumed to be infinitely long and thus the plain strain conditions are 

imposed while predicting the mechanical response. The layer 1 is considered to have 

inner most and outer most radius of 1 and 2 units respectively and the layer 2 is 

considered to have inner most and outer most radius 2 and 3 units respectively.  The 

composite is assumed to have sufficiently strong bonding at the interface at r=2.  The 

non-dimensionalized material properties and loads (thermal and mechanical loads) are 

used.  The two layers are assumed to be isotropic and the tensile and compressive 
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properties are identical.  The values of material properties of the two layers are as 

described in Table 3.1. 

 
 

Table 3.1. Elastic properties of the material of two layers 
 

Parameter Value Parameter Value 
ν(1) 0.25 ν(2) 0.29 
K(1) 1 K(2) 1.5 
E0

(1) 5.128 E0
(2) 4.0 

 
 
 
 

where υ(i) denote the Poisson’s ratio for ith layer; where i=1,2 corresponds to two layers.   

K(i) denotes the thermal conductivity for the ith layer and E0
(i) denotes the elastic 

(instantaneous) part of compliance of the ith layer .  The transient creep compliance of the 

materials in the two layers are represented by Prony series, as mentioned in chapter II.  

The non-dimensional elastic compliance and transient creep properties of the material of 

the two layers are shown in Table 3.2 where n is the number of Prony terms, Dn is the nth  

Prony coefficient, λn is the reciprocal of the characteristic of the nth retardation time and 

D0 is the elastic compliance. 

 Now using the Laplace Transform method discussed by Rajagopal and Wineman 

[6], from these creep compliances, the stress relaxation moduli of the layer 1 and layer 2 

denoted by G1(t) and G2(t) respectively, are: 

( )1
1.36 0.0135 0.00132.105 1.36 0.66t tG t e e e− − −= + + + t

t

                                                        (3.1) 

( )2
1.04 0.012 0.00122.632 0.155 0.64 0.57t tG t e e e− − −= + + +                                                (3.2)   

 
 



34 
 

Table 3.2. Elastic compliance and transient properties of the creep compliance for the 
material of two layers 

 
Layer 1 Layer 2 

n λn Dn n λn Dn 

1 1 0.07 1 1 0.01 

2 0.01 0.09 2 0.01 0.05 

3 0.001 0.12 3 0.001 0.07 

D0=0.195 D0=0.25 
 

 

 On substituting the above values of material properties and the dimensions of the 

cylinder considered in Eq. (2.20) and taking the Laplace transform, the Laplace 

transformed stress at the interface becomes: 

2 1

1 2

9.375 ( ) ( ) 49.46 ( ) ( )( )
41.33 ( ) 18.75 ( )

i
c

G a p a G a p ap a
G a G a

+
=

+
o                                                                (3.3) 

where pi denotes the pressure on the innermost radius of r=1.0 and po denotes the 

pressure on the outermost radius of r=3.0 and a is the Laplace Transform variable.  The 

stress at the interface is then obtained by taking the Laplace inverse of the Eq. (3.3). 

 The stress, displacement and strain fields in the layer 1 of the composite cylinder 

are obtained by substituting the material properties and radii values of layer 1 in Eq. 

(2.26) and (2.27), which for temperature independent material properties are:  

(1)
2 2

1 4 4( , ) 4 ( ) 1 ( ) , 0
3rr c iR t p t p t

R R
σ ⎡ −⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

t⎤
≥

 

(1)
2 2

1 4 4( , ) 4 ( ) 1 ( ) , 0
3 c iR t p t p t

R Rθθσ ⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
t ≥  
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(1)
1

1.25 4 4( , ) 2 ( ) 0.5 * ( ), 0
3rr c iu R t R p t R p dD t t

R R
⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

≥                

(1)
12 2

1.25 4 4( , ) 2 ( ) 0.5 ( ) * ( ), 0
3rr c iR t p t p t dD

R R
ε ⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

t t ≥      

(1)
12 2

1.25 4 4( , ) 2 ( ) 0.5 * ( ), 0
3 c iR t p t p dD

R Rθθε
⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

t t ≥                          (3.4) 

Similarly, on substituting the material properties and radii values of layer 2 in the Eqs. 

(2.26) and (2.27), the stress, displacement and strain fields for the layer 2 are:

(1)
12 2

(2)
22 2

1.25 4 4( , ) 2 ( ) 0.5 * ( ), 00
3

1.29 36 36( , ) 3.78 ( ) 1.68 * ( ), 0
5

c i

c i

R t p t p dD t t
R R

R t p t p dD
R R

θθ

θθ

ε

ε

⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀ ≥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

t t ≥
 

(2)
2 2

1 36 36( , ) 9 ( ) 4 ( ) , 0
5rr c iR t p t p t

R R
σ ⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

t ≥
 

(2)
2 2

1 36 36( , ) 9 ( ) 4 ( ) , 0
5 c iR t p t p t

R Rθθσ ⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
t ≥  

(2)
2

1.29 36 36( , ) 3.78 ( ) 1.68 * ( ), 0
5rr c iu R t R p t R p dD t t

R R
⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

≥  

(2)
22 2

1.29 36 36( , ) 3.78 ( ) 1.68 ( ) * ( ), 0
5rr c iR t p t p t dD

R R
ε ⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

t t ≥    

(2)
22 2

1.29 36 36( , ) 3.78 ( ) 1.68 * ( ), 0
5 c iR t p t p dD

R Rθθε
⎡ − ⎤⎛ ⎞ ⎛ ⎞= − + + ∀⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

t t ≥                  (3.5) 

 As discussed in chapter II, the effect of temperature on the overall viscoelastic 

response of the composite cylinder is studied by considering the material properties at a 

given location to be dependent on temperature at that location.  In this study we have 
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assumed the material properties of elastic compliance (Do), transient creep compliance 

(Dn) and time shift factor (a(T)) to depend on temperature.  Do and Dn are assumed to 

linearly depend on the temperature.  We could also have considered the variation of 

polynomial or exponential form.  The specific form of temperature dependence is chosen 

to merely illustrate that the effect of temperature on the stress, strain and displacement 

fields can be pronounced. The magnitude of strain developed will definitely depend on 

the form of temperature dependence assumed.   

 The linear temperature dependence assumed in this study is: 

( ) ( )( ) (1 )i i
o oD T D T= +                                                                                                        (3.6) 

(( ) ( ) ( ( ))( , ) (0.5 ) 1n n
ni i tD T t D T e λ ξ−= − )   i=1,2 corresponds to layers 1 and 2                   (3.7) 

where  
0

( )
( ( ), )

t

o

dst
a T s T

ξ = ∫  is the reduced time with  

1( , )
1 ( )o

o

a T T
T T

=
+ −

  

 where To is the reference temperature considered to be 0 in this study since non 

dimensional quantities are considered in this  study.  The temperature dependent material 

properties given by Eqs. (3.6) and (3.7) are substituted in Eq. (2.30) which is then 

substituted in Eq. (2.29) to obtain the stress, displacement and strain fields for a 

composite cylinder with temperature dependent material properties. 
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3.2 FINITE ELEMENT SOLUTION FOR THE SEQUENTIALLY COUPLED 

HEAT CONDUCTION AND DEFORMATION IN THE VISCOELASTIC 

COMPOSITE CYLINDER 

 The numerical approach is used to solve the composite cylinder problem, as it is 

not always possible to obtain the closed form analytical solution when the complex 

geometry with more general thermo-mechanical loadings is considered.  The Finite 

Element (FE) mesh wherein the governing equations for the conduction of heat and 

displacement of composite cylinder are solved, is generated using three-dimensional 

continuum quadratic elements of the ABAQUS FE software.  One quarter symmetric FE 

mesh is shown in the Fig. 3.1.  The boundary conditions used in the FE mesh are: ux 

(Face 1) = 0.0, uy (Face 2) = 0.0 and for imposing the plane strain conditions for 

infinitely long annular cylinder uz (Face 3) = uz (Face 4) = 0.0.   

 

 
Fig. 3.1. FE mesh for composite cylinder 
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 The solution of the coupled displacement-heat conduction equations are 

performed in two sequential steps.  Firstly the heat transfer analysis is carried out where 

the temperature profile of the body is evaluated.  Then by using these temperature values, 

the material properties are made temperature dependent as shown in Eqs. (3.6) and (3.7) 

and the stress and deformation fields are evaluated.  To incorporate the effect of 

temperature on the deformation of the viscoelastic composite cylinder, the constitutive 

model incorporating time and temperature effects is numerically solved and 

implemented in the material subroutine (UMAT) of the ABAQUS FE code.  The 

numerical algorithm developed by Haj-Ali and Muliana [29] for the stress dependent 

viscoelastic material model that is compatible with displacement based FE framework is 

modified to incorporate the temperature effects.  This algorithm is used to predict the 

time and temperature dependent viscoelastic material response under general mechanical 

and thermal loading histories. The linearized solution within an incremental time step is 

first obtained.  Iterative scheme is used to obtain solutions of nonlinear problems at 

structural and material levels.  As shown in Eq. (3.1) at each iteration within the 

incremental time-step Δt, trial incremental strain tensor t
ijεΔ  and temperature ΔTt are 

obtained. The goal is to calculate the current total stresses t
ijσΔ  and the material 

consistent tangent stiffness from the given current variables and the total stress and 

strain history variables stored from the previous converged solution at time (t- Δt).  The 

converged  at the current time t is used to provide incremental trial strains for the 

next time step (t+ Δt).   

t
ijklC

t
ijklC
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∂Δ

=

∂
=
∂

                                                                                      (3.1) 

 A general single integral relation is used for a linear viscoelastic material and is 

modified to incorporate the temperature effects, which is written as: 

00 1
0

( ) ( ) ( ) ( )
t

t t t tt dt T D T Dg g
d

τ
τ σ dε ε ψσ

τ
≡ = + Δ −∫ ψ τ                                                 (3.2) 

where D0 is the uniaxial instantaneous elastic compliance and ΔD is the transient creep 

compliance, ψ is the reduced time (effective time) defined by: 

0

( )
( )

t
t dt

a T ξ

ξψ ψ≡ = ∫                                                                                                       (3.3) 

 The function a(T) is a temperature dependent material property used to define the 

time scale shift factor for Thermorheologically Simple Materials. Here the parameter g0 

measures the increase or decrease in the instantaneous compliance with the change in 
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temperature and the parameter g1 measures the increase or decrease in the transient creep 

compliance with change in temperature. 

 This uniaxial viscoelastic relation in Eq. (3.2) is generalized for multiaxial (3D) 

constitutive relations of the isotropic materials by separating the deviatoric and 

volumetric relations as: 

0 0 1
0

0 0 1
0

1
3

1 1( ) ( ) ( )
2 2

1 1( ) ( ) ( )     
3 3

t t t t
ij ij kk ij

t
ijt t t t t

ij ij

t
t t t t t kk
kk kk

e

dS
e g T J S g T J d

d

dg T B g T B d
d

τ
τ

τ
τ

ε ε δ

ψ ψ τ
τ

σε σ ψ ψ τ
τ

= +

= + Δ −

= + Δ −

∫

∫

                                               (3.4) 

where eij, εkk, Sij and σkk are used to denote the deviatoric strain, volumetric strain, 

deviatoric stress and volumetric stress, respectively.  The terms J0 and B0 are the 

instantaneous elastic shear and bulk compliances, respectively.  The terms ΔJ and ΔB are 

the transient shear and transient bulk compliances respectively.  A Prony Series 

representation that has a series of exponential functions is used to represent the transient 

part due to the advantage of this representation in solving the integral form in Eq. (3.4) 

recursively.  The material is assumed to have time independent Poisson’s ratio υ which 

allows the shear and bulk compliances to be expressed as: 

0 0 0 02(1 )                      3(1 2 )

2(1 )              2(1 )     
t t t

J D B D

J D Bψ ψ ψ t

Dψ

υ υ

υ υ

= + = −

Δ = + Δ Δ = + Δ
                                                     (3.5) 

where  uniaxial transient compliance is expressed in terms of Prony series as: 

1
(1 exp[ ])

t
N

t
n n

n
D Dψ λ ψ

=

Δ = − −∑                                                                                        (3.6) 
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Using Eqs. (3.5) and (3.6), the deviatoric and volumetric strains in Eq. (3.4) can be 

written as: 

0 0 1 1 ,
1 1

,
0

1 1 1
2 2 2

  exp ( )   [ ]

N N
t t t t t t
ij ij ij n n ij n

n n

t
ijt t

ij n n

e g J S g S J g J q

dS
where q d

d

τ
τ

t

λ ψ ψ τ
τ

= =

= + −

= − −

∑ ∑

∫
                                                                (3.7) 

0 0 1 1 ,
1 1

,
0

1 1 1
3 3 3

  exp ( )   [ ]

N N
t t t t t t t
kk kk kk n n kk n

n n
t

t t kk
kk n n

g B g B g B q

dwhere q d
d

τ
ψ

ε σ σ

σλ ψ ψ τ
τ

= =

= + −

= − −

∑ ∑

∫
                                                            (3.8) 

 A recursive integration method, derived by Taylor et al [25] for linear 

viscoelastic integral model and extended by Haj-Ali and Muliana [29] for nonlinear 

viscoelastic constitutive model, is used to solve the integral parts in Eqs. (3.7) and (3.8).  

Thus by using UMAT, time and temperature dependent constitutive model is used and 

the stress, strain and displacement fields are predicted.  

 The numerical approach of finite element method is an approximate method of 

getting the solution of the problem.  It is thus imperative to ensure that the finite element 

model predicts the response of the material within desired accuracy.  The parameters like 

time increment and element size affect the accuracy of the results obtained by finite 

element approach.  In order to ensure that the solution obtained by numerical 

approximation is within good accuracy, a parametric study is carried out to examine the 

effect of using different time increment on the overall material response.  This is 

important so as to determine the range of time increment that can be used such that the 

final solution is agreeable with the analytical solution within acceptable error.  The 
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initial radial strain values for the material points on the innermost boundary (r=R1) are 

obtained for different time-increment sizes and compared with analytical solution as 

shown in Fig. 3.2.  As seen from the Fig. 3.2 large time increment may lead to a 

divergent solution.  It is concluded that an initial time increment can be chosen in the 

range of 10-2 to 10-6 unit time in order to represent the instantaneous response of the 

material considered here. 

 Another study is also carried out to examine the effect of mesh refinement on the 

accuracy of the results obtained.  Owing to the symmetry of the problem, one quarter of 

the cylinder is modeled with innermost radius of 1 unit and outermost radius of 3 units 

with interface at r=2 units and cylinder length of 1 unit.  A 20-node brick element with 

reduced integration is used for analyses.  A total of 12 elements are used through 

thickness and 20 elements are used along the circumference as shown in the Fig. 3.3.a.  

The instantaneous material response in terms of radial strain ar r=R3 is compared with 

the analytical solution and is found to be again within 0.5% error.  A coarse mesh is 

generated by using 8 elements through the thickness and 4 elements along the 

circumference as shown in Fig. 3.3.b.  The instantaneous material response in terms of 

radial strain at r=R3 with initial time increment of 10-5 units is obtained and compared 

with the analytical solution and is found to be again within 0.5% error.  It is thus 

concluded that such a fine mesh is not required as the coarse mesh mentioned later is 

sufficient enough to predict the instantaneous response within desired accuracy of 0.5% 

error. 
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Fig. 3.2. Effect of initial time increment size on the instantaneous static response of the 
composite cylinder at r=1.0 

 
 
 
 
 
 

 
 

Fig. 3.3. Finite element mesh convergence study 
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 A study is also carried out to understand the effect of time increment on the 

accuracy of the results obtained for the problem of heat conduction.  As mentioned 

earlier, a temperature of 1.0 is imposed on the outermost radius of r=3.0 and as a result 

heat is conducted across the body in radially inward direction.  The body is said to have 

achieved the steady state when the entire body is at the temperature of 1.0.  The 

temperature profile of the body is obtained by carrying out a transient heat transfer 

analysis in Abaqus FE network till the steady state is achieved.  A study is carried out to 

understand the effect of time increment sizes on the accuracy of the steady state results 

obtained.  Fig. 3.4 shows the plot of temperature versus total time to attain steady state at 

r=1, from the FE analyses with different time increment of t=0.25, t=0.125, t=0.05 and 

t=0.025.  It is concluded that an initial time increment of t=0.05 or lower gives the 

sufficiently accurate results.  In this problem, the steady state is achieved at around t ≈

19. 
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Fig. 3.4. Effect of time increment on the steady state achieved during transient heat 
transfer at r=1.0 in the composite cylinder 

 
 
 
 

 From the parametric studies mentioned above it is ensured that the finite element 

mesh and the initial time increment are adequate enough to capture the response of the 

material within good accuracy.  Thus this finite element model is further employed to 

obtain the solution of heat conduction equation and subsequently to obtain the field 

variables of stress, strain and deformation of the viscoelastic composite cylinder.  

Transient heat transfer analysis is carried out until the body reaches steady state.  The 

temperature profile is obtained throughout the body by obtaining the temperature values 

at all the material points for all different times until steady state is achieved.  The 

evolution of temperature field is plotted in Fig. 3.5.  This FE model that incorporates the 

time and temperature effects in the constitutive relations through UMAT is further 

employed to obtain the solution for the stress, strain and displacement fields. 
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Fig. 3.5. Evolution of temperature across the body due to heat conduction 
 
 
 
 

3.3 COMPARISON OF ANALYTICAL AND FINITE ELEMENT SOLUTION 

FOR THE FIELD VARIABLES OF THE VISCOELASTIC COMPOSITE 

CYLINDER 

 The solutions obtained using the analytical and numerical approaches are 

compared in this section and it is shown that both the results are in good agreement.  

Two case studies are performed.  In the case 1, a composite cylinder made up of two 

layers of viscoelastic materials whose material properties are independent of temperature 

is considered with the material parameters as mentioned in the Table 3.1 and 3.2.  The 

inner most boundary of the cylinder at r=1.0 is subjected to a uniform pressure of 10.0 

and the outer most boundary of the cylinder at r=3.0 is subjected to a uniform pressure of 

30.0.  Using the Eqs. (3.4) and (3.5), the analytical solutions for the stress, displacement 
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and the strain fields are obtained for the layer 1 and layer 2.  The finite element model 

discussed in section 3.2 is also used to obtain the solution of the stress, strain and 

displacement fields for the composite cylinder.  The results obtained from the analytical 

and numerical approaches are compared and found to be having good agreement as the 

maximum error is within 3-5% which is acceptable for this study, as shown in the Fig. 

3.6 to 3.10. 

 In case 2, the effect of temperature on the overall response of the viscoelastic 

composite cylinder is studied by considering the temperature dependent elastic 

compliance (Do) and the transient creep compliance (Dn) and the shift factor (a(T)) as 

mentioned in the Eq. (3.6) and (3.7).  The results obtained from the analytical and finite 

element approaches are within the acceptable error of 3-5% as seen in the Fig. 3.11 to 

3.15.  
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Fig. 3.6. Radial displacement in the composite cylinder as a function of time 
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Fig. 3.7. Hoop strain in the composite cylinder as a function of time 
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Fig. 3.8.  Hoop stress in the composite cylinder as a function of time 
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Fig. 3.9. Radial strain in the composite cylinder as a function of time 
 
 
 

 

 
Fig. 3.10. Radial stress in the composite cylinder as a function of time 
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Fig. 3.11. Radial displacement for composite cylinder with temperature dependent 
properties as a function of time 
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Fig. 3.12. Hoop strain for composite cylinder with temperature dependent properties as a 
function of time 

 

 
 



51 
 

 
 
 

 
Fig. 3.13. Hoop stress for the composite cylinder with temperature dependent properties 

as a function of time 
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Fig. 3.14. Radial strain for the composite cylinder with temperature dependent properties 
as a function of time 
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Fig. 3.15. Radial stress for the composite cylinder with temperature dependent properties 
as a function of time 

 
 
 

 
 The radial displacement as seen in the Fig. 3.6, at the interface at r=2.0 is –11.28 

units at t=0 which increases to -21.49 at t=1000 in case 1 i.e. it approximately increases 

by 91% in the composite viscoelastic cylinder which shows the pronounced effect of 

viscoelasticity on the response. When the temperature dependent material properties are 

considered as in case 2 the displacement at the interface as shown in Fig. 3.11, at r=2.0 

at time=1000 becomes -28.34 which is approximately an increase of 151%.  This shows 

that the temperature dependence of the material properties significantly affects the 

displacement field developed in the material. 

 The value of hoop strain induced at the interface goes on increasing with 

increasing time.  The value increases by around 93% at t=1000 when compared with the 
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one at t=0 in case 1 as shown in Fig. 3.7.  Also as expected, higher hoop strain is induced 

when the temperature effect is incorporated in case 2.  The increment in the value at 

r=2.0 is as high as 165% at t=1000 as compared to the value at t=0 as seen in the Fig. 

3.12 in case 2.   

 The hoop stress induced in the cylinder has a discontinuity at the interface of 

r=2.0.  In the case of temperature independent properties in case 1, the magnitude of the 

jump at the interface goes on increasing with increasing time as seen in the Fig. 3.8.  It is 

interesting to notice from the Fig. 3.13, that the magnitude of the jump at the interface 

actually decreases with increasing time in case 2, i.e. it decreases from 4.0 at time t=0 to 

approximately 0.7 at time t=1000.  Thus if the maximum value of the jump that occurs 

during the initial time is lower than the critical value, then it is assured that with 

increasing time the chances of delamination of the two layers due to discontinuity of the 

hoop stress are very less in case 2 where material properties are temperature dependent.  

That is to say that the maximum value of jump that occurs during the initial time of 

transient heat transfer should be within the maximum permissible value to avoid 

delamination due to discontinuity in hoop stress. 

 The increase in the radial strain as shown in Fig. 3.14, at the interface at r=2.0 

can be as high as 135% at t=1000 when material properties are made temperature 

dependent in case 2 as against the case of temperature independent material properties in 

case 1 shown in Fig. 3.9.  Also as expected there is a discontinuity in the radial strain at 

the interface, magnitude of which goes on increasing with time in both case 1 and 2.  It 

is also observed that the radial strain at r=1.0 is positive in virtue of the pressure being 
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applied at that boundary.  With the temperature dependent properties as in case 2, the 

actual values of radial strains induced are higher than the case of temperature 

independent material properties in case 1, for example, the maximum strain induced is at 

r=3.0 at t=1000 is around 8.0 units as against 4.7 units in temperature independent case.  

But it is noticed that the actual magnitude of the jump in case 2 is less than the values in 

case 1.  The actual magnitude depends on the form of temperature dependence that is 

assumed, were we to choose more severe dependence than the linear form, different 

values of strains would have been induced.  This type of dependence is chosen so as to 

illustrate that the effect of temperature can be pronounced.   

 The stress field developed depends on the material properties and thus it changes 

with time.  The radial stress at the interface decreases from initial value of 27.88 at t=0 

to 26.7 at t=1000 in the case 1 as seen in Fig. 3.10.  As expected with temperature 

dependent properties in case 2, the amount of decrease is more i.e. it changes from 27.8 

to 25 units at t=1000 as shown in Fig. 3.15.  Also, there is the radial stress continuity at 

the interface which is in accordance to the traction continuity condition imposed at the 

interface while developing the analytical solution.   
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CHAPTER IV 

4. THE EFFECT OF MATERIAL PARAMETERS IN THE 

VISCOELASTIC CONSTITUTIVE MODELS ON THE OVERALL 

RESPONSE OF THE COMPOSITE CYLINDER 

 This chapter presents parametric studies carried out to understand the effect of 

different material parameters in the viscoelastic constitutive models on the overall 

response of the composite cylinder.  In the first three sections, the material properties of 

the layer 1 are kept constant as previously studied in chapter III and the material 

properties of the layer 2 are varied.  It is done to understand the effect of each individual 

material parameter namely instantaneous (elastic) part, Prony coefficients in the transient 

part of the creep compliance and the characteristic of creep time, on the stress, strain and 

displacement fields.  In the last section, the effect of the temperature dependent function 

i.e. linear and quadratic polynomial forms of temperature dependence of the material 

properties on the overall response of the composite cylinder is analyzed.  In all the 

studies that have been performed, the mechanical response in terms of stress, strain and 

displacement field is studied.  This is done as the composite cylinder under consideration 

is made up of two different materials and hence at the interface due to mismatch in 

material properties, there arises a discontinuity in the hoop stress and radial strain.  If 

this value of the jump exceeds the critical value then it may lead to delamination of the 

two layers which is generally not desired.  Also, in certain design applications, it is not 

desirable if the maximum deformation of the body exceeds certain values depending on 

the type of application.  Therefore, the radial displacement is also evaluated. 
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4.1 EFFECT OF VARYING PRONY COEFFIECIENTS IN THE CREEP 

COMPLIANCE ON THE OVERALL RESPONSE OF THE COMPOSITE 

CYLINDER 

 This study is aimed at assessing the effect of varying the material property by 

altering Prony coefficients in the transient creep compliance, on the overall response of 

viscoelastic composite cylinder in terms of stress, strain and displacement fields.  Three 

different cases are considered, each having different value of transient creep parameters 

of layer 2.  Case 1 has the material properties of layer 2 as mentioned in chapter III.  In 

the case 2, the Prony coefficients for layer 2 have the magnitude which is half of the 

value of the corresponding Prony coefficients in the case 1 and in the case 3 the 

magnitude of Prony coefficients is three times higher than the corresponding Prony 

terms in case 1.  The Table 4.1 gives the elastic and transient creep compliance 

parameters of the two layers in all three cases. 
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Table 4.1. Material parameters for three different cases by changing the prony 
coefficients 

 

Case 1 

Layer 1 Layer 2 

n λn Dn n λn Dn 
1 1 0.07 1 1 0.01 
2 0.01 0.09 2 0.01 0.05 
3 0.001 0.12 3 0.001 0.07 

D0=0.195 D0=0.25 

Case 2 

Layer 1 Layer 2 

n λn Dn n λn Dn 
1 1 0.07 1 1 0.005 
2 0.01 0.09 2 0.01 0.025 
3 0.001 0.12 3 0.001 0.035 

D0=0.195 D0=0.25 

Case 3 

Layer 1 Layer 2 

n λn Dn n λn Dn 
1 1 0.07 1 1 0.03 
2 0.01 0.09 2 0.01 0.15 
3 0.001 0.12 3 0.001 0.21 

D0=0.195 D0=0.25 
 

 

 In Table 4.1, n is the number of Prony terms, Dn is the nth Prony coefficient, λn is 

the reciprocal of the characteristic of the nth retardation time and D0 is the elastic part of 

creep compliance. 

 Fig. 4.1 shows the plot of creep compliance of layer 1 and layer 2 for all the three 

cases that are considered above, where D1 denotes the creep compliance of layer 1 and 
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D2 denotes the creep compliance of layer 2.  It is seen from the Fig. 4.1 that in case 2, 

layer 2 (external layer) shows nearly elastic response.   

 
 

 
(a)                                                                 (b)             

 
 

 
        (c) 

 
Fig. 4.1.  Creep compliance of the two layers with time for all three cases 

 
 

 The material properties of both layers as mentioned in Table 4.1 have identical 

temperature dependent function as discussed in chapter III.  This is done to isolate the 

time-dependent effect from the combined time and temperature variations.  The material 

properties are assumed to have linear dependence on temperature given by Eqs. (3.6) and 

(3.7).  Since the traction and displacement continuity is always enforced at the interface, 
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as mentioned in Eq. (2.17), the radial stress and hoop strain are continuous across the 

interface and not much effect is seen on those responses by varying the material 

properties.  Thus, in the following discussion the material response is described in terms 

of hoop stress, radial strain, and radial displacement. 

 Fig. 4.2 shows hoop stresses in the body at different times for the three cases.  As 

discussed in chapter III, a discontinuity in the hoop stress is observed at the interface at 

r=2.0.  As shown in the Fig. 4.2a, the hoop stresses developed at the initial times, i.e. at 

t=2 in the three cases is almost the same which is as expected, as during the initial times, 

the contribution of the transient part of creep compliance on the overall material property 

is not significant as seen from Fig. 4.1.  As the time advances, the jump at the interface 

at r=2.0 goes on increasing in case 3 whereas in the case 1 and case 2, the jump 

decreases upto certain time and then again increases.  The magnitude of this jump at the 

interface is maximum in case 3 as compared to case 1 and case 2 at all the times.  As 

seen from the Fig. 4.2.b, at time t=62, the jump at the interface is much less for case 1 

and almost negligible in case 2 as compared to case 3.  At time t=251, there is negligible 

jump of 0.04 units in case 1 as compared to 4.0 units in case 3. At t=1000 units, the 

magnitude of jump at the interface in case 3 is the maximum of 4.5 units as against 2.2 

units in case 2 and 0.66 in case 1 which is the least.  This  type of pattern can be 

expected as the difference in the material properties of two layers at all the times is the 

most in the case 3 and the least in the case 1.  It shows that change in the transient part of 

creep compliance can alter the magnitude of the jump at the interface significantly at 

longer times.  The decrease in the magnitude of the jump in hoop stress at the interface 
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at r=2.0 in case 1 and case 2 upto certain time as seen from the Fig. 4.2.b and 4.2.c, can 

be used to avoid debonding due to high stress discontinuities.  Also understanding the 

stress discontinuity with respect to time in all three cases with different material 

parameters can be useful in design aspects to ensure sufficient interface bonding upto 

desired time for the type of materials selected. 

 

 

 

 
 

Fig. 4.2. Hoop stress for the composite cylinder at different times for different Prony 
coefficients in layer 2 

 
 
 

 
 The radial strain developed across the body at different times in all the cases is 

shown in Fig. 4.3.  During the initial times i.e. at t=2, the radial strains developed are 
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almost the same in all three cases as seen in Fig. 4.3.a.  As the time progresses, the 

magnitude of the jump in the radial strain at the interface at r=2.0 goes on increasing in 

all three cases.  The magnitude of the jump at r=2.0 in case 2 is 1.87 units which is the 

maximum compared to the 1.28 units in case 1 and 1.2 units in case 3 at t=1000 units.  In 

other words, the jump in case 2 is 46% higher compared to case 1 and 56% higher 

compared to case 3 as seen in the Fig. 4.3.d.  The actual magnitude of the radial strain in 

the case 3 is higher as compared to case 1 and case 2 at all the times.  At time t=1000,  

 

 

   

 
 

Fig. 4.3. Radial strain for the composite cylinder at different times for different prony 
coefficients in layer 2 
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magnitude of radial strain at r=3.0 in case 3 is approximately 14% higher compared to 

case 1 and 22% higher than case 2.  It shows that the effect of different Prony 

coefficients in the transient creep compliance on the overall radial strain can be 

pronounced at longer times. 

 Fig. 4.4 shows the radial displacement of the body for different times in all three 

cases.  At the initial time, i.e. at t=2, no significant difference is observed in the radial 

displacement in the case 1 and case 2, but slightly higher displacement is observed in the 

case 3 as seen in Fig. 4.4.a.  At t=2, the value of radial displacement at r=3.0 in case 3  

 

 

 
 

 
 

Fig. 4.4. Radial displacement for the composite cylinder at different times for different 
prony coefficients in layer 2 
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is 2.5%  higher as compared to the one in  case 1 and case 2.  The maximum of radial 

displacement is observed for the case 3 at all times.  The increase in the radial 

displacement in case 3 is as high as 11% when compared to case 1 and approximately 15% 

when compared to case 2 at time t=1000 at r=3.0.  This shows that the effect of changing 

the Prony coefficients in transient creep compliance of the material of layer 2 can be 

significant on the radial displacement at longer times. 

4.2 EFFECT OF DIFFERENT CHARACTERISTIC OF CREEP TIME IN THE 

CREEP COMPLIANCE ON THE OVERALL RESPONSE  

 This study is carried out to understand the effect of the characteristic of creep 

time (λn) in the creep compliance on the overall material response.  Similar to the study 

done in section 4.1, material parameters of layer 1 are kept constant while the material 

parameters of layer 2 are varied by changing the characteristic creep time.  Three 

different cases are considered.  Case 1 has the material properties of layer 2 as 

mentioned in chapter III.  In the case 2, the values of λn are four times the corresponding 

values in case 1, and in case 3 the value of λn is one fourth of that of the corresponding 

values in case1.  Table 4.2 shows the elastic and transient creep parameters of the 

materials in both the layers for three cases where n is the number of Prony terms, Dn is 

the nth Prony coefficient, λn is the reciprocal of the characteristic of the nth retardation 

time and D0 is the elastic compliance.  The material properties of both layers are 

temperature dependent, as discussed in chapter III.   
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Table 4.2. Elastic and transient material properties of two layers for all the cases 
 

Case 1 

Layer 1 Layer 2 

n λn Dn n λn Dn 

1 1 0.07 1 1 0.01 

2 0.01 0.09 2 0.01 0.05 

3 0.001 0.12 3 0.001 0.07 

D0=0.195 D0=0.25 

Case 2 

Layer 1 Layer 2 

n λn Dn n λn Dn 

1 1 0.07 1 4 0.01 

2 0.01 0.09 2 0.04 0.05 

3 0.001 0.12 3 0.004 0.07 

D0=0.195 D0=0.25 

Case 3 

Layer 1 Layer 2 

n λn Dn n λn Dn 

1 1 0.07 1 0.25 0.01 

2 0.01 0.09 2 0.025 0.05 

3 0.001 0.12 3 0.0025 0.07 

D0=0.195 D0=0.25 
 
 
 
 

 The Fig. 4.5 shows the plot of creep compliance of layer 1 and layer 2 for all the 

three cases.  D1 denotes the creep compliance of layer 1 and D2 denotes the creep 

compliance of layer 2. 
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(a)                                                              (b) 

 

 
 

       (c) 

Fig. 4.5. Creep compliance of both the layers for all three cases 

 

 

 Fig. 4.6 shows the hoop stress induced in the composite cylinder at different 

times in the three cases.  At the initial times, i.e. at t=2 the jump in the hoop stress in all 

three cases is almost the same as seen from Fig. 4.6.a.  At time t=62, the jump at the 

interface at r=2.0 in the case 3 is almost negligible.  As the time increases the jump at the 

interface at r=2.0 in case 3 goes on increasing.  At t=1000, the jump in hoop stress in 

case 3 is found to be maximum.  The jump at the interface in the case 2 is almost 71% 
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less and in case 1 is 56% less as compared to case 3.  The value of the jump in all three 

cases at all the times upto 1000 is still less as compared to the values of jump obtained 

by changing the Prony coefficient as seen from the figure 4.2.  Thus the effect of change 

in the characteristic of creep time as seen from this study is not so significant as 

compared to the effect of change in Prony coefficient on the hoop stress as discussed in 

section 4.1. 

 

 
 
 

 
 

 
 
Fig. 4.6. Hoop stress for the composite cylinder at different times for different creep time 

in layer 2 
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 The radial strain developed in all three cases at different times is shown in Fig. 

4.7.  At initial times at around t=2, the values of radial strain are almost the same for the 

three cases as shown in Fig. 4.7.a.  With increase in time, the jump in the radial strain at 

the interface at r=2.0 increases in all three cases.  At t=62, the magnitude of the jump at 

the interface in the case 2 is almost 73% less as compared to the one in case 3 and in 

case 1 is 33% less as compared to the one in case 3.  The magnitude of the jump in the 

case 3 at time t=1000 is 33% higher than the case 2 and almost 34% higher as compared 

to case 1 as seen in Fig. 4.7.d. 

 

 

 

 
 

Fig. 4.7. Radial strain for the composite cylinder at different times for different creep 
time 
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 The effect of varying the characteristic of creep time on the radial displacement 

at different times is as shown in the Fig. 4.8.  At initial time t=2, the radial displacement 

at r=3.0 in case 2 and case 3 is almost the same which is 5% higher as compared to case 

1.  At time t=62, the maximum radial displacement is seen in case 2 as compared to case 

1 and case 3.  At longer time of t=1000, the value of radial displacement at r=3.0 is 

almost the same in case 2 and case 1 which is 3% higher as compared to case 3.  The 

effect of varying the characteristics creep time on the radial displacement is this study is 

not so significant as compared to the effect of varying Prony coefficients as seen in 

section 4.1. 

 
 

 
 

 
 

Fig. 4.8. Radial displacement for the composite cylinder at different times for different 
creep time 
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4.3 EFFECT OF DIFFERENT ELASTIC CONSTANTS ON THE OVERALL 

RESPONSE OF THE COMPOSITE CYLINDER 

 The effect of the elastic material constants on the overall response of the 

composite cylinder is studied.  To this end, the elastic part of compliance of the layer 2 is 

varied and the material parameters of the layer 1 are kept constant.  Four different cases 

are considered.  The Table 4.3 shows the transient compliances of the layer 1 and layer 2, 

which remain the same for all four cases, where n is the number of Prony terms, Dn is 

the nth Prony coefficient and λn is the reciprocal of the characteristic of the nth retardation 

time.  Table 4.4 shows the instantaneous elastic modulus of the layer 1 and layer 2 in all 

four cases: 

 

 
Table 4.3. Transient creep properties for the material of layer 1 and layer 2 in all four 

cases 
 

Layer 1 Layer 2 

n λn Dn n λn Dn 

1 1 0.07 1 1 0.01 

2 0.01 0.09 2 0.01 0.05 

3 0.001 0.12 3 0.001 0.07 
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Table 4.4. Elastic properties of the material of layer 1 and layer 2 
 

 
Layer 1 Layer 2 

Case 1 
E0=5.128 E0=4.0 

Case 2 
E0=5.128 E0=2.0 

Case 3 
E0=5.128 E0=3.5 

Case 4 
E0=5.128 E0=6.5 

 
 
 
 
 Case 1 has the material properties as discussed in chapter III.  The case 3 is 

considered to analyze the effect of minor change in elastic properties of the two layers as 

compared to case 1 on the overall response.  Case 2 and case 4 are considered to analyze 

the effect of significant variations in the elastic properties as compared to case 1 on the 

overall response.  Fig. 4.9 shows the comparisons of creep compliance of layer 1 

denoted by D1 and creep compliance of layer 2 denoted by D2 for all the four cases with 

time. 
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Fig. 4.9. Creep compliance of layer 1 and layer 2 for all the four cases with time 
 
 
 

 The material properties of layer 1 and layer 2 in all four cases as stated in the 

Table 4.3 and 4.4 are made temperature dependent in a similar manner as discussed in 

chapter III.  The material properties are assumed to have linear dependence on 

temperature given by Eq.s (3.6) and (3.7).  

 Fig. 4.10 shows the hoop stress in the body at different times for all the four 

cases.  At time t=0 the maximum value of the jump at the interface of r=2.0 is observed 

in case 2 as shown in Fig. 4.10.a, i.e. the jump at the interface in case 2 is approximately 

350% higher compared to case 1, 154% compared to case 3 and 48% compared to case 4.  

This is as expected as in case 2 the amount of mismatch in the elastic moduli of the two 
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layers is the most compared to all other cases.  It is to be noted that the jump in the hoop 

stresses at r=2.0 in the case 1, case 2 and case 3 decreases with the increasing time 

whereas in case 4, the amount of jump is increases as time progresses. At time t=1000, 

the jump at the interface in the case 1 is less by 95% as compared to case 2, the jump in 

case 3 is less by 82% when compared to case 2 and the jump in case 4 is less by 9% as 

compared to case 2.  It is concluded that the effect of change in the instantaneous part of 

the compliance on the hoop stress is pronounced at the initial times as well as at longer 

times. 

 

  

 
 

 
 

Fig. 4.10. Hoop stress for the composite cylinder at different times for different elastic 
part of compliance 
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 Fig. 4.11 shows the radial strain developed in the body at different times for all 

four cases.  The jump in the radial strain at the interface of r=2.0 is higher in case 2 as 

compared to case 1, case 3 and case 4.  This is expected as in case 2 the amount of 

mismatch in the elastic moduli of the two layers is the most compared to all other cases.  

It is noted that the jump in the radial strain at the interface increases as time advances in 

case 1, case 2 and case 4, whereas in case 3 as time increases, the magnitude of the jump 

decreases.  At t=1000, there is almost negligible jump at the interface for case 3 as seen 

in Fig. 4.11.d.  At t=1000, the maximum jump occurs in case 2, whereas the jump in case 

1 is less by 87% as compared to case 2 and jump in case 4 is less by 54% as compared to 

case 2. 

 
 

 

Fig. 4.11. Radial strain for the composite cylinder at different times for different elastic 
part of compliance 
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 Fig. 4.12.a shows the radial displacement at time t=0 of the composite cylinder.  

The radial displacement at r=3.0 at time t=0 is maximum in case 2, which is 48% higher 

as compared to case 1, almost 38% higher as compared to case 3 and approximately 94% 

increase compared to case 4.  As the time progresses, the value of radial displacement 

goes on increasing for all the four cases as seen from the Fig. 4.12.  It can be seen from 

the Fig. 4.12.d, that at time t=1000 the radial displacement in case 2 is 43% higher as 

compared to case 1, 34% higher as compared to case 3 and about 80% higher when 

compared to case 4.  It is observed that the effect of change in the elastic part of 

compliance has significant effect on the radial displacement field of the body.  

 

 

 

 
 
Fig. 4.12. Radial displacement for the composite cylinder at different times for different 

elastic part of compliance 
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 As seen from the Fig. 4.10, the jump at the interface at r=2.0 in hoop stress is 

minimum in case 1 compared to other cases at all the times.  It should however be noted 

that the jump in the radial strain at the interface at r=2.0 is minimum in case 1 at initial 

times upto t=62, but is higher at the longer times when compared to case 3.  However the 

increase in the jump at the interface of r=2.0 in case 1 at higher times is not much 

compared to the case 2 and case 4.  Also, the radial displacement is minimum in case 4 

at all the times but the jump at the interface at r=2.0 in radial strain and hoop stress is 

maximum.  Thus it can be concluded that the material properties of the two layers as 

considered in case 1 is best suited to avoid debonding caused due to higher stress 

discontinuity. 

4.4 EFFECT OF TEMPERATURE DEPENDENT FUNCTIONS ON THE 

OVERALL RESPONSE OF THE COMPOSITE CYLINDER 

 The studies that are carried out till now investigates the effect of varying the 

elastic and time-dependent material parameters on the overall response.  It was 

considered that both layers of the composite cylinder have same form of temperature 

dependence that was assumed to be linear.  The present study aims at understanding the 

effect of different forms of the temperature dependence in the two layers the materials 

on the overall material response.  The time dependent compliances for the two layers are 

given in chapter III.  Two different studies are carried out as described below. 
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4.4.1 LINEAR FORM OF TEMPERATURE DEPENDENT MATERIAL 

PROPERTIES 

 The material properties of the two layers of the composite cylinder are 

considered to have linear dependence on temperature.  Two different cases are 

considered.  In case 1, the material properties of layer 1 and layer 2 are assumed to have 

different temperature dependent linear functions.  Case 2 has the identical temperature 

dependent linear functions for the layer 1 and layer 2 as discussed in chapter III.  The 

aim is to analyze the effect of different temperature dependent functions for two layers 

on the overall response of the composite cylinder. In the case 1, the temperature 

dependent functions for layer 1 and layer 2 are: 

1 1( ) (1 )o oD T D T= +    

( )1 1 ( ( ))( , ) (0.5 ) 1n n
n tD T t D T e λ ξ−= −

 

2 2( ) (1 1.5 )o oD T D T= +    

( )2 2 ( ( ))( , ) (0.75 ) 1n n
n tD T t D T e λ ξ−= −

                                                                              (4.1) 
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 ; where To is the reference temperature considered to be 0 in this 

study since non dimensional quantities are considered in this study.   and denote 

the elastic part of compliances of the layer 1 and layer 2, respectively.   and  

denote the nth coefficient of the transient part of creep compliances of layer 1and layer 2, 
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respectively.  In case 2, the material properties of the two layers are assumed to have the 

same linear temperature dependent function as given in the Eq.s (3.6) and (3.7) which 

are mentioned below: 

( ) ( )( ) (1 )i i
o oD T D T= +     

(( ) ( ) ( ( ))( , ) (0.5 ) 1n n
ni i tD T t D T e λ ξ−= − )   i=1,2 corresponds to layers 1 and 2                                

where  
0

( )
( ( ), )

t

o

dst
a T s T

ξ = ∫  is the reduced time with 1( , )
1 ( )o

o

a T T
T T

=
+ −

                (4.2) 

 where To is the reference temperature considered to be 0 in this study since non 

dimensional quantities are considered in this  study.  Table 4.5 shows the elastic and 

transient material parameters of the creep compliance of layer 1 and layer 2.  These 

material properties are the same for the case 1 and case 2: 

 

 

Table 4.5. Elastic properties and transient properties of the creep compliance for the 
material of layer 1 and layer 2 which are same for case 1 and case 2 

 
Layer 1 Layer 2 

n λn Dn n λn Dn 

1 1 0.07 1 1 0.01 

2 0.01 0.09 2 0.01 0.05 

3 0.001 0.12 3 0.001 0.07 

D0=0.195 D0=0.25 
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 Fig. 4.13 shows the hoop stress in the composite cylinder at different times for 

both cases.  As seen in the Fig. 4.13.a, at t=2.0, the magnitude of the jump in the hoop 

stress at the interface at r=2.0 in case 1 is higher by almost 200% as compared to case 2.  

As the time increases, the magnitude of jump decreases in both cases.  As seen in Fig. 

4.13.c, the amount of jump at the interface in case 2 is almost negligible as compared to 

the jump of 6.12 units in case 1.  At time t=1000, the jump in case 1 is 5.7 units as 

compared to 0.19 units in case 2.  It is worth noting that the jump at the interface 

increases significantly when layer 1 and layer 2 have different linear temperature 

dependent functions.  

 
 
 

 
 

 
 

Fig. 4.13. Hoop stress for the composite cylinder at different times for different 
temperature dependence of two layers 
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 Fig. 4.14 shows radial strain in the composite cylinder for both the cases at 

different times.  As seen from the Fig. 4.14.a, at t=2, the magnitude of the jump at the 

interface at r=2.0, is almost negligible in case 2 whereas in case 1 it is as high as 2.3 

units.  With increase in the time, the jump in the radial strain at the interface increases 

for the case 2, while for the case 1 it increases upto t=21, and then decreases with the 

increasing time.  At time t=1000, the magnitude of the jump in case 1 is higher by 

approximately 88% as compared to case 2.  Thus a significant effect is observed on the 

radial strains when the two layers have different linear temperature dependent functions. 

 

 

 
 

 
 

Fig. 4.14. Hoop strain for the composite cylinder at different times for different 
temperature dependence of two layers 
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 As seen in the Fig. 4.15.a, the radial displacement in the case 1 at r=3.0 is 18% 

higher as compared to the one in case 2.  The magnitude of the radial displacement 

increases as the time progresses in both cases.  At t=21, insignificant difference is 

observed in the values of radial displacement in the two cases as seen in the Fig. 4.15.b.  

With the increase in time, the magnitude of the radial displacement is higher in case 1 as 

compared to case 2 as seen in the Figs 4.15c and 4.15.d.  At time t=1000, the radial 

displacement at r=3.0 in case 1 is 13% higher as compared to case 2.  Thus overall 

response of the composite cylinder is strongly dependent on temperature functions.  

 
 
 
 

 
 

 
 
Fig. 4.15. Radial displacement for the composite cylinder at different times for different 

temperature dependence of two layers 
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4.4.2 QUADRATIC POLYNOMIAL FORM OF TEMPERATURE 

DEPENDENCE OF MATERIAL PROPERTIES 

 In the previous study, material properties were assumed to have linear 

dependence of temperature.  In this final study, the material properties (elastic part of 

creep compliance) of both layers are assumed to have quadratic polynomial form of 

temperature dependence.  This is mainly done to illustrate the effect of stronger 

temperature dependence on the material properties and the subsequent effect on the 

overall response of the composite cylinder.  Two different cases are considered.  In case 

1, the material properties of layer 1 and layer 2 are considered to have same quadratic 

polynomial form of temperature dependence given by: 

  
( ) ( ) 2( ) (1 )i i
o oD T D T T= + +

(( ) ( ) ( ( ))( , ) (0.5 ) 1n n
ni i tD T t D T e λ ξ−= − ) , i=1,2 corresponds to layers 1 and 2                                
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0
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( ( ), )

t

o
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a T s T

ξ = ∫  is the reduced time with  

1( , )
1 ( )o

o

a T T
T T

=
+ −

                                                                                                     (4.3) 

 where To is the reference temperature considered to be 0 in this study since non 

dimensional quantities are considered in this  study.   and  denotes the elastic 

part and transient part of creep compliance of ith layer respectively. 

( )i
oD ( )

n
iD

 In case 2, the material properties of both layers are assumed to have linear form 

of temperature variation given by the Eq. (4.2).  These two cases, one with quadratic 

polynomial form of temperature dependent material properties and the other with linear 
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dependence on temperature of material properties, are considered so that the effect of the 

form of temperature dependence can be studied.  The elastic properties and the transient 

creep parameters of both the layers are taken as mentioned in the Table 4.5.   

 Fig. 4.16 shows the hoop stress in the body for both cases at different times.  As 

seen from Fig. 4.16.a, at t=2, the jump at the interface at r=2.0 in case 1 is 9% higher 

than case 2.  With the increasing time, the magnitude of jump at the interface at r=2.0 

decreases for the case 1 whereas in case 2, it decreases upto certain time and then again 

back increases at longer time.  As seen from the Fig. 4.16.c, at t=390, there is almost 

 
 
 

 

 
 

Fig. 4.16. Hoop stress for the composite cylinder at different times for different 
temperature dependence (quadratic) of two layers 
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negligible jump at the interface in case 2, whereas the jump in case 1 is around 1.16 units.  

As seen from the Fig. 4.16.d, at t=1000 the jump at r=2.0 in the case 1 is approximately 

12.5% higher than in case 2.  It is worth noting that the effect of quadratic form of 

temperature dependence on the material properties as compared to linear form of 

temperature dependence is significant on hoop stress at all the times. 

 As seen from Fig. 4.17.a, the magnitude of the radial strain in the case 1 is higher 

compared to case 2 at initial times at t=2.0.  The magnitude of the radial strain at r=3.0 at 

t=2.0 in case 1 is approximately 53% more than case 2.  Also the jump at the interface at 

r=2.0 in case 1 is almost 150% more than the jump in case 2.  This shows that the effect 

of strong temperature dependence on the material properties is significant on the radial 

strains at initial times.  As the time increases, it is seen that the jump at the interface at 

r=2.0 in case 2 goes on increasing while in case 1, the jump decreases upto certain time 

and then again increases.  At t=1000, the magnitude of the jump at the interface at r=2.0 

in case 2 is almost 10.5% higher as compared to case1, but the actual magnitude of the 

radial strain are much higher in case 1 as compared to case 2.  At t=1000, the actual 

magnitude of radial strain at r=3.0 in case 1 is higher by approximately 46% when 

compared to case 2.  It can be concluded that when the material properties of the two 

layers are strongly dependent on temperature, higher radial strain values are obtained at 

all the times. 
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Fig. 4.17. Hoop strain for the composite cylinder at different times for different 
temperature dependence (quadratic) of two layers 

 
 

 
 

 As shown in the Fig. 4.18.a, the radial displacement at initial times at t=2.0 is 

much higher in case 1 as compared to case 2.  The radial displacement at r=3.0 in case 1 

at t=2.0 is approximately 40% higher than case 2.  As seen from the Fig. 4.18.b, 

insignificant difference is seen in the values of radial displacement at time t=21.  As the 

time progresses further, the radial displacement in the case 1 is much higher compared to 

case 2 as seen from the Fig. 4.18.c and 4.18.d.  At time t=1000, the radial displacement 

at r=3.0 in case 1 is 41% higher as compared to case 2.  Thus the effect of strongly 

temperature dependent material properties on the radial displacement is quite significant 

at longer times.   
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Fig. 4.18. Radial displacement for the composite cylinder at different times for different 
temperature dependence (quadratic) of two layers 

 
 

 
 

 As seen from Fig. 4.16, the jump at the interface at r=2.0 in hoop stress is 

minimum in case 2 as compared to case 1 at all the times upto t=1000.  Also, the jump at 

the interface at r=2.0 in radial strain is almost negligible in case 2 during initial times 

upto t=21.  At longer times, the jump in the radial strain at r=2.0 in case 2 is almost same 

as compared to case 1.  In case 2 the radial displacement is much lower compared to the 

one in case 1 as seen from the Fig. 4.18.  It can thus be concluded that the materials 

having linear temperature dependent functions or in other words, materials that are not 

so strongly dependent on temperature, as assumed in case 2 are best suited from design 

point of view where the jump in the radial strain and hoop stress is not desired.  These 
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results that  highlight the characteristics of the jump in the hoop stress and radial strain at 

the interface at r=2.0 can be used as guidelines while doing material selection from 

design point of view so as to minimize the jump and ensure sufficient bonding at the 

interface at all the times. 

4.5 OBSERVATIONS 

 The parametric studies done in the above sections by varying the material 

properties (elastic and transient) in first three sections and varying the temperature 

dependent functions in the last section shows the effect of these properties on the overall 

response of the composite cylinder.  It is observed that on assuming identical 

temperature dependent functions, the effect of varying the characteristics of creep time 

of transient compliance as seen from the Fig. 4.6-4.8, on the overall response is 

insignificant compared to the effect of varying other material properties (elastic part and 

Prony coefficients).  As seen above, there arises a discontinuity in the hoop stress and 

radial strain at the interface of two layers due to mismatch in material properties of two 

layers.  If this value of the jump exceeds a certain value, then it may lead to delamination 

of the two layers which is generally not desired in many design applications.  Also, some 

applications require the maximum deformation of the body to be within certain limit.  

Hence the mechanical response in terms of hoop stress, radial strain and radial 

displacement is studied in all the studies so that these characteristics can be used while 

design.  

 The effect of different Prony coefficients of the layer 2 on the overall response of 

the composite cylinder, as seen from the Fig. 4.2-4.4 is not that significant during the 
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initial times but is seen to be significant at the longer times.  In all three cases considered 

in section 4.1, during initial times, the difference in the overall value of creep 

compliance of two layers is almost the same but as time progresses, the difference in the 

values of creep compliance increases.  This is reflected in the overall response, which is 

almost the same in all three cases during initial times but as time progresses, significant 

effect is observed in the overall response in all three cases. 

 The effect of different elastic part of compliance is significant on the overall 

response.  As discussed in section 4.3, when the ratio of elastic part of compliance of 

layer 1 to that of layer 2 is changed from 1.282 in case 1 to 2.564 in case 2 and to 0.788 

in case 4, the overall responses are significantly altered at initial as well as longer times 

where as when the ratio is slightly changed to 1.46 in case 3, the effect on the overall 

response is observed to be not so pronounced.  This is as expected as higher mismatch in 

the elastic part causes a higher difference in the material compliance values at initial as 

well as longer times as seen from the Fig. 4.9, which causes higher jump discontinuities 

in hoop stress as well as radial strain.  Also, it is to be noted that when the layer 1 is 

stiffer as compared to layer 2 as in case 2 where the ratio of elastic part of compliance of 

layer 1 to that of layer 2 is 2.564, the jump in the hoop stress decreases with increase in 

time.  Whereas when the layer 2 is stiffer compared to layer 1 like in case 4, where the 

ratio of elastic part of compliance of layer 1 to layer 2 is 0.788, the jump in the hoop 

stress goes on increasing with time.  It is also observed that higher mismatch in elastic 

part of compliance causes a pronounced increase in the value of overall radial 
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displacement (deformations) developed in the composite body as seen from the Fig. 4.12 

as compared to Fig. 4.4 or Fig. 4.8 which shows the effect of change in transient part.   

 In the last parametric study, the material properties of the two layers are kept 

constant while the effect of temperature dependent functions is investigated.  It is 

observed that when the material properties are made strongly dependent on temperature, 

the overall responses are altered significantly as seen from the Fig. 4.16-4.18.  As seen 

from the Fig. 4.18, the overall deformations at longer times t=1000 increases 

significantly when the strongly temperature dependent functions are considered.   

 The above mentioned results that highlight the effect of varying material 

properties and temperature dependent functions on the overall response of the composite 

cylinder can be used for material selection criteria.  It should be noted that to avoid the 

debonding at the interface due to high discontinuity in the hoop stress and radial strain, 

the materials selected for the two layers should not have a high mismatch in the elastic 

part of compliance.  Also one should bear in mind that if the materials of the two layers 

have strongly dependent temperature functions then the chances of high discontinuities 

in the stress will be high that may lead to debonding at the interface at higher times.  

Also if the mismatch in the transient part of the creep compliance of the two layers is 

high, it may increase the jump at the interface in the hoop stress and radial strain at the 

longer times.  Thus to avoid the debonding at the interface due to jump discontinuities 

materials that donot have higher mismatch in the overall creep compliance values at all 

the times should be preferred. 
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CHAPTER V 

5. CONCLUSIONS AND FURTHER RESEARCH 

5.1 CONCLUSIONS 

 This study analyzes response of the composite cylinder consisting of two layers 

of linear isotropic viscoelastic materials belonging to a class of non-TSM, subjected to 

thermo-mechanical loading.  Sequentially coupled analysis of heat conduction and 

deformation of viscoelastic composite cylinder is carried out.  The temperature effects 

are incorporated by considering the material properties of the two layers at a particular 

location at a given instant of time to depend on the instantaneous value of temperature at 

that location.  The analytical solution for determining the stress, strain and displacement 

fields developed in the composite cylinder when subjected to mechanical loads is 

obtained from the corresponding solution of linear elasticity problem by using the 

Correspondence Principle.  The analytical solution for determining the temperature 

dependent stress, strain and displacement fields is developed by incorporating the 

temperature dependence on the material properties and modeling the material as non-

TSM.  To analyze more complex geometries with general loading and boundary 

conditions, FE analysis of the composite cylinder is performed.  Convergence study is 

carried out to ensure that the results obtained from the FE model are adequately accurate 

and the results of analytical and FE method are in good agreement.  The effect of 

temperature dependent material properties as compared to the temperature independent 

material properties is found to be significant on the overall response of the composite 

cylinder in terms of stress, strain and displacement fields.  Various parametric studies 
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have been carried out to understand the effect of varying material parameters and the 

temperature dependent functions on the overall response.  Studies have been carried out 

to understand the effect of change in material parameters namely the Prony coefficients 

in the transient creep compliance, characteristic of creep time of transient creep 

compliance and the instantaneous (elastic) compliance on the overall response of the 

composite cylinder.  It is observed that the change in elastic compliance and the Prony 

coefficients has a pronounced effect on the overall response of the composite cylinder 

whereas the effect of change in the characteristic of the creep time is less significant.  In 

the last section the effect of different temperature dependent functions of the material 

properties, namely linear temperature variation and quadratic polynomial variation is 

analyzed on the overall material response.  It is observed that the stronger dependence on 

temperature (quadratic polynomial) of the material properties has a significant effect on 

the overall stress, strain and displacement fields developed.  The results from the 

parametric studies provide useful guidelines for material selection in the design aspects 

where the discontinuity (jump) at the interface in hoop stress and radial strain is not 

desired.  It is worth noting that the materials having considerable mismatch in the elastic 

properties of the two layers can cause a significant increase in the jump at the interface 

in radial strain and hoop stress.  Also, the materials that have a strong dependence on the 

temperature (quadratic variation) can cause higher values of jump at the interface in 

hoop stresses and higher radial displacement.  The results describing the effect of 

material parameters and the temperature dependence can thus help in deciding the design 
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criterion to minimize the jump at the interface so as to ensure sufficient bonding at the 

interface at all the times. 

5.2 FURTHER RESEARCH 

 The present study analyses the response of composite cylinder made up of linear 

viscoelastic material whose properties are made temperature dependent.  This study can 

be extended to analyze the response of the composite cylinder made up of non-linear 

viscoelastic solid materials subjected to thermo-mechanical loadings.  The stress and 

temperature dependent material properties should be then incorporated in the 

constitutive relation to obtain the stress and strain fields.  This type of study can also be 

extended to analyze the response of composite cylinder made up of non-linear elastic 

materials subjected to temperature or moisture loadings.  The study can as well be 

extended to analyze the response of the composite cylinder made up of anisotropic 

materials.  Also, in the present study a coupled problem of heat conduction and 

deformation is considered where the deformation of the composite depends on the 

temperature but the temperature profile is obtained without knowledge of stress or strain.  

A fully coupled problem can be analyzed where the evolution of temperature in the body 

with time depends on the stress or strain fields and also the deformation of the body 

depends on the temperature.  The viscoelastic materials dissipate energy.  This dissipated 

energy is in form of heat which can cause an increase in temperature if the amount of 

dissipation is considerable.  The change in material properties due to this increase in 

temperature should be accounted for to evaluate the overall response in a fully coupled 

problem.    
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