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ABSTRACT 
 

A Perspective on the Numerical and Experimental Characteristics of Multi-Mode  

Dry-Friction Whip and Whirl. (August 2008) 

Jason Christopher Wilkes, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Dara W. Childs 

 

 The present work investigates the nature of dry-friction whip and whirl through 

experimental and numerical methods.  Efforts of the author, Dyck, Pavalek, and 

coworkers enabled the design and construction of a test rig that demonstrated and 

recorded accurately the character of multi-mode dry-friction whip and whirl.  These tests 

examined steady state whip and whirl characteristics for a variety of rub materials and 

clearances.  Results provided by the test rig are unparalleled in quality and nature to those 

seen in literature and possess several unique characteristics that are presented and 

discussed. 

 A simulation model is constructed using the Texas A&M University (TAMU) 

Turbomachinery Laboratory rotordynamic software suite XLTRC2 comprised of tapered 

Timoshenko beam finite elements to form multiple degree of freedom rotor and stator 

models.  These models are reduced by component mode synthesis to discard high-

frequency modes while retaining physical coordinates at locations for nonlinear 

interactions.  The interaction at the rub surface is modeled using a nonlinear Hunt and 

Crossley contact model with coulomb friction.  Dry-friction simulations are performed 

for specific test cases and compared against experimental data to determine the validity 

of the model.  These comparisons are favorable, capturing accurately the nature of dry-

friction whirl. 

 Experimental and numerical analysis reveals the existence of multiple whirl and 

whip regions spanning the entire range of frequencies excited during whirl, despite 

claims of previous investigations that these regions are predicted by Black's whirl 

solution, but are not excited in simulations or experiments.  In addition, spectral analysis 

illustrates the presence of harmonic sidebands that accompany the fundamental whirl 

solution.  These sidebands are more evident in whip, and can excite higher-frequency 
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whirl solutions.  Experimental evidence also shows a strong nonlinearity present in the 

whirl frequency ratio, which is greater than that predicted by the measured radius-to-

clearance ratio at the rub location.  Results include whirl frequencies 250% of that 

predicted by the measured radius-to-clearance ratio. 
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CHAPTER I 

INTRODUCTION 
 

 In the pursuit of efficient operation, manufacturers have tightened clearances in 

turbomachinery to the extent that rubbing between a rotor and stator is not uncommon.  

Whether rubbing across an axial or circumferential clearance, a plethora of rub related 

vibration phenomena exist that can threaten machine integrity.  In most cases, rubbing 

results in the gradual wear and degradation of mating surfaces and requires premature 

repair or replacement of damaged components.  This type of rub is classified as light rub, 

and is often tolerable.  In other instances, rubbing can produce dangerous and possibly 

catastrophic vibration amplitudes.  Heavy rub, as it is termed, can be detrimental to the 

machine and its surrounding environment.  Rub is further categorized into partial or full 

annular rub, depending on the portion of the whirl orbit in which the rotor remains in 

contact with the stator. Partial rub occurs between the rotor and stator along a portion of 

the total whirl arc and is characterized by intermittent contact between the two bodies, 

whereas full annular rub is characterized by near continuous contact throughout the entire 

whirl orbit.  One of the most destructive rubbing phenomena occurs when a rotor, upon 

contact with stator across a radial clearance, is forced by traction into a backward 

precessional orbit.  This motion will be classified into the following two regimes for the 

remainder of this work: 

• Dry-friction whirl in which the rotor is rolling-without-slipping on the surface of 

the stator with a backward precession frequency governed by the radius-to-

clearance ratio at the contact location. 

• Dry-friction whip in which the rotor slips continuously on the surface of the stator 

with a backward precession frequency governed by a combined natural frequency 

of the connected rotor-stator system. 

While rub is a serious and costly element in the maintenance of turbomachinery, dry-

friction whip and whirl have only been reported a handful of times in industrial failures.  
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Though scarce, these failures are serious in nature and should be avoided at all cost.  

Rosenblum [1] provided several documented incidents of dry-friction whip and whirl in 

rotating machinery, one of which details the obliteration of a 600 MW turbo generator in 

1972.  The instability began in the low pressure turbine and progressed to the high 

pressure turbine, which sheared in 16 places due to the excessive torques and alternating 

stresses present during the event.  Though rare, an instance of dry-friction whip and whirl 

is a highly destructive and complicated rub event that must be respected in the design of 

turbomachinery. 

 

LITERATURE REVIEW 

 

 In 1926, Newkirk [2] was investigating shaft rubbing when, upon a sufficiently 

hard contact with the stator, the shaft began to whirl violently counter to the direction of 

rotation.  Though he did not go on to investigate the instability, Newkirk was the first to 

recognize and document dry-friction whip or whirl.  The next efforts on the subject were 

those of Baker [3] and Den Hartog [4], who established the principles of reverse whirl 

from an intuitive perspective.  Using a simple geometrical model of the rotor-stator 

contact plane, Baker and Den Hartog derived the kinematic constraint relating the whirl 

frequency to shaft speed as the radius-to-clearance ratio resulting from the assumption of 

no-slip at the contact location. 

In 1962, Johnson [5] investigated the synchronous whirling characteristics for a 

shaft having a clearance in one bearing.  Though he did not investigate the possibility of 

reverse whirl, he established a framework that is fundamental to the analysis of rotor-

stator interaction.  In regard to the legitimacy of solutions describing the motion of a rotor 

and stator having contact, Johnson states that “the following must be examined: 

(a) Whether the solutions are real. 

(b) Whether the reaction between the clearance bearing and the shaft is positive 

(in compression). 

(c) Whether the equilibrium is stable so that any small oscillations which the shaft 

may have, about that equilibrium position, are damped.” [5, pp. 90] 
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 The first in-depth investigation on the friction-induced instability was Billett [6], 

who in 1965 used a Jeffcott style rotor having a clearance at the bearing to illustrate the 

fundamental aspects of dry-friction whip and whirl.  Billett proposed that the occurrence 

of slip between the rotor and stator explained why shafts whirled close to their natural 

frequency throughout a wide range of running speeds.  He showed that regardless of 

friction coefficient, the simple model cannot whirl faster than its first natural frequency 

without pulling away from the stator.  In addition, Billett solved for the friction 

coefficient that is required to sustain steady reverse whirl.  This can be used to determine 

the whirl frequency at which the friction coefficient needed to sustain steady whirling is 

greater than the rotor-stator coulomb friction coefficient, thus resulting in a transition to 

whip.  Billett experimentally produced dry-friction whip and whirl on his simple rotor 

using three different clearance ratios, all of which transitioned to whip just below the 

natural frequency of the rotor.  Though his model was simple, Billett’s analysis explained 

the reason for near-resonant whirl over a large range of shaft speeds and showed 

analytically the importance of the friction coefficient and damping in determining the 

possibility of dry-friction whirl. 

 The next developments in dry-friction whip and whirl were made by Black [7,8] 

in 1967 and 1968, who extended the methods employed by Johnson and Billett to include 

contact with a compliantly mounted stator.  Black developed a general model for 

synchronous rubbing and reduced it to investigate dry-friction counterwhirl.  He 

performed analysis and experimental verification on a Jeffcott rotor contacting a 

compliant stator at mid-span, which coincided with the mass center of the rotor and 

stator.  Black represented the rotor and stator properties using receptances, assuming both 

can be regarded as linear multi-degree of freedom systems in which the individual modal 

properties are known.  Black concluded that dry-friction whirl is only possible in the 

frequency band extending from an individual rotor/stator natural frequency to the next 

higher combined system natural frequency.  This range is further reduced by the 

condition placed on the traction angle, which Black resolved into a plot having a 

characteristic U-shape, which differentiates between regions of whirl and whip.  Black 

validated his dry-friction whip and whirl predictions using a test rig that used a loose ball 

bearing in place of a solid rub surface to reduce drive torques. 
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 To ascertain general guidelines for the avoidance of dry-friction whip, Ehrich [9] 

performed a parametric study on a simple overhung disk in 1969.  In contrast to Black 

who determined the steady state characteristics of whirl, Ehrich’s motivation was to 

provide those in industry with a rule of thumb to avoid dry-friction instabilities.  Ehrich 

concluded that rotor and stator damping should be similar, while their natural frequencies 

dissimilar.  Ehrich was also the first to perform dry-friction whip and whirl tests on rotor-

stator interaction having a realistic radius-to-clearance ratio. 

 In 1987, Choy and Padovan [10] investigated dry-friction whip and whirl through 

the numerical integration of the nonlinear equations of motion.  They neglected the mass 

of the stator and modeled the contact using a linear stiffness; however, they produced 

simulations that showed the inclusion of bounce modes, contact initiation, and steady 

state behavior.   

 One year later, Zhang [11] demonstrated the need to account for multiple rotor 

modes in dry-friction whip and whirl by applying Black’s model to a long-cantilevered 

disk.  Zhang identified the same unstable regions as Black, asserting the validity of 

Black’s results by confirming that the dry-friction whirl can exist for all ranges between a 

rotor natural frequency and the next higher natural frequency of the rotor-stator system 

pinned together at the contact location.  In addition, Zhang presented a condition for the 

critical contact velocity required to initiate dry-friction whirl. 

 In 1990, Lingener [12] and Crandall [13] revisited the analytical and experimental 

work of Black [8] by applying it to a test rig that could be adapted to test several different 

combinations of rotor and stator properties.  Their test rotor had axially shiftable masses 

on either side of the rub surface and a variable stiffness stator.  The analysis presented by 

Lingener and Crandall indicated that Black’s model was found to be generally valid in 

predicting whirl ranges.  Lingener concludes that “it is impossible, to run through any 

resonance of the joined system, excited by reverse whirl” [12, pp.18], despite this 

prediction using Black’s model.  This feat has been accomplished recently by Choi [14] 

and Dyck [15].  Black [8] presented the possibility of returning to whirl after traveling 

through a whip region; however, he indicated that vibration modes having a node at the 

rub location cannot be excited.  The majority of tests performed by Lingener and 

Crandall suggest that the second bending mode would not be excited.  Thus, speeds 
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approaching the third bending mode would be required to reinstate whirl above the initial 

whip region.  In addition to extensively validating Black’s whip and whirl model, 

Crandall and Lingener performed tests on an asymmetric system to determine its effect 

on dry-friction whip and whirl.  Results indicated an elliptical orbit and a slight 

suppression of dry-friction instabilities.  These conclusions were supported by Ghauri et 

al. [16] who simulated dry-friction whip and whirl in an asymmetric stator.  The 

simulations were performed using a validated finite element code with contact modeled 

by Coulomb friction and a coefficient-of-restitution.  In general, Ghauri et al. were 

interested in the response ensuing from the large imbalance created by a blade loss and its 

capacity to initiate dry-friction whip and whirl.  Other efforts concerning dry-friction due 

to imbalance include those by Faterella [17], Bartha [18,19], Yu et al. [20], and Cole and 

Keogh [21].  Experimental work by Yu et al. demonstrated dry-friction whirl and whip 

initiated upon contact and following synchronous full annular rub while traversing a 

critical speed.  The events occurred with ascending and descending speed. 

 In the 1990’s, interest in dry-friction whip and whirl was motivated by concern in 

other industries.  With advances in oilwell drilling technology, Jansen [22] and Chen [23] 

applied the principles of dry-friction whip and whirl to downhole drillstring vibrations by 

investigating the interaction of drill collar stabilizers with the casing through numerical 

and experimental approaches.  In the bearing industry, increasing popularity of the active 

magnetic bearing (AMB) led to several publications concerning rotor-stator contact 

interaction following the failure of an AMB.  In general, these works address matters 

concerning the prevention and initiation of dry-friction instabilities.  Fumagalli [24] 

designed a well instrumented test rig consisting of an AMB-supported short rigid rotor 

that uncoupled from the drive shaft when dropped on a rigid stator.  Fumagalli carefully 

measured power loss and contact force during the dry-friction instability, recording forces 

upwards of 5500 lb (24.5 kN) for a 7 lb (3.2 kg) rotor.  In addition, Fumagalli 

implemented a nonlinear Hunt and Crossley [25] contact model to characterize rotor-

stator interaction in numerical simulations.  This implementation was popular for 

subsequent research, having been applied by Bartha [18,19], Childs and Bhattacharya 

[26], Popprath and Ecker [27], the author, and others.  Fumagalli also performed tests on 

a variety of rub surfaces to characterize the influence of friction coefficient, compliance, 
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and material compatibility.  Later work investigating the effect of different stator 

materials, Yu et al. [20], Choi [14], and Dyck [15] support conclusions that the friction 

coefficient is the fundamental parameter of concern; however, Yu et al. and Dyck caution 

against the use of Babbitt-coated stators, having witnessed rapid and complete 

deterioration of the engineered surfaces. 

 Following closely the interests of Fumagalli, Bartha [18, 19] produced a wealth of 

knowledge on the subject of dry-friction whip and whirl.  Bartha’s work stemmed from 

the capability of his test rig to produce accurate excitation schemes using a high power 

AMB.  Bartha validated the critical impact velocity given by Zhang [11] following 

extensive tests having a variety of impact angles and velocities.  Although Bartha noted 

that impacts having a backward tangential velocity component were more likely to 

initiate dry-friction whirl, he concluded that the normal impact velocity was the 

predominant influence.  These results were paralleled by numerical simulations using 

experimentally determined parameters in Hunt and Crossley’s [25] vibro-impact model.  

Bartha addressed several questions concerning the stability of whirl motions in numerical 

simulations and experiments.  He concluded that numerical simulations were unstable 

without accounting for the relative surface velocity at the contact location.  Introducing 

this effect into the rub model resulted in a slow periodic fluctuation of the relative contact 

velocity during numerical simulations that introduced harmonic multiples into the 

frequency spectrum.  These multiples occur at a frequency slightly more than twice the 

main backward component, which Bartha described as closely resembling the motion of a 

system having stick-slip behavior.  In addition Bartha cites a lack of congruence between 

whirl ranges predicted using Black’s dry-friction counterwhirl model and those achieved 

experimentally. 

 In 2002, Choi [14] succeeded in traversing through a whip region for a test rig 

closely resembling the test rig of Lingener [12] and Crandall [13].  Using Black’s model, 

Choi verified the friction-dependent transition frequencies for aluminum and acryl 

stators.  He also mentions the presence of super-harmonic and sub-harmonic frequencies 

present in the frequency spectrum. 

 In 2007—following implications by Bartha [18, 19] and Yu et al. [20] that 

application of Black’s whirl model to experimental apparatus predicted erroneous whirl 
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ranges—Childs and Bhattacharya [26] revisited the work of Black to reassert the viability 

of his dry-friction counterwhirl model.  Childs and Bhattacharya state the following: (1) 

The ability to predict accurate whirl ranges requires the development of an accurate rotor-

stator model.  This may require the use of multiple rotor/stator modes, as needed to 

model the test rigs of Bartha and Yu et al.  This necessity was mentioned by Black and 

Zhang [11]; however, Black did not extend his method to multi-mode rotor-stator 

interaction, and Zhang failed to produce multiple whirl regions. (2) Employing a multi-

mode rotor-stator model results in several U-shaped curves, thus predicting several 

possible whirl regions.  Though predicted, only the first whirl range and corresponding 

whip frequency could be produced in simulations. 

Recently, investigations on the initiation of dry-friction whip and whirl have 

shifted to nonlinear analysis techniques.  On the nonlinear nature of full-annular reverse 

whirl, Williams [28,29] analytically and experimentally investigated the existence of 

limit cycles during established dry-friction whirl.  Williams concluded that although the 

initiation of dry-friction whip and whirl may be more likely for a system having tighter 

clearances, the nature of the limit cycle is preferable to one with large clearances.  The 

larger portion of nonlinear investigations has been the study rotor-stator interaction 

involving periodic contact modes.  Researchers on this subject include Neilson and Barr 

[30], Tamura et al. [31], Cole and Koegh [32,21], and Popprath and Ecker [27].  Both 

Cole and Keogh, and Popprath and Ecker presented methods by which decomposition of 

the contact and ensuing vibration leads to the existence of solutions involving intermittent 

periodic contact between the rotor and stator.  Cole and Keogh focused more on the effect 

of imbalance on the systems bounce modes, whereas Popprath and Ecker focused on the 

development of a more generalized approach to modeling contact.  Both papers compared 

analytical predictions to the experimental results presented by Tamura et al. and found 

comparisons favorable. 

 

EVENTS LEADING TOWARD DRY-FRICTION INVESTIGATIONS AT TAMU 

 

 In 1995 the U.S. Air Force, Army, Navy, and NASA implemented a 15-year 

rocket propulsion technology improvement program with the goal of “doubling rocket 
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propulsion technology”.  This goal would be accomplished by advancing component 

technology to yield greater performance, reliability, and reduced weight.  The U. S. Air 

Force Research Laboratory (AFRL), Space and Missile Propulsion Division, Edwards 

AFB, CA, committed to develop an Advanced Liquid Hydrogen (ALH) Turbopump that 

would approach these objectives through the implementation of fluid-film bearings in 

place of conventional rolling element bearings.  This change was predicted to increase 

reliability and accommodate higher speeds, which allows an overall reduction in size and 

weight.  To accomplish this, AFRL commissioned Pratt & Whitney (P&W) Liquid Space 

Propulsion to design and build the ALH.  The design by P&W features a single piece 

rotor with unshrouded impellers to be supported by hydrostatic journal bearings and a 

single hydrostatic thrust bearing.  The hydrostatic bearings are supplied by the pump 

discharge, which results in little or no rotor support during low speed operation. 

 In 1998, the ALH was ready for testing at P&W’s high-pressure cryogenic test 

facility.  From 1998 through 2002, 20 tests were performed on 11 different builds of the 

ALH; only the first of these ran according to plan.  Following test 1, the development of 

large supersynchronous vibrations at low speeds overpowered the drive capabilities of the 

turbopump and halted the rotor.  Hardware inspection showed visual signs of rubbing at 

several locations, specifically the surfaces of the radial and thrust bearings [33]. 

 In the end, the ALH turbopump failed to meet the desired objectives.  Learning 

from the development of the ALH, AFRL acquired the services of Northrop Grumman 

Space Technology (NGST), through a competitive acquisition, to continue with the 

Upper Stage Engine Technology (USET) Program, which strives to enhance the efficient 

design, development, and testing of a liquid rocket propulsion turbopump.  To 

accomplish these goals, USET focused on the improvement and validation of component 

design, modeling, and simulation tools. 

 In 2004 NGST contacted the Texas A&M Turbomachinery Laboratory regarding 

the low speed instability encountered during the ALH startup.  In response, Childs [34] 

raised several questions regarding the transient operation of hydrostatic bearings supplied 

by gaseous hydrogen.  He mentioned the following possible consequences resulting from 

unsteady supply pressure: 

• Limited load capacity. 
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• Pneumatic hammer. 

• Choking of the flow through the bearing orifices (San Andres). 

Childs proposed that dry-friction whip and whirl resulting from low bearing stiffness and 

forced rotor-stator contact were likely the cause of the severe vibrations encountered in 

the ALH.  The result of these deliberations was the commissioning of a test rig to 

examine the nature of dry-friction whip and whirl in the ALH, and ultimately provide a 

benchmark test result on which the capability of dry-friction simulation methods could be 

established.  The experimental and numerical exploration of this test rig provides the 

focal point for the investigations present in this thesis. 

  

OBJECTIVE OF THE RESEARCH 

 

 The first objective of this thesis is to investigate the nature of dry-friction whip 

and whirl with the experimental data obtained on the TAMU Dry-Friction Whip and 

Whirl Test Rig.  The second objective is to develop a model using XLTRC2 that reliably 

simulates the observed whip and whirl behavior.  This objective is accomplished by 

comparing the speed-dependent frequency and amplitude characteristics of the 

experimental and numerical results.  

 

METHOD OF INVESTIGATION  

 

 Analysis will begin by investigating the fundamental theories on dry-friction whip 

and whirl.  Following a basic understanding of the subject, the layout of the test rig will 

be presented to enable the reader to become familiar with the system to be modeled and 

assumptions required to fully parametrize the model; this will flow into a description of 

the numerical model that was determined for the test rig and its predicted whirl regions.  

The thesis will conclude by presenting experimental dry-friction whip and whirl results 

and how they compare to numerical simulations.   
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CHAPTER II 

MATHEMATICAL MODEL 
 

 Using a model similar to the one given in Figure 1, Baker [3] and Den Hartog [4] 

proposed the following. 
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Figure 1 Geometric model governing rotor-stator contact 

 

Upon contact with the stator, a spinning rotor would be acted upon by a normal 

force N and tangential force   F dF Nμ= , where μd represents the dynamic coefficient of 

friction between the contacting surfaces.  Representing the tangential force as a force 

acting through the rotor’s center OR and a couple about OR, the rotor will be driven in a 

clockwise direction about the center of the stator OS with angular velocity Ω at the 

expense of an increase in drive torque.  Provided the normal force and coefficient of 

friction are sufficiently large to prevent a steady slipping condition, the rotor will 

eventually roll on the surface of the stator such that a kinematic constraint exists between 

the angular velocities of the rotor and its whirl orbit.  This constraint is given by 
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r

R
C ω ωΩ = = Γ , (1) 

where Γ, the precession frequency ratio (PFR), represents the ratio of whirl frequency to 

shaft speed that is governed by the measured radius-to-clearance ratio at the contact 

location.  In a realistic turbomachine the clearance is usually 100 to 1000 times smaller 

than the radius; therefore, dry-friction instabilities at low speeds can still produce high-

frequency vibrations.  Proceeding along the intuitive line of thought started above, one 

can see that when the rotor is rolling without slipping on the surface of the stator, the 

friction force is not governed by the available coulomb friction coefficient (μd), but by the 

force necessary to sustain the rotors whirl orbit.  This is referred to as the required 

friction coefficient (μ). 

 Having established an intuitive understanding of the basic principle of dry-friction 

whip and whirl, a more rigorous mathematical model is to be derived.  The analytical 

method presented here follows that originally proposed by Billett [6] and Black [8], with 

refinements provided by Zhang [11], and most recently Childs and Bhattacharya [26].  

Proceeding with the assumption that the rotor and stator can be regarded as known linear 

multi-degree of freedom systems as indicated by Black [8], our derivation begins with the 

simple case of a two degree-of-freedom rotor and stator shown at the plane of contact in 

Figure 2. 
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Figure 2 Rotor-stator interaction model, after [26] 
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Using Zr and Zs to denote the complex rotor and stator displacements 

(  Xr rjY= +rZ ), the general nonlinear equations of motion are given as 
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Neglecting the effect of rotor imbalance and limiting the discussion to full annular rub, 

the equations of motion reduce to  

 
( )

( )

j
r r r F

j
s s s F

m c k N jF e

m c k N jF e

γ

γ

+ + = − +

+ + = +
r r r

s s s

Z Z Z

Z Z Z
. (3) 

Since we are interested in the steady state properties of the system, we will seek a 

periodic solution of the form  

 , ,j t j t
oe e tγ γ− Ω − Ω= = = −Ω +r r s sZ z Z z . (4) 

Plugging the assumed solution and its derivatives into the equation of motion, one obtains 
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s
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zz
α

zz
β

, (5) 

where Black introduces rotor and stator receptances α11(-Ω) and β11(-Ω) to facilitate the 

solution process.  In addition to the individual equations of motion, solution of Eq. (5) 

requires an additional equation relating the rotor and stator displacements to the clearance 

vector.  This is accomplished by the constraint equation  

 ( )j j t
rC e eγ − Ω= − = −r s r sZ Z z z  (6) 

which uses the steady state displacement vectors provided by Eq. (5) to obtain 

 [ ]( )( ) ( )o oj j
r FC e N jF eγ γ= − = − −Ω + −Ω +11r s 11z z α β . (7) 

Eliminating the unnecessary exponents and rearranging terms yields 

 ( ) [ ] 1( ) ( )F rN jF C −+ = − −Ω + −Ω1111α β , (8) 
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which constitutes an algebraic system of equations that define the frequency dependent 

contact force and traction angle for any known system.  Though it is a bit tedious, one 

may represent the receptances α11(-Ω) and β11(-Ω) as 

 
2 2

2 2

1( )
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i D

i i
i D

α α α α

α α α α α
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11

11
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β
, (9) 

and their sum as 

 
( ) ( )

( ) ( )
D D j D D S j S

D D D D
β α α β α β β α σ ϕ

α β α β

σ σ ϕ ϕ+ − + −
−Ω + −Ω = =11 11α β . (10) 

Substituting Eq. (10) into Eq. (8) and making the denominator real results in 

 ( ) ( )
2 2

rr
F

C D D S j SC D D
N jF

S j S S S
α β σ ϕα β

σ ϕ σ ϕ

− +−
+ = =

− +
 (11) 

Though it may seem that Eq. (11) is excessive, the required friction coefficient μ that 

satisfies the steady state whirl solution can be expressed by the simple relation 

 F SF
N S

ϕ

σ

μ = = . (12) 

In addition, the real part of Eq. (11) yields the normal force as 

 
( ) ( )

rC D D
N

D D
α β

β α α α β βσ μϕ σ μϕ
=

+ + +
. (13) 

Though they are expressed in a different form, these are equivalent to the 

solutions obtained by Black.  While Eq. (8) was solved analytically, Black presents an 

elegant synopsis of the method through its implication in the absence of damping.  Black 

proposes the following.  If rotor-stator interaction is possible, than the right hand side of 

Eq. (8) is real, thus there can be no friction force.  From this result, it can be seen that the 

normal force given by  

 [ ] 1( ) ( )rN C −= − −Ω + −Ω1111α β  (14) 

requires that the inequality  

 [ ]( ) ( ) 0−Ω + −Ω <1111α β  (15) 
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must be met if the normal force is to be positive.  This condition is illustrated graphically 

in Figure 3 using the individual and combined receptances of the rotor-stator system. 

 

Individual and Combined Rotor/Stator Receptances

Ω

R
e[

In
di

vi
du

al
]

α11
β11

Ω

R
e[

C
om

bi
ne

d]

α11 + β11

Interaction Zone 1 Interaction Zone 2 

 
Figure 3 Individual and combined rotor and stator receptances defining regions in which rotor stator 

interaction is possible 

 

 In light of the graphical representation of rotor and stator receptances, the sum of 

rotor-stator receptances becomes negative when traversing an individual rotor or stator 

natural frequency, and positive when traversing a combined natural frequency.  

Combined in this instance denoting that the two are pinned together at the contact 

location, resulting in 

 ,
r

n comb
s

r s

k k
m m

ω +
=

+
 (16) 

for the undamped system considered here.  From this, Black illustrates that dry-friction 

whirl is only possible from an individual rotor/stator natural frequency to its next higher 

combined system natural frequency.  In addition, the frequency range for which dry-

friction whirl can occur is further reduced by the condition placed on the necessary 
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traction angle as defined in Eq. (12).  From this relation, Black generated a plot having a 

characteristic U-shape to differentiate between regions of whip and whirl.  An example of 

the U-shaped plot attributed to Black is given for a lightly damped system in Figure 4. 
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Figure 4 General case of the U-shaped plot attributed to Black 

 

To generate this plot, the required coefficient of friction or traction angle is 

plotted as a function of whirl frequency, thus establishing the range of frequencies for 

which the rotor-stator coulomb friction coefficient is sufficient to sustain dry-friction 

whirl.  The left side of the U-shape curve forms a boundary between unstable/ 

unattainable solutions below and stable/attainable solutions above.  From the point of 

entry denoted A in Figure 4, an increase in shaft speed is accompanied by a reduction of 

the required traction angle; however, a decrease in speed results in an increase of traction 

beyond the available value, resulting in subsequent decrease in whirl frequency.  Position 

A is therefore an unstable solution.  Position B, on the other hand, separates a stable 

solution on the left, from an unattainable solution on the right.  Thus, a reduction in speed 

at B results in a decrease in traction required followed by a decrease in whirl frequency; 

however, an increase in speed would result in a loss of traction and yield steady slip at the 

frequency governed by B, otherwise known as the whip frequency.  Thus for the damped 

case, the solution at position B could be considered stable.  Note that the U-shaped curve 

provides a minimum traction angle which will sustain whirl.  Thus, without adequate 

coulomb friction, dry-friction whirl can not exist.   
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 Black validated his dry-friction whip and whirl predictions using a Jeffcott rotor 

rubbing on a ball bearing at the mid-span.  Not only did Black present a simple and 

accurate model that can accurately predict ranges in which whip and whirl can occur, he 

did so in an elegant and insightful manner. 

 Extending Black’s method for the case of a multi-mode rotor and stator, Childs 

and Bhattacharya [26] developed plots having several whirl regions.  The multi-mode 

whirl prediction for Bartha’s test rig given in Figure 5 illustrates the importance of proper 

modeling in predicting regions of whip and whirl.  Using only one rotor mode to predict 

whirl, Bartha predicted a transition to whip close to 1600 Hz.  After transitioning to whip 

at 600 Hz, Bartha attributed the discrepancy to a flaw in Black’s whirl solution.  With 

proper application, Black’s model predicts a transition to whip at 650 Hz, which is close 

to the measured transition. 

 

 
Figure 5 Multi-mode dry-friction whirl prediction for Bartha’s test rig [26] 
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CHAPTER III 

TAMU DRY-FRICTION WHIP AND WHIRL TEST RIG 
 

GENERAL DESCRIPTION 

 

A picture of the TAMU Whip and Whirl Test Rig is shown in Figure 6 and a 

detailed section view of the test rig is given in Figure 7. 

 

 
Figure 6 Picture of TAMU Whip and Whirl Test Rig 

 

 
Figure 7 Section View of TAMU Whip and Whirl Test Rig 
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The section view in Figure 7 shows that the rotor is supported from the right 

where two adjacent angular contact ball bearings provide a large radial stiffness and little 

angular support.  On the left, the test rotor rubs on an interchangeable rub insert that 

enables whip and whirl testing for different stator materials and radial clearances.  

Motion was observed by four pairs of proximity probes located along the shaft in addition 

to a pair of accelerometers on each pedestal so that different whirl modes could be 

observed.  Contact between the rotor and stator was induced using an impulse hammer 

located close to the rub surface.  Though the force produced by the impact hammer was 

measured, the initiation of whirl was not the focus of the project and will not be discussed 

in further detail.  Because whip and whirl testing was performed for rotor speeds ranging 

from 0-250 rpm, the shaft was driven by a high-power motor through a gear reducer to 

provide high torque at low speeds.  The drive system was connected to the test rotor 

through a spline shaft to minimize the effects of misalignment between the test rotor and 

drive system.  This cannot be seen in the picture because it is hidden by the coupling 

guard, a precautionary shield installed to contain the couplings and spline-shaft in the 

event of a failure.  These components were all mounted and aligned on a heavy test base 

attached to the ground through soft springs.  These springs prevented the transmission of 

high frequency vibration loads to the ground; this reduced the influence of base motion 

on high frequency whip and whirl motion and reduced orthotropy in the base support. 

 

TEST ROTOR 

 

 The most important aspect of the test rig is the rotor.  Designed to emulate the 

conditions present in a rocket engine turbopump, the shaft was machined from a solid 

piece of AISI 4140 steel and has an average diameter of 1.5 in (3.81 cm) and a length of 

17.08 in (0.433 m).  With these dimensions and ball bearings with stiffness 480,000 lb/in 

(80.6 MN/m), the lowest three calculated natural frequencies of the shaft are 40.9 Hz, 418.5 

Hz, and 810.6 Hz, where 40.9 Hz represents the cantilevered mode, and the next two are 

the first and second bending modes of the rotor.  A closer view of the rotor is given in 

Figure 8 and provides more detail on the location of probes, accelerometers, and rubbing 

contact. 
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Figure 8 Section view of TAMU Whip and Whirl Test Rig rotor 

 

The rub surface is located approximately 2.79 in (7.087 cm) from the free end of 

the rotor.  At this location, the diameter of the rotor was measured as 1.4997 in (3.809 

cm).  Four different stator inserts were machined to test the effects of clearance and 

material on dry-friction whip and whirl motion.  These properties are summarized in 

Table 1 [15]. 

 
Table 1 Properties of rotor and stator pairs at the rub location 

Designation Diameter 

in ± 0.1 mils  

(cm ± 0.25 μm) 

R/Cr Material Hardness 

(HB) 

Hardness 

Ratio 

Friction 

Coefficient 

[35,36] 

Rotor 1.4997 (3.809) - AISI 4140 197 - - 

Bearing S1,S2 1.5026 (3.817) 517.14 660 Bearing Bronze 65 3.03 0.1-0.5 

Bearing L1 1.5058 (3.825) 245.85 660 Bearing Bronze 65 3.03 0.1-0.5 

Bearing B1 1.5026 (3.817) 517.14 Babbitt Coated 660 24 8.21 0.25-0.6 

Bearing T1 1.5040 (3.820) 348.77 AISI 4140 197 1 0.25-0.7 
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From the data presented in Table 1, inserts S1 and S2 should have the least severe 

whip and whirl behavior because of their diameter and reduced friction coefficient.  Even 

though analytical exercises show that the fundamental parameter in dry-friction 

instability is the friction coefficient, common knowledge is that a hard rotor rubbing on a 

soft stator is preferable to rubbing on a hard stator.  Dry-friction testing on inserts 

comprised of different materials could indicate whether the severity of dry-friction 

instability is affected significantly by the hardness of the rub materials.   

The axial length of the rub surface was selected to prevent multiple contact 

locations resulting from angular motion of the shaft.  For the angular displacements 

predicted at the rub location, ½ in (1.27 cm) was sufficient to prevent rubbing on both 

sides of the rub surface. 

 

BASE OF TEST STAND AND ROTOR SUPPORT 

 

 The components comprising the test apparatus were located on a massive test 

stand, which was softly supported to reduce orthotropy and provide a low natural 

frequency.  These blue vibration isolators can be seen supporting the base of the test rig 

in Figure 9. 

 

 
Figure 9 Test base supported on vibration isolators to reduce base natural frequency and orthotropy 
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The test rig was supported by a total of 6 vibration isolators, each having a 

stiffness of 788 lb/in (138 kN/m).  The base of the test stand weighed 2500 lb (1130 kg), 

which results in translational and rotational natural frequencies in the range of 3-6 Hz.  

Because the natural frequency of the base is significantly lower than the range of 

frequencies excited by dry friction, and the mass of the test stand is more than a hundred 

times that of the rotor, base motion is assumed to have little impact on the vibration 

characteristics of the rotor.   

 To account for the motion occurring in the test and support pedestals, impact tests 

were performed to measure their natural frequencies.  These results are given in Table 2. 

 
Table 2 First horizontal and vertical natural frequencies of the support and test pedestals 

 Support Pedestal Test Pedestal 

Vertical Direction 1620 Hz 1240 Hz 

Horizontal Direction 1000 Hz 615 Hz 

 

The natural frequencies of the pedestals are in the range of frequencies that will 

be excited during whip and whirl; therefore, they could have a large impact on the whip 

and whirl motion and must be included in the model.  Notice that the pedestals have a 

higher natural frequency in the vertical direction than in the horizontal direction.  This 

indicates that the pedestals will provide an asymmetric stiffness to the rotor, which will 

also require caution during the modeling process.  Previous studies by Lingener [12], 

Crandall [13] and Ghauri et al. [16] indicate that asymmetry may help to repress or 

eliminate dry-friction instabilities. 

  

ROTOR DRIVETRAIN 

 

 During the initial phase of test rig design, simulations indicated the need for a 

powerful drive system capable of delivering high torques at low speeds.  Additional 

program objectives mandated the capability to test transient characteristics of hydrostatic 

bearings during a rapid turbopump startup.  This required a high speed motor capable of 

accelerating the rotor to 15,000 rpm in a matter of seconds.  The selected motor had 

enough power to drive the rotor during dry-friction, but could not provide the torque 
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expected from simulations throughout the desired speed range.  The solution was a gear 

reducer.  The primary components of the drive system are shown in Figure 10. 

 

 
Figure 10 Drive system comprised of (left to right) coupling , gear reducer, and motor 

 

The selected motor was manufactured by SKF precision technologies to drive 

high power machine tool operations.  The motor can deliver 29.5 HP (22 kW) at a max 

speed of 20,000 rpm, and can apply a constant torque of 92.4 in-lb (10.5 N-m) throughout 

its operating range [37]. 

 Simulations indicated that torques as large as 500 in-lb (56.5 N-m) were required 

to sustain dry-friction whip and whirl at rotor speeds from 0-240 rpm.  A two-stage 25:1 

EPL-NEMA-150 planetary gear reducer manufactured by GamGear was selected to 

accomplish this objective [38].  With an efficiency of 80%, the gear reducer could 

increase the drive torque to 1848 in-lb (210 N-m) for rotor speeds up to 240 rpm. 

 To connect the gear reducer to the test rotor, two GamGear EKM-Series 

elastomeric couplings were used in series with a spline shaft.  The selected couplings are 

rated to transmit torques up to 4425 in-lb (500 N-m) and are designed to reduce backlash 

[39].  In addition, the couplings allow for the large range of radial and angular 

misalignments that could be created during whip and whirl.  The spline shaft reduced the 

radial and angular stiffness of the support, which prevented the transfer of large rotor 

vibrations to the gear reducer and reduced the deflection due to misalignment between 

the gear reducer and the test rotor.  
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INSTRUMENTATION 

 

 As noted earlier, the instrumentation used to validate predictions of whip and 

whirl amplitudes consisted of four pairs of proximity probes located along the shaft, a 

pair of accelerometers mounted on each test pedestal, and a 64:1 encoder on the motor to 

detect rotor speed.  All of the data was recorded using National Instruments Data 

Acquisition (DAQ) boards and post processed.  More detailed information on these 

components can be found in Pavalek [40] and Dyck [15]. 

 The proximity probes can be seen in Figure 8.  The probes were oriented 45° from 

the horizontal and vertical directions, and were sampled at 20 kHz.  This sample rate 

ensured that the predicted whip and whirl frequencies could be verified with adequate 

resolution.  Probe pairs 1 and 2 located on the left and right sides of the test pedestal and 

probe pair 3 located on the magnetic bearing housing have a linear range of 70 mils, 

whereas probe pair 4 located in the support pedestal has a linear range of 8 mils.  Due to 

its proximity to the support bearings, the amplitudes observed by probe set 4 should not 

exceed this limit. 

 The accelerometer pairs 1 and 2 are located at the top of the test and support 

pedestals, respectively.  They are oriented along the same axes as that of the probes and 

are sampled at 20 kHz.  The accelerometers can handle accelerations as large as 20g. 

 

TEST SERIES AND DATA ANALYSIS 

 

 Several test series were executed for each stator insert consisting of linear speed 

profiles from 20 rpm → ωmax → 20 rpm, where ωmax was 140 rpm to 240 rpm.  Some of 

the tests consisted of ascending or descending profiles; whereas, some consisted of both.  

The duration of tests was 30 to 90 seconds, which generated a sufficient number of data 

points in proximity to discrete rotor speeds for frequency analysis.  The frequency 

analysis was accomplished by methodically searching for blocks of data having a desired 

mean rotor speed and taking a two-sided fast Fourier transform (FFT) of the block; 
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accuracy was determined by an acceptable standard deviation of rotor speeds contained in 

the block of data, which resulted in a range of ±1 rpm per block.   
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CHAPTER IV 

SIMULATION MODEL 
 

OVERVIEW OF XLTRC2 ROTORDYNAMICS SOFTWARE PACKAGE 

 

The simulations were performed using XLTRC2, a component-mode finite-

element program that uses Timoshenko beam finite elements to generate a rotor and 

stator model [41].  The resulting dynamic system is composed of physical and modal 

coordinates, which enables the user to discard high frequency vibration modes while 

retaining physical coordinates at locations for nonlinear connections.  For more 

information on component mode synthesis or XLTRC2, consult Childs [42] or TAMU 

Turbomachinery Laboratory XLTRC2 Brochure [43]. 

 

GENERAL SYSTEM MODEL 

 

 The XLTRC2 simulation model for the TAMU Whip and Whirl Rig is shown in 

Figure 11.  The model consisted of the test rotor, which is connected to the test pedestal 

at station 6 and the support pedestal at stations 25 and 27.  Although a connection at the 

rub location is shown, this provided no linear stiffness or damping, and acted only as a 

location for the nonlinear connection.  The test pedestals were modeled using a dummy 

shaft comprised of rigid massless elements, which provided the most effective 

mechanism to model the point mass stiffness and inertia properties of the two pedestals; 

This provided an asymmetric stiffness to the rotor. 
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Figure 11 XLTRC2 simulation model for TAMU Whip and Whirl Rig 

 

SUPPORT ASYMMETRY 

 

 As noted in the description of the test rig, the pedestals introduce asymmetry into 

the system.  To account for this in the model, an assumed mode for the lowest horizontal 

and vertical natural frequencies was used to estimate an appropriate point mass for each 

pedestal.  Stiffness coefficients for each pedestal were determined using finite element 

analysis, and the resulting horizontal and vertical natural frequencies were compared with 

the experimentally determined values.  Slight adjustments were then made to the model 

stiffness and mass coefficients to better reflect the frequency characteristics of the test 

rig.  Even though asymmetry was accounted for in the model, note the limitations of the 

modeled system and its inability to reflect completely the structural properties of the rotor 

support. 
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VIBRATION CHARACTERISTICS 

 

 Although research investigating the effect of support asymmetry on dry-friction 

instability exists, a strong theoretical foundation has not been established.  Black used 

complex receptances to predict regions in which dry-friction whirl could exist.  This 

required that a solution be assumed for the whirl motion, which enabled the system to be 

reduced to a set of algebraic equations.  Because self excited asymmetric motion often 

includes multiple frequencies, assuming a simple harmonic solution could prove 

misleading; however, assuming that the solution is dominated by some backward whirl 

frequency could provide some insight to the systems behavior.  Proceeding with this 

assumption, a system with slight asymmetry would share the same dry-friction whirl 

regions as its symmetric counterpart; namely, dry-friction whirl can only exist in regions 

from one individual natural frequency to the next higher combined natural frequency.  

Table 3 presents the individual and combined natural frequencies and damping ratios for 

the simulation model.  Neglecting the effect of damping, Table 3 suggests that the first 

possible whirl ranges are from 40.9 – 381.2 Hz, 429.6 – 565.7 Hz, and 606.5 – 786.0 Hz. 

 
Table 3 Individual and combined vibration modes for the simulation model 

ωn (Hz) ζ ωn (Hz) ζ
40.9 1.41% 381.2 1.03%
418.5 0.81% 392.3 0.93%
429.6 0.73% 565.7 2.23%
606.5 2.47% 786.0 1.07%
810.6 1.01% 868.0 0.48%
918.2 0.22% 1,142.3 2.45%

1,174.4 1.26% 1,164.1 1.40%
1,222.7 2.47% 1,612.7 2.01%
1,613.1 2.00% 2,264.5 1.42%
2,304.5 0.08% 2,296.1 1.56%
2,336.4 0.25% 2,675.9 17.03%
3,760.1 0.02% 2,710.4 16.42%

Individual Combined

 
 

 The full extent of these ranges will not be reached due to the presence of 

damping, but the system should lose the ability to maintain traction as it approaches any 

combined natural frequency.  At these frequencies, the simulations should be marked by 
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behavior that is independent of running speed until another whirl range is excited.  

Viscous damping was added to the model to ensure that the motions achieved by 

simulations were bounded and within the realm of those produced by the test rig.  With 

the exception of the damping present for very high frequency modes, most of the 

vibration modes have close to a 1.0 % damping factor. 

 

NONLINEAR CONNECTION 

 

 Nonlinear interaction at the rub location was modeled using a modified form of 

Hunt and Crossley’s [25] coefficient-of-restitution model.  Normal force was given by 

 2
,1 ,2nl nl nlN k k cδ δ δδ= + +  (17) 

where knl,1, knl,2  and cnl are nonlinear stiffness and damping coefficients and δ represents 

the deflection of the rub surface.  This yields a transverse contact force  

 ( )sgnF tF N Vμ=  (18) 

Where sgn(Vt) was first introduced by Bartha [19] to account for the relative transverse 

contact velocity.  The nonlinear stiffness coefficients were determined from the 

derivative of the Hertzian contact force with respect to penetration depth.  These terms 

depend heavily on the stator material and the diameters of the contacting bodies.  The 

damping coefficient was obtained by scaling the experimentally determined parameters 

given by Bartha to yield comparable contact damping.  The parameters employed in 

numerical simulations are given in Table 4. 

 
Table 4 Nonlinear stiffness and damping coefficients employed in simulations 

Nonlinear Stiffness knl,1 

lb/in (N/m) 

Nonlinear Stiffness knl,2 

lb/in2 (N/m2) 

Nonlinear Damping cnl 

lb.s/in2 (N.s/m2) 

5.71×106 (9.99×108) 1.03×1010 (7.10×1013) 2.40×105 (1.65×109) 

 

 One aspect of contact dynamics that has been neglected are forces arising due to 

rolling friction.  Though these forces were found to be negligible in comparison to 

coulomb friction in literature, these sources looked at geometries closer to rail-wheel 

interaction in contrast to the bearing-race interaction present in dry friction.  Rolling 
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resistance could be significant for the latter case; however, as asserted by Bartha, a lack 

of available data ruled out the inclusion of these forces in the rub model. 

 

SIMULATION PROCEDURE AND POST PROCESSING OF DATA 

 

 Whip and whirl behavior was simulated by exciting dry-friction whip and whirl at 

235 rpm, running a simulation until a steady-state limit cycle persisted, then decreasing 

the rotor speed and running a new simulation from the previous state.  This was 

performed recursively from 235 rpm to 20 rpm and back to 235 rpm. These constant 

speed data arrays were analyzed in the same manner as the experimental data and should 

be indicative of the measurements recorded by the probes and accelerometers on the test 

rig.  The data recorded for each simulation consists of the position at each of the four 

probe locations and each pedestal.  On the test rig, probe sets 1 and 2 were mounted on 

the test pedestal, and probe 4 was located on the support pedestal.  To ensure that 

simulated probe data was as accurate as possible, the data recorded by probe sets 1 and 2 

was relative to the test pedestal, and data recorded by probe 4 was relative to the support 

pedestal.  This arrangement does not ensure that the motion seen by the probes during 

experiments are unaffected by the motion of the pedestals.  Motion of the pedestals could 

consist of translational and rotational pitching and yawing motion, which would be 

difficult to simulate without a complete structural model of the support system. 

 

SIMULATED BEARING CONFIGURATIONS 

 

 Table 5 shows three different simulations performed to facilitate comparisons for 

several test cases.  These represent changes in bearing diameter and friction coefficient. 

 
Table 5 Bearing parameters used in simulations 

 
Bearing Diameter 

in  (cm) 

Theoretical Whirl 

Frequency Ratio 

Friction 

Coefficient 

Comparable 

Test Cases 

Simulation 1 1.5026 (3.817) 517 0.3 1-6 

Simulation 2 1.5036 (3.819) 385 0.35 13 

Simulation 3 1.5058 (3.825) 246 0.4 14-16, 20, 21 
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Friction coefficients were selected based on the ability to exhibit higher frequency 

whirl solutions, and should not greatly affect the nature of simulations upon subsequent 

increases.  These elevated values will increase the range of whirl regions obtained and 

increase amplitudes at whip. 
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CHAPTER V 

RESULTS 
 

In this chapter, results for experimental whip and whirl motion will be presented, 

discussed, and compared to simulations.  Test data will be presented first to illustrate the 

fundamental aspects of the whirl-whip motion as well as some characteristics previously 

unseen in literature.  This will be followed by review of the simulation results and the 

models validity in simulating whip and whirl behavior. 

   

EXPERIMENTAL DRY-FRICTION WHIP AND WHIRL CHARACTERISTICS 

 

Due to the number of test cases, an abundance of test data exists.  Presentation of 

test data has been constrained to cases having a certain degree of clarity, and has been 

organized by case number, probe number, and direction of speed traverse (“up” 

corresponding to accelerating and “dn” to decelerating).  Appendix B contains a table of 

all test cases, and should be consulted for more information on each case. 

 

Fundamental Observations on the Nature of Dry-friction Whip and Whirl 

 

 A representative dry-friction whip and whirl test case is shown in Figure 12 and 

Figure 13.  Looking first at Figure 12, one notes that the system exhibits multiple whirl 

and whip regions.  Both Lingener [12] and Choi [14] were able to excite a second whirl 

range; however, Choi was able to pass through an excited whip mode, whereas Lingener 

said this was not possible.  This could have to do with the location Lingener was using to 

excite the second mode, the capabilities of the drive system, or some other unknown.  

The TAMU Dry-friction Whip and Whirl Rig readily passed through several whip 

regions; in some cases reaching frequencies as high as 2400 Hz. 
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Figure 12 Measured (a) frequency and (b) amplitude of max backward whirl component at probe 1 
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Figure 13 Two-sided FFT of probe measurements for typical case of dry-friction whip and whirl 
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Presence of Harmonic Sidebands Accompanying Primary Backward Component 

 

 Note in Figure 13 the sidebands that accompany the main backward whirl/whip 

component.  The forward component at one times the main backward component (-1 Ω) 

can be attributed to the presence of asymmetry in the test rig.  This creates an elliptical 

whirl profile, which can be described by forward and backward whirl components at the 

same supersynchronous frequency.  This effect was more prevalent in smaller rub radii 

and other probe locations, which will be discussed in more detail later.   

 While the forward frequency component may arise due to asymmetry, this is not 

true of the backward components at multiples of the whirl frequency.  These frequencies 

are a function of the main whirl component, and could be caused by the nonlinearity 

present in the stiffness deflection curve of the rub surface or by partial rubbing [44].  

Consider the FFTs in Figure 13 at 120 rpm and 230 rpm, which are depicted in Figure 14.  

The system is in whip at these speeds, which indicates that the rotor is constantly slipping 

on the rub surface.  If the relationship assumed for force versus deflection is investigated, 

an elliptical whirl profile could give rise to a 2Ω excitation, as well as sum and difference 

frequencies; these multiples can be seen in Figure 14a, which contains frequencies at 
1

2 Ω, 1
21  Ω, and 2 Ω at 120 rpm.   
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Figure 14 FFT of probe 1 measurements in whip at a) 120 rpm and b) 230 rpm rotational speeds 

 

 What is interesting about the spectrum presented in Figure 14b is that the rotor 

excites a different set of multiples in its third whipping region, shown here at 230 rpm.  

This spectrum includes multiples at 2Ω and 4Ω, but not the 1
2 Ω or 1

21 Ω peaks present at 

120 rpm; instead, it includes peaks at 1
2  ± 1

8 Ω and 1
21  ± 1

8 Ω, which is interesting.  

These could be caused by a difference in symmetry at the top and bottom of the test 

pedestal, in addition to the multiples presented by horizontal and vertical stiffness 

asymmetry.  This effect might be more prevalent at higher frequencies because the 1
2 Ω 

harmonic is very close to one of the systems lower whip frequencies.  Later, results will 

show that, when rotor speed is ascending in a whip region, these harmonic sidebands 

often excite the next whirl region. 

 

Absolute and Relative Magnitudes Captured by Proximity Probes 

 

 What can be determined from the magnitudes captured by the proximity probes?  

From simply viewing the magnitude of the maximum backward component as a function 

of speed, as shown in Figure 15, one realizes the unsteady characteristics of the 

magnitudes captured by the probes. 
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Figure 15 Measured backward precession amplitude versus speed 

 

Does this represent unsteadiness in the whirl orbit obtained at a given rotor speed?  

Not necessarily; however, the magnitude of the orbit should not depend on the available 

friction coefficient at a given speed, so why are the amplitudes changing so drastically?   

Let us first examine whether the orbits in regions of whirl are attractive/stable.  To do 

this, let us examine the magnitudes captured by the proximity probes relative to 

proximity probe 1, which is shown in Figure 16.  This should give some indication of 

whether the magnitudes of the probes vary relative to one another, or simply on an 

absolute scale.  If they do not vary relative to one another, then it must be assumed that 

the primary mode at a given speed is dominant. 

 



 

 

36

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

2

Speed (rpm)

A
m

pl
itu

de
 (R

el
at

iv
e 

to
 P

ro
be

 1
, |

P n| /
 |P

1|)

Relative Backward Precession Amplitude vs. Speed

 

 
Case:20, Prox:1, Dn
Case:20, Prox:2, Dn
Case:20, Prox:3, Dn
Case:20, Prox:4, Dn

Whip Region 1

2

3

 
Figure 16 Measured backward precession amplitude relative to probe 1 versus speed 

 

Figure 16 shows the following results:  The discontinuities present in the relative 

magnitudes of the probes occurring at 140 rpm and 160 rpm are the speeds in Figure 12 

that correspond to discontinuities in whirl frequency.  These are the speeds at which the 

system switches whirl solutions, therefore ruling out its occurrence elsewhere in the 

speed range.  Looking at the relative magnitudes also shows that, in regions of whip, 

there is no significant change among magnitudes.  This consistency can be seen from 

100-140 rpm, 150-160 rpm, and again from 190-240 rpm, and contrasts vividly with the 

change in absolute magnitudes recorded in regions of whip.  Consider the change in 

absolute magnitude occurring during Whip Regions 1 and 3 shown in Figure 15.  There is 

a steady decline in whirl amplitude throughout the entire range.  This may correspond to 

the decline of friction coefficient that usually occurs with increased relative surface 

velocity or to the prominence of the whip solution over another solution.  This issue will 

be addressed in subsequent discussion concerning the prevalence of one solution over 

another, but fails to explain the change of amplitudes seen in dry-friction whirl.  How do 
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the relative magnitudes recorded during whip compare to those predicted by the model’s 

combined rotor-stator mode shapes?  Figure 17 illustrates the measured and predicted 

modes in the first and third regions of whip shown in Figure 16. 
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Figure 17 Measured and predicted relative mode shapes for Case 20 at a) 130 rpm and b) 235 rpm 

 

The agreement between measured and predicted relative modes in the first whip 

region is weak; however, the third relative mode closely resembles test rig measurements.  

The model’s inability to accurately predict the first mode might be attributed to the lack 

of pitch and yaw mobility in the test pedestal.  Because the rub surface is located at the 

edge of the test pedestal, large contact forces could induce angular deflections and skew 

the measurements of Probes 1 and 2.    

 Figure 18 shows the physical orbits captured by the probes and accelerometers for 

Case 20 in the first and third whirl regions (a, c) and after transitioning to whip (b, d).  At 

the time of this test, Probe 2 in the X direction and Accelerometer 1 in the X direction 
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were not functioning properly.  The accelerometer orbit was constructed by integrating 

with respect to the fundamental whirl frequency.  
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(a) Rotor Speed ωrot=   50 rpm, Ω=210.1 Hz
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(b) Rotor Speed ωrot=  100 rpm, Ω=395.7 Hz
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(c) Rotor Speed ωrot=  165 rpm, Ω=664.4 Hz

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

X Amplitude (μm)

Y
 A

m
pl

itu
de

 ( μ
m

)

(d) Rotor Speed ωrot=  210 rpm, Ω=708.4 Hz
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Figure 18 Measured probe and accelerometer orbits for Case 20 in a) the first whirl region, b) the 

first whip region, c) the third whirl region, and d) the third whip region 

 

Figure 18 shows steady repeated orbits in both whirl and whip.  In Figure 18d, 

Probe 3 and Accelerometer 2 show highly elliptical orbits with major axes in the 

horizontal direction (horizontal on the test rig at -45º).  This may have prevented the rotor 

from transitioning to the higher frequency whirl solution that was excited in Case 21. 

 

Predicted versus Measured Precession-Frequency Ratio (PFR) 

 

 The next topic to discuss will be the disparity between observed and predicted 

PFRs.  Most sources state that the PFR (Г) given in Eq. (1) should match the radius-to-

clearance ratio at the rub surface.  One might expect that the measured precession 
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frequency would be slightly lower than this ratio due to a difference between the 

measured clearance and the actual radius of the rotors orbit due to contact deflection; 

however, no one has suggested that this ratio would be exceeded.  Although not 

addressed in detail, Bartha [19] measured precession frequencies greater than that 

predicted by the PFR in at least one instance.  The PFR for Case 20 presented above is 

shown as a function of speed in Figure 19. 
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Figure 19 Measured precession frequency ratio versus rotor speed for large clearance bearing 

 

 The diameters of the rotor and rub surface were measured with calibrated 

instruments accurate to ± 0.1 mil (25.4 μm) prior to testing.  For this case, the rub 

diameter was measured at 1.5060 in (3.825 cm), and the rotor 1.4997 in (3.809 cm).  This 

predicts a PFR of 238.  The measured PFR shown in Figure 19 reaches well above this 

value for each of the whirl regions.  For the first whirl range, this constitutes greater than 

6.7% of the whirl frequency.  Even though the disparity seems minor, it becomes 

pronounced at higher whirl frequency ratios.  Figure 20 presents a case in which the 

measured rub diameter was 1.5026 in (3.817 cm), resulting in a predicted PFR of 517. 
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Figure 20 Measured precession frequency ratio versus rotor speed for small clearance bearing 

 

Figure 20 shows the measured PFR is approximately 15-20 % higher than the 

expected value, which is significant.  For dry-friction whirl in a realistic bearing, these 

deviations could be larger, possibly 30-40 % greater than the expected value.   

The relationship between the predicted and observed precession frequency ratios 

becomes increasingly nonlinear with decreased clearances.  Is the nonlinearity of this 

parameter an effect of increased sensitivity as clearance approaches zero, or is there some 

other explanation for this behavior?  While the former is certainly true, Figure 21 

illustrates a case in which the measured PFR rapidly increases to more than twice the 

predicted value. 
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Figure 21 Measured precession frequency ratio for Babbitt bearing illustrating rapid increases at low 

speeds 
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Look closely at the measured PFR for the decreasing speed profile.  As the rotor 

decelerates from 50 rpm, two instances occur in which the whirl frequency rapidly 

increases.  This bearing had a predicted PFR of 517, which was exceeded by more than 

150%!  Although the reason for this unprecedented increase in observed whirl frequency 

ratio is unknown, deviations presented in other cases may have more rational 

explanations. 

The measured whirl frequency ratio for Case 2 in Figure 20 is almost identical for 

increasing and decreasing speeds; however, this was not always the case.  Case 3 in 

Figure 22 shows a significantly higher whirl frequency ratio for decreasing speeds than 

for increasing speeds. 
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Figure 22 Increase in measured precession frequency ratio toward the end of test Case 3 

 

This difference might be explained by thermal changes in the shaft or rub surface 

during the experiment.  Due to the time delay between measurements, a slow increase in 

rotor temperature would result in decreased clearances toward the end of a test.  Though 

thermal properties were not recorded, elevated temperature of the rotor or bearing was 

never perceptible by touch, excepting tests of a steel rub surface that resulted in seizure of 

the shaft.  Case 3 supports the proposal that slow thermal variation may result in an 

increase in whirl frequency; however, other tests resulted in a significant amount of wear.  

This would tend to increase clearances and cause a decrease in observed whirl 

frequencies on the downward traverse.  Figure 23 shows a decrease in observed whirl 
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frequency toward the end of a case, which resulted in the removal of 3.5-4.0 mils (88.9-

101.6 μm) of material from the bearing. 
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Figure 23 Decrease in measured precession frequency ratio toward the end of test Case 13 

 

Existence and Excitation of Multiple Whirl Solutions 

 

 Billett [6] and Black [8] showed that sustained rotor-stator interaction due to dry 

friction was only possible for a limited range of frequencies.  Outside of these ranges, the 

system was said to exhibit whip or loose contact.  Black rationalized the stability of his 

whirl solution using the following argument.  A shaft whirling on the U-shaped curve 

with increasing speed would increase in whirl frequency until the shaft could no longer 

maintain traction, causing the shaft to slip on the stator; conversely, a shaft whirling on 

the U-shaped curve with decreasing speed would persist until traction could no longer be 

maintained, resulting in the inability of the shaft to sustain whirl.  Excepting studies of 

this depth on a rotor’s ability to traverse a whirl region, few studies have been performed 

on the complexities encountered in the study of a realistic whip and whirl spectrum.  

These complexities include the presence of multiple modes and capability to excite them, 

the existence of multiple stable solutions, and complicated contact dynamics.  These 

aspects will be discussed by observation of Case 21, which has a similar precession 

frequency ratio to Case 20 studied earlier.    
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 Figure 24 illustrates the most apparent difference between increasing and 

decreasing speed profiles, namely the variability and extent of whirl regions with 

decreasing speed contrasted by the abrupt jumps encountered with increasing speed. 
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Figure 24 Measured backward precession frequency versus rotor speed at probe set 1 

 

This result raises the following questions:  (1) Why does the system appear to 

excite two whip regions when traversing down but four on the way up?  (2) Why, if the 

first/lowest whip orbit is stable/attractive, does increasing rotor speed result in a jump to 

a higher whirl frequency, and what causes this jump? 

 In response to the first question, one must review the vibration properties of the 

test rig.  The lowest measured natural frequencies of the test and support pedestals were 

615 Hz and 1000 Hz.  These were measured without the rotor in place; therefore, the 

addition of the rotors mass to the system would reduce these values.  These are likely the 

whip regions that are not excited by the downward traversing rotor, assuming that neither 

of these modes involves unaccounted angular deflections of the pedestals.  These regions 

were not excited by the descending rotor for the following reasons:  The difference 

between individual and combined natural frequencies for a system composed of a 

massive-stiff pedestal and a relatively light rotor will be minimal, thus the range of 

unattainable whirl frequencies between the combined and next higher individual natural 
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frequency will also be minimal.  In addition, these modes have relatively little damping, 

thus the reduction in range caused by deficient traction is small. 

 The first step toward answering the second question is to examine the nature of 

the harmonic sidebands present in the frequency spectrogram in Figure 25.   
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Figure 25 Spectrogram plot showing excitation of higher whirl modes by sideband harmonics 

 

Although sidebands are present throughout the rotor’s first whirl region, an 

additional set of sidebands is excited upon entering the first whip region.  As the rotor 

approaches 137.5 rpm, the 1
21  Ω harmonic sideband begins to migrate toward the whirl 

solution, provided in Figure 26 by the speed-decreasing whirl component.  At 142.5 rpm, 

the sideband reaches this whirl frequency and begins to excite it.  At 147.5 rpm, whirl is 

fully excited, causing it to become predominant.   
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Figure 26 FFT at (a) 137.5, (b) 142.5, and (c) 147.5, showing harmonic sideband excitation of a higher 

whirl mode 

 

 The physical orbits captured during this speed range are shown in Figure 27.  The 

whip solution shown in Figure 27a is steady and repetitive; however, increasing speed 

induces a 2Ω harmonic that eventually excites the 605.8 Hz whirl motion illustrated in 

Figure 27d.  The competing whirl orbits in Figure 27 (b,c) might be the cause for the 

decrease in amplitude during whip discussed earlier.  
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(a) Rotor Speed ωrot=  100 rpm, Ω=395.7 Hz
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(b) Rotor Speed ωrot=  115 rpm, Ω=400.6 Hz
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(c) Rotor Speed ωrot=  130 rpm, Ω=405.5 Hz
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(d) Rotor Speed ωrot=  150 rpm, Ω=605.8 Hz
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Figure 27 Physical orbits captured by probes during whip showing unsteady characteristics 

 

Why is preference shown to one solution over another?  The most likely 

explanation is the relationship between relative surface velocity and coulomb friction.  

An increase in relative surface velocity between two bodies usually corresponds to a 

decrease in available traction angle [19], thus favoring solutions based on their proximity 

to whirl.  The spectrogram in Figure 25 shows that sidebands are not a necessary element 

to induce a frequency jump.  In jumping from the second to the third whip frequency, a 

jump is excited simply by proximity to whirl. 

 A jump to orbital frequencies nearest in proximity to whirl was not always seen, 

as shown in Figure 28.  This case represents a response of the Babbitt-coated surface that 

was excited at 250 rpm, previously seen to excite a surplus of whirl regions throughout its 

traverse. 
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Figure 28 First whip mode for Babbitt bearing prevalent over higher modes 

 

SIMULATION VALIDATION 

 

 How does the simulated whip and whirl behavior compare to the measured whip 

and whirl data?  Before comparing results to predictions, a few inconsistencies must be 

addressed.  The most significant discrepancy between simulated and experimental whip 

and whirl data is the nature of data analysis.  While a group of experimental data was 

taken in close proximity to a rotor speed, the frequency spectrum represents a range of 

speeds.  This contrasts with simulation data, which corresponds to motion at a specific 

rotor speed.  This difference will tend to increase the bandwidth of an observed peak and 

decrease its magnitude in experimental analysis.  The second proviso that must be placed 

on data comparison concerns the variation of friction coefficient in experiments versus a 

constant friction coefficient in simulations.  This difference could skew the amplitude and 

frequency of whip and whirl orbits in experimental data because both depend on the 

available friction coefficient.  Last, remember that the extreme amplitudes experienced in 

experiments could have placed some sensors outside of their linear range.  Two of the 

probes were destroyed due to contact with the rotor, which occurred during late test 

cases.  Vibrations caused these probes to loosen and shift towards the rotor, resulting in 

contact at a decreased clearance.    
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Whip and Whirl Frequencies 

 

 The first comparison between experimental and simulation data will be the main 

component of precession frequency versus rotor speed.  Figure 29 shows a comparison 

between Simulation 2 and Case 13, which have the same predicted precession frequency 

ratio. 
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Figure 29 Comparison of measured and predicted backward precession frequencies 

 

From this plot, the difference between the actual and predicted precession 

frequency is evident, appearing slightly higher for the test case.  Even though this 

difference affects whirl frequencies, the frequencies at which the simulation and 

experiment transition to whip are very close, deviating only at frequencies above 800 Hz; 

this deviation could occur due to unknown structural properties.  The simulation model 

does not excite the second whirl/whip region, despite the observation of this mode in test 

data.  This whirl region is located from 429.6 – 565.7 Hz, and lies between the first and 
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second bending modes of the rotor.  This mode is characterized by large deflections at the 

pedestals, which were damped in the model to ensure that motion was within reasonable 

limits.  The increased damping of this vibration mode could explain the absence of this 

whirl region in simulations.  Overall, the whirl orbits obtained in simulations approximate 

within reason the orbits measured in experiments. 

 

Amplitude Comparison 

 

Figure 30 shows the amplitudes obtained during a simulation of the bearing used 

in Cases 20, 21.   
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Figure 30 Predicted backward precession amplitude versus speed for all probes 

 

In comparison to actual amplitudes given in Figure 15 for Case 20, the 

simulations produced slightly larger amplitudes.  In addition, the simulations produced a 

more fluid absolute amplitude plot; whereas, experimental measurements were 
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quicksilver in nature.  Figure 31 illustrates simulation data comparable to the test data 

given in Figure 16. 

 

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

4

5

Speed (rpm)

A
m

pl
itu

de
 (R

el
at

iv
e 

to
 P

ro
be

 1
, |

P n| /
 |P

1|)

Relative Backward Precession Amplitude vs. Speed

 

 
Sim:3, Prox:1, Dn
Sim:3, Prox:2, Dn
Sim:3, Prox:3, Dn
Sim:3, Prox:4, Dn

 
Figure 31 Predicted backward precession amplitude relative to probe 1 versus speed for all probes 

 

By comparison to the experimental data, the amplitudes measured at probe 1 are 

significantly larger than in simulations.  This variation could be a result of a difference 

between the actual and theoretical rub locations.  The theoretical rub location was the 

center of the rub surface; however, during different modes, the actual rub location could 

have been located on the outside or inside of the rub surface.  This could affect both the 

observed amplitude, and excitability of a given solution.  Another aspect that could affect 

comparison of probe measurements includes pitch and yaw rotation of the test pedestal, 

which was not accounted for in simulations.  A side by side comparison of the measured 

and predicted relative amplitudes is shown in Figure 32. 
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Figure 32 Predicted and measured backward precession amplitude relative to probe 1 versus speed 

 

Nature of Frequency Spectrum 

 

 Figure 33 shows a waterfall plot for vibrations predicted in Simulation 2.  The 

comparison of simulation frequency spectra as compared to experiments reveals that 

there are harmonic sidebands predicted during whip but not during whirl.  In addition, the 

sidebands seem to be drastically different during higher-frequency whip regions than 

observed in experiments.  Overall, the spectra bear good resemblance to their 

experimental counterpart. 
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Figure 33 Frequency spectra for simulation 2 at probe 1 
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CHAPTER VI 

CONCLUSION 
 

 The present thesis looks at characteristics unique to the phenomena of dry-friction 

whip and whirl and the ability of modern simulation tools to accurately model the 

instability.  This chapter will present the accomplishments provided by the research and 

recommend focal points for future investigations. 

 

EXPERIMENTAL ACHIEVEMENTS 

 

 Through the cumulative effort of the author, Dyck [15], Pavalek [40], and 

affiliated researchers, a dry-friction whip and whirl test rig was designed and constructed 

that demonstrated and recorded accurately the nature of multi-mode dry-friction whip and 

whirl.  The test-rig’s drive system could deliver accurate acceleration and deceleration 

profiles while sustaining dry-friction instabilities.  This was accomplished by employing 

accurate feedback control to a 30 HP motor and attached gear reducer to deliver torques 

up to 1848 in-lb (210 N-m) for rotor speeds up to 240 rpm.  Design of the test rig enabled 

the testing of several rub surfaces to examine the effect of bearing material and clearance 

on dry-friction whip and whirl.  The data obtained on the TAMU Whip and Whirl Test 

Rig is the best available for dry-friction whip and whirl behavior. 

 

ON THE NATURE OF MULTI-MODE DRY-FRICTION WHIP AND WHIRL 

 

 Analysis of experimental data provided by the test rig revealed several interesting 

facets of dry-friction whip and whirl in a realistic machine.  Some of these conclusions 

echo fundamentals established by previous authors; however, others have no precedent 

and are founded solely on data provided by this work. 

 The results confirmed that dry-friction motion falls into the following regions: 

• Dry-friction whirl in which the precession-frequency ratio is roughly proportional 

to the radius-to-clearance ratio at the contact location. 
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• Dry-friction whip in which the rotor precesses at a frequency close to a combined 

natural frequency of the connected rotor and stator system. 

These regions, however, were not solely defined by rotor speed due the existence of 

multiple attractive orbits at a given rotor speed.  The rotor speed can increase and 

decrease through regions characterized by whip, terminating with jumps to different 

whirl/whip frequencies.  These frequencies are usually close in proximity to the predicted 

whirl frequency, which are assumed to have a higher friction coefficient due to a 

reduction in rotor-stator relative surface velocity [19].  The possibility of a jump alone 

was not sufficient to guarantee one, as some cases maintained a constant whip frequency 

throughout several possible whirl ranges.  The failure to excite higher modes in these 

cases was possibly a lack of friction, created by some unknown environmental variable. 

 In observation of the frequency spectrum provided by probe data, the presence of 

harmonic sidebands was noted.  They are suspected to result from structural asymmetry 

of the test pedestals in combination with the nonlinear stiffness provided by the rub 

location.  These harmonics became more prevalent in whip, sometimes exciting higher 

whirl frequencies. 

 Data analysis shows measured precession-frequency ratios that are greater than 

those predicted by the radius-to-clearance ratio at the rub surface.  This deviation was 

minimal for larger clearances while becoming pronounced for smaller clearances.  Some 

variation in these values might be attributed to changes in thermal properties of the 

system or wear of the rub surface, while others are unexplained.  Rapid increases of the 

measured whirl frequency ratio were noted for some cases having large radius-to-

clearance ratios, reaching 250% the predicted precession frequency ratio. 

 Dry-friction whip and whirl testing on different bearing configurations resulted in 

a variety of whirl frequency ratios and whirl ranges; however, the frequencies at which 

the shaft whipped were constant for all test cases. 

 

ON THE VALIDITY OF THE SIMULATION MODEL 

   

 The ability of the simulation model to produce accurate whip and whirl 

characteristics relies on two aspects.  First, the model must properly account for the 
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structural properties of the system to be examined.  Second, the model used to represent 

rub must accurately describe the characteristics of the actual rub surface. 

 As to the suitability of the model in accomplishing the first objective, the model 

performed adequately.  The simulations accurately predicted the first few fundamental 

modes of the test rig, resulting in very accurate whip and whirl regions through the 

second rotor mode at 800 Hz.  Although there were deviations between predicted and 

observed motions, improvements would require the development of a more sophisticated 

structural model of the test stand; this improvement would require the utilization of 

commercial structural analysis tools.  The most significant failure of the structural model 

was the inability to excite one of the intermediate modes that was seen in experiments.  

This failure could be a result of improper modal damping, which was intentionally 

increased to yield acceptable motions of the pedestals, or the friction coefficient used in 

the rub model.  The amplitudes produced by the test rig were slightly smaller than those 

seen in simulations.  This was attributed to the nature of data processing, as well the lack 

of detailed structural properties of the test stand. 

 In light of the characteristics that have the greatest significance, the nonlinear 

contact model and applied coulomb friction perform adequately.  The deviation between 

actual and theoretical whirl frequencies illustrated by test data is not a characteristic that 

is exhibited in simulations; the simulations abide closely to the predicted whirl frequency 

ratio, deviating only slightly when approaching whip. 

 Overall, the ability of the simulations to yield accurate whip and whirl frequencies 

and amplitudes relies on the ability to model accurately the structural properties of the 

system and the rub surface.  For the model used to simulate whip and whirl behavior for 

the TAMU Dry-friction Whip and Whirl Test Rig, comparisons were deemed acceptable. 

  

DIRECTION FOR FUTURE RESEARCH 

 

 There are several topics that could be addressed to further improve the 

fundamental knowledge and predictive capabilities of dry-friction whip and whirl.  These 

topics include a mixture of theoretical, experimental, and numerical investigations on the 

subject. 
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Development of a More Accurate Rub Model 

 

 A parametric investigation of the whirl frequency ratio as related to bearing 

clearance, clearance ratio, material, and whirl frequency would help in the development 

of a more accurate mechanical rub model.  Such a model might accurately predict the 

complex dynamic reactions present at the rub surface, and would likely require the use of 

a finite element rotor and stator at the rub location.  Additional improvements to the rub 

model include modeling thermal changes and surface wear.  In some cases, a significant 

amount of material was removed from the surfaces of the bearing; this resulted in dry-

lubrication of the contact surfaces and ultimately diminished or prevented subsequent 

dry-friction whirl. 

 Experimental investigation of dry-friction motion with the capability to measure 

the thermal properties of the rotor and rub surface would help to establish the importance 

of temperature during dry-friction whip and whirl.  These properties are important not 

only due to their affect on dimensional quantities, but on the friction coefficient, elastic 

modulus, and fracture mechanics of the rubbing surfaces.   

 

Inclusion of a Sophisticated Structural Model 

 

 One of the largest unknown factors encountered in the modeling process was how 

to accurately model the structural properties of the base of the test rig.  Isolating the base 

of the test stand using soft supports prevented the transmission of large forces to the 

ground, thus allowing the base of the test stand to be modeled as an inertial frame.  The 

difficulty was in accounting for motion occurring between the contact locations in the test 

and support pedestals.  The solution was to model each pedestal as a single mass system, 

having horizontal and vertical natural frequencies similar to those observed on the test 

rig.  This resulted in the dismissal of torsional modes, which were certainly activated due 

to the location of the rub surface in the test pedestal and the cantilevered bearing in the 

support pedestal.  The ability to accurately include the structural properties of the support 

in the simulation model would greatly improve the accuracy of the predicted motions. 
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NOMENCLATURE 
 

AFRL Air Force Research Laboratory  

ALH Advanced Liquid Hydrogen  

AMB Active Magnetic Bearing  

Cr Radial Clearance at the Rub Surface in (m) 

FF Friction Force at Contact Location lb (N) 

FFT Fast-Fourier Transform  

N Normal Force at the Contact Location lb (N) 

NGST Northrop Grumman Space Technology  

Or, Os Center of the Rotor and Stator  

P Complex Contact Force lb (N) 

P&W Pratt & Whitney  

PFR Precession-Frequency Ratio  

R Rotor Radius at the Contact Location in (m) 

RSR Rotordynamics Seal Research  

Vt Relative Tangential Surface Velocity at Contact in/s (m/s) 

TAMU Texas A&M University  

USET Upper Stage Engine Technology   

Zr, Zs Complex Rotor and Stator Displacements in (m) 

a Rotor Mass Imbalance  in (m) 

cnl Nonlinear Contact Damping lb.s/in2 (N.s/m2) 

cr, cs Rotor and Stator Damping Coefficients lb.s/in (N.s/m) 

e Shorthand for Exponential Function eln(x)=x - 

j Imaginary Unit 1j = −  - 

knl,1, 

knl,2 

Nonlinear Contact Stiffness lb/in, lb/in2 

(N/m, N/m2) 

kr, ks Rotor and Stator Stiffness lb/in (N/m) 

mr, ms Rotor and Stator Mass lb.s/in (kg) 

t Time s 
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xr, xs Rotor and Stator Displacements Along the x-axis in (m) 

yr, ys Rotor and Stator Displacements Along the y-axis in (m) 

zr, zs Complex Rotor and Stator Solutions Satisfying IC’s at t=0 in (m) 

α11, β11 Complex Rotor and Stator Receptances, 

( ) 2
1

11
r r rk m j c

α
− Ω − Ω

−Ω =  

in/lb (m/N) 

,δ δ  Normal Contact Displacement and Velocity  in, in/s (m, m/s) 

γ  Angle Between Clearance Vector x-axis rad 

oγ  Angle Between Imbalance Vector and Clearance Vector rad 

μ Friction Coefficient which Satisfies Whirl - 

μd Available Coulomb Friction Coefficient - 

Ω Rotor Precession Frequency rad/sec 

ω Rotor Speed rad/sec 

ωn,comb Combined Natural Frequency of the Rotor-Stator System rad/sec 

φ  Traction Angle at Contact Location - 

ξ Angle Between Clearance and Imbalance Vector rad 
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APPENDIX A 

CROSS-REFERENCE CHART 
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APPENDIX B 

 TEST CASE MATRIX 
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