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ABSTRACT

Automatic Assignment of Protein Function with Supervised

Classifiers. (August 2008)

Jae Hee Jung, B.S., Dongduk Women’s University;

M.S., Korea University

Chair of Advisory Committee: Dr. Michael R. Thon

High-throughput genome sequencing and sequence analysis technologies have

created the need for automated annotation and analysis of large sets of genes. The

Gene Ontology (GO) provides a common controlled vocabulary for describing gene

function. However, the process for annotating proteins with GO terms is usually

through a tedious manual curation process by trained professional annotators. With

the wealth of genomic data that are now available, there is a need for accurate auto-

mated annotation methods.

The overall objective of my research is to improve our ability to automatically an-

notate proteins with GO terms. The first method, Automatic Annotation of Protein

Functional Class (AAPFC), employs protein functional domains as features and learns

independent Support Vector Machine classifiers for each GO term. This approach re-

lies only on protein functional domains as features, and demonstrates that statistical

pattern recognition can outperform expert curated mapping of protein functional

domain features to protein functions. The second method Predict of Gene Ontology

(PoGO) describes a meta-classification method that integrates multiple heterogeneous

data sources. This method leads to improved performance than the protein domain

method can achieve alone.

Apart from these two methods, several systems have been developed that em-

ploy pattern recognition to assign gene function using a variety of features, such as



iv

the sequence similarity, presence of protein functional domains and gene expression

patterns. Most of these approaches have not considered the hierarchical relationships

among the terms in the form of a directed acyclic graph (DAG). The DAG represents

the functional relationships between the GO terms, thus it should be an important

component of an automated annotation system. I describe a Bayesian network used as

a multi-layered classifier that incorporates the relationships among GO terms found in

the GO DAG. I also describe an inference algorithm for quickly assigning GO terms

to unlabeled proteins. A comparative analysis of the method to other previously

described annotation systems shows that the method provides improved annotation

accuracy when the performance of individual GO terms are compared. More impor-

tantly, this method enables the classification of significantly more GO terms to more

proteins than was previously possible.
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CHAPTER I

INTRODUCTION

A. Motivation

Since the development of high-throughput genome sequencing and gene annotation

methods, large sets of genes and predicted gene products are available. However,

the functions of many of these genes are still unknown, i.e., they remain unanno-

tated. Biologists deduce protein function through experimentation but knowledge

of gene function derived in this fashion is laborious and expensive. Traditionally,

protein function is expressed as free text descriptions, but recently, controlled vocab-

ularies of various types have been employed. The Gene Ontology (GO) [1], which

is a controlled vocabulary of terms for annotating proteins, is used to represent pro-

tein function. Every GO term has a unique numerical identifier that represents the

gene function. Each GO term is assigned to one of the three categories of molecular

function, biological process or cellular component. These terms are organized into a

Directed Acyclic Graph (DAG) which provides a rich framework for describing the

function of proteins. Each GO term has a more specific GO term (child) and more

than one less specific term (parent). For example, GO:0006750 in Fig. 1 has three

parent terms, GO:0044427, GO:0006749 and GO:0009108, which are more general

functions than GO:0006750. GO are assigned by curators who examine references in

the scientific literature as well as the features of proteins. Given the wealth of genome

data that are available now, one of the most important problems for researchers is

to devise the best computational model that can accurately predict protein functions

from the available evidence.

The journal model is IEEE Transactions on Automatic Control.
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GO:0008150
 biological process

GO:0009987
 cellular process

GO:0008152
 metabolic process

GO:0044237
 cellular metabolic process

GO:0009058
 biosynthetic process

GO:0044249
 cellular biosynthetic process

GO:0051188
 cofactor biosynthetic process

GO:0044272
 sulfur compound 

 biosynthetic process

GO:0009108
 coenzyme biosynthetic process

GO:0006750
 glutanthione biosynthetic process

GO:0005186
 cofactor metabolic process

GO:0006790
 sulfur metabolic process

GO:0006732
 coenzyme metabolic process

GO:0006749
 glutathione metabolic process

Fig. 1. The glutathione biosynthesis biological process overview in the GO structure.

Manual gene curation remains the de facto standard for high quality functional

annotations, however, it is too slow and labor intensive to apply to draft genome

annotations that change frequently. Nevertheless, functional annotations improve

the value of hypothetical genes, enabling their use in whole genome analyses such

as microarray analyses. Thus, there is a strong motivation to find efficient auto-

mated methods of the functional annotation. Automated annotation can take on

several forms. Simple decision-making logic, such as transferring annotations from

top BLAST hits is often used to provide preliminary annotations for proteins or

expressed sequence tags (ESTs). Manually curated mapping between vocabularies

such as the InterPro2GO mapping is also used to convert annotations from disparate

sources into a common controlled vocabulary. The GOA project relies on several
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mappings to provide automated GO annotations for users ([2, 3]).

Various kinds of annotation systems [4, 5] are being developed for automated

prediction of GO terms, but most methods rely on the identification of similar proteins

in large databases of annotated proteins [6, 7, 8, 9]. OntoBlast matches GO terms to

new proteins using a gene association link based on similarity [6]. Goblet [7] counts

the cumulative GO terms obtained from the BLAST output, and then systematically

assigns common parent GO terms. The predicted terms offer the broad function

rather than the specific meaning, because the predicted level in the GO structure

is relatively higher than the GO terms of the BLAST hits. GoFigure [8] is a web

server that searches the homology and constructs the minimum covering graph and

annotating terms. These terms are assigned based on the score of BLAST e-value

and the given threshold value. Gotcha [9] provides a normalized confidence value for

the relationships between the sequence similarity search and the GO tree. All these

systems are based on the assumption that if two sequences have a high degree of

similarity, they have evolved from a common ancestor and so have a similar function.

The protein domain is basically localized regions of high sequence similarity that

have defined functions. Many databases including Prosite, Prints, Pfam, ProDom,

SMART, and PIR SuperFamily are sequence-domain-based databases. Thus, I sug-

gest a new model with the protein domain property. The European Bioinformatics In-

stitute (EBI) has created a federated database called InterPro (IPR) [10] which serves

as a central reference for several protein families and functional domain databases.

These functional domain data serve as useful resources for understanding protein func-

tion. Schug et al. [11] use ProDom [12] and the NCBI Conserved Domain Database

(CDD) [13] as features and assign the most common functions in the protein family.

This approach is also based on the BLAST results and assigns the most common

protein domain as a function. This is a relatively conservative approach. In addition,
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the InterPro consortium also maintains an InterPro2GO translation table that allows

GO terms to be assigned to proteins automatically, on the basis of the domain content

of the protein.

Human-curated gene annotators rely on features (evidence) derived from a variety

of sources, thus, a supervised classifier that tries to emulate this approach needs

to combine heterogeneous data sources. I add additional feature sets to the second

classifier that I describe in this dissertation. Prediction of Gene Ontology terms with a

multi-feature learning scheme (PoGO) involves adding more feature sets by employing

a multi-layered classifier. I describe a multi-layered classifier which comprises a base-

classifier and a meta-classifier. A base-classifier is a single classifier with each feature

and a meta-classifier is combining these feature sets. In order to distinguish the

original meta-learning classifier, which usually use same feature domain but different

learners in the second layer, I use the term multi-layered classifier. Various studies

describe the integration of many feature sets, such as combining networks of functional

linkages [14, 15, 16]. These approaches are based on two genes that are functionally

linked, when two genes have similar phylogenetic profiles. But this approach uses

very simple, heuristic inferences. Pellegrini et al. [16] also integrate a trained SVM.

Troyanskaya et al. [17] proposed using hierarchical information for the combining of

data. However, this method does not consider the data properties but just merges

all feature sets. Thus, I suggest a method for merging the various feature sets that

considers data properties and uses a multi-layered learning classifier. In comparison to

my previous approach (AAPFC), the additional heterogeneous data sources increases

the classifiers performance. I will show overall performance matrices measured with

sensitivity, precision, and F-measure.

One of the basic properties of two approaches described above is that each GO

classifier is independent and makes no consideration of the DAG structure of the GO.
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Eisner et al. have [18] shown that hierarchical information contributes to the improved

classifier performance when they included ancestor and descendant relationships in

their training sets. Shahbaba and Neal [19] also suggested the hierarchical model, but

one in which each node has only one parent node, whose property is not enough to be

applied to the GO structure. Deng et al. and Troyanskaya et al. [20, 21] employed

a Bayesian network to combine the various types of data considered, however, this

approach considers the combination of the different types of data sets with a Bayesian

network rather than the GO structure itself. Hence, I propose two methods using a

Bayesian network with a protein domain, or multi-label classifier that incorporates

the relationships between the terms found in the GO DAG. This approach enables

us to determine the importance of GO structural information by comparing non-

hierarchical model to the hierarchical model using the same feature sets. The result

will be analyzed based on the comparison between the different tools or shared GO

terms in previous models.

B. Objectives

The overall objective of the proposed research is to improve our ability to automat-

ically annotate proteins with GO terms. I propose three methods which automati-

cally assign GO terms by applying techniques of statistical pattern recognition. Each

method employs different methods with different attributes. The first method is a

classifier for each GO term using protein domains as features. This simple method

outperforms other publically available methods. The second approach is a multi-

layered learner using multi-features, which enables us to apply proteins that have no

InterPro terms. The third one is a classifier that makes use of the GO hierarchical

structure. One of the major differences between those three methods is that the third
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method considers GO hierarchical properties, where the two former methods assume

that the GO terms are independent. Moreover, the third method uses all fungi GO

terms, while AAPFC and PoGO use only restricted GO terms. Based on the three

proposed methods, I evaluate the predicted accuracy in fungi.

• Automatic annotation of protein functional class from sparse and

imbalanced data sets (AAPFC)

The availability of protein data sets annotated with GO terms and InterPro domains

provides an opportunity to study the extent to which InterPro can be used to predict

GO terms. However, this approach creates sparse data sets with highly imbalanced

class distribution. These problems can be overcome by using standard feature and

instance selection methods. In the preliminary test, I will train Support Vector Ma-

chines (SVM) with several objective functions for the feature selection and four dif-

ferent sampling techniques for the instance selection. Finally, I set up the optimized

model with SVM and I intend to demonstrate that a supervised learning approach

using InterPro terms as features outperforms the manually curated mapping table, as

well as several other publically available annotation tools. including Gotcha, GOPET

and GOFigure. Moreover, taxon-specific models are compared to the general model,

because I use the fungi-specific models in this dissertation.

Many studies use taxon-specific data, i.e., protein data sets derived from a small

number of closely related species such as fungi and bacteria [22, 20, 21]. Since these

data sets are small, they are subject to over-fitting, which is one issue for taxon-specific

model. Over-fitting can be caused by the amount of training, too many parameters or

small training sets. In this dissertation, I will also show that taxon-specific supervised

classifiers can outperform the non-specific classifiers that are trained with larger data

sets. In addition, I plan to prove that taxon-specific model is not over-fitted.
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Two supplementary experiments are presented. One demonstrates the effect of

different amount of training on the different species. The learning models in AAPFC

depend on the positive training size, because the training data is composed of the

same size of number of positive and negative instances, where the positive instances

are the proteins which are annotated by a specific GO term. In order to show the

different performances of various training sizes on the same classifiers, I plan to use

various taxon-specific data sets. However, the above experiment have different tested

sets, i.e., the large taxon-specific model is tested by many proteins, resulting in being

a lower performance. Thus, the other experiment creates the same sized training sets

in fungi and sampled Uniprot. By creating a same size of training sets, I will be able

to viably contrast the performance.

• Prediction of GO (PoGO): A multi-feature learning scheme for as-

signing Gene Ontology terms to proteins

A problem with AAPFC is that it depends on functional domain alone to assign

the GO term. In order to enhance the prediction performance, multi-feature types

will be employed as a feature. The treated features are protein functional domains,

sequence similarities, bio-chemical properties and protein structure information. Us-

ing these feature sets, I build two-layered models which contain base-classifiers and

a meta-classifier. The base-classifier is the same approach as that in AAPFC and

the meta-classifier allows for further learning from the results of the base-classifier,

where the result of the base-classifier is produced from the two feature subsets. Each

feature in a base-classifier is trained and tested by SVM or adaboosting depending

on the data properties. The binary format data is trained with the designated GO

term with the Näıve bayes in a meta-classifier, since each feature set is independent.

Based on 10-fold cross validation, I will compare the performances between a single

classifier and a multi-layered learning classifier and demonstrate the superiority of
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the multi-layered learning approach.

• Gene functional prediction using hierarchical Gene Ontology infor-

mation

For two described approaches, I assume that the training models are independent

for each GO term. However, the GO has the structure of a Directed Acyclic Graph

(DAG). Moreover, the dimension reduction in the form of features and instance selec-

tion results in lost information. In order to overcome these shortcomings, I propose the

hierarchical GO-structured model with InterPro terms or multi-features by the condi-

tional probability, where the treated classifiers are whole fungi rather than restricted

GO terms. A training model is the conditional probability which is the Näıve bayes

probability of the functional domain features or multi-feature sets in the Uniprot,

given the true or false state of the GO terms, since all features are independent.

With this training model, I construct the Bayesian network and assign the gene func-

tion. A comparative analysis of the method to other previously described annotation

systems shows that this method provides improved accuracy when the performances

of individual GO terms are compared. The number of GO terms and the number of

annotated proteins are also greatly increased because this approach is effected using

embedding hierarchical information, unlike the previous two approaches.

• Evaluation of each learning method and implementation

I compare the performance of my new methods to several published automated GO

annotation tools, including GOPET, Gotcha, GOFigure and InterPro2GO. I use sen-

sitivity, specificity, precision and F-measure as performance metrics. Sensitivity is

the proportion of GO term annotations in the training data sets that were correctly

predicted by the classifier and specificity is the proportion of GO term annotations

not found in the training data sets that were correctly NOT predicted by the classi-

fier. Precision is the proportion of GO term in a training sets that original training
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sets have. Sensitivity and precision are also combined into a single metric called

F-measure which is used as an overall performance metric. Since most tools are web-

based systems, their performance is analyzed using randomly selected proteins form

my training data sets. Moreover, all proposed methods are evaluated by the 10-fold

cross validation and compared using the F-measure value in a various aspect. Among

the four different performance matrices, F-measure is employed for the comparison

to other tools and for deciding the cut-off level.

With these four objectives, I organize the dissertation as follows. In Chapter II, I

describe a method for assigning GO terms to proteins using InterPro terms as features

and learning independent SVMs for each GO term. In addition, I demonstrate that a

taxon-specific model outperforms any general training models through a comparison

of various taxon-specific training models. In Chapter III, I review the related work on

the multi-layered classifier and proposed a multi-layered method using heterogeneous

data. I also show that this approach assigns GO terms to more proteins than a single

feature set. In Chapter IV, I discuss the importance of the hierarchical structure for

GO term classifiers. Based on the GO DAG structure, a novel classifier based on a

Bayesian network is suggested. The performance metrics are compared to those of

previous approaches. In Chapter V, I summarize my contributions to gene functional

prediction and conclude the dissertation by discussing future works.
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CHAPTER II

AAPFC: AUTOMATIC ANNOTATION OF PROTEIN FUNCTIONAL CLASS

FROM SPARSE AND IMBALANCED DATA SETS

A. Related Work

High-throughput genome sequencing and gene annotation methods have resulted in

the availability of large sets of genes and predicted gene products (proteins), and to

a large extent, the functions of many of these genes are still unknown, i.e., they are

unannotated. Given the wealth of genome data that are available now, one of the

central problems facing researchers is the accurate prediction of protein function based

on computationally obtained features of the proteins and the genes from which they

are derived. Such computationally predicted functions are useful to guide laboratory

experimentation and as an interim annotation, until protein function can be validated

experimentally. Traditionally, protein function is expressed as free text descriptions,

but recently controlled vocabularies of various types have been employed. The Gene

Ontology (GO) [1] provides a controlled vocabulary or terms for annotating proteins.

In addition, the GO consortium describes the relationships among the terms with a

directed acyclic graph (DAG), providing a rich framework for describing the function

of proteins. GO terms are often assigned to proteins by teams of curators, who

examine references in the scientific literature as well as features of the proteins. One

of the central problems facing computational biologists is how to emulate this process.

As the need for GO annotation increases, various kinds of annotation systems are

being developed for automated prediction of GO terms [5]. Most methods rely on the

identification of similar proteins in large databases of annotated proteins. GOtcha [9]

utilizes properties of the protein sequence similarity search results (BLAST) such as
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the p-score, for predicting an association between the protein and a set of nodes in the

GO graph. Several other recently described methods, including GoFigure [8], Goblet

[7], and OntoBlast [6] depend on sequence similarity searches of large databases to

obtain features that are used for predicting GO terms. These tools employ only

BLAST [23] results as attributes for prediction of GO terms, however, several systems

utilize features besides BLAST search results. Vinayagam et el. [24, 25] suggest a

method to predict GO terms using SVM and feature sets including sequence similarity,

frequency score of the GO terms, and the GO term relationship between similar

proteins. Al-shahib et el. [26] use amino acid composition, amino acid pair ratios,

protein length, molecular weight, isoelectric point, hydropathy and aliphatic index as

features for SVM classifiers to predict protein function. King et el. [27] employ not

only sequence similarity, but also bio-chemical attributes such as molecular weight,

and percentage amino acid content. Pavlidis et el. [28, 29] predict gene function from

heterogeneous data sets derived from DNA microarray hybridization experiments and

phylogenetic profiles.

The availability of protein data sets annotated with GO terms and InterPro

domains provides an opportunity to study the extent to which InterPro can be used

to predict GO terms. The InterPro database contains over 12,000 entries and the

GO contains over 19,000, but proteins are usually annotated with a few terms from

each database, resulting in a sparse data set. In addition, a large set of proteins will

contain only a few positive examples of each GO term, leading to extremely biased

class distribution in which less than 1% of the training instances represent positive

examples of a GO term.

Many studies have shown that standard classification algorithms perform poorly

with imbalanced class distribution [30, 31, 32]. The most common method to over-

come this problem is through re-sampling of the data to form a balanced data set.
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Re-sampling methods may under-sample the majority class, over-sample the minor-

ity class, or use a combination of both approaches. A potential drawback of under-

sampling is that effective instances can be ignored. Over-sampling, however, is not

without its problems. The most common approach is to duplicate instances from

the minority class, but Ling et el. [33] show that this approach often does not

offer significant improvements in performance of the classifier, as compared to the

imbalanced data set. The other approach is the Synthetic Minority Over-sampling

Technique (SMOTE) [34], which is an over-sampling technique with replacement in

which new synthetic instances are created, rather than simply duplicating existing

instances. Under-sampling can potentially be used to avoid the problems of over-

sampling [31, 35]. Under-sampling removes instances from the majority class to create

a smaller, balanced data set. While other approaches such as feature weighting can

be employed, under-sampling has the added benefit of reducing the number of train-

ing instances that are required for training, thus reducing the difficulties of training

pattern recognition algorithms on very large data sets.

In this chapter, I consider the application of statistical pattern recognition tech-

niques to classify proteins with GO terms, using InterPro terms as the feature set. I

show that many of the problems associated with sparse and imbalanced data sets can

be overcome with standard feature and instance selection methods. Feature selection

in an extremely sparse feature space can produce instances that lack any positive fea-

tures, leading to a subset of identical instances in the majority class. By selectively

removing these duplicated instances, or keeping them, I trained two SVMs that have

different performance characteristics. I describe a meta-learning scheme that com-

bines both models, resulting in a more improved performance than can be obtained

by using SVM alone.
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Table I. Examples of randomly selected classes (GO terms) and features (InterPro

terms) illustrating the imbalanced and sparse nature of the data set.

GO term Number of Positive Examples Number of Negative Examples

GO:0000001 22 4568

GO:0000022 15 4575

GO:0000776 12 4578

GO:0005635 35 4555

GO term Number of Positive Examples Number of Negative Examples

IPR000002 5 4585

IPR000009 2 4588

IPR000073 13 4577

IPR000120 2 4588

B. Proposed Method

1. Data Set

The data set used for this study was comprised of 4590 annotated proteins from the

Saccharomyces cerevisiae (Yeast) genome obtained from the UniProt database [36].

This protein contains manually curated GO annotations as well as InterPro terms

automatically assigned with the InterPro Scan [37].

The data set contains 2602 InterPro terms and 2714 GO terms with an average

of 2.06 InterPro terms and 3.99 GO terms assigned to each protein. Table 1 illustrates
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the imbalanced nature of the data set. In this study, each GO term was considered

as an independent binary classification problem and therefore, all proteins annotated

with a GO term are treated as positive instances (GO+) and the remaining proteins

are treated as negative instances (GO-), resulting in a highly biased class and feature

distribution. For the purpose of this study, I only considered data sets that contained

at least 10 GO+ proteins. Therefore, proteins annotated only with GO terms that

did not meet this criterion were removed from the data set, resulting in a reduction

of the size of the data set to 4347 proteins.

2. Under-Sampling

Several methods are available for creating balanced data sets. If the features are

continuous, I can perform over-sampling using methods such as SMOTE [34] which

create a new interpolated value for each new instance. In this case, however, the data

set is binary format so this method cannot be used. Chawla et al. [34] described that

under-sampling is slightly better performance in terms of costs and class distribution.

Another issue about the under-sampling is how the ratio positive versus negative

to make a balanced set is optimized for training. On the point of dealing with the

imbalanced data problem, Al-shahib et el. [26] applied various under-sampling rates

from 0% to 100% and conclude that the fully balanced set which has the same number

of positives and negatives, gives the best performance. In light of this prior work, I

performed under-sampling to create fully balanced data sets for each GO term.

For each data set, I performed under-sampling of the majority class (GO-negative

proteins) to create a balanced data set for SVM induction. I compared the perfor-

mance of four under-sampling methods: Farthest, Nearest, Cluster and Random. In

the first two cases, I used Euclidean distance, computed on the basis of the InterPro

terms content of each protein as a measure of distance. The Farthest and Near-
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est methods select proteins from the negative class that have the greatest and least

distance from the positive class, respectively. The Cluster method first performs hi-

erarchical clustering of the negative class where the number of clusters formed equals

the number of instances in the positive class. A single protein from each cluster is

selected randomly. The Random method randomly selects proteins from the negative

class.

Let DAll be the set of all of IPR and GO data. I define the example of the

data set as DAll = {(Xi, Yj)| i, j=1,· · · ,k }, where k is the number of proteins, and

X=(x1, x2, · · · , xl) ∈ IPR{0,1} are feature vectors, and l is the number of InterPro

(IPR) features in the data set. Y=(y1, y2, · · · , ym) ∈ GO={0,1} is the class designa-

tion (GO terms) and m is the number of GO terms in the data set.

3. Feature Selection

I employed four different objective functions for feature selection: chi-squared (χ2),

information gain, symmetrical uncertainty, and the correlation coefficient. Classical

linear correlation [38] measures the degree of correlation between features and classes,

and ranges from -1 to 1. If the features and the class are totally independent, then the

correlation coefficient is 0. The traditional linear correlation method is very simple

to calculate, but it assumes that there is a linear relationship between the class and

the feature, which is not always true [38]. To overcome this shortcoming, the other

correlation measures based on the theoretical concept of entropy were also assessed

for feature selection. Information gain is a measurement based on entropy, and mea-

sures the number of bits of information obtained for class prediction [39]. However,

information gain has a non-normalized value and it is biased toward of features with

more value. To compensate for this disadvantage, the symmetrical uncertainty value

is normalized from 0 to 1 and un-biased in terms of feature content. The idea of
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symmetrical uncertainty is based on the information gain, but the applied value is

normalized and un-biased toward features with more value [38]. When calculating

the contingency between features and a class of interest, the χ2 statistic measures the

lack of independence. As the χ2 statistic values increases, the dependency between

features and classes also increases [39, 38].

The features were ranked using each of the objective values, and a sequential

forward selection search algorithm was used for feature selection. Forward selection

was used since it is considered to be computationally more efficient than backward

elimination [40, 41]. The feature inclusion threshold for 12 randomly selected data sets

was determined by computing the error rate during each stepwise feature addition

and finding the minimal error rate. The average threshold value for the 12 data

sets was used for the remaining data sets. Chi-square(χ2) was used to calculate the

contingency between features and a class of interest, and the χ2 statistic measures

the lack of independence. As the χ2 statistic values is larger, the dependency between

features and classes is also high [39, 38].

4. Filtering Step

The filtering step is for removing the unrelated prediction in order to increase the

accuracy. Table II is an example of a prediction and original set from the Uniprot

in terms one InterPro term. For example, originally, an InterPro term is related to

three GO terms (GO:000298, GO:000319 and GO:001295) which can be referred to

as Uniprot data, but the annotated terms are GO:000298, GO:005515, GO:001295

and GO:003948. Among this prediction, two terms are related to the InterPro term

but the other two are not. This means that GO:005515 and GO:003948 are considered

as False Positives. Hence, those terms are filtered out in the prediction.
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Table II. Filtering step by removing false positives.

GO term Uniprot Prediction Remark

GO:000298
√ √

TP

GO:005515
√

FP

GO:000319
√

FN

GO:001295
√ √

TP

GO:003948
√

FP

C. Experiments

Individual data sets are constructed for each GO term which are then subjected

to feature selection and instance selection prior to SVM model induction. Among

the possible statistical pattern recognition algorithms, I employed SVM because of

its overall better performance compared to others such as the C4.5 decision tree

and Näıve bayes in the preliminary experiments (data not shown). Because of the

extremely sparse nature of the data set, the feature selection step can remove all

InterPro terms from some proteins, resulting in proteins that completely lack features.

In most cases, feature selection resulted in a large number of GO- proteins in each

data set. I theorized that such a large number of redundant proteins in the data sets

could lead to skewed performance of the SVM, so for each GO term, I constructed

two data sets. Model 1 refers to the SVM learned from the data set containing

the redundant GO- proteins and Model 2 refers to a smaller set in which redundant

proteins were removed prior to model induction (Fig. 2). For each GOs, I reduce the

InterPro feature set with chi-squared (χ2) methods and make a balanced data set by

combining with the farthest negative protein from the positive instances and positive
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instances. Two procedures are independent, so both models are based on the InterPro

feature selection, but Model 1 is the trained by balanced set from the whole set and

Model 2 is the trained by balanced set from the non-zero data set. The darkest gray

GO- parts are considered as negative GOs and white GO-s are predicted as true by

Model 1. However, in the Model 2, which applied under-sampling with non-zero data

and feature selection, GO- annotate as negative. I expected that Model 2 would

result in SVM with higher accuracy than only Model 1.

1. Feature and Instance Selection

I randomly selected 50 Model 1 data sets and compared the performance of the feature

selection and instance selection methods. The relative performance of the various

methods was compared using error rate and AUC by 10-fold cross validation. The

chi-squared method outperformed the other feature selection methods (Table III) and

was used to prepare data sets for instance selection. The Farthest method provided

the best instance selection performance (Table IV) and was selected to create balanced

data sets for SVM induction.

I used 10-fold cross validation to compare the performance of SVMs trained using

Model 1 and Model 2. In general, Model 1 SVMs had very low false negative rates

but had high false positive rates whereas Model 2 SVMs tended to have lower false

positive rates (Fig. 3). On average, Model 1 has 0.32 false negative instances per

SVM but 297.54 false positive instances and 4024 true negative instances per SVM

among 4347 proteins. Of the 374 SVMs trained, 84% have less than 1 false negative

instance using Model 1 (Fig. 3(a)). Therefore, I conclude that this model is effective

at classifying positive instances, although it should be noted that Model 1 trained

SVMs have high false positive rates. Since properties of both models were desirable

for the classifier, I developed a meta-learning scheme that incorporated both models
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Table III. Performance comparison of 4 different feature selection methods (SU: sym-

metrical uncertainty, INFO: information gain, CHI: chi-squared, ABS: ab-

solute correlation coefficient).

Method Sensitivity Specificity AUC Error Rate

SU 0.98 0.83 0.73 0.01

CHI 0.99 0.93 0.87 0.01

INFO 0.78 0.98 0.85 0.12

ABS 0.77 0.25 0.79 0.43

Table IV. Performance comparison of 4 different under-sampling methods.

Method Sensitivity Specificity AUC Error Rate

Farthest 0.94 0.94 0.78 0.03

Nearest 0.73 0.79 0.74 0.52

Cluster 0.90 0.90 0.77 0.09

Random 0.87 0.93 0.77 0.08
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and includes a final filtering step, in order to reduce the false positive rate.

2. Test Procedure

Data flow for the prediction step is shown in Fig. 4. The dotted line in Fig. 4 represents

use of Model 1 only (Process A). The solid line represents use of both Model 1 and

Model 2 (Process B). The filtering step is used in both cases. I focus on keeping the

true positive rate as high as possible so Model 1 is utilized as the first step. The

Model 1 classifier plays a role in excluding the most negative instances, but has the

risk of making false positive classifications. Proteins classified as positive by Model

1 are classified again using Model 2, thereby reducing the number of false positive

proteins from 297.54 to 110.63 on average.

The third step is comprised of a decision rule that I devised based on observations

I made of the data sets. Under the assumption that a positive relationship exists

between GO terms and InterPro terms, I define the following decision rule: For each

GO term assigned to a protein, I identify whether a training proteins exists with that

GO term and an InterPro term assigned to the predicted protein. If at least one

association exists, then the predicted GO term is retained, otherwise it is removed

from the set of predicted GO terms.

I compared the precision of the suggested classification procedure (Fig. 5 Process

B) with the precision of Model 1 alone (Process A), where precision is measured as

the number of true positive GO terms divided by the number of predicted GO terms.

I randomly selected and held out 435 proteins from the training data set to use for

comparative analysis of the two classification procedures. The average precision of

Process A, which applies only to Model 1, is 0.3411, while Process B which applies

both SVM model, is 0.3523.
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Fig. 2. Flow chart for the training process.
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Fig. 5. Precision of the two processes.

3. Comparison to Other Methods

Using the training set, I prepared SVMs for each GO term. Precision is employed

again as a metric to compare the performance of the method to that of other described

methods. Most automated GO annotation methods are only available as web-based

forms designed to process one protein at a time. Therefore, I randomly selected nine

proteins from the hold out set to use for comparison to other published annotation

methods. One exception to this is IPR2GO, which is a manually curated mapping

of InterPro terms to GO terms that is maintained by the InterPro consortium. I

implemented a classifier using the IPR2GO rules and estimated performance using

10-fold cross validation. The method, Automatic Annotation of Protein Functional

Class (AAPFC), includes trained SVMs for every GO term in which ten or more

positive protein instances could be found in the training data set. In this comparison,

AAPFC had a precision of 0.3241 while that of IPR2GO was 0.1777. Additionally,

the precision of three other GO annotation tools was, in most cases, considerably
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Fig. 6. Comparison of the precision of the proposed classification method (AAPFC)

to four other methods.

lower than AAPFC (Fig. 6), where proteins which were not included in the known

training set in the S.cerevisiae are randomly selected. I used the author recommended

confidence thresholds of 20% and 50% for the GOtcha and GOPET methods, respec-

tively, and employed an e-value cutoff of e-5 for GoFigure. On average, precision is

0.53 for AAPFC, 0.17 for GOPET, 0.05 for GOtcha, 0.29 in GoFigure, and 0.20 in

IPR2GO. Surprisingly, the AAFPC outperformed IPR2GO, suggesting that there are

many protein functions that can be predicted from InterPro terms, that cannot be

described as a simple one-to-one translation table.

D. Taxon-Specific Training Model

The classifier described above employs the SVM algorithm to assign GO terms to

proteins annotated with InterPro terms [42]. A distinguished property from other

previously described approaches is that the training data sets are a taxon-specific.
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Using several standard performance metrics, the trained classifier has increased accu-

racy compared to the InterPro2GO which is a mapping of InterPro terms to GO terms

and is maintained by expert curators. Furthermore, the provided taxon-specific model

has a higher F-measure value in annotation than the model trained with a larger, non

taxon-specific data set. The non taxon-specific model is a general model whose train-

ing data are constituted of various organisms including fungi, bacteria, plants and so

on. One possible explanation for the apparent improved performance is that it is an

artifact, resulting from over-fitting as a result of using a small training data set. To

determine whether the improved performance is due to over-fitting, I performed the

following experiment. Classifiers are trained with several taxon-specific data sets and

the performance is compared with cross-validation. Next, small data sets with sizes

equivalent to the taxon-specific sets were prepared with randomly selected proteins.

1. Data Sets

Three training data sets,“Uniprot”,“Fungi”,“Fungi-expanded”, are made in order to

show that the taxon-specific classifier outperforms the general, non taxon-specific

set. All sets consist of annotated protein sequences from the UniProt database. I

removed proteins that lacked GO annotations and removed all GO terms from the

remaining proteins that were annotated with the evidence code IEA, which represents

“Inferred from Electronic Annotation”. Each of the three training data sets are

comprised of GO terms with positive examples, i.e., proteins that are annotated with

the GO term, and negative examples, i.e., all proteins that are not annotated with

the term. The “UniProt” data set is comprised of all GO terms that are annotated

to at least 10 proteins regardless of the species to which the protein is assigned.

The “Fungi” data set includes GO terms that were assigned to proteins from species

in the kingdom Fungi that had at least 10 protein annotations from members of
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Table V. A summary of the data sets for taxon-specific models.

Data Set Proteins InterPro terms GO terms

Fungi 7093 3331 459

Fungi-expanded 70205 5438 1390

UniProt 119016 8414 2826

Bacteria 3282 2255 115

Plant 5669 2087 285

Vertebrata 16079 1706 1232

the Fungi. The “Fungi-expanded” data set is similar to the “Fungi” data set but

includes additional positive examples of each GO term drawn from the whole UniProt

database. This enabled us to include considerably more GO terms and training

instances than the “Fungi” training set (Table V). Among these data sets, “Fungi” is

the smallest. The “Uniprot” set is composed of 119016 proteins and 2826 GO terms,

which is approximately 17 times larger than “Fungi” in proteins and 7 times larger

in GO terms. In a similar manner, I prepared three more taxon-specific data sets

representing “Bacteria”,“Plant”, and “Vertebrata”.

Similar to the Uniprot data set, the taxon-specific data are also made up of at

least 10 protein annotations for each taxon. The last three data sets in Table V de-

scribes the provided data set. The number of proteins, InterPro terms and GO terms

in “Bacteria” and “Plant” are less than in the fungal set, unlike the “Vertebrata”

data set. These six data sets are used to compare the performance in both the shared

GO terms and the whole data set.
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2. Comparison of Taxon-specific Models

In this chapter, three different sizes of taxon-specific sets are provided. One is ”Fungi”,

another is “UniProt” and the other is “Fungi-expanded”. “Fungi-expanded” which is

similar to the “Fungi” data set but includes additional positive examples of each GO

term drawn from the whole UniProt database. These three sets are also used to learn

classifiers using AAPFC method. Briefly, each GO term is treated as an independent

classification problem, and the SVM classifier is trained for each term. The data

sets are highly imbalanced, containing an overabundance of negative examples of the

GO term (all proteins that are not annotated with the GO term) as compared to

the positive examples, so they are treated by feature selection and instance selection.

While the purpose of AAPFC is that protein functional annotation is performed by

the protein domain, the aim of models with “Fungi-expanded” and “UniProt” is

reported to the outperformed modeling in taxon-specific data sets.

As a performance comparison, I employ sensitivity, precision and F-measure

which are performed by the 10-fold cross validation. Sensitivity is the proportion of

GO term annotations in the training data set that were correctly predicted by the

classifier, and specificity is the proportion of GO term annotations not found in the

training data set that were correctly not assigned to the protein by the classifier. Pre-

cision is the proportion of GO terms in the training set that proteins originally have.

Sensitivity and precision were also combined into a single metric called the F-measure

which is calculated. To compare the performance of the data sets, I computed the

mean of each performance metric over all fungal proteins in each data set (Table VI).

Similarly, I measured the performance of the Interpro2GO mapping and included the

results in Table VI. Each of the training data sets resulted in models that outper-

formed the Interpro2GO mapping. In the case of the UniProt data set, only a modest
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Table VI. Performance matrices of various data sets for fungi.

Classifier Sensitivity Specificity F-measure

Interpro2GO 0.0262 0.1175 0.0280

Fungi 0.2680 0.9745 0.3101

UniProt 0.1149 0.9976 0.0893

Fungi-expanded 0.2304 0.9875 0.2611

overall improvement in performance was observed compared to Interpro2GO, while

the highest performance was found with the fungi data set. All performance metrics

in training with the fungi data set shown an improvement over the UniProt data set.

However, the fungi classifier has approximately one-seventh the number of GO

terms compared with Uniprot. Adding additional non-fungal proteins to the fungal

specific GO terms (the fungi-expanded data set) creates more than three times the

number of GO terms that could be trained with only a slight reduction in performance.

From these experiments, the number of GO terms and the number of proteins are one

of the factors used to decide on the performance, that is, a small training set can give

the best results. That is a doubtful question in this section. Generally speaking, the

small training sets are exposed to a higher danger of being over-fitted, which is one of

the supervised learning issues. When the data set is small, which can be biased, so it

is accustomed to the limited data set. The first checking point against an over-fitted

issue is that comparisons of the performance in shared GO terms with various taxon-

specific training data sizes. As regards taxon-specific data, I employ three different

data - “Bacteria”, “Plant” and “Vertebrata”, whose data sizes are varied (Table V).

The procedure of the training and the testing is the same as in AAPFC.
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One important point in terms of each GO classifier is that the training data is

composed of different sizes of sets, independently. In other words, each model makes

a new balanced training set regardless of the whole taxon data size. The balanced

sets are composed of all proteins annotated with GO terms and the same size of

un-annotated proteins selected from the remaining proteins. This implies that the

trained models are affected not by the whole training size but by the number of

positive GO term sizes. Hence, one of final outcomes as proof against the over-fitted

issue, is finding any correlation between the positive numbers and performances. If

there is any relations between the performance and training data set, I induced that

the performance in each model depends on the trained data size and that the model

has a high chance of being over-fitted. However, no correlation exists between the

number of proteins included in the training set and its performance (Table VII). For

example, in Table VII, F-measure values for GO:0003677 are 0.2423, 0.6798, 0.2137

and 0.1905, respectively, for the bacteria, plant, fungi and vertebrata data sets, while

the number positive proteins are 24, 430, 64, and 538 in each data set. If over-fitting

has occurred, the data set which has the smallest number of positive instances should

have a higher performance [43]. However, the second largest set has the best F-

measure value. Another example is GO:0006508. The “Plant” taxon-specific model

has the best output, but it has the largest training sets among the four taxon-specific

models. This result suggests that the number of training proteins does not have much

influence on the accuracy of the model.

Nevertheless, the number of positive training proteins and the performance does

not have any relationship, the whole data set size has also been influenced by the

performance, since the performance is measured by the 10-fold cross validation. In

other words, the tested proteins are different in each validation. An average of tested

proteins is 709 in fungi, and 1607 proteins in the vertebrata. In addition, the selected
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number of GO classifiers is also different. Bacteria only has 115 GO terms, but

vertebrata has 1232 GO terms. Consequently, this large number of test proteins

make a low sensitivity or a low precision, thus I judge the performance again on the

same training size.

The proposed approach is that Uniprot data sets which have any taxonomic

group are reduced to the same size as the small taxon-specific sets. Among six used

data sets in Table V, the fungi set and UniProt set can have many shared GO term,

hence these two sets are trained for this experiment. The fungi set that has 459 GO

terms is used by itself. UniProt sets are reduced in size by random selection, where

the whole size is decided as the same size for fungi, resulting in it being composed

of 411 GO terms. If the performance in the fungi set is still higher than the sample

Uniprot sets, the over-fitted issue in the small training sets has happened.

Table VIII is a result of 12 randomly selected classifiers from 97 GO terms which

are shared with both fungi and the reduced UniProt. For example, GO:0000723 has

better performance in fungi, resulting in 0.5390 and 0.5756 for the sensitivity and

F-measure respectively, while the same GO term from the reduced UniProt data set

has 0.021 and 0.3046 for the same measures. GO:0006468 also has a high performance

in fungi. However, other GO terms have higher value in the reduced UniProt. The

overall average of the shared 97 GO terms in sensitivity, specificity and F-measure

is 0.1992, 0.9744, 0.2849 in the fungi set and 0.3176, 0.9961,0.4135 in the sampled

UniProt set. Overall, the taxon-specific models outperform the reduced set from

the Uniprot. The overall conclusion is that taxon-specific data enables us to give

more meaningful information to build an annotation model than the general case.

Moreover, the models are not over-fitted.
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E. Summary

In this chapter, I propose a method for assigning GO terms to proteins using InterPro

terms as features, and a learning independent SVM for each GO term. By creating

two data sets, each having different properties, and learning two SVMs for each GO

term, I developed a meta-learning scheme that benefits from the strengths of each

model. Moreover, I investigate a taxon-specific model which is composed of proteins

from species in a specific kingdom. This taxon-specific model outperformed the non

taxon-specific one. In this experiment, one possible issue is the over-fitted problem in

the taxon-specific model, since a small set is highly exposed to the over-fitted issue.

By the various taxon-specific sizes including Bacteria, Plant and Vertebrata, I present

that the proposed model is not over-fitted. Moreover, I tested on the same size of

proteins by a randomly selected sample from the Uniprot set, because the number of

tested proteins in various species is different.

My current strategy treats each GO term as an independent learning problem.

This has some practical benefits in that individual classifiers or sets of classifiers could

be learned or re-learned over time without the need to re-learn the whole system. On

the other hand, this approach assumes that all GO terms are independent. Since

the GO terms are organized in a DAG, a dependence among some terms is assumed.

Therefore, in the chapter IV, I propose to utilize the multi-layered method as an

approach to capture dependence among GO terms into the learning method. The

outputs of the classifiers described here can be used as inputs to another classifier, thus

enabling the dependence among GO terms to be utilized for classification. Moreover,

this approach employs only one feature set. Nevertheless, the InterPro terms include

much protein domain information, and more feature sets provide more robust gene

annotation, because gene function does not define only one factor. Thus, in the next
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chapter, the system with multi-feature sets is carried out, where the treated features

are biochemical properties (amino acid content, etc.), phylogenetic profiles, sequence

similarity, and others.
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CHAPTER III

PREDICTION OF GO (POGO): A MULTI-FEATURE LEARNING SCHEME

FOR ASSIGNING GENE ONTOLOGY TERMS TO PROTEINS

A. Related Work

The rapid increase in the number of genome sequencing projects has lead to a deluge

of genomic data that are available to biologists. Automated methods are being ex-

tensively applied to rapidly annotate gene models in newly sequenced genomes and

to a lesser extent manual methods are also being used. While equally as important

as gene structural annotation, functional annotation of proteins is usually limited to

an automatic processing with sequence similarity searching tools. As the number

of genome sequencing projects continues to expand, it is becoming clear that gene

annotation is becoming a central issue for biologists. The computationally obtained

features of the proteins and the genes and many statistical models enable us to predict

the function automatically. Gene Ontology terms (GO) especially play an important

role, by providing text descriptions and controlled vocabularies of the gene function

that can be applied uniformly to proteins from a wide variety of species.

One of the most popular approaches for functional annotation is to assign tex-

tual descriptions or terms from controlled vocabularies from proteins that have been

identified with sequence similarity search tools such as BLAST. Similar approaches

rely on protein motif and protein family databases such as PFAM and InterPro. Pro-

teins are matched to database entries using techniques that employ profile sequence

alignments, profile hidden markov models, and related methods, and then manually

curated mappings between the database entries and controlled vocabularies are used

to assign functional terms to the proteins. One such example is the Interpro2GO
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mapping which can be used to assign GO terms to proteins that have been matched

to entries in the InterPro database. The GOA project relies on several such mappings

to provide automated GO annotations for users [2, 3].

Many studies rely on the identification of similar proteins in large databases of

annotated proteins [7, 8, 9], but this approach assumes that homologous proteins have

similar functions. Others employ various attributes [27, 24, 25] to overcome this issue.

GOPET [24, 25] assigns terms from the biological process and molecular function

ontologies by training a Support Vector Machines (SVM) classifier. The GO level,

a path, a BLAST output, GO frequency by considering relationships, GO frequency

related attributes and the annotation quality related to these attributes are employed

as features, and they are normalized and are used to train the SVM. King et al. [27]

apply the decision tree and Bayesian network for pattern recognition by employing

not only sequence similarity, but also bio-chemical attributes such as molecular weight

and percentage amino acid content. Many researches [44, 9, 28, 24, 25] are focused

on the SVM instead of the decision tree, because the SVM performed better than

any other traditional methods [45], hence I suggested an application that trained the

SVM [42].

However, the main property of our previous work, as well as those of others, is

that the classifiers utilize only one type of feature such as BLAST results or InterPro

terms [7, 8, 9, 24, 25]. Feature types such as BLAST and InterPro terms provide

most of the information from which protein function can be predicted. However, if

protein functions are deduced from more features, the automated annotations should

be more accurate. In this chapter, I describe a method which includes various fea-

tures including not only sequence similarity, but also protein structure information,

protein domains and biochemical properties. One issue is how to combine these het-

erogeneous feature sets. The value of integration of various data has been illustrated
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by several studies [17, 22, 14, 15, 28, 29, 16, 21]. The traditional method is combining

networks of a functional linkage [14, 15, 16]. The basic assumption is that functionally

associated proteins have a common structural complex, metabolic pathway, biological

process or closely related physiological function, thus they predict using phylogenetic

profiles correlated to mRNA expression or domain fusion [14, 15]. Pellegrini et al.

[16] also shows that two genes are functionally linked if they have similar phylogenetic

profiles. Even though these approaches are very easy to understand and can be eas-

ily generalized, the approaches usually rely on very simplistic functional inferences,

and are semi-automatic, and heuristic methods. Expanding on phylogenetic profiles,

Pavlidis et al. [28, 29] suggest a method to predict gene function from heteroge-

neous data by training a kernel SVM with features derived from DNA microarray

hybridization experiments and phylogenetic profiles. Troyanskaya et al. [21] design a

flexible system for adding new input data, including protein-protein interaction data

and transcription factor binding site data using a Bayesian framework. The employed

method for the combination of different types of data is the early integration method.

Barutcuoglu et al. [17] propose a two-step procedure for the functional annotation by

the SVM independent classifier with various data types and integrate in its classifier

the hierarchical relationship of the protein functions. Most integration systems with

heterogeneous data are implemented by simply merging of the different data types by

changing the format, including probability or projected value from the kernel function

regardless of the properties of each data type. However, Deng et al. [20] consider this

as a drawback, by putting different weights in each data set. Hence, they want to

find the most effective feature set by the combination of feature sets. The weights are

determined by the optimized classification accuracy. All the above approaches build

only one layered classifier for the purpose of merging the various data types. In this

chapter, I propose a multi-layered classifier for robust gene function annotation.
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The Combiner [46] and Stacked generalization [47] are examples of meta-learning

classifiers [48, 49, 50, 46, 47]. The biggest advantage of meta-method is improving the

accuracy by combining multiple outputs. The basic idea of a meta-learning classifier

is a construction of the classifier by taking a weighted or unweighed voting predic-

tion with the meta-data set. In addition, the meta-classifier is able to integrate the

base-classifier into one global classification, and where the products form the base-

classifier, this is called the meta-data. The meta-data is usually composed of one

of the classifications or some value extracted from the base-classifier, thus it serves

as a feature vector to a meta-classifier. Base-classifiers use the original data as in-

puts while the meta-classifier uses the outputs of the base-classifiers as input. The

Combiner [51] is similar to the Stacked generalization [47], which improves predic-

tion accuracy by merging at least two base learners results. These learners are made

up of at least two layers, the first layer is a training model with original data and

the second layer is combined results from the output of the first layered classifier.

The Stacked generalization makes a base-classifier by the one leave out method, and

accomplishes “n” iterations, where “n” is the total data set size. The combiner di-

vides two cross validations, and each validation is processed in the same way as the

stacked generalization. Chan et al. [51, 48, 46] compare the performance of these two

methods and show that the two methods carry a similar accuracy but there is better

efficiency in the Combiner, because of the shorter execution time. The base-classifiers

in the original Combiner and Stacked generalization methods are comprised of dif-

ferent types of classifiers, using the same data set as input. However, in this study,

the base-classifiers are created using the different feature sets such as InterPro terms,

sequence similarity through BLAST, bio-chemical properties and the product of the

HHpred [52, 53] instead of different classifiers.

In this chapter, I describe a multi-layered classifier which comprises a base-
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classifier and a meta-classifier [51] using the Combiner method. A base-classifier

is a single classifier with each feature, and a meta-classifier combines these feature

sets. In order to distinguish the original meta-learning classifier, which usually uses

same feature domain but different learners in the second layer, I use the term multi-

layered classifier. During this process, I show that the performance of a multi-layered

model using four heterogeneous feature sets outperforms a single classifier which is

trained by only one feature. The method for combining four different data sets is

described in the method section.

B. Proposed Method

1. Data Set

AAPFC is a single learner using SVM with the protein domain as the feature set,

thus the system requires that each protein has at least one InterPro term. I present

a new system which adds more features including not only InterPro terms but also

other feature sources. I also allow proteins that lack one or more of the feature sets,

enabling many more proteins to be classified. Moreover, I employ a multi-layered

classifier, to combine the heterogeneous base-classifiers. The feature sets are InterPro,

bio-chemical properties, BLAST and protein structure information.

• InterPro term

InterPro terms [10] are defined in the InterPro database which is a curated pro-

tein domain database, that acts as a central reference for several protein family

and functional domain databases, including Prosite, Prints, Pfam, Prodom,

SMART, TIGRFams and PIR SuperFamily. InterPro terms are assigned to

proteins using the InterPro Scan application. The InterPro terms comprise the

terms assigned to annotated proteins from the UniProt database and includes
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3339 terms.

• BLAST

The second feature set is comprised of BLAST hits derived from a BLAST

search of the UniProt database of GO annotated proteins (excluding machine

annotated terms) [23]. BLAST is a tool to compare the query sequence to

a database of proteins and gives the e-value according to query options. As

the e-value approaches 0, the query sequence and a matched sequence from

the database are more similar. Several previous methods including GoFigure

[8], GOblet [7], and OntoBlast [6] use sequence similarity based on BLAST

results as features. GOAnno [54] is also the extension of the similarity based

annotation using hierarchically structured functional categories, and similarity

based functional annotation is considered as a central feature. GO terms derived

from the BLAST hits (e-value cut-off e-10 ) are used as features. I cumulatively

score each GO term and use the number as a feature value. The resulting

BLAST data set contains 3182 features, and like the InterPro terms, this set is

also a very sparse and imbalanced set, but the data format is an integer instead

of being binary.

• Bio-chemical information

Bio-chemical properties of the proteins are used as another feature set, since

other authors [26] have previously shown that they are useful for functional

classification. The features I use in this study include amino acid content,

molecular weight, proportion of negatively and positively charged residues, hy-

drophobicity, isoelectric point and amino acid pair ratio. The pepstat program

in EMBOSS [55] generates protein properties based on the amino acid sequence.
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• Protein structure information

The fourth feature set is protein structure as computed using the HHpred pro-

gram [52] which is used for protein homology detection and structure prediction

using a sequence database search with the BLAST [23] or PSI-BLAST [56] pro-

grams. First of all, they implement a pairwise comparison of the profile hidden

Markov model and search the database. The databases PDB, SCOP, pFam,

SMART, and SCOP [57] are employed as the target databases. The main goal

of SCOP is to organize the available structures and define the evolutionary re-

lationships between them. There are 8494 template features in the data set.

After running PSI-BLAST and HHsearch with the SCOP database for each

protein, I achieve several templates with scores representing the quality of the

database match. The top 10 selected templates are used as features. The re-

maining templates are set to 0 for each protein. This data set is comprised of

8494 features.

In conclusion, let DAll be the set of all of InterPro, BLAST, bio-chemical prop-

erties, protein structure information and the designated GO data. I define the ex-

ample data set as DAll = {(Ii, Ci, Bi, Si, Gi)| i=1,· · · ,k }, where k is the number

of proteins in fungi, 8208. I1,2··· ,8208 =(p1, p2, · · · , pl) ∈IPR{0,1} are feature vectors

for InterPro terms and l is the number of InterPro (IPR) features in the data set.

C1,2··· ,8208 =(c1, c2, · · · , cm) are feature vectors for bio-chemical attributes and m is

the number of bio-chemical features in the data set. B1,2··· ,8208 =(b1, b2, · · · , bn) are

feature vectors for BLAST and n is the number of BLAST features in the data set.

S1,2··· ,8208 =(s1, s2, · · · , sq) is feature vectors for protein structure information and q is

the number of products of HHpred features in the data set. G1,2··· ,8208 =(g1, g2, · · · , gp)

∈ GO{0,1} is the class designation (GO terms) and p is the number of GO terms in
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the data set. The IPR feature vector l is 3339, the BLAST feature vector, n is 3182,

the bio-chemical attribute vector is 474 and the protein structure feature vector, the

product of the HHpred, q is 8494, the number of GO terms in the fungi set p, is 444.

C. Experiments

1. Training Procedure (Multi-layered Classifier)

For the multi-layered system, I create a two layered system, which is constituted by

of a base-classifier with the four feature sets and a meta-classifier with the product of

the base-classifier. The base-classifier serves to learn each feature set independently,

while a meta-classifier combines the heterogenous feature sets (Fig. 7). The black set

is the test set and both white and gray sets are training sets. In the base-classifier, the

45 % of data (both the white and gray set) are used for training, but they are learned

and tested independently in the meta-level. The dotted line shows the flow of the

testing process and the solid line in the meta-classifier is the process of creating meta-

data. Each GO term was considered as an independent binary classification problem,

thus all proteins annotated with a GO term are treated as positive instances (GO+)

and the remaining proteins are treated as negative instances (GO-).

a. The Base-Classifiers

The base-classifiers are trained separately for each feature set. Among the feature sets

(InterPro, biochemical properties, BLAST and the protein structure information),

bio-chemical properties are the only non-sparse set of numeric features, while the

others are sparse numeric or binary features. Thus, I use two different classifiers

depending on the sparsity. The sparse sets are treated using the same approach as in

the previous implementation of AAPFC [42]. Briefly, it is reported that performing
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Base-classifier
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Protein structure info.BLAST Bio-chemical

Meta-classifier

90% training

10 % testing

45 % training

45 % training

Meta-data

Fig. 7. Multi-layered classifier with four feature sets: Two subsets (white and gray)

are used for training and one subset (black) is used for validation. The dotted

lines represent the process of testing and the solid lines in a meta-classifier are

the process of training.
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the chi-square feature selection for the feature selection and making a fully balanced

set by selecting the farthest negative instances is carried out. The classifier method

is used for the SVM algorithm. The bio-chemical properties data set is also reduced

using chi-square feature selection, but I employed different objective functions for the

instance selection. I select three times more the nearest negative instances instead

of the same size of the farthest negative instances. In the preliminary experiment,

the F-measure with SVM using the farthest negative instance was 0.0064, while the

adaboosting training model using three times more the nearest negative instances was

0.0173. The adaboosting model is slightly higher than the SVM training set, hence

the chemical data sets are applied to the adaboosting [58]. adaboosting is a method

for a weak learner algorithm by weighting the error and training it again in several

iterations until the error rate is less than 0.5. This approach has an advantage of

reducing the errors by executing several times in a small positive set. As a learning

algorithm, a linear classifier is applied. The feature selection experiments and under-

sampling and SVM, and adaboosting induction were performed with MATLAB [59]

using the pattern recognition toolbox [60].

b. The Meta-Classifier

The meta-classifier is trained using the outputs from the base-classifiers. In the

InterPro feature case, the total training set is mentioned as TI1 . This set is randomly

separated by three subsets. Two subsets TI11 , and TI12 are used for training while

the remaining set TI13 is used for the validation. The validation set contains 820

proteins and each of the two subsets are composed of 3712 proteins. When the TI11

subset is used as the training set for the base-classifier, TI12 is used for classification

by the TI11 training model. Similarly, after learning with the TI12 subset, TI11 is

projected to the TI12 model. However, if the feature list is empty in a tested protein,
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for example, a protein does not have the InterPro term, the prediction is treated as

unknown. When TI2 is the meta-data which is tested by TI11 and TI12 , TI2 is a

set of true, false or unknown. Therefore, the meta-data set for the InterPro term is

composed of a binary formatted prediction with the same size of the two training sets

(TI11 and TI12). The other three feature sets are trained in the same way. When

I assume that TI1, TB1, TC1 and TS1 is the total training set of InterPro terms,

BLAST, biochemical properties and protein structure information in a base-classifier

respectively, I make meta-data sets which are constituted by TI2, TB2, TC2, TS2,

where each T∗1 is one more columns composed of each feature lists and each T∗2 is

one column of true or false predicted data or unknown data. The row of these data

sets is the training protein size. The applied learning algorithm for the meta-learner

is a Näıve bayes, which is described in section III.C.3.

2. Testing Procedure

The first step of the test procedure is computing the features and converting them

to the appropriate format. The outputs from the base-classifiers for each GO term

consist of four columns of feature vectors in binary format. The results of the base-

classifiers are used to compute the Bayesian probability of the meta-classifier. From

the Näıve bayes, true Bayesian probability is calculated by the product of all possible

events. For instance, the true Bayesian probability is measured by multiplying each

feature status given the true designated GO term. In each GO classifier, if the “True”

probability is larger than “False”, this term is annotated as a gene function, otherwise

it is discarded.
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Table IX. Performance comparison of four different base-classifiers with different fea-

ture sets.

Features Average GO terms Sensitivity Specificity F-Measure

IPR 17.69 0.1893 0.9682 0.2456

BLAST 67.46 0.0251 0.8547 0.0471

Chem 37.10 0.0099 0.9213 0.0173

Structure 21.11 0.0795 0.9599 0.1304

3. Results

In this method, I learn independent base-classifiers with different feature sets rather

than a different classifiers with the same feature set. Thus, I want to compare the per-

formance to a single classifier with one feature and a multi-layered classifier with more

than one feature sets in the fungal data, which allows us to compare the performance

of the multi-layered learning system. The performance of two different approaches

are estimated with 10-fold cross validation. Table IX summarizes the results of the

base-classifier. All performance is measured by all the GO classifiers. InterPro terms

are the most effective feature set to annotate GO terms, because they have the highest

F-measure value. The average predicted GO terms with the InterPro terms, BLAST,

bio-chemical properties and protein structure information is 17.69, 67.46, 37.10 and

21.11, respectively. The main shortcoming of the all the base classifiers is the low

sensitivity, which results primarily from a high false positive rate and results in a

lower F-measure value. The most extreme example is the BLAST feature set which

results in approximately 67 GO terms per protein, on average.

In order to compare a single classifier to a multi-layered classifier, I need to set

up a meta-classifier algorithm first. I used two different learning schemes, which are
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Table X. Performance comparison of two different meta-learning methods with all GO

classifiers.

Method Sensitivity Specificity F-Measure

Näıve Bayes with all sets 0.2620 0.9982 0.3355

Näıve Bayes with balanced sets 0.0629 0.9358 0.1140

SVM with all sets 0.0011 0.9273 0.0022

SVM with balanced sets 0.0462 0.3696 0.0052

Näıve Bayes and SVM with all sets. Originally, the meta-data sets, which is a data

set with two subsets, are imbalanced sets. The data are composed of 90% of the whole

imbalanced fungi set which has small positive proteins and large negative proteins.

In classical classification, imbalanced sets provide a poor performance, thus I plan

to create a balanced set by selecting the farthest negative instances. Most negative

instances are removed and I make a new set whose positive and negative instances are

the same. With the balanced set, I also trained the SVM and Näıve Bayes for a meta-

classifier. Hence, I get the four different learning schemes, which are summarized in

the Table X. When I compared these models, the F-measure trained by the Näıve

Bayes with the full set is 0.3355, but that with the balanced set is 0.1140. In addition,

the value of the trained SVM and with the full data set is 0.0022 and those with the

balanced set is 0.0550. Given four F-measure values, the Näıve Bayes with all training

sets have the highest value, hence this combination is used for meta-classifier scheme.

As shown in Table IX and Table X, all F-measure values of the base-classifiers

are lower than the multi-layered classifiers. The highest F-measure value with a single

classifier is 0.2456 with InterPro terms, but the multi-layered learning model is 0.3335.

Finally, I show that a training scheme with a meta-classifier and multi-feature sets
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Table XI. Mean classifier-based performance at each cut-off F-measure value.

cut-off F-measure Sensitivity Specificity F-Measure

0.8 0.8914 1.0000 0.9284

0.7 0.8015 0.9983 0.8664

0.6 0.6831 0.9966 0.7685

0.5 0.5673 0.9975 0.6632

0.4 0.5028 0.9978 0.6042

0.3 0.4358 0.9979 0.5393

0.2 0.3718 0.9980 0.4716

(PoGO) provides superior results to any single classifier.

The performance of the multi-layered classifier is reported two ways. One is a

classifier-based result and the other is a protein-based result (Table XI, Table XII).

The classifier-based results show the performance in each classifier, i.e., I check the

error of all proteins in terms of one GO term and measure the sensitivity and F-

measure. The protein-based method measures the value in each protein, which is

usually used for a benchmark with other protein functional classification programs.

Table XII shows the average F-measure, where the protein-based way is calculated by

the selected GO terms whose F-measure value in the classifier-based value is larger

than cut-off value. According to the table, a 0.7 cut-off F-measure means that I select

the GO terms whose classifier-based F-measure values are higher 0.7% and I calculate

the sensitivity, precision and F-measure with these GO terms in each proteins.

From this view point, I compare the classifier-based performance between AAPFC

and PoGO at the same cut-off F-measure. The number of selected GO terms in each
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Table XII. Mean protein-based performance at each cut-off F-measure value.

F-measure cut-off value Sensitivity Specificity F-Measure

0.8 0.9808 0.9985 0.9872

0.7 0.8597 0.9904 0.8948

0.6 0.6910 0.9875 0.7493

0.5 0.6299 0.9904 0.6913

0.4 0.5893 0.9904 0.6558

0.3 0.5357 0.9892 0.6062

0.2 0.5055 0.9885 0.5759

range is shown in Fig. 8 (a), and Fig. 8 (b) is the number of annotated proteins.

In both the number of GO terms and annotated proteins, PoGO has more terms

and proteins, that is, I can annotated more proteins with PoGO application. Based

on this experiment, I measure the average F-measure value using the protein-based

method by 10-fold cross validation (Fig. 9). At each cut-off value, the average value

in PoGO is slightly higher than in AAPFC.

I compare the classifier-based performance of GO terms that were trained by

both AAPFC and PoGO. Table XIII shows 12 randomly selected GO terms among

409 classifiers. The average sensitivity of AAPFC is 0.2317, while PoGO is 0.3021. In

the case of precision, PoGO is 0.6349 but AAPFC is 0.8562. Even though precision

in PoGO is less than AAPFC, the overall F-measure value in PoGO is higher than in

AAPFC. This implies that the average number of GO terms annotated by AAPFC is

a larger than PoGO, resulting in higher value in the average of precision and a lower

value in average sensitivity.
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value. (b) The number of annotated proteins at each cut-off F-measure value.
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Fig. 9. Average F-measure value at each cut-off F-measure value in AAPFC and

PoGO.

D. Implementation

A series of pre-processing steps, such as feature selection and under-sampling in

AAPFC and PoGO are performed in MATLAB. The SVM learning and classifica-

tion are also performed in MATLAB [59] using the pattern recognition toolbox [60].

AAPFC and PoGO web server is written in JavaScript, PHP and MATLAB (Fig. 10)

for file handling, training, testing, and displaying web pages. A MySQL database is

used for retrieving GO terms and descriptions which are then displayed on the web

site.
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1. Batch Job Queuing System

The web-based system for AAPFC and PoGO utilizes a queuing script in order to

support a queuing system, which enables it to achieve each sequence sequentially. The

submitted sets of FASTA sequences are automatically divided by each sequence. A

batch script for each separate sequence is created to submit a job to a queuing system.

The web process generates an unique ID for each job. But, in case of multi-sequences,

the system generates an unique representative ID which encapsulates several job IDs.

The web-server sends an email to an user with this unique ID so that the user can

check out the result on the web-site. After a job is submitted, the web page is

redirected to the result or the progress with-in 3 minutes. Even though the end-user

uses a web browser to go to the other site, all jobs are submitted successfully in the

queuing system and it sends all results by e-mail to prevent a wait on the web site

for a lengthy period.

2. System Output and Web Server

A diagram of the full system architecture in PoGO is shown in Fig. 10. The user

inputs FASTA formatted protein sequences. The gray square boxes are the tools

or applications for predicting preliminary data and the pre-processed data are repre-

sented by the black square box. The web process parses this temporary file and makes

a binary format data file. The generated data is attained by the feature and instance

selection and predicts the GO terms. The supported supplementary data is a detailed

description of GO terms and InterPro terms. The MySQL database is supported to

show the GO description matched with the predicted GO terms. The results page

is classified by two kinds of web pages. “Brief Overview” just supplies all predicted

GO terms and InterPro terms, but “Detailed Overview” supplies all information of
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Table XIV. Properties of GO annotation tools: ‘◦’= support completely, ‘4’= sup-

port partially and ‘×’= does not provide yet. GOPET does not support

Cellular Component category.

GOPET GOFigure GOtcha AAPFC,

PoGO

Supporting multiple sequence ◦ ◦ × ◦
Supporting e-mail result × ◦ × ◦
Supporting all GO categories 4 ◦ ◦ ◦
Tab-delimited file downloadable × ◦ × ◦

all predicted GO terms and InterPro terms.

Fig. 11 (a) is an initial web server of AAPFC and PoGO and Fig. 11 (b) is

the brief result for each protein which shows only GO terms and InterPro terms, and

Fig. 11 (c) is the detail for each terms including a description and parsing value based

on the database of InterPro terms. This result is also provided by a tab-separated

file for GO terms and InterPro terms are supported to import into other applications.

Table XIV is the benchmark of several GO annotation tools and the proposed tool.

AAPFC and PoGO support not only multi-sequences for an input sequence, but also

all GO terms in three categories. However, some other systems provide a partial

functional categories or support only one sequence to process one-by-one. In this

case, the tab-separated file for GO terms and InterPro terms to import into other

applications and the e-mail forwarding system are advantages in AAPFC and PoGO.

3. User Interface

Users can paste protein sequences directly into the web page or upload up a file of

protein sequences up to 2 MB in size (approximately 5500 proteins) for processing by
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Fig. 11. Web-server page for AAPFC.
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the server. Users can select models trained with one of the three data sets, original

fungi, extended fungi and UniProt, as well as the desired F-measure cut-off among

the models within each data set. This option was implemented so that users can

exclude GO terms that have low F-measure values and thus have a higher probability

of producing erroneous annotations. For example, in the Fungi model, 10 GO terms

are removed from consideration if the user selects a cut-off of 0.05 and 77 GO terms

would be removed if the user selects a cut-off of 0.10. The results are displayed in

a table which contains links to a detailed page for each protein. The detailed page

contains a graphical view of the InterPro annotations along with a list of predicted

GO terms and descriptions.

E. Summary

In this chapter, I describe a method for assigning GO terms using a multi-layered

classifier and multiple heterogeneous feature sets. By creating a training model in

each feature set and integrating the heterogeneous data, I developed a multi-layered

scheme that annotates GO terms more accurately. In the previous GO annotation

system (AAPFC) each protein should have one or more InterPro terms, however, this

approach employs more attributes, and proteins missing features are allowed. Con-

sequently, more proteins can be used for training and testing, and ultimately, more

proteins can be annotated. The performance reported using the precision and F-

measure metrics is better than for AAPFC. The sensitivity, precision and F-measure

in AAPFC is 0.8826, 0.6371 and 0.6835 respectively, while PoGO has 0.7290, 0.8422

and 0.7518, when I cut-off at 0.5 in the classifier-based F-measure value. The rea-

son is that three more feature sets complement to decide a gene function. With

this experiment, I demonstrate that many attributes contribute to determining gene
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function.

The web server is implemented in PHP, MATLAB and pattern recognition tool-

box for MATLAB. The results are displayed in a table which contains predicted GO

terms and InterPro terms and links to a detailed page for each protein. The detailed

page contains a graphical view of the InterPro annotations and along with a list of

predicted GO terms and descriptions including the category. In addition, the tab-

separated data files of the GO annotations are available for download, enabling to

import of the data into other programs.

AAPFC and PoGO systems learn independent classifiers for each GO term. This

architecture has the advantage in that individual GO term classifiers can be re-trained

over time without the need to re-train the whole system. However, many information

is loosed due to the dimension reduction. Moreover, GO terms are structured in a

Directed Acyclic Graph (DAG), which describes the functional relationship between

the terms. Hence, in the next chapter, I develop a system for considering GO structure

with the Bayesian probability given the InterPro terms or multi-feature data set

containing three feature types.
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CHAPTER IV

GENE FUNCTIONAL PREDICTION USING HIERARCHICAL GENE

ONTOLOGY INFORMATION

A. Related Work

With the increasing quantities of genome sequence data, there is an equal increase

in the need for automated genome annotation methods. The development of an

automated method for the annotation of predicted gene products (proteins) with

functional categories is becoming increasingly important, in order to present genome

sequences and genome annotations to biologists in a useful way. The Gene Ontology

(GO) is a controlled vocabulary of keywords and phrases for describing gene function

that is organized in a Directed Acyclic Graph (DAG). Thus, many systems to perform

protein functional annotation have been developed, that employ various sources of

protein information as features, including protein functional sites [61, 42], sequence

similarity [8, 9, 25], gene expression patterns [62, 28], and others.

The previous approaches are independent GO classifiers in each model which re-

quire enough GO terms for the validation. The treated sets are composed of proteins

which have GO terms annotated by 10 or more proteins, the related GO terms and

InterPro terms and other feature sets. The original number of GO terms in fungal

proteins from the UniProt database is 3199, but only 459 GO terms are used for

the training model in AAPFC, and PoGO has 443 GO classifiers. Around 15% of

GO terms among the whole sets learn as a classifier. Hence, the first objective in

this suggestion is employing more annotating GO terms. Moreover, the hierarchi-

cal GO structure, which is a good way to describe the relationship between gene

functions, is not considered in both AAPFC and PoGO. This structure represents
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the relation between top and down, where the higher level gene function (parent

node) includes the deeper-level function (child node). As an illustration, the ances-

tor of "GO:0005634:nucleus", "GO:0043231:intracellular membrane-enclosed

organelle", implicitly includes the "GO:0005634" function. This parent term’s in-

formation enables us to describe the functional relationship. Thus, building model

with the hierarchical GO structure is the second objective.

Often, automated gene annotation methods ignore the hierarchical nature of the

controlled vocabulary in order to simplify the problem [42, 8, 62, 28, 25]. The use of

hierarchical information for the functional prediction has been employed by several

authors [17, 18, 27, 19]. Eisner et al. [18] compared four different training strate-

gies, which are “Exclusive”,“Less Exclusive”,“Less Inclusive” and “Inclusive” by the

ensemble classifier of SVM, probabilistic suffice tress (PSTs) and the BLAST. “Ex-

clusive” means only GO terms are considered as the positive examples, and the others

including the descendent, and the ascendant are treated as the negative examples.

“Less Exclusive” is same as the “Exclusive” set except for the descendent, which is

not used for neither positive training sets nor negative ones. “Inclusive” is GO terms

in which all descendants are treated as the positive, but ancestors are not used in the

training sets. Besides, the ancestors of GO terms are treated as the negative examples.

In “Less exclusive”, all ancestors of GO terms are not considered. From four differ-

ent training strategies, authors point out the “Inclusive” outperformed in an overall

performance. Consequently, the training sets with the hierarchical information con-

tribute to the outperformed results. Shahbaba and Neal [19] suggest three models,

which are the multinomial logit (MNL), the hierarchy based MNL and the corre-

lated MNL (corMNL) that are introduced between the parameters of nearby classes

in the hierarchy structure. MNL is simple mutinomial logit but ignores hierarchal

information, hierarchy based MNL defined set of nested MNL model and corMNL is
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considered the prior between the parameters of near by class. Even though the cor-

related MNL in hierarchy outperformed the other two methods and the traditional

decision tree such as C5, their assumption in this structure is that a simple tree-like

structure, where one node has only one parent, is constructed. This approach is not

sufficient to apply to the GO structure, because of multiple parents.

Several studies have utilized Bayesian networks for protein annotation [63]. Multi-

score Association of Genes by Integration of Clusters (MAGIC) [21], uses the Bayesian

network with gene expression data and protein-protein interaction data in order to

annotate gene function. However, they employ it in order to join to the hetero-

geneous biological information rather than to apply the hierarchical GO structure.

Barutcuoglu et al. [17] also used the Bayesian network for the purpose of annotation

of multi-label prediction. Independent SVM classifiers are learned for each GO term

which are then combined with a Bayesian network. Their approach overcomes the

problem of not consulting the child classifier at all if the parent term annotates as the

negative class [64]. King et al. [27] predict gene function by the relationship between

GO annotations based on the decision tree and Bayesian network. However, the clas-

sifiers are trained independently given the SVM classifier and Bayesian probability of

the child term. Hence, I suggest a new multi-label approach which considers all GO

terms simultaneously by use of a Bayesian network.

I describe two multi-labeled approaches by considering the DAG structure of the

GO using a Bayesian network. The first method uses only InterPro terms in the con-

struction of GO structure, where the training model is a single classifier like AAPFC.

The training scheme constructs the Bayesian probability matrix with InterPro feature

sets. The calculation uses Näıve Bayesian probability, which is true InterPro terms

given the true or false designated GO term, because each InterPro term is indepen-

dent. After inference this approach to examine unlabled proteins, several candidate
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GO terms are listed. However, this temporary annotation has many false positive

errors, so a filtering step processes by the relationship between GO terms and Inter-

Pro terms. Finally, the results are compared with non-hierarchical protein domain

annotation (AAPFC).

The second approach employes two more feature sets, except for InterPro terms,

and a multi-layered classifier is applied, thus it is composed of a base-classifier and

meta-classifier. Similar to the above approach, each feature is learning independently

in a base-classifier. The built probabilistic matrices are three sets, comprised of

InterPro terms, BLAST and protein structure information. In addition, a meta-

classifier is also trained by the Näıve Bayes with meta-data which is the product

of the base-classifier. This approach has an advantage of having many feature lists

for annotation of function. Or the above two models, employing the hierarchical

structure with multi-features or protein domains, are contrasted with themselves in

order to analyze the effect of various features in the hierarchical GO-structured model.

Lastly, the comparison of multi-feature with embedding GO structures or without

them (PoGO), supports the difference of the hierarchical information in the same

featured domain.

B. Protein Domain Feature

1. Proposed Method

a. Data Set

This study employs InterPro terms as features, which reflect the presence of con-

served functional domains in the proteins. The data set comprised annotated protein

sequences from the UniProt database. Each protein has one or more InterPro terms,

since this is a key feature. Each protein has previously been annotated with one or
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more GO terms, but proteins that lack GO annotations are removed. In addition,

annotations with the evidence code “Inferred from Electronic Annotation” (IEA),

which indicates annotations derived from other automated annotation methods are

also ignored. The remaining annotations are those that have been reviewed by sub-

ject matter experts. With this data set, two matrices are created, which are G(i, k)

and I(i, j), where i is the number of proteins, k is the number of GO terms and j

is the number of InterPro term. In the matrix I, if the ith protein has the jth In-

terPro term, I(i, j) represents a binary value indicating the presence or the absence

of the functional domain. The matrix G is also built in the same way. The original

fungi data set consists of 6711 proteins, 3339 InterPro terms, and 3096 GO terms.

However, for evaluation purposes, I performed 10-fold cross validation, hence, around

6040 proteins are used for the training set in each validation.

Each node in the GO structure represents a protein function. Nodes which

are closer to the root node (higher level term) represent more general functions,

while deeper-level nodes in the structure represent more specific functions. Proteins

annotated with a GO term are also implicitly annotated with all of its parent GO

terms. Thus, parent GO terms may also be used to describe a protein’s function.

For instance, the GO2 includes the GO4 function in Fig. 12. Hence, if a protein has

several GO terms including GO4, GO6 and GO8 displayed in dark gray nodes, this

protein’s function can also be described by the parent nodes GO1, GO2, GO3 and

GO7, displayed in light gray. Hence, this protein’s function can be described by the

set of GO terms that includes GO1, GO2, GO3, GO4, GO6, GO7, GO8. However,

GO5 and GO9, displayed in white nodes, are not included in the data set, since they

are neither original GO terms nor an annotated GO terms’ parent. Finally, k in the

matrix G is the list of not only original GO terms but also of the parent terms of the

original GO terms. Fig. 13 is a real example of CHAC YEAST, which includes all
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GO1

GO3GO2

GO4 GO6 GO7GO5

GO9 GO8

Fig. 12. Hierarchical structure of the Gene Ontology.

GO terms except for the white colored GO terms as a training model.

b. Bayesian Network

In various studies with the DAG graphical model, including bioinformatics (protein

folding, gene network), document classification and image processing, Bayesian net-

work is applied [17, 64, 65, 66, 67, 68, 69]. A Bayesian network is a conditional

probability between the parent node and child in the graphical based environment.

The node in the GO graph indicates the events and relationship between the nodes

that stands for the conditional dependency. Usually, the probability of the root node

is assigned the prior probability distribution and the other nodes are assigned with

the conditional probability given the parent node, that is, all child nodes depend on

the parent node probability distribution.
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GO:0005575
 cellular_component

GO:0005623
 intracellular

GO:0044464
 cell part 

GO:0043226
 organelle

GO:0044424
 intracellular part

GO:0005622
 intracellular 

GO:0032153
 cell division site

GO:0045177
 apical part of cell

GO:0043203
 axon hillock

GO:0043227
 membrane-bounded organelle

GO:0043229
 intracellular organelle 

GO:0031090
 intracellular membrane-bounded organelle

GO:0043231
 intracellular membrane-bounded organelle

GO:0005634
 nucleus

GO:0005737
 cytoplasm

GO:0044444
 cytoplasm component

Fig. 13. GO terms in cellular component structure annotated in CHAC YEAST: The

dark gray GO terms (GO:0005634 and GO:0005737) are what a protein has,

but light gray GO terms are not included in the original training sets. From

the assumption of the experiment, these light gray GO terms are considered

to be training GO terms. The white GO terms are not considered for the

training sets, since they are not linked to any dark gray GO terms.
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2. Experiment

a. Training Procedure

The original data set is a fungi specific data set made up of 3339 InterPro terms,

6711 proteins and 3096 GO terms, but GO classifiers are increased to 4647, since

all parent nodes in a GO hierarchy are also added in the training set. The ex-

periment is performed by 10-fold cross validation, resulting in 6040 proteins being

used for the training sets in each validation. The training model is the probabilis-

tic matrices which are measured by the number of InterPro terms given the true

or false GO term, since each feature is independent in each classifier. In other

words, for the InterPro term j and GO term v, P (Ij|Gv=F ) and P (Ij|Gv=T ) are

measured, where I is the InterPro term matrix and G is the GO term matrix.

These probability matrices illustrate the conditional probability in terms of Inter-

Pro terms and GO terms. All possible events for j are 3099 and v is 4674, hence,

whole training matrices in each validation are 2 ∗ 3096 ∗ 4674. For example, in terms

of "IPR007587 : SIT4 phosphatase-associated protein" and "GO:0005634 :

nucleus", when the number of proteins which have IPR007587 is 10 in the fungal set

and among them only 7 proteins have also GO:0005634, the Bayesian probabilities are

P (Ij|Gv=F ) = 3/6040, P (Ij|Gv=T ) = 7/6040. In Fig. 14, Tprob(v, I) can be calculated

using this training conditional matrix tables. When the unknown tested protein has

one or more InterPro term, Tprob(v, I) can be the product of all conditional events

like
∏m

j=1 P (Ij|Gv=T ), m is all conditional InterPro terms.

b. Test Procedure

The first step to annotate the function for the unknown proteins is obtaining InterPro

terms (protein functional domains) using the InterPro Scan application [37]. Next,
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the InterPro feature lists are applied to the algorithm shown in Fig. 14 to each of

the three graphs (biological process-GO:0008150, cellular component-GO:0005575 and

molecular function-GO:0003674). From the root node, the Bayesian probability is

calculated by constructing the Bayesian network and the gene functions are assigned.

The basic idea is that if the true Bayesian probability is larger than the false given

the parent’s condition, this term is annotated as a protein function after the filtering

process. The Bayesian network is calculated by the parent conditional event which is

generated by 4.1. The posterior probability for each GO term is calculated given the

InterPro terms as shown in 4.2, where v is the GO term in the GO structure.

P (X1, X2 · · · , Xv) =
v∏

i=1

P (Xi∈{T,F}|Par(Xi∈{T,F})) (4.1)

where X is the GO term in the GO structure given the selected InterPro terms, and

Par stands for parent terms.

P (Xv) = P (Gv|I1, · · · , Im) =
P (Gv)P (I1, · · · , Im|Gv)

Z
(4.2)

m is the InterPro terms determined by the InterPro Scan in a tested protein and Z

is the normalized constant value. The likelihood probability in 4.2 can be simplified,

since Ii is independent of Ij(j 6= i).

P (I1, · · · , Im|Gv) =
m∏

i=1

P (Ii|Gv) (4.3)

The conditional probability of 4.1 can be inferred from the training set.

Fig. 15 is the process to construct a Bayesian network from the root node. In

most cases, the root node (GO:0008150, GO:0005575, and GO:0003674) has a higher

value in true probability, because the root node includes all child terms, hence the
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Algorithm Predict GO{
G ← GO Structure;

I ← InterPro terms;

v ← Gtop;

par = empty;

Construct Bayesian Network(v, G, I, par); filter C; }
Algorithm Construct Bayesian Network(v, G, I, P ) {

P (v) ← set Tprob(v, I) & Fprob(v, I);

if Tprob(P (v)) > Fprob(P (v)) {
C(v) ← add v, where C is the candidate list; }

for each child vertex v′ of v in G do {
par ← parent of v′

Construct Bayesian Network(v′, G, I, par); }
Return C;}

Fig. 14. Inference algorithm to annotate GO terms using the hierarchical GO-struc-

tured model with InterPro terms.
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root node is assigned as true. The next visited terms are the linked child nodes.

If P (GO:0005634=T|GO:0005575=T) is larger than P (GO:0005634=F|GO:0005575=T),
where GO:0005575 is already assigned as a true, GO:0005634 is considered as a true

annotated term. In Fig. 15, GO:0031012 and GO:0031975 are also calculated the

same way, since they are linked to the root node. However, GO:0044464 has multiple

parents. Therefore, the Bayesian probability of GO:0044464 can be measured, after

measuring the probability of GO:0005634 first. In conclusion, from the root node

to the leaf, each of the node probability is measured depending on the parent node

status which is annotated as true or false. If the parent node is decided on as the true

function, the child node is influenced by the true parent probability, otherwise, it is

affected by the false probability. Only the true probability of the current term given

the parent’s condition is larger than those of the false, P (X1, · · · , Xv=T ) is greater

than P (X1, · · · , Xv=F ), term v is accepted as a candidate GO term, otherwise the

term v is removed from consideration and its conditional probability is included in the

computation of the probability of the child terms. All GO terms in the GO structure

are explored as this way and assigned it accordingly.

c. Filtering Step

After the candidate GO terms are determined, a filtering step described in section

II.B.4 is applied. From all the proteins in the Uniprot set, which include not only

fungi but also other species, I make a list of the occurrence of InterPro terms and

GO terms. Then, I examine the candidate GO term and the assigned InterPro term

for the protein and determine if a GO term-InterPro term exists in the list. If there

is not a GO term-InterPro term pair in the list, then the GO term is removed from

the list. This filtering step serves two purposes. 1) It prevents higher level parent

GO terms that do not exist in the training sets from being assigned to annotated
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GO:0005575

True

GO:0044464
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GO:0031975
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GO:0005575

True

GO:0044464

True

GO:000534

True

GO:0031975

True

GO:0031012

True

GO:0005622

GO:0005575

True

GO:0031975GO:0031012 GO:0005634 GO:00044464

Fig. 15. Construction of the Bayesian network from the root node in each three cate-

gories.
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Table XV. Comparison of ”WITH the filtering step” and ”WITHOUT the filtering

step”.

Sensitivity Precision F-Measure

With filtering 0.2628 0.2894 0.4629

Without filtering 0.1765 0.2219 0.4377

proteins. While such higher level terms may have some utility, depending on the type

of downstream sequence analysis, I felt it was important not to allow the annotation

system to transitively assign a higher level, and less informative annotations to new

proteins. 2) Protein functional domains are determinants of function, so I would

expect that most of the information represented in this data set to exist as positive

relationships between InterPro terms and GO terms. As I have shown previously,

annotated GO terms that are not associated with an InterPro term in the training

set are often false positives. Thus, this filtering step has been shown to improve the

performance of the classifier (Table XV), where the performance is measured by all

GO terms without any cut-off in F-measure.

3. Results

Both AAPFC [42] and this approach are implemented using InterPro terms as the

features set, but the primary difference is the consideration of the hierarchical struc-

ture. Thus, a comparison of the performance of the two systems may be used to

understand the importance of the GO structure in automated classifiers. The first

analysis is counting the number of GO terms at each cut-off F-measure value, which

is measured using the classifier-based approach. When a F-measure cut-off value is

set to a high value, such as 0.7 or 0.8, the number of those GO terms is small (Fig. 16
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(a)). AAPFC has only 36 GO terms with an F-measure higher than 0.5, while the

hierarchical GO-structured model has 324 GO terms at the same cut-off level.

In addition, using AAPFC, only 459 total GO terms could be trained, while this

method can train 1113 terms. Based on this criterion, the hierarchical training model

has more GO terms than AAPFC. Fig. 16 (b) shows the number of proteins at each

cut-off level. I count the proteins which have the GO terms which are represented

in Fig. 16 (a). When the cut-off value is higher, the proportion of proteins is lower,

due to the small number of selected GO terms. In other words, in decreasing the

cut-off value, the number of proteins that can be assigned GO terms are increased.

In terms of annotated number of proteins, a hierarchical GO-structured model has

more proteins than AAPFC, which implies that a Bayesian network with structure

predicts more GO terms and proteins, resulting in improved the performance.

Fig. 17 shows the average classifier-based F-measure at each cut-off F-measure

value, where the x axis is the cut-off level and the y axis is the average F-measure

value of those proteins which have the selected GO terms by the F-measure cut-

off value. Although the same feature set is employed in both of the two systems,

the performance in the new approach surpasses that of AAPFC, except at the two

lowest cut-off levels, though these two levels have more proteins in the hierarchical

GO-structured model.

Another point regarding the performance is that of the average GO level for an-

notated GO terms. If a gene functional application is predicted a specific function,

but it is not annotated to its related specific function, it is considered that the con-

sistency is violated. Cesa-Bianchi et al. [64] designed a scheme which satisfies the

consistency by not considering the child terms if the parent term predicts as negative.

While this idea satisfies with the consistency, the chance to assign the deeper-level

(i.e. farther from the root node) terms is decreased. However, the annotation of
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Fig. 16. AAPFC and the hierarchical GO-structured model with InterPro terms: (a)

The number of GO terms at each cut-off F-measure value. (b) The number

of annotated proteins at each cut-off F-measure value.



74

0.70 0.60 0.50 0.40 0.30 0.20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cut−off F−measure

A
ve

ra
ge

 F
−

m
ea

su
re

 v
al

ue

 

 

AAPFC

GO Hier. with IPR

Fig. 17. AAPFC and the hierarchical GO-structured model with InterPro terms. The

average F-measure at each cut-off F-measure value.

deeper-level terms is more meaningful, since the high-level terms entail a broader

function and the deeper-level terms are more specific in meaning, where the level of

the root assigns 0 and the child node increases the level, which is mentioned as a

deeper-level term. Thus, the average level in all assigned GO terms is another check-

ing point to evaluate a performance. If the selected GO terms are high-level in each

cut-off range, the predicted terms are broad functions, thus the average level in each

range should be larger or similar to the average level of whole sets. Table XVI shows

the average level both for the selected cut-off level and for whole sets. The root node

(GO:0008150, GO:0005575, and GO:0003674) in each category is set to 0 and the

level of child terms is increased one by one. The average level of the fungal set is

6.1500, 4.6741 and 5.2714, respectively in biological process, cellular component and

molecular function, and other values in various cut-off levels are also similar to this
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Table XVI. Average level of annotated GO terms by the hierarchical GO-structured

model with InterPro terms.

Cut-off Biological process Cellular component Molecular Function

0.70 6.4137 4.4375 5.4835

0.60 6.5652 4.6296 5.4846

0.50 6.5897 4.7500 5.4011

0.40 6.4257 4.7222 5.4308

0.30 6.2517 4.6620 5.4894

0.20 6.3404 4.7281 5.3782

All training set 6.1500 4.6741 5.2714

average or are larger. This shows the proposed model predicts both a higher-level

term and a deeper-level term. Hence, annotated GO terms are mixed with both

higher-level functions and deeper-level functions.

Furthermore, the percentage of predicted GO terms in each category is described

(Table XVII). The GO terms which belong to biological process and molecular func-

tion are predicted at around 30% in the whole training data and those relating to

cellular component are predicted at around 50%.

I performed another comparison by randomly selecting 40 proteins and com-

paring the annotations derived from four annotation systems which employ different

methods and data sources. AAPFC [42] defines the function by the InterPro terms

and GOtcha [9] also annotated by the sequence similarity, and InterPro2GO is a man-

ually curated functional mapping table between InterPro terms and GO terms. The
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Table XVII. Number of trained GO terms in three GO categories.

Total terms Trained terms Percentage

trained

Biological Process 1481 519 35%

Cellular Component 459 205 45%

Molecular Function 1216 389 32%

Total 3156 1113

selected probability cut-off value in Gotcha 1 is 0.50 and in AAPFC is 0.30. The aver-

age F-measure value for the prediction in AAPFC, Gotcha and InterPro2GO is 0.19,

0.10 and 0.04 respectively, but in the new suggested hierarchical GO annotation it is

0.48. Thus, the hierarchical approach outperformed the other methods. Table XVIII

shows the F-measure values of 10 of the 40 test proteins.

C. Multiple Features with a Multi-layered Classifier

1. Data Set

In the previous section IV.B, the algorithm which is the hierarchical GO-structured

model with protein domain is developed. The approach needs one or more one In-

terPro terms in the training proteins. The proteins which have at least one InterPro

terms and at least one GO terms are 6711, while fungal proteins which have at least

one GO term are 8208, thus, around 1500 proteins can not be used in the training

model. Hence, another new approach is claimed in order to overcome this drawback

1http://www.compbio.dundee.ac.uk/gotcha/gotcha.php
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Table XVIII. F-measure comparison of four different gene function annotation sys-

tems.

Protein name GO Hier. AAPFC InterPro2GO GOtcha

ASSY YEAST 0.8889 0.2667 0.3333 0.0000

COAC YEAST 0.4000 0.4286 0.0000 0.0000

EFTU YEAST 0.6000 0.0952 0.5714 0.0000

GPA1 SCHPO 0.1667 0.2222 0.0000 0.2000

KAPA YEAST 0.3243 0.0870 0.0000 0.1481

MCFS2 YEAST 0.8333 0.2352 0.0000 0.0000

NCS1 SCHPO 0.5714 0.0800 0.1429 0.0000

NSE1 SCHPO 0.9565 0.6667 0.0000 0.2307

RRP45 YEAST 0.6777 0.8571 0.0000 0.3333

TAF14 YEAST 0.3636 0.2790 0.0000 0.2307

with multi-features. In the previous experiment which is employed only InterPro

terms or multi-feature sets, multi-feature learning models are outperformed. Hence,

this approach also provides higher performance. The basic training scheme uses a

Bayesian probabilistic model, which measures the probability given the conditional

events, where the conditional events are the binary format in the feature list. In the

previous chapter (PoGO), four feature sets is employed, which are InterPro terms,

BLAST, protein structure information and bio-chemical properties. Among these four

feature sets, all except bio-chemical information can be converted to the binary for-

mat. The bio-chemical property is a numeric value, so this feature sets are excluded

in the data. Originally, InterPro terms demonstrate the binary data and BLAST
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features can be indicated in a true or false format instead of as a cumulative counted

value. Protein structure information can also be applied as a binary data from the

SCOP database instead of as a score value. The treated data is composed of 8208

proteins and 3339 InterPro terms, 3182 BLAST and 8494 protein structure informa-

tion. In addition, the previous experiment which is a single layer classification with

bio-chemical information, illustrates that the annotation of gene function not much

influence by this attribute. Hence, I extract this feature set. From the GO classifier

point of view, similar to the previous hierarchical GO-structured model, all parent

GO terms also include the training data sets. Thus, the number of GO terms that

can be trained are increased to 4706 from 3182.

2. Experiment

a. Training Procedure

The basic training process with multi-feature data sets is based on the multi-layered

system described in section III. Briefly, the multi-layered classifier is made up of

base-classifiers in each feature set and a meta-classifier. The base-classifier servers to

build the meta-data for the training set and the meta-classifier combines the meta-

data. The multi-layered learning scheme enables us to merge the different feature

sets, resulting in improving of the performance. The difference between PoGO and

this suggestion is a base-classifier learning scheme by the hierarchical model rather

than an independent learning SVM with features and instances selection. In addition,

the proteins which do not have InterPro terms are also used in the training set. The

experiment is performed by 10-fold cross validation.

The base-classifier in each feature set is the probabilistic model of Näıve bayes.

Since the data format is binary and each feature list is independent, the Bayesian
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probabilities are easily calculated. As in the learning scheme described in the previous

chapter, the training model is composed of a Bayesian probabilistic matrix. Hence, the

whole training models are 3339*4706*2, 3182*4706*2, 8492*4706*2 for the InterPro

terms, BLAST and protein structure information, respectively.

In the InterPro meta-data sets, two subsets from the InterPro training sets are

separated randomly. One subset is used for the training and the other set is used for

the testing and vice versa, resulting in creating the meta-data. When two subsets are

tested independently, the meta-data is assigned true if the true probability is larger

than false, hence it is a binary formed column. Given this algorithm, other two more

feature sets are also trained. Finally, 7428*3 probabilistic matrices are obtained,

where 7428 is the number of training proteins in each validation, because the meta-

data set is composed of the test results of the other subset’s training model. With this

meta-data, the meta-classifier is learned by the Näıve bayes. The three binary column

sets and the designated GO classifier can be computed the by the Bayesian probability,

resulting in it being constituted by 3*4706*2 Bayesian probabilistic matrices for the

meta-classifier.

b. Testing Procedure

The basic formula for the base classifier is the same as formula 4.1, where three

feature sets are tested separately in a base-classifier. Since I have three feature sets,

the base classifier in each GO term is represented by Xj
v , where j is one of the

InterPro terms, BLAST and protein structure. If P (Xj
1 , X

j
2 · · · , Xj

v=T ) is larger than

P (Xj
1 , X

j
2 · · · , Xj

v=F ), the vj is assigned true, otherwise false, this is annotated as

M j
v . Therefore, M j

v is the meta-data executed by the base-classifier. After that, a

meta-classifier using this meta-data is accomplished for the purpose of the integration

of heterogeneous data. The test process with the meta-classifier is accomplished by
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∏3
j=1(Gv=T,F |M j

v ) in terms of GO terms v, since each feature is independent and the

treated feature sets are three.

P (Xj
1 , X

j
2 · · · , Xj

v) =
v∏

i=1

P (Xj
i∈{T,F}|Par(Xj

i∈{T,F}) (4.4)

Xj
v are GO terms in the GO structure with the feature sets, Par means parent terms

and j is features - InterPro terms, BLAST and protein structure.

P (Xj
v) = P (Gj

v|I1, · · · , Ik) =
P (Gj

v)P (I1, · · · , Ik|Gj
v)

Z
(4.5)

Ik are feature lists which the tested protein has according to feature j such as

IPR1,IPR2. Z is the normalized constant value. The likelihood probability in 4.5

can be simplified as in 4.6, since Ii is independent of Ij(j 6= i).

P (I1, · · · , Ik|Gj
v) =

k∏

i=1

P (Ii|Gj
v) (4.6)

Given three M j
v data, the meta-classifier,

∏3
j=1(Gv=T,F |M j

v ), can be applied. If
∏3

j=1(Gv=T |M j
v ) is larger than

∏3
j=1(Gv=F |M j

v ), v is finally assigned as a candidate

term.

As follows, when I assume that GO1 is assigned true in Fig. 12, GO2 is cal-

culated by P (GOI
1=T , GOI

2) in the InterPro terms, where P (GOI
1=T , GOI

2) is
∏l

i=1

P (Ii|GO2)P (GO1=T |GO2), where l is the InterPro terms the protein has. If P (GOI
1=T , GOI

2=T )

is larger than P (GOI
1=T , GOI

2=F ), the M I
2 is considered true. MB

2 and MF
2 are the

meta-data from the BLAST and protein structure information. These sets are also

treated as the same approach which is described for InterPro term. The three deci-

sion labels (M I
2 ,MB

2 ,MF
2 ) from the base-classifier are tested by the meta-classifier.
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Algorithm Predict GO{
G ← GO Structure;

I ← InterPro terms, B ← BLAST, F ← structure;

v ← Gtop;

Calculation GO(v, I, B, F )

Filter C; }
Algorithm Calculation GO(v, I, B, F ) {

P (v) ← set Tprob(v, I) & Fprob(v, I) & Tprob(v, B) & Fprob(v, B) & Tprob(v, F ) & Fprob(v, F ) ;

if Tprob(P (v, I)) > Fprob(P (v, I)) MI = T else MI = F

if Tprob(P (v, B)) > Fprob(P (v, B)) MB = T else MB = F

if Tprob(P (v, F )) > Fprob(P (v, F )) MF = T else MF = F

if Tprob(P (v, MI ,MB,MF )) > Fprob(P (v, MI ,MB,MF )){
C(v) ← add v, where C is the candidate list; }

for each child vertex v′ of v in G do {
Construct Bayesian Network(v′, G, I, B, F, P ); }

Return C;}

Fig. 18. Inference algorithm to annotate GO terms with the hierarchical GO-struc-

tured model with multi-features.
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In the meta-learner, overall true or false probability is calculated by the product

of all probability. If P (GO2=T |M I
2 ) ∗ P (GO2=T |MB

2 ) ∗ P (GO2=T |MF
2 ) is larger than

P (GO2=F |M I
2 )∗P (GO2=F |MB

2 ) * P (GO2=F |MF
2 ), then GO2 is considered as a candi-

date term, otherwise GO2 is discarded. The overall algorithm is described in Fig. 18.

3. Results

In this results section, I compare the performance from two points of views. The first

comparison is the hierarchical GO-structured model with only InterPro terms and

multiple features, which allows us to figure out the effect of the different feature sets.

First of all, the experiment is performed on the shared GO terms. The shared GO

terms in both applications are 967. The overall averages in sensitivity, precision and

F-measure are 0.3147, 0.5323, 0.3537 in the model with InterPro terms, but multi-

feature models are 0.3468, 0.5615, 0.3749. The multi-feature models are slightly better

than a individual single learner with InterPro terms. Table XIX shows 12 shared GO

terms from the 967 GO terms.

Fig. 19 shows the number of GO terms and the number of annotated proteins

at each cut-off F-measure value, where the F-measure is calculated by the classifier-

based approach. The training models with the multi-features have more GO terms in

each range, especially, in the low cut-off level (Fig. 19 (a)). In the 0.2 cut-off value,

the model with InterPro terms has 725 terms, but model with multi-features has 829

terms. As the number of GO terms are increased, the related annotated proteins

are also increased (Fig. 19 (b)). Fig. 20 summarizes the average F-measure. For a

ranges except 0.4 and 0.5, the overall value is similar or slightly better in model with

multi-feature sets.

The second comparison is multiple feature learning model with the hierarchical

GO-structured model or without it (PoGO). This comparison shows the meaning
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Fig. 19. The hierarchical GO-structured model with InterPro terms or multi-features:

(a) The number of GO terms at each cut-off F-measure value. (b) The number

of annotated proteins at each cut-off F-measure value.
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Fig. 20. Average F-measure at each cut-off F-measure value in the hierarchical

GO-structured model with InterPro terms and multi-features.

of the hierarchical GO structure in the multi-feature sets. In section IV.B, the hi-

erarchical GO-structured model with InterPro terms outperformed that without an

embedding GO structure, thus GO-structured model with multi-features is also bet-

ter than others (Fig. 21, Fig. 22). Fig. 21 shows the number of GO terms at each

cut-off F-measure value. The multi-feature sets have more GO terms in each range.

The hierarchical model has many more GO terms, because PoGO is trained to only

444 classifiers, but the hierarchical GO structure with multi-features is trained to all

fungi GO terms.

Based on these GO terms, the number of annotated proteins is described (Fig. 22

(a)). However, unlike the previous result, without embedding the hierarchical infor-

mation has more proteins in each rage. The reason is that two GO terms (GO:0005515

: protein binding, GO:00058209 : cytosol) are annotated in many proteins.
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Fig. 21. Number of GO terms at each cut-off F-measure value in PoGO and the hier-

archical GO-structured model with multi-features.

Among 8208 proteins, 2072 proteins have GO:0005515 and 1650 proteins have GO:0005829,

that is, the number of annotated proteins in each range (Fig. 22 (a)) depends on these

two terms. If two terms have a high F-measure value in terms of a classifier-based

approach, the number of annotated proteins are also effected in a lower cut-off F-

measure. In PoGO classifier, the classifier-based F-measure value in GO:0005515 is

0.7166. and that of GO:0005829 is 0.5723. However, model with an embedding GO

structure has values of 0.4674 and 0.3903, respectively. If I excluded these two terms,

I have another figure (Fig. 22 (b)).

During this process, the average protein-based F-measure is also compared in

each range shown in (Fig. 23(a)), where the used proteins are Fig. 22(a). The average
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Fig. 22. PoGO and the hierarchical GO-structured model with multi-features set: (a)

The number of annotated proteins at each cut-off F-measure value. (b) The

number of annotated proteins excluding the two highly annotated GO terms.
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F-measure with the reduced proteins (Fig. 22(b)), which excluded the two highly an-

notated GO terms, is described in Fig. 23(b). In both comparisons, a GO hierarchical

structure with multi-features outperforms that without an embedding structure.

However, model without hierarchical structure also provides a good enough per-

formance. This stand for if there are enough proteins to build the training set, even

though hierarchical GO structure is not embedded, the learning scheme provides

outperformed result. To elucidate this statement, I also compared the shared GO

terms both in PoGO and in the hierarchical information with multi-features. In most

cases, performance matrices in PoGO have outperformed those with an embedding

GO structure. The overall average for sensitivity, precision and F-measure in PoGO

are 0.2433, 0.6339, 0.3127, while the hierarchical GO with multi-features are 0.2418,

0.3533, 0.2476. In Table XX, 12 GO terms among 411 shared GO terms are shown.

From this result, I know that if GO terms have enough positive proteins, i.e.,

classifier with many annotated proteins, then a meta-classifier without an embedding

GO structure also provides good performance. However, most of the GO terms in

the fungi set are very sparse and rare, thus a model applied with the GO hierarchical

structure is more reasonable in order to assign gene functions.

D. Implementation

The calculation of training models by computing the Bayesian probability were per-

formed with MATLAB [59]. Other script for parsing the Uniprot, making the data

set, multiplying the Bayesian probability and and filtering process used php.
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E. Summary

In the previous two chapters, independent GO classifiers are trained, but a GO struc-

ture form (DAG), which points out that a parent’s term has a relationship with the

child term, is not considered in the training scheme. Thus, I propose two methods for

assigning GO terms to proteins using InterPro terms and multi-features with Bayesian

network learning in order to embed GO hierarchical structure. The Bayesian network

frame is a graph based model demonstrating the Bayesian probabilistic relationship

between random variables.

Many studies have also used this approach, but usually employ it for the purpose

of integrating heterogeneous data. However, I use the GO structure for GO structural

properties by constructing GO structure in each category. In addition, through the

filtering step, the false positive errors are removed from the candidate lists. This hier-

archical GO-structured approach with InterPro terms provides improved performance

than that with no GO structural model (AAPFC), when the F-measures of individ-

ual GO terms are compared, but more importantly, it enables us to include more GO

terms in the classifier, which in turn allows many more proteins to be annotated. In

addition, this approach satisfies the consistency of prediction, i.e., it does not predict

only high-level (parent) GO terms nor only deeper-level (child) GO terms. If this

consistency does not meet, the predicted function is located in the high-level.

Afterwards, a combination model which associates with multi-feature sets and the

hierarchical model with multi-layered schemes is built. In the base-classifier, three

feature sets are predicted by the Bayesian network with GO hierarchical structure

and overall, two probabilities given true or false GO terms are calculated in the

meta-leaner. The hierarchical GO-structured model with multi-feature outperforms

that with InterPro terms. The multi-feature learning model also contributes more
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GO terms and more annotated proteins than without the hierarchical modeling with

multi-feature sets (PoGO), but the overall F-measure in the shared GO terms is

less than in PoGO. Given this result, I analyze that if GO terms are annotated in

enough proteins, the modeling without the hierarchical structure is also well-fitted

for annotation. However, most GO terms are so sparse that the hierarchical GO-

structured model is needed for the gene functional annotation.
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CHAPTER V

CONCLUSION

A. Summary

Automated gene function annotation is an important issue for biologists, since the

development of high-throughput genome sequencing and gene annotation methods.

Traditionally, protein function is expressed as free text descriptions, but recently

controlled vocabularies of various types have been employed. The Gene Ontology

(GO) provides a controlled vocabulary of terms for annotating proteins. Methods for

the automated annotation of gene function often depend on sequence similarity, but

this assumes that homology has a similar function. In this dissertation, I have studied

three methods for assigning the function automatically, using pattern recognition and

statistical techniques with various feature sets.

In AAPFC, I developed an application for assigning GO terms to proteins using

InterPro terms as features and learning an independent SVM for each GO term. This

approach enables the sparse and imbalanced nature of the data set to be overcome

by dimension reduction. The training model has high accuracy compared to Inter-

Pro2GO which is a manually curated mapping of InterPro terms to GO terms that

is maintained by the InterPro consortium. In addition, it has been shown that the

taxon-specific models outperform the non-specific models. However, this approach

only utilizes one source of features. Therefore, in the next work, I utilize a multi-

layered classifier as an approach in order to add more features to the learning method.

More features sets including sequence similarity, micro-array data, and chemical

information can be added in PoGO. Furthermore, an integrated system for combining

heterogeneous features are proposed. A model that utilizes multiple feature types
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overcomes the shortcomings of AAPFC. On the other hand, the first two approaches

are for training independent classifiers for each GO term and only a limited number

of terms can be classified as there is not enough data in the training set. In addition,

much information is lost by dimension reduction. The next approach overcomes these

problems.

The third approach considers the hierarchical nature of the GO, since GO con-

tains DAG structure. With the Bayesian network, The hierarchical GO-structured

model with InterPro term and a multi-feature are implemented. This approach pro-

vides improved performance when the F-measure of individual GO terms are com-

pared, but more importantly, it allows for the inclusion of more GO terms in the

classifier which in turn enables many more proteins to be annotated. This is because

the restricted GO terms which are annotated 10 or more proteins are trained in the

AAFPC and PoGO. However, when the shared GO terms in PoGO and the proposed

method are compared, the overall F-measure value is slightly higher in PoGO. From

this result, it is apparent that a multi-layered classifier without the GO structure will

be well trained if each GO classifier has enough training model. However, most GO

terms are very sparse. The combination of a system which merges a multi-layered

learning model with multi-features for the many annotated GO terms, and the hier-

archical structure scheme in a sparse data set, provide a rich assigning term. One

shortcoming of this approach is that the training model is very sensitive to positive

numbers, because the data set is very sparse. In particular, when a GO term is an-

notated by only one or two proteins, the Bayesian probability in the training model

varies in whether this protein belongs to the test set or training set. Hence, the future

plan is measuring the average training value in each GO classifier using 10-fold cross

validation to provide a more robust training model.
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B. Future Work

For multi-feature sets, the InterPro terms, BLAST, bio-chemical information and pro-

tein structure were employed. In addition to these feature sets, other attributes such

as Uniprot keyword, are available. Uniprot keyword is also a controlled vocabulary

in the UniProt /Swiss-Prot entries. There are 10 categories of keyword and currently

there are all lists are 926. Each protein may have more than one keyword. This

feature can be added PoGO, because the data property is also sparse but the feature

lists are not large like InterPro terms. The attribute of Uniprot keyword is also con-

tribute to the assignation of the gene function. Similar to the InterPro terms, the GO

consortium supports the keyword mapping table, which also enables the comparison

of performance.

For the extension of annotation, the database pre-computed information about

fungal protein cluster (FPC-DB) will be provided. Many databases are built to search

for a protein properties including protein domain, sequence similarity and so on.

However, the purpose of this database is used for the source of features for learning

protein function classifiers as well as a mechanism for making protein annotations

available to researchers. The provided data in the database is species, GO terms,

InterPro terms, gene family and multiple sequence alignment of each family. Using

the automatic assignment of protein functional tools including AAPFC, PoGO and

the hierarchical model with multi-feature sets, GO terms are annotated for unknown

fungal proteins. Other information such as alignments or InterPro terms are earned

by several bioinformatical applications. These pre-computed data sets are presented

for each family.

In addition, the sequence similarity is analyzed using the GO-structured infor-

mation. This approach measures the distance of GO terms in two pair wise proteins
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and finds the most similar proteins. The distance is calculated by maximum level in

the GO structure. The result can be compared to the classical sequence similarity

methods such as BLAST, and provides verification of annotated GO terms.



97

REFERENCES

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.

Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald,

G. M. Rubin, and G. Sherlock, “Gene Ontology: tool for the unification of

biology. The Gene Ontology Consortium.” Nature Genetics, vol. 25, no. 1, pp.

25–29, 2000.

[2] E. Camon, M. Magrane, D. Barrell, D. Binns, W. Fleischmann, P. Kersey,

N. Mulder, T. Oinn, J. Maslen, A. Cox, and R. Apweiler, “The Gene Ontology

Annotation (GOA) Project: implementation of GO in SWISS-PROT, TrEMBL,

and InterPro,” Genome Research, vol. 13, no. 4, pp. 662–672, 2003.

[3] E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen, D. Binns,

N. Harte, R. Lopez, and R. Apweiler, “The Gene Ontology Annotation (GOA)

Database: sharing knowledge in Uniprot with Gene Ontology,” Nucleic Acids

Research, vol. 32, pp. D262–266, 2004.

[4] I. Friedberg, “Automated protein function prediction–the genomic challenge,”

Brief Bioinformatics, vol. 7, no. 3, pp. 225–242, 2006.

[5] G. Pandey, V. Kumar, and M. Steinbach, “Computational approaches for pro-

tein function prediction,” Department of Computer Science and Engineering,

University of Minnesota, Twin Cities, Tech. Rep. TR 06-028, 2006.

[6] Z. Günther, “Ontoblast function: From sequence similarities directly to poten-

tial functional annotations by ontology terms,” Nucleic Acids Research, vol. 31,

no. 13, pp. 3799–3803, 2003.



98

[7] S. Hennig, D. Groth, and H. Lehrach, “Automated gene ontology annotation for

anonymous sequence data,” Nucleic Acids Research, vol. 31, no. 13, pp. 3712–

3715, 2003.

[8] S. Khan, G. Situ, K. Decker, and C. J. Schmidt, “Gofigure: automated gene

ontology annotation,” Bioinformatics, vol. 19, no. 18, pp. 2484–2485, 2003.

[9] D. Martin, M. Berriman, and G. Barton, “GOtcha: a new method for predic-

tion of protein function assessed by the annotation of seven genomes,” BMC

Bioinformatics, vol. 5, no. 1, p. 178, 2004.

[10] N. J. Mulder, R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, D. Binns,

P. Bork, V. Buillard, L. Cerutti, R. Copley, E. Courcelle, U. Das, L. Daugherty,

M. Dibley, R. Finn, W. Fleischmann, J. Gough, D. Haft, N. Hulo, S. Hunter,

D. Kahn, A. Kanapin, A. Kejariwal, A. Labarga, P. S. Langendijk-Genevaux,

D. Lonsdale, R. Lopez, I. Letunic, M. Madera, J. Maslen, C. McAnulla, J. Mc-

Dowall, J. Mistry, A. Mitchell, A. N. Nikolskaya, S. Orchard, C. Orengo,

R. Petryszak, J. D. Selengut, C. J. A. Sigrist, P. D. Thomas, F. Valentin, D. Wil-

son, C. H. Wu, and C. Yeats, “New developments in the interpro database,”

Nucleic Acids Research, vol. 35, pp. D224–228, 2007.

[11] J. Schug, S. Diskin, J. Mazzarelli, B. P. Brunk, and J. Stoeckert, Christian J.,

“Predicting Gene Ontology Functions from ProDom and CDD Protein Do-

mains,” Genome Research, vol. 12, no. 4, pp. 648–655, 2002.

[12] F. Corpet, F. Servant, J. Gouzy, and D. Kahn, “ProDom and ProDom-CG:

tools for protein domain analysis and whole genome comparisons,” Nucleic Acids

Research, vol. 28, no. 1, pp. 267–269, 2000.



99

[13] A. Marchler-Bauer, A. R. Panchenko, B. A. Shoemaker, P. A. Thiessen, L. Y.

Geer, and S. H. Bryant, “CDD: a database of conserved domain alignments with

links to domain three-dimensional structure,” Nucleic Acids Research, vol. 30,

no. 1, pp. 281–283, 2002.

[14] E. M. Marcotte, M. Pellegrini, H.-L. Ng, D. W. Rice, T. O. Yeates, and D. Eisen-

berg, “Detecting protein function and protein-protein interactions from genome

sequences,” Science, vol. 285, no. 5428, pp. 751–753, 1999.

[15] E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates, and D. Eisenberg,

“A combined algorithm for genome-wide prediction of protein function.” Nature,

vol. 402, no. 6757, pp. 83–86, November 1999.

[16] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O. Yeates,

“Assigning protein functions by comparative genome analysis: Protein phylo-

genetic profiles,” National Academy of Sciences, vol. 96, no. 8, pp. 4285–4288,

1999.

[17] Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya, “Hierarchical multi-label

prediction of gene function,” Bioinformatics, vol. 22, no. 7, pp. 830–836, 2006.

[18] R. Eisner, B. Poulin, D. Szafron, P. Lu, and R. Greiner, “Improving protein

function prediction using the hierarchical structure of the gene ontology,” in 2005

IEEE Symposium on Computational Intelligence in Bioinformatics and Compu-

tational Biology, La Jolla, CA, USA, 2005, pp. 354–363.

[19] B. Shahbaba and R. Neal, “Gene function classification using bayesian models

with hierarchy-based priors,” BMC Bioinformatics, vol. 7, no. 1, p. 448, 2006.



100

[20] X. Deng, H. Geng, and H. H. Ali, “Learning yeast gene functions from hetero-

geneous sources of data using hybrid weighted bayesian networks,” in Fourth

International IEEE Computer Society Computational Systems Bioinformatics

Conference, Stanford University, CA, USA, 2005, pp. 25–34.

[21] O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, and D. Botstein, “A

Bayesian framework for combining heterogeneous data sources for gene function

prediction (in Saccharomyces cerevisiae),” National Academy of Sciences, vol.

100, no. 14, pp. 8348–8353, 2003.

[22] A. Clare and R. D. King, “Predicting gene function in Saccharomyces cerevisiae,”

Bioinformatics, vol. 19, no. S2, pp. ii42–ii49, 2003.

[23] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local alignment

search tool,” Jorunal Molecular Biology, vol. 215, no. 3, pp. 403–41, 1990.

[24] A. Vinayagam, C. del Val, F. Schubert, R. Eils, K. Glatting, S. Suhai, and

R. Konig, “GOPET : a tool for automated predictions of Gene Ontology terms,”

BMC Bioinformatics, vol. 7, p. 161, 2006.

[25] A. Vinayagam, R. Konig, J. Moormann, F. Schubert, R. Eils, K. Glatting, and

S. Suhai, “Applying support vector machine for gene ontology based gene func-

tion prediction,” BMC Bioinformatics, vol. 5, p. 116, 2004.

[26] A. Al-Shahib, R. Breitling, and D. Gilbert, “Feature selection and the class

imbalance problem in predict protein function form sequence,” Applied Bioin-

formatics, vol. 4, no. 3, pp. 195–203, 2005.

[27] O. D. King, R. E. Foulger, S. S. Dwight, J. V. White, and F. P. Roth, “Predicting

gene function from patterns of annotation,” Genome Research, vol. 13, no. 5, pp.



101

896–904, 2003.

[28] P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy, “Gene functional classification

from heterogeneous data,” in International Conference on Research in Compu-
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