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ABSTRACT

Vision-based Navigation for Mobile Robots on Ill-structured Roads. (August 2008)

Hyun Nam Lee, B.S., Hanyang University;

M.S., Hanyang University

Co–Chairs of Advisory Committee: Dr. Dezhen Song
Dr. Deepa Kundur

Autonomous robots can replace humans to explore hostile areas, such as Mars and

other inhospitable regions. A fundamental task for the autonomous robot is navigation.

Due to the inherent difficulties in understanding natural objects and changing environ-

ments, navigation for unstructured environments, such as natural environments, has largely

unsolved problems. However, navigation for ill-structured environments [1], where roads

do not disappear completely, increases the understanding of these difficulties.

We develop algorithms for robot navigation on ill-structured roads with monocular

vision based on two elements: the appearance information and the geometric information.

The fundamental problem of the appearance information-based navigation is road presen-

tation. We propose a new type of road description, a vision vector space (V2-Space), which

is a set of local collision-free directions in image space. We report how the V2-Space is

constructed and how the V2-Space can be used to incorporate vehicle kinematic, dynamic,

and time-delay constraints in motion planning. Failures occur due to the limitations of the

appearance information-based navigation, such as a lack of geometric information. We

expand the research to include consideration of geometric information.

We present the vision-based navigation system using the geometric information. To

compute depth with monocular vision, we use images obtained from different camera per-

spectives during robot navigation. For any given image pair, the depth error in regions

close to the camera baseline can be excessively large. This degenerated region is named



iv

untrusted area, which could lead to collisions. We analyze how the untrusted areas are dis-

tributed on the road plane and predict them accordingly before the robot makes its move.

We propose an algorithm to assist the robot in avoiding the untrusted area by selecting op-

timal locations to take frames while navigating. Experiments show that the algorithm can

significantly reduce the depth error and hence reduce the risk of collisions. Although this

approach is developed for monocular vision, it can be applied to multiple cameras to con-

trol the depth error. The concept of an untrusted area can be applied to 3D reconstruction

with a two-view approach.
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CHAPTER I

INTRODUCTION

Autonomous robots can explore hostile environments and perform tedious and dangerous

work for humans. For example, a pair of autonomous robots have roamed on the surface

of Mars since early 2004. As another example, research and rescue robots entered ground

zero to look for survivors after the 9/11 tragedy. In transportation systems, autonomous

navigation capability of vehicles can warn drivers before colliding with obstacles.

Let us consider an autonomous robot in the desert. The autonomous robot aims to

reach a certain point. The mobile robot knows its position from on-board GPS readings. In

order to arrive at its destination safely, it should avoid obstacles using on-board sensors such

as vision sensors and range sensors. This navigational ability is a fundamental component

for autonomous robots.

Due to the inherent difficulties in understanding natural objects and changing envi-

ronments, navigation for unstructured environments, such as natural areas and the surface

of Mars, has largely unsolved problems. However, navigation for ill-structured environ-

ments [1], where roads do not disappear completely, increases the understanding of these

difficulties. In addition, DARPA Grand challenge1 inspired us to develop algorithms for

robot navigation on ill-structured roads.

Navigation for autonomous robots has been a very popular research field in the past

decades [2,3]. It follows a Sense-Plan-Act model [4]. To implement sense and plan abilities

in the navigation system, range sensors, such as ultrasonic sensors, laser range finders and

radar, and/or passive vision sensors, such as cameras, are required. In the case of range

The journal model is IEEE Transactions on Automatic Control.
1http://www.darpa.mil/grandchallenge/
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sensors, ultrasonic sensors are cheap but have specular reflection as well as poor angular

resolution problems. Laser range finders provide better resolutions, but they are not eye

safe and are also complex and expensive. Furthermore, range sensors cannot distinguish

between different types of surfaces. This causes problems especially in outdoor navigation.

For this reason, passive vision sensors are preferred for autonomous robot navigation. This

dissertation focuses on vision-based navigation.

Vision-based navigation systems can be classified into three groups based on road

conditions: structured environments, unstructured environments, and ill-structured roads.

Vision-based navigation in structured environments, such as highways or roads in urban

areas, is a solved problem because structured environments have clear boundaries and uni-

form surfaces. Examples of navigation systems in this category are the No Hands Across

America project [5] and the ARGO project [6]. In the case of unstructured environments

such as natural environments or the surface of Mars, robot navigation has many problems to

be overcome since it is difficult to find navigable areas. The research for navigation system

in unstructured environments is still in its infancy. Our research focuses on ill-structured

environments where roads do not disappear completely. Although the particular proper-

ties of road areas are not clear, there is appearance information, such as color or texture,

and geometric information, such as road surfaces. The primary challenges to consider for

ill-structured roads are shadow and illumination changes, the lack of clear road features,

drastic changes of road conditions and little or no prior knowledge of the roads.

Another classification for vision-based navigation systems is based on sensing meth-

ods: monocular vision, stereo vision, and vision combined with active sensors. Monocular

vision uses a single camera, while stereo vision employs multiple cameras. Vision sensors

can be combined with active sensors, such as LADAR. In the case of stereo vision, the

baseline distance between two cameras would be very limited due to the width limitations

of the robot platform. Stereo vision system with a limited baseline distance cannot provide
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accurate and timely depth information [7]. LADARs are not eye safe and cannot be used

in populated areas. Therefore, our system focuses on monocular vision.

We develop a navigation system based on two elements: the appearance information

of roads, such as color and texture, and the geometric information of roads. We begin with

the navigation system based on appearance information. The fundamental problem of the

appearance information based navigation system is how to represent roads. We propose

a new type of road description, a vision vector space(V2-Space) for ill-structured roads,

which is a unitary vector set that represents local collision-free directions in image space.

The V2-Space is constructed by extracting the vectors based on the similarity of adjacent

pixels, which captures both the color information and the directional information from prior

vehicle tire tracks and pedestrian footsteps. We report how the V2-Space is constructed to

reduce the impact of varying lighting conditions in outdoor environments. We also show

how the V2-Space can be used to incorporate vehicle kinematic, dynamic, and time-delay

constraints in motion planning to fit the highly dynamic requirements of a motorcycle.

We have implemented the proposed algorithms. The algorithm is tested with both the

video data from actual road data and a three-wheel mobile robot. Experimental results

show that the algorithm can make correct decisions at a rate of more than 90%. During

the development of the appearance information-based navigation system, we noticed that

the appearance information-based navigation system cannot deal with obstacle avoidance

problems effectively without depth information. This inspired us to develop the geometric

information-based navigation system.

Geometric information, especially depth, is required for robot navigation to overcome

the limitations of appearance information-based navigation. We present the vision-based

navigation system based on geometric information. This demonstrates how to compute

depth information using image frames taken from different camera perspectives while the

robot is traveling. Given a calibrated camera, the accuracy of the depth largely depends on
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the locations where images have been taken. For any given image pair, the depth error in

regions close to the camera baseline can be excessively large or even infinite. This is due to

the degeneracy introduced by the triangulation in depth computation. Unfortunately, this

region often overlaps with the robot moving direction, which can lead to collisions. We

name this region an untrusted area. Notice that the robot’s move determines the location

of the future untrusted area. We analyze how the untrusted areas are distributed on the

road plane and predict them accordingly before the robot makes its move. We propose an

algorithm to assist the robot in avoiding the untrusted area by selecting optimal locations

to take frames while navigating. Therefore, the overall depth error can be controlled be-

low a predefined threshold. We have implemented the algorithm and tested tested using

a three-wheel mobile robot. Experimental results show that the proposed algorithm can

significantly reduce the depth error and hence reduce the risk of collisions. Although our

depth error model is developed for a monocular vision system, it can be applied to a robot

with multiple cameras or pan-tilt-zoom camera network to control the depth error. We

apply the depth error model for a vision system with multiple cameras.

The concept of an untrusted area is applied to 3D scene reconstruction with a two-view

approach. For surveillance purpose, a 360 degree view is reconstructed using a two-view

approach to recognize objects on the ground surface. During the stereo reconstruction,

the untrusted area is unavoidable due to the degeneracy introduced by triangulation. This

degenerated region might cause failures in object detection. We found that the location of

the untrusted area for a 360 degree view depends on camera positions. Hence, we use an

additional camera to avoid the untrusted area. In this research, we compute the untrusted

area for a 360 degree view and the location of an additional camera to produce the least

depth error. Experimental results confirm depth error analysis.
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CHAPTER II

RELATED WORK

Using vision to assist mobile robots and vehicles in navigation has been a popular research

field in the past decade [2, 3]. With applications ranging from intelligent vehicles to au-

tonomous mobile robots, research can be classified based on road conditions and sensing

methods.

If a robot is running on a well-structured road, such as freeways or the roads in an

urban area [8, 9], the primary focus of research is lane detection [10] using surface and

boundary features, and road following [11], which detects road trends. Since the road has

a relatively uniform surface and clear lane markings, techniques such as road segmenta-

tion, road edge detection [12], and curve-fitting [13] are often used to generate vehicle

control inputs. The vision-based navigation systems in this category have proved their per-

formance. In the No Hands Across America project [5] of Carnegie Mellon University,

the RALPH algorithm [14] navigated Navlab5 from Pittsburgh, PA to San Diego, CA in

1995. The Navlab5 drove a total of 2849 miles, and it ran 2797 (98.2%) without human

assistance. Another example is the ARGO proejct [6] of the University of Parma, Italy.

In 1998, the ARGO autonomous vehicle drove about 2000km throughout Italy using the

GOLD algorithm [11].

When a robot is running in an unstructured environment such as a natural environ-

ment [15, 16] or the surface of Mars [17], terrain classification and obstacle avoidance

become the primary challenges [18]. In such cases, advanced sensors such as stereo cam-

eras, Laser RADAR (LADAR), and appropriate sensor fusion techniques are necessary to

deal with the complex environment [19–21]. Due to the inherent difficulties in understand-

ing natural objects and changing environments, autonomous driving is still in its infancy.

However, existing results such as motion planning with 3D vision and the use of multi-
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ple classifiers [18, 22] shed light on a different class of problems, which are referred to as

ill-structured environments [1], where roads do not disappear completely.

We discuss the motion planning problem for an autonomous motorcycle on an ill-

structured road that does not have clear lane markings or pavement but might contain

the color information and the directional information from prior vehicle tire tracks and

pedestrian footsteps. Color information is used to distinguish obstacles and navigable ar-

eas [23, 24]. Color information is combined with other features, such as texture and road

hight, to extract travelable regions accurately [25]. The mobile robot is guided by extract-

ing vanishing points using directional information [1]. Recent developments in this area

are largely driven by the DARPA Grand Challenge in 2005. Although the 2005 DARPA

Grand Challenge indicates a big success in robot navigation development, the vision-based

navigation has almost no significant contributions to this success. All winning teams rely

on LADARs as primary sensing inputs during the race. This also illustrates the reality of

the vision-based navigation development. It cannot be used as a reliable sensing mecha-

nism for robot navigation. The vision-based navigation on ill-structured roads remains a

challenging problem.

Although a LADAR is a great sensor to obtain the shape of a road, it has the limitation

of the inability of distinguishing surface types (i.e. to tell the difference between a water

surface from a road surface). It is a great idea to combine LADAR inputs with vision

data [15,26]. However, this does not address the problem that long range LADARs are not

eye safe and hence cannot be used in a populated area. The vision-based navigation that is

based on passive sensing has its irreplaceable advantages.

Stereo vision [27] can provide 3D information about the environment. However, con-

sidering the width limitations of the motorcycle platform, the “baseline” distance between

cameras would be very limited if binocular stereo vision is used. As pointed out by Michels

et al. [28], a fast moving vehicle needs to observe obstacle at a far distance, and the binoc-
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ular cameras with limited “baseline” distance cannot provide accurate and timely depth in-

formation [7] in a dynamic and noisy environment as the vehicle would experience. There-

fore, we decided to use monocular vision in our system.

Although monocular vision does not provide the distance of obstacles accurately, it has

advantages, such as offering fast processing, compact system, and easy implementation.

Navigation systems in this category use color information [29–32] to distinguish obstacles

and road areas under the assumptions that mobile robots are on the road and the color of the

road is homogenous. Another application of monocular vision is to extract land markings

[11, 14], road boundaries [13, 33], or directional information of road [1] for navigation.

Our research focuses on the vision-based navigation with monocular vision for ill

structured roads. Since ill-structured environments do not have uniform road areas and

clear road boundaries, it is difficult to find navigable areas based on color information or

directional information alone. Our system uses both color information and directional in-

formation to extract travelable roads for mobile robots. During the development of monoc-

ular vision system, we find that depth information is necessary to avoid obstacles efficiently.

Hence, we expand the monocular vision system considering depth computation.
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CHAPTER III

VISION-BASED MOTION PLANNING FOR AN AUTONOMOUS MOTORCYCLE

ON ILL-STRUCTURED ROADS *

A. Introduction

Motivated by the DARPA Grand Challenge 2005, we have developed a vision-based motion

planning system for an autonomous motorcycle (Fig. 1) to run across desert terrain or ill-

structured roads, where uniform road surface and lane markings do not exist. Since global

positioning system (GPS) signals are not enough to guide the vehicle to avoid obstacles,

additional sensors and decision-making capabilities are needed. Although the single-track

platform (motorcycle) provides us with strong off-road capabilities such as excellent agility

and navigation on rough terrain, and an ability to pass through narrow openings, its limited

size and power supply do not allow us to install sophisticated sensors such as multiple

cameras or multiple laser range finders.

Because of size and power constraints, our motorcycle has one video camera, a GPS

receiver, a couple Inertial Measurement Units (IMU), and two on-board computers. The

vision system consists of only one camera and one laptop PC while the other computer is

dedicated to vehicle balance and low level control. Furthermore, the highly dynamic prop-

erty of the motorcycle demands very responsive vision data processing. These constraints

motivate our research to develop a fast and robust vision-based motion planning system for

an ill-structured road.

During the development of the vision-based navigation systems for the autonomous

motorcycle, we found that we cannot separate road detection, motion planning, and vehicle

∗Reprinted with permission from ”Vision-based motion planning for an autonomous
motorcycle on ill-structured roads” by Dezhen Song, Hyun Nam Lee, and Jingang Yi,
2007, Autonomous Robots,vol. 23, pp. 197-212, Copyright[2007] by Springer.
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(a) (b) 

Fig. 1. (a) Autonomous motorcycle and (b) unstructured road in desert.

kinematics and dynamics into the isolated individual problems as a conventional approach

would do. The dynamic nature of the motorcycle platform determines that all of the above

are highly coupled together. For example, a trajectory generated by the algorithm has to

consider road conditions, current vehicle status, and vehicle kinematic and dynamic limits.

We choose to take an integrated approach that combines all of three elements above in the

motion planning.

We found that the fundamental element of the integrated approach is the data repre-

sentation of ill-structured roads. Although binary maps, lines, and polygons are common

data representations in a structured road, none of them are appropriate for an ill-structured

road because there is no clear boundaries, no lane markings, and no uniform surfaces. We

propose a concept of the vision vector space (V2-Space), which is a unitary vector set that

represents local collision-free directions using a 2D image coordinate system. The V2-

Space is constructed by extracting unit vectors based on the similarity of adjacent pixels,

which includes the color information and the directional information from prior vehicle tire

tracks and pedestrian footsteps. Designed as an open framework, the V2-Space can support

many existing developments, such as new road detections or machine learning techniques,

and still facilitate motion planning with vehicle kinematic and dynamic constraints.
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We report how the V2-Space is constructed using a shadow/illumination invariant color

model and a maximum variance color projection method to reduce the impact of varying

lighting conditions in outdoor environments. We also show that how the V2-Space can be

used to incorporate vehicle geometric, vehicle dynamic, and time-delay constraints in mo-

tioning planning to fit the highly dynamic requirements of the motorcycle. The combined

algorithm of the V2-Space construction and the motion planning runs in O(n) time, where

n is the number of pixels in the captured image. Experiments show that it outputs correct

robot motion commands more than 90% of the time.

The rest of the chapter is organized as follows, we review exiting work on the vision-

based robot motion planning in section B. We propose the V2-Space in section C. We

present an algorithm for the V2-Space construction and motion planning in section D. Ex-

periments and summary are reported in section E F, respectively.

B. Related Work

The primary challenge of monocular vision for ill-structured roads arises from several as-

pects: 1) shadow and illumination changes, 2) no clear road boundaries, 3) drastic changes

of road surface, and 4) little or no prior knowledge of the roads. The motion blurring

and the vibration caused by a fast moving vehicle undermine image quality. To address

these issues, researchers approach the problem using different strategies such as color

vision [18, 23, 34], road detection [35–37], prior knowledge of road surface [12], pixel

voting [1], classifier fusion [22], optical flow [24], neural networks [8], and machine learn-

ing [24,28,38,39]. Existing developments provides excellent building blocks for the vision-

based navigation. Complementary to existing approaches, we take an integrated approach

that combines road/obstacle detection and vehicle dynamics with motioning planning. The

new approach starts with looking for a new data representation of ill-structured roads.
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Raw vision data cannot be directly used to perform motion planning for a robot. For

the structured environments, high level geometric feature representations such as points,

lines, surfaces, and polygons can be used to abstract vision data [40, 41]. For the unstruc-

tured or ill-structured environments, common feature representations include binary maps

and optical flow [24, 42]. Polygons can be used if a road has a clear boundary [43]. The

optical flow is the vector field which warps one image into another (usually very similar)

image. The vector field captures both the motion of the robot and other moving objects

based on the adjacent video frames. It contains information about moving obstacles and

the robot, but it does not work for a still vehicle and is sensitive to motion blurring.

Although desert roads have no clear boundaries, the tire tracks and the foot steps

left by prior vehicles or pedestrians can provide directional information for vehicle mo-

tion planning. Broggi and Berte [10] notice that similar information is provided by lane-

markings on urban roads and name it “internal edges”. Rasmussen [1] and Zhang et al. [33]

name the directional information in ill-structured roads as “dominating directions”. Ras-

mussen uses it to vote for a vanishing point to guide the vehicle. However, one pixel may

have more than one dominating direction. A road may fork or intersect with other roads.

The directional information can also be trimmed using color information. Our V2-space is

designed to capture the information.

The proposed V2-Space approach is inspired by the vector field histogram (VFH) [44].

Developed to assist a robot to navigate in a 2D environment with range sensors, the VFH

divides the environment according to a Cartesian grid. For each grid cell, the VFH keeps

track of a histogram of range sensor readings with respect to angular orientations. The

VFH allows the robot to keep track of the obstacles in the environment and enables fast

navigation. The VFH and our V2-Space share the similar aspect of describing obstacle-free

space using angular coordinates with respect to each cell or pixel. As pointed out by [44],

this representation allows the fast navigation of mobile robots. However, the V2-Space
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differs VFH in both its construction and its representation. The V2-Space is constructed in

sensor space, which is the pixel coordinates defined by the camera, instead of using the 2D

Cartesian world space. Each entry in V2-Space is a unitary vector set constructed according

to the similarity among local pixels instead of the sensor reading obtain by range sensors

in VFH.

C. V2-Space and Problem Description

1. Nomenclature

• {W}: 3D Cartesian world coordinate system (x, y, z).

• {I}: 2D image coordinate system (u, v).

• F : A raw video frame.

• Fc: A video frame after color correction.

• Vs: A video frame after surface verification.

• V: V2-Space.

• φ: Direction to next way point in degrees.

• TW : Motorcycle trajectory in {W}.

• T : Motorcycle trajectory in {I}.

• cp: The separation color used for surface verification.

• T +
W (T −

W ) : TW ’s upper (lower) envelope in {W}, respectively.

• T +(T −): T ’s upper (lower) envelope in {I}, respectively.
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• f : Road Following Quality (RFQ) function.

• lr(wr) Motorcycle length (width), respectively.

• τ ]: Trajectory length in time.

• τi: Inter-iteration time for motion planning.

• tm: Measurement time delay.

• td: Decision/execution time delay.

2. Assumptions

A pin-hole model [45] is used for modeling the on-broad video camera. It is assumed

that the camera is calibrated and that both the camera’s intrinsic and extrinsic parameters

(with respect to the vehicle) are known. Therefore, we can determine a perspective pro-

jection matrix M that projects a point/patch P = [x y z 1]T in the world frame {W} to its

corresponding pixel in the image frame {I} as p = [u v 1]T

[u v 1]T = M3×4[x y z 1]T . (3.1)

We assume that the lens distortion of the camera is either negligible or is compensated

beforehand. It is worth mentioning that perspective projection matrix M depends upon not

only static camera mounting mechanisms but also on vehicle orientation including pitch,

yaw, and roll angles. As illustrated in Fig. 2, the camera is mounted on the frame of the

vehicle. Since a running motorcycle has dynamic pitch, yaw, and roll angles, matrix M

is not a constant. We assume that we can read vehicle pitch, yaw, and roll angles from an

IMU. We also ignore the camera vertical motions caused by vehicle suspension because the

vertical motions can be sensed by another IMU that is attached to the camera and can be

compensated later. We assume that the vehicle maintains contact with ground at all time.
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Fig. 2. Camera configuration on the motorcycle.

Therefore, we can obtain M in real time, which means that the dynamic correspondence

between {I} and {W} is known. We also assume that ground surface is relatively flat.

Therefore, it can be treated as a ground plane. Depth information can be estimated using

intrinsic and extrinsic camera parameters in the monocular vision.

3. Inputs

The video data from a camera are the primary input for our motion planning system. Define

the pixel set of a raw video frame F with n = l × h pixels as I = {(u, v)|1 ≤ u ≤ l, 1 ≤
v ≤ h, u, v ∈ N}, where (u, v) are pixel coordinates in {I}. The video frame F is a matrix

of RGB values

F = (F)uv = ((R,G, B))uv, (u, v) ∈ I, (3.2)

where R, G,B ∈ Z and 0 ≤ R, G,B ≤ 255 are integer intensity values for each color

channel. Another important input of the system is the direction angle to the next waypoint

φ obtained from onboard GPS signals.
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Fig. 3. An example of the collision-free directions Θ.

4. V2-Space

The V2-Space is a collection of unitary vectors that describes local collision-free directions.

For frame F , its V2-Space is,

V(F) = {Θ(u, v) : collision-free directions at pixel (u, v)}, (3.3)

where Θ(u, v) ⊆ [0, 2π) is a set of collision-free directions at location (u, v),




Θ(u, v) = [0, 2π), If pixel (u, v) is on the road

Θ(u, v) = ∅, If pixel (u, v) is an obstacle

Θ(u, v) ⊂ [0, 2π), If pixel (u, v) is on boundary.

(3.4)

Fig. 3 shows an example of the defined collision-free directions at different pixels. Since

the V2-Space uses the same pixel coordinate of the raw frame in Eq. (3.2), the perspective

projection relationship in Eq. (3.1) holds between the V2-Space and {W}.
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5. Problem Statement

In each iteration, the motion planning system takes an image F as input and outputs a

trajectory. The length of the trajectory in time is defined as τ . Trajectory length τ is

not a constant but a function of current vehicle speed and camera coverage. In fact, τ is

unknown before a trajectory and its velocity profile are generated. On the other hand, our

motion planning algorithm runs every τi milliseconds, which is a constant. To ensure that

there is always a planned trajectory for the vehicle at any time, the inter-iteration time τi has

to be strictly less than τ . This constitutes the feasibility condition of the motion planning

algorithms. A short τi, which usually depends on how fast the algorithm can run, would

significantly improve the feasibility of the planning.

Although a trajectory has a length of τ > τi, only the first [0, τi] part of the whole

trajectory [0, τ ] will be executed because next trajectory will replace the current trajectory

at time τi. However, the overlapping part [τi, τ) is still useful because it helps us to improve

the system robustness and connection smoothness among piecewise curvatures. We will

explain it below in the section of velocity profile generation.

The problem formulation for each planning iteration (with the time period τi) is,

Definition 1 (Motion planning). Given F and φ, find trajectory

TW (τ) = {(x(t), y(t))| t ∈ [0, τ)} (3.5)

for the robot, where (x(t), y(t)) is the robot position in {W} at time t.

We propose to solve the above motion planning problem in the image frame {I}. In

the following, we first discuss how to compute TW (τ) using the defined V2-Space and then

find the optimal motorcycle motion trajectory TW (τ).
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D. Algorithms

We propose to use a computational approach for the motion planning problem. Because the

planning period τi is small, we can approximate trajectory TW (τ) by a circular curve start-

ing at the current motorcycle position and tangent to the current vehicle velocity. A circular

curve has a constant curvature, which is a special case of a curve with a linear curvature.

To ensure the controllability, Ma et al. [46] have proved that a nonholonomic robot such as

a motorcycle can only track a piecewise linear curvature under perspective projection. The

overall trajectory generated by our algorithm is piecewise a linear curvature, which ensures

that motorcycle can execute the planned path [47].

Using such an approximation, we can denote the trajectory TW (τ) by a triplet (R, d, vp(t))

as

TW (τ) = {(R, d, vp(t))|R ∈ [Rmin,∞), d ∈ {0, 1}, t ∈ [0, τ)}, (3.6)

where R is the radius of the trajectory, binary variable d = 0 (left) or 1 (right) for the

trajectory direction with respect to the current velocity direction, vp(t) is the velocity profile

of the trajectory, and Rmin is the minimal turning radius of the motorcycle. We compute

TW (τ) given by Eq. (3.6) in two steps: first, we compute V2-Space, V , and then we search

for a trajectory in V using a set of circular candidate curves. We begin with the first step of

the V2-Space construction.

1. V2-Space Construction

The V2-Space construction is a non-trivial feature extraction problem. We propose a three

step V2-Space construction-algorithm as illustrated in Fig. 4.
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Fig. 4. V2-Space construction block diagram.

a. Color Correction

The purpose of color correction is to minimize the shadow and illumination change effects.

Hue, Saturation, and Intensity (HSI) color models have been used widely in road identifica-

tion research because they are insensitive to illumination [45]. However, our initial experi-

ments have shown that the HSI color model is not very effective in shadow elimination. We

have tested and compared a number of color models such as HSI, normalized Blue [48],

and the l1l2l3 and the c1c2c3 in [49]. Although the c1c2c3 color model is originally designed

to be shadow-invariant under the indoor lighting conditions, our experiments show that it

is the best shadow and illumination invariant color model for outdoor vision algorithms,

c1 = arctan

(
R

max(G,B)

)
, c2 = arctan

(
G

max(R,B)

)
, (3.7)

c3 = arctan

(
B

max(R, G)

)
.

Fig. 5(b) shows that the c1c2c3 color model is very effective in shadow elimination.

With the corrected color information, our content analysis in subsequent steps becomes
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(d)

(a) (b)

(c)

Fig. 5. An example of the V2-Space construction. (a) An original video frame with shadow.
(b) The classification of the road using c3 signature in the shadow invariant color
model (c1, c2, c3). (c) Output of surface verification. (d) Collision-free direction
information Θ over surface pixels. We omit the regions with Θ = ∅.

significantly more robust. Let us define the output of this step as,

Fc = {(u, v), c1, c2, c3|(u, v) ∈ I}.

It takes O(n) time to compute Fc for an n = l × h-pixel frame.

b. Surface Verification

The purpose of surface verification is to identify obstacles and other non-road regions. It

outputs a description of free space that the vehicle can pass through. Let us define such free

space as Vs, which takes the same format as Eq. (3.3). The transformation from Fc to Vs is

a data-reduction process that builds on both prior knowledge and statistic techniques.
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As prior knowledge, we find that desert terrain is not completely unstructured. Veg-

etation can serve as a nice marking of non-road regions. A large portion of Fc contains

only two types of surface: the sandy surface and the vegetated surface. A continuously

connected surface of the sandy surface is more likely to be a road. Therefore, our first

step is to find an effective color discrimination to separate the two types of surfaces. Since

vector (c1, c2, c3) is a 3D point in color space, our conjecture is that there should exist an

unknown plane in the color space such that the difference between the two types of surfaces

is maximized if we project (c1, c2, c3) to the plane. The question then becomes how to find

the plane.

Define (w1, w2, w3) as the unitary normal vector of the plane. The color projection of

a pixel (u, v) in Fc is the inner product of two vectors,

cp(u, v) = w1c1 + w2c2 + w3c3, (3.8)

where cp(u, v) is the separation color that will be used to classify pixels. We employ a

data-driven method to estimate (w1, w2, w3) by maximizing the variance,

(w1, w2, w3) = arg max
w1,w2,w3

V ar(cp(u, v))

s.t. w2
1 + w2

2 + w2
3 = 1.

This can also be viewed as a variation of the unsupervised linear classifier according to [50].

Since the separation color (w1, w2, w3) depends on the lighting conditions and surrounding

environments, it usually does not change dramatically in navigation and can be either pre-

computed or repeated at long intervals (i.e. every 5 minutes). We actually run it as the

parallel routine of the main motion planning algorithm.

Now we can reduce Fc to Fp = {cp(u, v)|(u, v) ∈ I}. We build on the appearance-

based obstacle detection method in [29] to detect obstacles and classify regions. The
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Fig. 6. Appearance-based obstacle detection. (a) The reference region in {W}. (b) The
trapezoid is the reference region in {I}.

method is based on the assumption that there exists a reference road region in the image.

The reference region is believed to be on the road because it is usually the closest region in

front of the robot if the robot stays on the road. The trapezoid region (in {I}) in Fig. 6(b)

is used as the reference region. Using the pixels in the reference region, we can construct

a Gaussian distribution on the projected color cp(u, v). The road surface verification step

checks the pixels outside the reference region and classifies them as either road or non-

road based on the confidence interval constructed from the Gaussian distribution. If pixel

(u, v) is located in the confidence interval, then Θ(u, v) = [0, 2π); otherwise, Θ(u, v) = ∅.

Therefore, it takes O(n) to compute the transformation from Fc to Vs. Fig. 5(c) shows an

example of the surface verification output.

A hidden problem in this method is how to guarantee the reference region is really

on the road when the motorcycle is running. Fig. 6(a) illustrates a discrepancy dr between

the robot location and the reference region. It causes the planning space to be ahead of the

real robot location. Therefore, even if the robot is on the road, the reference region could

be outside the road on narrow turns, which can cause the failure of the algorithm. We will

address this problem later in Section c.
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Fig. 7. Directions extracted for a pixel. (a) A pixel at (u, v). (b) The similarity comparison
along eight neighboring directions. (c) The extracted direction information.

c. Direction Extraction

The purpose of direction extraction is to reduce set Vs by extracting directional information

about the road surface. Although desert roads do not have clear lane markings similar to

those on the structured roads, they do contain tracks and footsteps left by previous vehicles

or pedestrians. These tracks and footsteps can provide useful directional information.

To extract directional information, we must search local collision-free directions for

each pixel in Vs. A straightforward approach is to employ the pixel similarity comparison

as shown in Fig. 7. Since each pixel has at most 8 neighboring pixels (Fig. 7(b)), we

divide [0, 2π) into 8 corresponding subsets. We check each direction for pixel similarity.

If the neighboring pixel along one direction is statistically similar to the pixel at (u, v), we

update Θ(u, v) accordingly along that direction. Fig. 7(c) illustrates the output Θ(u, v) for

the example.

To reduce noise effects, in practice we check 5 ∼ 10 pixels along each direction. Our

approach takes O(n) in this step.

Remark 1. We want to point out that the V2−Space can be constructed at different resolu-

tions. Although the definition of the V2−Space in Eqs. 3.3 and 3.4 suggests the relationship
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of one-to-one correspondence between each pixel (u, v) and a direction set Θ(u, v), the

V2−Space can be constructed at lower resolutions. If so, a direction set Θ corresponds

to a squared-patch of pixels instead of a single pixel. This also allows the introduction

of more robust methods for the surface verification or the directional extraction such as

the texture matching [51]. Constructing the V2−Space at a lower resolution can greatly

improve the robustness to noise at a price of the inability to distinguish small obstacles.

However, if we know the vehicle has enough ground clearance, we do not need to consider

small obstacles.

Remark 2. It is worth mentioning that the V2−Space provides an open framework rather

than a fixed method. If the computation power is not constrained, more sophisticated meth-

ods can be applied here. For example, we can upgrade the surface verification with the

texture classification [51] instead of the straightforward Gaussian method. We can also

extract the directional information for each pixel by comparing the texture information in-

stead of just color values. More effective classifiers such as the Polynomial Mahalanobis

Distance [36] can be also applied here to extract the road surface. The recent develop-

ments [24, 28, 38, 39] on machine learning for the vision-based navigation can also be

applied with the V2−Space.

2. Motion Planning in V2-Space

With the introduction of the V2-Space, the motion planning problem for the motorcycle can

be quantitatively formulated. To generate timely and accurate robot control commands, we

need to consider many factors such as image processing delay and motorcycle geometric,

kinematic, and dynamic limits. We begin with the motion planning in V2-Space using a

point robot without time delay and then consider the factors above to form a complete

motion planning solution for the autonomous motorcycle.
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a. A Point Robot with No Time Delay

Using the perspective projection mapping P in Eq. (3.1), we can obtain the trajectory T
(projection of TW in {I}) for a set of circular arc trajectories (R,d) (bold symbols (R,d)

denotes a set of (R, d)s in {W}) as,

T = {(u, v)|(u, v) = P(R,d),P : projection map}. (3.9)

We need to evaluate T in V to obtain an obstacle-free trajectory. Assuming T overlaps

with V at pixel (u, v), the direction α at pixel (u, v) of the trajectory is,

α(u, v) = atan2 (∆u, ∆v) , (u, v) ∈ T . (3.10)

For a candidate arc (R, d) ∈ (R,d), we can calculate α and then evaluate the trajec-

tory by checking how well it fits in V . We define a road following quality (RFQ) function

f(u, v; R, d),

f(u, v; R, d) =





0, if Θ(u, v) = ∅

1, if α(u, v) ∈ Θ(u, v)

| cos(θd)|, otherwise

(3.11)

where θd = inf
V
|α(u, v) − ∂Θ| is the minimum distance between α(u, v) and Θ(u, v),

and ∂Θ is the boundary of Θ. In other words, θd is the distance between a given point

α(u, v) and a data set Θ(u, v). It characterizes how close the direction α(u, v) is to be

collision-free.

Therefore, we formulate the motion planning problem as an optimization problem:

looking for a trajectory that maximizes the RFQ function,

max
T

∑

(u,v)∈V
f(u, v; R, d). (3.12)

The numerical solution for Eq. (3.12) will not provide a complete obstacle-free trajectory
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because along T , f(u, v; R, d) could be zero if one pixel (u, v) is an obstacle. Therefore,

we should impose the constraint f(u, v; R, d) > 0, t ∈ [0, τi). Since (R, d) uniquely

defines a candidate trajectory, then we can find an obstacle-free trajectory by solving the

constrained optimization problem,

(R, d) = arg max
T

∑

(u,v)∈V
f(u, v; R, d)

s.t. f(u, v; R, d) > 0. (3.13)

There are infinite number of candidate trajectories. Finding the exact optimal solution

is computationally expensive and unnecessary. Due to the uncertainties in ground frictions

and control errors, the motorcycle is not able to follow an “optimal” trajectory exactly.

The ability of the trajectory-following determines the necessary accuracy needed in the

solution. Therefore, we take an approximate approach by using a predefined candidate

solution set, which is initially consisted of seven circular candidate T0, . . . , T6. The number

of candidates can be adjusted with respect to how accurately the vehicle can execute the

trajectory. We will take the best trajectory out of the seven candidate solutions as the chosen

trajectory. If none of the seven candidate arcs are obstacle-free, we can simply take the best

out of the seven because it represents minimum risk of hitting a big obstacle.

Fig. 8 illustrates the seven candidate arcs T0, ..., T6 in the solution space. Candidate

arcs (R,d) are defined in the world coordinate system as illustrated in Fig. 8(a) and the

projected image in Fig. 8(b).

After a trajectory (R, d) is chosen, we need to generate its velocity profile vp(t) along

the circular trajectory. We have to consider several factors. First, the motorcycle cannot

run too fast for a given trajectory radius R. If we assume the road surface can provide a

constant maximum lateral friction force, for a given turning radius R, the maximum allow-

able velocity v̄ to balance the vehicle has to satisfy v̄(R) = kf

√
R, where the constant kf
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Fig. 8. Sample candidate arc trajectories and vehicle boundaries in (a) the world coordinate
system {W} and (b) the image coordinate system {I}. The solid arcs are candidate
trajectories while dashed arcs are augmented boundaries of the vehicle that charac-
terize the size of the vehicle and the size/location of the reference region defined in
Fig. 6. Each solid arc has two corresponding dashed arcs.

is determined by road/tire interaction properties [47]. On the other hand, we also constrain

the motorcycle velocity to be faster than its slowest velocity v for stability requirements.

Our current approach is to choose a velocity v(τi) at time τi and to perform linear

interpolation for vp(t), t ∈ [0, τi). Recall that τi < τ is the moment that the next planning

iteration starts. Bounded velocity v(τi) depends on the quality of road ahead,

v(τi) = min{v +
(v̄ − v)

S

∑

(u,v)∈V
t∈[τi,τ)

f(u, v; R, d)

|(u, v) ∈ V , t ∈ [τi, τ)| , v̄}, (3.14)
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where

S =

∑
(u,v)∈V,t∈[0,τ ] f(u, v; R, d)

|(u, v) ∈ V , t ∈ [0, τ ]|
indicates the quality of the whole trajectory using RFQ per pixel in [0, τ ], and term

1

S

∑

(u,v)∈V
t∈[τi,τ)

f(u, v; R, d)

|(u, v) ∈ V , t ∈ [τi, τ ]| = s1

indicates relative quality of the road ahead. If RFQ per pixel of the trajectory in [τi, τ ] is

better than that of [0, τ ], then s1 > 1 and we take the maximum feasible speed, which is v̄,

at time τi. Otherwise, we reduce the speed to be conservative.

Remark 3. The constraint in Eq. (3.13) insists a completely obstacle free trajectory in

solution. Since the vehicle has some ground clearance, it is worth mentioning that the

constraint can be relaxed according to the threshold of the obstacle size.

b. Incorporating GPS Information

Recall that the GPS input is a direction angle φ that points to the next way point. We also

need to evaluate each trajectory using φ. For T , we have its starting location (x(0), y(0))

and the location right before the next iteration (x(τi), y(τi)). The overall direction θτ in

(0, τ) is,

θτ = atan2(x(τ)− x(0), y(τ)− y(0)).

The weight of each trajectory w(T ) is based on how much θ and φ agree with each other,

w(T ) = cos(θτ − φ). (3.15)

Therefore, we can use w(T ) as a weighted factor of the road following function f(u, v; R, d)

in Eq. (3.13) to calculate the best candidate trajectory. It is worth mentioning that this ad-

dition actually incorporates the GPS way point navigation capability into our algorithms.
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When there are no clear road features, the weight introduced here dominates the output of

the algorithm and it becomes a GPS way-point navigation algorithm. This increases the

robustness of the algorithm to deal with the situation when the vehicle runs off the road.

c. Vehicle Size and Image Processing Delay

Define lr and wr as motorcycle length and width, respectively. To guarantee that the ref-

erence region in Fig. 6(b) is on the road, we augment the real motorcycle by adding the

reference region with discrepancy distance dr as part of the robot geometric model. There-

fore, lr and wr are actually larger than the real robot size.

We also augment the trajectory evaluation to the neighboring regions of the candidate

trajectory. Fig. 8 illustrates the neighboring region in dashed arcs. For the trajectory in

Eq. (3.6) that starts at (x(0), y(0)) in {W}, the upper envelope of the neighboring region is

a concentric arc that starts at (x(0) + wr/2, y(0)) with radius R + wr/2,

T +
W (τ) =

{(
R +

wr

2
, d

)
|starting at (x(0) +

wr

2
, y(0))

}
(3.16)

and similarly the lower envelope is

T −
W (τ) =

{(
R− wr

2
, d

)
|starting at (x(0)− wr

2
, y(0))

}
. (3.17)

With T +
W (τ) and T −

W (τ), we can compute their projection T + and T − using Eq. (3.9). De-

fine T as the pixels between T + and T −, which is the set of pixels in the neighboring

region of T . T can be understood as the sweeping region in {I} of the augmented motor-

cycle. For the ith candidate arc Ti, 0 ≤ i ≤ 6, its corresponding sweeping region is defined

as Ti. We can then modify Eq. (3.12) to incorporate the vehicle size

max
Ti

∑

(u,v)∈V
f(u, v;Ti). (3.18)
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With the augmentation, RFQ function f also needs to be updated. Recall that f is the

function of the angular distance α(u, v) between the tangent line of the candidate arc and

the direction set Θ(u, v) in Eq. (3.11). Eq. (3.10) illustrates how to compute α(u, v) if

(u, v) overlaps with the candidate arc. However, a pixel(u, v) might not be located exactly

on the candidate arc since we introduced T. For pixels that are not on the candidate arc,

(u, v) ∈ T ∩ T̄ , we use a pseudo candidate arc to compute α(u, v). The pseudo candidate

arc is an circular curve that shares the same center with T in {W}.

Image capturing, processing, communication, and the robot control all take time, and

these actions result in a time delay. Such a delay can be further classified as a measurement

delay and a decision/execution delay. Measurement delay tm refers to the elapsed time

from the moment that the camera captures a frame to the moment that RGB data enter

computer memory. Decision/execution delay td refers to the interval between the moment

that the system takes the frame from memory to the moment the robot actually executes the

resulting control command from the algorithm output.

Assuming t = 0 at the beginning of each iteration, motion planning is then based on

the frame captured tm time ago and the command generated will be executed td time later.

To address such a time discrepancy, we can compensate for the time delay by shifting the

starting location of the planned trajectory to its actual location at td. Fig. 9 illustrates how

to compensate for the delay. Without loss of generality, we assume that {W} has its origin

at the center of the lower edge of the camera field of view. Then the last known position

with respect to V is (x(−tm), y(−tm)) = (0,−dr), where dr is the discrepancy distance

illustrated in Fig. 6. Therefore, we can estimate (x(td), y(td)) by taking velocity integrals

over time period between −tm and td. The estimated ((x(td), y(td)) is the new starting

point of trajectory TW (τ).
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Fig. 9. A schematic of delay compensation.

3. Algorithm

Combining the analysis above, we have motion planning Algorithm 1. It is clear that the

overall algorithm runs in O(n) time.
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Algorithm 1: Motion Planning Algorithm
input : An image from the camera, current vehicle velocity, and GPS information

output: Collision-free trajectory TW (τ)

Construct the collision-free vector space V; O(n)

/* Follow the block diagram in Fig. 4. */

Compute new trajectory start point (x(td), y(td)); O(1)

/* Based on the current vehicle velocity and the known

time delays (See Fig. 9 for details). */

Compute T +
W and T −

W for each candidate arc Ti; O(1)

/* Using Eqs. (3.16) and (3.17) and the new starting

point (x(td), y(td)). */

Project T +
W and T −

W of each Ti and all Ti’s into the image frame; O(1)

/* Using the perspective projection in Eq. (3.1). This

allows us to get Ti and tag each pixel in Ti. */

for each Ti, 0 ≤ i ≤ 6, do

Compute the GPS weighting factor w(Ti); O(1)

/* Using Eq. (3.15). */

Initialize objective function: Fi = 0; O(1)

for each pixel (u, v) in Ti do

Fi = Fi + w(Ti)f(u, v, R, d); O(1)

/* RFQ function f can be computed according to

Eq. (3.11). */

T = arg max
Ti;0≤i≤6

Fi ; O(1)

Generate velocity profile vp(t) with dynamics constraints ; O(n)

/* Using Eq. (3.14). */
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E. Experiments and Results

We have implemented the algorithm on a laptop PC with a 1.6 GHz Centrino processor and

512 MB RAM. The camera used is a Canon VCC4 camera with a 47.5◦ horizontal field of

view. Based on Microsoft Direct X SDK version 9.0, our algorithm can run with an input

from either a live video from the camera or pre-recorded video clips. Our algorithm can

process the video at a speed of 5 frames per second.

1. Experiments with Video Clip

The first step of the experiments is to test the algorithm using the video data from the route

of DARPA Grand Challenge. Fig. 10 illustrates the algorithm using one of the snapshots in

the two hour video clip. Fig. 10(a) illustrates the results of surface verification. Black pixels

represent regions that look close to the road surface. It is clear that the data are very noisy

because the difference between the road and its surrounding environment is not significant.

However, after directional information is extracted, the resulting V in Fig. 10(b) is quite a

good fit of the real road (we use the circular direction to indicate the direction information

at each pixel). One thing that was not mentioned early in the paper is that we do not process

saturated pixels because they do not contain much information. This can also filter out the

bright sky background and improve computation speed. This explains why there are so few

vectors in Fig. 10(b). Even there are fewer vectors in Fig. 10(b), the overall V is sufficient

for motion planning. Table I and Fig. 10(c) illustrate the result of candidate arcs evaluation

without GPS inputs. The vision algorithm ranks three top choices including arcs 3, 4, and

5. Fig. 10(d) show how a GPS signal is used to identify the final choice. Fig. 11 uses two

more examples to further illustrate how a GPS signal can be used to improve the quality of

the output of the vision algorithm. Note that the starting points of the arcs in all examples

are calculated with the considerations of vehicle kinematic constraints and time-delays.
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Fig. 10. An illustration of V2-Space algorithm using a snapshot of the video clip captured
in the Mojave desert. (a) Vs, (b) V , (c) result of the arc evaluation using Eq. (3.18),
and (d) final choice of the arc with GPS inputs.

During the test, we found that the algorithm has a successful classification rate of 91%.

The successful rate is computed as follows: we extract each frame and its corresponding

GPS data from the video clip and log file as input to run our algorithm. At the same time,

human inputs, which pick the best candidate arc out of the seven candidate arcs, are used

as ground truth. If the algorithm output matches human inputs for a given frame, then it is

a success frame. When we classify success frames, more than one candidate arc can be the

correct answer due to the road trends. In this case, all possible candidate arcs to satisfy road

trends are regarded as the ground truth. These ambiguous cases are classified as successful

case.
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Table I. The evaluation of candidate arcs with respect to the RFQ functions in Eq. (3.18) for
the examples in Figs. 10 and 11.

Fig. 0 1 2 3 4 5 6

10 271.2 129.6 88.0 147.3 717.1 512.2 286.4

11(a) 556.7 524.0 1079.0 1303.8 1330.3 475.4 321.3

11(b) 794.4 960.7 1346.8 1031.3 922.2 1105.6 794.8
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Fig. 11. Two examples using the video data from the Mojave desert.

The testing DVD video lasts 23 minutes and 21 seconds. We have verified the al-

gorithm on total 7005 frames. It outputs 6375 successful frames. Therefore, the rate of

success is 91%. It is worth mentioning that the result does not mean that the vehicle will

fail in the rest 9% of the time. Because there is a significant overlap between adjacent

frames, it needs several consecutive failures to lead the vehicle to leave the road. There-

fore, the actual performance should be much better than the successful rate on individual

frames.

For example, if a road is 3 m in width, a motorcycle traveling speed of 20 km/h is

equivalent to 5.555 m/s. Saying that the turn radius of the vehicle has to be limited to more

than 5 m due to its dynamics and friction constraints. If the vehicle is in the middle of road,

it is 3/2=1.5 m away from the boundary of the road. Given a 5 m turn radius and a velocity
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of 5.555 m/s, it takes at least 0.716 seconds to hit the road boundary. Given the fact that

the motion planning algorithm runs every 200 milliseconds, a duration of more than 0.716

seconds means at least 3 iterations of our motion planning algorithm. It only takes one

successful trial out of the three trials for the vehicle to remain on the road. If each trial has

a probability of failure of 0.1, the probability of three consecutive failures is 0.13 = 0.001 if

each trial is completely independent. Due to the overlap between images, the three runs is

not completely independent. The true failure rate is somewhere between 0.1 and 0.001. Of

course, the reality is more complicated than this simple computation. However, it reveals

the facts that (1) the successful rate metric in our experiment is a conservative metric and

(2) the vehicle can survive better if the algorithm can run at a faster speed.

The failure cases tend to happen at the moment when the road surface changes drasti-

cally. For example, if part of the road is covered by water, the algorithm cannot distinguish

the water from obstacles, which is expected because our existing implementation does not

take the sophisticated surface classification into account. Another problem is caused by

the inherent limitations of monocular vision. If the surface of the road is identical to the

surface of an obstacle, the algorithm fails because it cannot tell the difference.

2. Field Tests

Interestingly, field tests have shown that our algorithm also works with structured environ-

ments. Before we tested the algorithm on a running motorcycle, we ran it on a smaller

mobile robot. We conducted experiments in a golf course, local parks, and on the univer-

sity campus, in which both the structured and ill-structured environments exist. The smaller

robot is a three wheel robot with two front driving wheels and one rear caster as illustrated

in Fig. 12(a). The robot is 30 cm wide and 45 cm tall and can travel at a speed of 25 cm/s

with a 25 lbs. payload. It is also equipped with two wheel encoders and a digital compass,

which is used to simulate GPS inputs.
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(a) (b)

Fig. 12. Robots used for field tests.

Following the same successful rate metric, the robot can make correct decisions at a

rate of 92%, which is better than the video clip results because the road conditions are less

difficult. We believe this performance can be further improved if our robot had a better

wheel encoder. The wheel encoders used in the robot only have a resolution of 32 pulses

per revolution, which limits the accuracy of location estimation.

F. Summary

In this chapter, we reported the development of a vision-based navigation system based on

road appearance information for a mobile robot equipped with a single camera. To present

road features, we propose new type of framework, V 2-Space, which process video data

and perform motion planning efficiently due to fast construction. Since the reduction of

the impact of varying lighting conditions is one of the major challenges of navigation sys-

tems in a outdoor environment, we used a shadow and illumination invariant color model

in V 2-Space construction. We extracted directional information from the prior tire tracks

and pedestrian footsteps on the road to refine our V2-Space. We also suggested a motion
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planning algorithm in V 2-Space. The proposed algorithm considers vehicle kinematic and

dynamic limits as well as time-delays during trajectory generation. We conducted exper-

iments to confirm the algorithm both with video clips from the desert and a three-wheel

robot. Experimental results showed that robot motion commands are correct at a rate of

more than 90%. Failures resulted from the limitations of the appearance information based

navigation, such as a lack of depth information. We noticed that depth information is re-

quired to avoid obstacles efficiently. Therefore, we expanded the vision-based navigation

with geometric information of roads.
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CHAPTER IV

MONOCULAR VISION-BASED DEPTH-ERROR-AWARE ROBOT NAVIGATION

A. Introduction

Vision-based navigation is very important for small and fast-moving mobile robots. Most

other navigation sensors, such as sonar rings, laser range finders, and radars, are active

sensors, which are usually bulky and not energy-efficient. As a passive sensor, cameras can

be very small and energy-efficient because cameras do not emit signals to the surrounding

environment. Unlike laser range finders, cameras do not have eye-safe problem and can

be used in populated regions. However, images from cameras contain rich information

of the environment. Understanding the imaging data is nontrivial. Extracting geometry

information from images is critical for obstacle avoidance. Stereo vision approaches are

often employed.

As illustrated in Fig. 13, there are two popular types of stereo vision systems. The

first type employs multiple cameras with fixed baseline distances. Images taken by differ-

ent cameras at the same moment are used for stereo reconstruction. The binocular vision

system shown in Fig. 13(a) is its representative. This approach has an inherent drawback

when the robot gets smaller and moves faster. For a fast moving robot, it is very important

to identify obstacles at a distance. Depth error, which is the error of the distance from

the robot to the obstacles along robot forwarding direction, characterizes the quality of the

stereo information for robot navigation. As illustrated in Fig. 13(a), the depth error range

increases very fast (∆e2 > ∆e1) if the depth of the obstacle gets larger and larger than the

baseline distance, which is the distance between the two camera centers C and C ′. This is

due to the nature of triangulation computation.

Since excessive depth errors can lead to collisions with obstacles, we focus on the
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Fig. 13. A 2D conceptual illustration of depth error distribution for two types of vi-
sion-based navigation systems. The dash line in each figure is the robot moving
direction. The short line segments I and I ′ represent the imaging planes for camera
C and C ′, respectively. The shaded regions in the figures represent the conic re-
gions generated by back-projecting corresponding pixels from the camera centers
to 3D space. The regions determine the depth error ranges.

second type. Commonly referred to as structure from motion (SFM) approach [52], this

method constructs depth information using images taken at different perspectives from a

single camera [19, 53]. The robot motion changes camera perspectives. Therefore, the

baseline distance is no longer limited by the width of the robot. However, this approach

has its own problems. The depth of obstacles located at the baseline cannot be obtained

because the camera centers and obstacle locations are collinear. Unfortunately, if the robot
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moves along a straight line, its forward direction is always the baseline direction. Fig. 13(b)

for camera perspectives C and C ′ illustrates the degenerated case. If ignored, the robot will

inevitably collide with obstacles.

Therefore, additional perspectives (i.e. camera C ′′ in Fig. 13(b)) that deviate from the

motion direction must be introduced. However, the choice of the additional perspective is a

tradeoff among the quality of the sensed information, navigable region limitation, and the

energy consumed by the additional travel. To address this problem, we analyze how depth

error is distributed on the road plane for a given frame pair. Our model can predict how

the regions with excessive depth error are distributed across the joint coverage of multiple

views and hence enable us to choose optimal locations to take the additional frame to

effectively reduce the overall depth error. We have implemented the algorithm and tested

using a three-wheel mobile robot. The experiment results confirm our analysis.

The rest of the paper is organized as follows. We review the related work in Section B.

We define the problem in Section C. We analyze depth error and introduce the notion

of the untrusted area in Section D. We then propose an overall algorithm in Section E.

Experiments and a summary in Section F and G, respectively.

B. Related Work

Our research is related to monocular vision systems for robots, structure from motion

(SFM) [52], and active vision [54–56].

Due to its simple configuration, using a monocular vision system is very popular in

mobile robots with space and power constraints. The research work in this category can

be classified into two types including simultaneous localization and mapping (SLAM) and

vision-based navigation. SLAM [57–60] research focuses on the mapping and localization

aspect and is often used in structured indoor environments where there are no global posi-
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tioning system (GPS) signals to assist robots in navigation. SLAM focuses on identifying

and managing landmarks/feature points from the scene for map building and localization.

Obstacle avoidance is not the concern of SLAM.

Our work is in the category of monocular vision-based navigation that focuses on

obstacle detection and avoidance. Due to the inherent difficulty in understanding the en-

vironment using monocular vision, many researchers focus on applying machine learning

techniques to assist navigation [28, 61–63]. However, those methods are appearance-based

and only utilize color and texture. Lack of geometry information limits their ability in

obstacle detections.

Our work is a geometry-based approach that uses SFM to obtain geometry informa-

tion of the environment. SFM can simultaneously estimate both the 3D scene and camera

motion information [52]. Since the camera motion information is usually available from

on-board sensors such as an inertial measurement unit (IMU) or wheel encoders, the dimen-

sionality of the SFM problem can be reduced to the estimation of the 3D scene only, which

is triangulation. The depth error is determined by the image correspondence error and the

camera perspectives. To obtain the 3D information, it is necessary to find the corresponding

points between the overlapping images. However, due to the fact that images are discrete

representations of the environment and the inherent difficulty in image matching, it is un-

avoidable that matching errors are introduced into the corresponding points [64,65]. There

are many newly developed techniques that can reduce correspondence errors. Such tech-

niques include low-rank approximations [66–68], power factorization [69], closure con-

straints [70], and covariance-weighted data [71]. In addition, new features, such as planar

parallax [72–75] and the probability of correspondence points [76], can be used instead of

correspondence points to reduce the correspondence error.

Our work accepts the fact that image correspondence cannot be eliminated completely.

We are instead interested in how the depth error is affected by the image correspondence
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error. Although the magnitude of the image correspondence error is uniformly distributed

across image coverage [64, 65], the variance of depth error is not uniformly distributed

across the image coverage [77]. Therefore, new robot navigation and camera motion plan-

ning should take the depth error distribution information into account and this is the inspi-

ration for our development.

Selection of the appropriate camera perspectives can reduce the impact of image cor-

respondence errors and minimize the depth error [52]. This can be viewed as an “active

vision” approach. Introduced by Bajscy [54] and Aloimonos et al. [78, 79], active vision

is defined as “an intelligent data acquisition process using optimized camera parameters”.

Active vision techniques have been widely used in 3D reconstruction [80, 81]. Active

vision-based systems determine optimal camera configurations either by maximizing cam-

era visibility [81–86] or by minimizing the 3D estimation error [52, 87–89]. Estimation

error is often expressed as a covariance matrix of the 3D estimation error based on the

assumption that measurement data have Gaussian distribution [90–92] or a standard devi-

ation of depth error [93]. Error analysis provides the lower boundary of the estimated 3D

structure and the camera motion matrix [94, 95], or creates a sensitivity map [96] which

shows the estimation error distribution and uses to correct the depth estimation.

Our problem differs from the existing “active vision” research in two aspects. First,

the mobile robot does not care about the accuracy of the entire 3D environment; it only

cares about the accuracy of the region for next navigation period. There is no need to com-

pute an optimal solution to minimize the 3D reconstruction error. The demanding speed

requirement in navigation does not allow it, either. Therefore, we decide to develop a fast

depth error range prediction mechanism for next navigation period and plan navigation

accordingly. Second, the camera cannot arbitrary select perspectives to minimize 3D re-

construction errors. This is not a free camera placement problem as in [87,88] because the

robot’s primary task is navigation instead of the 3D reconstruction.
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C. Problem Description

1. Coordinate Systems

Our algorithm runs every τ0 time. In each period, the robot has a trajectory T (τ), τ ∈
[0, τ0]. The period length τ0 is a preset parameter depending on the speed of the robot and

the computation time necessary for stereo reconstruction. The most common approach to

assist robot navigation is to take a frame F at τ = 0 and another frame F at τ = τ0 for

the two-view stereo reconstruction. As a convention, we use underline and overline with

variables to indicate their correspondence to F and F , respectively. To clarify the problem,

we introduce the following right hand coordinate systems as illustrated in Fig. 14.
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Fig. 14. Definition of coordinate systems and their relationship. The WCS is a fixed coor-
dinate system while a CCS is attached to the moving camera.

• World coordinate system (WCS): A fixed 3D Cartesian coordinate system. Its y-axis

is the vertical axis, and its x-z plane is the road plane. Trajectory T (τ) is located in

x-z with T (τ0) located at the origin of WCS. Hence, T (τ) = [xw(τ), zw(τ)]T , 0 ≤
τ ≤ τ0 as illustrated in Fig. 15.

• Camera coordinate system (CCS): A 3D Cartesian coordinate system that is attached
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to a camera mounted on a robot with its origin at the camera optical center. Its z-axis

coincides with the optical axis and points to the forward direction of the robot. Its

x-axis and y-axis are parallel with the horizontal and vertical directions of the CCD

sensor plane, respectively.

• Image coordinate system (ICS): A 2D image coordinate system with the u-axis and

v-axis parallel with the horizontal and vertical directions of an image, respectively.

Its origin is located at its principle point. Coordinates u and v are discretized pixel

readings. When we mention frames such as F , F and F , they are defined in ICS.

Frames such as F and F have their corresponding CCSs and ICSs. We use the notation

CCS(F ) to represent the corresponding CCS for frame F . As illustrated in Fig. 14, the

origin of CCS(F ) projects to T (τ0) on the road plane, which is the origin of WCS. The

vertical distance between the origins of the CCS(F ) and the WCS is the camera height h.

The origin of CCS(F ) projects to T (0) on the road plane.

2. Nomenclature

• q = (u, v, 1)T : a point in ICS.

• Q = (xw, yw, zw)T : q’s position in WCS.

• Q̂ = (x̂w, ŷw, ẑw)T : the estimated value of Q through SFM.

• Qc = (xc, yc, zc)
T : q’s position in CCS.

• e = ẑw − zw: depth error.

• ∆e: depth error range.

• Au : the untrusted area in WCS.
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• T (τ) : the navigation trajectory in τ ∈ [0, τ0].

• Rf : the obstacle free road region around T (τ).

• Ri : region of interest.

• F : a frame taken at T (0).

• F : a frame taken at T (τ0).

• F : a frame taken at T (τ ′), 0 < τ ′ < τ0.

3. Assumptions

• We assume that obstacles in the environment are either static or slow-moving. There-

fore, the SFM algorithm can be applied to compute the depth information.

• We assume that intrinsic camera parameters, such as focal length, lens distortion, and

CCD sensor size, have been obtained from pre-calibration, and that extrinsic camera

parameters, such as camera position and orientational parameters, can be measured

using camera angular potentiometers and robot motion sensors. The camera has

squared pixels and zero skew factors.

• The robot takes frames periodically for the stereo reconstruction. During each period,

we assume that the road surface can be approximated by a plane, which is the x-z

plane of WCS as illustrated in Fig. 14.

• We assume that the pixel correspondence error across different frames is uniformly

distributed in the ICS. We believe that the pixel correspondence errors do not have

an infinite tail distribution in reality and the uniform distribution is a conservative

description of the property.
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• To simplify the analysis, we assume that the imaging planes of the camera are paral-

lel to each other in the period [0, τ0]. Although the robot may have different positions

and orientations when taking images, we can control the camera pan-and-tilt to en-

sure that image planes are always parallel to each other within the period. Therefore,

all CCSs are iso-oriented with CCS(F ), which is determined by the navigation di-

rection at time τ0.

4. Problem Context
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Fig. 15. A robot moves in region Rf to take frames to construct the depth information for
region Ri to plan its navigation in Ri. The accuracy of the depth is determined by
camera positions when the robot moves in Rf .

a. Frames and Frame Parameters

For frames such as F and F , we need to define their corresponding robot locations and

camera parameters. As illustrated in Fig. 14, the camera is mounted at a height of h. Hence
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the camera position is uniquely defined by its coordinates (xw, h, zw) in WCS. Actually

(xw, zw) determines the baseline distance. In order to have a good coverage of the road, the

camera usually tilts towards the ground as illustrated in Fig. 14. The tilt angle is defined as

t.

b. Obstacle-free Region

As illustrated in Fig. 15, the previous period provides an obstacle-free road region Rf . The

robot needs to stay in Rf and reach T (τ0) at the end of the current period. Therefore, the

trajectory T (τ) is not fixed and we have the freedom to adjust it in Rf to reduce the depth

error.

c. Region of Interest

A camera frame usually covers a wide range, from adjacent regions to an infinite horizon.

For navigational purposes, the robot is not interested in regions that are too far away. As

illustrated in Fig. 14, the z-axis of WCS points to the robot’s forward direction at time

τ = τ0 when frame F is taken. zM is defined as the maximum distance that the robot cares

about in the next iteration of the algorithm. As illustrated in Fig. 15, the region of interest

Ri is as subset of camera coverage,

Ri = {(xw, zw)|0 ≤ zw ≤ zM , (xw, zw) ∈ Π(F )}, (4.1)

where xw and zw are defined in WCS and Π(F ) is the coverage of F in x-z plane of WCS.

We want to reduce the depth error e associated with objects in Ri.

Our research problem is to plan the robot motion in Rf to reduce depth error for Ri

before the robot moves and before the actual stereo construction. To study how the depth

error is distributed on the road plane, we introduce the untrusted area below.
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5. Untrusted Area

The computed depth information is not accurate due to the image correspondence error.

According to our assumptions, for a given pixel in F , the corresponding pixel in F can be

found with an error that is uniformly and independently distributed. Hence, the depth error

e is also a random variable with a range, which is defined as the depth error range |∆e|.
Both e and |∆e| will be formally defined later. We adopt |∆e| as the metric to characterize

the quality of the depth information. et is the pre-defined threshold for |∆e|. To facilitate

robot navigation, we want to ensure that |∆e| ≤ et.

Although the image correspondence error is uniformly and independently distributed

in ICS, the influence of the image correspondence error on e is non-uniform due to a non-

linear stereo reconstruction process. For the two camera frames F and F taken from two

different camera perspectives, we can construct the depth map for the overlapping regions

of the two frames Π(F ∩ F ), where function Π(·) refers to the coverage of the camera

frame. We define the untrusted area Au in WCS as

Au(F , F ) = {(xw, zw)|(xw, zw) ∈ Π(F ∩ F ), |∆e(xw, zw)| > et}, (4.2)

because we know that the depth information in Au is untrustworthy due to the excessive

|∆e|.

6. Problem Definition

For any finite et, Au cannot be eliminated for any two-frame stereo pair due to the degen-

eracy in triangulation computation. Therefore, the robot has a high probability of colliding

with obstacles in Au(F , F ). An immediate solution to this problem is to capture one more

frame F at time τ ′, 0 < τ ′ < τ0 such that two additional image pairs (F , F ) and (F, F ) can
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be generated1. The right hand side of Fig. 15 illustrates this idea. We can obtain two more

versions of the 3D information along with two untrusted areas Au(F , F ) and Au(F, F ).

The final 3D information can be selected as that with the least |∆e| provided by the three

image pairs. Therefore, we know that the overall

|∆e| ≤ et ⇐⇒ Au(F , F ) ∩ Au(F , F ) ∩ Au(F, F ) = ∅. (4.3)

Computing 3D information for all three pairs is time-consuming. In practice, we can re-

duce the amount of computation by only computing two image pairs (F , F ) and (F, F ).

Therefore, (4.3) becomes,

|∆e| ≤ et ⇐⇒ Au(F , F ) ∩ Au(F, F ) = ∅, (4.4)

which means that |∆e| ≤ et as long as Au(F , F ) and Au(F, F ) do not overlap.

As shown later, the location of Au is a function of the camera parameters and the robot

positions. We know that the robot can choose T (τ) in Rf . This gives us the flexibility to

choose the parameters for F to manipulate the position of Au(F, F ). Since the camera

parameters are fixed, the decision variables are (xw(τ ′), zw(τ ′)), where the robot takes F

as illustrated in Fig. 15. There may be multiple (xw(τ ′), zw(τ ′))s that satisfy the non-

overlapping condition in (4.4). Let Φ be the set of all possible solutions. We know that

Φ might not exist due to road conditions. In this case, we would like to minimize the

area of Au(F , F )∩Au(F, F ). Therefore, the predictive depth-error-aware robot navigation

problem becomes,

Definition 2. Given et, Rf , and Ri and camera parameters, compute Φ if Φ 6= ∅. Other-

wise, compute the (xw(τ ′), zw(τ ′)) that minimizes Au(F , F ) ∩ Au(F, F ).

1It is possible to use multiple views simultaneously for stereo reconstructions. However,
this is too computationally expensive for real time navigation.
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D. Analysis of Depth Error

Def. 2 describes a planning problem based on Au. However, Au depends on the depth error

range. Let us analyze the depth error and derive the method so that we can predict Au

before the robot makes its move and takes frames.

1. Computing Depth from Two Views

In stereo vision, 3D information is computed through triangulation under the perspective

projection based on the extracted correspondence points from each pair of images [97].

Define c and c be camera centers for frames F and F , respectively. Define P and P as

the camera projection matrix for F and F , respectively. Since the CCSs of F and F are

iso-oriented and only differ from WCS by a tilt value t in orientation, the orientation of

WCS with respect to CCSs can be expressed by a rotation matrix

RX(−t) =




1 0 0

0 c(t) s(t)

0 −s(t) c(t)




.

Note that we use s(·) and c(·) to denote sin(·) and cos(·), respectively. This denotation is

used in the rest of the paper. If CCSs are not iso-oriented as assumed, it is not difficult

to extend the rotation matrix using Euler angle sets. The origin of WCS with respect to

CCSs of F and F are defined as W and W , respectively. Since T (0) = [xw(0), zw(0)]T ,

T (τ0) = [0, 0]T , and the camera height is h, Fig. 14 shows that the camera center positions

with respect to WCS are c = [xw(0), h, zw(0)]T and c = [0, h, 0]T , respectively. Then we

have,

W = −RX(−t)c, and W = −RX(−t)c.
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Therefore,

P = K[RX(−t)|W ], P = K[RX(−t)|W ],

K = diag(f, f, 1),

where f is the focal length of the camera divided by the side length of a pixel. Let q =

[u v 1]T and q = [u v 1]T be a pair of corresponding points in F and F , respectively. Define

Q = [xw, yw, zw]T as their corresponding point in WCS. Recall that Q
c

= [xc y
c
zc]

T and

Qc = [xc yc zc]
T are Q’s position in CCSs of F and F , respectively. Also, we know that

Q
c

and Qc can be expressed as,

Q
c
= RX(−t)Q + W, and Qc = RX(−t)Q + W. (4.5)

Then the following holds according to the pin-hole camera model,

q =
1

zc

P




Q

1


 =

1

zc

KQ
c
, (4.6)

and

q =
1

zc

P




Q

1


 =

1

zc

KQc. (4.7)

From (4.5), we know Q
c
= Qc + (W −W ), which means,





xc = xc − xw(0)

y
c
= yc − zw(0)s(t)

zc = zc − zw(0)c(t)

(4.8)

Plug it into (4.6), we get,

q =
1

zc − zw(0)c(t)
K(Qc + (W −W )). (4.9)
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Plug (4.7) into (4.9),

q =
1

zc − zw(0)c(t)

(
zcq + K(W −W )

)
. (4.10)

Since K, W , W , q, and q are known, (4.10) consists of a system of equations with zc as an

unknown quantity. There is one unknown variable and a total of two equations since the last

row of (4.10) is 1 = 1. This is an overly-determined equation system. A typical approach

would be to apply a least square method [97]. Another method is to simply discard one

equation and solve it directly. This method has a speed advantage and is employed by our

design. Hence, we have

zc =
xw(0)f − uzw(0)c(t)

u− u
. (4.11)

From (4.5) and (4.11), we know,

zw = zc

(
v

f
s(t) + c(t)

)
. (4.12)

Hence,

zw =
xw(0)f − uzw(0)

u− u

(
v

f
s(t) + c(t)

)
. (4.13)

Depth zw describes the distance from the robot to an obstacle along the z-axis of WCS.

Its error directly affects the robot’s collision avoidance performance.

2. Estimating the Depth Error Range

For a given pair of corresponding points (q, q) from (F , F ) with camera centers (c, c),

the triangulation process works as follows. If we back project a ray from c through q, it

intersects with the ray generated by back-projecting from c through q, provided both q and

q are accurate. The intersection point in the 3D space is Q.

However, for a given point q, finding the accurate q is unlikely due to noises and

pixelization errors. According to our assumptions, the corresponding errors in u and v
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Fig. 16. An illustration of depth error caused by the image correspondence error in F . The
intersection zone between the ray from q

¯
, and the pyramid from q is the error range.

If the error range projects onto the z axis, it is always bound between zw(u+r, v+r)

and zw(u− r, v − r). (a) and (b) illustrate two subcases.

are independently distributed according to U(−r, r), where r is usually 0.5-2 pixels in

length. This means that q is distributed in a small square on F . When we back projects

the square, it forms a pyramid in 3D space as illustrated in Fig. 16. When the pyramid

meets the ray that is back-projected from q, it has a range of intersections instead of a

single point. The estimated depth zw is a function of random variables (u, v) and can be

expressed as zw(u, v). It is apparent that zw is a random variable that could take any value

in this intersection zone. The maximum length of the intersection zone is defined as |∆e|,

|∆e| = |zw(u + r, v + r)− zw(u− r, v − r)|. (4.14)

|∆e| describes the range of the depth error and is employed as the metric to measure

the quality of the stereo reconstruction. To simplify the notation in computing ∆e, we
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define the following intermediate variables for (4.13).

λ = βv + c(t), ζd = u− u, β =
s(t)

f
. (4.15)

ζn = xw(0)f − uzw(0)c(t), (4.16)

then zw = λζn/ζd according to (4.13), (4.15) and (4.16). Plug them in to (4.14), and we

have,

∆e = (λ + rβ)
ζn

ζd + r
− (λ− rβ)

ζn

ζd − r

= ζn
2r(βζd − λ)

ζ2
d − r2

. (4.17)

Eq. (4.17) illustrates ∆e in ICS. For robot navigation purpose, we are interested in ∆e

in x-z plane of WCS. Hence u, u and v in (4.17) should be transformed into functions of

xw and zw. From (4.7), (4.12), and (4.15), we know

u =
xwf

zc

= fλ
xw

zw

, (4.18)

and yw =
(

v
f
c(t)− s(t)

)
zc + h. Since we are interested in obstacles on the x − z plane,

yw = 0, we have,

v =
f(zws(t)− hc(t))

zwc(t) + hs(t)
. (4.19)

Similarly, from (4.6), (4.12), and (4.15), we know

u = αxxw + α0, (4.20)

where

αx =
f

zc − zw(0)c(t)
=

fλ

zw − zw(0)c(t)λ
,

and α0 = −xw(0)αx. Plug (4.18), (4.19), and (4.20) into (4.15) and (4.16), and we can
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derive the intermediate variables λ, ζn, and ζd, in terms of xw and zw.

λ = βv + c(t) =
zw

zwc(t) + hs(t)
. (4.21)

ζn = xw(0)f − uzw(0)c(t) = nxxw + n0, (4.22)

where nx = −zw(0)c(t)αx and n0 = xw(0)zwαx/λ.

ζd = u− u =
nxλ

zw

xw +
n0λ

zw

. (4.23)

Plug intermediate variables in (4.21), (4.22), and (4.23) into (4.17), and we can get ∆e as

a function of xw and zw,

∆e =
2rβλzw(nxxw + n0)

2 − 2rλz2
w(nxxw + n0)

λ2(nxxw + n0)2 − r2z2
w

. (4.24)
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Fig. 17. An illustration of ∆e. Robot positions are set to be xw(0) =10 cm, zw(0) =-50 cm.
The data and parameters are based on a Canon VCC4 camera.

For an obstacle located at (xw, 0, zw), (4.24) allows us to estimate ∆e. Fig. 17 illus-

trates how ∆e is distributed on the road plane yw = 0. It is clear that the depth error range
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varies dramatically in different regions and should be considered in robot navigation to

avoid obstacles.

3. Predicting Untrusted Area

For a given frame pair with the corresponding robot locations, we can partition Ri using a

preset depth error threshold et > 0. For the region satisfying |∆e| < et, the results from

stereo reconstruction are trustable and can be used for motion planning later. However,

the untrusted area Au should be avoided. We now ready to predict Au by computing its

boundary using Eq. (4.24).

a. Partition Ri According to the Sign of ∆e

To find the regions corresponding to |∆e| < et, there are two possible cases to consider:

∆e < 0 and ∆e > 0. We can rewrite (4.24) as,

∆e =
2rλzw(xw − µn1)(xw − µn2)

(xw − µd1)(xw − µd2)
, (4.25)

where

µn1 =
xw(0)

zw(0)λc(t)
zw,

µn2 =
xw(0)

zw(0)λc(t)
zw − zw(zw − zw(0)λc(t))

fzw(0)λβc(t)
,

µd1 =
xw(0)

zw(0)λc(t)
zw +

rzw(zw − zw(0)λc(t))

fzw(0)λ2c(t)
,

µd2 =
xw(0)

zw(0)λc(t)
zw − rzw(zw − zw(0)λc(t))

fzw(0)λ2c(t)
.

Recall that t is the camera tilt angle and a typical camera setup has 0 ≤ t ≤ 30◦. A regular

camera would have a focal length of 5-100 mm and pixel side length of 5-10 µm. Therefore,
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f ≥ 100. Since β = s(t)/f ,

0 < β ≤ sin(30◦)/100 ≈ 0.005. (4.26)

Also we know that

λ = βv + c(t) = s(t)
v

f
+ c(t) > β (4.27)

because |v/f | < 1 for any camera with a vertical field of view less than 90◦. Combining

this information, we have 0 < β < r/λ and β < λ. For obstacles in Ri, zw > 0 according

to the definition of WCS. Also zw(0) < 0 as illustrated in Fig. 14. Hence, we have

zw(zw − zw(0)λc(t))

fzw(0)λc(t)
< 0. (4.28)

Combining the inequalities above, we can derive the following relationship,

µd1 < µn1 < µd2 < µn2. (4.29)

Combine this with (4.25), and we have,

∆e > 0 if µn1 < xw < µd2 or xw < µd1, (4.30)

∆e < 0 if µd2 < xw < µn2 or µd1 < xw < µn1. (4.31)

We ignore the region xw > µn2 in ∆e > 0 as this region is always outside of the camera’s

coverage. We are now ready to compute Au for the two cases defined in (4.30) and (4.31).

b. Computing Au for ∆e > 0

This is the case illustrated in Fig. 16(a). Recall that the untrusted area is the region that

satisfies ∆e > et. It is worth mentioning that the error threshold et is usually not a fixed

number but a function of zw. We define et = ρzw where ρ is the relative error threshold
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and 0 < ρ < 1. There are two sub cases including case (i): xw < µd1 and case (ii):

µn1 < xw < µd2.

Case (i): when xw < µd1, the denominator of ∆e in (4.25) is positive. Plug (4.25) into

∆e > et, and we have

(etλ
2 − 2rβλzw)n2

xx
2
w+

(2(etλ
2 − 2rβλzw)nxn0 + 2rλnxz

2
w)xw+

(etλ
2 − 2rβλzw)n2

0 − etr
2z2

w + 2rλn0z
2
w < 0. (4.32)

The solution to the quadratic inequality(4.32) is,

−κ1 −
√

κ2
1 − 4κ2κ0

2κ2

< xw <
−κ1 +

√
κ2

1 − 4κ2κ0

2κ2

, (4.33)

where

κ2 = (etλ
2 − 2rβλzw)n2

x,

κ1 = 2(etλ
2 − 2rβλzw)nxn0 + 2rλnxz

2
w,

κ0 = (etλ
2 − 2rβλzw)n2

0 − etr
2z2

w + 2rλn0z
2
w.

The untrusted area is the region that satisfies (4.33) and xw < µd1. To compute the

intersection, we need to understand the relationship between the solution in (4.33) and the

coefficients in (4.25). Combining them we know,

µd1 − −κ1 −
√

κ2
1 − 4κ2κ0

2κ2

=
rzw(zw − zw(0)λc(t))

fzw(0)λ2c(t)

(
1− λ +

√
λ2 + ρ2λ2 − 2rβλρ

ρλ− 2rβ

)
.

We know that 0 < r ≤ 2 , 0 < ρ < 1, β is very small according to (4.26), and λ > 0

according to (4.27). Therefore, 2rβ and 2rβλρ are close to zero. Hence, we approximate
(

1− λ +
√

λ2 + ρ2λ2 − 2rβλρ

ρλ− 2rβ

)
≈ 1− 2

ρ
< 0.
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Combining this equation with (4.28), we know,

µd1 >
−κ1 −

√
κ2

1 − 4κ2κ0

2κ2

. (4.34)

Similarly, we can obtain

µd1 <
−κ1 +

√
κ2

1 − 4κ2κ0

2κ2

. (4.35)

According to (4.33), (4.34), (4.35), and xw < µd1, the untrusted area for this subcase is

−κ1 −
√

κ2
1 − 4κ2κ0

2κ2

< xw < µd1. (4.36)

Case (ii): when µn1 < xw < µd2. From (4.29), we know that the denominator of

(4.25) is negative. Hence,

κ2x
2
w + κ1xw + κ0 > 0. (4.37)

The solution to (4.37) is

xw <
−κ1 −

√
κ2

1 − 4κ2κ0

2κ2

, or xw >
−κ1 +

√
κ2

1 − 4κ2κ0

2κ2

.

According to (4.29), xw < (−κ1 −
√

κ2
1 − 4κ2κ0)/(2κ2) < µd1 does not satisfy µn1 <

xw < µd2 and should be discarded. Hence, only

xw >
−κ1 +

√
κ2

1 − 4κ2κ0

2κ2

(4.38)

contains the untrusted area. Applying the approximation that 2rβ and 2rβλρ are close to

zero, we obtain the following inequalities,

µn1 <
−κ1 +

√
κ2

1 − 4κ2κ0

2κ2

< µd2. (4.39)

Knowing µn1 < xw < µd2, the untrusted area for this subcase is

−κ1 +
√

κ2
1 − 4κ2κ0

2κ2

< xw < µd2. (4.40)
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c. Computing Au for ∆e < 0

In this case, the untrusted area is the region that satisfies ∆e < −et. There are also two sub

cases including case (i): µd2 < xw < µn2 and case (ii): µd1 < xw < µn1.

Case (i): when µd2 < xw < µn2, the denominator of ∆e in (4.25) is positive. Using

∆e < −et, we have

2rβλzw(nxxw + n0)
2 − 2rλz2

w(nxxw + n0) < −etλ
2(nxxw + n0)

2 − etr
2z2

w. (4.41)

The solution to (4.41) is,

−κ′1 +
√

κ′1
2 − 4κ′2κ

′
0

2κ′2
< xw <

−κ′1 −
√

κ′1
2 − 4κ′2κ

′
0

2κ′2
, (4.42)

where,

κ′2 = (−etλ
2 − 2rβλzw)n2

x,

κ′1 = 2(−etλ
2 − 2rβλzw)nxn0 + 2rλnxz

2
w,

κ′0 = (−etλ
2 − 2rβλzw)n2

0 + etr
2z2

w + 2rλn0z
2
w.

Similarly, we obtain the following relationship between the coefficients in (4.25) and the

solution in (4.41),

µn2 >
−κ′1 −

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
,

µd2 <
−κ′1 −

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
,

µd2 >
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
.

Combining the inequalities above with (4.29), (4.42), and µd2 < xw < µn2, the untrusted
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area for this subcase is,

µd2 < xw <
−κ′1 −

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
. (4.43)

Case (ii): when µd1 < xw < µn1. We know that the denominator of (4.25) is negative

from (4.29). Hence, we have

κ′2x
2
w + κ′1xw + κ′0 < 0

The solution to the equation is,

xw <
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
, or xw >

−κ′1 −
√

κ′1
2 − 4κ′2κ

′
0

2κ′2
.

Since xw > (−κ′1−
√

κ′1
2 − 4κ′2κ

′
0)/(2κ

′
2) > µd2 does not intersect with µd1 < xw < µn1,

we discard it. Hence, the solution set is reduced to,

xw <
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
. (4.44)

Similarly, we obtain the following relationship between the coefficients in (4.25) and the

solution in (4.44),

µn1 >
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
,

µd1 <
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
.

Combining the inequalities above with (4.29), (4.44), and µd1 < xw < µn1, the untrusted

area for this subcase is,

µd1 < xw <
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
. (4.45)
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d. Computing the Overall Au

The overall Au is the union of four subcases in (4.36), (4.40), (4.43), and (4.45).

Au =

{
(xw, zw)|0 ≤ zw ≤ zM ,

−κ1 −
√

κ2
1 − 4κ2κ0

2κ2

< xw <
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
or

−κ1 +
√

κ2
1 − 4κ2κ0

2κ2

< xw <
−κ′1 −

√
κ′1

2 − 4κ′2κ
′
0

2κ′2

}

Let us observe the relationship between the two inner boundaries in Au,

−κ1 +
√

κ2
1 − 4κ2κ0

2κ2

−
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2

=
rzw(zw − zw(0)λc(t))

fzw(0)λ2c(t)

(
λ−

√
λ2 + ρ2λ2 − 2rβρλ

ρλ− 2rβ

−λ−
√

λ2 + ρ2λ2 + 2rβρλ

−ρλ− 2rβ

)
≈ 0

because 2rβρλ ≈ 0 and 2rβ ≈ 0. Hence, we have

Au =

{
(xw, zw)|0 ≤ zw ≤ zM ,

−κ1 −
√

κ2
1 − 4κ2κ0

2κ2

< xw <
−κ′1 −

√
κ′1

2 − 4κ′2κ
′
0

2κ′2

}
.

(4.46)

Eq. (4.46) also tells us how to obtain the boundaries of Au. Represented as a function

of xw, the lower boundary of Au is

xl
w(zw, xw(0), zw(0)) =

xw(0)zw

zw(0)λc(t)
+

rzw(zw − zw(0)λc(t))

fzw(0)λc(t)(etλ2 − 2rβλzw)

(
zwλ +

√
λ2z2

w + e2
t λ

2 − 2retβλzw

)
.

(4.47)
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Fig. 18. Aus with different robot positions (xw(0), zw(0)). We set the threshold et = 0.2zw.

The upper boundary of Au is

xh
w(zw, xw(0), zw(0)) =

xw(0)zw

zw(0)λc(t)
+

rzw(zw − c(t)zw(0)λc(t))

fzw(0)λc(t)(−etλ2 − 2rβλzw)

(
zwλ +

√
λ2z2

w + e2
t λ

2 + 2retβλzw

)
.

(4.48)

As illustrated in (4.47) and (4.48), the boundaries of Au are a function of the depth zw

and the locations of robots. Fig. 18 gives three examples of Au for different (xw(0), zw(0)).

It is readily apparent that Au often overlaps with the robot’s forward direction. The risk of

collision is high if we do not consider Au in navigation.

E. Algorithm

The untrusted area Au predicts how the depth error will be distributed on the road plane for

a given frame pair. As we can see, Au(F , F ) always exists for any two-frame pair F and

F . At least one additional frame F is required if we want to avoid Au in robot navigation.

However, the new frame introduces a new untrusted area Au(F, F ). Recall that F is taken

at location (xw(τ ′), yw(τ ′)), which is a point in Rf as illustrated in Fig. 15. Therefore, we
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Fig. 19. Au(F¯
, F ) and Au(F, F ) are partially overlapped when F is taken in R∅.

can partition Rf according to the relationship between Au(F , F ) and Au(F, F ),

• R∅ = {(xw(τ ′), zw(τ ′))|

(xw(τ ′), zw(τ ′)) ∈ Rf , and Au(F, F ) ∩ Au(F , F ) = ∅}.

This is the part of Rf that allows non-overlapping Aus as illustrated in (4.4). We

know that the overall depth error would be under the threshold if R∅ exists.

• R∅ = Rf − R∅. If a frame F is taken in this region, Au(F , F ) and Au(F, F ) must

overlap. The depth error in the overlapped region is beyond the error threshold. We

want to avoid this region if possible.

The figure on page 74 illustrates a typical example of R∅ and R∅ on the road. R∅

is close to the center line of Rf and has a trapezoid-like shape while R∅ is outside the

trapezoid. Fig. 19 illustrates the relationship between Au(F , F ) and Au(F, F ) when

(xw(τ ′), zw(τ ′)) ∈ R∅. We know that the depth error is beyond the threshold in the re-

gions where Au(F , F ) and Au(F, F ) intersect.
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The algorithm is a two-step operation. First, we establish wether R∅ 6= ∅. If this is the

case then we can use R∅ as the output since the depth error is below the threshold as long as

we take an F in R∅. Therefore, R∅ is the entire solution set for (xw(τ ′), zw(τ ′)). However,

R∅ does not necessarily exist as Rf may contain obstacles and the road might be narrow.

If this is the case then we need to select a solution from R∅ such that the minimal depth

difference between T (τ0) = (0, 0) and the set Au(F , F ) ∩ Au(F, F ) is maximized. As an

example, z′w is the minimal depth difference in Fig. 19 . Intuitively, this strategy pushes the

closest intersection points between Aus as far as possible, which reduces the possibility of

collisions caused by the depth error. The point with the minimal depth difference also tells

us when to schedule the next period. Now let us formally introduce this process.

1. Computing R∅

Since R∅ 6= ∅ if and only if a location (xw(τ ′), zw(τ ′)) exists to take an F such that

Au(F , F ) ∩ Au(F, F ) = ∅, we need a mechanism to quickly establish wether the two

Aus intersect with each other. Eqs. (4.47) and (4.48) give the two boundaries of an Au.

The third boundary of Au is zw = zM because Au ⊂ Ri according to (5.1) and (4.2).

Directly computing the intersection using the boundaries is not computationally efficient

as it involves solving high-order polynomial equations.

Fig. 20 illustrates a quicker method of determining wether the two Aus intersect with

each other. Each Au has three vertices, which are (0, 0), (xl
w(zM , xw(0), zw(0)), zM), and

(xh
w(zM , xw(0), zw(0)), zM). We can draw a triangle using these vertices. The following

relationship is of interest.

Lemma 1. For the image frame pair taken at (xw(0), zw(0)) and (0, 0), the corresponding

untrusted area Au is always bounded inside the triangle defined by the vertices (0, 0),

(xl
w(zM , xw(0), zw(0)), zM), and (xh

w(zM , xw(0), zw(0)), zM).
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Fig. 20. The relationship between Aus and the triangles generated by connecting three
points, (xl

w(zM , xw(0), zw(0)), zM), (xh
w(zM , xw(0), zw(0)), zM), and (0, 0).

Proof. First, we compare the lower boundary of Au to the corresponding triangle edge.

The lower boundary of Au described in (4.47) is the right side boundary in Fig. 20, we

know this because the positive xw axis of WCS points to the left. The side of the triangle

near the lower boundary of Au is written as

xl
t(zw, xw(0), zw(0)) =

xl
w(zM , xw(0), zw(0))

zM

zw. (4.49)

We use the subscription t to indicate that this is the boundary function for the triangle.

Recall that 0 < β < 0.005, 2rβ ≈ 0, and 2rβρλ ≈ 0. Hence, (4.47) is approximated

as

xl
w(zw, xw(0), zw(0)) ≈ xw(0)zw

zw(0)λc(t)
+

rzw(zw − zw(0)λc(t))(1 +
√

1 + ρ2)

fzw(0)λ2c(t)ρ
. (4.50)
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Plug (4.21) into (4.50), and we get

xl
w(zw, xw(0), zw(0)) ≈ 1

zw(0)c(t)

[
xw(0)(zwc(t) + hs(t))

+
r(1 +

√
1 + ρ2)

fρ

(
(zwc(t) + hs(t))2 − zw(0)c(t)(zwc(t) + hs(t))

)]
. (4.51)

When (4.51) is differentiated twice, it is written as.

∂2xl
w

∂z2
w

=
1

zw(0)

(
r(1 +

√
1 + ρ2)

fρ
2c(t)

)
.

We know zw(0) < 0 and r(1+
√

1+ρ2)

fρ
> 0. Hence,

1

zw(0)

(
r(1 +

√
1 + ρ2)

fρ
2c(t)

)
< 0.

Therefore, xl
w(zw, xw(0), zw(0)) is a concave function. For any 0 ≤ γ ≤ 1, we have

xl
w(γzM , xw(0), zw(0)) ≥ γxl

w(zM , xw(0), zw(0)) + (1− γ)xl
w(0, xw(0), zw(0)).

Since 0 ≤ zw/zM ≤ 1, we choose γ = zw/zM . Since xl
w(0, xw(0), zw(0)) = 0, we have

xl
w(zw, xw(0), zw(0)) ≥ zw

zM

xl
w(zM , xw(0), zw(0))

≥ xl
t(zw, xw(0), zw(0)). (4.52)

For the upper boundary of Au and the corresponding triangle edge, we have

xh
t (zw, xw(0), zw(0)) =

xh
w(zM , xw(0), zw(0))

zM

zw.

The second order derivative of xh
w(zw, xw(0), zw(0)) is

∂2xh
w

∂z2
w

≈ − 1

zw(0)

(
r(1 +

√
1 + ρ2)

fρ
2c(t)

)
> 0. (4.53)

Therefore, xh
w(zw, xw(0), zw(0)) is a convex function. Similar to the calculation of the
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lower boundary case, we obtain,

xh
w(zw, xw(0), zw(0)) ≤ zw

zM

xh
w(zM , xw(0), zw(0)),

≤ xh
t (zw, xw(0), zw(0)). (4.54)

From (4.52) and (4.54), we can conclude that the triangle always includes Au because

Au and the triangle share the third boundary on line zw = zM . This completes the proof.

From Lemma 1, we can use the relationship between the bounding triangles to de-

termine whether the two Aus intersect. Note that the two bounding triangles share point

(0, 0) as one of their vertices and all other vertices are collinear, we thus have the following

lemma,

Lemma 2. The two untrusted areas Au(F , F ) and Au(F, F ) overlap with each other if and

only if their bounding triangles overlap with each other.

Proof. Necessity: It is apparent that if two Aus intersect with each other then their bounding

triangles must intersect with each other.

Sufficiency: As illustrated in Fig. 20, the bounding triangles share the same edge along

the line zw = zM with the corresponding Aus. Also the bounding triangles share a vertex

at point (0, 0). If the two bounding triangles intersect, their edges on the line zw = zM ,

which are two collinear intervals, must also intersect. This indicates that the two Aus must

intersect.

Lemmas 1 and 2 provide a quick means of computing R∅. Recall that Au(F , F ) is

fixed. The two vertices of Au(F , F ) on the line zw = zM are defined as xl
M and xh

M and

computed using (4.47) and (4.48), respectively,

xl
M = xl

w(zM , xw(0), zw(0)),
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xh
M = xh

w(zM , xw(0), zw(0)).

The interval [xl
M , xh

M ] defines the boundary of the bounding triangle of Au(F , F ) on line

zw = zM . For a new frame F taken at (xw(τ ′), zw(τ ′)), the corresponding interval for the

boundary of Au(F, F ) on the line zw = zM is [xl
w(zM , xw(τ ′), zw(τ ′), xh

w(zM , xw(τ ′), zw(τ ′)].

Since the bounding triangles share the same vertex (0, 0) and share one edge on the line

zw = zM , ensuring that the bounding triangles do not intersect with each other is equivalent

to ensuring that the two intervals do not overlap.

The are two ways to ensure that the two intervals do not overlap. One approach is to

force,

xl
M > xh

w(zM , xw(τ ′), zw(τ ′)).

Plug (4.48) into the equation, and we have

xl
M >

xw(τ ′)zM

zw(τ ′)λMc(t)
+

rzM(zM − zw(τ ′)λMc(t))

fzw(τ ′)λ2
Mc(t)(−ρλM − 2rβ)

(
λM +

√
λ2

M + ρ2λ2
M + 2rρβλM

)
.

Because xh
w(zM , xw(τ ′), zw(τ ′)) is a function of xw(τ ′) and zw(τ ′), this defines half of R∅.

We rewrite the inequality above as,

xw(τ ′) >
zw(τ ′)λMc(t)

zM

xl
M − r(zM − zw(τ ′)λMc(t))

fλM(−ρλM − 2rβ)

(
λM +

√
λ2

M + ρ2λ2
M + 2rρβλM

)
.

(4.55)

An alternative approach to ensure that the two intervals do not overlap is to force,

xh
M < xl

w(zM , (xw(τ ′), zw(τ ′)).

The inequality leads to the second half of R∅,

xw(τ ′) <
zw(τ ′)λMc(t)

zM

xh
M − r(zM − zw(τ ′)λMc(t))

fλM(ρλM − 2rβ)

(
λM +

√
λ2

M + ρ2λ2
M − 2rρβλM

)
.

(4.56)



70

Fig. 22(a) illustrates the shape of R∅ computed from (4.55) and (4.56). It is not

surprising that R∅ is close to the camera baseline with less lateral movements. R∅ encloses

the area where the degeneracy in triangulation occurs during depth reconstruction. R∅ is

often close to the center of roads, while R∅ is close to the boundary of roads. Although

(4.55) and (4.56) provide boundaries for R∅, the obstacles and road width identified in the

previous period have not yet been applied. With these constraints, it is possible that the

final R∅ = ∅ and the robot must select a location in R∅.

2. Minimizing the Risk of Collisions Caused by R∅

Since R∅ is close to the center of roads, it is likely that the robot has to stay in R∅. However,

we need to reduce the risk of collisions with obstacles caused by depth errors. Introducing

frame F to an existing frame pair (F , F ) determines Au(F , F ) and Au(F, F ). Based on

the Au pair, we define the minimum depth difference z′w as,

z′w = min
(xw,zw)∈Au(F ,F )∩Au(F,F )

zw. (4.57)

As illustrated in Fig. 19, z′w is the depth of the nearest point in the forward direction where

the depth error is beyond the threshold. Since this position is a function of (xw(τ ′), zw(τ ′)),

we can choose the best (xw(τ ′), zw(τ ′)) to maximize it in order to reduce the risk of colli-

sion,

(x∗w(τ ′), z∗w(τ ′)) = arg max
(xw(τ ′),zw(τ ′))∈R∅

z′w, (4.58)

where (x∗w(τ ′), z∗w(τ ′)) is the optimal solution. As illustrated in Fig. 19, it is apparent that

z′w exists on the intersection point of the boundaries of the Au’s. There are two possibilities.

One possibility is that z′w is the intersection between the lower boundary of Au(F , F ) and

the upper boundary of Au(F, F ), which can be obtained by solving the following equation,

xl
w(zw, xw(0), zw(0))− xh

w(zw, xw(τ ′), zw(τ ′)) = 0.
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Plug (4.47) and (4.48) into the equation and recall that 2rβλρ ≈ 0, and 2rβ ≈ 0. This

results in the following solution,

z′1w =
fρ(xw(τ ′)zw(0)− xw(0)zw(τ ′))

rc(t)(1 +
√

1 + ρ2)(zw(0) + zw(τ ′))
+

2zw(0)zw(τ ′)
zw(0) + zw(τ ′)

− hs(t)

c(t)
(4.59)

The other solution is to compute the the intersection between the upper boundary of Au(F , F )

and the lower boundary of Au(F, F ), which can be obtained by solving the following equa-

tion,

xh
w(zw, xw(0), zw(0))− xl

w(zw, xw(τ ′), zw(τ ′)) = 0.

This gives the following solution,

z′2w =
fρ(xw(0)zw(τ ′)− xw(τ ′)zw(0))

rc(t)(1 +
√

1 + ρ2)(zw(0) + zw(τ ′))
+

2zw(0)zw(τ ′)
zw(0) + zw(τ ′)

− hs(t)

c(t)
(4.60)

According to (4.57), z′w = min{z′1w , z′2w}. Since both (4.59) and (4.60) are continuous and

differentiable functions with respect to xw(τ ′) and zw(τ ′), it is straightforward to solve the

optimization problem in (4.58).

3. Depth-Error-Aware Navigation (DEAN) Algorithm

We summarize the proposed DEAN algorithm below. The algorithm is suppose to be

run at T (0) with T (τ0) and Rf provided from the previous stereo construction results.
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Algorithm 2: DEAN Algorithm
input : Frame F , T (0), T (τ0), camera tilt t, Rf , and Ri

output: Robot positions (xw(τ ′), zw(τ ′)) for F

Compute xl
M and xh

M using (4.47) and (4.48);

Compute R∅ boundary using (4.55) and (4.56);

Trim R∅ using the obstacle information from the previous stereo

reconstruction;

if R∅ 6= ∅ then
Output R∅ as the solution set;

else
Compute z′1w using (4.59);

Compute z′2w using (4.60);

z′w = min{z′1w , z′2w};

Solve the optimization problem in (4.58);

Output (x∗w(τ ′), z∗w(τ ′)) as the solution;

It is worth mentioning that Algorithm 2 is not complete as a robot navigation solution. The

planner needs to figure out a trajectory from T (0) to T (τ0) using the results from Algo-

rithm 2. Then the robot need to execute the trajectory to navigate to T (τ0) and take frames

F and F at T (τ ′) and T (τ0), respectively. When the robot reaches T (τ0), it needs to per-

form a stereo reconstruction using frames F , F , and F , which provides the information

needed to determine T (τ0) for the next period. Since the trajectory planning involves dy-

namic and kinematic constraints of the individual robot and the stereo reconstruction is a

well-studied problem, they are not the focus of this paper.
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(a) (b)

Fig. 21. The robot and the camera used in our experiments.

F. Experiments

1. Software and Hardware

We have implemented the algorithm on a laptop PC with a 1.6 GHz Centrino processor

and 512 MB RAM. The laptop runs Microsoft Windows XP and the algorithm has been

implemented using Matlab. The laptop is mounted on a mobile robot with three wheels.

As illustrated in Fig. 21(a), the robot has two front driving wheels and one rear castor. The

robot is 30 cm long, 30 cm wide, and 33 cm tall and can travel at a speed of 25 cm/s with

a 25 lbs. payload. It is also equipped with two wheel encoders and a digital compass.

The camera used is a Canon VCC4 pan-tilt-zoom camera with a 47.5◦ horizontal field

of view as illustrated in Fig. 21(b). The intrinsic camera parameters are estimated using

the Matlab calibration toolbox [98], and the extrinsic camera parameters are measured by

camera potentiometers and robot motion sensors. During the experiment, we set default

zM = 4 m and t = 15◦. The camera mounting height h = 44 cm. We conducted the

experiments in the H. R. Bright Bldg. at Texas A&M University campus. The obstacles

used in the experiments are books and blocks with a size of 20 cm ×14.5 cm ×10 cm.
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2. Two Representative Cases
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Fig. 22. An illustration of robot positions and the relationship between Aus when R∅ 6= ∅.

We first present two representative cases: R∅ 6= ∅ and R∅ = ∅. When the road is

relatively wide and with few obstacles, R∅ 6= ∅. Fig. 22 illustrates the scenario. In this
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case, we have xw(0) =0 cm and zw(0) =-50 cm and

Rf = {(xw, zw)| -20 cm ≤ xw ≤ 20 cm, zw(0) ≤ zw ≤ 0}.

Since Rf is relatively large, R∅ 6= ∅ according to (4.47) and (4.48). Fig. 22(a) illustrates

how R∅ and R∅ are distributed in Rf . We chose (xw(τ ′), zw(τ ′)) = (9.5 cm, -25 cm) as the

location to take F and the resulting relationship between Au(F , F ) and Au(F, F ) is shown

in Fig. 22(b). As expected, those two Aus do not overlap. Note that the robot in Figs. 22

and 23 is smaller than its actual size. This is for illustration purposes.

When the road is narrow with obstacles, R∅ = ∅ may occur as illustrated in Fig. 23.

In this case,

Rf = {(xw, zw)| -4 cm ≤ xw ≤ 4 cm when -50 cm ≤ zw ≤ -8 cm;

-4 +
1

2
(zw + 8) cm ≤ xw ≤ 4− 1

2
(zw + 8) cm when -8 cm ≤ zw ≤ 0 cm}.

The dashed line boxes in Fig. 23(a) represent (xw(τ ′), zw(τ ′)) that satisfy non-overlapping

condition between Au(F , F ) and Au(F, F ). This is located outside Rf hence R∅ = ∅.

Therefore, we compute (x∗w(τ ′), z∗w(τ ′)) =(4 cm, -8 cm) using (4.58) and obtain z′w =222

cm. The position of the red dot in Fig. 23(a) is (x∗w(τ ′), z∗w(τ ′)). The corresponding z′w and

Aus are illustrated in Fig. 23(b). It is important to notice that z′w is relatively far away from

the origin of the WCS.

3. Depth Error Reduction Effectiveness

We also verified the effectiveness of the depth error reduction. We defined the relative

depth error er as,

er =
|ẑw − zw|

zw

× 100, (4.61)
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Fig. 23. An illustration of robot positions and the relationship between Aus when R∅ = ∅.

where zw is the measured depth that is used as a ground truth and ẑw is the computed

depth, derived from the stereo reconstruction. Since the basic idea is to avoid overlapping

Aus, we compared the relative depth error of the obstacles that are either inside the Au

or outside the Au. This comparison is performed for several scenarios including different
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Fig. 24. The effectiveness of depth error reduction. The height of the bar is the mean value
of er and the vertical interval represents the variance of er. The number in the
parenthesis is the trial number.

image resolutions, depth of objects, and robot positions zw(0). The results are shown in

Fig. 24. For each case, we repeat the test over 20 times with different random configurations

of obstacles locations. The trial number is shown above the bars in the figure. Note that the

mean and the variance of the relative depth error are significantly reduced if the robot stay

outside Au.
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G. Summary

In this chapter, we have developed a vision-based navigation system for a mobile robot

equipped with a single camera based on geometric information of roads. Depth informa-

tion was computed using images taken from different camera perspectives, and the depth

error range distribution was analyzed across the camera coverage. We showed that the

depth error can be excessively large in the region close to the camera baseline, and this de-

generated region can cause collisions in robot navigation. We also modeled the untrusted

area where the depth error range is beyond a predefined threshold. To reduce the depth error

and risk of collision, we propose an algorithm that enables the robot to select its navigation

region to avoid the untrusted area. We implemented the algorithm and conducted physical

experiments. The results confirmed our analysis. Although we modeled the untrusted area

for monocular vision, the untrusted area can also be applied to a robot with multiple cam-

eras or a pan-tilt-zoom camera network to control the depth error. We apply the concept of

the untrusted area to 3D reconstruction with a two-view approach.
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CHAPTER V

DEPTH-ERROR-AWARE 3D SCENE RECONSTRUCTION WITH A TWO-VIEW

APPROACH

A. Introduction

Consider a surveillance system that consists of multiple camera as illustrated in Fig. 25. A

surveillance system recognizes objects on the ground surface by stereo reconstruction. A

360 degree view around two cameras can be reconstructed with overlapped images taken

from two cameras. Due to the limitation of the camera’s field of view, several image pairs

are required to reconstruct a 360 degree view around the vision system. As we mentioned in

chapter IV, each image pair produces an untrusted area due to the degeneracy introduced by

triangulation in the depth computation. This degenerated region causes failures in object

recognition. The untrusted area for a 360 degree view can be computed by the union of

untrusted areas from each pair of images. We found that the location of untrusted area for

a 360 degree view depends on the positions of two cameras. Hence, an additional camera

is used to avoid excessive depth error in the untrusted area. We propose an algorithm to

control depth error in the untrusted area by adding a camera and computing the location of

the additional camera. Therefore, overall depth error can be controlled below a predefined

threshold, and the risk of failure in object detection is reduced. We have implemented

the proposed algorithm in real environments. Experiments are conducted to confirm the

proposed algorithm.

Since the related work for this research overlaps with related work in chapter IV, we

omit the related work section. The rest of this chapter is organized as follows. We define

our research problem and formulate the untrusted area for the binocular vision system in

section B and C, respectively. In section D, we propose an algorithm to select the position
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Fig. 25. An illustration of the system configuration. The vision system consists of cameras
Cl and Cr reconstructs a 360 degree view within region of interest Ri. To control
depth error in the degenerated region, we use an additional camera Cn. Cn should
be placed within the predefined available area Rc.

of the additional camera to control depth error. Experiments and summary are presented in

section E and F, respectively.

B. Problem Description

1. Coordinate Systems

The given two cameras provides a pair of images for stereo reconstruction. We define Cr

and Cl as the right camera and left camera as illustrated in Fig. 26. When we represent

variables corresponding to Cr and Cl, we use subscript r and l as a convention in this

chapter. Fig. 26 illustrates the right hand coordinate systems and their relationship.

• World coordinate system (WCS): a fixed 3D Cartesian coordinate system. Its x-z

plan is the ground surface, and its y-axis is the vertical axis.
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Fig. 26. Definition of coordinate systems and their relationship.

• Camera coordinate system (CCS): a 3D Cartesian coordinate system. It is attached

to a camera with its origin at the camera optical center. Its z-axis coincides with the

optical axis, and its x-axis and y-axis are parallel with the horizontal direction and

the vertical direction of CCD sensor plane, respectively.

• Image coordinate system (ICS): a 2D image coordinate system with its origin at the

center of the image. Its u-axis and v-axis are parallel with horizontal and vertical

directions of a image, respectively.

As illustrated in Fig. 26, the origin of WCS is placed at the ground plane, where the

origin of CCS for Cl is projected on ground plane. The vertical difference between the

origins of WCS and CCS for Cl is the camera height h. Define d as the fixed baseline

distance between Cl and Cr. Hence, we can define the positions of Cl and Cr as (0, h, 0)

and (-d, h, 0), respectively. Cameras usually tilt toward ground to obtain a better coverage

of the ground. Define t as the tilt angle.

2. Nomenclature

• q = (u, v, 1)T : a point in ICS.
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• Q = (xw, yw, zw)T : q’s position in WCS.

• Q̂ = (x̂w, ŷw, ẑw)T : the estimated value of Q through stereo reconstruction.

• Qc = (xc, yc, zc)
T : q’s position in CCS.

• e = ẑw − zw: depth error.

• ∆e: depth error range.

• Au : the untrusted area in WCS.

• Ac
u : the untrusted area in WCS when a binocular vision system reconstructs a 360

degree view.

• Ri : region of interest.

• d : baseline distance between two cameras.

• s(·) and c(·) denote sin(·) and cos(·), respectively.

3. Assumptions

Since we apply the untrusted area obtained in chapter IV to 3D reconstruction with a two-

view approach, we follow assumptions used to analyze depth error, for example, assump-

tions about calibration of camera parameters, iso-orientation of image planes, and image

correspondence error distribution. In addition, we assume that two given cameras are lo-

cated at fixed position with a given baseline distance.

4. Untrusted Area for a 360 Degree View

We already defined untrusted area Au with monocular vision in (4.2). We apply the concept

of Au to a 360 degree view reconstruction . Let us define Ac
u(Cr, Cl) as untrusted areas
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for a 360 degree view that is reconstructed using image pairs taken by camera Cr and Cl

with different pan angle. Define Fl and Fr as the image frames taken from Cl and Cr,

respectively. When n is the number of image pairs required to reconstruct a 360 degree

view, Fri and Fli represent ith frames taken from Cr and Cl, respectively. Ac
u(Cr, Cl) can

be obtained by the union of untrusted areas from each image pair. Therefore, Ac
u(Cr, Cl) is

expressed as

Ac
u(Cr, Cl) = {(xw, zw)|(xw, zw) ∈

n⋃
i=1

Au(Fli, Fri)},

where xw and zw are x-axis and z-axis values in WCS, respectively.

5. Region of Interest

An image frame usually covers both far and near field, but we are not interested in regions

that are too far away. Define zM as the maximal distance that the given two cameras care

about for 3D scene reconstruction and Π(Fr ∩ Fl) as the coverage of the overlapped area

between Fr and Fl in 3D space. As illustrated in Fig. 25, the region of interest Ri is defined

as the area,

Ri = {(xw, zw)| (xw − d

2
)2 + z2

w ≤ z2
M , (xw, zw) ∈

n⋃
i=1

Π(Fri ∩ Fli)}. (5.1)

We want to reduce the depth error e associated with objects in Ri.

6. Problem Definition

Ac
u can be applied in 3D scene reconstruction to reduce depth error. The solution to control

depth error in Ac
u(Cr, Cl) is to construct another version of the 3D scene with an additional

camera Cn. Since three cameras produce three pairs of images to construct a 3D scene,

we can obtain three versions of 3D information with three untrusted areas, Ac
u(Cr, Cl),

Ac
u(Cr, Cn), and Ac

u(Cl, Cn). Define et as the predefined threshold for depth error range
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∆e. To obtain 3D information provided the least ∆e, the position of Cn should be satisfied

that

|∆e| ≤ et ⇐⇒ Ac
u(Cr, Cl) ∩ Ac

u(Cr, Cn) ∩ Ac
u(Cl, Cn) = ∅. (5.2)

Since computing a 3D scene for all three pairs is computationally inefficient, we can

reduce the amount of computation by only computing two image pairs taken from (Cr, Cl)

and (Cl, Cn). Therefore, (5.2) becomes,

|∆e| ≤ et ⇐⇒ Ac
u(Cr, Cl) ∩ Ac

u(Cl, Cn) = ∅, (5.3)

which means that ∆e is bounded below the threshold as long as Ac
u(Cr, Cl) and Ac

u(Cl, Cn)

do not overlap.

Since the location and the size of Ac
u in x-z plane are determined based on the base-

line distance between two cameras, baseline distance d′, which is the relative distance be-

tween Cl and Cn as illustrated in Fig. 25, determines the position of Cn to satisfy the

non-overlapping condition. There might be multiple d′s that satisfy the non-overlapping

condition in (5.3). Define Rc as the predefined region where Cn can be placed.

Definition 3. Given d, et, Rc and Ri, compute the additional camera’s available locations

such that the condition in (5.3) can be satisfied.

C. Compute Untrusted Area for Two Cameras

Recall that Ac
u(Cl, Cr) is the union of untrusted areas from image pairs taken from Cl and

Cr. The size and the location of Au from each pair of images are expressed using low and

high boundaries of the untrusted area in (4.47) and (4.48). Aus for n pairs of images can

be categorized into three groups based on the location of Au: 1) both cameras face zw-

axis (A1
u), 2) both cameras face xw-axis (A2

u), and 3) both cameras face between xw-axis

and zw-axis (A3
u). Ac

u is computed by the union of the computed Aus. Let us start with
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computation of A1
u.

1. Untrusted Areas When the Cameras Face zw-axis, A1
u

A1
u is obtained by the union of the untrusted areas from the image pairs captured by cameras

that look toward the positive or negative zw-axis. In this case, the baseline distance between

two cameras is the distance difference in xw-axis. Therefore, zw(0) = 0 and xw(0) = d.

We can obtain ∆e by plugging zw(0) and xw(0) into (4.24).

∆e =
2rβλzw(nxxw + n0)

2 − 2rλz2
w(nxxw + n0)

λ2(nxxw + n0)2 − r2z2
w

.

Plug zw(0) and xw(0) into (4.22), we can get nxxw + n0 = fd. Hence, ∆e becomes a

function of zw and d.

∆e =
2rβλzwf 2d2 − 2rλz2

wfd

λ2f 2d2 − r2z2
w

. (5.4)

∆e < 0 when d > 0, and ∆e > 0 when d < 0. Since d < 0, the untrusted area is

obtained when ∆e > et. We know that et = ρzw. The boundaries for A1
u are obtained by

plugging (5.4) into ∆e > et.

2rβλzwf 2d2 − 2rλz2
wfd

λ2f 2d2 − r2z2
w

> ρzw. (5.5)

The solution to (5.5) is,

zw >
λfd− df

√
λ2 − ρ(2rβλ− ρλ2)

ρr
, or zw <

λfd + df
√

λ2 − ρ(2rβλ− ρλ2)

ρr
.

Therefore, A1
u is written as
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Fig. 27. An illustration of A2
u.

A1
u = {(xw, zw)| − zM +

d

2
≤ xw ≤ zM +

d

2
, zw >

λfd− df
√

λ2 − ρ(2rβλ− ρλ2)

ρr

or zw <
λfd + df

√
λ2 − ρ(2rβλ− ρλ2)

ρr
}. (5.6)

2. Untrusted Area When the Cameras Face xw-axis, A2
u

A2
u consists of untrusted areas from the image pairs taken by cameras that face the positive

or negative xw-axis as illustrated in Fig. 27. First, consider the case that cameras face the

positive xw-axis. Recall that the low and high boundaries of Au in (4.47) and (4.48) are

obtained based on WCS whose zw-axis coincides with the cameras’s optical axis. Since

camera’s optical axis coincides with the xw-axis in this case, (4.47) and (4.48) should be

modified using the coordinate system transform, especially 90◦ about the yw-axis, to com-

pute the high and low boundaries of A2
u. Define zl

p(xw, d) and zh
p (xw, d) as the low and high

boundaries of A2
u when the cameras face the positive xw-axis. zl

p(xw, d) and zh
p (xw, d) are

computed based on the modified low and high boundaries and baseline distance, xw(0) = d

and zw(0) = 0. zl
p(xw, d) and zh

p (xw, d) are written as
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zl
p(xw, d) =

rxw(xw − dλxc(t))

fc(t)dλ2
x(ρλx − 2rβ)

(
λx +

√
λ2

x + ρ2λ2
x − 2rβλxρ

)
, (5.7)

zh
p (xw, d) =

rxw(xw − dλxc(t))

fc(t)dλ2
x(−ρλx − 2rβ)

(
λx +

√
λ2

x + ρ2λ2
x + 2rβλxρ

)
, (5.8)

λx =
xw

xwc(t) + hs(t)
.

Secondly, consider the case that the cameras face the negative xw-axis. The low and

high boundaries of A2
u are obtained using the same procedure to the case that the cameras

face the positive xw-axis. Eq. (4.47) and (4.48) are modified based on the coordinate system

transform, especially -90◦ rotation about the yw-axis and transition of d along the xw-axis.

Define zl
n(xw, -d) and zh

n(xw, -d) as low and high boundaries of A2
u when the cameras are

lined up along the negative xw-axis. In this case, xw(0) = -d and zw(0) = 0. zl
n(xw, -d)

and zh
n(xw, -d) are written as

zl
n(xw, -d) =

r(xw − d)(xw − d + dλ′xc(t))

-fc(t)dλ′2x(−ρλ′x − 2rβ)

(
λ′x +

√
λ′x

2 + ρ2λ′x
2 + 2rβλ′xρ

)
, (5.9)

zh
n(xw, -d) =

r(xw − d)(xw − d + dλ′xc(t))

-fc(t)dλ′2x(ρλ′x − 2rβ)

(
λ′x +

√
λ′x

2 + ρ2λ′x
2 − 2rβλ′xρ

)
, (5.10)

λ′x =
d− xw

(d− xw)c(t) + hs(t)
.

The overall A2
u is the union of two cases in (5.7-5.10).

A2
u = {(xw, zw)| 0 ≤ xw ≤ zM +

d

2
, zl

p(xw, d) ≤ zw ≤ zh
p (xw, d)}

∪ {(xw, zw)| -zM +
d

2
≤ xw ≤ d, zl

n(xw, -d) ≤ zw ≤ zh
n(xw, -d)}. (5.11)
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Fig. 28. An illustration of A3
u. Two cameras are rotated by θ with respect to the yw-axis.

3. Untrusted Area When the Cameras Face between the xw-axis and zw-axis, A3
u

A3
u contains untrusted areas from image pairs captured by cameras that face between the

xw-axis and zw-axis. To present the rotation of the camera, we defined the angular value

as θ. Cameras are rotated by θ with respect to the yw-axis as shown in Fig. 28. A3
u is

computed using (5.7-5.10) and baseline distance xw(0) = dc(θ) and zw(0) = ds(θ). In

this case, the cameras’ optical axis coincides with the x′w-axis in Fig. 28. To express A3
u

based on WCS for Ac
u(Cl, Cr), the coordinate system transformation, θ rotation about the

yw-axis, is required. Define zl
w(xw, d) and zh

w(xw, d) as the low and high boundaries of A3
u

in WCS for Ac
u when xw > 0.

zl(xw, d) =
γl + 2rηl

1c(θ)s(θ)xw +
√

γ2
l + 4rηl

1fdλ2c(t)ηl
2c(θ)s(θ)xw

2rηl
1s(θ)

2
, (5.12)

zh(xw, d) =
γh + 2rηh

1 c(θ)s(θ)xw +
√

γ2
h + 4rηh

1fdλ2c(t)ηh
2 c(θ)s(θ)xw

2rηh
1s(θ)2

, (5.13)

γl = fdλ2ηl
2c(t)c(θ)

2 + fdληl
2s(θ)

2 − rdληl
1c(θ)s(θ), (5.14)

γh = fdλ2ηh
2 c(t)c(θ)2 + fdληh

2s(θ)2 − rdληh
1 c(θ)s(θ), (5.15)
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ηl
1 = λ +

√
λ2 + ρ2λ2 − 2rβλρ, ηl

2 = ρλ− 2rβ,

ηh
1 = λ +

√
λ2 + ρ2λ2 + 2rβλρ, ηh

2 = -ρλ− 2rβ.

Define zl(xw, -d) and zh(xw, -d) as the low and high boundaries of A3
u in WCS for Ac

u

when xw < d. zl(xw, -d) and zh(xw, -d) are computed using the same procedure.

zl(xw, -d) =
γl + 2rηl

1s(θ)(c(θ)xw − d)−
√

γ2
l + 4rηl

1fdλ2c(t)ηl
2s(θ)(xw − dc(θ))

2rηl
1s(θ)

2
,

(5.16)

zh(xw, -d) =
γh + 2rηh

1s(θ)(c(θ)xw − d) +
√

γ2
h + 4rηh

1fdλ2c(t)ηh
2s(θ)(xw − dc(θ))

2rηh
1s(θ)2

.

(5.17)

Overall A3
u is the union of untrusted areas from two cases in (5.12-5.17).

A3
u = {(xw, zw)| 0 ≤ xw ≤ zM +

d

2
, zl(xw, d) ≤ zw ≤ zh(xw, d)}

∪ {(xw, zw)| -zM +
d

2
≤ xw ≤ d, zl(xw, -d) ≤ zw ≤ zh(xw, -d)}. (5.18)

Now, we are ready to compute Ac
u(Cl, Cr).

4. Ac
u(Cl, Cr)

Recall that Ac
u(Cl, Cr) is the union of A1

u, A2
u, and A3

u. The location of A1
u can be adjusted

based on d. When we set d to place A1
u beyond Ri, we do not need to consider A1

u in Ac
u

computation. Define dm as the minimal d to place A1
u out of Ri. dm is computed based on

(5.6).

λfd− df
√

λ2 − ρ(2rβλ− ρλ2)

ρr
> zM .
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dm is written as

dm <
zMrρ

f(λ−
√

λ2 − ρ(2rβλ− ρλ2))
. (5.19)

However, A2
u and A3

u are unavoidable within Ri. Hence, Ac
u is the union of A2

u and

A3
u. The following lemma shows the relationship between A2

u and A3
u.

Lemma 3. A3
u ⊂ A2

u.

Proof. A2
u and A3

u have a pair of untrusted areas: when xw > 0 and xw < d. Since two

untrusted areas are symmetric, we compare the untrusted areas when xw > 0 to show the

relationship between A2
u and A3

u. In this case, -90◦ < θ < 90◦.

First, let us compare the low boundaries of A2
u (zl

p(xw, d)) and A3
u(z

l(xw, d)). To

satisfy the condition that A3
u ⊂ A2

u, zl
p(xw, d) < zl(xw, d), plug (5.7) and (5.12) into

zl
p(xw, d) < zl(xw, d), and we have

ηl
1rxw(xw − dλc(t))

fdλ2c(t)ηl
2

<
2rηl

1s(θ)c(θ)xw

2rηl
1s(θ)

2
+

γl

2rηl
1s(θ)

2
+

√
γ2

l + κlxw

2rηl
1s(θ)

2
. (5.20)

In order to eliminate the square root value, (5.20) is modified as

(
ηl

1rxw(xw − dλc(t))

fdλ2c(t)ηl
2

2rηl
1s(θ)

2 − 2rηl
1s(θ)c(θ)xw

)2

+ 4rηl
1s(θ)

2ηl
1rxw(xw − dλc(t))

fdλ2c(t)ηl
2

γl + 4rηl
1s(θ)c(θ)γlxw − κ1 < 0. (5.21)

Now, we are going to show that (5.21) holds. We can approximate γl in (5.14). Since

f > 100, fdληl
2s(θ)

2 + fdλ2c(t)ηl
2c(θ)

2 À rηl
1dλc(t)c(θ)s(θ).

γl = fdληl
2s(θ)

2 − rηl
1dλc(t)c(θ)s(θ) + fdλ2c(t)ηl

2c(θ)
2

≈ fdληl
2(s(θ)

2 + λc(t)c(θ)2).

Eq. (5.21) can be approximated using the approximated γl.
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4r2ηl
1

2
x2

ws(θ)2

((
rηl

1s(θ)(xw − dλc(t))

fdλ2c(t)ηl
2

− c(θ)

)2

− xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)

+
fdλc(t)ηl

2s(θ)c(θ)

rηl
1xw

hs(t)

xwc(t) + hs(t)

)
. (5.22)

We know that d < 0 and ηl
2 > 0. When 0◦ < θ < 90◦,

4r2ηl
1

2
x2

ws(θ)2 > 0,
((

rηl
1s(θ)(xw − dλc(t))

fdλ2c(t)ηl
2

− c(θ)

)2

− xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)

)
< 0,

fdλc(t)ηl
2s(θ)c(θ)

rηl
1xw

hs(t)

xwc(t) + hs(t)
< 0,

since

0 <

(
rηl

1(xw − dλc(t))

fdλ2c(t)ηl
2

s(θ)− c(θ)

)2

≤ 1,
xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)
> 1,

0 >
rηl

1(xw − dλc(t))

fdλ2c(t)ηl
2

> −0.5.

Therefore, (5.21) holds.

When -90◦ < θ < 0◦,
((

rηl
1s(θ)(xw − dλc(t))

fdλ2c(t)ηl
2

− c(θ)

)2

− xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)

)
< 0,

fdλc(t)ηl
2s(θ)c(θ)

rηl
1xw

hs(t)

xwc(t) + hs(t)
> 0.

However,
((

rηl
1(xw − dλc(t))

fdλ2c(t)ηl
2

s(θ)− c(θ)

)2

+
fdλc(t)ηl

2s(θ)c(θ)

rηl
1xw

hs(t)

xwc(t) + hs(t)

)
≤ 1,

since

0 <
fdλc(t)ηl

2s(θ)c(θ)

rηl
1xw

hs(t)

xwc(t) + hs(t)
< 0.03.
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Therefore, (5.21) holds.

In the case of high boundaries, zh
p (xw, d) > zh(xw, d) should be satisfied. Plug (5.8)

and (5.13) into zh
p (xw, d) > zh(xw, d), we have

ηh
1rxw(xw − dλc(t))

fdλ2c(t)ηh
2

>
2rηh

1s(θ)c(θ)xw

2rηh
1s(θ)2

+
γh

2rηh
1s(θ)2

−
√

γ2
h + κhxw

2rηh
1s(θ)2

. (5.23)

Eq. (5.23) is modified to eliminate the square root part.

(
2ηh

1
2
r2s(θ)2xw(xw − dλc(t))

fdλ2c(t)ηh
2

− 2rηh
1s(θ)c(θ)xw

)2

− 4ηh
1

2
r2s(θ)2xw(xw − dλc(t))

fdλ2c(t)ηh
2

γh + 4rηh
1s(θ)c(θ)γhxw − κhxw < 0. (5.24)

Since fdληh
2s(θ) + fdλ2c(t)ηh

2 c(θ)2 À rηh
1dλc(t)c(θ)s(θ), γh in (5.15) can be ap-

proximated.

γh = fdληh
2s(θ)2 − rηh

1dλc(t)c(θ)s(θ) + fdλ2c(t)ηh
2 c(θ)2

≈ fdληh
2 (s(θ)2 + λc(t)c(θ)2).

Eq. (5.24) is approximated using the approximated γh.

4ηh
1

2
r2s(θ)2x2

w

((
ηh

1rs(θ)(xw − dλc(t))

fdλ2c(t)ηh
2

− c(θ)

)2

− xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)

+
fdληh

2s(θ)c(θ)

rxwηh
1

hs(t)

xwc(t) + hs(t)

)
.

We know that d < 0 and ηh
2 < 0. When -90◦ < θ < 0◦,

4ηh
1

2
r2s(θ)2x2

w > 0,
fdληh

2s(θ)c(θ)

rxwηh
1

hs(t)

xwc(t) + hs(t)
< 0,

(
ηh

1rs(θ)(xw − dλc(t))

fdλ2c(t)ηh
2

− c(θ)

)2

− xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)
< 0,
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since

0 <

(
ηh

1rs(θ)(xw − dλc(t))

fdλ2c(t)ηh
2

− c(θ)

)2

< 1,
xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)
> 1.

Therefore, (5.24) holds.

When 0◦ < θ < 90◦,

(
ηh

1r(xw − dλc(t))

fdλ2c(t)ηh
2

s(θ)− c(θ)

)2

− xw − dλc(t)

xw

s(θ)2 + λc(t)c(θ)2

λc(t)

+
fdληh

2s(θ)c(θ)

rxwηh
1

hs(t)

xwc(t) + hs(t)
< 0,

since

fdληh
2s(θ)c(θ)

rxwηh
1

hs(t)

xwc(t) + hs(t)
< 0.03, 0 <

ηh
1r(xw − dλc(t))

fdλ2c(t)ηh
2

< 0.5,

(
ηh

1r(xw − dλc(t))

fdλ2c(t)ηh
2

s(θ)− c(θ)

)2

+
fdληh

2s(θ)c(θ)

rxwηh
1

hs(t)

xwc(t) + hs(t)
≤ 1.

Therefore, (5.24) holds.

Due to Lemma 3, Ac
u(Cl, Cr) is written as

Ac
u(Cl, Cr) = A1

u ∪ A2
u ∪ A3

u

= A2
u.

Hence, Ac
u(Cl, Cr) is

Ac
u(Cl, Cr) = {(xw, zw)| 0 ≤ xw ≤ zM +

d

2
, zl

p(xw, d) ≤ zw ≤ zh
p (xw, d)}

∪ {(xw, zw)| -zM +
d

2
≤ xw ≤ d, zl

n(xw, -d) ≤ zw ≤ zh
n(xw, -d)}. (5.25)

D. Algorithm

When a 360 degree view is reconstructed using two cameras Cl and Cr, Ac
u(Cl, Cr) is

always exited. We know that the location of Ac
u(Cl, Cr) depends on the baseline distance
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between Cl and Cr. To avoid Ac
u(Cl, Cr), an additional camera Cn is required. Cl and Cn

also have untrusted area Ac
u(Cl, Cn). We suggest an algorithm to select the location for Cn

that satisfy the non-overlapping condition in (5.3) within the predefined available area Rc.

Define d′ and φ as the minimal distance between Cl and Cn and the angle of baseline

d′ from the negative x-axis as shown in Fig. 25. The location of Cn is expressed using d′

and φ. Define d′M as the maximal d′. d′M is from the predefined area Rc. Recall that the

location of A1
u is adjusted using the baseline distance between two cameras. The minimal

d′, d′m, should be computed to place A1
u of Ac

u(Cl, Cn) beyond Ri using (5.19). Hence, Cn

should be located between the circles with radius d′m and d′M as shown in Fig. 25.

Due to Lemmas 1 and 2 in chapter IV, (d′, φ) set to satisfy non-overlapping condition

in (5.3) is obtained by comparing the boundaries of the bounding triangle of Ac
u(Cl, Cn) and

Ac
u(Cl, Cn). Ac

u(Cl, Cn) is fixed due to the fixed d. Since Ri is a circle, one side of bounding

triangles for Ac
u within Ri is not located on line xw = zM + d/2 or xw = -zM + d/2. To

compare the bounding triangles, we should compare the intervals from the intersection

points between the circle and the untrusted area. We can compute the exact interval of the

bounding triangles of Ac
u within Ri. However, it is not computationally efficient, because it

includes high order polynomial equations. Hence, we use the approximated intervals when

xw = zM + d/2 and xw = -zM + d/2. Since the approximated intervals are wider than the

exact intervals, the (d′, φ) set from the approximated intervals is the subset of (d′, φ) from

the exact intervals.

Four vertices of Ac
u(Cl, Cr) on line xw = zM + d/2 and on line xw = -zM + d/2 are

defined as al
p, ah

p , al
n, and ah

n, and they are computed using (5.7-5.10).
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al
p = zl

p(zM +
d

2
, d),

ah
p = zh

p (zM +
d

2
, d),

al
n = zl

n(-zM +
d

2
, -d),

ah
n = zh

n(-zM +
d

2
, -d).

Since Ac
u(Cl, Cr) and Ac

u(Cl, Cn) are expressed based on different WCS, Ac
u(Cl, Cn)

should be transformed with respect to WCS for Ac
u(Cl, Cr) to compute the (d′, φ) set.

bl
p(xw, d′) =

1

2rηl
1s(φ)2

(
rηl

1c(t)d
′λs(φ)− 2rηl

1c(φ)s(φ)xw + fc(φ)c(t)d′ληl
2

+
√

(rηl
1c(t)d

′λs(φ) + fc(φ)c(t)d′ληl
2)

2 − 4rηl
1fd′ληl

2c(t)s(φ)xw

)

(5.26)

bh
p(xw, d′) =

1

2rηh
1s(φ)2

(
rηh

1 c(t)d′λs(φ)− 2rηh
1 c(φ)s(φ)xw + fc(φ)c(t)d′ληh

2

−
√

(rηh
1 c(t)d′λs(φ) + fc(φ)c(t)d′ληh

2 )2 − 4rηh
1fd′ληh

2 c(t)s(φ)xw

)

(5.27)

bl
n(xw,-d′) =

−1

2rηh
1s(φ)2

(
rηh

1 c(t)d′λs(φ) + 2rηh
1s(φ)(xwc(φ)− d′) + fc(φ)c(t)d′ληh

2

+
√

(rηh
1 c(t)d′λs(φ) + fc(φ)c(t)d′ληh

2 )2 + 4rηh
1fd′ληh

2 c(t)s(φ)(xw − c(φ)d′)
)

(5.28)

bh
n(xw,-d′) =

−1

2rηl
1s(φ)2

(
rηl

1c(t)d
′λs(φ) + 2rηl

1s(φ)(xwc(φ)− d′) + fc(φ)c(t)d′ληl
2

−
√

(rηl
1c(t)d

′λs(φ) + fc(φ)c(t)d′ληl
2)

2 + 4rηl
1fd′ληl

2c(t)s(φ)(xw − c(φ)d′)
)

(5.29)

Four vertices of Ac
u(Cl, Cn) on line xw = zM + d/2 and on line xw = -zM + d/2
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Fig. 29. An illustration of the relationship between Ac
u(Cl, Cr) and Ac

u(Cl, Cn) when
0◦ < φ < 90◦.

become bl
p(zM + d/2, d′), bh

p(zM + d/2, d′), bl
n(-zM + d/2, -d′), and bl

n(-zM + d/2, -d′).

To ensure that the bounding triangles of Ac
u(Cl, Cr) and Ac

u(Cl, Cn) do not overlap each

other, [al
p, a

h
p ] and [al

n, a
h
n] do not intersect with [bl

p(zM + d/2, d′), bh
p(zM + d/2, d′)] and

[bl
n(-zM + d/2, d′), bh

n(-zM + d/2, d′)], respectively.

Since Cn can be located all directions around Cl, the (d′, φ) set is computed based

on four cases: 1) 0◦ < φ < 90◦, 2) 90◦ < φ < 180◦, 3) 180◦ < φ < 270◦, and 4)

270◦ < φ < 360◦.

Let us consider the case when 0◦ < φ < 90◦. Fig. 29 illustrates the relationship

between Ac
u(Cl, Cr) and Ac

u(Cl, Cn) when 0◦ < φ < 90◦. To ensure that the intervals do

not overlap, the (d′, φ) set should satisfy two conditions: 1) ah
p < bl

p(zM + d/2, d′) when

xw > 0 and 2) al
n > bh

n(-zM +d/2,−d′) when xw < d. Hence, (d′, φ) is the union of (d′, φ)

sets from each case.
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When xw > 0, the relationship between d′ and φ is obtained by plugging (5.26) into

ah
p < bl

p(zM + d/2, d′).

ah
p <

1

2rηl
1s(φ)2

(
rηl

1c(t)d
′λs(φ)− 2rηl

1c(φ)s(φ)(zM +
d

2
) + fc(φ)c(t)d′ληl

2

+

√
(rηl

1c(t)d
′λs(φ) + fc(φ)c(t)d′ληl

2)
2 − 4rηl

1fd′ληl
2c(t)s(φ)(zM +

d

2
)
)

.

The inequality above can be rewritten as

d′ <
ψ2

1

2c(t)λψ1(rηl
1s(φ) + fηl

2c(φ))− 4rηl
1fληl

2c(t)s(φ)(zM + d/2)
, (5.30)

ψ1 = 2ah
prη

l
1s(φ)2 + 2rηl

1c(φ)s(φ)(zM + d/2)

When xw < d, the relationship between d′ and φ is obtained by plugging (5.29) into

al
n > bh

n(-zM + d/2, -d′).

al
n >

1

2rηl
1s(φ)2

(
− rηl

1c(t)d
′λs(φ)− 2rηl

1s(φ)(xwc(φ)− d′)− fc(φ)c(t)d′ληl
2

+
√

(rηl
1c(t)d

′λs(φ) + fc(φ)c(t)d′ληl
2)

2 + 4rηl
1fd′ληl

2c(t)s(φ)(xw − c(φ)d′)
)

.

This can be rewritten as

ω2fd
′2 + ω1fd

′ + ω0f > 0, (5.31)

ω2f = 4rηl
1s(φ)(rηl

1s(φ) + fληl
2c(t)c(φ)− rηl

1λc(t)s(φ) + fληl
2c(t)c(φ))

ω1f = −8r2ηl
1

2
s(φ)2(−c(φ)(zM − d

2
) + s(φ)al

n)− 4rηl
1fληl

2c(t)s(φ)(zM − d

2
)

+ 4rηl
1s(φ)(rηl

1c(t)λs(φ) + fc(φ)c(t)λb)(s(φ)al
n − c(φ)(zM − d

2
))

ω0f = 4r2ηl
1

2
s(φ)2((zM − d

2
)2c(φ)2 + al

n

2 − 2s(φ)al
nc(φ)(zM − d

2
)).
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The solution to (5.31) is,

d′ <
−ω1f −

√
ω2

1f − 4ω2fω0f

2ω2f

(5.32)

or d′ >
−ω1f +

√
ω2

1f − 4ω2fω0f

2ω2f

. (5.33)

Since d′ > 0 in (5.33), (d′, φ) set is obtained from (5.32) when xw < d.

The relationship between d′ and φ is obtained by the union of (5.30) and (5.32) when

0◦ < φ < 90◦.

In case when 0◦ < φ < -90◦, the (d′, φ) set is obtained using the same procedure. the

(d′, φ) set should satisfy two conditions: 1) al
p > bh

p(zM + d/2, d′) when xw > 0 and 2)

ah
n < bl

n(-zM + d/2, -d′) when xw < d.

When xw > 0, the relationship between d′ and φ is obtained by plugging (5.27) into

al
p > bh

p(zM + d/2, d′).

d′ <
ψ2

2

2c(t)λψ2(rηh
1s(φ) + fηh

2 c(φ))− 4rηh
1fληh

2 c(t)s(φ)(zM + d/2)
, (5.34)

ψ2 = 2al
prη

h
1s(φ)2 + 2rηh

1 c(φ)s(φ)(zM + d/2).

When xw < d, the relationship between d′ and φ is obtained by plugging (5.28) into

ah
n < bl

n(-zM + d/2, -d′).
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d′ <
−ω1s −

√
ω2

1s − 4ω2sω0s

2ω2s

, (5.35)

ω2s = 4rηh
1s(φ)(rηh

1s(φ) + fληh
2 c(t)c(φ)− rηh

1λc(t)s(φ) + fληh
2 c(t)c(φ)),

ω1s = −8r2ηh
1

2
s(φ)2(−c(φ)(zM − d

2
) + s(φ)ah

n)− 4rηh
1fληh

2 c(t)s(φ)(zM − d

2
)

+ 4rηh
1s(φ)(rηh

1 c(t)λs(φ) + fc(φ)c(t)λb)(s(φ)ah
n − (zM − d

2
)c(φ)),

ω0s = 4r2ηh
1

2
s(φ)2((zM − d

2
)2c(φ)2 + ah

n

2 − 2s(φ)ah
n(zM − d

2
)c(φ).

d′ > (−ω1s +
√

ω2
1s − 4ω2sω0s)/(2ω2s) is abandoned because d′ > 0, as in (5.33).

The relationship between d′ and φ is also obtained by the union of (5.34) and (5.35)

when −90◦ < φ < 0◦.

In case when 90◦ < φ < 180◦, the (d′, φ) set is obtained based on two conditions: 1)

ah
n < bh

p(-zM + d/2, d′) when xw < d and 2) al
p > bl

n(zM + d/2, -d′) when xw > 0. Fig.

30 illustrates the relationship between Ac
u(Cl, Cr) and Ac

u(Cl, Cn) when 90◦ < φ < 180◦.

(d′, φ) is also obtained using the same procedure as in the case when 0◦ < φ < 90◦.

When xw < d, (5.27) is plugged into ah
n < bh

p(-zM + d/2, d′) to compute the relation-

ship between d′ and φ.

d′ <
ψ2

3

2c(t)λφ3(rηh
1s(φ) + fηh

2 c(φ)) + 4rηh
1fληh

2 c(t)s(φ)(zM − d/2)
, (5.36)

ψ3 = 2ah
nrηh

1s(φ)2 − 2rηh
1 c(φ)s(φ)(zM − d/2).

When xw > 0, (5.28) is plugged into al
p > bl

n(zM + d/2, -d′) to compute the relation-
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Fig. 30. An illustration of the relationship between Ac
u(Cl, Cr) and Ac

u(Cl, Cn) when
90◦ < φ < 180◦.

ship between d′ and φ.

d′ <
−ω1t −

√
ω2

1t − 4ω2tω0t

2ω2t

, (5.37)

ω2t = 4rηh
1s(φ)(rηh

1s(φ) + fληh
2 c(t)c(φ)− rηh

1λc(t)s(φ) + fληh
2 c(t)c(φ)),

ω1t = −8r2ηh
1

2
s(φ)2(c(φ)(zM +

d

2
) + s(φ)al

p) + 4rηh
1fληh

2 c(t)s(φ)(zM +
d

2
)

+ 4rηh
1s(φ)(rηh

1 c(t)λs(φ) + fc(φ)c(t)λb)(s(φ)al
p + (zM +

d

2
)c(φ)),

ω0t = 4r2ηh
1

2
s(φ)2((zM +

d

2
)2c(φ)2 + al

p

2
+ 2s(φ)al

p(zM +
d

2
)c(φ).

The union of the (d′, φ) sets from (5.36) and (5.37) shows the relationship between d′ and

φ to satisfy the non-overlapping condition when 90◦ < φ < 180◦.

In the case when 180◦ < φ < 270◦, two conditions for the non-overlapping condition

are al
n > bl

p(-zM + d/2, d′) when xw < d and ah
p < bh

n(zM + d/2, -d′) when xw > 0.
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When xw < d, (5.26) is plugged into al
n > bl

p(-zM +d/2, d′) to obtain the relationship

between d′ and φ.

d′ <
φ2

4

2c(t)λψ4(rηh
1s(φ) + fηl

2c(φ)) + 4rηl
1fληl

2c(t)s(φ)(zM − d/2)
, (5.38)

ψ4 = 2al
nrηl

1s(φ)2 − 2rηl
1c(φ)s(φ)(zM − d/2).

When xw > 0, (5.29) is plugged into ah
p < bh

n(zM +d/2, -d′). The relationship between

d′ and φ is

d′ <
−ω1g −

√
ω2

1g − 4ω2gω0g

2ω2g

(5.39)

ω2g = 4rηl
1s(φ)(rηl

1s(φ) + fληl
2c(t)c(φ)− rηl

1λc(t)s(φ) + fληl
2c(t)c(φ))

ω1g = −8r2ηl
1

2
s(φ)2(c(φ)(zM +

d

2
) + s(φ)ah

p) + 4rηl
1fληl

2c(t)s(φ)(zM +
d

2
)

+ 4rηl
1s(φ)(rηl

1c(t)λs(φ) + fc(φ)c(t)λb)(s(φ)ah
p + c(φ)(zM − d

2
))

ω0g = 4r2ηl
1

2
s(φ)2((zM +

d

2
)2c(φ)2 + ah

p

2
+ 2s(φ)ah

pc(φ)(zM +
d

2
)).

The union of the (d′, φ) sets from (5.38) and (5.39) shows the relationship between d′

and φ to satisfy the non-overlapping condition when 180◦ < φ < 270◦.

Fig. 31 illustrates the available area of Cn to satisfy the non-overlapping condition

within Rc.

E. Experiments

1. Software and Hardware

We have implemented the algorithm on a laptop PC with a 1.6 GHz Centrino processor

and 512 MB RAM. The laptop runs Microsoft Windows XP and the algorithm has been

implemented using Matlab. We simulated two-view approach with a single camera which
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Fig. 31. The shaded area presents available (d′, θ) set to satisfy the non overlapping condi-
tion between Ac(Cl, Cr) and Ac(Cl, Cn).

 
Fig. 32. The camera used in experiments.

is a Panasonic HCM 280 networked pan-tilt-zoom camera with a 51◦ horizontal field of

view as illustrated in Fig 32. The intrinsic camera parameters are estimated using the Mat-

lab calibration toolbox [98], and the extrinsic camera parameters are measured by camera

potentiometers. During the experiment, we set default zM =40 m and t = 15◦. The camera

height h =2 m, and the baseline distance between Cl and Cr is d =-50 cm. We conducted

the experiments in the corridor of H. R. Bright Bldg. in Texas A&M University. The ob-
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Fig. 33. The shaded area illustrates the available set (d′, φ) on the x-z plane when d =-50
cm.

stacles used in the experiments are books and blocks with a size of 20 cm×14.5 cm ×10

cm.

2. The Representative Case

We present the available location for an additional camera Cn. The minimal distance d′m =-

23 cm with the given zM , and the maximal distance d′M =-150 cm with the given Rc. Fig.

33 shows the available (d′, φ). Fig. 34 illustrates the relationship between Ac
u(Cl, Cr) and

Ac
u(Cl, Cn) when d′ =-100 cm and φ = 40◦.

3. Depth Error Reduction Effectiveness

We carried out the experiment to verify the effectiveness of the depth error reduction with

Ac
u. We simulate two-view approach with a single camera. Since the location for an addi-

tional camera is determined based on avoiding overlapping Ac
us, we compared the relative
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Fig. 35. The effectiveness of depth error reduction with different depth of obstacles. The
height of the bar is the mean value of er and the vertical interval represents the
variance of er. The number in the parenthesis is the trial number.

depth error in (4.61) of the obstacles that are either inside the Ac
u or outside the Ac

u. This

comparison is performed with different depth of objects. The results are shown in Fig. 35.

We repeat the test over 20 times with different random configurations of obstacles loca-
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tions. The trial number is shown above the bars in the figure. The mean and the variance

of the relative depth error are significantly reduced if the robot stay outside Ac
u.

F. Summary

We applied an untrusted area for monocular vision to 3D scene reconstruction with a two-

view approach. We presented an untrusted area for a 360 degree view. The untrusted

area can result in failures in object detection. Hence, we propose an algorithm to avoid

untrusted areas for a 360 degree view by computing the location of the additional camera.

This analysis was verified with experiments.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

A. Conclusions

We addressed a vision-based navigation system for ill-structured roads based on two el-

ements: appearance information and geometric information. In case of the appearance

information-based navigation system, we developed a vision-based motion planning algo-

rithm for an autonomous motorcycle. To efficiently process video data and perform motion

planning, we propose the V2-Space, a new framework that represents road features and al-

lows fast construction and motion planning. We used a shadow and illumination invariant

color model to construct the V2-Space to reduce the impact of varying lighting conditions

in an outdoor environment. We extracted directional information from the prior tire tracks

and pedestrian footsteps on the road to refine our V2-Space. The V2-Space also allows

us to consider vehicle kinematic, dynamic, and time-delays in motion planning to fit the

highly dynamic requirement of the motorcycle. We propose a V2-Space construction and

a motion planning algorithm that runs linear to the number of pixels. The algorithm is

tested both with video clips from the desert and in field experiments. It outputted correct

robot motion commands at a rate of more than 90%. Failures resulted from the limitations

of the appearance information-based navigation that does not provide geometric informa-

tion. Therefore, we expanded the navigation system to include consideration of geometric

information, especially concerning depth.

In the vision-based navigation based on geometric information, depth information is

obtained with monocular vision. We computed depth using images taken from different

camera perspectives. We analyzed depth error range distribution across the camera cover-

age for a mobile robot equipped with a single camera. For SFM-based stereo vision for
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navigation, we showed that the depth error can be excessively large and hence can cause

collisions in robot navigation. We modeled the untrusted area where the depth error range

is beyond a preset threshold. We then presented an algorithm that enables the robot to se-

lect the navigation regions to avoid regions with excessive depth error. We implemented

the algorithm and conducted physical experiments. The results confirmed our analysis. Al-

though we computed the untrusted areas based on a monocular vision system, the untrusted

area can be applied to vision systems with multiple cameras or a camera network to control

the depth error.

The untrusted area for monocular vision was applied to 3D scene reconstruction with

a two-view approach. We presented the untrusted area when a 360 degree view is recon-

structed. To reduce the risk of failures in object detection within the untrusted area, we

propose the algorithm to avoid the untrusted area for a 360 degree view. The proposed

algorithm computes the available locations for the additional camera to reduce depth error.

Experiments confirmed our analysis.

B. Future Work

We will consider incorporating the V2-Space in a stereo vision system. We will perform

partial construction of the real 3D environment in the V2-Space to allow fast computations.

We will also incorporate machine learning techniques into the V2-Space to improve the

vehicle’s capability of adapting to different terrains.

In the geometric information-based navigation, our research uses a single additional

frame to control depth error. More frames can be used to further reduce the depth error.

There is an interesting tradeoff between the computation time and the accuracy of compu-

tation result. We assume known accurate motion information from robot motion sensors

and camera potentiometers. This assumption might not be the true for for low-cost minia-
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ture robots. It is interesting to extend the model to study how those errors would affect the

depth error. We are plane to incorporate the DEAN algorithm in a navigation system to

compute the robot position on the fly.
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