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ABSTRACT 

 

Anti-viral RNAi and Its Suppression in Plants. (August 2008) 

Jessica J. Ciomperlik, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Herman B. Scholthof 

 

 As a defense against viral infection, plants are thought to use RNA-induced 

silencing complexes (RISCs) to target and cleave viral RNA. To counteract this, some 

viruses have evolved proteins to inhibit RISC-mediated activity, thus ensuring  

continued virulence. This research focused on the study and analysis of the anti-viral 

RNAi response to various viruses in plants to gain an understanding of how the plant 

defense operates on the molecular and biochemical levels. Nicotiana benthamiana plants 

were infected with Tomato bushy stunt virus (TBSV) and Tobacco rattle virus (TRV). 

These plants were subjected to column chromatography methods, and fractions 

contained a virus-specific ribonuclease activity, co-eluting with small interfering RNAs 

(siRNA), that was shown to be sensitive to inhibition with EDTA and enhanced by the 

addition of divalent metal cations. This ribonuclease activity co-purified with proteins 

that contained a domain from the hallmark RISC protein Argonaute family. To further 

study host responses to viral infection, monocots were infected with Panicum mosaic 

virus (PMV) and satellite panicum mosaic virus (SPMV) and also were subjected to 

column chromatography following infection. Preliminary studies show that fractions 

contained ribonuclease activity as well as siRNAs and proteins containing an Argonaute 

domain. Additionally, silencing suppressors have been directly implicated in interfering 

with RNAi pathways in plants. Studies involving Agrobacterium- and virus-vectored 

cDNA to express green fluorescent protein (GFP) were used to establish that co-

introduced suppressors of RNAi can extend the production of a foreign protein for 

enhancement of biotechnological applications. It was found that the hordeivirus protein 

γb contributes to enhancement of expression for the foreign protein GFP early in the 
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infection, while the potyvirus protein HcPro and tombusvirus protein P19 enhance and 

extend protein production later in the infection.  
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CHAPTER I 

INTRODUCTION AND SYSTEMS 

 
Introduction 

Following infection with a virus, some plants can ‘clear’ viral material from 

upper, new plant tissue, and remain resistant to a second infection. This phenomenon was 

first observed in a Tobacco ringspot virus infection of tobacco (Wingard, 1928), but only 

recently ascribed to RNA interference (RNAi) (Baulcombe, 2004). RNAi is a conserved 

pathway that post-transcriptionally silences RNA by recognition of target RNA. Double-

stranded RNA (dsRNA) serves as the trigger for the RNAi pathway upon cleavage into 

duplexed small interfering RNAs (siRNAs) or hairpin microRNAs (miRNAs), which act 

in either a sequence-specific manner to target and degrade ssRNAs, or to guide 

methylation of specific nucleotide sequences. Fire, Mello and colleagues first described 

the RNAi pathway using Caennorhabditis elegans  (Fire et al., 1998; Baulcombe, 2004). 

Due to wide conservation across many species, RNAi has also been described as co-

suppression of homologous genes in petunia plants, quelling in the fungus Neurospora 

crassa, and as RNAi in Drosophila melanogaster, mammalian and human cells (Romano 

and Macino, 1992; Hammond et al., 2001; Liu et al., 2004).  

Virus-infected plants form a convenient platform to elucidate the so far 

incomplete understanding of the biochemical complexities of RNA effector complexes 

(Omarov et al., 2007; Pantaleo et al., 2007). This is particularly important in studying 

plant-microbe interactions, especially while considering the frequently-used technique of 

virus-induced gene silencing (VIGS) (Burch-Smith et al., 2004).  This work will center 

on the siRNA branch of the RNAi pathway, as all viruses produce RNA within plants, 

rather than the endogenous miRNA pathway in plants. 

Because D. melanogaster and human RNAi pathways have been studied the most 

intensely, models are based on what is known from these systems. The most commonly 

accepted RNAi model is described in Fig. 1.1. For this, dsRNA in the cell is either 

transcribed directly from DNA by RNA synthesis from complementary strands, or 

___________ 

This thesis follows the style of The Plant Cell. 



 2

 

 

can accumulate in the cell via viral infection or by artificial introduction (Filipowicz, 

2005). These dsRNAs are cleaved into smaller segments by a member of the Dicer 

protein family before being loaded into a RNA-induced silencing complex (RISC) (Fig. 

1.1), which is postulated to be a high-molecular weight complex composed of several 

proteins. Proteins described in other systems as contributing to RISC include one or more 

loading proteins, proteins from the Argonaute (Ago) family, and possibly a protein from 

the Dicer family (Song and Joshua-Tor, 2006; MacRae et al., 2007; Tomari et al., 2007). 

Ago proteins are the catalytic effector unit of RISC, and as such, is a signature protein of 

this pathway (Hammond et al., 2001; Baumberger and Baulcombe, 2005). It must be 

mentioned that while there are similarities, RNAi processes are not identical in different 

species. Along these same lines, RNAi and RISCs for plants might share some common 

elements with other systems, but may also have specific properties.  

For the general postulated pathway, there are several concepts regarding how a 

duplexed siRNA is loaded onto the RISC and converted into an ssRNA able to associate 

with long ssRNA for targeting. Possibilities include interaction of the siRNAs with the 

RISC proteins themselves forcing apart the siRNA duplex to allow association with the 

Ago protein (Tomari and Zamore, 2005), or that RNA helicase A might be involved to 

unwind the siRNA duplex,  rendering it an active siRNA, as seen in the human cell model 

(Robb and Rana, 2007). Yet other theories speculate that the spare siRNA strand may be 

discharged from the RISC in a manner similar to that of the later cleavage of long 

ssRNA, leaving 11 and 12 nucleotide (nt) strands (Leuschner et al., 2006).  While it was 

previously thought that this process required ATP, this is not the case (Hannon, 2002). 

The Ago family of proteins can be divided into two subgroups based on their 

similarity to Ago1 or Piwi found in Arabidopsis thaliana or Drosophila, respectively. 

Two protein domains, Piwi-Argonaute-Zwille (PAZ) and Piwi, are always found 

associated with this family of proteins, in addition to the N-terminal domain and middle 

domain (Song and Joshua-Tor, 2006). The Ago Piwi domain is thought to have an RNase 

H-type fold (Liu et al, 2004) containing an Mg2+ ion to catalyze the cleavage of target 

RNA (Tomari and Zamore, 2005). The PAZ domain (Baulcombe, 2004), also found in  
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Fig. 1.1 Proposed model of anti-viral RNAi in plants, based on the previously 
acknowledged proteins from other model systems. Long dsRNAs are recognized by Dicer 
and cleaved into 21-nt duplexed siRNAs. These siRNA duplexes are loaded onto RISCs, 
and the passenger strands are released. The active RISC then targets ssRNA in the host 
homologous to the siRNA for cleavage.  
 
 
 
 
 
 
 
 
 

Dicer 
 
Duplexed siRNAs 
 
RISC loading 
 
 
 
Targeting ssRNA 
 
Cleavage 
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Dicer, recognizes the 2-nt overhangs on duplex siRNAs (Meister et al., 2004) and is a 

highly-conserved 130 amino acid sequence (Carmell and Hannon, 2004). The crystal 

structure for an Ago protein from Pyrococcus furiosus, an archeabacterium, shows that 

the PAZ domain is located across a positively charged ‘groove’ in the protein. It binds the 

3’ end of the guide siRNA, and the position of the PAZ domain facilitates cleavage via 

Piwi domain of the long ssRNA upon presumable association with the bound guide 

siRNA (Song and Joshua-Tor, 2006). As there are several Ago proteins contributing to 

different types of RNAi, the specific role that the many Ago proteins fulfill is still under 

investigation (Meister et al., 2004; Toila and Joshua-Tor, 2007).  

Once RISC is loaded, the incorporated siRNA allows for sequence-specific 

binding to a target ssRNA (Fig. 1.1). Cleavage of the target RNA then occurs in a manner 

similar to that of RNase H, 10-nt in from the 5’- end of the bound siRNA (Ameres et al., 

2007). An Ago protein of about 150 kDa has been isolated from Arabidopsis thaliana 

chromatography fractions possibly indicating that only the Ago protein and associated 

siRNA are required for ribonuclease activity (Baumberger and Baulcombe, 2005). This, 

considered with other data, suggests that while the holoRISC (before activity) may 

contain multiple proteins, only the Ago protein is necessary for cleavage activity and that 

this exact protein varies between species and possibly even functions of RNAi. 

During a viral infection, it is hypothesized that viral RNAs are cleaved into 

duplex siRNAs by a Dicer-like protein. Following this, these siRNAs then associate with 

a RISC-like complex to form an active, anti-viral RISC that can subsequently be purified 

using column chromatography methods and studied in vitro.  Experiments toward the 

elucidation of the proteins involved in the RNAi pathway following viral infection of 

Nicotiana benthamiana  with Tomato bushy stunt virus (TBSV) have shown evidence of 

RISC-like activity (Omarov et al., 2007). For these experiments, proteins from infected 

plant tissue are separated using column chromatography and subsequently analyzed for 

ribonuclease activity. For instance, viral RNA transcripts are added to plant fractions to 

assay for activity; fractions exhibiting such activity will degrade the exogenously added 

RNA. Currently, the composition of the anti-TBSV RISC is not known, nor is it clear 

whether other viruses activate a similar anti-viral RISC. Therefore, a major aim of this 

project was to further purify the anti-viral RISC and better characterize potential RISC-
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contributing proteins. TBSV, Tobacco rattle virus (TRV), and the monocot-infecting 

Panicum mosaic virus (PMV) and satellite panicum mosaic virus (SPMV) (Scholthof et 

al., 1999b) will be compared to examine how different plant viruses might affect an 

RNAi pathway. 

Interestingly, viruses have evolved mechanisms that overcome or impede the 

RNAi pathway by encoding silencing suppressor proteins, though these proteins often 

have other functions in addition to their roles in silencing suppression (Scholthof, 2005). 

This is a widely used manner of host defense evasion, and there are myriad suppressors 

and modes of action (Silhavy and Burgyan, 2004; Voinnet, 2005). For instance, some 

silencing suppressors produce proteins to interact with the siRNAs after generation by 

Dicer, before the duplex is incorporated into the RISC. This method is used by the P19 

protein from tombusviruses, where dimers interact with the sugar-phosphate backbone on 

the siRNAs in a sequence unspecific manner to sequester the siRNAs away from RISCs 

(Fig. 1.1). HcPro is a silencing suppressor encoded by potyviruses. It has been suggested 

that HcPro possibly modifies the function of plant Dicer-like enzymes that generate 

duplexed siRNAs (Mlotshwa et al., 2005) due to accumulation of long dsRNAs in the 

plant. However, HcPro has been shown to associate with duplexed siRNAs (Lakatos et 

al., 2006), indicating that it might also function at that step in the RNAi pathway. The γb 

protein, from hordeiviruses, displays a cysteine-rich motif at the C-terminal region, to 

which RNA binding and anti-silencing actions are attributed (Yelina et al., 2002; Bragg 

and Jackson, 2004).  The veritable arms-race between the host defense proteins and 

viruses is well established with silencing suppressor proteins encoded not only from plant 

viruses, but also animal and insect viruses (Chao et al., 2005; Bennasser and Jeang, 2006; 

Hemmes et al., 2007). 

It has been shown that suppression of RNA silencing can increase the yield of co-

introduced foreign gene expression because the suppressors protect all mRNA, including 

foreign mRNA, from silencing (Voinnet et al., 2003). To explore the interference of 

RNAi by suppressors for potential use for biotechnology, part of this work sought to 

extend non-native protein production in plants. This included the examination of the 

effect of silencing suppressors singly and in combination, on the expression of a co-

introduced green fluorescent protein (GFP) cDNA. For this, I used the well-characterized 
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silencing suppressors P19 from TBSV, HcPro from the potyvirus Tobacco etch virus 

(TEV), and the γb protein from Barley stripe mosaic virus (BSMV), with the goal of 

maximizing the length of time that GFP is produced either from a co-inoculated T-DNA, 

or expressed by a virus vector. My hypothesis was that as the silencing suppressors act at 

different steps in the RNAi pathway, their use in combination will provide expression of 

GFP for a longer length of time than inoculation with a single silencing suppressor or 

with GFP alone. 

 

Systems 

The following section provides background and details on the techniques used in 

the research Chapters II, III, and IV. 

 

Viruses used 

TBSV is a positive-sense, single stranded RNA virus, and the type member of the 

Tombusviridae family. An icosahedral capsid of T=3 is made up of 180 coat protein (CP) 

subunits, and particles are about 33 nm in diameter. These hold a 4.8 kb genome with 5 

open reading frames (ORFs) that do not have a 5’-cap or 3’ -poly-A tail (Fields et al., 

2007) (Fig. 1.2A). The 5’ proximal genes p33 and p92 encode the replicase proteins 

through direct genomic translation. The p33 ORF has an amber (UGA) stop codon which 

can be readthrough for production of P92, though a 20-fold greater amount of P33 is 

present in infected cells (Scholthof et al., 1995b). Subgenomic  RNAs (sgRNA) are used 

to produce the remaining 3 proteins (Fig. 1.2A). sgRNA1 contains the p41 ORF for 

production of the viral coat protein. The coat protein (P41) of TBSV is not required for 

virus movement through certain hosts (Scholthof et al., 1993), and can be replaced or 

dispensed with to utilize TBSV as a virus vector (Scholthof et al., 1996). However, it has 

been determined that CP is required for systemic virus spread in pepper, and contributes 

to systemic infections even in hosts where it is not required (Desvoyes and Scholthof, 

2002; Qu and Morris, 2002; Turina et al., 2003). 

P22 and P19 are both produced from sgRNA2, albeit from separate ORFs. P22 is 

the cell-to-cell movement protein of TBSV in compatible hosts, and has been shown to 

be phosphorylated, membrane- and cell-wall associated, bind to RNA, and most likely 
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assist in the formation of a ribonucleoprotein complex that moves a replicating virus 

through plasmodesmata without the need for encapsidation (Desvoyes et al., 2002; 

Scholthof, 2005). Additionally, it is thought that P22 interacts with specific host proteins 

to facilitate this movement, as shown via association with HiFi22, a host factor, in a 

yeast-two hybrid screen (Desvoyes et al., 2002). 

P19 is translated from the nested ORF on sgRNA2 by a leaky scanning 

mechanism, where the ribosome preferentially initiates translation of P19 versus P22 due 

to the optimal start codon context (Scholthof et al., 1999a; Scholthof, 2006). While P19 is 

not required for infection of all hosts (some experimental Nicotiana species), it is 

necessary in others for a systemic infection for instance, Capsicum annuum (pepper), and 

Spinacia oleracea, (spinach) (Scholthof et al., 1995a), and has been implicated as a 

pathogenicity factor with involvement in local and systemic infections (Turina et al., 

2003). It is now known that P19 acts as a suppressor of gene silencing by dimerizing and 

isolating duplexed siRNAs following their production by Dicer, preventing their 

incorporation into RISCs (Voinnet et al., 1999; Qiu et al., 2002; Park et al., 2004; 

Omarov et al., 2006; Scholthof, 2006). 

While the natural host range of TBSV is limited to a few dicotyledonous plant 

species, the experimental host range is very broad though infection is sometimes limited 

to the site of entry (Yamamura and Scholthof, 2005). TBSV does not infect Arabidopsis. 

The virus is transmitted mechanically, for instance, by wounding or rub-inoculation, and 

through the soil.  Systemic infections typically consist of stunted growth of the infected 

plant, followed by a general wilting phenotype, resulting in death of susceptible hosts 

within a week of infection (Fig 1.2B). Hosts with non-systemic infections display local 

lesions and necrotic tissue. When passaged several times using infected tissue, 

particularly in a laboratory setting, it is not uncommon for RNA viruses like TBSV to 

form defective interfering RNAs (DIs), which consist of short segments of internal and 

terminal, usually distant, segments of the viral genome. For TBSV, DIs usually consist of 

4 segments from conserved regions of the genome. DIs are thought to be generated as the 

viral replicase complex ‘skips’ and consequently does not replicate certain regions of the 

genome (Scholthof et al., 1995c; White, 1996; Yamamura and Scholthof, 2005). 
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Fig 1.2 Tomato bushy stunt virus (TBSV) genome and infected plants. A.) TBSV is a 
positive-sense, single-stranded RNA virus that encodes 5 ORFs and produces 5 proteins. 
P33 and P92, expressed from the genomic RNA directly, encode for replicase proteins. 
P41 is the capsid protein, expressed from subgenomic (sgRNA)1. sgRNA2 encodes P22, 
the virus movement protein, and P19, a protein shown to have multiple functions, though 
the best known is as a silencing suppressor. B.) TBSV-infected N. benthamiana infected 
with TBSV and a TBSV mutant (∆19), which does not produce the silencing suppressor. 
Following infection with wild type (wt) TBSV (left), plants succumb to vascular wilting 
symptoms, followed by a lethal necrosis about a week post inoculation. When plants are 
infected with the mutant deficient for the silencing suppressor protein P19 (right), the 
plant displays a ‘recovery’ phenotype, and eventually clears the infection. The center 
plant is a healthy control. (Plant panel used with permission of Dr.Yi-Cheng (John) 
Hsieh, TAMU) 
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TBSV offers an unparalleled model for the study of RNAi in plants. The virus is 

well adapted to a laboratory setting, with infectious cDNA clones available (Yamamura 

and Scholthof, 2005; Qiu and Scholthof, 2007), and symptoms are readily visible in 

hosts. A large amount of ss- and ds- RNAs are produced in planta, to the level of 

visibility when separated by agarose gel electrophoresis followed by staining with 

ethidium bromide after total RNA extraction. These dsRNAs would provide ample 

substrate for Dicer-generation of siRNAs. TBSV virus mutants not producing the 

silencing suppressor P19 (TBSV ∆P19) (Omarov et al., 2006; Qiu and Scholthof, 2007), 

instead of causing a lethal infection in the plant, display minor symptoms culminating in 

eventual clearance of the infection (Fig 1.1B). This recovery is due to RNAi (Omarov et 

al., 2006), and it was shown that this TBSV mutant   is a useful tool for studying anti-

viral RNAi-effector complexes (Omarov et al., 2007). 

Tobacco rattle virus (TRV) is the type member of the Tobravirus genus. It has a 

bipartite, positive-sense ss-RNA genome (Fig 1.3A). The positive-sense RNAs are 

encapsidated in rod-shaped particles. RNA1 is about 6.8 kb, with 4 ORFs, and a tRNA-

like 3’-terminus. There is a 5’ non-coding region of about 255 nts directly upstream of 

the 5’ proximal gene, which encodes a 134 kDa protein with methlytransferase and 

nucleotide-binding/helicase characteristics (Hull, 2002). ORF1 also has a leaky stop 

codon to produce a 194 kDa replicase protein. The TRV MP is encoded by gene 1a, 

which produces a 29 kDa protein, probably via a subgenomic RNA. The final gene on 

RNA1, 1b, produces a 16 kDa protein with a cysteine-rich N-terminal region from ORF 

4. The 16 kDa protein can be incorporated into a complex, possibly with host proteins, 

which has a high molecular mass when detected by western blotting and localizes to the 

nucleus. Additionally, deletion of 1b (the 16kDa protein) decreases viral accumulation in 

N. benthamiana protoplasts and whole plants for the TRV isolate PpK20, while having 

no effect for another isolate, SYM (MacFarlane, 1999). RNA 1 can replicate and move 

through the plant without RNA 2, though virions will not be formed. The 16 kDa protein 

encoded by RNA1 is thought to act as a weak silencing suppressor, implicated in both 

TRV infections and as expressed from a Potato virus X viral vector (Martin-Hernandez 

and Baulcombe, 2008). As TRV invades and infects meristematic tissue, it is speculated  
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Fig. 1.3  Tobacco rattle virus (TRV) genome. TRV is a bipartite, positive sense single-
strand RNA virus. TRV RNA1 encodes 4 ORFs, the first and second of which is 
expressed from the genomic RNA, and produce the 134 kDa and 194 kDa replicase 
proteins. The third ORF is expressed from a subgenomic RNA, and encodes a 29kDa 
MP, and the fourth ORF, on subgenomic RNA 1b, is a 16 kDa protein that has recently 
been implicated as a silencing suppressor. TRV RNA II has 3 ORFs, the first of which 
produces a 23 kDa coat protein (CP), and the other two produce 29kDa and 32 kDa 
nematode transmission (NT) factors.   
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that P16 allows for build up of viral RNAs for infection of seeds, though it does not 

suppress silencing to the level that would interfere with RNAi-sensitive tissue and seed 

generation, as has been shown for stronger silencing suppressors like TBSV P19 (Martin-

Hernandez and Baulcombe, 2008). The exact mechanism of P16-mediated suppression is 

not known at this time. 

TRV RNA2 differs between various isolates of the virus due to the presence of 

additional genes as well as specific 3’-regions homologous to those found on RNA1. The 

only gene present in all isolates is the 5’-proximal CP gene, which usually encodes a 22-

24 kDa protein (Hull, 2002). This CP is said to strongly resemble the CPs of 

tobamoviruses and hordeiviruses, though with a larger, ‘protruding’ C-terminal region, 

possibly involved in the interaction of viral particles with nematodes during transmission 

(MacFarlane, 1999). Other genes present are non-structural, transcribed from sgRNAs, 

and can include proteins necessary for nematode transmission. Further sources of 

variation between strains of TRV are attributed to the high rate of recombination, both 

from the 3’homologous region of RNA1, as well as between the 3’ regions of RNA2 in 

different strains of TRV.  RNA2 from TRV strain pPk20 encodes two nematode 

transmission factors, the 29.4 k protein and 32.8 k proteins, and the CP (MacFarlane, 

1999). TRV is vectored by nematodes, utilizing proteins encoded by RNA2 for 

transmission. TRV can also be spread through mechanical inoculation or by vegetative 

propagation of bulbs. (MacFarlane, 1999; Hull, 2002). It has a wide host range spanning 

12 plant families, with over 60 different species reported as hosts. These include 

important agricultural crops including oats, potato, and tomato (Ratcliff et al., 2001). 

TRV is commonly used as a viral vector to stimulate VIGS. These vectors are 

found to be very stable, able to spread through the entire plant including meristematic 

tissue, and cause very mild host symptoms (Ratcliff et al., 2001; Burch-Smith et al., 

2004). Again, it has a wide host infection range, including plants in the Solanaceae 

family, like tomato, pepper, Petunia hybrida (petunia), N. benthamiana, and Solanum 

tuberosum (potato), and has been shown to infect Arabidopsis (Burch-Smith et al., 2006), 

usually vectored in with Agrobacterium tumefaciens. It is for this reason that TRV is 

studied here for isolation of a RISC complex; it stimulates VIGS, therefore must induce 

an RNAi response with detectable characteristics. 
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Panicum mosaic virus (PMV) is the type member of the genus Panicovirus. It is a 

member of the Tombusviridae family, and has a narrow host range limited to a few 

species of Poaceae. PMV is a positive-sense, ss-RNA virus encapsidated in a T=3 

iscosahedral capsid. The genomic RNA is 4.3 kb, contains 5 ORFs, and RNAs require no 

capping or polyadenylation, though the 3’ untranslated region of both the genomic RNA 

and subgenomic RNA contain a translational enhancer (Batten et al., 2006) (Fig. 1.4). 

The 5’ proximal genes are p48 and p112, which are expressed from the genomic RNA 

directly, and encode replicase proteins (Batten et al., 2006). P112 is produced by 

readthrough of the amber stop codon of the first ORF (Turina et al., 1998). One sgRNA 

containing 4 ORFs is also produced, and proteins encoded include P8, P6, the CP (P26), 

and P15. P8 is produced from the first ORF (Turina et al., 2000). P6 is probably produced 

by a noncanonical start codon of GUG, as is the CP from a start codon of CUG, possibly 

mediated by an internal ribosomal entry site (Turina et al., 2000; Batten et al., 2006).  P8, 

P6, and P15 localize to the cell wall, and are thought to be involved in viral movement 

(Turina et al., 2000). 

Satellite panicum mosaic virus (SPMV) is a positive-sense ss-RNA of 

approximately 824 nts, encapsidated in a T=1 icosahedral particle. It relies on PMV for 

movement and replication. It contains one ORF with four start codons, at least two of 

which are used (Omarov et al., 2005); to yield a 17 kDa CP and a truncated 9.4 kDa 

product (Fig. 1.3B) (Qi and Scholthof, 2008). The CP has been shown to localize to both 

the cell wall and cytosol, while P9.4 localizes to only the cell wall. P9.4 has been shown 

to increase host symptom severity for a mixed PMV/SPMV infection (Omarov et al., 

2005). While CP is not required for replication and movement of SPMV through the 

plant, constructs not producing the CP rapidly succumb to defective interfering RNAs 

(DIs), which inhibit replication of SPMV (Qi and Scholthof, 2008). Mutations to the N-

terminal region, rich in arginine, affect RNA binding and virion assembly in addition to 

generation of DIs. This and other evidence suggest that CP binds PMV and SPMV RNA  

to form non-virion complexes which move cell-to-cell (Scholthof, 1999; Qi and 

Scholthof, 2008). Additionally, the CP might interfere with viral silencing suppressors or 

slow effects of RNAi, as demonstrated by Qiu and Scholthof for Potato virus X (PVX)  
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Fig. 1.4 Panicum mosaic virus (PMV) and satellite panicum mosaic virus (SPMV) 
genomes. A.) The PMV genes p48 and p112 are expressed from the genomic RNA 
directly and encode replicase proteins. One subgenomic RNA containing 4 ORFs is also 
produced, and proteins encoded include P8, P6, the CP, and P15. B.) SPMV produces a 
17 kDa protein encoding a CP from genomic RNA directly, although there are 4 ORFs 
present. 
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p25, when SPMV is co-expressed from a PVX viral vector. This also enhanced host 

symptoms caused by that same vector (Qiu and Scholthof, 2004). 

 

Column chromatographic systems 

Separation of biological moieties in the crude extracts of virus-infected plants is 

accomplished for this project utilizing column chromatography. This technique involves 

the use of a stationary phase media, a column, through which a mobile phase (typically 

the sample of interest) is applied. Molecules in the mobile phase interact with sites of the 

stationary phase in various manners, usually by means of characteristic groups present on 

mobile molecules (Nelson and Cox, 2005), and these interactions are reversible to allow 

elution, usually in a gradient-related fashion. Several types of chromatography were used 

in this project. One of these is ion exchange chromatography, in which charged 

functional groups of mobile phase (sample) molecules interact with oppositely charged 

groups on the stationary phase – the greater the charge, the more tightly interacting. Gel 

filtration, or size separation, is another method used; larger molecules in the mobile phase 

move more slowly through the gel matrix, and subsequently elute in later fractions. 

Hydroxyapatite chromatography, using a calcium phosphate ceramic, is a ‘mixed-media’ 

or ‘pseudo-affinity’ stationary phase that interacts with both ionic and anionic groups; for 

instance, the positively charged functional groups of some amino acids, as well 

carboxylate residues of various proteins. Elution occurs with an increasing gradient of 

phosphates (Gagnon et al., 1996; Schroder et al., 2005).  

The experiments outlined in Chapters II and III use all three described 

chromatography methods. Early experiments used Sephacryl S200 gel filtration 

chromatography, and then DEAE anion exchange chromatography was used for the 

characterization of TBSV and TRV –infected plant antiviral complexes. Hydroxyapatite 

chromatography was substituted for DEAE anion exchange chromatography with the 

discovery that fractions containing activity following anion exchange chromatography 

co-eluted with ribulose 1,5-bisphosphatase (Rubisco). Therefore, hydroxyapatite was 

used to separate samples and obtain a different elution profile. Gel filtration was used 

often as a second step of chromatography to further separate proteins present in fractions 
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containing activity; this type of chromatography had the additional benefit of removing 

salt and phosphates from the fractions. 

 

Objectives 

This work aimed to examine the RNAi pathway in plants for defense against 

viruses. The objectives included 1) biochemical characterization of an RNAi response 

against TBSV in N. benthamiana, 2) determination of an antiviral response following 

infection of N. benthamiana with TRV, as well as examination of defense elements 

present following PMV and SPMV infection of a monocot model system, and 3) using 

agro-infiltration of silencing suppressors HcPro, P19, and γb to measure their effects on 

the performance of a virus-vectored GFP gene. Supplementary data complementing the 

first objective also address the rapid method of TBSV virion purification using 

hydroxyapatite column chromatography. 
The research presented in the first chapter of this thesis was undertaken with the 

intent of biochemically characterizing the antiviral plant defense response in N. 

benthamiana against the plant virus TBSV. To do this, N. benthamiana was infected with 

either wt TBSV or its derivative, TBSV ∆P19, which does not produce the silencing 

suppressor P19. Following establishment of infection, the plant tissue was harvested, 

proteins separated using 3 different types of column chromatography, and the fractions 

assayed for ribonuclease activity, and presence of siRNAs, plus the ribonuclease activity 

was further characterized by examining the effect of divalent metal cations, and EDTA. 

Subsequently, active fractions were subjected to further steps of column chromatography 

to improve protein separation, and those proteins were visualized by staining.  

Once these were established, the second chapter sought to characterize N. benthamiana 

responses to another virus, TRV, and further more, to examine if a virus similar to TBSV, 

PMV together with its satellite SPMV, produced a similar response in a monocot host, 

proso millet. These responses were examined using the same methods as in Chapter II, 

namely, biochemical analysis of the proteins present following column chromatography 

of virus-infected plants.  Because RNAi is thought to be a cellular pathway conserved 

across 3 kingdoms, it was hypothesized that the anti-viral RNAi response for plants 

would be identical for different viruses, in both dicots and monocot hosts. 
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  The supplementary material for Chapter II found in the appendix characterizes a 

new method of virion purification by column chromatography. Following hydroxyapatite 

chromatography of TBSV-infected plants, a distinct band was seen upon electrophoresis 

of the flowthrough wash from the column. This band was determined to represent the 

TBSV coat protein, and visualization with electron microscopy showed that this fraction 

in fact contains a relatively pure high titer of virions that can be used to readily infect 

plants.  

The third chapter aimed to use three RNAi silencing suppressors from viruses, -

carried by Agrobacterium, to measure the effect on a virus-vectored GFP gene. Silencing 

suppressors are encoded by viruses to evade the RNAi defense in plants. The goal of the 

third chapter was to use these silencing suppressors for biotechnology; to enhance and 

extend the length of production that a virus-vectored foreign gene was produced in 

planta. Three silencing suppressors, the hordeivirus protein γb, the potyvirus protein 

HcPro, and the tombusvirus protein P19, which are thought to act at different steps in the 

RNAi pathway, were expressed singly as well as in combination, vectored by 

Agrobacterium. To establish the system, initial experiments used co-infiltrated 

Agrobacterium-vectored silencing suppressors with an Agrobacterium-vectored foreign 

gene (GFP, here) for production of a visible green signal under UV light. When the 

system was operational, plants were agro-infiltrated with the silencing suppressors, then 

infected with a TBSV-derived vector expressing GFP. Expression of GFP was 

determined both with observation of the visible GFP signal, as well as with western blots 

for detection of the GFP protein. 

The in vitro system for RNAi analysis described above is unique because it has 

not yet been described for any virus-host system, and offers the advantage of isolating 

and determining the composition of RISC. Determining the specifics of the RNAi 

pathway in plants is necessary in order to better understand how this process correlates to 

described model systems, as well as designing better strategies of protecting plants 

against viruses, and for the exploitation of the pathway for biotechnology. Additionally, 

the method of virion purification is much quicker than those traditionally used, and 

presents a reliable, attractive alternative. 
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CHAPTER II 

 BIOCHEMICAL CHARACTERIZATION OF AN RNAi RESPONSE 

 AGAINST TBSV IN N. BENTHAMIANA 

 

Introduction 

RNAi 

RNAi is a conserved pathway that silences RNA by recognition of target RNA. 

This pathway can be divided into two separate mechanisms. For both, double-stranded 

RNA (dsRNA) serves as the trigger for the RNAi pathway upon cleavage into duplexed 

small interfering RNAs (siRNAs) or (usually) host-encoded hairpin microRNAs 

(miRNAs), which can act in a sequence-specific manner to target and degrade ssRNAs, 

called post-transcriptional gene silencing (PTGS) (Baulcombe, 2004). Alternatively, 

these small RNAs guide methylation of specific nucleotide sequences (transcriptional 

gene silencing, TGS) (Brodersen and Voinnet, 2006). PTGS acts during the growth and 

development of an organism using endogenous miRNAs or other species of short RNAs, 

or during the defense of an organism against viral infections, using siRNAs (Baulcombe, 

2004). The two pathways (PTGS and TGS) coalesce to use the same cellular machinery 

to target mRNA for degradation (Filipowicz, 2005).   

As mentioned in Chapter I, plants can ‘clear’ viral material from upper, new plant 

tissue following infection and remain resistant to a second infection. This phenomenon 

was first observed in a Tobacco ringspot virus-infected tobacco plant in 1928 (Wingard, 

1928; Baulcombe, 2004), but the occurrence was only recently attributed to RNA 

interference (RNAi). This is widely conserved across many species/kingdoms; early 

observations were made in a Caennorhabditis elegans system (Fire et al., 1998), and in 

plants, the RNAi pathway was first termed co-suppression of homologous genes 

following studies in petunia plants (Napoli et al., 1990). Virus-infected plants form a 

convenient platform to elucidate the so far incomplete understanding of the biochemical 

complexities of RNA effector complexes (Omarov et al., 2007; Pantaleo et al., 2007). 

While the details can vary between organisms, RNAi is thought to occur as 

described in Chapter I (Fig. 1). As illustrated in the figure, a member of the Dicer protein 
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family cleaves dsRNA in the cell. This dsRNA originally is either transcribed directly 

from DNA by RNA synthesis from complementary strands, or can accumulate in the cell 

via viral infection as well as by artificial introduction (Filipowicz, 2005). Following 

cleavage, the dsRNA segments are loaded into a RNA-induced silencing complex 

(RISC). The following section will describe in some detail what is known about the 

pathway and mechanisms of RNAi with regard to siRNAs, Dicer, RISC, and how this 

might be relevant to an anti-viral RNAi.  

Key molecules for RNAi are short RNAs, but recent literature suggest that 

different types of these short RNAs are used toward different ends of the RNAi pathway 

and as such, are generated in various ways. For production of anti-viral siRNAs, viral 

double-stranded RNA is produced in the cytoplasm directly, where it is acted upon by a 

Dicer-type protein. Genes inserted into a viral vector to direct the silencing of 

endogenous genes are typically designed as inverted repeats which form secondary 

structures of hairpins, for recognition by a Dicer and subsequent processing into siRNAs. 

RNA-dependent RNA polymerase 6 (RDRP6) has been implicated in siRNA generation 

for transitivity in Arabidopsis, using RNA templates without 5’ caps to generate 

transcripts (Brodersen and Voinnet, 2006; Moissiard et al., 2007). Transitivity uses single 

stranded (ss) siRNAs as primers for RNA dependent RNA polymerases, to yield 

secondary siRNAs up- and downstream from the initial siRNA site, and is said to be 

responsible for the spread of the systemic silencing signal in plants (Moissiard et al., 

2007). Regarding endogenous siRNAs, these are thought to originate from small RNAs 

produced from hairpins from Dicer like proteins (DCL) other than DCL1, such as DCL2, 

DCL3, or DCL4 (Deleris et al., 2006; Moissiard et al., 2007). ‘True’ microRNAs 

(miRNAs) are thought to be processed by DCL1, and again, act in development and 

regulation of the plant, specifically in Arabidopsis (Zhang et al., 2007).  

Plant genome siRNAs are thought to be important in protecting the plant from 

transposons, and possibly viruses. The particular DCL involved is thought to direct the 

length of the siRNA (from 21-24 nts) and indirectly specify the Argonaute (Ago) protein 

with which the siRNAs interacts. This might have significance in instances where certain 

DCL or Ago proteins are inhibited. Other examples of endogenous siRNAs include 

transacting siRNAs (ta-siRNAs), which are produced from non-coding regions of the 
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genome, similar to the mechanism of transitivity, as seen in studies with Arabidopsis, 

though it is likely that other species produce these as well (Brodersen and Voinnet, 2006). 

These ta-siRNAs are thought to silence genes in trans (Vasquez et al., 2004), with targets 

separate from the locus of origin (Jones-Rhoades et al., 2006). Similar to ta-siRNAs are 

natural anti-sense siRNAs (nat-siRNAs), which are produced from overlapping regions of 

neighboring genes on opposite DNA strands, and target parental gene products, possibly 

for stress adaptation in the plant (Borsani et al., 2005; Brodersen and Voinnet, 2006). 

Recent studies suggest that a nat-siRNA is induced by plant infection with the pathogenic 

bacteria Pseudomonas syringae, to target a negative regulator of the plant resistance 

pathway (Katiyar-Agarwal et al., 2006). This has implications in that not only can viral 

pathogens trigger RNAi, but the pathway has significance for other types of plant 

pathogens. Other small RNAs  are directed against repeat-associated elements, repeat-

associated siRNAs (ra-siRNAs) (Vagin et al., 2006; Gunawardane et al., 2007),  as well 

as against transposons, piwi- interacting RNAs (pi-RNAs), as seen in Drosophila (Vagin 

et al., 2006). 

Dicer-type enzymes belong to the ribonuclease III family of endo-ribonucleases, 

along with eubacteria RNaseIIIs and Drosha proteins. Enzymes in this family range in 

size from 200 to about 2000 amino acid residues, function in the processing of dsRNA, 

have characteristic catalytic sites, and leave 2-nt overhangs on their target RNAs 

(Bernstein et al., 2001; Jaskiewicz and Filipowicz, 2008; Ji, 2008). Dicers are multi-

domain enzymes found in nearly all eukaryotes, with varying degrees of complexity 

determined by the domains present (Jaskiewicz and Filipowicz, 2008). These domains 

always include the RNase III catalytic domain containing divalent metal ion co-factors 

and conserved amino acids as well as a dsRNA binding domain, for minimum 

ribonuclease activity (Ji, 2008). Other domains present can include the PAZ domain 

(Piwi-Argonaute-Zwille, also found in Argonaute proteins (Cerutti et al., 2000),  a 

helicase/ATPase for some Dicer-type proteins, as well as others. The PAZ domain is 

shown bind to the 2’ nt overhangs of the duplex RNAs, and possibly contributes to 

transferring siRNAs to Argonaut (Cerutti et al., 2000; Carmell and Hannon, 2004; Ji, 

2008). The endonuclease domain dimerizes to form a catalytic groove in the enzyme to 

hold a dsRNA substrate, as well as having two catalytic sites containing divalent metal 
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ions, usually Mg2+ and Mn2+. These cofactors interact with conserved amino acids and a 

water molecule to cleave a single strand of duplexed RNA (MacRae et al., 2006; Ji, 

2008).  

Because Dicer cleaves a dsRNA into an siRNA, two catalytic sites and a total of 

four Mg2+ metal ions are necessary. The distance of the catalytic sites directly influences 

the size of the small RNA that is produced (MacRae et al., 2006). The dsRNA binding 

site, while not completely necessary, increases the activity of the enzyme (MacRae et al., 

2006). Dicer is common in nearly every organism, in varying forms. Arabidopsis has 4 

Dicer-like proteins (DCLs), and these are used for production of different small RNAs; 

DCL1 for miRNAs, DCL2 for siRNAs, DCL3 to generate siRNAs involved in chromatin 

RNA modification, and DCL4 to produce ta-siRNAs (Xie et al., 2004; Jaskiewicz and 

Filipowicz, 2008). For activity in the cell, Dicer-type proteins have been shown to 

associate with other proteins. For humans, this is the TRBP (Chendrimada et al., 2005), 

Prbp in mice, Drosophila’s R2D2 (Liu et al., 2003), and HYL1/DRB proteins in 

Arabidopsis (Hiraguri et al., 2005). 

 A RISC is postulated to be a high-molecular weight complex composed of several 

proteins. RISC elements have been described in other systems to include one or more 

loading proteins, proteins from the Ago family, and possibly a protein from the Dicer 

family (Song and Joshua-Tor, 2006; MacRae et al., 2007; Tomari et al., 2007). The 

model pathway is based on D. melanogaster and human RNAi pathways, because these 

are the most comprehensively studied. RNAi processes are similar but not identical in 

various species. Along these same lines, RNAi and RISCs for plants likely share some 

common elements with other systems, but may also have specific properties. 

 How do these different components operate together? There are several concepts 

regarding how a duplexed siRNA or miRNA, upon export from the nucleus, is loaded 

onto the RISC and converted into an ssRNA able to associate with long ssRNA for 

targeting. Some model systems implicate Dicer-type proteins as a sort of shuttle for 

siRNAs, usually called a RISC loading complex (Tomari et al., 2004; Liu et al., 2006), 

with interacting proteins like Arabidopsis’ HYL1 from Arabidopsis, RDE-4 from C. 

elegans, and R2D2 from Drosophila  serve to facilitate the loading of siRNAs (Tabara et 

al., 2002; Liu et al., 2003; Hiraguri et al., 2005; Liu et al., 2006; Tomari et al., 2007). 
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 A RISC without a bound small RNA is usually referred to as inactivated, or a 

holoRISC. The orientation in which the small RNA is associated to the Dicer protein 

might govern the direction that RISC is loaded (Tomari et al., 2004). For Drosophila, 

R2D2 seems to bind to the more thermodynamically stable 5’ end of the siRNA, leaving 

Dicer at the less stable end; this manner of protein/siRNA orientation would allow a sort 

of directionality for small RNA loading (Schwartz et al., 2003; Tomari et al., 2004; Liu et 

al., 2006), though other work suggests this might not be a conserved property in other 

systems (Hong et al., 2008). It is possible that the small RNA binds externally to the Ago 

protein, then is internalized, and that this might be facilitated by interactions between 

Dicer and the Piwi domain of Ago (Yuan et al., 2006). Once the small RNA is associated 

with RISC, several possibilities exist to explain how the duplexed RNA unwinds. Among 

the earliest theories was that small ssRNAs associate with the Ago protein, without an 

‘unwinding’ step after association. Current theories involve the interaction of small 

RNAs with the RISC proteins themselves forcing the siRNA duplex apart to allow 

association with the Ago protein (Tomari and Zamore, 2005) or that RNA helicase A 

might become involved to unwind the siRNA duplex and render it an active siRNA, 

shown for the human model (Robb and Rana, 2007). Yet other theories speculate that the 

spare siRNA strand must be discharged from the RISC in a manner similar to that of the 

later cleavage of long ssRNA, leaving 11- and 12- nt strands (Leuschner et al., 2006).  

This process does not require ATP (Hannon, 2002), though siRNA initial binding to 

RISC is facilitated by phosphorylation (Schwarz et al., 2002). 

The catalytic unit of RNAi in all cases is thought to be an Ago protein (Hammond 

et al., 2001; Song et al., 2004). The Ago family of proteins can be divided into two 

subgroups based on their similarity to Ago1 or Piwi found in Arabidopsis or Drosophila, 

respectively. Two protein domains, Piwi-Argonaute-Zwille (PAZ) and Piwi, are always 

found associated with this family of proteins, in addition to the N-terminal domain and 

middle domain. (Song and Joshua-Tor, 2006)  In human cell lines, the Piwi domain has 

been shown to be involved in loading the RISC complex, via a protein-protein interaction 

between Ago and Dicer (Meister et al., 2004), although this might not be the case for 

other RISCs. The Ago Piwi domain is thought to have an RNase H-type fold, with a Asp-

Asp-Glu/His/Lys amino acid catalytic region (Liu et al., 2004; Hutvagner and Simard, 
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2008) containing an Mg2+ ion to catalyze the cleavage of target RNA (Tomari and 

Zamore, 2005), rendering products with a 3’-OH and 5’-phosphate (Schwarz et al., 

2004). Non-catalytic Piwi domains have a catalytic region with amino acids different 

than those seen in cleavage-capable Agos (Toila and Joshua-Tor, 2007; Hutvagner and 

Simard, 2008), though gene repression with animal miRNAs involves binding of 

miRNAs with non-perfect sequence complementarities (Hutvagner and Simard, 2008). 

 The PAZ domain, also found in Dicer (Cerutti et al., 2000; Baulcombe, 2004), 

recognizes the 2-nt overhangs on duplex siRNAs (Meister et al., 2004) and is a highly-

conserved 130 amino acid sequence (Carmell and Hannon, 2004). The crystal structure 

for an Ago protein from Pyrococcus furiosus, an archeabacteria, shows that the PAZ 

domain binds the 3’ end of siRNAs, and is located across a positively charged ‘groove’ in 

the protein, holding the siRNA for cleavage by the Piwi domain (Song and Joshua-Tor, 

2006). As there are several Ago proteins contributing to different types of RNAi, the 

many roles that these proteins fulfill is still under investigation (Meister et al., 2004; 

Toila and Joshua-Tor, 2007). It has been shown that in mammalian cell lines, Ago-2 

functions as the RNAi endonuclease, and there may be potential differences in the 

amount of each Ago species per cells (Meister et al., 2004).  For Arabidopsis, there are 10 

known Ago proteins (Hutvagner and Simard, 2008). Ago-1 is said to be the ribonuclease 

associated with RNAi (Baumberger and Baulcombe, 2005), while studies suggest that 

Ago-1 and Ago-4 fill this role in N. benthamiana (Jones et al., 2006). 

Once RISC is loaded, the incorporated siRNA allows for sequence-specific 

binding to a target ssRNA. Cleavage of the target RNA then occurs in a manner similar to 

that of RNase H, 10-nt in from the 5’ end of the bound siRNA (Ameres et al., 2007). An 

Ago protein of about 150 kDa has been isolated from A. thaliana chromatography 

fractions, suggesting that only the presence of the Ago protein and associated siRNA 

(Baumberger and Baulcombe, 2005) are required for activity, while other RISCs range in 

size from 70 kDa to 500 kDa (Nykanen et al., 2001; Martinez et al., 2002). This, 

considered with other data, suggests that while the holoRISC (before activity) may 

contain multiple proteins, only the Ago protein is necessary for cleavage activity and that 

this exact protein varies between species and possibly even between functions of RNAi, 

though the human RISC is composed of Ago-2, TRBP, and Dicer (MacRae et al., 2006). 
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It remains to be determined if Ago-1 is the common plant RNAi ribonuclease (Jones et 

al., 2006), and if any other proteins are required for minimal RISC ribonuclease activity.  

Considering the literature on silencing pathways as it is described in previous 

papers, my hypothesis is that the anti-viral RISC in plants should be a high molecular 

weight complex that can be isolated using chromatography procedures. Furthermore, the 

isolated complex should specifically cleave viral RNA when tested in vitro, contain 

virus-derived ss-siRNAs, and has biochemical properties and protein composition 

(including Ago proteins) consistent with RISC. To test this, Tomato bushy stunt virus 

(TBSV) was used to infect N. benthamiana. The plant defense response was observed 

following infection with both wildtype (wt) TBSV, as well a TBSV derivative (TBSV 

∆P19) that is deficient for the silencing suppressor protein P19.  

 

Materials and Methods 

Inoculation of plants with TBSV and TBSV ∆P19 

TBSV and TBSV ∆P19 cDNA were available in plasmids with resistance to 

Ampicillin for selection purposes, and these were grown overnight in a 37° C incubator, 

in a broth containing yeast extract, tryptone, salt, and dextrose (Luria broth) (Sambrook et 

al., 1989) until turbid. The plasmids were then isolated, according to manufacturer’s 

directions (Qaigen, Valencia, CA), and linearized with  Sma1 (20 µl DNA plasmid, 5 µl 

5X Buffer 4, 2 µl Sma1, 23 µl sterile ddH2O at 25°). The linearized DNA was then 

extracted with phenol/chloroform (1:1 vol/vol), vortexed and centrifuged at 10,000 rpm, 

4° C in a Beckman F4180 rotor for 20 min. The aqueous layer was removed, 1/10 vol 

sodium acetate added, plus 2 vol 800 µl ice cold absolute ethanol, and the mixture placed 

at - 80°C for at least an hour. This was centrifuged to precipitate the linearized DNA. The 

DNA pellet was then rinsed with 500 µl 70% ethanol, and dried briefly before re-

suspending in 50 µl a/c ddH2O. Infectious RNA transcripts were then made using the 

linearized DNA as a template [1 µl linearized DNA was added to 16 µl did-water, 5 µl 

5X transcript buffer, 2.5 µl 5 mM rNTP mix, 2 µl 0.1 mM DTT, 0.25 µl Ribolock RNase 

inhibitor, and 0.5 µl T7 RNA polymerase (Fermentas, Glen Burnie, MD)]. These 

transcripts were used to rub-inoculate N. benthamiana with RNA-inoculation buffer (50 

mM KH2PO4, 50 mM Glycine, pH 9.0, 1% celite, 1% bentonite) by lightly rubbing 
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approximately 20 µl on a leaf. 

 

Column chromatography 

For Sephacryl S200 (gel filtration) column chromatography, columns were 

packed using Sephacryl S200 high resolution resin (Amersham Piscataway, NJ), with 200 

mM Tris-HCL, pH 7.4, 5 mM DTT, and the indicated concentration of NaCl. This 

chapter uses 150 mM NaCl. With DEAE anion exchange column chromatography, about 

50 ml MacroPrep DEAE Support (Bio-Rad, Hercules, CA) was packed using 50 mM 

sodium phosphate buffer, pH7.4. Fractions were eluted off with a NaCl gradient of 0.1 – 

1 M NaCl after application of the clarified plant extract, and about 200 ml wash. To pack 

a hydroxyapatite column for chromatography, about 40 ml hydroxyapatite bio-gel HT 

(Bio-Rad) in 10 mM sodium phosphate buffer, pH 6.8 was poured into a clean glass 

column. After the column was loaded and washed extensively with this buffer, the 

fractions were eluted using a 10 mM - 200 mM or -400 mM (as indicated) increasing 

sodium phosphate gradient, pH 6.8. 

Plants were harvested about 1 week post inoculation. About 40 grams of infected 

plant tissue was ground with a mortar and pestle in 50 ml of the buffer appropriate for the 

column specified, and further processed in a blender with 50 ml more buffer. This crude 

extract was filtered through cheesecloth and centrifuged at 4000 rpm with a Beckman 

S4180 rotor for 20 min. at 4° C. The supernatant was then filtered through cheesecloth 

into round-bottomed tubes for centrifugation at 10,000 rpm for 20 min. at 4° C in a 

Beckman F0630 rotor, when the supernatant was removed and placed on ice until it was 

loaded on the column. 

Once all plant extract had been applied to the column (about 100 ml), it was 

washed thoroughly, and then proteins eluted off as described above. These fractions were 

then combined (1 and 2, 3 and 4, 5 and 6, etc.) for ease of manipulation, and stored at - 

20° C until needed. 

 

Extraction of siRNAs from chromatography fractions 

Analysis of 300 µl of each combined fraction was added to a 1.5 ml micro-

centrifuge tube, and 30 µl of 10% SDS was added. These fractions were incubated at 60° 
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C for 20 min. The volume of the sample was brought to 500 µl  with sterile dd H2O and 

500 µl 1:1 phenol/chloroform was added to each tube. The mix was vortexed, then 

centrifuged at 10,000 rpm, 4° C in a Beckman F4180 rotor for 20 min. to separate 

aqueous and inorganic phases. The upper aqueous phase (~350 µl) was removed to a 

separate mini-fuge tube for each fraction, and 35 µl sodium acetate plus 800 µl ice cold 

ethanol was added. These were inverted to mix, and incubated at -56° C for at least an 

hour (preferably overnight). Fractions were then centrifuged at 10,000 rpm, 4° C, for 20 

min. to pellet the siRNAs. The supernatant was decanted, and the pellet washed with cold 

70% ethanol by centrifuging for 10 min. at 10,000 rpm and 4° C. The supernatant was 

discarded, and the pellet dried briefly to evaporate the remaining ethanol. The pellet was 

then re-suspended in siRNA loading dye (1 ml formamide, 500 µl of agarose 

electrophoresis loading mix), and boiled for 3 min. before being immediately iced. These 

siRNAs were then loaded into a 17 % acrylamide gel containing 8 M urea, and run at 30-

45 volts in 0.5 X TBE (45 mM Tris, 45 mM Boric acid, 1 mM EDTA) until adequate 

separation occurred. The gel was removed from the SDS-PAGE electrophoresis 

apparatus (Bio-Rad Mini-PROTEAN tetra cell), and stained with ethidium bromide 

before visualization with UV. The siRNAs were then transferred to a nylon membrane 

using a western blot apparatus and 0.5X TBE, at 150 mA for 1 hour. The membrane was 

subsequently crosslinked with UV (twice on each side, turning with a 90° angle between) 

using the autolink setting, and the blot stored at 4° before hybridization probing. For 

extraction of siRNAs from other sources, the sample was brought to a total volume of 

300 µl before the addition of 30 µl of 10% SDS, then the extraction proceeded as 

described above. 

 

Assays for the presence and characterization of ribonuclease activity   

Fractions from column chromatography were mixed with either total RNA 

extracted from virus-infected plants, or with transcripts generated in vitro from linearized 

viral cDNA as outlined above. To test for activity of ribonucleases, 5 µl of each 

combined fraction was incubated at room temperature (about 25°C) with 1.5-2 µl RNA 

for 20 min. Then, 2 µl DNA loading dye was added, and samples were run on a 1% 

agarose gel, 120 volts, in 1X TBE (90 mM Tris, 90 mM Boric acid, 2 mM EDTA) until 
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the lower dye band was about ¾ of the way from the front of the gel. These gels were 

then stained with ethidium bromide for 15 min., and viewed with a UV light box.  

To test for inhibition by EDTA or NaCl, the indicated amount of 50 mM or 100 

mM EDTA or 5 M NaCl stock solution was added to each fraction before the addition of 

RNA. To stop a reaction, EDTA was added at the time detailed in the assay, or after 20 

min. To determine the effect of divalent metal cations on ribonuclease activity present in 

the fractions, 50 mM MgCl2 and 50 mM MnSO4 were used in the amount specified by 

the assay. 

 

Northern blotting and hybridization with radioactive DNA probes 

After visualization with UV, 1% agarose gels were usually blotted to a nylon 

membrane (Osmotics, Westborough, MA) for northern blot analysis using capillary 

transfer with 10X SCC (1.5 M NaCl and 150 mM sodium citrate, pH 7.0). After 

transferring at least 12 hours, the membrane was crosslinked with UV light, twice on 

each side, turning the blot 90° between each repetition. The blot was then incubated 4 

hours - overnight in 2X SSPE + 1% SDS (20X SSPE stock contains 3M NaCl, 0.2 M 

NaH2PO4, 26 mM EDTA, pH7.4). The membranes were incubated at 65° for regular 

RNA assays and 41°C for siRNA blots, on a standard drum rotator. Hybridization probes 

were made using the appropriate DNA plasmid. For this, 1 µl plasmid or linearized DNA 

was added to 12 µl a/c ddH20 and 3 µl random primers, boiled for 3 min. and cooled on 

ice. Then, 2.5 µl EcoPol 5X buffer, 2.5 µl 12 mM mixed dNTPs (without C), 2 µl 32P-

dCTP (10 µCi/ µl) and 1 µl Klenow (5,000 U/ml) was added to the cooled probe, and this 

was incubated for at least an hour at 25°C before boiling again for 3 min. and cooled 

again on ice. This mixture (about 25 µl) was added to the blot in 2X SSPE+1% SDS, and 

incubated at the suitable temperature overnight. The blot was then removed from the 

radio-isotope mixture and washed with about 50 ml 2X SSPE +1% SDS for 20 min., 

three times, or until ‘cool’ when signal strength was tested with a Geiger counter 

(Ludlum Measurements, Sweetwater, TX). The blot was then dried briefly, wrapped in 

plastic wrap, and exposed to Kodak BioMax X-ray film. The length of exposure varied 

with radio-isotope signal strength, but typically was done overnight. 
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SDS-PAGE analysis and western analysis 

For SDS-PAGE electrophoresis, samples were typically boiled with a 5X 

cracking buffer containing SDS, glycerol, and the reducing agent ß-mercaptoethanol, 

usually with a 3:1 ratio, for 3 min. Then, 30 µl of these boiled samples were loaded into 

5% acrylamide SDS-PAGE gels (gel consisting of 3 ml 30% acrylamide stock, 3 ml 

water, 3.8 ml 1.5 Tris pH 8.8, 100 µl 10% ammonium persulfate, 100 µl  10% SDS and 

30 µl TEMED; stacking gel with 600 µl 30% acrylamide, 500 µl Tris pH 6.8, 2.7 ml 

water, 100 µl 10% ammonium persulfate, 40 µl 10% SDS, and 3.2 µl Temed), and 

electrophoreised at 90 and 120 volts for 2 hours in 1X running buffer (24.8 mM Tris, 192 

mM glycine, 3.5 mM SDS). The gel was then either transferred to a nitrocellulose 

membrane for western blot analysis, or stained with Coomassie Brilliant Blue R 

according to standard methods, (Sambrook et al., 1989). 

 For western blotting, the proteins on the SDS-PAGE gel were transferred to 

nitrocellulose membrane (Osmotics, Westborough, MA)  at 300 mA for an hour, and 

transfer was verified by staining of the membrane with Ponceau S (Sigma, St. Louis, 

MO). The membrane was then blocked with 7.5% milk solution ( 7.5 grams skim milk 

powder, 1X TBS/Tween-20; 50 mM Tris, 200 mM NaCl, 500 µl Tween-20) for an hour. 

This was then rinsed for 15 min., 3 times, with about 20 ml TBS-Tween, and the primary 

antibody added at 1:2,000 dilutions for at least 2 hours. The secondary antibody in 7.5% 

milk solution was added to each blot following three 15-min. 20 ml TBS-Tween-20 

washes, and the blots were developed with 5-Bromo-4-chloro-3-indoyl phosphate p-

toludine (BCIP) (66 µl)  and Nitrotetrazolium blue chloride (NTB) (33 µl) (Sigma-

Aldrich, St. Louis, MO) in alkaline phosphate buffer. The reaction was stopped by 

rinsing blot with ddH20. 

 

Silver staining (AgNO3) of proteins 

  Following SDS-PAGE, the gel was removed to a clean dish. The gel was then 

immersed in fixative solution (30% ethanol with 10% acetic acid) for at least an hour, 

then rinsed with for 20 min. with water followed by 10 min. in 20% ethanol. Sensitizer 

solution (0.02% sodium thiosulfate) was then added to the dish for 1 min., and the gel 

was rinsed with ddH2O 3 times for 20 seconds apiece. Silver nitrate solution ( 0.2%) was 
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then used to stain the gel for at least an hour, after which the gel was rinsed for 15 

seconds with ddH2O, and incubated in the developer solution [3% sodium carbonate, 2.5 

ml sodium thiosulfate stock (1 mg in 100 ml ddH2O) , and 40 µl Formaldehyde] until 

desired band intensity was observed. At that time, the developer was removed and a stop 

solution was added for 15 min. (Tris, 25% acetic acid). The stained gel was stored in dd 

H2O. 

 

Protein immunoprecipitation 

About 1 ml of the fractions of interest were incubated with 2 µl P19-specific 

antiserum for 2 hours, and shaken at room temperature. Then, 30 µl of well-mixed 

agarose beads with IgG was added, and samples were shaken at room temperature for 2 

hours. Samples were then spun down in a table top centrifuge (10,000 rpm, 10 min., 

4°C), the supernatant removed, and 1 ml immunoprecipitation buffer (150 mM HEPES, 

pH 7.5, 200 mM NaCl, 1 mM EDTA) added; great care was taken to not disturb the 

pellet. The sample was re-suspended, and rinsing process repeated 6 times.  

For western detection of the immunoprecipitated P19, the agarose bead pellet was 

re-suspended in 35 µl cracking buffer (50 mM Tris, pH 6.8, 100 mM Dithiothreitol, 0.1% 

bromophenol blue, 10% glycerol, 2% SDS), boiled 3 min., and loaded onto a 5% 

acrylamide gel for SDS-PAGE. For 17% acrylamide gel with 8M urea, to detect siRNAs 

bound to the immunoprecipitated P19, the pellet was re-suspended in siRNA loading dye, 

boiled 3 min., and set on ice immediately before loading on gel.  

 
Results 

The experiments highlighted in this chapter were done in collaboration with Dr. Rustem 

Omarov. 

 

Biochemical characterization of TBSV ∆19 infected plant tissue with Sephacryl S200 or 

anion exchange chromatography 

To determine if any ribonuclease activity could be detected from virus-infected 

plants, TBSV-infected plant tissue was first subjected to Sephacryl S200 gel filtration 

column chromatography to separate out macromolecules. For this purpose, N. 
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benthamiana plants were infected with the P19 deficient mutant, TBSV ∆19, and the 

infection was allowed to progress for one week. Following establishment of infection, 

plants were homogenized, and the crude extract was applied to a S200 gel filtration 

chromatography column. The resultant fractions were then tested for ribonuclease 

activity with the addition of TBSV transcripts generated in vitro, and the results verified 

by northern blotting (Fig. 2.1A) The results show that TBSV RNA transcripts were 

degraded predominately in fractions 6-9. Based on size markers for this column, the 

complex would be approximately 500 kDa. This same experiment was performed for 

plants infected with wtTBSV, and no ribonuclease activity was detected in those same 

fractions (data not shown, see Chapter V), which is consistent with the effect of a 

silencing suppressor protein on the RNAi pathway; P19 binds to siRNAs to prevent their 

loading onto RISCs, and subsequently, no RNA targeting occurs. 

Fractions exhibiting ribonuclease activity were combined. Because RISC contains 

a divalent metal ion as part of Piwi domain catalytic site (Tomari and Zamore, 2005), the 

fractions were tested with the addition of two types of divalent metal cations, Mg2+ and 

Mn2+, as well as a metal chelator, EDTA, to examine the effects these would have on the 

ribonuclease present in fractions active against RNA (active fractions) (Fig 2.1B). Results 

showed that with the addition of EDTA, activity is inhibited (Fig. 2.1B, lane ‘E’) 

Moreover, both Mn2+ and Mg2+ seemed to increase the ribonuclease activity (Fig 2.1B, 

lanes Mn and Mg, compared to lane A), though Mn2+ had a greater effect. Since the DNA 

template for transcription was present in high quantities in Fig. 2.1B, this verified that the 

nuclease was RNA-specific.  

Using S200 column chromatography, there were still many proteins present in 

these gel filtration fractions which would make it very hard to correlate any proteins with 

the measured activity. For better separation of the proteins present, TBSV ∆19 infected 

plant tissue was also applied to a DEAE anion exchange chromatography column for 

separation by charge. These fractions were silver stained to visualize the proteins present 

that might contribute to the ribonuclease activity (Fig. 2.2A). Fractions with RNase  
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Fig 2.1 Sephacryl S200 gel filtration column chromatography of TBSV ∆19-infected 
plants. A.) Fractions were analyzed for ribonuclease activity against added TBSV RNA 
transcripts, as indicated by the arrow. Fractions 5-8 show degradation of virus transcripts. 
B.) Due to the capacity to degrade TBSV transcripts, fraction 7 was further tested for 
ribonuclease activity with the addition of EDTA and divalent metal cations, in addition to 
these in combination. T = only transcripts, A is transcripts plus the active fraction and 
H20, E is the fractions and with the addition of EDTA. The next two lanes each have the 
reaction mixture of fractions and transcripts, plus the addition Mg2+ and Mn2+, 
respectively. The last two reactions have Mg2+ and Mn2+ in combination with EDTA.  
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Fig 2.2 Sephacryl S200 fractions following anion exchange chromatography. Fractions 
were assayed for A.) proteins present in fractions visualized by silver staining, and B.) 
siRNAs extracted from the anion exchange chromatography fractions, then visualized 
after northern hybridization for TBSV. Fractions displaying ribonuclease activity also 
had detectible levels of siRNAs (19-21). The size of siRNAs is approximately between 
20-25 nts based on similar analyses that incorporated size markers. 
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activity had a range of proteins present, and fractions 17-19 have a band at about 200-100 

kDa (indicated in Fig. 2.2A) not present in other fractions which might correspond to an  

Ago protein. The siRNAs were extracted from all DEAE anion exchange 

chromatography fractions, and northern blotted on a 17% acrylamide gel with 8M urea.  

Fraction 19 and those following it contained small RNAs of about 20-25 nt (Fig. 2.2b) 

and had RNase activity (not shown). Because of the multitude of proteins present in these 

fractions, further protein purification was performed by combining fractions containing 

ribonuclease activity after DEAE anion exchange chromatography, and subsequent 

separation with S200 gel filtration. The fractions containing activity after this additional 

step were then denatured on an SDS-PAGE gel, and silver-stained to reveal the protein 

content (Fig 2.3).  These fractions all contain similarly sized proteins, from about 200 

kDa to about 75 kDa, as best seen for the silver stained fraction from gel filtration after 

anion exchange chromatography (Fig. 2.2a-b). The densest of these bands were sent in 

for analysis by mass spectrometry (Yale University’s Keck Center), though no proteins 

are known to be involved in the RNAi pathway (i.e, Dicer, Ago, heatshock, loading 

proteins, etc.) were represented. Instead, the proteins were found to share identity with 

Phosphoenolpyruvate or Rubisco.  

 

Hydroxyapatite chromatography 

Because the proteins analyzed failed to yield a protein that was a signature for the 

RNAi pathway, such as Ago, additional separation techniques were needed. Fractions 

from TBSV ∆19-infected tissue were collected using hydroxyapatite column 

chromatography, and again first tested for ribonuclease activity against TBSV RNA 

transcripts (Fig 2.4). Fraction 7 and those following displayed ribonuclease activity. 

Then, 300 µl of these fractions were also assayed for siRNAs. Fraction 7 and, even more 

so later fractions, were shown to contain siRNAs (Fig 2.5A). Because of the mixed-

affinity aspect of hydroxyapatite chromatography, a silver stain was also done for these 

fractions to examine protein (Fig 2.5B). Again, this single type of chromatography 

yielded multiple proteins present. To further separate fractions containing RISC-like 

proteins, these active hydroxyapatite fractions were loaded onto a DEAE anion exchange  
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Fig 2.3 Proteins present in anion exchange fractions containing ribonuclease activity. A.) 
Proteins in active fractions following anion exchange chromatography of TBSV ∆19 
infected tissue, stained with coomassie blue. B.) Proteins detected by silver staining of an 
anion exchange chromatography fraction containing ribonuclease activity C.) 
Concentrated fraction with ribonuclease activity following Sephacryl S200 gel filtration 
after anion exchange column chromatography, silver stained to display potential RISC 
proteins. Upon sequencing, however, the heaviest bands were not those usually attributed  
to RISC; i was determined to share identity with Rubisco, ii was phosphoenolpyruvate, 
and iii  was found to also share identity with Rubisco.    
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Fig 2.4 Ribonuclease activity test of TBSV ∆19 fractions. TBSV ∆19 infected plant 
tissue applied to a hydroxyapatite chromatography column and eluted with a 10 mM to 
400 mM sodium phosphate gradient: 5 µl of the resultant combined fractions were tested 
for ribonuclease activity with the addition of 2 µl full length TBSV transcripts. The 
samples were incubated for 20 min., and viewed with a UV light after gel electrophoresis 
on a 1% agarose gel and staining with EtBr. Fractions with ribonuclease activity begin 
around fraction 5. T is transcripts without addition of fractions (volume equilibrated with 
sterile ddH2) I is column crude input, F is column flowthrough.  
 
 
 
 

 
 Fig 2.5  siRNAs and proteins detection in hydroxyapatite fractions from TBSV ∆ P19. 
A.) siRNAs were extracted following hydroxyapatite column chromatography of TBSV 
∆19–infected  plants. These siRNAs were separated on a 17% acrylamide gel with 8 M 
urea, and blotted to a nylon membrane for northern blotting. The hybridization probe was 
specific for TBSV, and siRNAs are present starting around fraction 7. B.) Fractions were 
run on 15% acrylamide SDS-PAGE, and silver stained. I is column crude input, F is 
column flowthrough. 
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Fig. 2.6 DEAE chromatography after hydroxyapatite chromatography of TBSV ∆19-
infected plant tissue. Following hydroxyapatite chromatography of TBSV ∆19-infected 
plant tissue, fractions with ribonuclease activity were pooled and subjected to DEAE 
anion exchange chromatography. These fractions then were tested for ribonuclease 
activity with the addition of TBSV RNA transcripts, and the resultant blot was probed 
with a TBSV-specific hybridization probe. Fraction 5/6 demonstrates the best activity.  
B.) This fraction was concentrated by spin-filtration in a centrifuge, and the resultant 
sample was loaded onto a 7.5% acrylamide SDS-PAGE gel, which was silver stained to 
detect proteins. Bands are apparent at about 100 kDa, appropriately the expected size for 
Ago. C.) siRNAs were also extracted from the concentrated fraction, and run on a 17% 
acrylamide gel with 8 M urea alongside a ~21 nt marker, indicated by an arrow. This is 
indicative of siRNAs, and that the complex has the hallmarks of a potential RISC. I is 
column crude input, F is column flowthrough. 
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chromatography column. When tested for ribonuclease activity against TBSV RNA 

transcripts, fractions 3-11 degraded transcripts (Fig 2.6A). Fractions 5 and 6 were then 

concentrated for analysis of proteins present via silver staining (Fig. 2.6B). There was a 

100 kDa protein present, which is approximately the size for Ago. Moreover, when this 

concentrated sample was assayed for siRNAs (Fig. 2.6C) alongside a known 21 nt RNA 

marker, it shows a fairly clean, readily detectable 21 nt siRNA signal. 

 

Biochemical characterization of TBSV-wt infected plant tissue 

The hypothesis was that if the complex that is under investigation represents 

RISC, it should not become programmed against TBSV in the presence of P19. 

Therefore, to further characterize the RNAi response as seen in a natural virus infection, 

wt TBSV (containing p19) -infected plant tissue extract was fractionated with 

hydroxyapatite chromatography. Resultant fractions were tested for ribonuclease activity 

(Fig 2.7) against TBSV RNA transcripts, as done in previous experiments. While some 

activity was observed (fractions 5-23), it was to a much lower intensity that that seen for 

the TBSV ∆19, with a minor band of transcripts remaining instead of the typical ‘wash’ 

of RNA and complete degradation of the TBSV RNA transcripts; the arrow indicates 

partial RNA transcript bands that remained. Additionally, for hydroxyapatite fractions 

collected from TBSV ∆19-infected tissue, the input lane usually shows degradation of 

transcripts (Fig 2.4, lane ‘I’), though this was not the case for the wt TBSV-infected 

tissue hydroxyapatite fractions – the transcripts added to the input lane remained intact 

(Fig 2.7A, lane ‘I’). 

Western blotting with antibodies against TBSV P19 and CP was performed for 

the wt TBSV-infected tissue hydroxyapatite fractions (Fig 2.7B, C, respectively). P19 

proteins accumulate in fractions that show inhibited ribonuclease activity. For assurance 

that P19 is present in these fractions and binds siRNAs, IP for P19 was performed on the 

input, flowthrough, and fraction 9, which showed both activity and an intense siRNA 

signal, and fraction 33, which had unspecific activity and low siRNAs signal (included as 

a (-) control). The IP successfully precipitated P19, as shown by western blot. However, 

when these same IP samples were assayed for siRNAs, only the denser band from the  
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Fig 2.7 Fractions from the hydroxyapatite chromatography of wt TBSV-infected N. 
benthamiana. These were tested for A.) ribonuclease activity with the addition of TBSV 
full length transcripts, then blotted to a nylon membrane for  hybridization with a TBSV-
specific probe. Fractions were assayed for B.) TBSV P19 and C.) CP proteins after 
running on a 15% acrylamide gel, and transfer to nitrocellulose membrane for protein 
detection by western blotting with appropriate antibodies. 
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Fig 2.8 Detection of siRNA from wtTBSV-infected tissue following hydroxyapatite 
column chromatography. A.) Northern blotting of fractions with a hybridization probe for 
TBSV. These siRNAs appear in about fraction 5, and angle of the bands is due to the 
increasing amount of sodium phosphate present following chromatography. B.) Fraction 
9, which shows a very strong siRNA signal, and 33, which shows a much weaker signal 
were subjected to immunoprecipitation (IP) with P19 antibodies to correlate presence of 
P19 and  siRNAs with inhibited ribonuclease activity (fraction 33 was included as a 
control) and subjected to a western blot for P19 following IP. Input and fraction 9 show 
the presence of P19. (i indicates the dimerized P19, ii indicates P19 monomer C.) siRNAs 
are evident in the input, but undetectable following IP. At this time, it is hypothesized 
that reduced amounts of P19 in fraction 9 is the reason these levels are undetectable. 
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column input showed a band on the western blot. Nevertheless, the results indicate that 

even though siRNAs are abundantly present in the plant, the presence of P19 has 

diminished the programming of the anti-TBSV RNA ribonuclease activity. 

 

Discussion 

RISC-like anti-viral ribonuclease activity 

As described in the Introduction, there is a lot of evidence for RNAi in plants. At 

this time, however, much of this has been determined using forward or reverse genetics, 

like knocking out or mutating DCLs and Ago genes to determine effects on the RNAi 

pathway, both for the endogenous regulatory pathway, as well as for a defensive, anti-

viral pathway (for example, Jones et al, 2006) The majority of this research focuses on 

the model plant Arabidopsis thaliana (as illustrated by Baumberger and Baulcombe, 

2005). However, little work has concentrated on the direct biochemical isolation of RNAi 

pathway proteins in plants toward determining which proteins contribute to an anti-viral 

defense. To be brief, it is expected that the anti-viral response in plants, specifically N. 

benthamiana here, will be comprised of a Dicer or DCL protein (Xie et al., 2004), which 

cleaves specifically viral RNA into about 21 nt duplexes (Baulcombe, 2004). These 

duplexed siRNAs will associate with a protein complex, RISC, possibly through the use 

of some Dicer-type loading protein for association with a protein complex. The complex 

itself would contain an Ago-family protein, which are hallmarks of RNAi (Song and 

Joshua-Tor, 2006). Silencing has implicated Ago1 and Ago4 for this in N. benthaminana 

(Jones et al., 2006), though other studies indicate that Ago1 is involved in anti-viral 

RISCs for Arabidopsis (Baumberger and Baulcombe, 2005). Therefore, to biochemically 

determine if these virus-infected plants launch a RNAi anti-viral response, siRNAs and 

Ago proteins should be present in these plants, ‘programmed’ against viral RNAs. 

To examine the antiviral plant defense following a viral infection of plants, 2 

week old N. benthamiana plants were inoculated with a plant virus, TBSV, which has 

been shown to produce a large amount of dsRNA in the plant (serving as a substrate for 

Dicer), and encodes a known silencing suppressor, P19 that was shown to bind siRNAs 

(Omarov et al., 2006). The plants were first infected with mutants of TBSV that do not 

produce functional P19 (TBSV∆P19), to ensure that an optimal RNAi response is 
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stimulated without the hindrance of a silencing suppressor. Infected plants were then 

harvested upon display of obvious viral infection symptoms, and the first experiments 

used Sephacryl S200 gel filtration to separate out proteins present that would contribute 

to the plant defense. To test for fractions that might contain RNAi associated 

ribonuclease activity, TBSV RNA transcripts, generated in vitro from cDNA with a T7 

polymerase promoter, was added to each of the fractions. Fractions containing 

ribonuclease activity demonstrated this activity in vitro against the TBSV RNA 

transcripts, resulting in degradation (Fig. 2.1A). This fits with the current literature; 

plants infected with a virus should result in the generation of siRNAs which are then 

loaded onto a RISC, to further target viral RNA (Baulcombe, 2004).  These anti-viral 

ribonucleases are separated out by column chromatography, and target TBSV transcripts 

in vitro.  

In addition, these results suggested that upon gel filtration, at approximately 500 

kDa anti-viral RISC-like complex could be isolated. To confirm that this was a real 

complex and that results were not due to the co-incidental co-fractionation of elements, 

other separation techniques were incorporated. Other types of column chromatography 

were also used to improve protein separation, with the intent to isolate protein complexes 

associated with activity. Towards this, TBSV plants infected with TBSV∆P19 were 

subjected to anion exchange chromatography. After ribonuclease activity was 

determined, divalent metal cations were added to the active fractions to determine the 

effects. Current literature states that Piwi and PAZ domains contain divalent metal 

cations; the Piwi domain uses these for catalytic activity (Song et al., 2004), and the PAZ 

domain is thought to hold a Mg2+ to anchor the RNA molecule in a conserved 

hydrophobic pocket by interacting with the phosphates present on the RNA (Parker et al., 

2005). Therefore, the addition of divalent metal ions might stimulate activity following 

column chromatography, or prevent activity loss due to ion dissociation. As a metal 

chelator, EDTA would bind to the metal ion present and prevents ribonuclease activity, if 

indeed the metal ion is contributing to it. This is precisely what was observed in the 

present study, EDTA inhibited ribonuclease activity. When surplus divalent metal ions 

were added to active fractions in which activity was inhibited by EDTA, the degradative 

activity was partially rescued. This supports data that the divalent metal ions contribute to 
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RISC activity, most likely to the catalysis mechanism of RISC; if the addition of divalent 

metal ions in this experiment affected the binding of siRNAs, it is unlikely that activity 

could be stimulated. When the divalent metal cations were added at the same time as 

EDTA, RNA was still degraded, though not to the same extent as that of Mn2+ and Mg2+ 

alone. 

 

siRNA and protein components of RISC 

Following DEAE anion exchange chromatography, siRNAs were extracted from 

all fractions to further confirm the presence of active, genuine RISC; a true RISC carries 

a ss-siRNA molecule to use as a template for target mRNA (Baulcombe, 2004).  The 

siRNAs were extracted from all DEAE anion exchange chromatography fractions; 

fractions found to have ribonuclease activity also were shown to contain siRNAs, 

indicated by the arrow in Fig. 1.3B. Again, this is strongly indicative of a RISC. After 

checking potential protein content of the fractions by silver staining (Fig. 2.2A), a 

multitude of proteins were shown. Again, the Ago protein family is widely conserved 

across many species, though the actual Ago proteins themselves vary in size and precise 

function (Song and Joshua-Tor, 2006). The Ago that contributes to RISC in Drosophila 

(Ago2) was predicted to be ~130 kDa in size, based on the coding sequence (Hammond 

et al., 2001), though that same paper cites smaller bands visualized by SDS-PAGE 

corresponding to the same ago gene, predicted to be products of protein proteolysis. 

Other papers place the Drosophila Ago2 at about 235-500 kDa (Nykanen et al., 2001), 

and the human RISC proteins at 90-160 kDa after isolation by affinity purification 

(Martinez et al., 2002).  

There are several proteins present in Fig 1.3A that might match the expected size. 

However, because of the multitude of proteins present in these fractions, further protein 

purification was performed by combining fractions containing ribonuclease activity after 

DEAE anion exchange chromatography, then additional purification with S200 gel 

filtration. When these fractions were stained for protein content (Fig 1.4), several 

prospective bands remained, and these were sent for protein identification by MS/MS. 

These did not turn up any matches to known RISC proteins; they were found to be 

proteins found in energy synthesis of the plant. Because these proteins are among the 
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most abundant in plant tissue, this result is not illogical, though this does not reveal 

anything about the anti-viral RNAi response, such as Ago, Dicer, or perhaps an additional 

protein. However, it was decided at this point that a different method of column 

chromatography might allow for differential separation, without co-elution of these 

proteins. 

The next type of column chromatography used was hydroxyapatite, which was 

selected as the media interacts with both ionic and anionic groups. This would give a very 

different protein elution profile than those previously seen. Additionally, it has been seen 

that hydroxyapatite chromatography does not inhibit ribonuclease activity in other 

systems (Hammond et al., 2001). When TBSV ∆19 infected plant tissue was separated by 

this method and tested for ribonuclease activity as well as the presence of siRNAs, again, 

these were found to co-elute. Following hydroxyapatite fractionation, the fractions were 

tested for ribonuclease activity with the addition of EDTA and divalent metal cations 

(data not shown). The effect was found to be similar to that seen upon gel filtration in 

Fig. 2.1B. Additionally, these fractions displayed activity against genomic RNA, though 

the activity was limited to only TBSV RNA. When studies were done with the addition of 

viral transcripts for another virus (PMV), fractions did not target and degrade the PMV 

RNA (unpublished data). This indicates that the ribonuclease activity is specific for 

TBSV RNA, which is consistent for real RISC; only viral RNA for which the RISC has 

been programmed is targeted for degradation (Baulcombe, 2004). This further validates 

the presence of a complex that is in agreement with RISC; siRNAs (Fig 2.7A) and 

fractions that target RNA transcripts for degradation (Fig. 2.4A) are the same for three 

different types of chromatography. 

  After an additional step of DEAE chromatography, fractions demonstrating 

activity (Fig. 2.6A) were concentrated, checked for siRNAs (Fig. 2.6C) alongside a 21 nt 

marker, as well as tested for protein content by silver-staining. When the proteins in this 

concentrated sample were visualized, a reasonably clear set of bands were detected 

around 100 kDa, roughly the size of Ago determined for other organisms. Ago alone 

displays minimal RISC activity for some systems (Baumberger and Baulcombe, 2005), 

so it is possible that this protein is the anti-viral protein present in plants, although other 

data, like the gel filtration experiments, where fractions with ribonuclease activity eluted 
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from the column in fractions corresponding to about 500 kDa, suggest that this protein 

might act in combination with other proteins. At this time, a reverse approach was 

undertaken by generating Ago-specific antibodies. These did detect bands in the fractions 

containing activity. This assay was done for this project by Dr. R. Omarov. I will 

incorporate this technique into Chapter III.   

 

Effect of P19 on RISC-like activity 

The work described above was performed with TBSV ∆19 to examine RNAi 

silencing without inhibition by the viral suppressor. However, most natural viral 

infections of plants occur for viruses that encode silencing suppressors.  Earlier work had 

been performed with Sephacryl S200 that suggested for plant tissue infected with wt 

TBSV, the RNAi response is inhibited (Omarov et al., 2007). The presented study 

showed that  following hydroxyapatite column chromatography of wt-TBSV-infected 

plants, fractions still contained activity in a manner similar to that seem for TBSV ∆19, 

though to a much lower extent; partial RNA bands remained intact, and the input lane did 

not seem to degrade transcripts at all. This helps to illustrate the protective function of a 

silencing suppressor for the virus in the RNAi pathway. P19 has been shown to bind 

duplexed siRNAs for sequestration before they are loaded onto a RISC (Voinnet et al., 

1999; Qiu et al., 2002; Park et al., 2004; Omarov et al., 2006; Scholthof, 2006). 

Degradation of transcripts in crude extract from TBSV ∆19 –infected tissue, and lack 

thereof in the crude extract of wt-TBSV infected tissue can be interpreted to mean that 

due to the presence of the silencing suppressor P19, presumably isolating siRNAs,  

RISCs  are inefficiently loaded with viral siRNAs in wt-TBSV infected tissue and do not 

target transcripts. Likewise, this interpretation can be extended to the fractions 

themselves. Because of the much lower amount of anti-viral programmed RISCs in wt-

TBSV fractions, TBSV RNA transcripts remain. The minor amount of ribonuclease 

activity present can be attributed to the concentrating effect of a chromatography column; 

fractions contain much more of the same anti-viral protein than does an equal amount of 

the crude plant extract. 

To determine if the P19 shown to accumulate in the same fractions (Fig 2.7B) as 

those containing ribonuclease activity bind siRNAs as predicted (Qiu et al., 2002; Ye et 
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al., 2003), immunoprecipitation was preformed with P19 antibodies. When siRNAs were 

extracted from the immunoprecipitated P19, the fraction with input showed a very minor 

band, though this was not detected for a fraction with slight ribonucleic activity. This 

might be related to the amount of P19 that was pulled down; a western for the IP shows a 

reduced amount of P19 for that fraction than for the input (Fig. 2.8C). Additionally, this 

also might be related to the amount of ribonuclease activity present; the input fraction 

contained more P19 with bound siRNAs than did the fraction with slight ribonuclease 

activity; more siRNAs bound to P19 indicate less siRNAs that can be bound to RISC. 

Fraction 9 shows slight activity; the amount of siRNAs bound to RISC would imply less 

siRNAs bound to P19, and less to be detected by immunoprecipitation. Regardless, this 

further substantiates the claim that the ribonuclease activity seen in these fractions can be 

attributed to RNAi, as it is inhibited, at least partially, by a silencing suppressor.  

In conclusion, the data indicate that fractions from TBSV-infected plants contain 

a TBSV-specific ribonuclease complex with characteristics shared by RISC seen in the 

RNAi pathway. The complex can be isolated with three independent separation 

techniques indicating that the residual activity and siRNAs are associated with the same 

complex. This ribonuclease activity is enhanced by the addition of divalent metal cations, 

inhibited by EDTA, is specific for TBSV, and affected by a silencing suppressor. This 

work documents one of the first successful attempts for any virus-host system towards 

isolation of a high molecular-weight protein complex that is programmed against a 

specific virus, and displays properties consistent with RISC. 
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CHAPTER III 

DETERMINATION OF AN ANTI-VIRAL RESPONSE FOLLOWING 

INFECTION OF PLANTS WITH TRV, PMV AND SPMV 

 
Introduction 

RNAi has been shown to be strongly conserved across multiple species, as a 

method to regulate gene function in everything from plants (Baulcombe, 2004) to fungi 

(Romano and Macino, 1992), insects (Hammond et al., 2001) and mammals (Liu et al., 

2004). Chapter II and recent papers (Omarov et al., 2007; Pantaleo et al., 2007) 

demonstrated RISC-like antiviral ribonuclease activity specific for Tombusviruses. There 

is evidence that other viruses trigger a virus-specific ribonuclease that is attributed to an 

RNAi response, specifically illustrated by those used to trigger virus induced gene 

silencing (VIGS) (Ratcliff et al., 2001; Batten et al., 2003; Burch-Smith et al., 2006). 

Furthermore, many viruses encode silencing suppressors (Voinnet, 2005; Li and Ding, 

2006); viruses favor the smallest functional genome size, and it is reasonable to assume 

that the silencing suppressors would not be encoded without purpose. To strengthen the 

model for a conserved anti-viral silencing pathway, and to determine if it corresponds to 

the postulated models currently based on other systems like Drosophila, it is necessary to 

biochemically analyze the defensive response of plants to viruses other than TBSV.   

This work attempted to determine how similar these plant responses are for 

Tobacco rattle virus (TRV), which is not related to TBSV, and identify possible common 

elements that delineate a conserved RNAi pathway in plants by in vitro examination of 

subcellular elements. Furthermore, an antiviral defense was studied for a monocot plant 

model system, versus the dicot system outlined above. Panicum mosaic virus (PMV) and 

satellite panicum mosaic virus (SPMV) were used to study antiviral elements induced in 

the monocot Panicum miliaceum (proso millet) plants upon infection, for comparison to 

those seen in N. benthamiana. 

Tobacco rattle virus (TRV) is a viral vector commonly used to silence genes 

(VIGS) in a wide range of plants (Ratcliff et al., 2001; Burch-Smith et al., 2006). The 

form of TRV used in this study is a TRV virus vector, constructed for infiltration into the 

host plant using Agrobacterium, based on a construct originally generated by Ratcliff and 
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colleagues (Fig. 3.1) (Ratcliff et al., 2001). Our T-DNA constructs consist of cDNAs of 

the TRV strain Ppk20 as constructed by by Liu and colleagues; viral cDNAs were 

inserted behind CaMV 35-S promoters, with a self-cleaving ribozyme from the satellite 

viroid of Subterranean clover mottle virus at the 3’ end (Liu et al., 2002b). RNA1 

remains pretty much intact as described above for the wild type virus, with only minor 

alterations before insertion into the pBIN19 binary vector T-DNA plasmid (Liu et al., 

2002b). The RNA2 CP gene remains intact, followed by a multiple cloning site (MCS).  

 The MCS carries a 369-nt segment of a conserved region of the plant phytoene 

desaturase (pds) gene (Fig. 3.1A). This gene is a precursor of the plant carotenoid 

pathway, and when targeted for silencing by VIGS, the plant tissues turn white.  

SPMV is not required for systemic infection of PMV in a host, though a tandem 

infection has a synergistic effect on host symptom severity (Scholthof, 1999). PMV alone 

will give a mild mottled phenotype, with slight stunting in millet. Co-infection with 

SPMV results in much more severe symptoms, including streaked, chlorotic leaves with 

occasionally necrotic regions (Qiu and Scholthof, 2004).  This virus system was chosen 

for study because it infects monocots. RNAi silencing suppressors have been discovered 

for viruses that infect monocots (Hemmes et al., 2007), leading to the possibility that 

RNAi occurs in monocots in a manner similar to that of dicots, though studies have yet to 

determine whether this occurs. Part of this objective aims to determine if RNAi elements 

similar to those seen for virus-infected dicots are present in virus-infected monocots. As 

PMV is classified within the Tombusviridae, a virus family with a known RNAi response 

(Omarov et al., 2007; Pantaleo et al., 2007), PMV stands as a good choice for this work.  

The system used to study the RNAi defensive response is essentially the same as 

that used in Chapter II for the characterization of an RNAi response against TBSV. Plants 

were inoculated with viruses, and tissue was harvested once the infection was established. 

Column chromatography was used to separate proteins present, and these fractions were 

tested for virus-specific ribonuclease activity. Fractions containing ribonuclease activity  
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Fig. 3.1 Tobacco rattle virus (TRV) agro-infiltration construct and primers. A.) TRV is 
commonly used as a virus vector, as TRV RNA2 is not required for a systemic infection. 
This particular construct is used for Agrobacterium  infiltration, and has cDNA for TRV 
RNA1 between the left border (Lb) and right border (Rb) of the Agrobacterium Ti 
plasmid, behind a CaMV 35S promoter (35S) and upstream of a ribozyme (Rb) and 
nopaline synthase terminator (poly A) signal (T) for expression in planta. TRV RNA2  
has a similar design, but with a multiple cloning site (MCS) replacing the nematode 
transmission factors. For this project, a portion of the N. benthamiana PDS gene, with 
high sequence homology to other plant PDS genes, has been inserted (PDS). C.) Primers 
used to generate TRV-RNA2.PDS transcripts used later in this chapter. These primers 
encompass part of the TRV RNA2.PDS cp and pds. The forward primer has a sequence 
for the T7 polymerase promoter to allow synthesis of RNA directly from PCR products.  
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were tested for the presence of small RNAs, specifically those corresponding to the virus 

used to infect the plant, as the presence of siRNAs is a hallmark of RNAi. These fractions 

were then assayed for the presence of potential Ago proteins with western blotting with 

antibodies against the conserved region of the Piwi domain. Fractions containing both 

siRNAs and proteins with a Piwi domain were then tested to determine if the 

ribonuclease activity was inhibited by the addition of EDTA, which is a metal chelator, 

and high concentrations of NaCl. The hypothesis was that if the plant defensive response 

is RNAi-based, EDTA would act as an inhibitor because the Ago protein of RISC uses 

metal ions for catalysis of the ribonuclease activity (Tomari and Zamore, 2005). 

 NaCl has been shown to have an impact of RISC activity (Rand et al., 2004), 

though it might inhibit it in a different way; siRNAs are shown to be associated with the 

PAZ domain using ionic interactions (Song and Joshua-Tor, 2006). It might be that an 

increase of salt would remove siRNAs from RISC, though this has not been observed for 

other systems; treatment with high concentrations of salt has been used to as part of the 

Ago purification process (Hammond et al., 2001). Additionally, NaCl would prohibit 

unspecific binding of siRNAs by causing the associated guide siRNAs to bind more 

tightly to the target long ssRNA. Because RISC has been shown to use divalent metal 

ions in catalysis, as mentioned above, Mg2+ and Mn2+ were also used for stimulation of 

RISC activity in ribonuclease-containing fractions. The coincidence of these factors 

would indicate with high likelihood the presence of a genuine RISC-type protein. 

The results show that TRV and PMV/SPMV -induced RNAi responses share key 

features with those observed for TBSV Chapter II, but some unique features were 

observed as well. 

 

Materials and Methods 
Infection of plants with TRV and PMV/SPMV  

Agrobacterium-mediated infection of plants using T-DNA plasmids that express 

TRV RNA1 and the RNA2 vector with a PDS gene (Burch-Smith et al., 2004) were used 

to examine a potential RNAi plant response. Overnight cultures of Agrobacterium were 

added to 50 ml of Luria broth with 1 ml 10 mM 2-(4-Morpholino)-ethanesulfonic Acid 

(MES) and MgCl2, 50 µl kanamycin, 50 µl tetracyline, 25 µl rifampicin and 20 mM 
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acetosyringone for 12 hours. These cultures were centrifuged for 30 min. at 4000 rpm 

with a Beckman S4180 rotor, the bacterial pellet re-suspended in 10 ml of 10 mM MES 

and 10 mM MgCl2+, plus 150 µl 150 mM acetosyringone,  and incubated at room 

temperature following a 20 min. agitation period. Equal amounts of these cultures for 

TRV RNA1 and TRV RNA2 were combined, and 3 leaves of 3 wk old N. benthamiana 

plants were infiltrated with 1 ml per plant using a needle-less syringe. These plants were 

grown at 25° C until infection was established, after which tissue was harvested. 

As the project progressed, plants infiltrated with the TRV constructs were 

harvested at different timepoints. The earliest experiments used obviously silenced 

(whitened) tissue harvested about 8 weeks post inoculation. As the project progressed, it 

became obvious that fractions from this older tissue gave a very unspecific ribonuclease 

response, and it was thought that tissue collected from TRV-infiltrated plants earlier in 

the infection (2 weeks, 1 week) would give a more virus-specific defense response. Thus, 

TRV-infected plant tissue was harvested at these times. 

Three-week old proso millet (Panicum miliaceum L.) plants were rub-inoculated  

with infected tissue. This tissue was obtained from millet that had been inoculated with 

infectious PMV and SPMV in vitro-generated infectious transcripts, made via a T7 RNA 

polymerase system (Turina et al., 1998), as done with TBSV RNA transcripts in Chapter 

II. These transcripts were then used to rub-inoculate three week-old  proso millet plants 

using RNA-inoculation buffer (50 mM KH2PO4, 50 mM Glycine, pH 9.0, 1% celite, 1% 

bentonite).  

Infected tissue was processed by grinding in a chilled mortar and pestle with 10 

mM sodium phosphate buffer, with sea sand as added abrasive. This crude extract was 

then further homogenized with a blender, and clarified using centrifugation, as described 

in Chapter II. The plant extract was filtered through cheesecloth into falcon tubes, and 

placed on ice until it was applied to the hydroxyapatite chromatographic column. For 

column packing, please refer to Chapter II and the appendix. Again, fractions from 

hydroxyapatite chromatography were combined for easier manipulation, mixing equal 

amounts of the fractions, 2 at a time (for instance, fractions 1 and 2, 3 and 4, 5 and 6, 

etc.), before storing at - 20° C.  
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Extraction of siRNAs from chromatographic fractions 

This was done as described in the Material and Methods section of Chapter II. 

 

SDS-PAGE and Western analysis of samples for Piwi-containing proteins. 

The peptide “kivegqryskrlnerq” was used for production of the antibody as 

BLAST analysis of plant Ago proteins show this to be a conserved plant-Ago specific 

domain, specifically for the Piwi-domain of Ago1 and 2 from N. benthamiana. The 

antibodies were raised in rabbits (SigmaAldrich, St. Louis, MO). SDS-PAGE was 

performed as described in the Chapter II Materials and Methods section. 

Upon protein gel electrophoresis with very small amounts of protein/samples, 

these proteins were detected using antibodies and chemiluminesence. After rinsing the 

blot following addition of primary antibodies, the horseradish-peroxidase anti-rabbit 

secondary antibody (Pierce) was added to 10 ml of 7.5% milk solution. This was then 

incubated at least 2 hours, then the blot was rinsed extensively with TBS-Tween (20 ml 

for 15 min., 4-6 times). The blot was then developed with the chemiluminesence western 

detection kit (Pierce), immediately exposed to Kodak BioMax X-ray film (Bio-rad) for 1 

min., then the film was developed. 

 

Assays to further characterize ribonuclease activity. 

Total RNA extraction from infected tissue 

For TRV, many assays were carried out using total RNA extracted 1 week post 

inoculation from TRV-RNA1 and RNA2-PDS infected plants. About 1 gram of infected 

tissue was ground with 1 ml 2X STE+1% SDS (2 mM Tris, 20 mM NaCl, 0.002 mM 

EDTA, and 1% SDS) with chilled mortars and pestles. Then, 1 ml 1:1 phenol/chloroform 

was added, and tissue was reground to mix. This was centrifuged at 10,000 rpm, at 4° C 

using a Beckman F2402 rotor for 20 min. The upper aqueous phase was removed to a 

separate 1.5 ml microfuge tube, 1 ml of 1:1 phenol:chloroform was added, the sample 

vortexed, then centrifuged at 10,000 rpm again for 20 min. at 4°C. The upper aqueous 

phase (~400 µl) was again placed in a new microfuge tube, and 40 µl 8M lithium chloride 

was added to precipitate RNA while the sample was placed on ice for 15 min. The RNA 
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was then pelleted by centrifugation at 10,000 rpm in a Beckman F2402 for 20 min. at 

4°C, and rinsed with ice cold 70% ethanol, centrifuging again at 10,000 rpm for 10 min. 

at 4°C. The 70% ethanol was discarded, and the pellet dried very briefly by vacuum 

centrifugation (no more than 5 min. to completely remove the ethanol). The RNA was re-

suspended in a/c ddH2O plus RNasin and DTT  [100 µl sterile ddH20, 1 µl Ribolock 

RNase inhibitor, and 2 µl 0.1 mM DTT (Fermentas, Glen Burnie, MD)], depending upon 

the final concentration as detected by nanodrop. The assays typically used ~250 ng/ µl 

RNA/fraction sample, unless otherwise noted. 

 

TRV RNA2.PDS PCR and RNA transcripts 

Additionally, ribonuclease activity was assayed using RNA transcripts generated 

in vitro from linearized cDNA. For TRV, a PCR reaction to amplify a 2 kb segment 

TRV-RNA2.PDS was made using primers that overlap the PDS-region of the TRV-

RNA2 vector carrying a segment of the N. benthamiana pds gene (TRV-RNA2.PDS) 

(Fig. 3.1B), designed to add a T7 polymerase promoter sequence for in vitro 

transcription. For PCR, TRV-RNA2.PDS was amplified in overnight cultures consisting 

of 2 mls LB and Kan50. DNA was extracted using Qiagen Mini-prep kits (Valencia, CA), 

and stored at - 20°C until needed. For PCR, primers were diluted to about 50 ρm;  1 µl of 

the DNA was mixed with 1 µl each primer, 1 µl 12.5 mM dNTP mix, 1 µl MgSO4, 5 µl 

Thermopol buffer, 40 µl a/c ddH20, and 1 µl Vent DNA polymerase (2000 U/ml) (New 

England Biolabs) in bubble-topped tubes. PCR settings used were 3 min. pre-denature at 

93° C, 1 min. denature at 93° C, 1 min. re-annealing at 55 ° C, and 2 min. 15 seconds 

extension at 72 ° C, for 35 cycles. The resultant DNA was checked by ethidium bromide 

staining after electrophoresis on a 1% agarose gel, and purified with phenol-cholorform 

as described above.  RNA transcripts were then made from this PCR template as 

described above. PMV transcripts were generated as outlined in a previous section. 

 

Assays for the presence and characterization of ribonuclease activity   

Fractions from column chromatography were mixed with either total RNA 

extracted from virus-infected plants, or with transcripts generated in vitro from linearized 

viral cDNA as outlined above. For the 5 dpi TRV and PMV experiments, the 
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concentration of RNA was determined using a nanodrop, and standardized to ~250 ng/µl 

to ensure uniformity of ribonuclease substrate. In other experiments, RNA was assayed 

by electrophorsis with a 1% agarose gel, stained with ethidium bromide, and checked for 

quality using a UV light. 

To test for activity of ribonucleases, 5 µl of each combined fraction was incubated 

at room temperature (about 25°C) with 1.5-2 µl RNA for 20 min. with 1.5 µl RNasin-

treated ddH2O [100 µl sterile ddH2O, 2 µl DTT, 1 µl Ribolock RNase inhibitor 

(Fermentas, Glen Burnie, MD)]. Then, 2 µl DNA loading dye was added, and samples 

were run on a 1% agarose gel, 120 volts, in 1X TBE until the lower dye band was about 

¾ of the way from the front of the gel. These gels were then stained with ethidium 

bromide for 15 min., and viewed with a UV light box. To test for inhibition by EDTA or 

NaCl, the indicated amount of 50 mM or 100 mM EDTA or 5 M NaCl stock solution was 

added to each fraction before the addition of RNA. To stop a reaction, EDTA was added 

at the time detailed in the assay, or after 20 min.. Determination of the effect of divalent 

metal cations on ribonuclease activity present in the fractions, 50 mM MgCl2 and 50 mM 

MnSO4 were used in the amount specified by the assay. 

 

Northern blotting and hybridization with radioactive DNA probes 

Northern hybridizations were performed essentially as described in Chapter II. 

 
Results 
Determination of an anti-viral plant defense response against TRV. 

N. benthamiana plants infected with TRV RNA1 plus RNA2.PDS displayed a 

‘silenced’ phenotype of whitened tissue. This photo-bleached phenotype was readily 

visible after about 5-7 days post-infiltration for N. benthamiana (Fig. 3.2A). The region 

of the inserted gene is conserved not only in N. benthamiana, but shares homology to the 

tomato pds gene (Liu et al., 2002b), and also triggers a white phenotype in pepper plants  

(Fig. 3.2.B). Interestingly, manifestation of the photo-bleached phenotype took much 

longer in pepper, up to 3 weeks post-infiltration (Fig 3.2B), versus 5-7 days in N. 

benthamiana. 



 53

The first experiments for characterization of a TRV RNAi-associated 

ribonuclease used 8 week post infiltrated N. benthamiana plants, particularly the upper, 

whitened tissue. This tissue was applied to both DEAE anion exchange chromatography 

columns (Fig. 3.3), and later, hydroxyapatite chromatography (not shown). The resultant 

fractions were tested for degradation of TRV RNA2.PDS RNA transcripts. The northern 

blot from the 1% agarose gel shows degradation of RNA transcripts beginning in fraction 

5, showing complete degradation in fractions 7 as well as later fractions (Fig. 3.3A). This 

activity was inhibited with the addition of EDTA (Fig. 3.3B), and a kinetics study for 

ribonuclease activity showed that RNA was nearly totally degraded at about 5 and a half 

min. (data not shown). However, fractions also displayed activity against TBSV RNA 

transcripts. No siRNAs were detected upon extraction from the fractions, and with an 

additional chromatography step of S200 gel filtration, no ribonuclease activity against  

TRV RNA2.PDS RNA transcripts was observed (data not shown). 

With the idea that perhaps the infection was established too long, more N. 

benthamiana plants infiltrated with TRV RNA1 and RNA2.PDS were harvested 

for hydroxyapatite chromatography at 14 dpi. These fractions displayed ribonuclease 

activity, against TRV RAN2.PDS RNA transcripts (Fig. 3.4A), which appeared to begin 

in fraction 11. Fractions were also tested for the specificity of this degradation with the 

addition of TBSV wt RNA transcripts, alongside degradation of TRV RNA2.PDS RNA 

transcripts (Fig. 3.4B). Activity corresponds in fraction 11, again, for both sets of 

transcripts, indicating unspecificity. This activity was inhibited by the addition of 1.5M 

NaCl as well as EDTA (data not shown). A small Sephacryl S200 gel column was used to 

separate out fractions 7-13. RNA from the fractions was electrophoresed on a 17% 

acrylamide gel with 8M urea, blotted to a nylon membrane, and probed with a TRV 

RNA2.PDS hybridization probe. After the membrane had been exposed to film for over 2 

weeks, the film was developed. A small RNA signal can be seen in active hydroxyapatite 

fractions collected from both 2 mts and (very faint for) 2 wks –pi plant 

tissue, but none was seen for the fractions collected after hydroxyapatite plus gel 

filtration (Fig. 3.5). 
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Fig. 3.2 TRV-infected plants. A.) N. benthamiana  and B.) C. annuum (pepper) were 
agro-infiltrated with the TRV RNA1 and RNA2.PDS constructs. Picture was taken 2 
weeks post infiltration for N. benthamiana, and about 4 weeks post infiltration for pepper. 
Visible silencing of the plant PDS gene is illustrated by the white tissue of the upper 
leaves. 
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Fig. 3.3 DEAE ion exchange chromatography was performed on N. benthamiana 8 
weeks post infiltration. A.) Transcripts generated in vitro for TRV-RNA2.PDS were 
added to fractions, incubated for 20 min., and electrophoresed on a 1% agarose gel, then 
followed by northern hybridization against TRV-RNA2. (T= 2 µl transcript only, plus 5 
µl a/c ddH2O; 2 µl transcripts were added to 5 µl combined fractions). These fractions 
show ribonuclease activity, starting in fraction 7. B.) hydroxyapatite fraction 7 was 
assayed for inhibition of ribonuclease activity with the addition of increasing amounts of 
100 mM EDTA. For each sample, 5µl fraction 7 (H2O for T) + 2 µl transcript  were 
combined and incubated for the amount of EDTA indicated, then samples were analyzed 
by ethidium bromide staining after gel electrophoresis. (i:TBSV DNA, ii: TBSV RNA 
transcripts, iii: TRV RNA2.PDS transcripts) 
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Fig 3.4 Hydroxyapatite fractions collected from 14 dpi TRV-infected N. benthamiana 
plants were characterized. A.) Fractions were tested for ribonuclease activity against A.) 
TRV-RNA2.PDS transcripts; 5 µl of each combined fraction (T with a/c ddH20) was 
combined RNA. B.) Test for specificity of RNA degradation, as indicated. 5 µl of each 
combined fraction (T with a/c ddH20 ) was combined with either 2 µl TBSV or TRV 
RNA2  transcripts, prepared in vitro. These fractions and transcripts were then subjected 
to gel electrophoresis, and stained with ethidium bromide.  
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Fig 3.5  siRNA assay for TRV-infected plant tissue extract chromatography fractions. 
Combined fractions indicated, taken from hydroxyapatite chromatography fractions 8 
weeks post infiltration, 2 weeks post infiltration, and the 2 week post infiltration 
hydroxyapatite chromatography fractions 7-13 following Sephacryl S200 column 
chromatography fractions were collected and used for siRNA extraction. Resultant 
samples were then separated by 17% acrylamide, 8 M urea gel electrophoresis, and 
blotted to a nylon membrane for northern detection of TRV-RNA2.PDS. Visible potential 
siRNAs are apparent for fractions containing activity 8 weeks and 2 weeks post 
inoculation following hydroxyapatite fractionation steps, but unapparent following an 
additional gel filtration step.    
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Despite numerous tests, the above summarizes results showing that fractions did 

not display TRV-specific ribonuclease activity, nor were siRNAs detected reliably. It was 

suggested that plants be harvested even earlier in the course of infection. For this 

purpose, tissue from TRV RNA1/RNA2.PDS infected plants was harvested 5-7 dpi, and 

applied to a hydroxyapatite chromatography column. Fractions were tested for 

degradation of RNA this time using total RNA extracted from TRV-infected plants, 

instead of using TRV RNA2.PDS transcripts. Unspecific ribonuclease activity was seen 

beginning in fraction 3 (data not shown). From this fraction to fraction 15, siRNAs were 

extracted, run on a 17% acrylamide SDS-PAGE with 8 M urea, and blotted to a 

membrane to probe with a hybridization probe using a TRV RNA2 vector without a gene 

insert in the MCS. The resultant northern blot showed a clear signal for siRNAs in 

fraction 9 and later fractions (Fig 3.6A), though it is possible that siRNAs are present in 

undetectable levels in earlier fractions. 

These siRNA-containing fractions were then subjected to western blotting with 

antibodies generated against a conserved region of the Ago Piwi domain, which is a 

hallmark of RNAi pathway. Fractions showed several bands (about 130 kDa, 95 kDa, 60 

kDa, 50 kDa, and faint others), with those of an appropriate size (around 100 kDa or 

larger) (Hammond et al., 2001). Beginning around fraction 9, corresponding to the first 

siRNAs detected by northern analysis, the presence of a much smaller band was detected 

(about 17 kDa) (Fig 3.6B).  

To possibly increase specificity, these fractions with detectable siRNAs and 

potential Ago proteins were concentrated and further separated using a Sephacryl S200 

gel column. Fractions were again analyzed with total RNA extracted from TRV-infected 

plants, and northerns probed with TRV RNA2 showed ribonuclease activity in fractions 8 

– 10 (Fig 3.7A), though these same fractions did not degrade TBSV RNA transcripts (Fig 

3.7B). This result verifies that the ribonuclease activity displayed in these fractions is 

virus-specific. The experiment was repeated for another set of TRV- infected plants, 

these were harvested 5 dpi and subjected to hydroxyapatite and gel chromatography. The 

second set of fractions also displays ribonuclease activity for TRV total RNA as 

illustrated by northern blotting, but not for TBSV RNA transcripts, also detected by 

northern blotting (Fig 3.7 C, D). The exact fraction with activity varies between these two  
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Fig. 3.6 Analysis of siRNAs and Ago-associated proteins present in fractions collected 
from hydroxyapatite fractionation of TRV-infected N. benthamiana plants, 5 dpi. A.) 
siRNAs extracted from hydroxyapatite fractions visualized by northern hybridization for 
TRV-RNA2. Arrow indicates siRNAs. B.) Western blot for Piwi domain of Ago protein 
in hydroxyapatite fractions of TRV-infected plant extract. Fractions 9-17, which show 
ribonuclease activity, show a smaller band that might possibly be associated with RISC 
activity. The + lane is a positive control consisting of TBSV crude extract, previously 
demonstrated to have a positive response with the Piwi antibody, which also has the 
smaller band.  
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Fig 3.7 Sephacryl S200 chromatography of TRV hydroxyapatite fractions. Following 
hydroxyapatite chromatography, fractions containing ribonuclease activity and potential 
Ago proteins were subjected to Sephacryl S200 gel filtration to test for activity (A and B 
are from same fractionation, C and D are from corresponding fractions). A.) and C.) 
Fractions were mixed with total RNA from TRV-infected followed by northern 
hybridization with TRV-RNA2.  B.) and D.) Ribonuclease activity with TBSV RNA full 
length transcripts, generated in vitro. C.) Ethidium bromide stained agarose gel, and D.) 
Northern blot probed with TBSV hybridization probe. (Lane T is RNA without addition 
of fractions, lane I (input) consists of hydroxyapatite fractions showing activity and 
presence of siRNAs before S200 chromatography, plus addition of TRV RNA. M is a 
DNA ladder. Lanes 1-18 are S200 fractions with the addition of RNA. Activity against 
TRV seen in different lanes for different fractionations, due to variability in collecting 
fractions following elution. This variability does not affect activity; it only changes the 
fraction number.  
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iterations; this is due to normal column variability and the collection of eluted fractions. 

Protein elution is detected by spectroscopy as fractions are collected, and minor 

variances in the timing lead to differences in fraction number, though not elution profile 

of proteins. 

These results indicate that at early timepoints following infection, a true anti-TRV 

ribonuclease was programmed in virus-infected plants. To obtain additional evidence that 

this ribonuclease acts similarly to that seen in the previous chapter for TBSV, as well as 

to determine how it fits the model RNAi pathway, the fractions containing activity were 

then subjected to a battery of biochemical analyses.  

 

Characterization of TRV-specific ribonuclease activity 

Fractions from gel filtration after hydroxyapatite were tested with differing 

amounts of 100 mM EDTA, to establish the amount of EDTA required for inhibition 

following another chromatography separation step (Fig 3.8A); 10 mM EDTA was 

determined adequate for inhibition of activity. Active fractions were also assayed with 

increasing amounts of total RNA from TRV-infected tissue, to determine how the 

ribonuclease activity would be affected with the addition of more substrate (Fig. 3.8B). 

For this purpose, the standard amount of RNA (1.5 µl RNA) was compared to fractions 

that had 2, 3, and 4 µl of RNA added (a/c ddH2O was added to all reactions to bring the 

total volume to 16 µl). Fractions demonstrating ribonuclease activity continued to target 

TRV RNA2, though to a level proportionate to the amount of RNA added. TRV 

RNA2.PDS transcripts were also added to the fractions alongside total RNA extracted 

from TRV-infected plant tissue. Fraction 9 displayed ribonuclease activity against the in 

vitro generated transcripts, and increased activity against plant-extracted TRV RNA, 

though fraction 8 also degraded plant-extracted TRV RNA, to a lesser extent than 

fraction 9 (Fig 3.8C). TRV RNA I was also degraded, as determined by northern blotting 

(data not shown). 

 Collectively, this and other tests showing that the anti-TRV RISC-like complex is 

active against in vitro and in planta generated TRV RNA in an EDTA and substrate 

dosage dependent manner. 
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Fig. 3.8 Further characterization of ribonuclease activity following S200 and 
hydroxyapatite chromatography of 5 dpi TRV-infected plant tissue. Active fractions (7-
10) were mixed with RNA extracted from plants infected with TRV (all volumes 
standardized with the addition of a/c ddH2O), incubated for 20 min., and visualized by 
northern blotting of the resultant 1% agarose gel. A.) 5 µl of the active fractions were 
tested for inhibition of ribonuclease activity for 1.5 µl RNA with increasing 
concentrations of EDTA, as indicated. Ribonuclease activity is inhibited by addition of 
10 mM EDTA. B.) Five µl of each active fraction was mixed with amount of RNA 
indicated. Ribonuclease activity still functions with the addition of ~1000 ng/ µl RNA, 
though proportionately decreased. C.) Five µl fractions were mix with 1.5 µl RNA from 
TRV-RNA2.PDS transcripts (left), or total RNA extracted from TRV-infected plants 
(right). It is not known what is the significance of the RNA II duplex band.  
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Effects of NaCl on ribonuclease activity for hydroxyapatite fractions with S200 gel 

filtration 

To determine the influence of NaCl on (possibly inhibiting) ribonuclease activity, 

hydroxyapatite fractions with ribonuclease activity were also applied to a Sephacryl S200 

gel filtration column that had been equilibrated with 250 mM NaCl (as added to the 50 

mM Tris buffer, pH 7, used for gel filtration). Fractions were then assayed as described 

above. For detection of ribonucleic activity, fractions were assayed with total RNA 

extracted from TRV-infected plants (Fig 3.9A). Fractions 11 and 12 displayed definite 

activity, though to a lesser extent than fractions collected following gel filtration without 

NaCl, which suggests siRNA dissociation. Intriguingly, when these fractions were 

assayed with total RNA collected from plants infected with TBSV ∆P19 (see Chapter II), 

fractions did demonstrate activity against the TBSV genomic RNA though not against 

subgenomic RNA, a finding that is in agreement with the ribonuclease activity seen for 

Sephacryl S200 fractions after hydroxyapatite chromatography of TBSV-infected plant 

extracts (unpublished data). Moreover, based on the northern blot hybridization data from 

this experiment, it appears that this activity against TBSV gRNA is even more vigorous 

than that observed with the addition of TRV-infected plant total RNA (Fig. 3.9B). 

Fractions, following gel filtration with salt, do not target TBSV RNA full length 

transcripts generated in vitro (data not shown), suggesting that the total RNA extracted 

from infected plant tissue carries with it some element that re-programs the ribonuclease 

activity. These are very exciting observations, and will be addressed in the discussion. 

Considering the strong ribonuclease activity displayed by the NaCl-gel filtration 

fractions 10-12, these were tested for the presence of potential Ago proteins by western 

blotting with antibodies against the Ago Piwi-domain (Fig 3.10A). It was nearly 

impossible to detect any proteins at all in fractions using colorimetric detection with 

alkaline phosphatase, as has been done in previous westerns, though the gel column input 

positive control showed a positive signal. Therefore, a more sensitive assay was 

preformed with secondary antibody conjugated to horseradish peroxidase to detect Piwi-

containing proteins. Positive signals were observed for fractions 10 and 11, estimated to 

represent approximately 90 and 60-80 kDa proteins, when compared to the low weight 

molecular markers by film overlay on the membrane.  
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Fig. 3.9 Ribonuclease test for NaCl gel filtration of TRV hydroxyapatite fractions. 
Fractions containing ribonuclease activity following hydroxyapatite column 
chromatography were fractionated on a Sephacryl S200 gel chromatography column  
equilibrated with 250 mM NaCl, to test for increased specificity of ribonuclease activity 
and potential dissociation of siRNAs. Two µl ( ~250 ng/µl) total RNA was added to 5 µl 
fractions in the presence of an RNase inhibitor, and incubated for 20 min., then separated 
on a 1% agarose gel, and blotted to a nylon membrane for northern blotting. 
A.) Fractions were assayed for TRV ribonuclease activity with the addition of total RNA 
extracted from TRV-infected plants. The resultant northern blot was probed with a TRV-
RNA2 hybridization probe. Fractions 11 and 12 display residual ribonuclease activity.  
B.) Same fractions plus the addition of total RNA extracted from a TBSV P19 deficient-
infected  plant. Northern hybridization using the TSBV P19-deficient cDNA probe. The 
arrows indicate i.) TBSV gRNA; ii.) TBSV sgRNA1; iii.) TBSV sgRNA 2. 
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Fig 3.10 Westerns for NaCl gel filtration of TRV hydroxyapatite fractions. Following 
hydroxyapatite column chromatography fractionation and further protein purification by 
gel filtration with a Sephacryl S200 column with 250 mM NaCl, fractions were  analyzed 
by western blotting with antibodies generated against a conserved region of the Piwi 
domain from Ago. A.) Thirty µl of each fraction (I = input) were boiled with cracking 
buffer and loaded onto 7.5% acrylamide SDS-PAGE gels, then blotted to a nitrocellulose 
membrane for detection of proteins present by western analysis using 
chemiluminescence. Fractions displaying activity (namely, 10, 11 and 12) displayed 
bands, red box indicated region highlighted for B. B.) Bands present for input, and 
Fractions 10 and 11 were enlarged for illustration. C.) Fractions 8-13 were visualized on 
a 5% SDS-PAGE gel with silver staining. 
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To better visualize this, the bands were compared to that seen in the column input 

lane in Fig. 3.10B. These fractions were separated by 5% SDS-PAGE followed by silver 

staining (Fig. 3.10C), showing several likely bands present in the silver stained gel. As 

expected following S200 chromatography, later fractions do not contain larger proteins in 

large quantities (judged by band density), through these do contain ribonuclease activity. 

There are 2-3 bands present in the size (Fig. 3.10C) range corresponding to the bands 

seen with western blotting for a Piwi-domain containing protein (Fig. 3.10B), but most 

likely do not represent this protein as a positive signal required chemiluminescense to 

detect. It is possible that these are proteolyic products of RISC, as was observed for 

Drosophila RISC purifications (Hammond et al., 2001), or components of RISC. It is also 

possible that the ribonuclease proteins are present in quantities undetectable by silver 

staining. 

These fractions displaying activity after hydroxyapatite plus gel filtration with 

NaCl were then tested with the addition of divalent metal cations and 50 mM EDTA (Fig 

3.11). Because TBSV fractions showed an increase in activity following addition of very 

minute amounts of metal ions, these were added to NaCl-gel filtration fractions with 1.5 

mM and 3 mM concentrations of Mg2+ and Mn2+, and then with the addition of these two 

concentrations plus varying concentrations of EDTA to test for re-stimulation of activity. 

Mn2+ appears to enhance ribonuclease activity better than Mg2+, though both enhance 

activity in 3 mM concentrations. Where EDTA, when added to ribonuclease-containing 

fractions in 12.5 mM and 25 mM concentrations, interferes with this RNA degradation, 

the addition of metals seems to refresh activity. Despite the notable ribonuclease activity, 

the presence of potential Ago proteins, and predicted response to the exogenous addition 

of EDTA and divalent metal cations, numerous attempts to detect siRNAs from these 

fractions have failed.  This is likely due to a dilution factor imposed by additional steps of 

column chromatography, and will be addressed in the discussion. 
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Fig 3.11 Further characterization of NaCl gel filtration of TRV hydroxyapatite fractions. 
Characterization assays of ribonuclease activity following hydroxyapatite and Sephacryl 
S200 column chromatography (with 250 mM NaCl). For this, 1.5 µl RNA extracted from 
TRV-infected plants was analyzed in the presence of RNasin and fractions containing 
activity. Fractions 9, 10, 11 and 12  (Fig. 3.9) were combined, and tested with the 
addition of 1.5 mM (1 µl) and 3 mM (2 µl), and for inhibition with 12.5 mM (2 µl) and 25 
mM (4 µl) EDTA. These were also done in combination, to determine if activity could be 
re-stimulated following treatment with EDTA. All were equilibrated to 16 µl with sterile 
ddH2O. 
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Preliminary determination of an anti-viral plant defense response against PMV and 

SPMV 

To test for RNAi-like ribonuclease activity in a monocot-virus system, 2 week old 

Proso millet plants were infected with PMV and SPMV. The infection was allowed to 

establish for about two and half weeks, until systemic chlorotic symptoms were very 

obvious. Extracts from these plants were then applied to a hydroxyapatite 

chromatography column, and fractions were collected following elution via a gradient of 

10 mM to 400 mM, in a manner similar to that done for TBSV- and TRV- infected 

plants. 

For characterization of PMV/SPMV infected tissues, CP for both viruses was 

detected using western blotting (data not shown), showing plants were infected. When 

PMV transcripts, generated in vitro, were added to the fractions, degradation was 

observed (Fig. 3.12) for fractions 11 and beyond. siRNAs were also extracted from these 

fractions, and small PMV/SPMV RNAs seem to be present for fraction 7 and thereafter 

(data not shown). Likewise, when Piwi-containing proteins were detected in fractions 7-

19 with western blotting, these blots displayed a very interesting, very prominent band at 

aboutut 100 kDa, as well as the usual bands around 60 kDa and one at 11 kDa (Fig. 3.13). 

These preliminary tests indicate that in this monocot virus-host model system, an 

antiviral RISC is present potentially with features similar to those described for the dicot 

system. 

 
Discussion 

Based on current literature and work described in the previous chapter for TBSV, 

it was expected that a similar RISC-like anti-viral plant defense response could be 

isolated from TRV and PMV/SPMV -infected plant tissue using column chromatography. 

Properties would include ribonuclease activity against viral RNA, presence of siRNAs, 

inhibition with EDTA and high concentrations of salt, and possibly proteins that correlate 

to those expected for Ago. 
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Fig 3.12 Hydroxyapatite fractions from PMV/SPMV infected plants, tested for 
ribonuclease activity. Five µl fractions were mixed with 2 µl PMV RNA full length RNA 
transcripts generated in vitro, with 1.5 µl a/c ddH20 treated with RNasin. These samples 
were incubated for 20 min., and visualized after electrophoresis on 1% agarose and 
staining with ethidium bromide, and blotting to a nylon membrane for hybridization 
probing with PMV cDNA.  
 
 
 

 
Fig. 3.13 Preliminary characterization of hydroxyapatite fractions from PMV/SPMV-
infected millet plants. Fractions were boiled with cracking buffer, and loaded on 15% 
acrylamide SDS-PAGE gels. These were blotted to a nitrocellulose membrane for 
western detection of a Piwi-containing protein. The blot looks very similar to those seen 
for TRV and TBSV. 
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Early experiments to characterize the RNAi-associated anti-viral response in 

TRV-infected tissue was done using 2 mt. post infiltrated plant tissue, with the thought 

that this tissue, being obviously silenced, would give the best RNAi- associated 

characterization. This was performed using both DEAE as well as hydroxyapatite column 

chromatography; hydroxyapatite chromatography was chosen for use in later experiments  
based on results from results determined in Chapter II. With both types of 

chromatography, fractions contained very intense activity against TRV RNA2.PDS 

transcripts, though these fractions also targeted TBSV RNA transcripts, indicating 

unspecific activity. Also, I was unable to detect siRNAs from these fractions. When these 

results were compared to those seen for TBSV-infected tissue fractions undergoing the 

same chromatography methods (Fig. 2.5B, 2.7A, and 2.9, and (Omarov et al., 2007)), the 

fractions derived from TRV-infected plant extracts contained much more intense 

ribonuclease activity. 

 Several conclusions were reached at that point. The ribonuclease activity was 

unspecific, leading to the thought that potentially other anti-viral pathways might be 

triggered in these plants, as RNAi should be specific for the RNA used to program RISC 

(Fire et al., 1998; Baulcombe, 2004). For example, current literature describes a link 

between the plant defense salicylic acid pathway, usually involved in hypersensitive 

responses, and the RNAi pathway via the Tobacco mosaic virus RNA-dependent RNA 

polymerase. This suggests the possibility that other plant defense response pathways may 

be triggered following a long infection, to degrade viral RNA indiscriminately (Singh et 

al., 2004). In hydroxyapatite fractions from infected plants collected after a prolonged 

infection, it is possible that other plant defense responses are mounted. Plants infected 

with a P19-deficient mutant of TBSV have been shown to eventually ‘clear’ the viral 

infection (Omarov et al., 2006); the infection is much shorter lived, so the RNAi response 

is adequate. Because TRV is introduced into the host plant with agro-infiltration, this 

means that TRV is inserted into the host genome and as such, would be constitutively 

expressed. While typically Agrobacterium-mediated infections are silenced, as these 

obviously are (exhibited by the whitening phenotype), TRV RNA is still produced.  

 Additionally, other recent literature reports that for yeast and Drosophila  RISCs 

induce the formation of P-bodies, discrete foci within the cell. These are not static in size, 



 71

and contain enzymes involved in RNA degradation (Sheth and Parker, 2003; Rossi, 2005; 

Eulalio et al., 2007). It is logical that these P-bodies grow to accommodate the amount of 

RNA being degraded; not only are RISC elements present, but other RNA degradation 

enzymes also accumulate to process RISC targets. Components of these P-bodies might 

co-elute in true RISC-containing fractions following chromatography and demonstrate 

unspecific degradation. It has also been shown that the addition of a high concentration of 

siRNAs leads to unspecific activity (data not shown), but that idea is at odds with the lack 

of siRNA detection. 

Further experiments were designed to take plant material at an earlier time post 

infiltration, before potential stimulation of unspecific ribonucleases or P-body formation 

(Eulalio et al., 2007), and to test for ribonuclease activity with a different TRV RNA 

substrate. Detached leaf assays show that the silencing signal (possibly siRNAs) is 

transmitted into the rest of the plant by 3 dpi (data not shown). Considering this, it was 

hypothesized that RISC was programmed at this time, and these fractions were collected 

at 5 dpi. An additional modification was that ribonuclease activity was tested with TRV 

RNA present in total RNA isolated from infected plants. This was done to address the 

concern that while RISCs loaded with siRNAs targeting PDS, comprising a major part of 

the in vitro transcripts, might be present in infected tissues, it is more likely that a greater 

amount ribonuclease activity will be demonstrated against a larger substrate, the TRV 

RNA itself. Moreover, for TRV, it has recently been shown that siRNAs are produced 

heterogeneously along the full length RNA instead of a particular region of RNA 

(Donaire et al., 2008), and the silencing signal is thought to involve ds-siRNAs (Lecellier 

and Voinnet, 2004). To take advantage of this theory, a hybridization probe against TRV 

RNA2, as a whole, might detect a larger amount of siRNAs (generated against TRV at 

random instead of specifically at the PDS insert). This was tested and performed 

successfully. While fractions tested for activity against total RNA from TRV infected 

plants demonstrated degradation of not only TRV but also ribosomal RNAs (it has been 

shown that RISC is loaded with siRNAs against ribosomal RNA), fractions demonstrated 

the presence of TRV-specific siRNAs. As seen for a TBSV-specific, high molecular 

weight ribonuclease (Omarov et al., 2007), ribonuclease activity co-eluted with siRNAs, 

indicative of a RISC (Baulcombe, 2004). 
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Another hallmark of RISC is the presence of Ago proteins (Hammond et al., 

2001; Song et al., 2004). To determine if these were present, antibodies against a 

conserved region of the Ago-protein Piwi domain were used. Hydroxyapatite fractions, 

collected at 5 dpi, were western blotted to a nitrocellulose membrane and analyzed with 

these antibodies. Bands corresponding to potential Ago proteins were observed. Fractions 

containing both TRV-specific siRNAs and potential Ago proteins were combined, 

concentrated from about 5 ml to 1 ml, and applied to Sephacryl S200 gel filtration 

columns, equilibrated with and without a high concentration of salt. Again, these 

fractions were assayed for TRV-specific ribonuclease activity (Fig 3.7). Specific fractions 

demonstrated ribonuclease activity against total RNA extracted from TRV-infected 

plants, but not TBSV transcripts, indicating the presence of an Ago-protein containing 

high molecular weight TRV-specific RISC-like ribonuclease.  

For fractions applied to a Sephacryl S200 gel filtration column equilibrated with 

250 mM NaCl, total RNA from TRV-infected plants was added to the fractions. These 

fractions exhibited RNase activity in fractions 10, 11, and 12, though to a much 

decreased extent than activity observed against fractions applied to a S200 gel column 

without salt. When TRV RNA2.PDS transcripts were added to these fractions, the 

amount of ribonuclease activity was even lower than that seen for total RNA from TRV-

infected plants, a result that is in agreement with gel-filtration studies done without NaCl 

(Fig. 3.9C). While this might be related to the concentration of the actual TRV RNA 

added, it is also very likely that total RNA extracted from TRV-infected plants brings 

with it several species of RNAs, including siRNAs, while TRV RNA2.PDS transcripts  

are only TRV RNA. To further explore this possibility, total RNA extracted from TBSV-

infected plants was added to these fractions. Ribonuclease activity, apparently directed 

against genomic RNA as determined by Northern blot hybridization, was observed to be 

even more intense than the RNase activity seen for total RNA from TRV-infected tissue. 

When TBSV RNA transcripts were added to these fractions, no ribonuclease activity was 

observed.  

 This has several interesting implications. An early working hypothesis to explain 

this result was that possibly high concentrations of NaCl (250 mM) dissociate the 

siRNAs from RISCs, which were then ‘re-programmed’ by the siRNAs that are 
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presumably brought in by the total RNA extracted from virus-infected plant tissue, due to 

reports that siRNAs associate to the PAZ domain of Ago using base-stacking and ionic 

interactions (Toila and Joshua-Tor, 2007). However, further delving into the literature 

disagrees with this model of siRNA dissociation; other systems report that RISCs 

containing siRNAs can be purified using affinity chromatography and then washing with 

high concentrations of salt (Hammond et al., 2001). Additional reports exist of high salt 

concentrations affecting RISC activity itself as well as the loading of siRNAs onto 

holoRISCs, but having no effect on programmed RISCs once the salt is removed (Rand et 

al., 2004). At this time, it is unclear why exogenous addition of viral RNA present in total 

RNA from virus-infected plants, used at the same concentration as full length RNA 

transcripts generated in vitro, are targeted for degradation whereas the exogenously added 

transcripts remain intact.  

 It is possible that because of the early time point post-infiltration that the samples 

were taken that some tissue was included to which the virus had not yet located, nor the 

postulated RNAi systemic signal had spread (Hannon, 2002). This raises the likelihood 

that the fractions containing loaded RISCs also contain holoRISCs, which can then be 

loaded in vitro with the addition of total RNA from infected plants to result in 

ribonuclease activity against that virus RNA. This might contribute to the effect seen with 

the addition of RNA taken from TBSV-infected plants (Fig. 3.10B). 

Upon viral infection and subsequent generation of anti-viral siRNAs, it is possible 

that these anti-viral siRNAs out-compete endogenous small RNAs to load RISCs, 

eventually saturating the RNAi system. This leads to not only targeting of viral ssRNA 

for degradation, but also unspecific activity against host mRNA, plus perturbation of 

normal host functions usually controlled via miRNA pathways (as all RISCs are loaded 

with siRNAs and not host miRNAs). This is supported by the unspecific activity of 

fractions collect from infected plant tissue following prolonged infection, as well as the 

interesting phenotypes seen in virus-infected younger plants, like severe deformation of 

leaves. It is also possible that there is a timeframe for the amount of RISCs present in 

cells – younger plants have many more RISCs to help regulate cell development, whereas 

older plant cells might have down regulated RISC production - less RISCs mean more 

virus accumulation, and greater infection.  
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 The data presented for monocots infected with PMV and SPMV is still a work in 

progress. It is interesting to note that while fractions demonstrate ribonuclease activity for 

PMV transcripts, activity seems to begin in later fractions than those displaying 

ribonuclease activity for the earliest experiments with TRV. Preliminary data suggests 

that siRNAs are present in fraction 7 and later fractions, also agreeing with data observed 

for TBSV and TRV- originating siRNAs following hydroxyapatite chromatography; this 

suggests that the anti-viral RISC-like plant defense is present across plant species. This 

supports the current theory that RNAi is conserved across kingdoms (Hannon, 2002; 

Baulcombe, 2004). The western blot for Piwi-containing proteins seems to be the most 

promising piece of data for this particular experiment. A distinct band at a little over 100 

kDa is present (Fig 3.13B), which is what would be expected for a plant RISC-associated 

Ago protein (Martinez et al., 2002; Baumberger and Baulcombe, 2005). 

 In summary, it was demonstrated that TRV-infected N. benthamiana plants mount 

an anti-viral RISC-like response, as indicated by: the presence of virus-specific 

ribonuclease activity following hydroxyapatite and Sephacryl S200 gel filtration column 

chromatography; inhibition with EDTA and high concentrations of NaCl; the presence of 

Piwi-containing proteins suggestive of the signature RISC Ago protein; and siRNAs in 

hydroxyapatite fractions with activity. Likewise, hydroxyapatite column chromatography 

of fractions from PMV and SPMV yield fractions containing siRNAs, ribonuclease 

activity, and Piwi-containing proteins.  

 Based on the observations reported above, it seems very likely that the 

ribonuclease activity demonstrated can indeed be attributed to a genuine RNAi RISC 

response. These observations also agree with those shown for corresponding fractions 

taken from TBSV-infected N. benthamiana tissue after column chromatography (Chapter 

II). Therefore, the RISC-like complex shows similar characteristics for different virus-

host combinations. This lends support to a common anti-viral RNAi defense in plants 

irrespective of the particular virus or host, signifying a conserved RNAi pathway as 

denoted by the current model (Baulcombe, 2004). 
. 
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CHAPTER IV 

USE OF SILENCING SUPPRESSORS TO EXTEND AND ENHANCE THE 

LENGTH OF TIME A FOREIGN PROTEIN IS PRODUCED VIA 

AGROBACTERIUM TUMAFACIENS AND A VIRAL VECTOR 

 
Introduction 

Silencing suppressors 

Viruses have evolved mechanisms to overcome or impede the RNAi pathway by 

encoding silencing suppressor proteins (Voinnet et al., 1999), though these proteins often 

have other functions in addition to their roles in silencing suppression, including acting in 

viral movement, as transcriptional activators or replication enhancers (Voinnet, 2005). 

Furthermore, many proteins that are now known as silencing suppressors were previously 

determined to be pathogenicity or virulence factors, as their presence enhance symptom 

severity in viral infections (Brigneti et al., 1998). Suppression of RNAi is a widely used 

manner of host defense evasion, and there are myriad suppressors and modes of action 

(Silhavy and Burgyan, 2004; Voinnet, 2005).  

The veritable arms-race between the host defense proteins and viruses is well 

established with silencing suppressor proteins encoded not only from plant viruses, but 

also animal and insect viruses (Li and Ding, 2006; Hemmes et al., 2007). These silencing 

suppressors have been shown to act at nearly every step of the RNAi model pathway, a 

brief example of suppressors known to act at each step is outlined here (Fig. 4.1).  

Following viral replication, the Flock house virus protein B2 has been shown to bind to 

dsRNA and prevent cleavage by Dicer into 21-nt duplexed siRNAs (Chao et al., 2005) 

(Fig. 4.1B), Other proteins have been shown to target Dicer directly, as seen with HIV  

Tat protein (Bennasser and Jeang, 2006). HcPro is a silencing suppressor encoded by 

potyviruses, and possibly modifies the function of plant Dicer-like enzymes that generate 

duplexed siRNAs (Mlotshwa et al., 2005), as illustrated by the observed accumulation of  
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Fig. 4.1 RNAi silencing suppressors. Suppressors act to inhibit different stages of the 
RNAi pathway. This is illustrated to the right of the figure. A.) The HIV tat protein and 
potyvirus protein HcPro might act to modify Dicer. B.) Flock house virus 2B binds 
dsRNAs, so Dicer is unable to generate siRNAs. C.) Many silencing suppressors bind to 
siRNAs (the tombusvirus protein P19 is pictured), to prevent the loading and activation 
of RISCs. D.) The hordeivirus Barley stripe mosaic virus protein γb binds to ssRNA, 
which might prevent RISC targeting. E.) Proteins like the Cucumber mosaic virus protein 
2b and the P0 protein from poleroviruses inhibit RISC from cleaving by binding to the 
PAZ or Piwi domains. (Original figure provided by Dr. Rustem Omarov; 2b from Chao et 
al, 2005, HcPro from http://www.cib.csic.es/es/ detalle_linea_investigacion.php?idlinea_ 
investigacion=43 ;  P19 from Ye et al, 2003; and γb  based on structure in Rakitina et al, 
2006.) 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2 TBSV vectors expressing GFP. A.) RMJ-1, TBSV with only about 75 nt of the 
CP fused with GFP. B.) RMJ-3 is identical to RMJ-1, except modified so that the P19 
protein is not expressed. (RMJ-1 and RMJ-3 constructed by M. Shamekova)    
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 long dsRNAs in the plant (Fig. 4.1A). However, HcPro has also been shown to associate 

with duplexed siRNAs (Lakatos et al., 2006), indicating that it might also function at that 

step in the RNAi pathway. Multiple silencing suppressors act by binding dsRNA, 

including those shown to work across species (Lakatos et al., 2006). These silencing 

suppressors interact with the siRNAs following generation by Dicer, before the duplex is 

incorporated into the RISC. This method is used by the P19 protein from Tombusviruses, 

where dimers interact with the sugar-phosphate backbone on the siRNAs in a sequence 

unspecific manner to sequester the siRNAs away from RISCs (Fig. 4.1C).  

The  Barley stripe mosaic virus γb protein, from displays a cysteine-rich motif at 

the C-terminal region, to which RNA binding (Donald and Jackson, 1996) and anti-

silencing actions are attributed (Yelina et al., 2002; Bragg and Jackson, 2004). The γb 

protein likely binds in a sequence unspecific manner to ssRNA via a coiled-coiled 

domain with zinc binding sites, to prevent it’s degradation by RISC (Donald and Jackson, 

1996; Rakitina et al., 2006) (Fig. 4.1D).  Other silencing suppressors act on Ago proteins, 

like the Cucumber mosaic virus 2b protein, which has been shown to bind to the interface 

of the Piwi and PAZ domains of Ago to inhibit slicing (Voinnet et al., 2003; Zhang et al., 

2006; Ruiz-Ferrer and Voinnet, 2007) (Fig. 4.1E). Another silencing suppressor that acts 

at this step is the F-box protein P0 from polerovirus, which adds polyubiquitins to 

proteins. This stimulates their degradation by proteosomes, though P0 also seems to act 

in another manner when functioning as a silencing suppressor, targeting the Piwi domain 

of Ago1 and preventing ribonuclease activity (Baumberger et al., 2007; Bortolamiol et 

al., 2007). 

 

Virus vectors 

Traditionally-produced transgenic plants employ genetics to clone in a gene for 

production of a protein. However, this requires a large amount of time and resources. The 

use of Agrobacterium tumafaciens also provides a transient method (as opposed to 

transgenic) for expression of foreign proteins in plants, but limitations for this system 

include the host range for Agrobacterium, public concerns about genetically modified 

organisms (GMOs)  localization of protein expression to only the tissue treated with 
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Agrobacterium, plus occasional loss of expression due to random insertion of the gene 

into the host genome as well as stimulation of RNAi, which promptly silences expression 

of the protein of interest (Ratcliff et al., 2001).  

Viruses provide an extremely efficient manner of expressing foreign proteins in 

plants (Scholthof et al., 2002). Plant virus gene vectors offer a very high level of 

expression potentially for a broad host range, ease of transmission to a large amount of 

plants, quick genetic manipulation, and systemic infections for high levels of protein 

expression. However, limitations involve vector instability and induction of RNAi 

(Scholthof, 2007). This chapter offers a perspective on how to overcome the induction of 

RNAi by viral vectors with the use of viral silencing suppressors, in this case using 

TBSV derived vectors carrying a gfp gene (Fig. 4.2). 

There are several types of strategies to use  viral vectors available, pending 

desired result (Scholthof et al., 2002). These can include the simple insertion of a gene of 

interest into the virus genome, as done best with rod-shaped viruses, as there are space 

constraints associated with icosahedral viruses. To address space constraints, it is 

sometimes possible to delete a viral gene that is dispensable for replication or systemic 

infection in a host, and insert the gene of interest in its place. Epitope display involves 

engineering fusions of gene segments into the cp gene so that the protein(s) of interest are 

displayed to the exterior of the particle (Scholthof et al., 1996). Complementation is used 

for multi-partite viral genomes or helper-virus systems; one genome segment can be used 

for genes required for replication, while another genome segment can carry gene(s) for 

production of the protein(s) of interest. These methods can be used in combination with 

others, like gene replacement and complementation. In all viral vectors, the gene of 

interest is placed behind promoter elements for expression or are expressed as read-

through proteins, with suitable processing elements in place (Scholthof et al., 1996; Qiu 

and Scholthof, 2007).  

It has been shown in several instances that viral vectors stimulate the RNAi 

pathway; indeed, this response is used in many instances to transiently silence host genes 

in plants, as referred to above in the previous chapter on TRV (Liu et al., 2002a; Liu et 

al., 2002b; Burch-Smith et al., 2004). However, viral vectors in plants also provide an 

elegant system for amplification or over-expression of native proteins to discern their 
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effect on the host. Virus vectors also can be used to generate non-native proteins, usually 

for pharmaceutical purposes, recently shown with antibodies, human cytokines, and 

allergens (McCormick et al., 2003; Wagner et al., 2004; Matsuo et al., 2007). These 

therapeutic proteins can be used for oral delivery of the therapeutic proteins, or proteins 

can be recovered from plant tissue for further purification and processing (Matsuo et al., 

2007). Unfortunately, plants do not distinguish between genes to be silenced and proteins 

to be expressed; RNAi is activated in both cases. This often limits the optimal use of 

virus vectors. 

 To avoid the negative effects of silencing, suppressors obviously present a set of 

useful tools. However, they are not without limitation either. As addressed in recent 

studies (Siddiqui et al., 2008), silencing suppressors seem to have different efficiencies in 

inhibiting RNAi. Additionally, certain silencing suppressors affect plant tissue 

development by interfering with miRNA steps (Chapman et al., 2004), particularly those 

suppressors which act by binding small RNAs. To explore the effects that these silencing 

suppressors have on developing plant tissues, experiments were conducted where 6 

suppressors from different virus genera were expressed in different species of Nicotiana 

transgenic plants and the phenotypes were observed. Results indicated that the severity of 

deformation induced by the silencing suppressor varied with the strain of virus from 

which that particular suppressor was isolated, as well as which species of Nicotiana 

served as the host (Siddiqui et al., 2008).  This might be due to the expression strategy of 

the virus normally encoding the suppressor, as hypothesized for TRV, that encodes as 

weak suppressor for infection in meristematic tissue, where a stronger suppressor would 

affect tissue development and subsequent virus dissemination (Martin-Hernandez and 

Baulcombe, 2008). Other explanations include at which step of the RNAi pathway that 

the suppressors act; for instance, if the suppressor binds small RNAs, then miRNA and 

plant developmental pathways would be affected. Furthermore, viruses adapt to different 

hosts in numerous ways, which might also have an impact on involvement in the miRNA 

pathway.  

This has bearing on this work in that the choice of silencing suppressors can have 

a large influence on the host-virus vector model system. By expressing different 
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suppressors transiently instead of transgenically, and separate from the viral genome, 

undesired secondary effects may be minimized. 

To explore the inhibition of RNAi by suppressors for potential use for 

biotechnology, part of this work sought to extend non-native protein production in plants. 

The use of silencing suppressors to extend the length of time that proteins of interest, 

vectored by Agrobacterium tumafaciens, has been the subject of several recent papers 

(Voinnet et al., 1999; Voinnet et al., 2003; Chiba et al., 2005; Scholthof, 2007; Shams-

Bakhsh et al., 2007). Based on this, I hypothesize that by using silencing suppressors 

vectored in by Agrobacterium, proteins of interest carried by viral vectors will also have 

an extended time of expression.  The present study includes the examination of the effect 

of silencing suppressors singly and in combination, on the expression of a co-introduced 

green fluorescent protein (GFP) cDNA. I have used the well-characterized silencing 

suppressors P19 from TBSV, HcPro from the potyvirus Tobacco etch virus (TEV), and 

the γb protein from Barley stripe mosaic virus (BSMV), with the goal of maximizing the 

length of time that GFP is produced either from a co-inoculated T-DNA, or expressed by 

a virus vector. It is hypothesized that as the silencing suppressors act at different steps in 

the RNAi pathway, their use in combination will provide expression of GFP for a longer 

length of time than inoculation with a single silencing suppressor or with GFP alone. 

 

Agrobacterium infiltration 

Agrobacterium tumafaciens (Agrobacterium) is a gram-negative plant bacterium 

that naturally causes uncontrolled proliferation of infected cells in many plants, usually 

resulting in tumors for natural infections. It has been shown to transform many types of 

cells, including fungal and human cell lines (Tzfira and Citovsky, 2006). It acts by 

transferring its DNA (T-DNA, or transfer DNA) into the host genome where it is 

integrated at a random location, and expressed along with host genes using host cell 

machinery. This system can be used to insert any DNA for expression into a plant cell, 

and the result varies depending upon the contents of the T-DNA (Grimsley et al., 1986; 

Tzfira and Citovsky, 2002; Lacroix et al., 2006)  T-DNA plasmids have vir genes, some 

of which are known to induce opines, to enhance the cellular environment for 

proliferation of Agrobacterium, and enzymes for the control of tissue proliferation. These 
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are carried by Ti (tumor-inducing) plasmids. Phenolic compounds and sugars produced 

by wounded cell walls stimulate the Ti plasmid with VirA/VirG 2 component regulatory 

system. T-DNA is excised from the plasmid using a VirD2/VirD1 endonuclease complex, 

generating a ss-T-DNA defined by two borders of 25-bp repeats (Tzfira and Citovsky, 

2002). The T-DNA is then injected into the plant cell using a type IV secretion system 

originating from the bacterium along with other Agrobacterium-related virulence 

proteins. Once the T-DNA is inside the cell, it forms a complex with other 

Agrobacterium virulence proteins that is then imported into the nucleus. On gaining entry 

into the nucleus, the associated virulence proteins are removed from the T-DNA, which is 

then converted to a ds-DNA molecule, and is integrated into the host genome (Lacroix et 

al., 2006; Tzfira and Citovsky, 2006). Because it is the T-DNA 25-nt borders that specify 

integration into the host genome, and not the DNA between them, the DNA that is 

integrated into the host genome can be replaced with DNA for genes of interest very 

successfully (Hooykaas and Schilperoort, 1992). This system can be used to great effect 

for stimulation of RNAi as well as a vector for proteins (Grimsley et al., 1986; Ryu et al., 

2004). Agrobacterium carrying the gene of interest can be injected into plants using a 

needle-less syringe (agroinfiltration), integrate into the host genome, and the protein of 

interest will be expressed very quickly, usually within a week.  

The work described in this chapter means to establish if agroinfiltration of 

silencing suppressors can be used singly and in combination to enhance and extend the 

length of time that a foreign gene is transiently expressed, particularly from a viral vector. 

 

Materials and Methods 

Agroinfiltration of N. benthamiana with silencing suppressors and GFP 

The plasmids carrying the silencing suppressors Hc-Pro and γb are pGD binary 

vectors, specifically created to be used with Agrobacterium, modified from the binary 

vector pCAMBIA-1303, with a multiple cloning site downstream of a CaMV 35S 

promoter, and upstream of a nopaline synthase polyA terminal (Goodin et al., 2002; 

Bragg and Jackson, 2004). P19 is expressed from the binary vector pCass4N (provided 

by S. Gowda), a derivative of a PBin19 binary vector. The plasmid carrying the gfp gene 

is 35S-gfp (provided by D. Baulcombe) (Voinnet and Baulcombe, 1997). All of the 
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silencing suppressors are infiltrated into N. benthamiana using the Agrobacterium strain 

EHA, for consistency (Hood et al., 1986). This strain has a less virulent host response 

than C58C1, the strain that was used in the earliest experiments and caused necrosis of 

infiltrated tissue (data not shown).  

To insert the plasmids into Agrobacterium, cell electroporation was used. For this, 

1 µl (about 400 ng/µl)  of each plasmid was mixed with 50 µl of Agrobacterium strain 

EHA, thawed on ice. This mixture was inserted between the metal hubs of a chilled 

GIBCO-BRL electroporation cuvette (Cat. No. 11608-031), and subjected to 

electroporation with a GIBCO-BRL Cell-porator system (LCT) as follows: the chamber 

of the cell-porator system was packed with ice and water, and the loaded cuvette set in 

the tray. The cover was fastened, and settings adjusted to a capacitance of 330 µF, Low Ω 

DC volts, Fast Charge rate, and the voltage booster set at 4KΩ . Once the machine 

charged up to 400, the cell-porator was armed and cells were electroporated for about 2 

seconds. The cells were then transferred into a 1.5 ml microfuge tube with 1 ml of a 

tryptone/yeast extract containing (LB) broth, and shaken at 28° C for about 2 hours. This 

culture was then centrifuged at 10,000 rpm for one minute, and the supernatant discarded. 

The pellet was plated out onto a kanamycin-containing LB plate, and incubated at 28° 

overnight, or until colonies were established.  

A single colony was added to 3 ml of Kanamycin-containing LB broth, and grown 

to turbidity in a 28° C shaker overnight. Then, 500 µl of this culture were added to 50 ml 

of LB broth containing kanamycin (Kan50), 1 ml of 10 mM MES buffer [2-(4-

Morpholino)-ethanesulfonic acid] and 6.5 µl of wound-inducing 150 mM acetosyringone 

(gallacetophenone 3’-4’-dimethyl ether in DMSO), and incubated at 28° C for at least 12 

hours. The culture was pelleted by centrifugation at 4000 rpm with a Beckman S4180 

rotor, and the supernatant discarded. To re-suspend the pellet, 10 ml of 10 mM MES plus 

10 mM MgCl2 and 150 µl 150 mM acetosyringone were used, and the re-suspension was 

shaken for 20 min. then allowed to incubate at room temperature for at least 8 hours. 

In order to establish that the system was functioning, preliminary experiments 

were arranged so that the silencing suppressors were co-infiltrated with Agrobacterium 

carrying a gfp gene as originally described (Voinnet et al., 2003). This system worked 

very well; once the infection was established and GFP was visible, gene expression was 
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monitored visually. Later experiments refined this system; bacterium concentrations were 

determined by finding the optical density (OD) with spectrophotrometry. ODs of the 

Agrobacterium cultures were found using a 1/10, 1/100, and 1/1000 dilutions of each 

Agrobacterium/silencing suppressor, Agrobacterium/GFP and Agrobacterium strain EHA 

with a Spectronic20 spectrophotometer (Molton Roy). The spectrophotometer was 

calibrated (‘blanked’) with 10 mM MES/MgCl2 at 425 nm, the wavelength appropriate 

for cultures in clear medium, and between each set of samples. Each dilution was then 

plated out on LB plates (Kan50) to establish colony forming units. Once the optical 

densities were known, the cultures were adjusted to the specified OD (0.6 or 0.8) by 

dilution, and these were verified again by spectrophotometry.  

The cultures were then mixed (Table 4.2), and infiltrated into 3 week-old N. 

benthamiana plants. Agrobacterium EHA was added to standardize the amount of 

bacteria infiltrated into a plant; each leaf was infiltrated with 1 ml total of a combination 

of either Agrobacterium with GFP, one of the silencing suppressors, and/or the silencing 

suppressors in combination and the remainder was brought up to volume with the 

untransformed strain EHA. This was to ensure that expression did not vary due to amount 

of bacteria infiltrated into the leaf, which might alter the resultant amount of protein 

expression. Infiltration occurred by filling a needle-less syringe with the mixed cultures 

and carefully injecting 1 ml of the cultures into the underside of the leaf (once on each 

side of the leaf mid-rib). This was typically sufficient to infiltrate an entire leaf. 

 

Verification of protein expression by western blotting 

Expression of the silencing suppressors and GFP was verified with western blots 

following extraction of proteins on days 3 and 12 following infiltration. For this, areas 

infiltrated with GFP/silencing suppressor Agrobacterium (1-cm2) sections were removed 

with a razor blade. These sections were homogenized in 300 µl 2X STE+1% SDS (2 mM 

Tris, 20 mM NaCl, 2 nM EDTA, and 1% SDS) with chilled mortars and pestles. Then, 

200 µl of the crude extract was then added to 1.5 microfuge tubes containing 60 µl 5X 

cracking buffer, and boiled for 3 min. These samples were centrifuged for 1 min. at 10K 

rpm to pellet cellular debris, and 30 µl of each sample was loaded onto a 15 % SDS-poly 

acrylamide gel (gel consisting of 5ml 30% acrylamide stock, 2 ml water, 3.8 ml 1.5 Tris 
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pH 8.8, 100 µl 10% ammonium persulfate, 100 µl  10% SDS and 30 µl Temed; stacking 

gel with 600 µl 30% acrylamide, 500 µl Tris pH 6.8, 2.7 ml water, 100 µl 10% 

ammonium persulfate, 40 µl 10% SDS, and 3.2 µl Temed), and electrophoreised at 90 

and 120 volts for 2 hours in 1X running buffer (24.8 mM Tris, 192 mM glycine, 3.5 mM 

SDS). The SDS-PAGE gel was then transferred to nitrocellulose membrane (300 mA, 1 

hour), and the membrane was then blocked with 7.5% milk solution ( 7.5 grams skim 

milk power, 1X TBS/Tween-20; 50 mM Tris, 200 mM NaCl, 500 µl Tween-20) for an 

hour. This was then rinsed 3 times for 15 min. apiece with about 20 ml TBS-Tween-20, 

and the primary antibody added (GFP B2 monoclonal antibodies generated in mice, Santa 

Cruz Biotechnology; HcPro generated in rabbits, a gift from M. Goodin; γb generated in 

mice, kindly provided by A. Jackson; and anti-rabbit P19, Scholthof lab) in 1:2,000 

dilutions for at least 2 hours. The secondary antibody in 7.5% milk solution was added to 

each blot following 3 15-min. 20 ml TBS-Tween washes, and the blots were developed 

with BCIP (66 µl)  and NBT (33 µl) in alkaline phosphatate buffer.  

 

Visualization of GFP 

The agro-infiltrated plants were inspected under a UV light for visualization of 

GFP expression, to track the length of time that GFP protein was produced before 

silencing. Pictures were taken of these plants under 488 nm-emitting UV light with a 4 

second exposure, no flash, over a time period of 3 weeks, beginning 3 dpi and occurring 

every second day or until silencing/tissue necrosis occurred. 

 

Infection of N. benthamiana with silencing suppressors and GFP expressed from a  virus 

vector. 

Later experiments involved the use of TBSV-based virus vectors carrying gfp 

instead of the Agrobacterium-vectored gfp. The virus vector used is a TBSV-GFP 

modified vector, which fuses the 5’ 75 nt of the CP in frame to GFP (Fig. 4.2). This 

vector was modified into two versions, one producing the TBSV silencing suppressor 

P19 (TBSV-RMJ-1, Fig. 4.2A) and the other deficient of P19. 
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Half-leaf assays to examine the effects of the silencing suppressors on the virus vector 

Half-leaf assays were used to compare the TBSV-P19 expressing- and deficient- 

virus vectors. Because it has been shown that agroinfiltrated proteins reach maximum 

expression 3 days post inoculation (Shamekova, unpublished data), 2 leaves (the 2nd and 

3rd true leaves) of 3 wk-old N. benthamiana were inoculated with 1 ml of the silencing 

suppressor/Agrobacterium culture, and allowed to recover for 24 hours before rub-

inoculation of each leaf with TBSV-RMJ1 RNA transcripts on the left half of the leaf, 

and TBSV-RMJ-3 RNA transcripts on the right half of the leaf, with great caution taken 

to not cross the boundary formed by the mid-vein.  RNA transcripts were generated in 

vitro using a Fermentas T7 transcription kit as described in Chapter II. These transcripts 

were then mixed in a 1:4 dilution with cold RNA inoculation buffer (50 mM KH2PO4, 50 

mM Glycine, pH 9.0, 1% celite, 1% bentonite), and each leaf mechanically inoculated 

with 10 µl of each transcript. The recovery time between agro-infiltration and rub-

inoculation was designed to allow for maximum expression of the viral-vector proteins 

and agro-infiltrated silencing suppressors coincidentally.  

About an hour prior to first assaying plants by UV light, the inoculated leaves 

were very carefully rinsed with 5 ml A/C ddH2O (from a squirt bottle), each leaf half 

separately, as celite and bentonite fluoresce as white under UV, and interfere with the 

GFP signal visibility. Leaves were allowed to dry, the plants were assayed visually for 

virus expression by GFP signal under a 488 nm UV-light, and pictures were taken with 4 

second exposures, no flash. Again, initial silencing suppressor protein expression was 

verified by western blotting of extracted proteins with silencing suppressor-specific 

antibodies.  

 

Results 

System set-up 

The earliest experiments were performed for the purpose of determining the best 

experimental design for later experiment iterations. Three week-old N. benthamiana 

plants were infiltrated with Agrobacterium carrying the silencing suppressors and with 

those expressing GFP. Three days were allowed for protein expression to become 

established, and then plants were viewed under a 488 nm black light (data not shown). 
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Later experiments involved the infiltration of the silencing suppressors in 

combination (Table 4.2), along with GFP (Figs. 4.3, 4.4, 4.5). This was repeated twice, 

though the optical density of infiltrated Agrobacterium cultures was adjusted to avoid 

tissue necrosis. The first incarnation was performed with an OD of 1.2. Plants infiltrated 

with multiple silencing suppressors and GFP displayed heavy yellowing and some tissue 

necrosis (Fig. 4.3b). The second set of plants were infiltrated with Agrobacterium 

cultures at ODs of 0.8, and avoided the previous issue in all but the very last days of the 

timecourse (Fig. 4.5). Then, the lower OD was preferred in subsequent experiments. 

 

Table 4.1 Additions of GFP and silencing suppressors, following standardization of 

optical density. 

 GFP* HcPro γb P19 Untransformed 

Agrobacterium

Strain EHA 

GFP only 0.5 ml    1.5ml 

Single suppressors 0.5 ml 0.5 ml   1 ml 

 0.5 ml  0.5 ml  1 ml 

 0.5 ml   0.5 ml 1 ml 

Double 

suppressors 

0.5 ml 0.5 ml 0.5 ml  0.5 ml 

 0.5 ml 0.5 ml  0.5 ml 0.5 ml 

 0.5 ml  0.5 ml 0.5 ml 0.5 ml 

All 0.5 ml 0.5 ml 0.5 ml 0.5 ml  

* for the experiments involving the RMJ virus vectors, Agrobacterium-GFP is omitted. 

 

Additionally, proteins were extracted from these plants co-infiltrated with 

silencing suppressors and Agrobacterium-gfp for western blot analysis, to ensure that 

proteins were being expressed (Fig. 4.4A). This was done an additional time at 12 dpi, to 

see if protein expression might persist (Fig 4.4B). For the proteins tested both times, both 

GFP and P19 seem to be expressed in greater amounts in Fig 4.4B that that seen on the  
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Fig. 4.3 Silencing suppressors infiltrated with high optical density Agrobacterium 
cultures. Three week-old N. benthamiana plants were infiltrated with Agrobacterium- 
mediated GFP and silencing suppressors at an optical density of 1.2, mixed as indicated. 
The plants were then photographed at each time point indicated under a 488nm 
wavelength UV light with a 4 second exposure, no flash, to monitor levels of visible GFP 
expressed. 
 
 A.)The plants in the first column, labeled EHA, are those infiltrated with untransformed 
Agrobacterium, as a negative control. The plants in the second column are those 
infiltrated with 0.125 ml Agrobacterium-gfp per leaf, plus Agrobacterium EHA to ensure 
each leaf was inoculated with 0.5 mls of the culture. The plants in later lanes were 
infiltrated with 0.15 ml Agrobacterium-gfp plus 0.125 ml of one of the silencing 
suppressor cultures. 
 

A 
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Fig. 4.3 Continued 
B.) The plants in the first column, again, are infiltrated with 0.125 ml Agrobacterium-gfp 
per leaf, plus Agrobacterium EHA to ensure each leaf was inoculated with 0.5 ml of the 
culture. The plants in columns 2-4 are infiltrated with 0.125 ml Agrobacterium-gfp, 0.125 
ml each of the other silencing suppressors, and 0.125 Agrobacterium EHA. The plants in 
the 5th column are infiltrated with 0.125 ml Agrobacterium-gfp, and 0.125 ml each of 
Agrobacterium-hcpro, Agrobacterium-p19, and  Agrobacterium-γb. These combinations 
were mixed in this manner to ensure each leaf was infiltrated with 0.5 ml Agrobacterium. 
 
 
 
 
 
 

B 
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Fig 4.4 Western blots from protein extractions of plants infiltrated with high OD cultures 
of Agrobacterium. These were probed with antibodies against the silencing suppressors 
indicated. Centimeter-square sections were taken from 1.2 starting OD infiltrated plant 
tissue, and the proteins extracted by homogenization, boiled with cracking buffer, and 30 
µl of each sample was loaded, along with 3 µl of the low weight protein ladder. These 
westerns were then probed with antibodies against the proteins indication, and visualized 
with alkaline phosphatase reactions. Lanes are marked as follows: M- low molecular 
weight protein marker, A – healthy, B – Agrobacterium EHA, C – Agrobacterium-gfp, D 
- Agrobacterium-gfp and -γb, E – Agrobacterium-gfp and -hcpro, F – Agrobacterium-gfp 
and - p19, G – Agrobacterium- gfp, - p19, -hcpro, H – Agrobacterium-gfp, -p19 and -
hcpro, I – Agrobacterium-gfp, -γb, and –hcp, and J – Agrobacterium-gfp, -hcpro, -p19, 
and γb. For unknown reasons, γb was not detected in the indicated blot. (lane 6) 
A.) These samples were taken from infiltrated plants at 3 dpi. 
B.) These samples were taken 12 dpi, to check for continued protein expression. 
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Fig. 4.5 Silencing suppressors infiltrated with low OD Agrobacterium cultures.  Three 
week-old N. benthamiana plants were infiltrated with Agrobacterium- mediated GFP and 
silencing suppressors at an optical density of 0.8, mixed as indicated. The plants were 
then photographed at each time point indicated under a 488 nm wavelength UV light with 
a 4 second exposure, no flash, to monitor levels of visible GFP expressed. 
 
A.) The plants in the first column, labeled EHA, are those infiltrated with untransformed 
Agrobacterium, as a negative control. The plants in the second column are those 
infiltrated with 0.125 ml Agrobacterium-gfp per leaf, plus Agrobacterium EHA to ensure 
each leaf was inoculated with 0.5 ml of the culture. The plants in the later lanes were 
infiltrated with 0.15 ml Agrobacterium-gfp plus 0.125 ml of one of the silencing 
suppressors. 
 
 

A 
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Fig. 4.5 Continued 
B.) The plants in the first column, again, are infiltrated with 0.125 ml Agrobacterium-gfp 
per leaf, plus Agrobacterium EHA to ensure each leaf was inoculated with 0.5 ml of the 
culture. The plants in columns 2-4 are infiltrated with 0.125 ml Agrobacterium-gfp, 0.125 
mls each of the other silencing suppressors, and 0.125 Agrobacterium EHA. The plants in 
the 5th column are infiltrated with 0.125 ml Agrobacterium-gfp, and 0.125 ml each of 
Agrobacterium-hcpro, Agrobacterium-p19, and  Agrobacterium-γb. These combinations 
were mixed in this manner to ensure each leaf was infiltrated with 0.5 ml Agrobacterium. 
 

 

 

 

 

B 
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prior blot in Fig. 4.4A. This might indicate that as the infection progressed, proteins 

accumulated, which supports the aims of this chapter. For the plant tissue initially 

infiltrated with Agrobacterium with the low OD of 0.8, proteins were extracted at 3 dpi to 

ensure proteins were expressed (Fig. 4.7). 

 

Effect of silencing suppressors on GFP expression as vectored by Agrobacterium. 

For plants infiltrated with Agrobacterium strain EHA alone, slight non-green 

(grayish) fluorescence was seen as the Agrobacterium established a very mild infection, 

usually seen as a slight chlorosis of the infiltrated tissue that progressively becomes more 

yellowed over time. Agrobacterium carrying the gfp gene behind a CaMV 35S promoter 

showed a definite green signal peaking around day 6, and declining thereafter to a level 

nearly indistinguishable from the Agrobacterium strain EHA- infiltrated tissue around 12 

days post inoculation. This was consistent in all repetitions of the experiments, following 

both infiltrations with ODs of 1.2, and 0.8. For each of the silencing suppressors 

infiltrated singly with GFP, the GFP signal was not only enhanced on the 3rd day 

following infiltration, but the length of time that GFP was detected visually was increased 

(Fig. 4.3A), the GFP signal itself enhanced, and the density of the band yielded by 

western blotting with GFP antibodies was more prominent with tissue taken at 12 dpi 

than at 3 dpi (Fig. 4.4). 

The silencing suppressors themselves varied in extension and enhancement of the 

GFP signal (Fig. 4.3A). In general, HcPro and P19 extended the length of time that GFP 

was visible more so than γb, for which extension seemed to peak around 8 days post 

inoculation and then decline. P19 and HcPro took a longer length of time for maximum 

expression of the GFP visual signal, as seen with the timecourse data from plants 

infiltrated with a starting ODs of 0.8 (Fig. 4.5). Agrobacterium-gfp by itself, the 

maximum level of visible GFP expression, did not reach the level of visible signal 

comparable to that oberserved with the co-infiltrated silencing suppressors/GFPs at their 

peak GFP expression. While P19 enhanced the GFP signal to the level of HcPro, it did 

not lengthen the expression of the signal for as long (12 dpi for P19 versus 14 dpi for 

HcPro, Fig. 4.5A).  
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GFP visual expression was monitored for the silencing suppressors infiltrated in 

dual combinations and then all together. Expression was certainly enhanced when 

compared to tissue infiltrated with only Agrobacterium-gfp, as well as certain instances 

with combined suppressors when compared to the suppressors alone. Visual levels of 

GFP expression were comparable at 3, 6, and 8 dpi time points for the silencing 

suppressors expressed in singly, in tandem, and in triplicate, though HcPro- and P19- 

mixtures co-infiltrated with γb gave an enhanced signal at these points when compared to 

HcPro- and P19-  infiltrated with Agrobacterium-gfp alone (Fig 4.3, 4.5). Between 8 and 

12 dpi, the silencing suppressors expressed dually and in triplicate enhanced signals when 

compared to the singly- infiltrated silencing suppressors. For plants infiltrated with a 

higher starting OD (1.2), however, this extended time of protein expression is offset by 

necrosis in the infiltrated tissue (Fig 4.3B, lower rows). What tissue remained intact still 

gave a vivid GFP signal, particularly for the HcPro/P19 combination as well as with all of 

the suppressors co-infiltrated (Fig. 4.3B). For tissue infiltrated with a lower OD (0.8), this 

necrosis was circumvented, as expected (Fig. 4.5B). At 12 dpi, constructs containing 

HcPro seem to exhibit the most obvious GFP signal, though this was diminished by 14 

dpi, when all three silencing suppressors co-infiltrated with Agrobacterium-gfp was the 

most vivid (Fig. 4.5A). This agrees with the hypothesis, and will be addressed in the 

discussion section. 

 

Effect of silencing suppressors on GFP expressed from a virus vector. 

Due to necrosis observed at later time-points when plants were infiltrated with a 

culture OD of 1.2, the starting OD was diluted to 0.8 for plants to be infiltrated with 

Agrobacterium-silencing suppressor constructs followed by inoculation with the virus 

vectors (RMJ-1 and RMJ-3).  Plants infected with only the RMJ-1 and RMJ-3 virus 

vectors displayed differing phenotypes on each of the comparable ½ leaf assays. RMJ-1 

displayed vivid, broad GFP lesions, with the lesions growing in size over time to nearly 

confluence (Fig. 4.6). RMJ-3 yielded very weak GFP-expression lesions under UV light, 

and these lesions decreased in size and intensity until no longer displaying a visible GFP 

signal at 10 dpi, similar to the loss of signal seen with Agrobacterium-gfp (Fig 4.6). The 

resultant phenotypes for Agrobacterium-mediated silencing suppressors inoculated with 
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either form of the viral construct was in agreement. RMJ-1, expressing P19 itself, gives a 

nearly overwhelming GFP signal when inoculated with the silencing suppressors. For 

RMJ-1 half leaf assays, the GFP lesions were larger overall, and the Agrobacterium- 

silencing suppressors had generally the same effect on GFP expression as that 

demonstrated with RMJ-3. There was a slight increase in the amount of necrotic tissue 

present in RMJ-1 assays (compared to RMJ-3). 

  Because RMJ-3 lacks P19 expression, the resultant phenotypes had greater 

variance than those for RMJ-1, and so will be described here in greater detail. RMJ-3 

lesions had a much stronger GFP signal when co-expressed with silencing suppressors 

(Fig. 4.6). While GFP was visible at 3 dpi for the tissues expressing a single silencing 

suppressor, it increased with progression of the time-course. At 3 dpi, the visible GFP 

signal was strongest for plants infiltrated with Agrobacterium-γb, and the lesions 

themselves larger, though this expression was lost by 12 dpi in the plant co-infiltrated 

with that suppressor alone.  For plants infiltrated with Agrobacterium-hcpro, the lesions 

remained vivid in infiltrated tissue through 14 dpi, though there was heavy tissue 

necrosis. Agrobacterium-p19 gave enhanced GFP expression with increasing lesion size 

as the timecourse progressed, and the lesions were similar in appearance to those seen on 

RMJ-1 only inoculated plant. For plants infected with RMJ-3 and combinations of the 

Agrobacterium- silencing suppressors, plants infiltrated with γb in combination with 

another suppressor displayed a visible GFP signal at an earlier time-point, though this 

treatment seemed to display the most tissue necrosis (Fig. 4.6B). The HcPro/P19 

combination and all the silencing suppressors co-expressed gave the most vivid signal 

and largest lesions (Fig 4.6B).  This experiment is currently undergoing more repetitions. 

 

Discussion 

The goal of this work was to extend and enhance the amount of foreign protein 

transiently produced in a plant using RNAi silencing suppressors. The titer and 

expression of transiently expressed proteins has been shown to decrease over time due to 

the silencing of mRNA (Voinnet et al., 2003). The main hypothesis of the present study 

was that as silencing suppressors operate at different steps in the RNAi pathway 

(Mlotshwa et al., 2005; Rakitina et al., 2006; Scholthof, 2006), their combined use allows  
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Fig. 4.6 Agrobacterium-vectored silencing suppressors and virus vectors. TBSV vector 
RMJ-1 (expressing P19) and RMJ-3 (lacking P19 expression) both carry gfp. Three 
week-old N. benthamiana plants were infiltrated with Agrobacterium-mediated GFP and 
silencing suppressors at an optical density of 0.8, mixed as indicated. The plants were 
then photographed at each time point indicated under a 488 nm wavelength UV light with 
a 4 second exposure, no flash, to monitor levels of visible GFP expressed. 
 
A.) The plants in the first column, labeled EHA, are those infiltrated with untransformed 
Agrobacterium, as a negative control. The plants in the second column are those 
inoculated with RMJ-1 on the left half and RMJ-3 on the right half. The plants in the later 
lanes were inoculated with RMJ-1 and RMJ-3 plus 0.125 ml of one of the silencing 
suppressors, plus A. tumafaciens EHA to raise the correct volume each leaf was 
inoculated with to 0.5 ml Agrobacterium culture. 
 
 
 
 

A 
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Fig. 4.6 Continued 
B.) The plants in the first column, labeled EHA, are those infiltrated with untransformed 
Agrobacterium, as a negative control. The plants in columns 2-4 are inoculated with 
RMJ-1 and RMJ-3, plus 0.125 mls each of the other silencing suppressors, and 0.125 
Agrobacterium EHA. The plants in the 5th column are inoculated with 0.125 ml each of 
Agrobacterium-hcpro, Agrobacterium-p19, and  Agrobacterium-γb. These combinations 
were mixed in this manner to ensure each leaf was infiltrated with 0.5 ml Agrobacterium. 
 
 
 

B 
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Fig. 4.7 Western blots from protein extractions of plants infiltrated with low OD cultures 
of Agrobacterium .The blots were probed with antibodies against the silencing 
suppressors indicated. 
Centimeter-square sections were processed as for 4.4. 
 Lanes are marked as follows: M- low molecular weight protein marker,  
A – healthy, B – Agrobacterium EHA, C – Agrobacterium-gfp, D - Agrobacterium-gfp 
and -γb, E – Agrobacterium-gfp and -hcpro, F – Agrobacterium-gfp and - p19, G – 
Agrobacterium- gfp, - p19, -hcpro, H – Agrobacterium-gfp, -p19 and -hcpro, I – 
Agrobacterium-gfp, -γb, and –hcp, and J – Agrobacterium-gfp, -hcpro, -p19, and γb.   
These samples were taken from infiltrated plants 3 dpi, to establish that the proteins were 
being produced at the start of the time course. Proteins were not extracted from later time 
points as their expression was correlated with enhanced and extended virus-vector related 
expression. The western blot for γb displayed only unspecific binding and was not 
shown, though plants infiltrated with the γb culture display evidence of silencing 
suppression (Fig. 4.5-6). 
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GFP to be produced for a longer length of time by synergistic hampering of the pathway 

when this foreign gene is expressed by a virus vector. 
The results are fairly straightforward, and consistent for silencing suppressors 

expressed by Agrobacterium regardless of the GFP source, shown previously for agro-

GFP but here demonstrated successfully for a gfp-TBSV viral vector. Visual signals of 

GFP alone are lost by 8 dpi, and the use of silencing suppressors extends both the length 

of time that these signals are visible, as well as enhancing the amount of GFP expressed 

(Fig. 4.3, 4.5). Agrobacterium-γb seems to enhance GFP expression early in the time-

course. Agrobacterium-p19 and Agrobacterium-hcpro seem to enhance GFP expression 

later in the time-course, and extend the length of time that GFP is produced.  When 

infiltrated in combination, the actions of the silencing suppressors in the RNAi pathway 

complement each other, and the GFP signal is correspondingly affected. For instance, γb 

affects GFP expression earlier in the time-course. This early activity is complemented by 

other suppressors and their action at later time points, resulting in the γb enhanced 

expression extending longer. Furthermore, co-infiltrations involving P19 and HcPro show 

an extended GFP visible signal, though the co-infiltration of HcPro and P19, sans γb, do 

not display as visible a GFP signal at earlier time points as do those in presence of γb. 

The results are consistent with my hypothesis. These silencing suppressors are 

thought to act at different steps in the RNAi pathway; γb is thought to bind to RNA and 

interfere with silencing (Fig. 4.1D), HcPro possibly modifies Dicer and binds to dsRNAs 

(Fig. 4.1A, C), and P19 has been shown to sequester siRNA duplexes before they are 

loaded onto RISC (Fig. 4.1C). In the context of this experiment, the results are semi-

logical. While unexpected, early enhancement of the GFP signal by γb might be caused 

by binding of the silencing suppressor to ssRNA, which would protect it from elements 

of the RNAi pathway. However, while it does enhance the GFP signal, this activity seems 

temporally out of place. Previous characterization of γb suggest that an RNA-binding 

domain contributes to its function as a silencing suppressor (Donald and Jackson, 1996; 

Yelina et al., 2002; Rakitina et al., 2006), as γb has been shown to bind to ssRNA in a 

sequence unspecific manner. This mode of silencing suppression would place it 

downstream of the pathway where P19, which binds dsRNAs, and HcPro, which is 

thought to both bind siRNAs and modify Dicer (Mlotshwa et al., 2005; Lakatos et al., 



 99

2006). The data indicate that γb acts earlier in the pathway than HcPro and P19. This 

might be due more to the known role of this protein as a replication enhancer; it is 

possible that the early enhancement is due to the fact that γb does not have to compete 

with plant proteins and can act immediately upon expression to protect the co-expressed 

ssRNA, and this effect is not seen later in the infection because ssRNA is being targeted 

heavily by RISCs. The later suppression activities by HcPro and P19 might require the 

presence of siRNAs in the cell, and lag of silencing suppression activity, as compared to 

that of γb, would be explained by necessity of siRNAs accumulation, which would take 

more time. The combined synergistic effect of all three silencing suppressors, early in the 

time course, plus extending the length of time that GFP is produced by about a week, 

indicates that the suppressors constitute a valuable addition to transient protein 

expression designs.    

In the design and execution of these experiments, there are several issues to take 

into consideration. It is exceedingly difficult to quantify levels of GFP expression 

visually, and nearly as difficult to accomplish this using other protein-assaying 

techniques while conducting a time-course due to the destruction of the GFP-expressing 

tissue. This study aimed to make conditions for the plants as identical as possible to avoid 

introducing any other outside variables that would interfere with protein expression. This 

was at odds with collection of tissue for western assays, as removal of leaves or 

infiltrated tissue from the plants might stimulate plant defenses that could affect protein 

expression and accumulation. Thus, visualization of GFP and detection of protein levels 

at only 2 points in each experiment seemed the best method to determine extension and 

enhancement of GFP expression. 

Other experimental aspects were at odds during this study. Agrobacterium has 

been shown to elicit a necrotic response in certain hosts, with some hosts more sensitive 

than others to the bacterium. This has been shown for agroinfiltration of tomato, as well 

as members of the Solanaceous species (Wroblewski et al., 2005; Lindbo, 2007). As 

illustrated with varying the starting OD of the infiltrated Agrobacterium constructs, more 

turbid ODs negatively impacted the experiments with the stimulation of leaf chlorosis. 

However, in theory and as determined experimentally based on comparison of GFP 

pictures as well as GFP detection by western blotting, that more Agrobacterium used to 
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infiltrate the plant gave a higher expression of GFP, earlier in the time-course. This 

observation would have resonance based on the reason necessitating protein expression in 

an industrial setting. If the goal is to produce as much protein in a short amount of time, a 

higher infiltration OD would be appropriate. If extension of the length of time that the 

protein is expressed is the objective, I would recommend using a lower infiltration OD to 

avoid negative effects on the infiltrated tissue. These two factors would need to be 

adjusted in each case to best fit needs. 

 Additionally, while plants infiltrated with low starting ODs of the Agrobacterium 

constructs (including GFP) did not display tissue necrosis, the added stress of a virus 

vector rendered a necrotic response in co-infiltrated and rub-inoculated tissues at about 2-

weeks post inoculation. There are several possible reasons for this. It has been shown that 

silencing suppressors interfere with regular RNAi pathways in plants (Chapman et al., 

2004). This might interfere with the way proteins are processed, as mRNAs accumulate 

or regular plant cellular activities are interrupted, or it is possible that the combination 

Agrobacterium/virus infections might trigger an overwhelming defensive response within 

the cell, resulting in necrosis. To counter such a response, this study aimed to minimize 

necrosis by using a less virulent Agrobacterium, as well as diluting the optical density of 

the infiltrate. It may be speculated that the necrosis is a result of harsh inoculation 

practices; however, the entire leaf was rub-inoculated and the only necrotic tissue was in 

areas in which the silencing suppressor and virus-vector were both present, ruling out 

inoculation as the cause of necrosis. 

An observation not addressed above was that plant age seemed to play a role for 

protein expression with agro-infiltration. N. benthamiana that were inoculated 1 week 

later, at 4 weeks, as opposed to 3 wks, did not seem to experience the same amount of 

chlorosis that the 3-wk old plants did following agro-infiltration. However, this is offset 

by the fact that older plants are much less susceptible to infection by a virus (Hull, 2002), 

and their use  in this experiment would be deleterious in that regard. 

Furthermore, silencing suppressors have been shown to act at different 

efficiencies in the RNAi pathway, and interact with potential hosts differently (Voinnet, 

2005; Martin-Hernandez and Baulcombe, 2008). This has implications while comparing 

the response of HcPro and P19. While HcPro seemed to have a enhanced effect of GFP 
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when compared to P19, it is important to consider the toxic effect of P19 in N. 

benthamiana (Chapman et al., 2004; Siddiqui et al., 2008), in addition to the fact that the 

virus vector used expresses P19 as the native silencing suppressor. This may impact 

comparisons of the responses of P19 and HcPro, and so this was avoided here. However,  

it is important to note that HcPro, when used as a heterologous suppressor in a TBSV 

virus vector, acts to enhance foreign protein production as well, if not better, than TBSV 

P19, when both were expressed by agro-infiltration. This is consistent with the roles that 

suppressors work on conserved, virus non-specific steps, and furthermore, that it is 

certain that the use of a heterologous suppressor such as HcPro will not result in a 

recombined, complete virus vector. 

To summarize the main points of this study, silencing suppressors can be used to 

extend and enhance a virus-vectored foreign protein in a plant host. The step at which the 

silencing suppressor works in the RNAi pathway impacts functionality; silencing 

suppressors which bind to dsRNAs or interfere with Ago might have a delayed response 

when compared to silencing suppressors that act in earlier in the RNAi pathway, like 

binding to RNA to prevent cleavage by Dicer.  Other factors to consider include the 

starting optical density of the Agrobacterium culture; a greater starting OD produces a 

greater amount of protein more quickly, but also causes plant physiological issues and 

might impact protein accumulation. A lower starting OD extends the length of time that 

the protein is expressed by avoiding overload of the cell, though the initial amount of 

protein expressed is less. Collectively, the data suggest that early expression of any 

silencing suppressor combination may subsequently improve the performance of viral 

vectors for expression of value-added proteins in plants. 

 

 

 

 

 

 

 



 102

CHAPTER V 

FINAL SUMMARY AND DIRECTIONS 

 
In objective 1, biochemical characterization of an RNAi response against TBSV in 

N. benthamiana, TBSV-infected plant tissue was fractionated by column 

chromatography, and the resultant fractions were tested for anti-viral RNAi 

ribonucleases. These ribonucleases were present in the same fractions as viral siRNAs, 

were inhibited by treatment with EDTA, enhanced by the addition of Mn2+ and Mg2+, and 

stable through further steps of column chromatography. When plants were inoculated 

with wt TBSV encoding a silencing suppressor, activity was inhibited. Additionally, 

ribonuclease activity eluted in Sephacryl S200 gel filtration fractions that would represent 

molecules or moieties of 500 kDa, possibly denoting a protein complex (RISC). The 

results support the model that following viral infection, a RNAi response is triggered 

which subsequently targets TBSV for degradation and eventual virus clearance. 

 Following other methods of column chromatography, individual proteins were 

found to be in the 100 kDa range (perhaps representing Ago). However, after isolation 

and sequencing of proteins after visualization by silver staining, those proteins known to 

be associated with RNAi were not detected. RISC is thought to be a multiple turnover 

complex, thus it would not be unreasonable to attribute difficulty in isolating the 

responsible catalytic proteins to the hypothesis that they are present in such low 

quantities. It was also shown that ribonuclease activity was inhibited by the addition of 

NaCl in work done after the conclusion of this chapter; because siRNAs are known to 

interact with the RISC Ago protein through ionic interactions, this finding was also in 

agreement with the proposed RNAi pathway. 

 To further identify the proteins present that might contribute to RNAi, antibodies 

were generated against a conserved region of the Piwi domain, a domain unique to the 

Ago family of proteins. Fractions displaying RNase activity and siRNAs were also shown 

to contain proteins with a Piwi-domain (unpublished data). Further characterization of the 

RISC proteins might include some sort of antibody-affinity column, or possibly a north-

western (for antibodies and siRNAs) to help directly determine potential proteins. 

Preliminary data indicate that the RISCs can be reloaded with siRNAs, therefore it might 
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be possible to label these siRNAs before they are loaded onto the RISCs perhaps using a 

biotin molecule, crosslink the RNA to the ribonuclease once it associates, then use a 

detection method for the siRNAs to find the proteins responsible. 

 The material presented in the appendix, a description of a novel method of TBSV 

virion purification, is very straightforward. Hydroxyapatite column chromatography was 

used to isolate virions from TBSV-infected N. benthamiana plant tissue as well as TBSV-

infected pepper plant tissue. The true identity of the virions was confirmed by re-

inoculation of N. benthamiana by western blotting with antibodies for the CP of TBSV, 

by northern blotting of both the virions themselves and virion-infected plant tissue with a 

TBSV hybridization probe, and upon electron microscopy of the virions. Exploration of 

this virion purification method might involve the isolation of viruses with different capsid 

morphologies, to see if these also can be purified by this method. Regardless, this is a 

very useful method of isolating virions and maintaining stock for experimental use. 

For objective 2, determination of the antiviral response following infection of N. 

benthamiana with TRV, as well as examination of defense elements present following 

PMV and SPMV infection of monocots, again, the results of these experiments are 

consistent with those seen for TBSV; an anti-viral ribonuclease with RISC-like 

characteristics, targeting only TRV-virus RNA, was isolated. To further clarify the TRV 

studies, it is unknown at this point whether the ribonucleases present in TRV fractions 

following hydroxyapatite and S200 gel filtration with 250 mM NaCl are targeting the 

total RNA from TBSV-infected plants due to the presence of siRNAs brought in with the 

total RNA. This might be resolved by somehow adding only genomic and subgenomic 

TBSV RNA, without small RNA fragments/siRNAs, to the fractions and then observing 

if degradation occurs.  

 Along with this, TRV infections might also stimulate other antiviral defenses, 

which then target and degrade all RNAs. An alternative theory is that the ribonuclease 

present, instead of being programmed with siRNAs against a particular virus, simply 

targets all RNA of a particular size. To support this theory, in many of the experiments 

above, it appears that the ribonuclease seems to prefer TBSV genomic RNA (Fig 2.13B, 

particularly), and for total RNA extracted from plants, ribosomal RNAs around 2000 bp 

are also targeted. Other literature has shown that RISC is programmed with ribosomal 
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RNA in some instances, but it is interesting that the ribonuclease seems to prefer larger 

strands of ssRNA. At this time, it is unknown how RISC finds viral RNA in the cell; the 

target ssRNA might need to be a certain length for recognition, as was also found for the 

anti-TBSV RISC. 

 Other interesting results not addressed in the chapter indicate that it is difficult to 

‘reprogram’ RISCs from TRV-infected tissue with siRNAs purified from the 

fractionation of TBSV-infected plants. This might be due to some sort of modification 

required upon binding to RISC, and following dissociation, these siRNAs can no longer 

re-associate. To address this, viral siRNAs might need to be purified directly from 

infected plants, and used for ‘reprogramming’. 

 It is also hypothesized that TRV produces less siRNAs than does TBSV; TRV 

does not seem to produce nearly as much viral dsRNA intermediates as TBSV. This 

might help explain why detection of siRNAs following gel filtration after hydroxyapatite 

is a challenge. At this time, I suggest this might be due to RNA used as a target for the 

hybridization probe. Current efforts are investigating this by using hybridization probes 

against TRV-RNA1 in addition to TRV-RNA2 to probe these membranes, and finally tie 

siRNAs directly to the fractions containing ribonuclease activity and Piwi-containing 

proteins.  

 The PMV and SPMV-infected plant tissue hydroxyapatite fractions need to be 

subjected to another type of column chromatography, probably gel filtration, to further 

study the anti-viral defense in monocots more in depth. This set of experiments also 

needs to be repeated an additional time. 

 In conclusion, this work further supports the RNAi model that an anti-viral RISC 

is triggered upon virus infection; TRV-infected plant extracts and possibly PMV/SPMV 

infected plant tissues harbor a virus-specific ribonuclease with properties that agree with 

the RISC model.  

In objective 3, determining the effect of silencing suppressors HcPro, P19, and γb 

on the performance of a virus-vectored GFP gene plants, it was found that the silencing 

suppressors did enhance GFP signal and extend the length of time that the signal was 

visible. Furthermore, it was hypothesized that as these silencing suppressors are thought 

to act in different steps of the RNAi pathway, their use in combination would have a 
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synergistic effect. This hypothesis was upheld by the data to an extent; the use of γb 

enhanced the signal earlier in the infection, but did not seem to have any effect of the 

length of time that GFP is produced. HcPro and P19 did not enhance GFP expression 

until later in infection, but co-infection with these extended the length of GFP signal 

visibility by about a week for both the Agrobacterium-vectored GFP, and the RMJ-gfp 

viral vectors. However, plants inoculated with the Agrobacterium-silencing suppressors 

and the virus vectors resulted in necrotic tissue, seen in two iterations of the project. 

Studies are ongoing to examine if the necrotic leaves are due to an overwhelming amount 

of silencing suppressors, or simple damage to the plant. Other projects might examine if 

these silencing suppressors have a similar effect on other foreign proteins. Additionally, it 

was observed that older plants do not display quite the same tissue chlorosis seen for 

younger plants; the age of plants might be adjusted to manipulate the system for maximal 

protein expression. 

In summary, silencing suppressors can be used to enhance and extend the length 

of time a foreign gene is expressed from a virus vector. This has valuable implications for 

use in pharming, and expression of proteins in plants for use in biotechnology. 
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APPENDIX 

TBSV VIRION PURIFICATION BY COLUMN CHROMATOGRAPHY 

  
Introduction 

Tomato bushy stunt virus (TBSV) serves as a common model virus for plant 

systems. It is a single-stranded, positive-sense RNA virus with an iscosahedral capsid 

structure. The particles are reported to be 33 nm in diameter (Hull, 2002; Yamamura and 

Scholthof, 2005). TBSV is also of research importance as it produces the highly effective 

silencing suppressor P19, routinely used in RNAi studies (Scholthof, 2006). Traditional 

methods of purification for Tomato bushy stunt virus (TBSV) and other viruses involve 

isolation of the virions by centrifugation gradients with sucrose and cesium chloride 

(Fields et al., 2007). These protocols are time consuming and require multiple steps. In 

this section, I address the possibility for the use of hydroxyapatite as an alternative to 

purify virions; it is rapid, inexpensive to assemble, and economical as the column media 

can be regenerated for multiple uses.  

Hydroxyapatite is a calcium phosphate ceramic, Ca10(PO4)6(OH)2 (Gagnon et al., 

1996), coincidentally used in the medical field as a biomaterial filler for teeth and bones 

and as a covering to promote growth of bones into prosthetic implants. As a column 

chromatography medium, it separates by a ‘mixed-modes’ or pseudo-affinity means of 

ion exchange. The positively-charged calcium ions and negatively-charged phosphate 

ions allow for interaction with both positively charged amino acids of proteins, and 

negatively charged carbonyls of DNA groups, or carboxylate residues on protein surfaces 

(Schroder et al., 2005). This allows for differential separation via functional group 

electrostatic interactions with the column media, and elution through application of buffer 

with an increasing gradient of phosphates (Gagnon et al., 1996; Schroder et al., 2005). 

Here, a method is reported to quickly purify TBSV and possibly other virions 

from infected plant crude extract following centrifugation and column application. When 

crude plant extract was applied to the column, it is demonstrated that virions comprise the 

only contents of the flowthrough buffer, without further purification steps. These virions 

are present in high concentration and purity, and are suitable for rub inoculation with up 

to a thousand-fold dilution. Resultant infections are identical to those of plants that have 
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been inoculated with TBSV RNA-transcripts, or inoculated with infected tissue. Virion 

purification via hydroxyapatite chromatography may be preferable to other methods in 

that it is more economical than generating RNA-transcripts in vitro, and deleterious 

effects of defective interfering RNAs, seen in passaged TBSV infections (Scholthof et al., 

1995c; White, 1996), are not a concern. 

 
Materials and Methods 

Infection of plants with TBSV. 

Infectious TBSV RNA transcripts were generated in vitro using a Fermentas T7 

transcription kit (1 µl linearized DNA, 16 µl dd-water, 5 µl 5X transcript buffer, 2.5 µl 5 

mM rNTP mix, 2 µl 0.1 mM DTT, 0.25 µl Ribolock RNase inhibitor, and 0.5 µl T7 RNA 

polymerase (Fermentas, Glen Burnie, MD). To confirm transcription, 3 µl of transcripts 

were mixed with 1 µl loading dye and electrophoresied on a 1% agarose gel and stained 

with ethidium bromide. These transcripts were then mixed in a 1:4 dilution with cold 

RNA inoculation buffer (50 mM KH2PO4, 50 mM Glycine, pH 9.0, 1% celite, 1% 

bentonite), and 3 leaves of 3 week-old N. benthamiana plants were rub-inoculated with 

20 µl of the dilution apiece. A week was allowed for establishment of the infection, then 

plant tissue was harvested by grinding upper leaves with 50 ml of 10 mM sodium 

phosphate buffer, pH 6.8, by mortar and pestle. This crude extract was then centrifuged at 

4000 rpm, 4°C, for 20 min. with a Beckman S4180 rotor to remove insoluble proteins. 

The supernatant was filtered through cheesecloth into conical-bottomed tubes, and further 

clarified by centrifugation at 10,000 rpm, 4°C, for 20 min. in a Beckman F0630 rotor, 

and the supernatant placed on ice for application to the column. 

 

Hydroxyapatite column preparation and virion purification 

The chromatographic arrangement involved a 30 x 2.5 cm chromatographic 

column attached to a peristaltic pump for elution purposes. The column was packed with 

40 ml of CHT ceramic hydroxyapatite media (Bio-Rad, Hercules, CA) according to 

manufacturer’s directions, briefly reviewed as follows: 80 ml of 200 mM dibasic sodium 

phosphate buffer was applied to the column, followed by 80 ml 200 mM sodium 

phosphate buffer, pH 6.8, to rapidly lower the pH. A 10 mM sodium phosphate buffer, 
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pH 6.8, was used to equilibrate the column and as running buffer; the column was 

washed extensively (~200 ml) with this buffer before application of the plant extract. 

Once the column was packed, the extract was applied to the column at a flow rate of 

about 1.3 ml/min. Flowthrough containing virions was collected (usually about 50-100 

ml). This preparation was either used immediately to inoculate plants, or frozen at (-) 20° 

C for later use.  

 Additionally, Capsicum annuum (pepper) plants were inoculated with wt TBSV, 

and a small (about 10 ml) hydroxyapatite column was used for chromatography of 5 

grams of plant tissue. The flowthrough was collected, and concentrated using a vacuum 

dehydrator. The concentration of potential virions was determined by staining a 1% 

agarose electrophoresis gel before submitting the sample for electron microscopy. 

 

Verification of virions 

Column flowthrough was used to inoculate three week-old N. benthamiana plants. 

For this, 100 µl of the flowthrough was mixed with RNA inoculation buffer as described 

in Table A.1.  Plants were incubated at room temperature, and checked for infection.  

 

Table A.1 Virion dilution for N. benthamiana plant assays. 

 I Ii Iii iv V 

Virions soln. 0.1 µl 1.0 µl 10 µl 50 µl 100 µl 

Virus 

inoculation  

buffer 

200 µl 199 µl 190 µl 150 µl 100 µl 

 

 

Additionally, flowthrough was inspected by transmission electron microscopy. A 

sample (2 µl) was stained with uranyl acetate, and viewed at high magnification. 

(Electron microscopy performed by E. Ann Ellis, Microscopy and Imaging Center, Texas 

A&M University). 
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Results 

Upon column chromatography of extracts from TBSV ∆P19 infected plants, 

proteins can be visualized as a single band at about 41 kDa with Coomassie and silver 

staining (AgNO3) techniques (Fig. A.1A). Using an antibody generated against TBSV 

CP, western blot analysis (Fig. A.1B) verified the presence of TBSV CP, as well as 

another band around 85 kDa (possibly CP aggregates). Following northern blotting of 

SDS-treated crude extracts and virion-containing column flowthrough (Fig. A.1C), 

hybridization probes specific for TBSV demonstrate the presence of RNA. Additionally, 

a native (whole virus) gel displays the presence of a discrete band in the flowthrough 

column, slightly smaller than that in the crude extracts column, representative of virions 

(Fig. A.1D). 

The column flowthrough was diluted out in 0.25, 0.05, 0.005, and 0.0005 

dilutions (Table A.1), and all were used to rub inoculate 3 week-old N. benthamiana 

plants. Plants infected with virion-containing column flow-through displayed typical 

TBSV symptoms (Fig. A.2), with curled, crinkled upper leaves. Following one week post 

inoculation, all plants showed evidence of infection, indicating a very high concentration. 

To determine if the symptoms present were the result of a true TBSV infection, about 0.5 

grams (1 leaf) infected tissue was removed from the plants. RNA was extracted from the 

tissue, and analyzed by northern blotting with a TBSV-specific probe. These northern 

blots from virion-infected plants displayed ample genomic and subgenomic RNA signals 

when probed with a TBSV hybridization probe (Fig. A.3), indicating a TBSV infection 

results upon inoculation of N. benthamiana with the virions purified with hydroxyapatite. 

It is interesting to note that it appears that equal amounts of TBSV RNA are present for 

all dilutions. 

Virions were also visualized with transmission electron microscopy. Following 

staining with uranyl acetate and magnification, spherical virions about 35 nm in size were 

seen isolated from TBSV and TBSV ∆P19 infected plants (Fig. 2.S.4A- B). These were 

present in what appeared to be a high titer, and the sample looked clear of any cellular  
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Fig. A.1 Visualization of TBSV virions. M is Protein ladder, I indicates crude extract 
prior to application to column (the input), F is flow-through elution from column during 
washing with 10 mM sodium phosphate buffer. A.) The single band present in F 
(flowthrough) lane is TBSV coat protein (CP). B.) Western blot probed with antibodies 
against TBSV coat protein. C.) Northern blot hybridization following treatment of 
samples with 10% SDS to disrupt capsid and release nucleic acid, probed for TBSV; D. 
northern blot of a native gel, probed for TBSV. (lines indicate marker size, as denoted on 
the left side, and boxes enclose the ~ 41 kDa CP bands). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2 Virion-inoculated N. benthamiana.  N. benthamiana inoculated with a thousand-
fold dilution of hydroxyapatite column flowthrough containing only virions for a TBSV 
19-defective mutant. Infection demonstrates typical TBSV symptoms for the TBSV 
mutant. 
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                        i    ii    iii   iv   v                                                   i    ii    iii   iv   v  
 
Fig. A.3 Blots from plants infected with dilutions of the virions. These were assayed for 
A.) TBSV RNA (indicated as genomic or subgenomic) by a northern blot with a 
hybridization probe for TBSV, and B.) CP with a western blot. Dilutions of virions are i.) 
0.1 / 200; ii.) 1/200; iii.) 1/20; iv.) 0.25; and v.) 0.5.  
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Fig. A.4 Virions visualized by electron microscopy. A.) wt TBSV virions and B.) TBSV 
∆ P19 virions, isolated from N. benthamiana. C.) wt TBSV virions isolated from C. 
annuum (pepper) plants, and concentrated prior to visualization. (Bar indicates approx. 
size of 100 nm) . 
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Slightly smaller virions, ~33 nm in size, were found in the flowthrough of wt TBSV 

infected peppers plants (Fig. 2.S.4C). These virions were present in a much more dilute 

quantity, and required concentration by vacuum centrifugation before visualization. The 

sample from infected pepper tissue also contains what appears to be slight cellular debris, 

most likely due to the necessary concentration, or possibly effects of a different host on 

hydroxyapatite chromatography.  

 

Discussion 

 This set of experiments was performed following the observation of a discrete 

protein band for about 42 kDa in the flowthrough of TBSV-infected plant tissue crude 

extract after hydroxyapatite chromatography. Following silver staining, northern blotting, 

and detection of CP with western blotting, it was shown that the protein band represents 

CP and that the flowthough contains complete virions. However, following a native 

whole gel analysis by northern blotting, the flowthrough bands were smaller than  

that observed for the crude plant extract; this might be interpreted as the virions not being 

associated with any cellular elements after purification. 

 Based on EM visualization, it appears that the method yields a remarkably pure 

isolation of virions, eliminating need of further purification steps. This method also 

works for various TBSV mutants in the lab, provided that they form complete virions. 

One of the few limitations to this method of virion purification seem to be due to storage. 

It has been observed that following several rounds of thawing and refreezing, virions 

stored at - 20°C lose infectivity. This is most likely due to the damage associated with 

freezing and thawing, and virions viewed by EM seem to exhibit capsid damage. 

Different methods of storage are recommended, such as in a 25% glycerol buffer.  

Tissue from proso millet (Panicum miliaceum L.) plants infected with a 

PMV/SPMV mixed infection were also subjected to hydroxyapatite column 

chromatography, and the flowthrough was examined for the presence of virions. Virions 

were not detected in the flowthrough (data not shown). There are several possible 

explanations for this; virions might be associated with different cellular components, and 

not as easily purified by grinding tissue. There might be less virions present, leading to 

undetectable amount by staining. To test this, these samples would need to be inoculated 
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on proso millet, and see if an infection is established. Alternately, the flowthrough could 

be concentrated, and re-assayed. 

Additionally, to further explore if virions can only be purified in this manner due 

to host specificity, a 2 week-old pepper plant was inoculated with TBSV. Following 

establishment of infection, extract from the upper leaves was subjected to column 

chromatography. There appears to be a band present at about the correct size after 

staining with ethidium bromide (data not shown), and electron microscopy was done to 

further verify that virions were present (Fig. 2.S.4). The presence of virions in 

flowthrough from pepper indicate that this method of TBSV virion purification is not 

host specific. This might imply that it is possible to purify virions in this manner for other 

icosahedral viruses of a similar size. Future experiments to develop this method of virion 

purification would include purifying virions from plant tissue infected with viruses that 

have differently shaped capsids; ideal for this would be Tobacco mosaic virus with a rigid 

rod shape, or the flexuous rod-shaped Potato virus X, as well as possibly determining if 

viruses can be purified for insect or animal systems. 

The concept of using hydroxyapatite to isolate virions from infected plant tissue is 

not necessarily that surprising; Tobacco mosaic virus was originally purified from 

infected plant tissue using porcelain filters (Zaitlin, 1998), and hydroxyapatite medium 

forms a ceramic column. However, cellular debris is removed by centrifugation before 

column application, and all other cellular and unassociated viral elements most likely 

remain bound to the mixed affinity matrix of the column before elution with a higher 

concentration of sodium phosphate, leaving only virions to pass through. 

 The size difference between virions isolated from the tissues of different plants 

(Fig. 2.S.4) might be due to swelling of the virus particle. This has been observed upon 

removal of divalent cations like calcium from the particles of several different viruses, 

such as Brome mosaic virus, Turnip crinkle virus, and Cowpea chlorotic mottle virus, 

(Heaton, 1992). It is reasonable to assume something similar might occur during 

purification (as illustrated in the differences between band sizes as observed in Fig. 

2.S.1.D, with a native gel assay). However, this has no bearing on infectivity, as seen in 

Fig. 2.S.2. 
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In conclusion, this report shows that TBSV virions can be quickly and simply 

purified from infected plant tissue using a hydroxyapatite chromatography column. 

Following centrifugation to remove insoluble plant tissue, crude plant extract can be 

applied to a column, and virions are present in the flowthrough wash. This produces a 

clear source of inoculum that might be preferable to current methods. For instance, 

sucrose density centrifugation is time consuming and requires multiple steps, the in vitro 

generation of TBSV RNA transcripts using T7 polymerase is expensive, and using crude 

extract from infected plants has detrimental effects to the infection due to the co-infection 

with TBSV DIs (Scholthof et al., 1995c; White, 1996). The method reported here yields 

virions that are the correct size and morphology, and are readily infectious, and therefore 

provides a rapid, inexpensive, and reliable alternative. 
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