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ABSTRACT 

 

Intraspecific Gene Flow and Vector Competence among Periplaneta americana 

Cockroaches (Blattodea: Blattidae) in Central Texas. (August 2008) 

Jennifer Lynne Pechal, B.S., Sam Houston State University 

Co-Chairs of Advisory Committee: Dr. Roger E. Gold 
                                                                    Dr. Jeffery K. Tomberlin 

 

One of the most overlooked areas in forensic entomology is urban, which applies 

to insects and their arthropod relatives that have interactions with humans, their 

associated structures, and companion animals. American cockroaches, Periplaneta 

americana (L.), are common pests of urban environments. Analyzing spatial distribution 

of P. americana populations in an artificial, outdoor environment provided insight of 

gene flow among populations collected in central Texas. This information provides for a 

better understanding of how and if populations were segregated, or if there was a single 

unified population. Populations can be genetically differentiated through determining 

variation of specific gene regions within populations. This study revealed a ubiquitous 

distribution of cockroach populations, and their ability to indiscriminately inhabit areas 

within an urban environment. Overall, cockroaches were identified from a large 

interbreeding population with no discernable relationship between genetic variation of P. 

americana and spatial distribution.  

Identifying cockroach populations is relative to understanding the ability of 

surrogate species indirectly affecting man by their ability to transfer disease-causing 
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organisms including bacteria. This may have potentially deleterious health consequences 

on animal and/or human populations. There are several pathogens associated with 

cockroaches which are overlooked during diagnosis of sudden ailments with symptoms 

being similar to food-borne illnesses, including abdominal cramping, diarrhea, nausea, 

and fever. Analyzing spatial distributions of Escherichia coli and Campylobacter spp. in 

relationship to collected cockroaches allowed for prevalence of bacteria species to be 

identified among populations. The prevalence of bacteria isolated from total populations 

collected indicated a high prevalence (92.3%) of bacteria carried by the exoskeleton of 

P. americana. Gram-negative bacteria acquisition and dissemination of organisms such 

as E. coli was prevalent on campus. Screening for E. coli 1057:H7 and Campylobacter 

spp. resulted in no positive colony growth. The lack of Campylobacter spp. growth from 

cuticular surfaces may have resulted from undesirable conditions required to sustain 

colony growth. Data from this study corroborates the potential ability of cockroaches to 

mechanically transmit pathogens.  
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CHAPTER I 

 

INTRODUCTION AND LITERATURE REVIEW  

 

Forensic entomology is the study of insects and other arthropods as they pertain 

to legal proceedings. First documented in 13th century China, insects were used to 

identify a murderer whom committed a crime near a rice field. Ecological succession 

studies of forensically important species (i.e. Diptera: Calliphoridae) have been 

conducted since the mid 19th century (Benecke 2001). Species specific biology, ecology, 

and development data are vital pieces of information used throughout litigations.  

Forensic entomology can be categorized into three areas, medical-legal, stored 

products, and urban (Smith 1986). One of the most overlooked areas in forensic 

entomology is urban, which applies to insects and their arthropod relatives that have 

interactions with humans, their associated structures, and companion animals. Formosan 

termites (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae) have been 

estimated to cost the Southern United States $1 billion/year (Pimentel et al. 2005). Red 

imported fire ants (Solenopsis invicta Buren) (Hymenoptera: Formicidae) have an 

estimated $300 million/year in damage with an additional $200 million/year allocated  

for control in Texas (Pimentel et al. 2005). Insects from Blattodea, Hymenoptera,  

 

_________________ 
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Coleoptera, and Isoptera are economically important in urban environments. 

 Damage caused by urban pests is difficult to assess because of additional costs 

incurred that are not included with pest control treatment estimates. Controlling 

economically damaging urban pests is a multi-billion dollar industry. One of the more 

important urban insects is the cockroach (Order: Blattodea) which resides both in and 

around homes.  

 

Cockroach Biology 

Approximately 4,000 cockroach species have been described world-wide 

(Yilmaz et al. 2004, Triplehorn et al. 2005). Cockroaches, as do termites (Order: 

Isoptera) date back 350-400 million years (Grimaldi and Engel 2005). The fossil record 

places these two groups back to approximately the same era (Thorne et al. 2000). 

Molecular work by Grandcolas and D’Haese (2001) determined that the order Isoptera 

may be a sister group to the order Blattodea. Inward et al. (2007) supported the previous 

study and have proposed termites as a clade within the primitive cockroach family, 

Cryptocercidae; thus, identifying Cryptocercus as a sister group to termites. The 

relatedness of these two groups could allow genetic information known about termites to 

be applied to the study of molecular variation of cockroaches. 

Cockroach habitats are typically tropical; however, they can survive in 

subtropical and cooler zones so long as they remain indoors or are closely associated 

with humans. Cockroaches are gregarious insects that can reside in large numbers in 

small spaces within urban environments. Cockroaches have a paurometabolous 
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metamorphosis consisting of three stages, which are the egg, nymph, and adult. Food is 

essential for survival. An immature cockroach can survive approximately 10 d without 

food, while adults have been documented to last up to six weeks (Baumholtz et al. 

1997). Moisture is also instrumental in the longevity of cockroaches, regardless of 

developmental stage. Adult cockroaches, depending on species, will die in one to four 

weeks without water. In contrast, they can live at least a year when adequate moisture is 

present (Baumholtz et al. 1997).  

Cockroaches have omnivorous feeding behaviors and are indiscriminate towards 

sources of potential nutrients. They have been found to feed on feces, blood, and other 

fluids excreted by humans, prior to contacting human food thus raising concerns of 

deleterious health consequences for humans (Le Guyader et al. 1989). Cockroaches have 

been found to feed directly on human tissue as documented with incidences involving 

neglected and abused children (Denic et al. 1997).  

Determining areas with high cockroach densities is medically important because 

of resulting health problems. Human hypersensitivities to cuticular artifacts and bites 

from cockroaches are associated with high infestation rates, as well as being 

instrumental in the vectoring of disease-causing pathogens (Brenner 2002). Asthma costs 

Americans approximately $12.7 billion annually (Gore and Schal 2007). Cockroach 

allergies related to skin and lung irritations are problems in low-income housing areas 

(Baumholtz 1997, Rauh et al. 2002). Allergens produced by cockroaches may lead to 

broad class allergies to crabs, dust-mites, lobsters, and shrimp (Brenner 2002). Also, in 
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homes with cockroach infestations, allergens are up to fifty times greater in the kitchen 

than in any other area of the house (Yin et al. 2001).  

Non-physiological ailments may result from the presence of cockroaches. 

Psychological effects, including but not limited to phobia(s), social stigmas implying a 

lack of sanitation, and general anxiety may result from the presence of cockroaches 

(Rivault et al. 1994).  Also, these insects are closely associated with animals which may 

be infected with medically important pathogens; Blattella germanica (Linnæus) 

(Blattodea: Blatteridae) have been found to harbor pathogens in swine production 

facilities (Lee et al. 2003, Zurek and Schal 2004).  

American cockroaches, Periplaneta americana (L.) (Blattodea: Blattidae), are 

considered pests of urban structures (Benson and Zungoli 1997). These cockroaches are 

approximately 3.8 cm long with red-brown wings with light markings on their 

pronontum and thorax. The female produces an egg case (ootheca) with 6-14 eggs in 

parallel rows. A single female has the potential to produce between 210-1440 offspring. 

Oothecas are generally hidden in crevices in areas neighboring their foraging and shelter 

locations. Development to complete maturity for P. americana can take over a year with 

13 molts. American cockroaches can live between two and four years under favorable 

conditions (Benson and Zungoli 1997).  Periplaneta americana reside in moist climates 

and may have population surges after heavy rains (Benson and Zungoli 1997). 

Temperature plays a role in their activity level. Previous studies indicate cockroaches are 

suited for 28oC, with a minimum threshold of 10–15oC and a maximum threshold of 33–

35oC (Murphy and Heath 1983, Baumholtz et al. 1997).  
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Population Molecular Analyses 

 Molecular techniques can be used to identify insect species. Polymerase chain 

reactions (PCR) use a primer to selectively amplify a targeted sequence of DNA, which 

can act as a species-specific marker used for identifications. Amplification length and 

rate of success are based on quality and quantity of DNA extracted. Rates of PCR 

amplification dropped by 91% when medium-length sequences (300-400 bp) were 

amplified, versus short-length sequences (100-200 bp) (Franzten et al. 1998). Genetic 

material primed for amplification may undergo damage, degradation, or are completely 

unable to replicate during PCR due to small template DNA size, oxidative damage, 

and/or enzymatic breakdown of the sample (Taberlet et al. 1996, Franzten et al. 1998). 

Eukaryotic ribosomal RNA (rRNA) is arranged with genes being separated by internal 

transcribed spacer (ITS) regions, and non-transcribed spacer (NTS) regions. Genes 

usually occur in tandem repeating units and have NTS regions between repeating 

segments of RNA, while ITS regions separate genes within each unit. Despite looking at 

the lesser of the two variable spacer regions, ITS regions still can provide an ample 

amount of variation to reveal a relatively moderate level of gene flow amongst the given 

cockroach population in central Texas (Mukha et al. 2007). 

Defining a population depends on several factors such as spatial distribution, 

structures from which collections were made, ecological niches occupied by a 

population or the general bias of the collector(s) may contribute to the definition of a 

given “population.” Populations can also be distinguished genetically by analyzing 

allelic frequencies present in varying populations. Hypothetically, genetic variability 
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decreases in populations secluded from other populations (Cloarec et al. 1999). In 

regards to cockroaches, isolated populations may have limited gene fluctuation because 

of minimal migration from outside populations contributed minimally to an isolated, 

non-diverse gene pool (Mukha et al. 2007).  

Only a few cockroaches are needed to establish a new population in a given area. 

Mukha et al. (2007) studied B. germanica and identified three cockroach populations 

with substantial genetic differentiation, hence, isolated populations, separated between 

15 and 115 km. Conversely, Cloarec et al. (1999) demonstrated limited genetic variation 

between B. germanica populations in two French cities (Rennes and Sète) approximately 

900 km apart by analyzing isoenzymatic genetic markers. Previous studies are 

inconclusive as to whether or not populations analyzed over distances are homologous.  

Cockroaches can passively and actively disperse to new locales (Jobet et al. 

2000). Active movement appears to be confined to temperate climate zones when 

alternative ideal habitats are within close proximity (Cloarec et al. 1999). Schoof and 

Siverly (1954) indicated a lack of dispersal among P. americana populations through the 

sewer system in Phoenix, Arizona, USA. The inability to disperse may have resulted 

from sewer systems providing an ideal habitat for cockroaches, including ample amounts 

of water, food availability, and shelter. It appears that when the requisites for life are 

fulfilled the necessity to actively disperse reduces.  

Genetic variation among dispersing populations may result from various genetic 

events. Such factors include genetic drift, founder effects, natural selection, migration, 

and gene flow (Jobet et al. 2000). Founder effects are thought to occur more frequently 
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in cockroach populations because of their ability to establish new populations with a 

limited number of individuals (Cloarec et al. 1999). Gene flow may be caused by long 

range passive travel, i.e. people moving location to location with boxes and other storage 

materials infested with cockroaches. Cloarec et al. (1999) suggested populations within a 

defined geographical area (i.e. a city) were more homologous than populations compared 

between greater distances (i.e. city to city). This similarity may result from increased 

movement of humans within cities compared to the movement of humans between cities 

and consequently the transfer of cockroaches from one site to the next (Cloarec et al. 

1999).  Populations separated by variable distances retaining similar allelic frequencies 

indicate a homologous correlation between populations, hence, gene flow (Cloareac et 

al. 1999). 

 

Vector Competence of Cockroaches 

Vectors are organisms that are capable of transmitting pathogens (Prescott et al. 

2005). Arthropods are known to transmit medically important pathogens which have 

resulted in numerous diseases world-wide (Mullens and Durden 2002). There has been 

substantial work on the transmission of pathogens by biting arthropods (i.e. Diptera: 

Culicidae), but the role of non-biting arthropods has not been as thoroughly investigated 

(Healing 1995, Tatfeng et al. 2005). Vector competence is the capability of an organism 

(vector) to infect, replicate, and transfer pathogens (Bennett et al. 2002). There are 

several pathogens associated with cockroaches which are overlooked during diagnosis of 
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sudden ailments with symptoms being similar to food-borne illnesses including 

abdominal cramping, diarrhea, nausea, and fever.  

Social insect populations can be distinguished by castes or spatial distribution. A 

structured population can impact the virulence of a pathogen (Fries and Camazine 2001). 

Small population sizes are more likely to carry pathogens with low virulence when 

compared to populations with higher numbers of individuals (Fries and Camazine 2001). 

Gregarious behaviors exhibited by cockroaches may also follow the pattern of reduced 

virulence due to increased pathogen exposure.  

Multiple pathogen transmission routes may occur among populations with 

infected individuals. Vertical transmission occurs when an infected mother passes on the 

pathogen or disease to her progeny (i.e. generation to generation). Horizontal 

transmission occurs within a single generation in which infected individuals pass 

organisms to other members within the same population. In bees (Hymenpotera: 

Apidae), horizontal transmission of pathogens have been found to stem from drift, 

contact between various colonies when foraging, and/or environmental contamination 

such as water (Fries and Camazine 2001). Horizontal transmission has the potential to 

decrease virulence of transferred pathogens (Fries and Camazine 2001). Kopanic et al. 

(1994) determined cockroaches inoculated with a pathogen on their cuticle will transfer 

pathogens by walking on surfaces, regurgitation, or defecation. Horizontal transmission 

has been proven under laboratory conditions. Cockroaches inoculated with Salmonella 

transferred bacteria to uninfected cockroaches confined within the same region (Kopanic 

et al. 1994). The resulting amount of colony forming units transferred to uninfected 
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roaches varied throughout the study (Kopanic et al. 1994). German cockroaches have 

been shown to horizontally transmit Metarhizium anisopliae from contaminated to non-

contaminated cockroaches under laboratory conditions (Quesada-Moraga et al. 2004). 

Vector-borne pathogens appear to be more virulent than directly-transmitted pathogens 

(Fries and Camazine 2001). 

Cockroaches are important carriers of pathogens due to their unsanitary lifestyle. 

Cockroaches breed and forage in sewer systems, septic tank areas, garbage bins, and 

latrine pits (Vythilingam et al. 1997, Mpuchane et al. 2006b). They can then enter urban 

structures through sewage systems, steam tunnels, and manholes. Specimens collected 

near sewer covers had bacteria present on them, thus indicating acquisition through 

foraging in filth laden locations (Barcay 2004). Accessibility to human fecal matter 

within sewer systems can lead to further distribution of bacterial species via cockroaches 

(Schoof and Siverly 1954). Untidy residential areas are prime cockroach habitats 

because of the accessibility of food, water, and shelter. Urban environments are not the 

only areas susceptible to foraging and harborage of cockroaches. Confined animal 

facilities also provide ideal environmental conditions for populations to establish, thus 

creating the potential to spread disease-causing organisms (Fischer et al. 2003).  

 Cockroaches can transmit bacteria, viruses, protozoa, fungi, and helminthes 

resulting in food poisoning and a multitude of infections (Rivault et al. 1994). Bacteria 

accumulation can occur passively through cuticular contact with environmental objects 

in addition to oral ingestion of food sources containing pathogens (Rivault et al. 1994). 

Nymphal and adult stages of P. americana lack substantial titers of bacterial pathogens 
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under controlled settings (Barcay 2004). Le Guyader et al. (1989) displayed bacterial 

fauna similarities between adults and nymphs, thus indicating shared foraging and 

residential locations. Cockroaches can alternatively spread pathogens as their nymphal 

cuticle is ecdysed or as they lose body parts (Mpuchane et al. 2006a).  

Cockroaches have the ability to carry and transmit pathogens both externally and 

internally. There is increased diversity of bacterial fauna in the stomach with declining 

fauna in the intestine, and the least amount of diversity occurring on external surfaces 

(Elgderi et al. 2006). Mpuchane et al. (2006a) determined B. germanica collected from 

kitchens in Botswana had an average bacterial load of log10 5.8-7.4 colony forming 

units. Fischer et al. (2003) indicated a high rate of pathogen transfer during nocturnal 

periods, when the majority of cockroach species are most active.  

There is a positive association between the bacterial fauna of an environment and 

the diversity of bacteria carried by cockroaches (Rivault et al. 1994). Additionally, 

Rivault et al. (1994) determined through mark and recapture experiments, the ability of 

cockroaches to move from floor to floor within an urban structure and from location to 

location within the same building. Population movements within a single structure has 

unknown contamination rates because the vector competence of cockroaches has yet to 

be fully determined. Microorganisms can affect humans in different ways depending on 

inoculating dose and health of the infected person. It may require from one hundred to 

thousands of cells for an adverse reaction to occur (Healing 1995).  

Healing (1995) described pathogen associations of cockroaches studied in 

apartment complexes in Rennes, France. He determined comparable bacterial 
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composition within each apartment, but with low levels of species overlap between 

facilities (Healing 1995). The lack of species complexities could result from cockroaches 

traveling similar routes (i.e. sewers) to different dwellings, resulting in continued 

exposure to microbes already established in various residential areas and their cockroach 

populations. Also, once sufficient food and water sources have been established, 

cockroaches will not seek alternative locations, thus reducing bacterial diversity among 

populations. 

In the Federal Territory of Kuala Lumpur, it was determined that P. americana 

had a higher prevalence of bacterial species than other cockroach species collected 

(Vythilingam et al. 1997). The high rate of prevalence may be indicative of P. 

americana cuticle being more conducive to carrying organisms. An alternative 

explanation might merely be that there were greater P. americana numbers than other 

cockroach species, resulting in a greater frequency of pathogens.  

The decline in incidence of an illness and removal of potential arthropod vectors 

(i.e. cockroaches) from urban establishments indicates the capability of microorganism 

transmission through arthropods. Urban buildings can not be completely protected from 

cockroaches entering the premises, unless a comprehensive pest control program is 

implemented and maintained on a regular basis. Controlling populations and preventing 

future population surges is important in reducing the potential for vectoring pathogens. 

Mechanical exclusion, biological control, sanitation, and chemical controls such as 

pheromones, insect growth regulators, and pesticides can all be used to control 

cockroach populations (Benson and Zungoli 1997). Sanitation is an efficient way to 
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eliminate pest populations because it reduces food and water availability, hence forcing 

the insects to forage other locations for required nutrients.  

A pathogen was once assumed to be viable based on the amount of viable DNA 

present in comparison to the known amount dead DNA within a cell (Jamil et al. 1993). 

Keer and Birch (2003) explained that mRNA was volatile, with a relatively short half-

life, and that mRNA is a better molecular component to use for viability than DNA 

based on mRNA having a shorter half-life. Cells deemed viable had considerably less 

degraded DNA than cells known to be dead (Jamil et al. 1993). Determining a 

pathogenic organism’s viability also requires analyzing the membrane integrity and 

metabolic activity (Keer and Birch 2003). Using the parameters established by Keer and 

Birch (2003) suggested the implementation of several molecular techniques to establish 

the viability of an organism.  

Despite bacteria viability being based upon the amount of RNA present, cell 

death can affect the number and state of cellular components present (Keer and Birch 

2003). There is not a single physiological characteristic which acts as good indicator of 

bacteria viability, and only after several different examination techniques can a proper 

estimate of viability be established (Lisle et al. 1999).  

Colony growth determined by turbidity and/or colony formation is indicative of 

pathogen viability, given proper nutritional conditions. Pathogens unable to be sustained 

on media could be interpreted as negative results. However, non-culturable organisms  

can be possible health concerns, despite not being detected in clinical tests (Keer and 

Birch 2003).  
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Bacterial Pathogens Associated with Cockroaches 

            Cockroaches are known to carry pathogens naturally, as seen in Table 1, but are 

also known to transmit pathogens such as anthrax, cholera, diphtheria, pneumonia, tetanus, 

and tuberculosis (Baumholtz et al. 1997). All of these pathogens can be used as 

bioterrorism agents targeting animal or human populations.  

Barcay (2004) implied that several disease outbreaks world-wide, such as 

dysentery, hepatitis, and gastroenteritis, could be contributed to the spread of pathogens 

through the environment by mechanical transmission of cockroaches. A few medically 

important pathogens that are carried by P. americana include Campylobacter spp., 

Escherichia coli, Salmonella spp., Shigella spp., Staphylococcus spp., Streptococcus 

spp., and a protozoan pathogen, Toxoplasma gondii (Barcay 2004, Graczyk et al. 2005).  

Cockroach cuticle can harbor several gram-negative bacteria in the group 

Enterobacteriaceae (Mpuchane et al. 2006b). Mpuchane et al. (2006b) suggested the 

lack of gram-positive bacteria present on the cuticle could result from cockroach 

secretions that inhibit gram-positive survival. Gram-negative bacteria fauna identified 

from cockroach cuticle are similar for cockroaches collected from hospitals and 

restaurant-type facilities (Elgderi et al. 2006). Fewer bacterial species and lower rates of 

positive prevalence were determined for roaches collected in a residential area (Elgderi 

et al. 2006). Fungi and yeasts (i.e. Aspergillus spp. and Candida spp.) have been found 

on cuticular surfaces of cockroaches collected from intensive care units of a Brazilian 

hospital (Lemos et al. 2006).  
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Table 1 – Naturally occurring pathogens (bacteria, fungi, and parasites) associated 
with cockroaches 

 
Pathogen Classification Species 

Bacteria 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fungus 
 
 
 
 
Parasite 
 
 

Aeromonas spp. 
Campylobacter spp. 
Clostridium perfingus 
Enterobacter spp. 
Escherichia coli 
Klebsiella spp. 
Myobacterium leprae 
Pasterurella pestis 
Psuedomonas aerugionosa 
Salmonella oranienburg 
Salmonella bredengy 
Salmonella typhosa 
Shigella alkalescens 
Staphylococcus aureus 
Staphylococcus. spp. 
Streptococcus spp. 
 
Aspergillus spp. 
Candida spp. 
Penicillium spp. 
Rhizopus spp. 
 
Cyclopsora cayentenensis (oocysts) 
Entomoeba hystolitica (cysts) 
Hammerschmidtiella diesingi 
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Salmonella has been found on American cockroaches with up to 7–10 d after 

initial contact (Schoof and Siverly 1954). Under laboratory conditions, the pronotum of 

P. americana inoculated with Salmonella enterica, serotype Oranienburg, produced 

viable colonies up to 78 d after inoculation (Schoof and Siverly 1954). Salmonella 

oranienburg is also transferred by American cockroach feces to human food sources. 

Detection of the bacteria on food sources can last for several years after initial 

inoculation (Barcay 2004). Many of these pathogens can result in gastroenteritis along 

with other internal and external infections throughout the body, especially in areas with 

open wounds or other environments favorable for bacterial growth (Barcay 2004). It is 

evident that cockroaches provide a route of transmission for various pathogens. 

Specific disease-causing pathogens commonly associated with cockroaches result 

in gastro-intestinal related illnesses. Escherichia coli and Campylobacter spp. 

transmission has been assumed to occur through mechanical transmission by 

cockroaches and result in ailments such as diarrhea, abdominal cramps, and fever 

(Altekruse et al. 1999, Zurek and Schal 2004).  

Campylobacter species. Campylobacter are microphilic, curved, gram-negative, 

non-spore forming motile bacteria (Yan et al. 2005). Campylobacter fetus (formerly 

Vibrio fetus) is differentiated into three subspecies: C. fetus, C. interestinales, and C. 

jejuni (Blaser et al. 1979). The last two subspecies have been detected in humans since 

1947 with increasing annual frequency, but it was not recognized as a human pathogen 

until the early 1970’s (Blaser et al. 1979, Butzler 2004). Laboratory tests perfected in 

1973 differentiated between the three subspecies (Blaser et al. 1979). Campylobacter 
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spp. was not assumed to be a part of normal human bacterial fauna because it had only 

been found in patients displaying symptoms such as diarrhea and fever (Blaser et al. 

1979). A small infective dose makes Campylobacter spp. difficult to isolate as the 

etiological agent for symptoms as common as fever and diarrhea. Campylobacter 

enteritis results from Campylobacter spp. infections and was characterized by diarrhea, 

abdominal cramps, malaise, fever, headache, and has a sudden on-set followed by a short 

duration period (less than a week) (Blaser et al. 1979). In human patients with symptoms 

of diarrhea, C. jejuni has been isolated as the etiological agent more than Shigella spp., 

Salmonella spp, or E. coli 0157:H7 (Blaser et al. 1979, Blaser 1997).  Guillain-Barré 

syndrome, a demyelinating disease resulting in neuromuscular paralysis, pulmonary 

muscle deterioration, and death, has been linked to C. jejuni infections (Blaser 1997, 

Sahin et al. 2002).  

Diseases associated with this microorganism commonly result from ingesting 

undercooked poultry, mishandling raw poultry, and cross-contamination of other 

surfaces (i.e. this bacteria has been found to survive in exposed environments containing 

oxygen on stainless steel and cotton dishtowel surfaces for over an hour), and survived 

in untreated water sources (Yan et at. 2005). Contact with infected children, 

consumption of unpasteurized milk and/or contaminated food products can result in the 

manifestation of symptoms related to C. jejuni infections. Most U.S. citizens become 

infected while traveling to foreign countries (Blaser et. al 1979, Blaser 1997).  

Campylobacter jejuni is enteric in livestock such as cattle, swine, poultry, 

companion animals (i.e. dogs and cats), and wild animals such as rodents and raccoons 
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(Blaser 1997, Sahin et al. 2002). An earlier study indicated a relationship between the 

house fly, Musca domestica (L.) (Diptera: Muscidae), tenebrionid adults and larvae, and 

cockroaches as mechanical vectors of C. jejuni in poultry houses (Sahin et al. 2002). An 

additional link between the pathogen and humans is through cattle, sheep, and other 

livestock which ingest pathogens from contaminated water sources (Blaser et al. 1979). 

Consequently, human interactions with livestock increase the potential risk of 

contamination. 

Similar strains of Campylobacter have also been found to infect humans and 

their companion animals, as evidenced by a Danish girl and her dog having the same 

strain of quinolone-resitant C. jejuni (Damborg et al. 2004). Transmission from humans 

to companion animals is demonstrated by the previous case discussed; however, the 

mode of pathogen transmission remains uncertain. Arthropods may play a vital role in 

the transfer of bacterial pathogens in such instances. Erythromycin is commonly used to 

treat infections with alternatives such as fluoroquinolenes and tetracyclines, but there is 

evidence that the usage of antibiotics in humans and animals used for consumption is 

increasing, hence pathogens are becoming more resistant to such courses of treatments 

(Blaser 1997).  

Campylobacter jejuni is susceptible to oxygen in the atmosphere, which may 

limit grown in moist locations such as livestock feed and water (Sahin et al. 2002). 

Although, once chickens digest Campylobacter spp. and E. coli, the organisms may 

develop in the field better than under ideal laboratory conditions (McGee et al. 2004). 
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Campylobacter spp. colonization increased 10,000 times that of laboratory growth 

following expulsion from the digestive tract of poultry (McGee et al. 2004). 

Escherichia coli. Escherichia coli are gram-negative, rod shaped bacteria with 

specific strains considered important pathogens occurring in humans and veterinary 

settings. The most common cause of enteric colibacillosis in piglets is E. coli (Zurek 

and Schal 2004). In human cases, there are several strains with varying effects ranging 

from mild fevers to hospitalizations and death, depending on the strain acquired. 

Escherichia coli titers in the environment denote the level of fecal contamination (Le 

Guyader et al. 1989, Rivault et al. 1994) Transmission of these organisms can follow an 

unsuspected fecal-oral interaction, such as using a contaminated hand towel and then 

touching food or the mouth area. One E. coli strain has been cited as one of the primary 

causes of Traveler’s diarrhea for individuals visiting foreign countries lacking adequate 

sanitation facilities (Nataro and Kaper 1998).  

Escherichia coli 0157:H7 is a medically important strain initially reported in 

1982. It can cause bloody diarrhea, hemolytic uremic syndrome (HUS), kidney failure, 

and death (McGee et al. 2004).  This strain of E. coli contains genes comparable to the 

Shiga toxin (Tarr 1995).  Escherichia coli 0157:H7 has had reported outbreaks in the 

United States, Great Britain, and Canada with 20,000 infections and 100 deaths in the 

United States (Michino et al. 1999). Mead et al. (1999) estimated 73,480 E. coli 0157:H7 

infections with an additional 61 deaths in the United States.  

Cattle act as a primary reservoir of E. coli 0157:H7 with 2-24% of their fecal 

material contaminated with the pathogen (McGee et al. 2004).  Cattle and other livestock 
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(i.e. turkeys) feces is contaminated with Campylobacter spp. and E. coli 0157:H7. 

Infected fecal material provided a breeding ground for other insects such as filth flies 

(Stomoxys calcitrans (L.) (Diptera: Muscidae), Tabanus spp. (L.) (Diptera: Tanabidae), 

and Hydrotaea aenescens (Wiedemann) (Diptera: Muscidae) to acquire pathogens and 

therefore becoming mechanical vectors (Szalanski et al. 2004). Outbreaks of E. coli 

0157:H7 may result from ingestion of contaminated beef or direct contact with 

contaminated cattle and/or their feces (McGee et al. 2004). The hide of cattle appears to 

harbor several pathogens, including E. coli 0157:H7, which can contaminate the 

carcasses of cattle (McGee et al. 2004). An E. coli 0157:H7 outbreak in Sakai City, 

Osaka, Japan in 1996 involved 9,451 cases with 12 deaths (Michino et al. 1999). The 

demographic of those infected was as follows: elementary school children; individuals at 

child care facilities, nursing homes; an industrial facility; and individuals who ingested a 

commercially prepared box lunch with unknown origins (Michino et al. 1999).  This 

infection was the result of white radishes carrying the pathogen, which correlates with 

other studies indicating a presence of E. coli 0157:H7 on vegetables and fruits (Michino 

et al. 1999). A more recent outbreak occurred from July–October 2007 in 10 states (IL, 

KY, MO, NY, OH, PA, SD, TN, VA, and WI), resulting in 21 reported infections with 

eight hospitalizations and four HUS patients from ingestion of contaminated pepperoni 

on frozen pizza (CDC 2007). 

Cockroaches could be possible mechanical vectors of nosocomial infections, 

especially to patients in neonatal units, intensive care, and who are immunocompromised 

patients (Fotedar et al. 1991, Gliniewick et al. 2003, Elgderi et al. 2006, Salehzadeh et 
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al. 2007). Nosocomial infections may result from pathogens on contaminated food, a 

contaminated water supply, and/or unsanitary facilities, like bathrooms (Lemos et al. 

2006). Supella supellectilium (Serville) have been found to carry opportunistic bacteria 

species such as Enterobacter agglomerans, Escherichia adecarboxylata, Serratia 

marcescens, and Serratia liquefaciens which cause secondary infections in hospitals (Le 

Guyader et al. 1989). Salehzadeh et al. (2007) described hospitals infested with 

cockroaches contained higher bacterial counts than those found residential areas. This 

association of greater rates of bacteria may result from hospital environments being 

more conducive to bacterial acquisition from sources of contaminated water, food, and 

other objects along with safe harborage through contaminated areas. Multiple drug-

resistant bacterial strains of medical importance have been isolated from cockroaches in 

many hospitals (Fotedar et. al 1991, Gliniewick et al. 2003, Elgderi et al. 2006, 

Salehzadeh et al. 2007). Understanding the nature of pathogen transmission from urban 

insect pests to humans could clarify the epidemiology of many unknown illnesses. The 

epidemiology of potentially fatal pathogens needs to be thoroughly examined as they 

relate to cockroaches.   

Determining gene flow among populations collected in central Texas may allow 

for a better understanding of how and if populations are segregated, or if there is a 

single, unified population. Currently, a strong link between urban and forensic 

entomology does not exist. Cases involving abuse or neglect for young children or 

people in full-care facilities would rely on knowledge of both disciplines to successfully 

determine biology, development data, and foraging behaviors of alleged species under 
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investigation. Pathogens are important because they cause medically important 

infections and diseases within populations. Modes of transmission may be important in 

identifying sources and dispersal of pathogens by arthropods.  Analyzing the pathogen 

fauna among cockroach populations collected in central Texas will help establish 

diversity of pathogens carried on their exoskeleton. Also, spatial distribution of bacteria 

species may indicate the origins of pathogens, acquisition by cockroaches, and distances 

cockroaches are capable of spreading viable organisms.  

Therefore, the objectives and hypotheses of this thesis are: 

1. Analyze the gene flow among Periplaneta americana cockroach populations in      

College Station, Texas (central Texas): 

Ho: There is no significant difference in the genetic makeup of field 

collected P. americana samples from discrete sites in central Texas.     

Ha: There is significant and measurable gene flow among field collected 

P. americana samples from discrete sites in central Texas.  

2. Determine the epidemiology and/or spatial relationships of Escherichia coli and 

Campylobacter spp. associated through mechanical transmission by Periplaneta 

americana cockroach specimens in College Station, Texas (central Texas): 

Ho: There is no geographic relationship for bacteria recovered among 

field collected P. americana samples from discrete sites in central 

Texas.  

Ha: There are significant differences in the bacteria fauna among field 

collected P. americana samples from discrete sites in central Texas.  
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CHAPTER II 

 

GENE FLOW AMONG Periplaneta americana (BLATTODEA: Blattidae) IN 

CENTRAL TEXAS 

 

Introduction 

 Molecular techniques can be used to identify insect species. Polymerase chain 

reactions (PCR) use a primer to selectively amplify a targeted sequence of DNA, which 

can act as a species-specific marker used for identifications. Amplification length and 

rate of success are based on quality and quantity of extracted DNA. PCR amplification 

rates dropped by 91% when medium-length sequences (300-400 bp) were amplified, 

versus short-length sequences (100-200 bp) (Franzten et al. 1998). Genetic material 

primed for amplification may undergo damage, degradation, or are completely unable to 

replicate during PCR due to small template DNA size, oxidative damage and/or 

enzymatic breakdown of the sample (Taberlet et al. 1996, Franzten et al. 1998). 

Eukaryotic rRNA is arranged with genes being separated by internal transcribed spacer 

(ITS) regions, and non-transcribed spacer (NTS) regions. Genes usually occur in 

repeating, tandem units and have NTS regions between repeating segments of RNA, 

while ITS regions separate genes within each strand. Despite looking at the lesser of the 

two variable spacer regions, ITS regions still can provide an ample amount of variation 

to reveal a relatively moderate level of gene flow amongst the given cockroach 

population in central Texas (Mukha et al. 2007). 
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Defining a population depends on several factors such as spatial distribution, 

structures from which collections were made, ecological niches occupied by a 

population, or the general bias of the collector(s) may contribute to the definition of a 

“population.” Differences in allelic frequencies may also be used to distinguish 

populations. Hypothetically, genetic variability decreases in populations secluded from 

other populations (Cloarec et al. 1999). In regards to cockroaches (Order: Blattodea), 

isolated populations may have limited gene fluctuation because of minimal migration 

from outside populations contributing to the non-diverse gene pool (Mukha et al. 2007).  

Only a few cockroaches are needed to establish a new population in a given area. 

Mukha et al. (2007) identified three Blattella germanica (Linnæus) (Blattodea: 

Blattidae) populations with substantial genetic differentiation, hence, isolated 

populations separated between 15 and 115 km. In contrast, Cloarec et al. (1999) 

analyzed isoenzymatic genetic markers from B. germanica populations from two French 

cities (Rennes and Sète) approximately 900 km apart and demonstrated limited genetic 

variation. Consequently, due to contrasting results in previous studies it is inconclusive 

as to whether or not populations analyzed over distances are homologous.  

Cockroaches can passively and actively disperse to new locales (Jobet et al. 

2000). Gene flow may be caused by long range passive travel, i.e. people moving 

location to location with boxes and other storage infested with cockroaches. The 

similarity between populations may have resulted from the increased movement of 

humans within cities when compared to the movement of humans between cities and 

consequently increased transfer of cockroaches from one site to the next (Cloarec et al. 
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1999). Active movement appears to be confined to temperate climate zones when 

alternative, ideal habitats are within close proximity (Cloarec et al. 1999). Schoof and 

Siverly (1954) indicated a lack of dispersal among American cockroach, Periplaneta 

americana (L.) (Blattodea: Blattidae), populations through sewer systems in Phoenix, 

Arizona, USA. This inability to disperse may have resulted from the ideal habitat a 

sewer system provided, including ample amounts of water, food, and harborage. It 

appeared that when requisites for life were fulfilled the necessity to actively disperse 

reduced.  

Genetic variation among dispersing populations may result from various genetic 

events. Genetic drift, founder effects, natural selection, migration, and gene flow are 

some factors that might contribute to genetic variation (Jobet et al. 2000). Founder 

effects occur more frequently in cockroach populations due to only required a limited 

number of individuals to establish new populations (Cloarec et al. 1999). Cloarec et al. 

(1999) suggested that populations within a defined geographical area (i.e. a city) were 

more homologous than populations compared between greater distances (i.e. city to 

city).  Populations separated by variable distances retaining similar allelic frequencies 

indicated a homologous correlation between populations, hence, gene flow (Cloareac et 

al. 1999). 

The objective of this study was to determine gene flow among populations 

collected in central Texas. This information may allow for a better understanding of how 

and if populations were segregated, or if there was a single unified population. 
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Materials and Methods 

Sampling Technique for Cockroaches. Periplaneta americana (L.) were 

collected within 50 m of neighboring urban structures in College Station, Texas (Table 

A-1) and investigated for potential gene flow by phylogenetic analysis among the 

collected population(s). Collecting sites on campus were selected from locations with the 

highest cockroach populations based on preliminary trapping.  Once locations were 

established, three collecting containers were placed within a 1.83 m2 square at each 

trapping location. Coordinates of each site were determined with a Gormin eTrex® Vista 

Cx GPS unit (Garmin Ltd., Olathe, KS, USA). Additional samples from other following 

cities in Texas were obtained from the Texas A&M University Insects in Human Society 

(ENTO 322) Student Insect Collection including: Pleasanton, Del Rio, Bryan, and 

Hempstead, Texas. The cockroaches used from the Texas A&M University Insects in 

Human Society Student Insect Collection were preserved by pinning and stored in boxes 

turned by the students. Data points for all cockroaches collected were uploaded to 

Google Earth.  

Containers used for collection were glass mason jars (430 ml) coated with 

Elmer’s Acid Free Craft Bond (© Elmer’s Products, Inc., Columbus, Ohio, USA) and 

rolled in Quickrete® Playsand (Quickrete® International, Inc., Atlanta, GA, USA), 

according to Granovsky (1983). The top 2 cm of the jar opening was lined with H-E-B 

brand petroleum jelly (H-E-B, San Antonio, TX, USA), and baited with approximately 

51.76 ml beer (Miller Brewing Co., Milwaukee, WI, USA) and 7.04 g of H-E-B brand 

white bread (H-E-B, San Antonio, TX, USA) for specimen collections (Barcay 2004). 
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Baited containers were placed in the field immediately after adding the beer/bread 

mixture. Jars were set out prior to dusk and collected from the field after 8-12 h. Once 

jars were collected from the field, cockroaches were stored in the freezer.  

Cockroaches were collected from each jar and stored in individual plastic bags 

(16.5 x 14.9 cm) with up to three plastic bags containing cockroaches from each site. 

Collected specimens were stored in a freezer at -20oC until further analyses were 

conducted. This method should not negatively influence bacterial colony (Szalanski et 

al. 2004). 

Molecular Analysis. Molecular probes were used to identify different 

haplotypes within each cockroach sample. The hind femur from each specimen was used 

for genetic analysis. The specific region providing the greatest amount of information 

about the genetic flow involved the ITS1 region which is located between the 18S and 

5.8S gene. Fragments of both the 18S and 5.8S gene, and the entire IST1 region made-up 

the probe in identification of individuals and their genetic composition from the 

provided specimens and has been demonstrated in recent studies (Mukta et al. 2007). 

A 562-bp section of the nuclear 3’ portion of 18S rDNA, all of ITS1 region, and 

the 5’ portion of 5.8S was amplified with the primers rDNA2 (5’-

TTGATTACGTCCCTGCCCTTT-3’) and rDNA 1.58S (5’-

GCCACCTAGTGAGCCGAGCA-3’) with a thermal cycler profile consisting of 40 

cycles of 94°C for 45 s, 53°C for 1 min and 72°C for 1 min as described by Szalanski 

and Owens (2003) (Vrain et al. 1992, Cherry et al. 1997). Amplified DNA from 

individual cockroaches was purified and concentrated with minicolumns according to 
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the manufacturer’s instructions (Wizard PCRpreps, Promega). Samples were sent to The 

University of Arkansas Medical School DNA Sequencing Facility (Little Rock, AR, 

USA) for direct sequencing in both directions. Consensus sequences were derived from 

both of DNA sequences from an individual with Bioedit 5.09 to verify nucleotide 

polymorphisms (Hall 1999). 

DNA sequences were aligned by CLUSTAL W (Thompson et al. 1994). The 

distance matrix option of PAUP* 4.0b10 was used to calculate genetic distances 

according to the Kimura 2-parameter model of sequence evolution (Kimura 1980, 

Swofford 2001). Maximum likelihood and unweighted parsimony analysis on the 

alignments were conducted by PAUP* 4.0b10 (Swofford 2001). Gaps were treated as 

missing characters for all analysis. The reliability of trees was tested with a bootstrap test 

(Felsenstein 1985). Parsimony bootstrap analysis included 1,000 resamplings with the 

Branch and Bound algorithm of PAUP*. For maximum likelihood analysis, the default 

likelihood parameters were used (HKY85 six-parameter model of nucleotide 

substitution, empirical base frequencies with the exception of the transition/transversion 

ratio, will be determined). These parameters were used to carry out a heuristic search by 

PAUP* with a neighbor joining tree as the starting tree.  Gene flow was evaluated 

applying Mitochondrial DNA haplotypes aligned by MacClade v4 (Sinauer Associates, 

Sunderland, MA). Haplotype distribution between populations, number of haplotypes, 

number of unique haplotypes, haplotype diversity (h), and nucleotide diversity (pi) was 

calculated with DNAsp v3.51 and Genealogical relationships among haplotypes were 



28 
 

constructed using TCS, with the method described by Templeton et al. (1992) (Rozas 

and Rozas 1999, Clement et al. 2000). 

 

Results 

DNA sequencing of the ITS1 region from 52 cockroaches samples (Table A-1) 

resulted an average size of 560 bp. There were 22 haplotypes observed from four Texas 

counties with the 3 haplotype being the most common (Table 2). There were 25 unique 

haplotypes. Del Rio, Texas is approximately 462 km from College Station; Pleasanton, 

Texas has a distance of approximately 274 km from College Station, Texas; TX; 

Hempstead, Texas is approximately 62 km away from College Station, Texas; Bryan, 

Texas is a sister city to College Station, Texas separated by approximately 8 km.   

There were 41 polymorphic sites (Table 3). The average number of pairwise 

nucleotide differences was 3.992. Out of the 22 haplotypes there were 25 singletons or 

unique sequences. Nucleotide diversity, π, was 0.007, and the mean number of pairwise 

nucleotide differences between haplotypes, k, was 3.992.Tajima’s D test of neutrality of 

mutations against excess of recent mutations were not significant (Table 4). 

Applying P A U P * version 4.0b10 software, both Neighbor-Joining (NJ) and 

Maximum Parsimony (MP) analyses were conducted. Results of the NJ tree using 

uncorrected “P” distances is presented as an unrooted cladogram (Figure 1). For MP 

analysis, parametric bootstrapping (50% majority-rule) with a full heuristic search was 

employed for 1000 pseudoreplicates with a starting seed = 632095753. A total of 560 

characters were evaluated with all characters equally weighted; 513 characters remained 
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constant and 20 characters were parsimony informative. Gaps in nucleic sequences were 

treated as “missing” with the starting tree(s) obtained via stepwise addition. The Branch-

swapping algorithm: tree-bisection-reconnection (TBR) was employed. The sum of 

minimum possible lengths = 48; the sum of maximum possible lengths = 140. A single 

tree (Figure 1) was produced with length = 113, CI = 0.425 and RI = 0.293. Uncorrected 

(“P”) distances were used to construct the NJ tree. The distance matrix of 13 haplotypes 

(Table A-2) is a portion of all of the haplotypes determined from samples collected.  

Phylogenetic trees were also obtained using a Bayesian analysis with the GTR+G 

model by applying Bayesian Evolutionary Analysis Sampling Trees (BEAST) version 

1.4.7 software (Drummond and Rambaut 2007). For Bayesian inference, four Markov 

chains run for 106 generations with a burn-in of 2 x104 were used to reconstruct the 

consensus tree (Figure 2); MP branch support are presented above the major branches 

with posterior bootstrapping probabilities presented behind each node (Figure 2). 

TCS spanning tree analysis reveled that haplotype 3 had the highest outgroup 

possibility for all of the 22 haplotypes (Figure 3) 
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Table 2. Sample sites and haplotypes frequencies from each collection site within 
Texas counties 
 
City ( County) N Haplotype (frequency) 
Pleasanton (Atascosa) 1 17(1) 
   
Bryan (Brazos) 2 1(1), 5(1) 
   
College Station (Brazos) 48 1(10), 2(1), 3(14), 4(1), 6(1),  

7(1), 8(1), 9(1), 10(4), 11 (1),  
12(1), 13(1), 14(3), 15(1), 16(2),  
18(1), 19(1), 20(1), 21(1), 22(1) 

   
Hempstead (Waller) 1 1(1) 
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Table 3. Base pair differences between P. americana haplotypes from Texas 
 

Haplotype 
Nucleotide site 

N 27 33 52 55 58 67 69 82 85 92 136 137 179 186 198 
1 12 T T C C A C A C C A C G C C T 

2 1 * * * * * * * * * * * * * * * 

3 14 * * * * * * * * * * * * * * * 

4 1 * * * * * G * * * * * * * * * 

5 1 * * * * G G G * * * * * * * C 

6 1 * * * * * * * * * * * * * * * 

7 1 * * * * * * * * * C * * A * * 

8 1 * C * * * * * * * * * * * * * 

9 1 * * * * * * * * * * * * * * * 

10 4 * * * * * * * * * * * * * * * 

11 1 C * * * * * * * * * * * * * * 

12 1 * * T T * G * T T C T * A T * 

13 1 * * T * * * * T T * T * * * * 

14 3 * * * * * * * * * * * * * * * 

15 1 * * * * * * * * * * * * * * * 

16 2 * * * * * G * T * * * * * * * 

17 1 * * * * * * * * * * * * * * * 

18 1 * * * * * * * * * * * * * * * 

19 1 * * * * * G G * * * T T * * * 

20 1 * * T T * * * T T * T * A T * 

21 1 * * T T * * * T T * T * A T * 

22 1 * * T * * * * T T C T * * * * 
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Table 3. continued 

Haplotype 
Nucleotide site 

N 199 225 239 264 272 303 314 355 366 437 463 488 514 515 

1 12 T A G G G G A A G C A C A A 

2 1 * * * * * * T T * T * * C * 

3 14 * T * * * * * * * * * * * * 

4 1 * T * * * * * * * * * * * * 

5 1 * T * * * * * * * * * * * * 

6 1 * T * * * * * * * * * * * T 

7 1 * * G * * * * * * * * * * * 

8 1 * * * C * * * * * * * * * * 

9 1 A * G * * * * * * * * * * * 

10 4 A T * * * * * * * * * * * * 

11 1 * * G * * * * * * * * * * * 

12 1 A * G * * * * * * * * * * * 

13 1 A * G * * * * * * * * * * * 

14 3 * * G * * * * * * * * * * * 

15 1 A * * * * * * * * * * * * * 

16 2 * * * * * * * * * * * * * * 

17 1 * * G * G C * * C * C * * * 

18 1 * * * * * * * * C * * G * * 

19 1 * * G * * * * * * * * * * * 

20 1 * * G * * * * * * * * * * T 

21 1 * * G * * * * * * * * * * * 

22 1 * * G * * * * * * * * * * * 
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Table 4. Summary of statistics for rDNA genetic variation a 
 
Sample n h s Hd π (k) θs θg D+** F +* D* 
Texas 52 28 41 0.918 ± 0.025 0.007 (3.992) 0.017 9.29 -3.39 -3.41 -1.94 

*  P < 0.05; ** P < 0.02. 
a  n is the number of sequences, h is the  number of haplotypes, s is then number of polymorphic sites, Hd is haplotype 

diversity ± SD, π is nucleotide diversity, k is mean number of pairwise nucleotide differences, θs is the theta per site, θg is 
theta per gene, D+ and F + are statistics per Fu and Li, and F+ is Tajima D statistic.  
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Figure 1. Phylogenetic relationship of P. americana rDNA ITS1 region. Neighbor-
joining tree with a length = 113, CI = 0.425, and RI = 0.293 resulting from samples 
collected from quadrants on the Texas A&M University campus College Station, 
Texas, and from Bryan, Hempstead, and Pleasanton, Texas   
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Figure 2. Phylogenetic trees using a Bayesian analysis with MP branch support are presented above the major branches with posterior bootstrapping probabilities presented behind each node for samples collected  from 
quadrants on the Texas A&M University campus College Station, Texas, and from Bryan, Hempstead, and Pleasanton, Texas   
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Figure 3. Genealogical relationship among haplotypes of 
TCS. The square is the most baysesian haplotype among the collected populations 
in Texas. Ovals are haplotypes not observed and each branch represents a single 
mutation 
 
 

 

 

 

 

 

Figure 3. Genealogical relationship among haplotypes of P. americana
TCS. The square is the most baysesian haplotype among the collected populations 
in Texas. Ovals are haplotypes not observed and each branch represents a single 
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P. americana estimated by 
TCS. The square is the most baysesian haplotype among the collected populations 
in Texas. Ovals are haplotypes not observed and each branch represents a single 
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Discussion 

 The purpose of this study was to analyze the spatial distribution of P. americana 

populations in an outdoor, urban environment and to determine the extent of gene flow 

among the populations. This study attempted to determine genetic variability among P. 

americana collected on Texas A&M University in College Station, Texas. 

 Genetic differentiation occurs between populations in diverse locations for all 

organisms (Austin et al. 2004). Inward et al. (2007) suggested both the orders Isoptera 

and Blattodea are related, thus their genes would coalesce to a single common ancestor. 

It can be assumed that the individual lineages would comprise of similar genetic 

material, thus specific gene regions would be applicable for amplification purposes in 

both orders. Phylogenetic studies and population genetics performed on termites 

commonly used the 16S region of the gene for amplification. The 16S region of the gene 

was initially chosen as the amplification site in this study to determine variability among 

cockroach populations collected on campus. During this study, the 16S gene region 

amplification protocol commonly used in termite studies failed to amplify cockroach 

DNA. Differing genetic compositions of the 16S gene region selected may have resulted 

from evolution of separate ordinal lineages over time. The universal primers that 

annealed for termite DNA simply would not work for cockroach DNA and/or the 

annealing temperature may have been to low thus inhibiting annealing or too high which 

would damage the primers or DNA. No matter the cause, there was no successful 

amplification of the 16S gene region, so the ITS1 region was chosen for amplification 
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because of the availability of comparable sequences available on Genbank (National 

Center for Biotechnology Information). 

The ITS1 region functions in primary rRNA processing and has a higher rate 

differentiation than the 18S gene region of rRNA (James et al. 1996). Mukha et al. 

(2007) reported rRNA genes as being the most conserved among populations, while non-

transcribed spacer regions have the most variation, and transcribed spacer regions 

between the two extremes. There are conflicting results when analyzing the ITS1 region 

for genetic variability in insect populations. Szalanzski et al. (2008) determined a lack of 

diversity in the nuclear gene region (ITS1 region) with high levels of differentiation 

when examining the mitochondrial DNA region (16S gene) in Cimex lectularius (L.) 

(Hemiptera: Cimicidae). The ITS1 region may have indicated low levels of diversity in 

this species at this specific loci (Szalanzski et al. 2008).  When the ITS1 region was 

used, it failed to determine phylogenetic relationships between Reticulitermes termites 

(Tripodi et al. 2006). On the other hand, there was sufficient variability in the ITS1 

region used to identify diversity among Diabrotica (Coleoptera: Chrysomelidae) species 

(Szalanski and Owens 2003). Additionally, Szalanski et al. (2000) demonstrated 

differentiation between Nicrophorus americanus (Olivier) (Coleoptera: Silphidae) based 

on results from the ITS1 region. The current study may have demonstrated biotic 

homogenization within populations of P. americana based on data from the ITS1 region 

(McKinney and Lockwood 1999).  

Haplotypes are defined by at least a single nucleotide difference within the same 

gene region between sequences thus identifying unique genes. Haplotype diversity is the 
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number of haplotypes compared to their relative frequency and determined the 

probability of two sequences chosen from a population being different (Austin et al. 

2004).) Tajima’s D is a statistical determination of the neutral mutation hypothesis in 

natural populations (Tajima 1989).  Positive values of D indicate population bottlenecks 

while negative values of D suggest expansion of a population (Tajima 1989). Nucleotide 

diversity (Pi) in populations assumed neutrality based on the infinite alleles model 

(Austin et al. 2004). 

 Among the 52 sampled there were 22 haplotypes indicating a high amount of 

variation in the population. TCS spanning tree analysis defined lineages from nuclear 

markers which implied populations moderate levels of gene flow. The lack of isolated 

populations was reconfirmed by maximum likelihood and Baysian phylogenetic 

analyses.  

Periplaneta americana samples from Bryan, College Station, Hempstead, and 

Pleasanton, Texas were in a single clade, including P. americana sequence obtained 

from Genbank (AF321248). Sequence comparisons reconfirmed speciation and revealed 

moderate interbreeding between P. americana. The Smokey Brown cockroach 

(Periplaneta fuliginosa) (Serville) and Brown cockroach (Periplaneta brunnea) 

(Burmeister) were chosen as outliers because their sequences were available on 

Genbank, AF321250 and AF321249, respectively, and are members of the genera as 

American cockroaches. Comparing various species allowed a broader analysis of P. 

americana to varying genetic sequences as a result of speciation within the same genera. 

Comparing the 52 sequences amplified to 22 haplotypes suggested a moderate amount of 
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variation in the population based on nuclear markers. The lack of isolation indicated 

interbreeding populations on campus. Differentiation of genetic variation based on 

spatial distribution of P. americana populations indicated the success and ability of 

breeding with independence among various populations.  

Cockroaches might be capable of traveling between collecting sites through 

various migration methods such as walking, climbing, dispersal via steam tunnels and 

sewer systems throughout campus, and/or depositing their ootheca on materials 

transferred by humans. Individuals from one collecting site were able to migrate to other 

sites through any of the previously mentioned methods feasibly because the greatest 

distance between collecting sites was 1.44 km. Migration of individuals to new locations 

provided an opportunities for new genetic material to be introduced into a population 

thus increasing some haplotypic diversity. Szalanski and Owens (2003) suggested lack 

of variation among southern corn rootworm resulted from motility or population 

expansion. Diversity among populations collected on campus most likely resulted from 

the ability of cockroaches to travel successfully in urban environments and breed 

effectively with cockroaches from other areas. Thus contributing to a constant influx of 

genetic material into various populations. It remains unknown what degree of genetic 

variability is observed among other cockroach species. 

 Genetic variability in populations can be achieved through genetic drift, genetic 

flow, natural selection, and founder effects (Slatkin 1987). Genetic drift can affect 

nuclear genes though the fixation of loci in various locations, but gene flow can impede 

the permanent fixation of the alleles (Slatkin 1987). Lenormand (2002) determined gene 
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flow limited adaptation of genes to specific locations because new genes from outside 

sources prevent loci from becoming fixed in the environment. Gene flow can prevent 

speciation because introduced genetic material can be adapted for survival in a particular 

environment differing from the population in which it emigrated (Slatkin 1987). Gene 

flow is an indirect method of determining movement within a population. Bossart and 

Prowell (1998) indicated the only method that definitively determined gene flow among 

a population was through the use of genetic tags used to track movement which has had 

successful in marine organisms. Cloarec et al. (1999) defined gene flow as the 

movement of cockroaches over long distances by passive transportation, thus increasing 

the rate of homogenization among the genetic material between populations. Results 

found in the current study correlated with Cloarec et al. (1999) when they determined 

German cockroach populations were not isolated in two French cities 900 km apart. 

Mukha et al. (2007) determined three B. germanica populations found in farms separated 

by 10-100 km and had three populations differentiated by rDNA markers, but they were 

still not completely isolated. Species, including highly mobile organisms such as 

cockroaches, disperse through an environment until geographical structures such as 

oceans, deserts, and mountains impede expansion (Slatkin 1987).  

Pesticide use is a common method implemented for supressing cockroach 

populations. Although increased and prolonged use of the same pesticides can lead to 

resistance. Lenormand (2002) suggested increased gene flow prevented resistance to 

pesticides. Introduced genetic material may not have been exposed to similar classes of 

pesticides thus specimens would be susceptible to novel pesticides locations. Natural 



42 
 

selection differs from genetic drift because not all alleles in different populations are 

effected the same and gene flow has no consequence on the outcome of genetic variation 

(Slatkin 1987). Founder effects display a portion of variation existing in the entire 

population because it comprises of a small number of individuals that colonized a new 

area (Cloarec et. al 1999 and Mukha et al. 2007).  

 To date, this study is the first using rDNA markers to identify spatial 

relationships and gene flow among P. americana populations in the United States. 

Future studies may analyze a broader range of genes including mitochondrial DNA to 

determine if there are lineages formed by maternal genetic material. Also, analyzing 

gene flow at several differing sequences within DNA may determine a more 

comprehensive evolutionary lineage of divergences in cockroach populations.            
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CHAPTER III 

 

EPIDEMIOLOGY AND SPATIAL RELATIONSHIPS OF BACTERIAL  

SPECIES ASSOCIATED THROUGH MECHANICAL TRANSMISSION BY 

Periplaneta americana (BLATTODEA:  BLATTIDAE) IN CENTRAL TEXAS 

 

Introduction 

Arthropods transmit medically important pathogens to humans (Mullens and 

Durden 2002). Cockroaches (Order: Blattodea) are important vectors of pathogens due 

in part to their unsanitary lifestyle. Cockroach cuticle can harbor several 

Enterobacteriaceae species (Mpuchane et al. 2006b). A few medically important 

pathogens harbored by the American cockroach, Periplaneta americana (Linnæus) 

(Blattodea: Blattidae) include: Campylobacter spp., Escherichia coli, Salmonella spp., 

Shigella spp., Staphylococcus spp., Streptococcus spp., and Toxoplasma gondii (Barcay 

2004). Cockroaches also reported to transmit pathogens such as anthrax, cholera, 

diphtheria, pneumonia, tetanus, and tuberculosis (Baumholtz et al. 1997). All of which 

could be used as bioterrorism agents targeting animal or human populations.  

Cockroaches could be competent carriers of nosocomial infection agents, 

especially to patients in neonatal units, intensive care, and who are immunocompromised 

(Fotedar et al. 1991, Gliniewick et al. 2003, Elgderi et al. 2006, Salehzadeh et al. 2007). 

Nosocomial infections may result from pathogens in contaminated food or water, and/or 

unsanitary facilities, like bathrooms (Lemos et al. 2006). Salehzadeh et al. (2007) 



44 
 

described cockroaches collected in hospitals to have greater bacterial counts than found 

in residential areas. The association of higher bacteria rates results from hospital 

environments being more conducive to bacterial acquisition from numerous sources such 

as water, food, and/or harborage with contaminated objects. Multiple drug-resistant 

bacterial strains of medical importance have been isolated from cockroaches in several 

hospitals (Fotedar et. al 1991, Gliniewick et al. 2003, Elgderi et al. 2006, Salehzadeh et 

al. 2007). Understanding the nature of pathogen transmission from urban insect pests to 

humans could clarify the epidemiology of many unknown illnesses. The epidemiology 

of potentially fatal pathogens needs to be thoroughly examined as they relate to 

cockroaches.   

Certain disease causing pathogens commonly associated with cockroaches 

resulted in gastro-intestinal related illnesses. Pathogens, such as E. coli and 

Campylobacter spp., commonly transmitted by cockroaches may be overlooked during 

diagnosis of sudden ailments with symptoms being similar to food-borne illnesses, 

including abdominal cramping, diarrhea, nausea, and fever.  

Campylobacter are microphilic, curved, gram-negative, non-spore forming 

motile bacteria (Yan et al. 2005). Campylobacter spp. are not part of a normal bacterial 

fauna in humans but has been found in individuals displaying symptoms such as diarrhea 

and fever (Blaser et al. 1979). In human patients with symptoms of diarrhea, C. jejuni 

has been isolated to cause diarrhea-like symptoms more than Shigella spp., Salmonella 

spp., and E. coli 0157:H7 (Blaser et al. 1979, Blaser 1997).   
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Diseases associated with Campylobacter spp. result from ingesting undercooked 

poultry, mishandling raw poultry, and the cross-contaminating of surfaces, for example 

this bacteria has been found to survive in exposed environments containing oxygen on 

stainless steel and cotton dishtowel surfaces for over an hour, and can survive in 

untreated water sources (Yan et at. 2005).  

Campylobacter jejuni is enteric in livestock such as cattle, swine, poultry, 

companion animals (i.e. dogs and cats), and wild animals such as rodents and raccoons 

(Blaser 1997, Sahin et al. 2002). Campylobacter jejuni is atmospheric desiccation and 

oxygen which inhibits growth in moist locations such as livestock feed and water (Sahin 

et al. 2002). Consequently, human interactions with livestock increase the potential risk 

of contamination. 

Escherichia coli are gram-negative, rod shaped bacteria with specific strains 

considered important pathogens of humans and animals. In human cases, there are 

several strains that produce varying effects, ranging from mild fevers to hospitalizations 

and death depending on the strain acquired in its host. Escherichia coli titers in the 

environment corresponded with levels of fecal contamination (Le Guyader et al. 1989, 

Rivault et al. 1994). Transmission of these organisms can follow an unsuspected fecal-

oral interactions, such as using a contaminated hand towel and then touching food or the 

mouth area.  

Escherichia coli 0157:H7 is a medically important strain initially reported in 

1982 (McGee et al. 2004). It can cause bloody diarrhea, hemolytic uremic syndrome 

(HUS), and death (McGee et al. 2004).  E. coli 0157:H7 had reported outbreaks in the 
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United States, Great Britain, and Canada, with 20,000 infections and 100 deaths in the 

United States (Michino et al. 1999).  

Pathogens are medically important because of resulting infections and diseases 

associated with human and/or animal populations. Modes of transmission are important 

in identifying sources and dispersal of pathogens, such as dissemination by arthropods. 

Bacterial strains identified were spatially analyzed in this study by determining where 

various pathogens were in relationship to different cockroach populations. Analyzing the 

pathogen fauna among populations in a given location could help establish the pathogen 

diversity cockroaches carry on their exoskeleton based on locations. Also, spatial 

distribution of bacterial fauna may indicate acquisition locations and distances 

cockroaches are capable of spreading viable organisms.  

The objective of this study was to analyze spatial distributions of E. coli and 

Campylobacter spp. in relationship to different cockroach populations. This information 

may determine the spatial distribution of bacterial fauna and identify locations with high 

bacterial titers.   

 

Materials and Methods 

Sampling Technique for Cockroaches. Periplaneta americana (L.) were 

collected within 50 m of neighboring urban structures in discrete locations in College 

Station, Texas (Table A-1). Collecting sites on campus were selected from locations 

with the highest cockroach populations during preliminary trapping.  Once locations 

were established, three collecting containers were placed within a 1.83 m2 square at each 
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trapping location. The north quadrant was approximately 0.29 km2. The central quadrant 

was approximately 0.40 km2. The south quadrant was approximately 0.32 km2, and the 

west quadrant had an area of approximately 0.58 km2. Coordinates of each site were 

determined with a Gormin eTrex® Vista Cx GPS unit (Garmin Ltd., Olathe, KS, USA) 

and data points uploaded to Google Earth. 

Containers used for collection were glass mason jars (430 ml) coated with 

Elmer’s Acid Free Craft Bond (© Elmer’s Products, Inc., Columbus, Ohio, USA) and 

rolled in Quickrete® Playsand (Quickrete® International, Inc., Atlanta, GA, USA), 

according to Granovsky (1983). The top 2 cm of the jar opening was lined with H-E-B 

brand petroleum jelly (H-E-B, San Antonio, TX, USA) and baited with approximately 

51.76 ml beer (Miller Brewing Co., Milwaukee, WI, USA), and 7.04 g of H-E-B brand 

white bread (H-E-B, San Antonio, TX, USA) for specimen collections (Barcay 2004). 

Baited containers were placed in the field immediately after adding the beer/bread 

mixture. Jars were set out prior to dusk and collected from the field after 8-12 h. Once 

jars were collected from the field, cockroaches were stored in the freezer.  

Cockroaches were collected from each jar and stored in individual plastic bags 

(16.5 x 14.9 cm), with up to three plastic bags containing roaches from each site. 

Collected specimens were stored in a freezer at -20oC until further analyses were 

conducted. This method should not negatively influence bacterial colony (Szalanski et 

al. 2004). 

 Screening for Escherichia coli Activity.  Media used for screening Escherichia 

coli followed the manufacture’s recipe of 32.6 g /L of CHROMagar™ ECC media 



48 
 

(CHROMagar, Paris, France). Escherichia coli 0157:H7 specific media was made using 

CHROMagar™ 0157 (CHROMagar, Paris, France) at a 29.4 g/L ratio.  

 Agar was poured into petri dishes (100 x 15 mm, VWR International, West 

Chester, PA, USA) making approximately 20 petri dishes/500 ml media. Petri dishes 

were divided into thirds and appropriately labeled for the specimen. Working under 

sterile conditions, forceps were flame sterilized using 95% ethanol (EtOH) and cooled 

prior to touching the cockroach to be plated. Dorsal and ventral sides of each cockroach 

were plated within their designated areas. Once the cockroach was plated it was moved 

to an isolated area, the forceps were sterilized using the aforementioned flaming 

technique. The process was repeated for all P. americana collected. 

 Escherichia coli samples plated on CHROMagar ECC and CHROMagar 0157 

were incubated in a Percival Environmental Chamber Model I36LLVL (Percival 

Scientific, Inc., Perry, IA, USA) at 37oC for 24 – 48 h. Escherichia coli colonies were 

counted by placing each plate on a white sheet of paper (21.6 x 27.9 cm) after 

incubation. Blue colored colonies were identified as E. coli, red colonies were coliform 

forming bacteria, and colorless colony forming units were non-coliform forming gram-

negative bacteria and counted. Screening for E. coli 1057:H7 followed the same 

technique, but with positives indicated by a mauve coloration  

 Colonies that were positive for E. coli were stored in sterile 1.5 ml microtubes 

with snap caps (VWR International, West Chester, PA, USA) in a 60% Tryptic soy agar 

(Fisher Scientific, Pittsburg, PA, USA)/40% glycerin (Fisher Scientific, Fair Lawn, NJ, 

USA), and frozen at -80oC, according to Hanahan et al. (1995).  
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 Screening for Campylobacter species Activity. Campylobacter specific media 

was made using the following recipe: 25 ml of defibrinated sheep blood (Colorado 

Serum Co, Denver, CO, USA), 1 tube of antibiotic premix, 21.5 g BBL™ Brucella agar 

(BD, Becton, Dickinson and Co., Sparks, MD, USA), and 500 ml distilled water. 

Antibiotic premix was made by suspending 159.0 mg Cephalothin (MP Biomedicals, 

LLC., Solon, OH, USA), 50.0 mg Trimethoprim Lactate (Research Products 

International Corp., Prospect, IL, USA), 100.0 mg Vancomycin hydrochloride (Acros 

Organics, Morris Plains, NJ, USA), 3.22 mg Polymyxin B (InvivoGen, San Diego, CA, 

USA), and 20.0 mg Amphotericin B (Acros Organics, Morris Plains, NJ, USA) into100 

ml distilled, sterile water. The total antibiotic premixture was divided into 20 tubes each 

containing 5 ml aliquots, covered with parafilm (American National Can™, Greenwich, 

CT, USA), and stored in a -20oC freezer. 

 Agar was poured into petri dishes (100 x 15 mm, VWR International, West 

Chester, PA, USA) making approximately 20 petri dishes/500 ml media. Petri dishes 

were divided into thirds and labeled for the appropriate specimen. Working under sterile 

conditions, forceps were flame sterilized using 95% ethanol (EtOH), and cooled prior to 

touching the roach to be plated. Dorsal and ventral sides of each cockroach were plated 

within their designated areas. Once the cockroach was plated it was moved to an isolated 

area, the forceps were sterilized using the aforementioned flaming technique. The 

process was repeated for all P. americana collected. 

 Campylobacter spp. specific media was grown in an anaerobic environment for 

96 h prior to checking for growth. An anaerobic environment was achieved by placing a 
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BD BBL ™ CampyPak ™ Plus Microaerophilic system envelope with Palladium 

catalyst (Becton, Dickinson and Company, Sparks, MD, USA) in an acrylic canister 

(17.8 x 12.7 cm, Oggi Co., Anaheim, CA, USA) with a chrome locking clamp with a 

silicone gasket that sealed air tight. Campylobacter spp. selective media were removed 

from the anaerobic environment after 96 h followed by identification and prevalence of 

colonies.    

 Campylobacter spp. colonies were frozen at -80oC in a Tryptic soy agar and 

15% (wt/vol) glycerin solution in sterile 1.5 ml microtubes with snap caps following the 

methods of Wasfy et al. (1995).      

 Koch’s Postulates Experiments. Field collected cockroaches were plated on 

CHROMagar ECC and CFU counts were made after 24 h. Cockroaches were sterilized 

by shaking individuals in 20 ml of 95% ethanol for 2 min; the cockroaches were plated 

on CHROMagar ECC and CFU counts were made after 24 h. Escherichia coli 

ATCC25923 cells suspended in sterile saline underwent a 10-fold serial dilution until 

log-5. Cockroaches were inoculated with 1 ml aliquots and plated. CFU counts were 

made after 24 h.  

 Statistical Analysis. JMP Statistical Discovery software version 5.1 (SAS 

Institute Inc., Cary, North Carolina) was used for the analysis of all results. Oneway 

ANOVA, α = 0.05, was performed to analyze the mean total population numbers 

collected and quadrant counts. A linear regression, α = 0.05, was performed to determine 

the correlation between mean temperatures and mean population totals collected. 

Oneway ANOVA, α = 0.05, was performed to analyze the mean number of bacteria 
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colony forming units for E. coli, coliform forming gram-negative, and non-coliform 

forming gram-negative, and quadrant counts. Oneway ANOVA, α = 0.05, was 

performed to analyze the mean number of bacteria colony forming units for E. coli, 

coliform forming gram-negative, and non-coliform forming gram-negative; population 

stage of development; and quadrant counts. 

 

Results 

 Cockroaches (N =687) were collected from four designated areas, north, 

central, south and west, from the Texas A&M University campus College Station, 

Texas, Figure 4. The mean number of cockroaches collected from Jan–May 2008 was 

3.67 ± 4.23 total (3.10 ± 3.31 nymphs and 0.56 ± 1.73 adults). The north quadrant had 

the lowest mean of cockroaches collected with 1.86 ± 1.60 total (1.86 ±1.25 nymphs and 

0.00 ± 0.65 adults). The central quadrant had a mean of 2.21 ± 1.13 cockroaches with 

2.14 ± 0.88 nymphs and 0.07 ± 0.46 adults. The south quadrant had a mean of 4.05 ± 

0.94 total (3.25 ± 0.74 nymphs and 0.80 ± 0.39 adults). The mean number of 

cockroaches collected in the west quadrant was 7.29 ± 1.60 total (5.86 ± 1.25 nymphs 

and 1.43 ± 0.65 adults). There was no significant difference (F = 2.746; df = 4, 160; P = 

0.0542) between population means within quadrants (north, central, south, and west). 

The mean number of total cockroaches from each location can be seen in Table 5.  

  



 
 

     
 
Figure 4. The Texas A&M University campus, College Station, Texas, divided into four areas, north (red), central 
(orange), south (green), and west (white), used for sampling cockroach populations. Images taken from Google™ 
Earth Plus v. 4.3 
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Table 5. Mean number of total cockroach population collected in each quadrant 
(north, central, south, and west) of the Texas A&M University campus, College 
Station, Texas  
 
Quadrant N Mean ± Std Error a 95% Mean 

Upper Lower 
North 35 1.86 ± 1.60 a -1.36 5.08 

Central 35 2.21 ± 1.23 a -0.06 4.49 

South  78 4.05 ± 0.94 a 2.15 5.95 
    

West 17 7.23 ± 1.60 a 4.07 10.50 
a  Same letters following means within the column were not significantly different         

(P < 0.05, Tukey-Kramer HSD). 
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Table 6. Positive rates of bacterial (E. coli, coliform forming gram-negative, and 
non-coliform forming gram-negative) prevalence for P. americana populations 
collected on the Texas A&M campus, College Station, Texas, as categorized by 
building function 
 
Building Type Cockroach Population a 
Administration 427/687  

(62.2%) 
  
Lecture Building 103/687  

(15.0%) 
  
Dining Hall 2/687  

(0.3%) 
  
Water Tower 75/687  

(10.9%) 
  
Garage 80/687  

(11.6%) 
a  Percentages based on the number of cockroaches collected at each building type 

compared to the total number of cockroaches collected from Feb 2007-May 2008. 
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There were five categories (Table 6) for the building and/or structures from 

which cockroach populations were collected adjacent to: administration (primarily 

offices, some classrooms, and vending machines); lecture buildings (primarily lecture or 

research areas, some offices, and vending machines); dining halls (food establishments 

on campus with the primary purpose of food and beverage distribution); water tower; 

and garage. The prevalence of bacteria on cockroaches for each building type indicated 

that administration buildings had the highest positive rate of cockroaches, while the 

dining hall maintained the lowest rate of prevalence on P. americana populations. 

Comparing the temperature to number of cockroaches collected indicated no 

significant difference (F = 0.383; df = 5, 333; P = 0.5372) between the total population 

means and the mean temperature (Table 7). There was no correlation between mean 

temperature and total cockroach population means collected for College Station, Texas 

locations including the quadrants designated on the Texas A&M University campus.     

R2 values for north, central, south, west and College Station, Texas populations were, 

0.14, 0.18, 0.07, 0.10, and 0, respectively (Table 7).  

 Koch’s postulates tested during this experiment resulted in a R2 value of 0.932. 

The prevalence of the bacteria isolated from total populations collected indicated a high 

prevalence (92.3%) of bacteria on the exoskeleton of P. americana (Figure 5). Bacterial 

screening for E. coli resulted in a significant difference (F = 2.468; df = 4, 694;              

P = 0.0437) between quadrants (Figure 6).  There were also cockroaches that after plated 

had too many bacterial colony forming units to count. The north quadrant had 1 E. coli,  
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Table 7. A linear regression determined the correlation between total cockroach 
populations compared to the mean temperature of collection dates, for all 
quadrants on the Texas A&M University campus, College Station, Texas in 
addition to undisclosed locations from College Station, Texas not found on campus 
 
Location a N Mean ± SE b Slope R2 
North 35 3.34 ± 3.44 a y = 0.03x + 0.15 0.14 
     
Central 35 4.29 ± 5.04 a y = -2.04x + 0.29 0.18 
     
South 78 4.47 ± 3.93 a y = 3.18x + 0.06 0.07 
     
West 17 4.41 ± 6.23 a y = 5.04x - 0.03 0.10 
     
College Station 37 1.00 ± 0.00 a y = 1x + 0 0 

a  Collections from north, central, south, and west were quadrants on the Texas A&M 
University campus, College Station, Texas, and College Station specimens were from 
undisclosed locations in College Station, Texas. 

b  Same letters following means within the column were not significantly different         
(P < 0.05, Tukey-Kramer HSD). 
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Figure 5. Prevalence of bacteria (E. coli, coliform forming gram-negative, and non-coliform forming gram-negative) 
from the total cockroach population collected on the Texas A&M University campus, College Station, Texas 
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Figure 6. Bacterial counts from cockroach populations screened from each quadrant on the Texas A&M University 
campus, College Station, Texas 
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7 coliform forming colonies, and 0 non-coliform forming colonies. Central quadrant had 

4 E. coli, 2 coliform forming colonies, and 5 non-coliform forming colonies. The south 

quadrant had the most with 28 E. coli, 14 coliform forming colonies, and 11 non-

coliform forming colonies. The west quadrant had 0 E. coli, 2 coliform forming colonies, 

and 1 non-coliform forming colony. Various locations in College Station resulted in 0 

plates with too many to count (Table 8). Coliform forming bacteria were significantly 

different (F = 24.728; df = 4, 665; P < 0.001) between quadrants, while non-coliform 

forming gram-negative bacteria had no significant difference (F = 2.0573; df = 4, 680;       

P = 0.0848) (Figure 6).   

There were no significant difference (F = 0.0420; df = 2, 205; P = 0.8379) 

between adult and nymph stages of cockroaches collected compared to number of 

bacterial colony forming units of E. coli (Table 11). There were no significant difference            

(F = 3.0748; df =2, 216; P = 0.0809) between adult and nymph stages of cockroaches 

collected compared to number of bacterial colony forming units of coliform forming 

bacteria. There were no significant difference (F = 0.0003; df = 2, 216; P = 0.987) 

between adult and nymph stages of cockroaches collected compared to number of 

bacterial colony forming units of non-coliform forming bacteria plated (Figure 7). 

 Screening for E. coli 1057:H7 and Campylobacter spp. yielded no positive 

colony forming units for all of the samples screened (N = 724). 

 

 

 



60 
 

Table 8. Prevalence of cockroach specimens plated for E. coli, coliform forming 
gram-negative, and non-coliform forming gram-negative that resulted in too many 
bacteria colony forming units to count for cockroaches collected on the Texas A&M 
University campus, College Station, Texas and various undisclosed locations in 
College Station, Texas 
 
Location a E. coli b Coliform 

(G-) 
Non-coliform 

(G-) 
Total 

North 1/104 
(.009%) 

7/104 
(.067%) 

0/104 
(0%) 

8/104 
(.077%) 

     
Central 4/155 

(.026%) 
2/155 

(.013%) 
5/155 

(.032%) 
11/155 
(.071%) 

     
South 28/354 

(.079%) 
14/354 
(.040%) 

11/354 
(.031%) 

53/354 
(.150%) 

     
West 0/74 

(0%) 
2/74 

(.027%) 
1/74 

(.014%) 
3/74 

(.041%) 
     
College Station 0/37 

(0%) 
0/37 
(0%) 

0/37 
(0%) 

0/37 
(0%) 

     
Total 33/724 

(.046%) 
25/724 
(.035%) 

17/724 
(.023%) 

75/724 
(.102%) 

a  Collections from north, central, south, and west were quadrants on the Texas A&M 
University campus, College Station, Texas, and College Station specimens were from 
undisclosed locations in College Station, Texas. 

b  Percentages based on the number of specimens with too many bacteria colony forming 
units to count compared to the total number of specimens collected from each location. 
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Figure 7. Comparison of bacteria counts for adults and nymphs in all quadrants collected on the Texas A&M 
University campus, College Station, Texas 
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Discussion 

The purpose of this study was to determine the amount and viability of bacteria 

harbored by P. americana in an outdoor, urban environment by observing commonly 

occurring and ubiquitous examples such as E. coli and Campylobacter. The Texas A&M  

University campus provided an ideal location to conduct this experiment due to the 

familiarity of the structures, buildings, and roadways. Outdoor collecting sites on 

campus provided insight into American cockroach population within an artificial 

environment. Outdoor locations were chosen because American cockroaches are 

considered peridomestic pests and traveled freely between indoor and outdoor locations. 

Also, limited building access at times when cockroaches were most active (at night) 

made it difficult to maintain a regular collecting schedule of indoor facilities.  

Cockroaches have increased activity when most of the buildings on campus were 

either unoccupied or closed. This implies that cockroaches can move within a building 

with limited restrictions, including foraging areas that are important in food preparation 

and handling. The south campus was interesting to note because it was the only quadrant 

that had sampling near a dining hall and as seen the density of cockroaches was the 

lowest at this location. The low population numbers could result from effective and well-

maintained control strategies, or the facilities indoors provide adequate food, shelter, and 

water thus eliminating the need for cockroaches to forage in outdoor locations. 

This study is the first to focus on population densities and bacteria associated 

with P. americana on a major university campus in the United States. Numerous studies 

have collected cockroaches in urban situations, but typically inside schools, hospitals, 
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and homes. Granovsky (1983) suggested trapping rates increased when the external 

surfaces of the collecting jar were coated with sand. Collecting containers were placed in 

discrete locations and areas that could not be easily seen by the public, because the 

disturbance of collecting jars could alter the population numbers. During the course of 

this study, only a single site lost a jar by the following morning, because they were too 

visible and accessible to the public due to their location next to a busy roadway. Also, 

there were times when a single jar was knocked down at a site because of via weather, 

wildlife or other unforeseen forces.  A single jar being knocked over occurred nine times 

over the duration of this study.  

Other factors that were not considered prior to collecting was the presence of 

feral animals on campus, including but not limited to frogs, snakes, cats, skunks, and 

opossums, with the latter three possibly consuming bread from the collecting jars. The 

only known incidence of wildlife having a known impact on the number of cockroaches 

collected occurred on west campus at the Koldus drain (north) collecting site. A skunk or 

skunk surfeit had burrowed under the concrete slab near the collecting location. It is 

uncertain how long the animal(s) resided at this location, but on an early collecting trip 

on 18 April 2008, their presence was made aware. After that day, the number of 

cockroaches from that site declined. Skunks are known carnivores but have been found 

to feed on insects when available (Crooks and Van Vuren 1995). It was not known what 

caused the decline in the population. It may have been the skunk which had access to a 

steady supply of cockroaches as a food sources, or it may have been a normal population 

fluctuation due to the season and weather variability.  
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Collecting jars were also placed near areas which maintained requisites of life 

such as food, water, and shelter. Jars were typically placed adjacent to a concrete or 

brick barrier such as a wall, stairs, or a structure enclosing a flowerbed. When foliage, 

typically ivy, was present, the collecting jars were placed below the surface of the 

foliage and adjacent to the structures. Observations made throughout the study indicated 

a high occurrence of cockroaches in ivy beds. The masonry structures coupled with ivy 

or other plant life may have provided adequate coverage for cockroaches to move 

without the threat of predation and with increased rates of foraging success. Also, the 

masonry and concrete structures may have provided an artificial heat source; thus, 

cockroaches could move next to buildings and forage for extended periods of time when 

temperatures were less than ideal than if they were foraging in exposed environments. 

Lin et al. (2007) demonstrated in Taiwan that heat output by concrete is stronger in the 

winter months, with a mean temperature of 14-28oC, but the surface temperature of the 

material correlated with ambient temperature. The winter months in Taiwan are 

representative of the subtropical climates which are much higher than the temperatures 

of winter period in a temperate area such as Texas. Based on observations during this 

study, populations collected in areas with a concrete barrier and foliage maintained 

higher population than those sites without such structures.  

Over the duration of this study, it was interesting to note the lack of cockroach 

species diversity being attracted to the collecting traps. There were three Periplaneta 

fuliginosa (Serville) (Blattodea: Blattidae) collected amongst other P. americana 

species. There were four B. germanica collected during the study near a residential 
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building on campus, but they were not intermingled with American populations. This 

was unusual, since German cockroaches are typically indoor pests. It is possible that 

there was a large population surge that could no longer be maintained by the area, or that 

there were not enough food resources in the building. Either situation could lead 

cockroaches to forage greater distances, thus going outside to find adequate food 

sources. It is unknown which situation forced German cockroaches outdoors, but it was 

unusual for B. germanica to forage outdoors.  

There was no significant difference between collecting sites in each quadrant and 

population of P. americana collected. Specific areas of campus did appear to yield 

higher populations based on observational experience. Categorizing the collection sites 

on a university campus into specific types such as food establishments, residential or a 

hospital areas is difficult because most buildings include various types of establishments 

within a single structure. Buildings on campus usually include food resources like 

vending machine, coffee bar, full-scale dining area, lecture hall, and residential areas. 

Residential buildings on campus contained food because they serve as the primary living 

quarters for many people on campus.  

The administration buildings maintained the highest outdoor populations, while 

dining halls had the least number of cockroaches collected. The dining halls may have 

had adequate control methods in effect to efficiently reduce population numbers. 

Alternatively, there may have been sufficient resources inside the buildings which failed 

to drive populations outside to forage. Control strategies may be less stringent in areas 

where food preparation is not the primary focus, such as in administration and lecture 
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buildings. Haines and Palmer (1955) determined that P. americana was a predominant 

species in sewer systems with low population densities indoors and around the home; 

although the restrooms of indoor facilities maintained the highest population numbers. 

Overall, the building type does not play a significant role in the population densities of 

cockroaches. The assumption can be made that the same applies for an area such as a 

university where cockroaches were ubiquitous in the environment.  

Pai et al. (2003) determined that adult populations of P. americana and B. 

germanica were significantly higher than nymph populations collected in hospitals, 

which fails to correspond with data found in this study. There were no significant 

differences between adult and nymph populations collected around campus. This 

difference between studies may result from a difference in collection techniques or that 

the Pai et al. (2003) study was conducted indoors, from a single structure (hospitals) 

type, while the current study exploited various collecting locations and their outdoor 

structures. No significant difference between adult and nymph collections may have 

indicated a well-established population on campus, as well as a lack of control methods 

to reduce nymphal population numbers, or there may be a naturally higher frequency of 

nymphs during the collecting periods.  

American cockroaches can take up to one year to reach maturity, and can live up 

to three years. Their indoor counterpart, the German cockroach, can reproduce several 

times a year, and has a lifespan of 200-300 d (Barcay 2004). It appears that integrated 

pest management strategies are not reaching breeding and/or foraging sites on a routine 

basis. The lack of a maintained control schedule could indicate why there were various 



67 
 

ages of cockroaches (nymphal instars to adults) collected on a consistent basis from all 

locations throughout the collection period. 

The effect of temperature on population numbers was important to consider 

because it was generally assumed between 10-35oC, resulted in a decline of cockroach 

activity, thus influencing the numbers acquired during collecting periods (Murphy and 

Heath 1983). There was no difference between mean temperatures and the total 

population means collected. This implied that overall temperature does not play a 

significant factor, population means collected but observation data suggested at lower 

temperatures (<10oC) population means were different from populations collected at 

higher temperatures. This corresponded with Murphy and Heath (1983) concerning 

cockroach activity and temperature. 

Prior to collecting, it was hypothesized that population means would increase as 

the temperatures rose. The lack of a relationship between temperature and population 

indicated another factor may be influencing populations that were not accounted for 

during this study. Cockroach populations, based on observational data decreased, when 

the minimum temperatures at night were cooler. 

Ambient temperatures in Texas fluctuate between December and May because of 

seasonal transitions. The collecting period followed an erratic pattern with rising and 

falling temperatures, coupled with periods of intense rainfall. For example, during the 

last five days in February there was a day with a high of 29oC followed by a low of -1oC 

two days later. The rapidly changing temperatures likely influence foraging behaviors 

and overall activity. Traps used during this experiment were not designed to collect 
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specimens during rainy conditions, thus population numbers were minimal during these 

time periods. Based on observational data, days with rainfall had lower numbers of 

cockroaches collected than days without rainfall. 

Spatial distribution of natural population is typically patchy. Resource levels 

fluctuate over time in individual locations, thus population numbers will also change 

over time indication a patchy distribution (Roughgarden 1977). Population fluxes are 

normal because collecting cockroaches from outside was coincidental with weather. 

Sometimes there is an abundance of cockroaches in a single location, and the next day 

there may be none at the same location. Population surges may result from rainfall, food 

availability, an overabundance of water in sewer systems, and/ or external weather 

conditions. There is limited data correlating the number of cockroaches collected from 

outside populations and weather conditions.  

Establishing bacteria amounts carried by cockroaches is important because they 

can act as potential disease agent carriers. Lipsitch and Moxon (1997) defined virulence 

as the capability of organisms to infect or damage the host. Virulence and 

transmissibility has been theorized in vertebrate animals, including humans, in which 

virulence and transmissions of pathogens may not be directly related (Lipsitch and 

Moxon 1997). The pathogen may be in a different part of a host body than where 

symptoms are being displayed. Symptoms may result in parts of the body not in the path 

of the organisms, and symptoms may result from the immune response of the host to the 

threat of pathogens instead of the presence of the actual pathogen (Lipsitch and Moxon 

1997).  This theory of unrelated virulence and transmissibility may not apply to 
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invertebrates in the same methods as it applies to vertebrates. The exoskeleton of insects 

provided protection against invading organisms, but also provided surfaces on which 

pathogens may reside. Harboring pathogens on the exterior portion of the body may 

increase the potential of viability of pathogens, unlike vertebrates where pathogen entry 

into the body occurs with few barriers. It may be difficult to determine which 

cockroaches are diseased because pathogens have less opportunity to enter their body 

because of the exoskeleton, thus the physiology and behavior of the insect may not be 

influenced.  

Escherichia coli and Campylobacter spp. are common bacteria that cause gastro-

intestinal illnesses in humans. Escherichia coli was prevalent on surfaces contaminated 

by fecal matter and can last anywhere from 1.5 h-16 mo on dry, inanimate surfaces 

(Kramer et al. 2006). Scott and Bloomfield (1990) determined E. coli remained viable on 

laminate surfaces up to 4 h, and that the bacteria could transfer from contaminated 

surface to other objects such as fingertips, stainless steel, or cloth. Bacteria transfer 

occurred at the highest rate when a contaminated piece of cloth contacted fingertips, 

after contact E. coli was detected up to 48 h after initial contact (Scott and Bloomfield 

1990). Kitchens maintained the highest numbers of E. coli resulting in part from poor 

sanitary habits after handling contaminated foods such as chicken. Cockroaches, if 

indoors, are prone to walk across surfaces that have been wiped down by a potentially 

contaminated cloth. In outdoor environments, E. coli has been found to survive up to 20 

d the wood shavings of a farm structure (Bale et. al 1993). Indoors, the organisms were 

detected up to 21 h on a contaminated piece of paper (Bale et al. 1993). Due to their 
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ubiquitous nature, cockroaches can acquire bacteria from most surfaces in-or-out of 

doors, so long as bacteria are present in the environment. Cockroaches can act as 

potential carriers of pathogens in the surrounding areas.  

Contamination rates of cockroaches compounded with their gregarious behavior 

could provide a mode for pathogens to spread to surfaces having direct contact with 

food. During this study, 51.7% of all cockroaches trapped were contaminated with E. 

coli.  This was the lowest percentage of positive bacteria out of all the cockroaches 

screened for colony forming units. Despite having the lowest percentage of prevalence, 

one out of every two cockroaches on campus was carrying E. coli. A comparison was 

made to determine if the life stage (adult or nymph) made an impact on bacteria 

associations with the cockroaches and found there to be no significant difference.  

Escherichia coli can be found on both internal and external surfaces of 

cockroaches (Rivault et al. 1994). The current study concurred with the Le Guyader al. 

(1989) study of gram-negative bacteria amounts not having a significant difference 

between adults and nymphs. Despite the stigma of cockroaches being filth laden, Bell et 

al. (2007) indicated cockroaches spending at least half of their time grooming and 

removing foreign objects from their body. The amount of time spent cleaning is 

inadequate because of contamination of the habitat and the capability to become re-

inoculated with pathogens present in the environment. The ability to harbor bacteria on 

internal and external surfaces provides multiple means of pathogen transmission. In 

addition to direct contact with surfaces, cockroaches can disseminate internal organisms 

via defecation and/or regurgitation.  
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Compared to previous studies made indoors, the presence of bacteria on 

cockroaches appears to correlate with other studies with positives rates of bacteria in 

Ghana, France, and Taiwan (Agbodaze and Owusu 1989, Rivault et al. 1994, Pai et al. 

2004). Overall, 92.3% of cockroaches collected from outdoor locations on campus 

carried gram-negative bacteria on their cuticular surfaces. When compared to another 

pest cockroach, the German cockroach, Pai et al. (2005) determined there was no 

significant difference between P. americana and B. germanica incident rates of positive 

growth of bacterial colonies on the integument and the gut. Although, P. americana had 

significantly higher rate of gram-negative colonies than B. germanica (Pai et al. 2005). 

Periplaneta americana can harbor more gram-negative bacteria from outside sources 

such as sewage, soil, contaminated water, and garbage, than B. germanica acquires from 

inside sources. 

A previous study indicated cockroaches harbored bacteria present in the 

surrounding environment, as opposed to introducing new pathogens into the 

environmental fauna (Rivault et al. 1993).  During this study, it was assumed 

cockroaches were mechanically transmitting pathogens obtained in the environment and 

were capable of traveling while harboring these bacteria. Koch’s postulates were tested 

and demonstrated the ability of cockroaches to transfer bacterial species. This creates a 

public health concern if cockroaches inoculated with bacteria from outside migrated 

indoors and transmitted pathogens to sterile surfaces, such as areas in the kitchen. 

Chaichanawongsaroj et al. (2004) indicated E. coli levels on cockroaches coincided to E. 

coli levels in the environment. Buildings with the most to least amounts of bacteria were 
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as follows: hospitals, food establishments, and residential areas thus cockroaches in 

hospitals maintained the highest levels of E. coli (Chaichanawongsaroj et al. 2004). 

Rivault et al. (1993) discussed that not all bacteria would be able to survive on surfaces 

that a cockroach made contact with. Under proper conditions such as proper humidity, 

specific bacteria species can develop at successful rates. Specific food items can provide 

bacteria with enough nutritional resources and humidity to grow. This causes concern 

because food that is eaten raw such as fruits, vegetables, pastries, and breads may be 

cross-contaminated with disease-causing organisms. After retrieving traps, it was 

interesting to note the condition of the bread in each jar. Traps containing cockroaches 

usually had bread that appeared to be moldy or have black or green spots on it while the 

bread in jars without cockroaches lacked these discolorations. 

Kopanic et al. (1994) determined a single cockroach contaminated with 

Salmonella typhimurioum could infect up to ten other cockroaches within a 24 hour 

period in a 1.1 L jar. Theoretically, a single cockroach can contaminate an entire area 

given an adequate period of time. In the current study, the time when each cockroach 

entered the collecting vessel is unknown, thus making the rate or occurrence of cross-

contamination difficult to determine. Kopanic et al. (1994) previously studied 

cockroaches with known inoculated amount placed into a container which resulted in 

variable rates of cross-contamination. During this study, the collection jar was 2.3 times 

larger than the container used in the previous study, and cockroaches were in traps for 

half of the duration of the Kopanic et al. (1994) study. Therefore, cockroaches in this 

study may have all been exposed to limited cross-contamination. Data indicated bacteria 
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were present on a single roach while other cockroach(es) were absent of the bacteria 

within the same jar.  

An alternative may be that under stress the cockroaches defecated or regurgitated 

food into the slurry of bread-beer mixture, thus providing a solution for the remaining 

cockroaches to become cross-contaminated with bacteria from other cockroaches. A 

downside to the methods used for this experiment was that all cockroaches from each 

individual jar at each site were placed in a single plastic container prior to freezing. This 

may have provided another means of cross-contamination. Potential spreading of 

pathogens among the specimens may have been prevented if each cockroach was stored 

in individual containers. It would be unrealistic for a single person to collect each 

cockroach individually as it was trapped at all of the locations. The methods described in 

this paper were sufficient to determine population numbers and bacterial counts with the 

least amount of cross-contamination possible.  

Data indicated that collection locations were significantly different E. coli, 

coliform forming gram-negative bacteria were significantly different while there was no 

significant difference between non-coliform forming gram-negative bacterial species and 

collecting locations. It was interesting to note differences among collected populations 

and prevalence of bacteria, despite collecting sites being up to 1.44 km apart. A 

significant difference may indicate the environment of various collecting locations 

having differing compositions of bacteria. It is possible that the values for E. coli were 

not significantly difference for each quadrant even though the p-value indicated a 

significant difference. There were 75 specimens that resulted with too many bacteria 
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colony forming units to count. These numbers should not have affected the overall 

significant difference between populations, quadrants, and bacteria species because the 

number of too many to count bacteria colony forming units were proportional to initial 

rates of prevalence among populations collected on campus. Populations collected in the 

south quadrant had significantly different numbers of E. coli colonies when compared to 

other locations. It was interesting to note that this was the only location that was 

collected near a garage. No differences for non-coliform forming gram-negative bacteria 

among collected populations implies that cockroaches may have obtained bacteria from 

common means throughout campus, such as soil in the flowerbeds or a common water 

source any of which may have been contaminated with bacteria.  

A common water source that may have been easily accessible to all specimens is 

through the sewer systems. Periplaneta americana may have traveled from one area of 

campus to another through various methods of transportation, including but not limited 

to steam tunnels, vehicles via infested materials, or physical movement by individual 

roaches. Cockroaches are capable of migration by ground movement, climbing vertical 

surfaces, swimming, and some limited flight capabilities (Bell et al. 2007). Jackson and 

Maier (1955) determined through capture and release experiments that cockroaches 

could travel through the sewer up to 107 m. Dispersal can occur rapidly because 

cockroaches are capable of traveling at speeds of 0.44-1.5 ms-1 on a horizontal plane and 

can become bipedal at their highest speeds (Full and Tu 1991). It is possible cockroaches 

remained in locations until resources were depleted and then dispersed in search of food.  
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Nocturnal habits of cockroaches allowed efficient ground movement but not 

without the threat of predation by nocturnal wildlife. Safer dispersal methods could be 

achieved by traveling through sewer systems. Incidentally, sewers are ideal locations for 

acquisition of pathogens by cockroaches. Also, students, faculty, staff, and visitors may 

unknowingly transfer cockroaches and/or ootheca to new locations from other residences 

or buildings. Increased populations resulted in an increased potential to infest new areas, 

hence establish new sites for pathogen acquisition and dispersal.   

Several other studies agitated collected cockroaches in saline and used the 

solution to plate and determine bacteria numbers. Methods used during the current study 

directly plated cockroaches onto media. Humphrey et al. (1995) determined that directly 

placing samples on media would increase the rate of prevalence as opposed to placing 

the samples into a diluent. Direct plating may replicate what happens outside of 

laboratory conditions in a more realistic manner. It does not seem feasible that 

cockroaches will be shaken in a solution and then the solution be poured onto a food or 

food preparation area. Cockroaches typically walk over surfaces or may stop to feed on a 

food resource, thus inoculation periods vary from surface to surface. Direct plating may 

replicate P. americana cuticle indiscriminately contacting surfaces and with the possibly 

of pathogen transmission.  

All specimens collected were negative for E. coli 0157:H7. Presence of this 

pathogen usually occurs in livestock area because cattle and sheep act as reservoirs for 

the pathogen (McGee et al. 1997). There were no locations on campus that housed 

livestock which were regularly sampled for cockroach populations. This may have 
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contributed to why there were no positives for E. coli 0157:H7. Although, E. coli 

0157:H7 has been found on vegetables and soft cheese such as feta (Ramsaran et al. 

1998, Michino et al. 1999). Escherchia coli 0157:H7 has also been found viable on dry 

surfaces such as stainless steel and was detected up to 60 d after inoculation (Maule 

2000). Due to pathogenicity of the organism, negative results on all of the specimens 

tested were an optimal result. 

Campylobacter spp. is normally found in the intestinal gut of animals and 

humans. It has microaerophilic properties which make growth of the organism 

susceptible to desiccation from oxygen. Altekruse et al. (1999) determined that survival 

of the organisms outside of the gut is poor. Unfavorable conditions can result in 

Campylobacter spp. to enter a stage where it is viable but nonculturable (Murphy et al. 

2006). During this state, the organisms change their morphological characteristics from a 

spiral to a coccoid, but it can still result in infections and can colonize a host gut 

(Murphy et al. 2006). Growth in substances such as water, litter, and feed are typically 

not common in ambient temperatures because of the desiccation associated with being 

exposed to atmospheric oxygen (Sahin et al. 2002). Transmission of Campylobacter spp. 

to humans occured through consumption of under cooked meats such as beef, pork, and 

poultry or consumption of contaminated water sources or non-pasteurized milk (Sahin et 

al. 2002). The bacteria are sensitive to drying out and when suspended in a liquid that 

has been allowed to dry, Campylobacter spp., will not be detected after four hours 

(Humphery et al.  1995). Although, if the organisms is in a solution such as blood, it will 

test positive after four hours (Humphrey et al. 1995). Chynoweth et al. (1998) 



77 
 

determined C. jejuni could grow in sterile stream water under aerobic conditions for up 

to 55 d. Campylobacter spp. have been found on stainless steel, ceramic tile, cotton 

dishtowels, and other surfaces commonly associated with food preparation situations for 

over an hour (Yan et al. 2005). Campylobacter infections can result from surface water 

being contaminated by fecal material or through sewage contamination (Murphy et al. 

2006).  

The cockroaches in this study failed to have any positive rates of prevalence 

when screened for Campylobacter spp. The organism does not grow at temperatures 

below 30oC, which could indicate why there were no positives (Park 2002).  

Susceptibility to cooler temperatures and exposure to oxygen makes it difficult for 

Campylobacter spp. to successfully grow outside of a host body, hence was a possibility 

as to why there was no positive colony forming. 

Overall, this study displayed the wide distribution of cockroach populations on 

campus and their ability to indiscriminately inhabit areas within an urban environment. 

Pathogen acquisition and dissemination of gram-negative bacteria, such as E. coli, was 

prevalent on campus but without detection of the highly pathogenic strain of E. coli 

1057:H7. Also, there was a lack of Campylobacter spp. growth from cuticular plating 

which may have resulted from undesirable conditions required to sustain colony growth.     
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CHAPTER IV 

 

DISCUSSION AND CONCLUSIONS 

 

The purpose of the first portion of this study was to analyze the spatial 

distribution of P. americana populations in an outdoor, urban environment and 

determine gene flow among the population. This study determined genetic variability 

among P. americana collected on a major university campus. The 16S region of the gene 

was initially chosen as the amplification site in identifying variability among cockroach 

populations. 16S gene regions are commonly amplified during termite studies failed to 

amplify and thus there was no discernable differentiation between individuals. The ITS1 

region was chosen for amplification because there was no successful amplification at the 

16S gene region. The current study demonstrated gene flow within populations of P. 

americana based on differentiation identified from the ITS1 region.  

Among the 52 sequences amplified there were 22 haplotypes indicating a high 

amount of variation in the population. Haplotypes isolated during this study will be 

made available on Genbank. TCS spanning tree analysis identified discrete lineages 

from nuclear markers which demonstrates interbreeding of P. americana populations. 

The lack of population structure was reconfirmed by neighbor-joining and Bayesian 

phylogenetic analyses. Periplaneta americana samples from Bryan, College Station, 

Hempstead, and Pleasanton, Texas were in a single clade including P. americana 

sequence obtained from Genbank (AF321248). Samples of P. fuliginosa were in a 
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separate clade along with the sequences from Genbank for a P. fuliginosa (AF321250) 

and P. brunnea (AF321249) supports species identification with this marker. Comparing 

the 52 sequences amplified to 22 haplotypes suggests a high amount of variation in the 

population based on nuclear markers. Genetic variation based on spatial distribution of 

P. americana populations indicated the success and ability of breeding with 

independence with the individuals collected on campus, hence representing a free-living, 

interbreeding population.  

Genetic variation of populations occurs through genetic drift, genetic flow, 

natural selection, and founder effects (Slatkin 1987). Lenormand (2002) determined 

gene flow limited adaptation of genes to specific locations because new genes from 

outside sources prevent loci from becoming fixed in the environment. Introduced genetic 

material adapted for survival in a particular environment can differ from the population 

from which it emigrated, thus preventing speciation via gene flow (Slatkin 1987). Gene 

flow acts as an indirect method of determining movement within a population. 

This study is the first to date using nuclear markers in identifying spatial 

relationships and gene flow among P. americana populations on a university campus in 

North America. Future studies may analyze a broader range of genes including 

mitochondrial DNA to determine distinct lineages formed by mtDNA. Also, analyzing 

gene flow at various sequences may determine a more comprehensive evolutionary 

lineage of divergences in cockroach populations. Our study is a step towards the in-

depth analysis of the phylogenetics of cockroaches. The data obtained during this 

experiment can contribute a small portion to the overall analysis of a comprehensive 
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phylogenetic study of cockroaches. There was a failure to reject the null hypothesis for 

the first objective of this study because there was no significant difference in the genetic 

make-up of field collected P. americana samples from locations in central Texas.              

The second objective of this study determined the amount and viability of 

bacteria harbored by P. americana in an outdoor, urban environment. There was no 

significant difference between collecting sites and population means of P. americana 

collected. Based on observational experience, specific areas of campus appeared to yield 

higher populations. No significant difference between adult and nymph populations may 

have indicated a population that is well established on campus, as well as the lack of 

control methods implemented to reduce population numbers. Cockroaches are virtually 

ubiquitous in urban environments. Overall, the function of buildings adjacent to 

collection locations did not play a significant role in population densities of cockroaches. 

There was no correlation between temperature and mean populations (total, adults, and 

nymphs) when analyzed. Thus affirming populations collected are not correlated to 

mean temperatures. 

Establishing bacteria amounts carried by cockroaches is important because they 

can act as potential disease agent carriers. Escherichia coli and Campylobacter spp. are 

common causes of gastro-intestinal illnesses in humans. Despite the stigma of 

cockroaches being filth laden, Bell et al. (2007) implicated cockroaches spending at least 

half of their time grooming and removing foreign objects from their body. The amount 

of time spent cleaning is inadequate because of the pathogen contamination rates of in 

the areas cockroaches frequent and their ability to easily become re-inoculated. 



81 
 

Therefore, cockroaches can mechanically transfer pathogens present in the environment. 

The ability to harbor bacteria on internal and external surfaces provides multiple means 

of pathogen transmission. In addition to direct contact with surfaces, cockroaches can 

disseminate internal organisms via defecation and/or regurgitation. 

 Data indicated when collection locations were compared to bacteria amounts 

there were significant differences between locations and E. coli; there were significant 

differences between locations and coliform forming gram-negative bacteria; and there 

were no significant differences between non-coliform forming bacterial species and 

collecting locations. It was interesting to note both significant differences and no 

significant differences among collected populations and prevalence of bacteria, despite 

collecting sites being up to 1.44 km apart. No difference among populations could 

demonstrate cockroaches obtained bacteria from a universal substance used throughout 

campus, such as soil or a common water source, any of which may have been 

contaminated with fecal material.  Sewer systems are easily accessible to specimens 

throughout campus and may have been a source of contamination.  

Cockroaches are capable of migration via ground movement, climbing vertical 

surfaces, swimming, and they have some limited flight capabilities (Bell et al. 2007). 

Periplaneta americana may have traveled from one area of campus to another through 

various methods of transportation. Steam tunnels, automobiles via infested materials, or 

physical movement by individual roaches may have been a few methods of dispersal 

through the environment.  
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Despite having the lowest percentage of prevalence, one out of every two 

cockroaches on campus was carrying E. coli pathogens. All specimens collected were 

negative for E. coli 0157:H7. Due to pathogenicity of the organism, negative results on 

all of the specimens tested were an optimal result. Cockroaches collected and screened 

during this study failed to have any positive rates of prevalence of Campylobacter spp. 

Susceptibility to cooler temperatures and exposure to oxygen impedes Campylobacter 

spp. growth successfully outside of a host body, hence a possibility as to why there was 

no positive colony forming unit. Whole body extractions or fecal remains would be more 

likely be used to observe Campylobacter spp. in future studies.  

 Overall, this study displayed the ubiquitous distribution of cockroach populations 

on campus and their ability to indiscriminately inhabit areas within an urban 

environment. Gram-negative bacteria acquisition and dissemination of organisms, such 

as E. coli, was prevalent on campus but the highly pathogenic strain of E. coli 1057:H7 

was not isolated. Also, there was a lack of Campylobacter spp. growth from cuticular 

plating which may have resulted from undesirable conditions required to sustain colony 

growth.     

 Data from this study suggested cockroach’s ability to mechanically transfer 

pathogens. Insects are known to harbor and transfer pathogens in the environment, thus 

having potentially deleterious health consequences on animal and/or human populations. 

Dipteran species have been identified as mechanical vectors of pathogens. Houseflies, 

Musca domestica (L.) (Diptera: Muscidae) can carry Vibrio chlorerae, E. coli, and 

Yersinia pseudotuberculosis (Fotedar 2001, Zurek et al. 2001, De Jesús et al. 2004). In 
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1898, Xenopsylla cheopis (Rothschild) (Siphonaptera: Pulicidae) was reported as the 

vector of the etiological agent of plague (Yersinia pestis) (Burroughs 1947, Inglesby et 

al. 2000). The consequences of plague outbreaks throughout history are well known, but 

more current concerns associated with the disease involves aerosolation of the bacteria 

for use as a biological weapon (Inglesby et al. 2000). This technique could apply to other 

pathogens with numerous insects acting as mechanical transmitters and having 

successful rates of dissemination. Stomoxys calcitrans (L.) (Diptera: Muscidae), Ades 

agypeti (L.) (Diptera: Culicidae), and Ae. taeniorhynchus (Wiedemann) (Diptera: 

Culicidae) can spread Bacillus anthracis which is also a cause for concern if used as a 

biological weapon (Turell and Knudson 1987).  The null hypothesis for the second study 

was rejected for E. coli and coliform forming bacteria because there was a significant 

difference between P. americana samples collected from various locations in central 

Texas. Analysis of non-coliform forming bacteria resulted in a failure to reject the null 

hypothesis because of there was no geographic relationship for bacteria recovered 

among field collected P. americana samples in central Texas.   

   Zurek and Schal (2004) suggested the capability of German cockroaches to 

mechanically transmit the porcine pathogen E. coli F18 through fecal material. 

Cockroaches also have been suggested as a vector in sever acute respiratory syndrome 

(SARS) which has reached epidemic levels in the past five years (Wu et al. 2004, Lau et 

al. 2005). SARS results from contact with individuals infected with a coronavirus, thus 

direct contact serving as the primary route of transmission (Wu et al. 2005). Although, 

cockroaches have been hypothesized to act as vectors when there was no contact 
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between infected and uninfected individuals (Wu et al. 2005). It is evident that 

cockroaches are capable of transmitting various disease-causing organisms by 

mechanical transmission. The absolute vectoring capability of cockroaches still remains 

unknown because experiments involving etiological agents occurring naturally or those 

which can be harmful to large populations, such as anthrax, have yet to be thoroughly 

tested.   

There were limitations to information and implications resulting from data 

collected throughout the study. For example, populations collected for this study were 

only collected from selected areas of campus. The genetic data is consistent throughout 

the sequences amplified from the various locations on campus. The degree of variation 

of the population may be interpreted differently had other markers such as mtDNA or 

microsatellite segments been implemented to differentiate individuals. Also, P. 

americana were only collected in outdoor environments. It is possible that indoor 

populations have different bacterial faunas because of differing bacteria present in the 

environment. Future studies could include sampling larger areas for collecting, including 

health care facilities, like hospitals and nursing homes, or places associated with 

children, such as day cares and schools. It would be interesting to analyze diversity of 

bacteria from various locations including gram-positive bacteria, which were not 

screened for during this study. Also, identifying specific strains of pathogens through 

genetic analysis could allow for better mapping of distances and dispersal of disease-

causing agents throughout the environment.   
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APPENDIX 

Table A-1. Collection sites with GPS for College Station, TX including the total 
number of cockroaches collected at each location 
 

Quadrant Location GPS 
Number 
Collected 

North W Blocker  30o 37'11.16" N / 96o 20' 33.99" W 29 

North E Water Tower  30o 36' 4.27" N / 96o 20' 35.75" W 75 

North S  WERC  30o 37'13.73" N / 96o 20' 17.87" W 0 

Central S Arct Bldg B  30o 37' 8.44" N / 96o 20' 17.45" W 0 

Central W Arct Bldg C 30o 37' 8.84" N / 96o 20' 16.60" W 0 

Central NE Beutel (Dumpster) 30o 36' 52.95" N / 96o 20' 33.93" W 0 

Central S Beutel 30o 36' 55.36" N / 96o 20' 33.42" W 0 

Central W Bizzell Hall 30o 36' 49.98" N / 96o 20' 28.74" W 0 

Central W Board of Regents Annex I 30o 36' 42.39" N / 96o 20' 31.97" W 39 

Central W Board of Regents Annex II  30o 36' 42.78" N / 96o 20' 32.45" W 36 

Central S Board of Regents Annex 30o 36' 42.21" N / 96o 20' 30.78" W 80 

Central N Coke Bldg 30o 36' 52.85" N / 96o 20' 30.79" W 0 

Central S Geosci Bldg (Drain) 30o 37' 2.90" N / 96o 20' 11.58" W 0 

Central S Geosci Bldg (Dumpster) 30o 37' 3.02" N / 96o 20' 11.31" W 0 

Central W J.R. Thompson Hall 30o 37' 3.04" N / 96o 20' 27.38" W 0 

Central SE Langford Arct Bldg  30o 37' 7.67" N / 96o 20' 13.63" W 0 

Central E Langford Arct Bldg  30o 37' 7.83" N / 96o 20' 13.72" W 0 

South Bldg West of Duncan (Door) 30o 36' 42.14" N / 96o 20' 8.23" W 0 

South N Commons 30o 36' 57.00" N / 96o 20' 11.96" W 0 

South S Duncan (Trash compactor) 30o 36' 41.99" N / 96o 20' 6.97" W 0 

South S Duncan (Wall) 30o 36' 42.34" N / 96o 20' 5.93" W 0 

South S Duncan (Sewer cover) 30o 36' 42.62" N / 96o 20' 5.64" W 0 

South S Duncan (Walk-in) 30o 36' 42.93" N / 96o 20' 5.68" W 1 

South W Koldus (N) 30o 36' 41.11" N / 96o 20' 21.97" W 132 

South W Koldus (S) 30o 36' 41.86" N / 96o 20' 21.67" W 140 

South S Mosher - a  30o 36' 55.54" N / 96o 20' 5.12" W 1 

South S South Campus Garage (Wall) 30o 36' 47.33" N / 96o 19' 59.10" W 2 

South S South Campus Garage (Drain) 30o 36' 47.50" N / 96o 19' 58.81" W 78 

West E Borlog Center (Sewer cover) 30o 36' 30.19" N / 96o 20' 56.30" W 0 

West N HFS Bldg  30o 36' 33.85" N / 96o 21' 0.48" W 0 

West W Kleberg (Sewage cover) 30o 36' 36.11" N / 96o 20' 50.99" W 14 

West W Kleberg Drain (S) 30o 36' 36.57" N / 96o 20' 50.32" W 0 

West W Kleberg Drain (N) 30o 36' 36.70" N / 96o 20' 50.54" W 59 

West N Sat Utilities 1  30o 36' 30.36" N / 96o 20' 50.20" W 0 
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Table A-1.  continued 

Quadrant Location GPS 
Number 
Collected 

West N Vet Med Sci  (Glass enclave) 30o 36' 47.88" N / 96o 21' 8.62" W 0 

West N Vet Med Sci (Loading dock) 30o 36' 48.47" N / 96o 21' 7.48" W 0 

West N Vet Med Sci (Door-N) 30o 36' 49.09" N / 96o 21' 7.12" W 1 

West E Vivarium III (Corner) 30o 36' 51.28" N / 96o 21' 9.54" W 0 

West NE Vivarium III (Door-E) 30o 36' 51.6" N / 96o 21' 9.70" W 0 

College Station, Texas (various locations) 37 

Total 724 
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Table A-2. Uncorrected (“P”) distance matrix of 13 haplotypes from populations collected all quadrants on the Texas 
A&M University campus, College Station, Texas in addition to undisclosed locations from College Station, Texas not 
found on campus 
 

Haplotype  1 2 3 4 5 6 7 8 9 10 11 12 
8 0.01794 0.07034 0.06697 0.02882 0.00716 0.01269 0.00716 0.00896 0.01787 0.00897 - 
10 0.01622 0.06672 0.06524 0.02691 0.00536 0.01093 0.00536 0.00357 0.01607 0.00181 0.01073 0.00181 
14 0.01441 0.06535 0.06346 0.02531 0.00181 0.00905 0.00181 0.00363 0.00896 0.00361 0.00721 0.00362 
4 0.01622 0.06310 0.06160 0.02150 0.00357 0.01087 0.00357 0.00179 0.01429 0.00179 0.01075 0.00180 
3 0.01619 0.06318 0.06163 0.02867 0.00714 0.01087 0.00714 0.00536 0.01786 0.00180 0.01250 0.00180 
5 0.02162 0.06160 0.05976 0.01973 0.00898 0.01626 0.00898 0.00718 0.01971 0.00718 0.01619 0.00722 
17 0.02170 0.07284 0.07078 0.03257 0.00908 0.01627 0.00908 0.01090 0.01624 0.01088 0.01447 0.01088 
1 0.01260 0.06308 0.06158 0.02510 0.00000 0.00725 0.00000 0.00179 0.01071 0.00180 0.00716 0.00180 
12 0.03259 0.05411 0.05445 0.03419 0.01967 0.02717 0.01967 0.02145 0.01964 0.02156 0.02693 0.02158 
19 0.02533 0.06011 0.06173 0.03239 0.01445 0.01994 0.01445 0.01625 0.01980 0.01446 0.01986 0.01453 
21 0.02717 0.05591 0.05625 0.03237 0.01430 0.02177 0.01430 0.01608 0.01786 0.01619 0.02156 0.01621 
22 0.02350 0.05590 0.05618 0.02875 0.01074 0.01810 0.01074 0.01252 0.01430 0.01259 0.01797 0.01260 
16 0.01813 0.05617 0.05458 0.01988 0.00543 0.01276 0.00543 0.00723 0.01618 0.00724 0.01266 0.00725 
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Table A-2. continued 
 

Haplotype  13 14 15 16 17 18 19 20 21 22 23 24 
8 
10 0.00893 0.00357 0.00358 0.00537 0.00714 0.00000 0.00000 - 
14 0.00542 0.00903 0.00182 0.00183 0.00361 0.00545 0.00545 0.00545 0.00362 0.00000 0.00723 0.00179 
4 0.01071 0.00718 0.00360 0.00537 0.00536 0.00536 0.00536 0.00536 0.00357 0.00893 0.00540 0.01071 
3 0.01429 0.00715 0.00536 0.00714 0.00893 0.00536 0.00536 0.00536 0.00357 0.00893 0.00715 0.01071 
5 0.01615 0.01260 0.00903 0.01080 0.01077 0.01078 0.01078 0.01078 0.00898 0.01256 0.01083 0.01435 
17 0.01272 0.01634 0.00908 0.00908 0.01088 0.01274 0.01274 0.01274 0.01089 0.00723 0.01452 0.00901 
1 0.00714 0.00719 0.00000 0.00179 0.00179 0.00536 0.00536 0.00536 0.00357 0.00536 0.00539 0.00714 
12 0.01967 0.02337 0.01978 0.02156 0.02145 0.02146 0.02146 0.02146 0.02325 0.02145 0.02518 0.02324 
19 0.01805 0.01988 0.01271 0.01447 0.01623 0.01627 0.01627 0.01627 0.01445 0.01082 0.01814 0.01261 
21 0.01788 0.02159 0.01440 0.01619 0.01608 0.01968 0.01968 0.01968 0.01788 0.01608 0.01980 0.01787 
22 0.01432 0.01798 0.01081 0.01260 0.01252 0.01612 0.01612 0.01612 0.01432 0.01252 0.01621 0.01431 
16 0.01260 0.01262 0.00545 0.00724 0.00722 0.00903 0.00903 0.00903 0.00722 0.00903 0.01084 0.01081 

 

Haplotype  25 26 27 28 29 30 31 32 33 34 35 36 
8 
10 
14 0.00000 0.00181 0.00544 0.00181 0.00363 0.00181 0.00363 0.00542 - 
4 0.00719 0.00360 0.00357 0.00357 0.00179 0.00357 0.00179 0.00903 0.00543 0.00359 0.00362 0.00362 
3 0.00717 0.00360 0.00714 0.00714 0.00536 0.00714 0.00536 0.00899 0.00541 0.00718 0.00360 0.00360 
5 0.01258 0.00900 0.00898 0.00898 0.00718 0.00898 0.00718 0.01442 0.01085 0.00901 0.00901 0.00901 
17 0.00724 0.00907 0.01274 0.00908 0.01090 0.00908 0.01090 0.01269 0.00723 0.01269 0.00904 0.00904 
1 0.00360 0.00000 0.00357 0.00000 0.00179 0.00000 0.00179 0.00542 0.00181 0.00357 0.00000 0.00000 
12 0.01980 0.01987 0.02325 0.01967 0.02145 0.01967 0.02145 0.02171 0.01812 0.01618 0.01997 0.01997 
19 0.01081 0.01263 0.01807 0.01445 0.01625 0.01445 0.01625 0.01804 0.01088 0.01265 0.01269 0.01269 
21 0.01442 0.01450 0.01788 0.01430 0.01608 0.01430 0.01608 0.01996 0.01272 0.01439 0.01455 0.01455 
22 0.01082 0.01086 0.01432 0.01074 0.01252 0.01074 0.01252 0.01629 0.00907 0.01078 0.01087 0.01087 
16 0.00726 0.00548 0.00903 0.00543 0.00723 0.00543 0.00723 0.01089 0.00730 0.00182 0.00549 0.00549 
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Table A-2. continued 
 

Haplotype  37 38 39 40 41 42 43 44 45 46 47 48 
8 
10 
14 
4 0.00179 0.00179 - 
3 0.00536 0.00536 0.00714 0.00180 0.00536 0.00536 - 
5 0.00718 0.00718 0.00540 0.00720 0.00718 0.00718 0.01255 - 
17 0.01090 0.01090 0.01270 0.01086 0.01090 0.01090 0.01267 0.01809 - 
1 0.00179 0.00179 0.00357 0.00182 0.00179 0.00179 0.00714 0.00898 0.00908 0.00358 - 
12 0.02145 0.02145 0.01967 0.02175 0.02145 0.02145 0.02511 0.02520 0.02541 0.02353 0.01967 - 
19 0.01625 0.01625 0.01445 0.01451 0.01625 0.01625 0.01627 0.01619 0.01816 0.01631 0.01445 0.02358 
21 0.01608 0.01608 0.01787 0.01635 0.01608 0.01608 0.01974 0.02338 0.02000 0.01813 0.01430 0.00537 
22 0.01252 0.01252 0.01431 0.01269 0.01252 0.01252 0.01613 0.01978 0.01632 0.01446 0.01074 0.00894 
16 0.00723 0.00723 0.00542 0.00731 0.00723 0.00723 0.00908 0.01089 0.01464 0.00912 0.00543 0.01263 

 

Haplotype  49 50 51 52 53 54 55 
8 
10 
14 
4 
3 
5 
17 
1 
12 
19 - 
21 0.02177 0.01787 0.00358 - 
22 0.01990 0.01431 0.01073 0.00716 - 
16 0.01449 0.00903 0.01445 0.01084 0.00721 0.00720 - 
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