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ABSTRACT

Performance Analysis Using Sequential Detection in a Serial Multi-Hop Wireless

Sensor Network. (August 2008)

Dae Hyun Choi, B.E., Korea University, Seoul

Chair of Advisory Committee: Dr. Jean-François Chamberland

Wireless sensor networks (WSNs) have been developed for a variety of appli-

cations such as battlefield surveillance, environment monitoring, health care and so

on. For such applications, the design of WSN has been limited by two main resource

constraints, power and delay. Therefore, since wireless sensors with a small battery

are subject to strict power constraints, the efficient usage of power is one of the im-

portant challenges. As delay-sensitive applications are emerging, they have been in

demand for making a quick decision with the enhanced detection accuracy. Under

above constraints, we propose a sequential detection scheme and compare it with a

Fixed-sample-size (FSS) detection scheme in terms of power and delay. Our main

contribution is to analyze the overall system performance of the proposed scheme in

the statistical signal processing framework under of power and delay constraints.

In this thesis, we evaluate the overall system performance of sequential detection

scheme in a serial multi-hop WSN topology. For sequential detection, the sensor nodes

continue to relay the observations to the next node until the sequential detector makes

a final decision based on the observations. On the other hand, the FSS detector waits

until all the observations come to the fusion center, and then gives a final decision. For

a fair comparison of the two schemes with respect to power and delay, the initial step

is to find the same detection performance region between the two schemes. Detection

performance is evaluated with performance measures such as false alarm, miss and

prior probability. Simulation results show that each scheme has an advantage and a
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disadvantage concerning power and delay respectively. That is, sequential detection

performs more efficiently in delay since the number of samples in sequential detection

is less on average than in FSS detection to obtain the same detection performance.

However, FSS detection with a small number of packet paths consumes less power

than sequential detection. Through the analysis of a cost function, which is a linear

combination of power and delay, we compare the cost value between the two schemes

and find less region of the cost value in both schemes. This analysis will provide a

good starting point and foundation for designing an efficient multi-hop WSN with

small power and delay constraints.
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CHAPTER I

INTRODUCTION

Initially, wireless sensor network (WSN) technologies have emerged as a battlefield

surveillance application. However, with the surge of communication research efforts,

the spectrum of this application has significantly enlarged from environment monitor-

ing into areas such as traffic control and even health care. A representative application

in WSN is event tracking, which has wide usage in various settings. As such, detection

accuracy has been one of the standards for evaluating system performance. WSNs

faces the dual challenge of extending the network lifetimes and reducing communica-

tion delays. Since wireless sensor nodes are battery-driven and operate on a frugal

energy budget, power management for WSN has become one of the primary methods

for prolonging the lifetime of a network. For transferring delay-sensitive data, sensor

nodes are required to rapidly detect a target and quickly relay the observation pack-

ets to a destination, which is called the fusion center. In addition, decision times at

the fusion center affect overall delays. To overcome these challenges, novel detection

schemes and improved analysis models are required. In this thesis, we study a sequen-

tial detection scheme and investigate the overall system performance of a sequential

detection in the integrated framework of statistical signal processing with power and

delay constraints.

In general, statistical signal processing refers to a methodology to infer general-

izations from empirical data. Detection theory is a key aspect of statistical signal pro-

cessing and has been developed over a half-century by numerous researchers [1, 2, 3].

There are two well-known representative detection schemes. First, centralized de-

The journal model is IEEE Transactions on Automatic Control.
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tection assumes that the local sensors communicate all observations to a central

processing entity, called fusion center, which makes a final decision based on these

observations. This scheme provides a better detection accuracy at the expense of

excessive communication cost. The second scheme is decentralized or distributed de-

tection where each sensor makes a decision locally and sends the quantized data to

the fusion center, which admits a final decision. This scheme has some advantages

such as decreased communication bandwidth and cost. Yet, it entails additional pro-

cessing power at each sensor and features a worse detection performance than the

centralized detection scheme. Other schemes with random sample size draw a line

between fixed-sample-size (FSS) detection and sequential detection. Unlike a FSS de-

tector where the number of observations is predetermined, a sequential detector can

make an early decision, that is to say, take less observations on average to achieve the

same detection performance as a FSS detector. In most settings, the aforementioned

strategies are performed by smart sensors that know the statistics of the observations.

Recently, type-based detection with dumb sensors with no knowledge of the obser-

vation statistics has been proposed by Liu and Sayeed [4]. This scenario requires a

relatively small bandwidth and provides detection performance similar to that of a

centralized detection.

In this thesis, we emphasize power efficiency and detection accuracy rather than

the efficient use of communication bandwidth. Therefore, we focus on a centralized

detection framework. In this framework, a sequential detection scheme over a multi-

hop WSN is proposed and compared with a FSS detection scheme in terms of power

consumption and delay performance. There are two reasons to choose multi-hop

system model and two different detection schemes. First, a WSN is usually required

for multi-hop topologies because transmission power at each sensor increases non-

linearly in the distance between sensors or between a sensor and the fusion center.
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Moreover, the sensors with a small battery have a narrow transmission range and

need relay nodes to send their observation packets to the fusion center. Also, the

issue of which detection scheme is applied to a multi-hop WSN can influence power

and delay performance as well as detection accuracy.

Our main work is composed of two parts. The first part is to analyze detection

performance of sequential detection and compare it to FSS detection. The result of

this part later provides a standard to fairly compare our schemes with each other in

terms of power and delay. For the evaluation of detection performance, a Bayesian

framework is selected to derive optimality criteria for both schemes. The initial step

for the analysis of detection performance is to numerically derive optimal decision

rules for each scheme and simulate detection performance based on the derived deci-

sion rules. The second part is to compute average power and delay in each scheme and

compare them. The purpose of this part is to find which scheme consumes a smaller

amount of power or has less delay while achieving the same detection performance.

Simulation results show that each scheme has advantages and disadvantages with re-

spect to power and delay. Finally, we compare the performance of both schemes in

terms of a joint cost function of power and delay. This suggests that, as either delay

or power are emphasized more, either sequential detection or FSS detection can be

deemed more appropriate for implementation than the other.

A common and specific system model for our schemes is described as follows.

A common system model is physically composed of four parts: the first sensor node

(the farthest to the fusion center), the intermediate sensor nodes (between the first

sensor and the last sensor), the last sensor node (the nearest to the fusion center)

and the fusion center. In the case of sequential detection, at the first time slot, each

sensor node transmits its own observation packet to the next sensor node toward

the fusion center. From the second time slot to the last time slot, all the sensor
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nodes receiving observation packets from the previous node relay them to the next

one until the last observation packet reaches the fusion center. On the other hand,

for FSS detection, the observation taken at each sensor is combined dynamically with

previous observation to decrease overhead. The observations are appended to the

current observation packet as it is being relayed toward the fusion center. At the first

time slot, the first sensor node transmits its own observation packet to the next one.

At the second time slot, the first intermediate sensor node receiving an observation

packet from the first sensor node combines it with its own observation taken and

then sends the resulting packet to the next intermediate sensor node. This procedure

continues until the fusion center receives the last observation packet. Here, we assume

that all the sensor nodes have access to a single observation at a time, and until all

the observation packets transmitted by the sensor nodes arrive at the fusion center.

In addition to the above assumption, all the sensor nodes except the last sensor node

are not permitted to directly transmit the observation packets to the fusion center.

Sequential detection is different from traditional detection with fixed-sample-size

in that the number of observations required by the sequential test has a random value

depending on the realization of the observation process. Classical sequential detection

analysis dates back to Wald’s work [5]. At each step, the sequential detector can either

admit one of the two hypotheses (H0,H1) or wait and take an additional observation.

The design of the sequential detector needs a sequential decision rule composed of a

pair of functions: a stopping rule and a terminal decision rule. A stopping rule is a

procedure that informs us when to stop taking observations, and a stopping time is a

time when a stopping rule decides to finish taking observations. A terminal decision

rule is a function that makes a decision when even the fusion center elects to stop

taking observations. Decentralized sequential detection problems have also been well

developed under the concept of classical sequential detection. It has been shown in
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the literature [6, 7] that the function of sequential detection can be performed at the

sensor or the fusion center and in each case, different local decision rules and fusion

decision rules are derived. Recently, a hybrid detection scheme has been suggested [8];

a sensor sends a one-bit local decision as in a decentralized detection scheme if the

likelihood ratio function exceeds a predetermined threshold, and if not so, as in a

centralized detection scheme the sensor sends all observations. In some sense, this

scheme is similar to a sequential detection in that the number of observations is

random according to a predetermined threshold.

There have been significant advances in the analysis of WSN. Classic detec-

tion theory, starting with a simple hypothesis test, has been incorporated into the

area of decentralized detection. Numerous papers [9, 10, 11, 12, 13] have inves-

tigated decentralized detection under constraints such as bandwidth and multiple

access channel (MAC). For different WSN topologies, serial network decentralized

detection [14, 15, 16] and parallel network decentralized detection [17, 18] have been

studied extensively. In particular, previous researchers [6, 7, 19] have conducted in-

depth investigations of sequential detection. Recently, decentralized detection over

non-ideal channel models has emerged as an area of interest [20, 21, 22, 23].

Nevertheless, little research exists for sequential detection with power and delay

constraints. Some related works [24, 25, 8] on sequential detection in the context of

energy-efficient WSN design shed new light on the analysis of sequential detection

with resource constraints. However, all of the previous works have focused on the

distributed detection scheme. In addition, they assume that intermediate sensor

nodes only relay observation packets to the next sensor node without detecting a

target. Some of them [24, 25] investigate system performance for the simplified one-

hop WSN. The formulation we adopt in this thesis is new. Our framework seeks to

address several issues and challenges: temporal and spatial correlation among the
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sensor observations, multi-hypothesis likelihood ratio test, various topologies with

flexibility, and aggregation data toward the fusion center. Our goal is to design a WSN

model with improved detection accuracy under small power and delay constraints, and

to get a general formulation for performance analysis in spite of these challenges.

A. Contributions of Thesis

Our task is to analyze the system performance of a multi-hop WSN by using a se-

quential detection scheme with resource constraints on power and delay. Consider

two proposed serial multi-hop WSN models. One is to perform sequential detection

at the fusion center and the other is to conduct FSS detection at the same location.

To maintain a tractable problem, we assume that the overall system is subject to

ideal channels, and sensors have identical transmission power. Suppose that we have

a simple binary hypothesis test where H takes on one of two possible values, and the

observations cross sensors are independent and identically distributed (i.i.d.), condi-

tioned on H. We study and compare detection performance between two models with

various system parameters in the Bayesian framework and then analyze overall system

performance in terms of power and delay. A linear combination of power and delay

is defined as a cost function, the analysis of which will pave the way for designing

efficient multi-hop WSNs that require less power and reduce delay simultaneously.

B. Organization of Thesis

The remainder of the thesis is organized as follows. In Chapter II, we study the

concept of detection theory. We also discuss two general framework, the Bayesian

formulation and the Neyman-Pearson formulation. Binary hypothesis test is then

introduced in each formulation. Chapter III presents a description of a basic multi-
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hop WSN model and our two proposed models are described in a centralized detection

scheme perspective. For the analysis of power efficiency, we borrow a transmission

power formulation from information theory literature. Chapter IV discusses classical

sequential detection and introduces a mathematical formulation for this problem in

the Bayesian framework. In Chapter V, we derive the optimal decision rules with

different observation models and we compute an expression for energy consumption.

Chapter VI surveys our schemes utilizing numerical results from Chapter V, and

presents a power and delay performance analysis for our systems. Finally, we provide

our conclusions and future tasks in Chapter VII.
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CHAPTER II

DETECTION THEORY AND OPTIMALITY CRITERIA

In general, statistical signal processing refers to the act of inferring generalizations

from empirical data with uncertainty. In statistical problem, we are interested in an

unknown parameter which we can denote by θ. We have access to an observation Y

that provides partial information about the value of θ. The relationship between θ

and Y is probabilistic in nature. The abstract framework of statistical problem can

be illustrated in Figure 1. This framework is composed of three components.

Fig. 1. Detection framework

• Attribute set: It consists of all admissible values of θ. This set is denoted by U .

• Measurable space (F ,Ω): It provides a mathematical basis for the stochastic

nature of the observations. Here, F is the σ-algebra of all probability events

and Ω represents the universal sample space.

• Observation space (Γ): It is the collection of all realizable observations.

If the attribute set is partitioned into a finite number of subsets and the objective is

to identify which subset θ belongs to, this problem is called detection or hypothesis
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testing. We refer to the different subsets as hypotheses, and label them as H1, H2, . . .

If the attribute set contains only two elements, the function of the detectors is to dis-

tinguish between the corresponding two hypotheses. The ensuing problem is called

binary detection (or binary hypothesis testing), which is our main focus for the anal-

ysis of our models. Figure 2 shows the abstract framework of binary detection. Based

Fig. 2. Binary detection framework

on this binary detection framework, we study hypothesis testing problem under two

representative settings, the Bayesian formulation and the Neyman-Pearson formula-

tion.

A. Bayesian Hypothesis Testing

In the Bayesian framework, the attribute set is assumed to be a probability space

with a known distribution. We assume that the true parameter θ is equal to 0 with

probability γ(0), and it is equal to 1 with probability γ(1) = 1−γ(0). The probability

measure on the elements of U is called the a priori distribution, which means the

knowledge we have about the parameter before getting empirical measurements. The

performance criteria in the Bayes formulation is to find a detector that minimizes

the Bayesian risk. The Bayesian risk is the expected value of the cost, and it can be
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computed as

R = C00γ(0)

∫

Γ

1Γ0dµ0 + C10γ(0)

∫

Γ

1Γ1dµ0

+ C01γ(1)

∫

Γ

1Γ0dµ1 + C11γ(1)

∫

Γ

1Γ1dµ1.

(2.1)

Here, Ci,j is the cost incurred by choosing hypothesis Hi when hypothesis Hj is true.

Using conditional probabilities defined by the above integrals, we get

PF = Pr(Ĥ = 1 | H = 0) =

∫

Γ1

dµ0

PD = Pr(Ĥ = 1 | H = 1) =

∫

Γ1

dµ1

PM = Pr(Ĥ = 0 | H = 1) =

∫

Γ0

dµ1.

Under the assumption that the cost of an erroneous decision is higher than the cost

of a correct decision (C10 > C00 and C01 > C11), the optimal decision rule is equal to

dµ1

dµ0

(y)
H1

≷
H0

γ(0)(C10 − C00)

γ(1)(C01 − C11)
.

B. Neyman-Pearson Hypothesis Testing

In some situations, it may be difficult to model parameter θ as a random variable.

Also, it may be impractical to assign realistic costs to the four detection outcomes.

The Neyman-Pearson formulation to binary hypothesis testing provides an alternative

to the Bayesian formulation. In the Neyman-Pearson framework, θ is viewed as an

unknown deterministic parameter. The problem is defined in terms of the probability

of false alarm PF and the probability of detection PD. The goal can be stated as

follows:

max PD subject to PF ≤ α.
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Using Lagrange multiplier methods, we wish to maximize the function

PD + λ(PF − α) =

∫

Γ1

(
dµ1

dµ0

+ λ

)
dµ0 − λα. (2.2)

Equation (2.2) leads us to the optimal decision structure

dµ1

dµ0

H1

≷
H0

η,

where η is the smallest threshold value such that

PF =

∫

Γ1

dµ0 ≤ α;

and Γ1 is the region given by

Γ1 =

{
y ∈ Γ

∣∣∣dµ1

dµ0

(y) > η

}
.
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CHAPTER III

SYSTEM MODEL

We introduce the serial multi-hop topology we wish to use in Section A. The basic

system structure is extended to our proposed schemes, as described in Section B. One

of our main goals is to study the power consumption of our schemes. To this end, we

develop a general formulation for system performance evaluation in Section C.

A. Basic System Structure

We consider a serial multi-hop wireless network with multiple sensors and one fusion

center. All the observations taken by the sensor nodes are transmitted via inter-

mediate relay nodes to the fusion center, which makes a final decision based on the

information gathered. Our basic system model is illustrated in Figure 3.

Fig. 3. Block diagram of a basic system model for a serial multi-hop WSN.

For our system model, we make the following assumptions for analytical tractabil-

ity.

• The link between any two sensor nodes and the link between the sensor node

and the fusion center are needed as idealized channels.
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• We have a simple binary hypothesis test, where H takes on one of two pos-

sible values. The observations at a sensor node and across sensor nodes are

independent and identically distributed (i.i.d.) conditioned on H.

• For ease of computation, we only consider the transmission power at each node

and assume that the sensor nodes consume an identical amount of energy per

transmission.

B. Two Serial Multi-hop WSN Models

1. Sequential Detection Topology

An abstract representation of the sequential detection scheme for five sensors is shown

in Figure 4. Each arrow is labeled by the transmitted observation packet composed

Fig. 4. Sequential detection topology.

of the packet header and the observation payload. We assume a time-slotted com-
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munication scheme. In first time slot, all the sensor nodes send their observation

packets to the next sensor node (or the fusion center for the last node). In all the

following time-slots, sensor nodes relay the received observation packets towards the

fusion center. It is important to notice that a sequential detector is not required to

take all the observations sent by the sensor nodes to make a decision. In Figure 4,

the solid line and the dotted line denote the actual path and the potential path of

the observation packets respectively. This figure shows the case where the sequential

detector makes a decision after acquires three observations. This fact follows from the

definition of sequential detection; the related mathematical formulation is explained

in Chapter IV.

2. FSS Detection Topology

Next, we consider the FSS detection scheme, which is depicted in Figure 5. In this

Fig. 5. FSS detection topology
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scenario, there is only one packet transmission in every time-slot. Each relay node

waits for an observation packet to arrive. Upon its arrival, an additional observa-

tion payload is attached to the packet header by the relay node corresponding to its

gathered data. We assume that the size of the packet payload is relatively small com-

pared to its header. Hence, we regard a packet with multiple observations having the

same size as a single observation packet. In contrast to sequential detection, Figure 5

shows that FSS detection requires all the observations taken by the sensors before

making a decision. Under this assumption, the FSS detection scheme is equivalent

to the parallel detection scheme illustrated in Figure 6. However, the corresponding

equivalence can only hold if both detectors take all the observations gathered by the

sensors. For example, one of the serious problems in a serial network is a link failure

between the nodes. If a link fails in a serial multi-hop network, the detector loses all

previous observations and detection performance suffers. Clearly, a parallel network

faces no such predicament.

Fig. 6. Parallel detection topology equivalent to FSS detection topology.
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C. Power Formulation

Energy optimization over WSN with small battery sensors plays an important role

in improving the lifetime of the overall system. Since the sensor nodes are subject

to strict power constraints, it is necessary to investigate the interplay between power

and overall performance in these networks [26, 27]. Energy aware WSN has been

discussed extensively in the literature [28]. According to a specific study with respect

to the energy of WSN [28], the system architecture of a sensor is made up of four

subsystems:

• MICRO CONTROLLER UNIT (MCU): This unit is in charge of controlling

sensors, executing signal processing based on observed data, and it provides

three modes of operating: active, idle, and sleeping.

• RADIO: It is responsible for communicating with sensors and operates in the

following four modes: transmit, receive, idle and sleeping. Modulation meth-

ods, transmission rates and power, and operational duty cycles all affect power

consumption of the communication unit.

• SENSOR: Sensor traducers convert a physical condition to an electrical signal

and perform the following tasks: signal sampling, analog to digital conversion.

• POWER SUPPLY: It supplies the power to the other subsystems.

In the information theory literature, the relationship between achievable rates and

signal power has been studied extensively [29]. For a bandlimited additive white

Gaussian noise channel, the achievable rate C is given by

C = W log2

(
1 +

l(d)P

N0W

)
bits per second, (3.1)
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where W is the bandwidth, N0 is the noise spectrum density, l(d) is the path loss

function with distance d between nodes, and P is the transmission power [30]. This

formula determines the minimum power required to obtain a given rate. From equa-

tion (3.1), the transmission power of each sensor can be expressed as

P = N0Wd3(2
C(t)
W − 1) watts, (3.2)

where we have used the path loss function l(d) = d−3. In our work, we assume

that all the sensors have the same power. We use the transmission power of each

sensor to compute the total power and provide meaningful comparisons. That is,

using equation (3.2), we derive the total power employed by the proposed sequential

detection and FSS detection schemes.
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CHAPTER IV

SEQUENTIAL DETECTION ANALYSIS

In the current theory of hypothesis testing, the number of observations, i.e. the size of

the samples on which the test is based, is treated as constant. As mentioned before,

we call this fixed-sample-size (FSS) detection. An distinguishing characteristic of the

sequential test from the standard test procedure is that the number of observations

demanded by the sequential test depends on the outcome of the observation process

and is, therefore, not predetermined, but a random value. For some observation

realizations, a decision can be made taking a small number of observations, while

for others, the process of taking observations is extended before making a decision.

This chapter is devoted to classic sequential detection in the Bayesian framework.

First, we introduce the concept of a sequential detector. Then, we formally define

the sequential detection problem and show how it can be solved using the sequential

probability ratio test (SPRT).

A. Definition of Sequential Detection

The sequential method of testing a hypothesis H can be described as follows. A rule is

selected that allows one of the following three decisions at any stage of the experiment:

(1) accept hypothesis H, (2) reject hypothesis H, (3) continue the experiment by

taking an additional observation. After the first observation is taken, one of these

three actions is performed. If a decision is made, the process is terminated. Otherwise,

the detector recursively takes into account the next observation. This process is

continued until either the first or the second options are selected. The number of

observations, N , required by such a test procedure is a random variable because the

value of N depends on the outcome of the observations.
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B. Problem Formulation

We focus on sequential detection in the Bayesian framework [1]. A binary sequential

detector can be described formally on a binary attribute set U . A sequential detector

has access to an observation sequence {Yk; k = 1, 2, . . .} at discrete times k. It is as-

sumed that given the true hypothesis, the observations are conditionally independent

and identically distributed according to

H0 : Yk ∼ µ0, k = 1, 2, . . .

H1 : Yk ∼ µ1, k = 1, 2, . . .

The objective of a sequential detector is to decide whether to admit one of the two

hypotheses upon availability of a new observation or wait for the information con-

tained in the consecutive observation. This objective is accomplished by deriving a

sequential decision rule. The sequential decision rule (Φ,Σ) is composed of a stopping

rule Φ = {φn : n ∈ N} with φn:{Y1, Y2, . . . , Yn} → {0,1}, and the terminal decision

rule Σ = {σn : n ∈ N} with σn:{Y1, Y2, . . . , Yn} → {0,1}. The stopping rule Φ is a

procedure that informs us when to stop taking observations based on the stopping

time. The stopping time N is a random variable given by

N = min{n ∈ N|φn(Y1, . . . , Yn) = 1}. (4.1)

The terminal decision rule Σ makes a decision based on the available data. In short,

the sequential decision rule (Φ,Σ) makes no decision while k < N and the detector

takes new observations. The stopping rule Φ stops the process when φk(Y1, . . . , Yk) =

1 for this time, and the terminal decision rule Σ makes a decision, H0 or H1, at this

time. For i ∈ {0, 1}, hypothesis Hi is selected if and only if σN(Y1, . . . , YN) = i.
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C. Sequential Probability Ratio Test

Wald conjectured the structure of the sequential decision rule (Φ, Σ) [5]. He called this

decision rule the sequential probability ratio test (SPRT). Let us define pn(Y1, . . . , Yn)

as the probability of hypothesis H1 being the true state of attribute given n observa-

tions {Y1, Y2, . . . , Yn}

pn(Y1, . . . , Yn) = P (H1 is the true hypothesis | Y1, . . . , Yn). (4.2)

Using Bayes theorem, we can recursively compute pn(Y1, . . . , Yn) as follows

pn(Y1, . . . , Yn) =
P (Y1, . . . , Yn | H1)P (H1)

P (Y1, . . . , Yn)

=
P (Y1, . . . , Yn | H1)P (H1)

P (Y1, . . . , Yn | H1)P (H1) + P (Y1, . . . , Yn | H0)P (H0)

=
P (Y1, . . . , Yn−1 | H1)P (Yn | H1)P (H1)

P (Y1, . . . , Yn−1 | H1)P (Yn | H1)P (H0) + P (Y1, . . . , Yn−1 | H1)P (Yn | H0)P (H0)
.

The last equation is obtained because the observations are independent conditioned

on the true hypothesis. If we define the likelihood ratio at the kth observation as

L(Yk) =
P (Yk | H1)

P (Yk | H0)
=

dµ1

dµ0

(Yk), (4.3)

then the above relation for pn(Y1, . . . , Yn) can be further simplified to an iterative

equation as

pn(Y1, . . . , Yn)

=
P (Y1, . . . , Yn−1 | H1)L(Yn)P (H1)

P (Y1, . . . , Yn−1 | H1)L(Yn)P (H1) + P (Y1, . . . , Yn−1 | H0)P (H0)

=
L(Yn)P (H1 | Y1, . . . , Yn−1)P (Y1, . . . , Yn−1)

L(Yn)P (H1 | Y1, . . . , Yn−1)P (Y1, . . . , Yn−1) + P (H0 | Y1, . . . , Yn−1)P (Y1, . . . , Yn−1)

=
L(Yn)P (H1 | Y1, . . . , Yn−1)

L(Yn)P (H1 | Y1, . . . , Yn−1) + 1− P (H1 | Y1, . . . , Yn−1)
.

(4.4)
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or simply

pn(Y1, . . . , Yn) =
L(Yn)pn−1(Y1, . . . , Yn−1)

L(Yn)pn−1(Y1, . . . , Yn−1) + 1− pn−1(Y1, . . . , Yn−1)
. (4.5)

Suppose ηL and ηU are lower and upper thresholds respectively, where ηL < ηU . The

thresholds ηL and ηU should be chosen such that the sequential decision rule yields

the desired performance. The stopping rule of the SPRT for the nth observation is

φn(Y1, . . . , Yn) =





0 if ηL < pn(Y1, . . . , Yn) < ηU

1 otherwise.
(4.6)

The stopping rule can be iteratively computed using equation (4.5). We choose a

stopping rule such that if pn(Y1, . . . , Yn) /∈ (ηL, ηU), then the process is stopped.

Similarly, the terminal decision rule becomes

σn(Y1, . . . , Yn) =





1 if pn(Y1, . . . , Yn) ≥ ηU

0 if pn(Y1, . . . , Yn) ≤ ηL,
(4.7)

and it can be computed using the iterative form of pn.

In the Bayesian framework where a prior probability measure on the attribute

set is given, the SPRT defined in the stopping rule (4.6) and the terminal decision

rule (4.7) can be expressed in terms of the likelihood ratio of equation (4.4) and

a priori probabilities γ(0) and γ(1). First, we need to find the iterative relation

for updating pn(Y1, . . . , Yn) based on the sequence of likelihood ratios and the priori

probabilities,

pn(Y1, . . . , Yn) =
γ(1)

∏n
k=1

dµ1

dµ0
(Yk)

γ(0) + γ(1)
∏n

k=1
dµ1

dµ0
(Yk)

=
γ(1)

∏n
k=1 L(Yk)

γ(0) + γ(1)
∏n

k=1 L(Yk)
.

(4.8)

Using equation (4.8), the stopping rule (4.6) and the terminal decision rule (4.7) can
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be rewritten as

φn(Y1, . . . , Yn) =





0 if η̃L <
∏n

k=1 L(Yk) < η̃U

1 otherwise.
(4.9)

Similarly, the terminal decision rule (4.7) can be expressed as

σn(Y1, . . . , Yn) =





1 if
∏n

k=1 L(Yk) ≥ η̃U

0 if
∏n

k=1 L(Yk) ≤ η̃L,
(4.10)

where η̃L = γ(0)ηL

γ(1)(1−ηL)
, η̃U = γ(0)ηU

γ(1)(1−ηU )
.

To derive an optimal sequential detector, we assign costs to our decisions. The

terminal cost is represented by nonnegative numbers c(i, j) for i, j ∈ {0, 1}, where

c(i, j) is the cost incurred by choosing hypothesis Hi when hypothesis Hj is true.

The incremental observation cost is C > 0 for each sample we take so that the cost

of taking N samples is CN . The risk function of a sequential detector is the total

expected cost resulting from the sequential detection procedure as follows:

R(φ, δ) = E[c(φN(Y1, . . . , YN), j) + CN ], (4.11)

where the expectation is with respect to the true hypothesis Hj and to the realization

of the sequences Y1, Y2, . . . Finally, we can find an optimal sequential decision rule

(Φ, Σ) by minimizing the risk function.

For the problem of detecting a constant signal in additive i.i.d. noise, sample

paths of stopping time given H0 or H1 are illustrated in Figure 7, and the results on

the graphs are plotted for the parameters of Table I. We assume that observations

are distributed according to a Gaussian distribution. Mathematically, Figure 7 can

be translated into sequential detection rules as follows:

(1) Figure 7(a)
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• Stopping rule : φ0 = 0, . . . , φ12(Y1, . . . , Y12) = 0, φ13(Y1, . . . , Y13) = 1

• Decision rule : σ13(Y1, . . . , Y13) = 0 ;

(2) Figure 7(b)

• Stopping rule : φ0 = 0, . . . , φ19(Y1, . . . , Y19) = 0, φ20(Y1, . . . , Y20) = 1

• Decision rule : σ20(Y1, . . . , Y20) = 1 .

Figure 7(a) shows that the sequential detector takes 13 observations and makes de-

cision H1. On the other hand, in Figure 7(b), the sequential detector takes 20 obser-

vations and make decision H0.

Table I. Simulation parameters for a realization of stopping time.

θ = 2 Constant signal value

σ2 = 9 Noise variance

η̃U = 6.8 Upper bound in sequential detection

η̃L = -2.3 Lower bound in sequential detection
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(a) A sample path with the stopping time given H0
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(b) A sample path with the stopping time given H1

Fig. 7. A realization of a Bayes sequential test given H0 and H1.
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CHAPTER V

NUMERICAL ANALYSIS

To fairly compare power and delay performance in both schemes, we need to have the

same detection performance in the two cases. In this chapter, we study two specific

observation models in our schemes: Gaussian observations and Bernoulli observations.

In the context of centralized detection, local sensor nodes take observations and relay

them to the next sensor node or to the fusion center without quantization. The fusion

center performs a Likelihood Ratio Test (LRT) to make a final decision. Hence, an

optimal fusion decision rule for each scheme is derived numerically to evaluate the

detection performance. The derivation of this decision rule at the fusion center is

conducted in the Bayesian framework assuming a uniform cost, i.e. C00=C11=0 and

C01=C10=1. To analyze the sequential detector, a sequential algorithm is introduced.

We assume that each sensor node shares the same bandwidth, transmits one packet

per second, and is subject to the same noise spectrum density. The power consumed

by each sensor node depends only on its transmission power equation (3.2). Based

on these assumptions, an expression for the total power consumed by either scheme

is derived.

A. Decision Rule

Since our schemes perform different detection at the fusion center, we derive one fusion

decision rule per scheme. Moreover, the two different observation models require their

own decision rule. Thus, four decision rules are derived in this chapter. To derive the

decision rule, the first step is to obtain likelihood ratio function.
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1. Gaussian Observations

Consider the problem of detecting a constant signal in additive noise where the ob-

servations are conditionally independent and identically distributed according to

H0 : Yk = Nk, k = 1, 2, . . .

H1 : Yk = Nk + θ, k = 1, 2, . . .

with θ > 0 and {Nk}∞k=1 is a sequence of i.i.d. Gaussian random variables, each with

distribution, N (0, σ2). For FSS detection, the decision rule is derived as follows,

λn(y1, . . . , yn) =
n∏

k=1

[
dµ1(yk)

dµ0(yk)

]

=
n∏

k=1

[
1√
2πσ

exp

(
−(yk − θ)2

2σ2

)]
/

[
1√
2πσ

exp

(
− y2

k

2σ2

)]

= exp

[
θ

σ2

n∑

k=1

(
yk − θ

2

)]
H1

≷
H0

γ(0)

γ(1)
= η.

(5.1)

where dµ0, dµ1 and γ(0), γ(1) are conditional probability distributions and priori

distributions corresponding to H0 and H1, respectively; and η is a threshold. Taking

the logarithm of both sides, we get

Λn(y1, . . . , yn) =
θ

σ2

n∑

k=1

(
yk − θ

2

)
. (5.2)

Since θ > 0, we have

Yn =
n∑

k=1

yk

H1

≷
H0

σ2

θ
ln η +

θ

2
n = η

′
(5.3)

with

Yn ∼




N (0, nσ2) under H0

N (nθ, nσ2) under H1.
(5.4)

Using (5.3) and (5.4), we obtain expressions for the false alarm probability PF ,
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the detection probability PD in terms of the new threshold η
′
,

PF = P (Yn > η
′ | H0) = Q

(
η
′

√
nσ2

)
(5.5)

PD = P (Yn > η
′ | H1) = Q

(
η
′ − nθ√
nσ2

)
(5.6)

η
′
=

σ2

θ
ln η +

θ

2
n. (5.7)

We can write the probability of error Pe as

Pe = γ(0)Q

(
σ2

θ
ln η + θ

2
n√

nσ2

)
+ γ(1)

[
1−Q

(
σ2

θ
ln η − θ

2
n√

nσ2

)]
. (5.8)

For the derivation of the decision rule in sequential detection, the log-likelihood ratio

function of (5.2) can also be used. However, this function has different thresholds

from FSS detector. Both a lower bound η̃L and an upper bound η̃U are needed. The

corresponding sequential detector is given by

η̃L ≤ Λn(y1, . . . , yn) ≤ η̃U , Take more samples

Λn(y1, . . . , yn) ≤ η̃L, Decision H0

Λn(y1, . . . , yn) ≥ η̃U , Decision H1.

(5.9)

It is difficult to derive PF and PM analytically since there is no closed-form expression

for the distribution of the stopping time N . Since N is a random variable, Pe is derived
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differently from the FSS case. We can write it as

Pe =
∞∑

n=1

E[1{N=n}1{σn 6=H}]

=
∞∑

n=1

[{1− γ(1)}E[1{N=n}1{σn=1} | H = H0] + γ(1)E[1{N=n}1{σn=0} | H = H1]]

=
∞∑

n=1

[{1− γ(1)}E0[1{N=n}σn] + γ(1)E1[1{N=n}(1− σn)]]

= {1− γ(1)}E0[σN ] + γ(1)E1[(1− σN)]

= {1− γ(1)}E0[σN ] + γ(1)(1− E1[σN ])

= {1− γ(1)}PF + γ(1)PM .

(5.10)

We resort to Monte Carlo simulation to evaluate and hence estimate approximate

values for PF and PM , Pe. Next, we compute E[N ] and E[N2] since these values

are used to compute the total power of our schemes. We can express them for our

schemes as

E[N ] = [

nseq−1∑
i=1

iPN(i)] + nseq

∞∑
i=nseq

PN(i) (5.11)

E[N2] = [

nseq−1∑
i=1

i2PN(i)] + (nseq)
2

∞∑
i=nseq

PN(i), (5.12)

where PN is the PMF of N and nseq is the number of sensors involved in sequential

detection. The results of equations (5.11) and (5.12) are due to the fact that, for a

multi-hop network, the number of sensors is always greater or equal to the stopping

time. Hence, a new stopping time Ñ is defined as

Ñ = min(nseq, N). (5.13)

In our simulation, we set m = 105 as the number of rounds. Using the recursive

formula of equation (5.14), we compute the values of the sequential log-likelihood
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function exceeding the thresholds and then obtain the values of PF , PM , E[Ñ ] and

E[Ñ2].

Λk+1(y1, . . . , yk+1) = Λk(y1, . . . , yk) +
θ

σ2

(
yk+1 − θ

2

)
. (5.14)

More specifically, the sequential detection algorithm is operated as follows:

1. Fix upper lower bounds.

2. Generate Gaussian distribution given H0 and H1.

3. Compute and update the log-likelihood ratio function as follows

• while (Λ(N) > η̃L and Λ(N) < η̃U)

N = N + 1;

Update Λ(N) according to equation (5.14)

end;

4. Stopping time is computed and decision rule is applied

• if (N > nseq)

Ñ = nseq;

Apply FSS decision rule;

• else

Ñ = N ;

Apply Sequential decision rule;

5. Compute average value of PF , PM and E[Ñ ], E[Ñ2] with 105 iterations.

6. Go back to step 1 and increase lower bound.
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2. Bernoulli Observations

We consider a sequence of Bernoulli observations distributed according to

P (Yk = 1|H0) = p0

P (Yk = 1|H1) = p1.

For sequential detection in the Bayesian framework, the decision rule is derived as

follows. For a single sample, the likelihood ratio function is

λ(yi) =

(
p1

p0

)yi
(

1− p1

1− p0

)1−yi

=

[
p1(1− p0)

p0(1− p1)

]yi
(

1− p1

1− p0

)
. (5.15)

Suppose that the observations are conditionally i.i.d. random variables, then the like-

lihood ratio function for n observations becomes

λn(y1, . . . , yn) =
n∏

k=1

[
p1(1− p0)

p0(1− p1)

]yi
(

1− p1

1− p0

)

=

[
p1(1− p0)

p0(1− p1)

]∑n
i=1 yi

(
1− p1

1− p0

)n

.

(5.16)

Taking the logarithm of both sides, the log-likelihood ratio becomes

Λn(y1, . . . , yn) = ln

[
p1(1− p0)

p0(1− p1)

] n∑
i=1

yi + n ln

(
1− p1

1− p0

)
. (5.17)

From equation (5.17), we obtain a recursive formula for the log-likelihood ratio,

Λk+1(y1, . . . , yk+1) = Λk(y1, . . . , yk) + ln

[
p1(1− p0)

p0(1− p1)

]
yk+1 + ln

(
1− p1

1− p0

)
. (5.18)

For deriving the decision rule of the FSS detector in the Bayesian framework, we go

back to equation (5.16), where
∑n

i=1 yi denotes the number of “1” out of the total

number of samples “n”. Therefore, it can also be expressed as follows,

λn(y1, . . . , yn) =

[
p1(1− p0)

p0(1− p1)

]t [
1− p1

1− p0

]n H1

≷
H0

γ(0)

γ(1)
= η, (5.19)
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where
∑n

i=1 yi = t. Taking the logarithm of both sides, we get

t
H1

≷
H0

[
ln

(
γ(0)

γ(1)

)
+ n ln

(
1− p0

1− p1

)]
/ ln

[
p1(1− p0)

p0(1− p1)

]
= η

′
. (5.20)

Since a detector makes a decision based on the number of “1” out of a total samples

“n”, the decision rule is a function of the binomial distribution. The probabilities PF

and PM are

PF = P (t > η
′ | H0) =

n∑

i=η
′

(
n

i

)
pi

0(1− p0)
n−i (5.21)

PM = P (t < η
′ | H1) =

η
′−1∑
i=0

(
n

i

)
pi

1(1− p1)
n−i (5.22)

and therefore

Pe = γ(0)
n∑

i=η′

(
n

i

)
pi

0(1− p0)
n−i + γ(1)

η
′−1∑
i=0

(
n

i

)
pi

1(1− p1)
n−i. (5.23)

The procedure to estimate PF , PM , E[N ], and E[N2] is based on the sequential

detection algorithm, except that the observations are generated using a Bernoulli

distribution and equation (5.18).

B. Total Power Analysis

We only consider the transmission power in analyzing the total power consumption of

our schemes. The transmission power is proportional to distance d between adjacent

sensors,

P (d) = Adα (5.24)

where A is constant and α is the path loss exponent. For FSS detection, the total

number of observations is simply equal to the number of sensors. Under the as-

sumption that all sensors use identical transmission power, the total power with the
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number of sensor nodes nfix can be computed as:

PTotal,FSS =

nfix∑

k=1

Adα

= nfixAdα.

(5.25)

The other scheme is to perform sequential detection at the fusion center and to

consecutively relay packets. Hence, the total power depends on E[Ñ ] and nseq:

E[PTotal,Seq] = E





Ñ∑

k=1

[nseq − (k − 1)]Adα





=
Adα

2
E[Ñ(2nseq − Ñ + 1)]

=
Adα

2
{(2nseq + 1)E[Ñ ]− E[Ñ2]}.

(5.26)

In our simulation, we choose α = 3 and A = 1. When the spacing between sensor

nodes is identical, the value of the total power can be simplified to the total number

of hops necessary for packets to reach the fusion center. That is, computing the total

power is equal to counting the total number of hops traversed by packets to arrive at

the fusion center, until the detector makes a final decision. We apply this assumption

to our schemes for numerical results.
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CHAPTER VI

SIMULATION RESULTS

In this chapter, the overall system performance of sequential detection is simulated

and compared with FSS detection. Section A shows general features of a centralized

sequential detection. In Section B, we evaluate the detection accuracy, the power and

the delay performance of our proposed sequential detection scheme. In addition, the

results of the cost analysis reveal which scheme consumes less cost than the other as

either the delay or power are emphasized.

A. General Features of Sequential Detection

The results of our simulation in Section A are obtained from the Gaussian observation

model explained in Chapter V and the parameters of Table II . Figures 8 and 9 show

Table II. Simulation parameters: Gaussian observations for the sequential detection

scheme.

γ(0) = 1
2
, γ(1) = 1

2
Prior distributions

θ = 1 Constant signal value

ln η̃U = 0.1 Upper bound in sequential detection

ln(η̃L) = ln[0.1 : 0.05 : 0.95] Lower bound range in sequential detection

the relationship between the lower bound and the average stopping time E[N ], and

they also demonstrate the relationship between the lower bound and the probability

of error Pe. In Figure 8, it is observed that an increase in the lower bound reduces

E[N ]. It is consistent with our expectation that, as the gap between the bounds

narrows, the sequential detector needs less observations to make a decision.
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Figure 9 shows that as the lower bound increases, Pe also increases. This fact

can be explained by the results of Figure 8. An increase in the lower bound reduces

E[N ] and consequently results in worse detection performance. As expected, Pe has a

smaller value in the high SNR than in the low SNR. Finally, Figure 10 shows that, on
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Fig. 10. Average number of samples vs probability of error: Gaussian observation with

SNR=0.01.

average, sequential detection requires less observations than FSS detection to obtain

the same detection performance. It indicates that using sequential detection reduces

waiting time, and consequently decreases overall delay. The fact that this result is

also maintained in a multi-hop WSN will be discussed in the next section.

B. Performance Analysis of Proposed Sequential Detection

In this section, we focus our analysis on the comparison of our schemes with respect

to power and delay. In Section 1, we simulate detection and power performance
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as we change the number of sensor nodes in the sequential detection setting. Two

observation models based on the Gaussian distribution and the Bernoulli distribution

are considered, along with the parameters of Table III and Table IV. It is verified

that the proposed sequential detection inherits the general properties of a centralized

sequential detection scheme through Section 1. Delay performance is also investigated

and simulated in Section 2.

1. Detection and Power Performance

First, we study detection performance in the Gaussian observation case. As nseq

varies from 2 to 6 with fixed SNR, sequential detection performance is compared

with FSS detection performance. Similar to the result of Figure 10, Figure 11(a)

shows that to obtain the same detection performance, sequential detection requires

less observations on average than FSS detection, irrespective of nseq. This figure

also shows that, as nseq increases, the detection performance improves. Referring

to our sequential detection algorithm, this result is due to the fact that an increase

in nseq causes the detector to take on more observations for an unlikely outcomes

thereby improving performance over the FSS detector. Even when SNR changes,

the relationship between the two detection schemes remains the same, as seen in

Figure 11(a). These results are depicted in Figures 12(a), 13(a), 14(a). In addition, we

expect an increase in SNR to improve detection performance in sequential detection,

and we verify this intuition in Figure 15, including FSS detection. Figure 16 shows a

tradeoff between power and detection performance for the case nseq=6. As expected,

sequential detection consumes less power as SNR increases.

Another observation with respect to detection performance is that as SNR de-

creases, the probability of error of the sequential detection procedure converges to

that of FSS detection with the same number of sensor nodes as nseq. This fact is
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Table III. Simulation parameters: Gaussian observation for proposed schemes.

γ(0) = 2
3
, γ(1) = 1

3
Prior distributions

θ = 1 Constant signal value

ln(η̃U) = ln(e) Upper bound in sequential detection

ln(η̃L) = ln[0.1 : 0.05 : 0.95] Lower bound range in sequential detection

Table IV. Simulation parameters: Bernoulli observation for proposed schemes.

γ(0) = 2
3
, γ(1) = 1

3
Prior distributions

p0 = 1
5
, p1 = 3

5
Conditional distributions

ln(η̃U) = ln(99) Upper bound in sequential detection

ln(η̃L) = [-8:0.5:-0.5] Lower bound range in sequential detection

also explained by our sequential detection algorithm. The decrease in SNR causes

the sequential detector to need more observations before making a decision, and this

fact then prompts the detector to operate in a regime closer to FSS detection than

the sequential detection. This result is depicted in Figure 14(a).

To make a fair power comparison between two schemes, we find the region where

the two schemes have the same detection performance. It is observed in Figure 11(b)

that the total power of sequential detection is always greater than that of FSS detec-

tion for the same detection performance. For example, in Figure 11(a).(1) indicates

the same detection performance region between sequential detection with nseq=3 and

FSS detection with nfix=2. In particular, as previously mentioned, the total power in

FSS detection is proportional to the number of sensor nodes. At this point, the value

of E[N ] in sequential detection is equal to 1.5076 and the total power computed at
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this value is 3.8803, as Figure 11(a).(2) indicates in Figure 11(b). Clearly, sequential

detection consumes more power than FSS detection. Even when both SNR and nseq

change, this result remains true. These findings are depicted in Figures 12(b),13(b),

and 14(b).
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Fig. 11. Comparing detection and power performance between sequential detection

and FSS detection: Gaussian observations with SNR=1.5.
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Fig. 12. Comparing detection and power performance between sequential detection

and FSS detection: Gaussian observations with SNR=1.
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Fig. 13. Comparing detection and power performance between sequential detection

and FSS detection: Gaussian observations with SNR=0.5.
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Fig. 14. Comparing detection and power performance between sequential detection

and FSS detection: Gaussian observations with SNR=0.1.
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Fig. 15. Comparing detection performance between sequential detection and FSS de-

tection: Gaussian observations with nseq=6 and different SNRs.
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Fig. 16. Total power in sequential detection: Gaussian observations with nseq=6 and

different SNRs.

Using the same scenario as the Gaussian observation case, the Bernoulli obser-

vation case is simulated. The only difference is that conditional probabilities p0 and

p1 vary instead of the SNR value of the Gaussian observation case, and nseq varies

from 5 to 10. Figures 17, 18, and 19 show that the conclusions of our simulations

are the same as for the Gaussian case. That is, sequential detection requires fewer

observations on average to make a decision at the cost of more power consumption.

Figure 20 shows detection performance for both detectors with different conditional

probabilities. Similar to the Gaussian case, a tradeoff between power and detection

performance is demonstrated, and as the conditional probability increases, sequential

detection saves more power. This result is depicted in Figure 21.
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Fig. 17. Comparing detection and power performance between sequential detection

and FSS detection: Bernoulli observations with p0=0.3, p1=0.8.
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Fig. 18. Comparing detection and power performance between sequential detection

and FSS detection: Bernoulli observations with p0=0.2, p1=0.6.
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Fig. 19. Comparing detection and power performance between sequential detection

and FSS detection: Bernoulli observations with p0=0.1, p1=0.4.
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Fig. 20. Comparing detection performance between sequential detection and FSS de-

tection: Bernoulli observations with nseq=10 and different conditional distri-

butions.
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Fig. 21. Total power in sequential detection: Bernoulli observations with nseq=10 and

different conditional distributions.

2. Delay Performance

Next, we perform a simulation study for delay performance. Let us consider the

Gaussian observation model with SNR=1.5. The most noticeable observation with

respect to delay performance is depicted in Figure 22(a). This figure shows that se-

quential detection features shorter delays when it is compared to the FSS detection

under the same detection performance. The same trend as Figure 22(a) is shown

in Figures 22(b), (c), and (d). We also observe that, as the probability of error in-

creases, delay decreases. This means that there exists a tradeoff between detection

performance and delay. This is a natural result for our system model since a small

delay implies that the detector takes fewer observations, which in turn, causes poor

detection performance. In addition, a decrease in SNR prompts the detector to take

more observations, and consequently, reduces its advantage in delay efficiency. After
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all, when the SNR is within some small range, the expected delay of the sequen-

tial detection scheme converges to that of FSS detection and Pe decreases. This is

shown in Figure 22(d). The Bernoulli observation case shows the same behavior as

the Gaussian observation case. Simulation results are illustrated in Figure 23, with

changing conditional probability.
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Fig. 22. Total delay vs probability of error between sequential detection and FSS de-

tection: Gaussian observations with different SNRs.
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Fig. 23. Total delay vs probability of error between sequential detection and FSS de-

tection: Bernoulli observations with different conditional probabilities.
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Based on the simulation results of Section 1 and Section 2, we conclude that

the proposed sequential detection scheme has an advantage and a disadvantage over

FSS detection concerning power and delay. Sequential detection requires fewer ob-

servations on average to make a decision, and consequently it has lower expected

delay than FSS detection. However, FSS detection proves to be more power efficient

than sequential detection. In a multi-hop WSN that demands a quick decision with a

small delay, sequential detection is preferred over FSS detection. On the other hand,

FSS detection is adequate for designing a power-efficient WSN with a frugal power

budget. In the next section, the relationship between the two schemes is investigated

by combining the results of Section 1 and Section 2.

3. Cost Analysis

For the analysis of power and delay simultaneously, we define a cost function, which

is a linear combination of power and delay:

f(E[D], E[P ]) = κE[D] + (1− κ) log E[P ].

Here, E[D] and E[P ] denote average delay and average power respectively, and the

value of κ is between 0 and 1. For FSS detection, delay and power are both propor-

tional to nfix. The variable κ determines the relative importance of power and delay.

In a WSN with small power and delay constraints, the design objective is to minimize

the value of the cost function. For example, a WSN can be designed focusing on power

and delay equally with κ=0.5. If the value of κ is less than 0.5, the WSN designer is

placing more emphasis on power consumption. Whereas, delay is considered a more

important factor in the design of the WSN when κ > 0.5. Usually, it is difficult to

decide the value of κ in a two-objective optimization problem since the two functions

of power and delay have different scales of value. However, our task is to compare
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the cost value in both schemes as the value of κ varies and find which scheme con-

sumes less cost value than the other. From equation (5.26) of Chapter V, the average

power in sequential detection increases non-linearly as the average delay increases

linearly because of the average delay square term. Hence, we take a logarithm of

the average power term to compensate for the scale mismatch. Also, the power term

associated with FSS detection is taken a logarithm to be fairly compared with se-

quential detection. Figure 24 shows the cost value for each scheme with the Gaussian

observation model as the value of κ varies. The cost value of sequential detection

with nseq = 3, 4, 5 is compared with that of FSS detection with nfix = 2. For a fair

comparison of the cost value in both schemes, we conduct an evaluation of the cost

based on the same detection performance, Pe = 0.174 and the same SNR=1.5. As

κ increases, the cost function of sequential detection and FSS detection respectively

increases and decreases. Sequential detection has a higher cost than FSS detection

until κ arrives at a crossing point for both cost function. Furthermore, the gap be-

tween the cost values of two schemes becomes smaller. We define this crossing point

as an equivalent point of a cost value in both schemes. After κ passes the equivalent

point, the cost value of sequential detection becomes less than that of FSS detection

and the gap between the two curves becomes larger. This result is consistent with

our previous simulation results, which indicate that if the delay factor is considered

more crucially than the power factor, our proposed sequential detection is superior

to FSS detection. Another observation is that as nseq increases, the equivalent point

of the cost value in both schemes moves to the right. Two schemes have equivalent

points of the cost value at κ = 0.57, 0.65, 0.7 in cases where nseq = 3, 4, 5 respectively.

It is due to the fact that the increase of average power is greater than the decrease

of average delay. Hence, the increase of nseq reduces the range of κ where the cost

value of sequential detection is less than that of FSS detection. In short, we see again
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that as either the delay or power factors are emphasized in different WSN, either a

sequential detection or an FSS detection scheme can be deemed more appropriate for

implementation than the other. However, the values of κ at the equivalent points of

the cost are always greater than 0.5. This result implies that for a WSN which weighs

power and delay equally, FSS detection is better than sequential detection.

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

k

C
os

t

 

 

n
seq

=3

n
seq

=4

n
seq

=5

n
fix

=2

Fig. 24. Comparison of a cost value between sequential detection and FSS detection

with varying κ from 0 to 1.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

We have studied a centralized sequential detection scheme in multi-hop wireless sensor

networks, and compared it with FSS detection with respect to power and delay. For

the analysis of detection performance, we derived the optimal decision rule in each

scheme for two observation distributions. Then, through simulations, we compared

the detection performance with each other in terms of average size of observations

and probability of error. Simulation results have shown that sequential detection

outperforms FSS detection when both schemes use the same expected number of

observations. Moreover, we verified that, as the number of sensor nodes nseq increases,

detection performance improves. In the Gaussian observation case, it was observed

that a decrease in SNR causes the probability of error of sequential detection to

converge to that of FSS detection with the same number of sensor nodes. Based

on these results, the comparison of power and delay performance was conducted.

The two schemes have an advantage and a disadvantage with respect to power and

delay. That is, sequential detection has a shorter decision time on average than FSS

detection and consequently reduces the overall delay at the cost of consuming more

power. On the other hand, FSS detection performs more efficiently in terms of power

than sequential detection. However, this scheme waits for all the observation packets

taken by the sensor nodes to make a decision. This fact increases network delay.

Finally, we investigated the relationship between sequential detection and FSS

detection considering power and delay simultaneously. The value of a joint power and

delay in both schemes is captured as a cost function, which is a linear combination
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of average power E[P ] and average delay E[D]:

f(E[D], E[P ]) = κE[D] + (1− κ) log E[P ].

From the analysis of the cost function, we concluded that sequential detection and

FSS detection are best suited for networks demanding less delay and power, respec-

tively. Simulation results show that there exist equivalent points of the cost value

between the two schemes only if κ > 0.5. This result means that the minimum cost

region of sequential detection is smaller than that of FSS detection. Hence, we need to

find a better analysis model using sequential detection or a novel detection scheme for

reducing power and delay. Moreover, our system model for the two detection schemes

have been simplified under some assumptions: ignoring noise and fading over the

channel, disregarding the spatial and temporal correlations between the observations

and considering only transmission power to compute the total power. Nevertheless,

the comparison of our two schemes provides a new direction for designing efficient

WSNs. Our goal is to find a novel detection scheme with an efficient detection perfor-

mance for minimizing power and delay, and to construct a rigorous framework where

we can analyze overall system performance.
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