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ABSTRACT 

Demographic and Trophic Dynamics of Fishes in Relation to Hydrologic Variation in 

Channel and Floodplain Habitats of the Brazos River, Texas. (August 2007) 

Steven Christopher Zeug, B.S. Humboldt State University 

Chair of Advisory Committee: Dr. Kirk Winemiller 

 
Large rivers in North America have been subjected to a variety of hydrologic 

alterations that have negatively impacted aquatic fauna.  These impacts have triggered 

restoration efforts, including management of flows, to restore or maintain ecological 

integrity.  Ecological data relevant to flow management and habitat restoration is scarce, 

and conceptual models of ecosystem function have been widely applied to large rivers 

despite a lack of quantitative evaluation of these models.  Here, I examine demographic 

and trophic dynamics of fishes with divergent life histories and trophic guilds in relation 

to habitat heterogeneity and flow variability in a relatively unaltered floodplain system: 

the Brazos River, Texas.  Reproductive activity of fishes with three divergent life history 

strategies was positively associated with long-term river hydrology, although species 

with alternate strategies exploited different portions of the hydrograph (peak flow versus 

increasing flow).  Despite the positive association with hydrology, low-flow periods 

were favorable for recruitment, and food resources for larvae and juveniles were denser 

during these periods.  Some species used both oxbow and channel habitats during some 

point in their life cycle, whereas other species appeared to be almost entirely restricted to 

one habitat type.
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Terrestrial C3 macrophytes accounted for a significant fraction of the biomass of 

most consumer species examined.  Small-bodied species in oxbow lakes assimilated 

large fractions of biomass from benthic algae, whereas this pattern was not observed in 

the river channel.  Frequent flow variations in the river channel may reduce algal 

standing stocks, and significant contributions from autochthonous algal sources may 

only occur during low-flow periods.  Trophic positions of detritivores indicated that 

terrestrial carbon sources were assimilated, for the most part, via invertebrates rather 

than by direct consumption.  My results indicate that current conceptual models are too 

vague to provide accurate predictions for restoration strategies in rivers with variable 

flow regimes.  Flow and habitat management strategies that focus on reproducing key 

features of historical fluvial dynamics are likely to be more successful than strategies 

that focus on single indicator species or flow dynamics that differ from the historical 

hydrograph.    
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CHAPTER I 

INTRODUCTION 

 Floodplain rivers are widely recognized as areas of high biological productivity 

and diversity associated with their large size, spatial heterogeneity, and flow variability 

(Sparks 1995).  Floodplains provide a variety of ecosystem services, and per-unit-area, 

have greater economic value than most other ecosystem types (Constanza et al. 1997).  

Despite the high ecological and economic value of floodplains, these ecosystems are 

among the most threatened on a global scale (Tockner and Stanford 2002).  River 

impoundment, water extraction, and levee construction have significantly altered the 

natural flow regimes of many large rivers.  Hydrology is the primary driver of ecological 

dynamics in lotic systems and aquatic fauna are adapted to natural flow regimes (Poff et 

al. 1997).  River modifications have been associated with reduced fish productivity, 

diversity and invasions by exotic species (Moyle and Light 1996; Bunn and Arthington 

2002; Tockner and Stanford 2002).  Restoration strategies for these systems have 

focused on management of instream flows to maintain ecological integrity; however, 

ecological data necessary to support these strategies are lacking (Naiman et al. 1995; 

Richter et al. 1997. 

Conceptual models of ecological function in large rivers can be useful as guides 

for flow management but require evaluation with empirical data (Thorp et al. 2006).  

Currently, conceptualization of ecosystem function in rivers has outpaced empirical 

evaluation, and few studies have tested hypotheses drawn from model predictions.    

This dissertation follows the style of Ecology. 
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These models are often assumed to apply to rivers with flow regimes that deviate 

significantly from the river systems used to formulate conceptual models (Humphries et 

al. 1999).  Worldwide, large rivers display a range of flood timing, duration, and 

frequency that have the potential to influence aquatic fauna (Puckridge et al. 1998).  

Additionally, fish populations possess a diversity of life history strategies.  

Environmental conditions that optimize recruitment are strongly associated with life 

history traits, and flow conditions that benefit one strategy may be detrimental to species 

with a different suite of traits (Sparks 1995; Olden et al. 2006). 

 The general objectives of this study were to: 1) quantitatively evaluate how 

reproduction and recruitment of fish populations with divergent life history strategies are 

influenced by habitat heterogeneity and flow variability using the framework of current 

conceptual models, and 2) identify the relative importance of terrestrial and aquatic 

production sources supporting aquatic consumers in different trophic guilds within main 

channel and floodplain habitats.   

My study system was the middle Brazos River located in east-central Texas.  The 

Brazos is the 11th longest river in the United States, and the longest river contained 

entirely within the boarders of Texas.  Fewer hydrologic modifications are present 

throughout the Brazos River-floodplain relative to other North American systems, 

making it highly suitable for evaluation of reproduction, recruitment and trophic 

dynamics under relatively natural conditions.   Three dams are present on the main-stem 

Brazos in and above the city of Waco, however, flows below Waco appears to be 

primarily influenced by regional precipitation with flows approximating historical 
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conditions (Zeug et al. 2005).  Additionally, there are few levees on the middle-lower 

Brazos allowing for channel-floodplain connections and a meandering and dynamic 

channel.  Below I briefly describe conceptual models related to fish reproduction, 

recruitment and trophic dynamics and the objectives of each chapter in relation to 

examining the predictions of these models for the Brazos River. 

MODELS RELATED TO FISH REPRODUCTION AND RECRUITMENT 

 The flood pulse concept (FPC) (Junk et al. 1989) is probably the most widely 

cited conceptual model describing ecological dynamics in floodplain rivers.  This model 

emphasizes the importance of lateral connectivity for biomass production.  Flood pulses 

stimulate release of inorganic nutrients and entry of carbon sources into the aquatic 

realm from adjacent terrestrial areas resulting in blooms of primary and secondary 

production.  Fish reproduction generally coincides with high flow periods that allow 

placement of offspring in to productive floodplain habitats.  The main channel is viewed 

as a “highway” for fishes to travel between important floodplain habitats and provides 

relatively little organic carbon to support the aquatic fauna.  In temperate zone rivers, 

optimal conditions for fish reproduction and recruitment occur when high flows coincide 

with rising spring-time temperatures.  The absence of a flood pulse or alteration in 

timing and/or duration is predicted to reduce recruitment success (Bayley 1991). 

 The FPC was developed largely from observations of tropical river systems 

where flood pulses are predicable within and between years.  Many rivers have flow 

regimes that do not conform to the optimal set of conditions described by the FPC, and 

several studies have found that the main channel of large rivers can support diverse 
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aquatic communities, challenging the highway analogy of the FPC (Winemiller 1996; 

Dettmers et al. 2001).  Humphries et al. (1999) formulated the low-flow recruitment 

hypothesis (LFR) to describe fish population dynamics in large rivers with flood regimes 

that are relatively unpredictable or that occur during periods when temperatures are not 

optimal for reproduction.  Floodplain use in these systems is risky, because fish may 

become stranded during rapidly declining water levels.  Further, if floods are of short 

duration, there may be insufficient time for fish reproduction, juvenile rearing, and 

movement back to the channel.  This model proposes that fish reproduction and 

recruitment can occur in the main channel and are optimized during periods of low-flow 

when temperatures are warm and food resources for larvae and juveniles become 

concentrated. 

     Chapter II develops statistical models of reproductive activity for seven 

species representing three divergent life history strategies.  These models employ biotic 

and abiotic variables drawn from predictions of the FPC and LFR models.  I used an 

information theoretic model selection technique that allowed each candidate model to be 

considered a working hypothesis, and averaged model estimates to determine which 

predictor variables had good support.  The abundance of adults of each species was 

compared among main channel and floodplain habitats to identify areas that are 

profitable for reproduction of species with different life history strategies.  The results of 

the modeling exercise and abundance comparisons are then discussed in relation to 

predictions of each conceptual model and life history theory. 
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 In chapter III, I examined the recruitment success and demographic 

characteristics of the same seven species in different habitat units (channel vs. 

floodplain) and hydrologic periods (wet vs. dry years).  The two year study included a 

relatively dry period (year 1) when floodplain-river channel connections were infrequent 

and habitats were isolated for most of the year, and a wet period (year 2) when 

floodplain and channel habitats experienced frequent hydrologic connections that 

provided opportunities for faunal exchange between habitats.  Recruitment of each 

species was measured by comparing juvenile abundance, and the proportion of juveniles 

in populations of each species between habitats and hydrologic periods.  Additionally, 

data for a suite of environmental variables was compiled to identify characteristics 

associated with optimal recruitment of each species. 

MODELS RELATED TO TROPHIC DYNAMICS 

The river continuum concept (RCC) (Vannote et al. 1980) predicts that 

transported carbon leaked from tributaries and upstream areas due to processing 

inefficiencies is the primary source of carbon supporting consumers in large rivers.  

Recently, several studies have concluded that upstream-downstream food web linkages 

are actually rather weak (Thorp et al. 1998; Huryn et al. 2002), therefore this model was 

not considered in the current study.  The flood-pulse concept proposes that terrestrial 

carbon originating on the floodplain supports the majority of consumer biomass in the 

main channel as described above, emphasizing the importance of lateral rather than 

longitudinal connectivity.  Thorp and Delong (1994) proposed the riverine productivity 

model (RPM) that suggests autochthonous algal carbon is more easily assimilated than 
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either transported particulate carbon or terrestrial carbon originating on the floodplain.  

According to the RPM, algae may be the primary source of carbon supporting aquatic 

consumers despite its lower abundance in the channel environment. 

I used stable isotopes of carbon and nitrogen in the IsoSource mixing model to 

determine the relative contribution of four terrestrial and aquatic production sources to 

aquatic consumers in the Brazos River main channel and two oxbow lakes.  Because 

they provide a measure of material that is actually assimilated by consumers and 

integrates feeding history over relatively long time periods (weeks to months), stable 

isotopes are an effective tracer of different production sources in aquatic food webs  

Estimation of the relative importance of different production sources has been 

complicated in previous studies, because carbon isotope ratios of algae and terrestrial C3 

macrophytes often overlap and two end-member mixing models are unable to distinguish 

between these sources.  The IsoSource model provides a method for modeling source 

contributions when the number of sources is too great for a unique solution (number of 

sources > number of isotopes + 1).  Nitrogen ratios were used to calculate the trophic 

positions of aquatic consumers, and results were compared among the three habitats 

surveyed. 

Chapter VI summarizes the results of chapters II - IV and suggests future 

directions for research in large river systems.  My results provide quantitative data for 

the Brazos River against which the predictions of the aforementioned models can be 

evaluated.  Consideration of life history strategies and trophic guilds as a framework for 

data analysis provides a way for these results to be applied to other large river systems 
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with different taxa.  Quantitative evaluation of conceptual models is essential to advance 

understanding of ecological dynamics in large rivers, and my study represents an 

important step to elucidating how flow variability and habitat heterogeneity influence 

aquatic fauna in these diverse and productive ecosystems.         
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CHAPTER II 

ECOLOGICAL CORRELATES OF FISH REPRODUCTIVE ACTIVITY IN 

FLOODPLAIN RIVERS: A LIFE HISTORY-BASED APPROACH 

INTRODUCTION 

The critical role of hydrology to ecological dynamics in river-floodplain systems 

is well recognized (Poff et al. 1997; Bunn and Arthington 2002).  Alteration of natural 

flow regimes due to dam and levee construction, water extraction, and channel 

modification has been associated with myriad impacts on aquatic fauna (Moyle and 

Light 1996; Tockner and Stanford 2002; Agostinho et al. 2004).  In response to these 

impacts, instream flow recommendations have been developed to restore the ecological 

integrity of modified systems (Jowett 1997; Richter et al 1997).  Most of these strategies 

focus on minimum base flows, flow variability, or habitat availability and may produce 

conflicting assessments depending on the method used (Jowett 1997).  Ecological data 

relevant to restoration of modified river systems is often lacking (Naiman et al. 1995; 

Richter et al. 1997) and conceptual models of ecological function can be useful to guide 

restoration strategies (Trexler 1995). Large rivers exhibit a wide range of flow dynamics, 

and conceptual models should be evaluated before application to river management 

strategies (Thorp et al. 2006).    

For over a decade, the flood pulse concept (FPC) (Junk et al. 1989) has been 

viewed as the best approximation of ecological function in large lowland rivers.  The 

FPC emphasizes the importance of pulsed lateral connections to aquatic productivity and 

maintenance of biotic diversity. The timing of reproduction by fishes is predicted to 
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coincide with flood pulses that allow placement of offspring in floodplain habitats where 

they can exploit the high productivity associated with the aquatic/terrestrial transition 

zone (ATTZ).  In temperate regions, optimal conditions for reproduction are predicted to 

occur when flooding coincides with appropriate temperatures, and lower recruitment is 

predicted when these conditions are not met (Bayley 1991).  Humphries et al. (1999) 

proposed the low-flow recruitment hypothesis (LFR) for rivers in which flood dynamics 

are unpredictable or flood pulses do not coincide with rising temperature.  This model 

recognizes the importance of lateral connectivity to ecological dynamics, but proposes 

that the timing of fish reproduction coincides with predictable low flows when 

temperatures are warm and food resources are concentrated. 

Floodplain rivers support fish species with a diversity of life history strategies 

(Humphries et al. 1999; Winemiller et al. 2000; King et al. 2003).  Environmental 

conditions that differentially affect reproduction and recruitment of species with 

different life history strategies (Magalhaes et al. 2003; Olden et al. 2006), and model 

predictions of reproduction (e.g. FPC) may only apply to a subset of species with a 

particular suite of traits.  Flow management strategies that benefit one strategy may be 

detrimental to species that rely on alternate flow conditions (Sparks 1995; Scheerer 

2002; Welcomme et al. 2006) or off-channel habitats that frequently are overlooked in 

instream flow management.  Integration of conceptual models of reproduction with fish 

life history strategies can provide valuable information regarding flow management 

strategies necessary to support the diversity of fishes that occur in large rivers.                  
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My goals for this study were to identify biotic and abiotic factors associated with 

reproductive activity of fishes with divergent life history strategies and compare patterns 

of fish reproductive activity and adult abundance within channel and floodplain habitats.  

I predicted that combinations of biotic and abiotic factors related to reproductive activity 

would be strongly associated with life history strategy and the value of habitats for 

reproduction by fishes with different life history strategies would primarily be associated 

with hydrologic connections among aquatic habitats.          

METHODS 

Study system 

The main-stem Brazos River flows 1485 km from its origin near the Texas-New 

Mexico boarder to the Gulf of Mexico near Freeport, Texas.  The current study was 

conducted on the middle Brazos between 30º25’N and 30°37’N (Figure 1).  In this 

region the Brazos is a meandering low-gradient river bordered by forested and 

agricultural lands and drains a 76,361 km2 catchment.  Oxbow lakes are common on the 

middle Brazos floodplain, and hydrologic connections between oxbows and the channel 

are relatively unpredictable both within and among years (Winemiller et al. 2000; Zeug 

et al. 2005).  The middle Brazos is less modified by dams and levees than other North 

American floodplain rivers, and although flow is partially regulated by dams in and 

above the city of Waco, Texas, current flow dynamics are relatively similar to pre-dam 

flows. 



                                                                                                                                               
11

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map depicting the location of the Brazos River in Texas and the study reach on the middle Brazos.  A = main channel 
survey site, B = rarely connected oxbow lake, C = frequently connected oxbow lake.
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A previous survey of 10 Brazos oxbow lakes by Winemiller et al. (2000) found 

that oxbows with similar geomorphology had similar fish assemblages.  Two of these 

oxbow lakes with different connection frequencies and a 7 km reach of the Brazos River 

were surveyed monthly from June 2003 to May 2005.  One oxbow (OXFREQ) connects 

to the active channel relatively frequently at moderate levels of Brazos River discharge, 

and one oxbow (OXRARE) connects relatively rarely at high river discharge.  The two 

oxbows were selected to span the range of oxbow connection frequencies based on the 

previous survey.  Both oxbows were located on cattle ranches, however both lakes 

retained an unaltered riparian zone dominated by willow (Salix sp.).  Oxbow substrates 

were composed primarily of mud and clay covered by leaf litter.  Large woody debris 

was common in both habitats, and aquatic macrophytes were rare.  Overbank flooding is 

the primary source of water for both oxbow lakes and extended periods of isolation 

result in oxbow desiccation.  Mean maximum depth for OXFREQ and OXRARE during 

the study was 1.2 and 1.9 m, respectively.  The surveyed reach of the Brazos River was 

selected based on boat access and proximity to the uppermost oxbow lake.  Flows 

required for oxbow-river connections were estimated by surveys conducted by the Texas 

Water Development Board (TWDB) and were calibrated to a United States Geological 

Survey (USGS) gauge located near the Brazos River survey reach. 

Abiotic predictor variables 

Two variables representing flow regime were estimated to reflect different 

temporal scales to which species may respond.  Floodplain connectivity during the 

current study period was measured as the days of habitat isolation calculated from 
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oxbow connectivity estimates provided by the Texas Water Development Board, and 

mean daily flow from USGS gauge 08108700.  Given that the timing of reproduction 

could represent adaptation to the long-term hydrograph, the mean flow for each month 

of the year based on the previous 30 years of data was also included as a predictor 

variable.  Temperature and dissolved oxygen were measured during each survey using a 

YSI 85 hand-held meter.  Mean photoperiod in Brazos County during each month was 

obtained from the United States Naval Observatory, Astronomical Applications 

Department. 

Biotic predictor variables  

Zooplankton were collected using a 10-l Schindler trap with 80-µm mesh in the 

cod end.  Individuals were identified as rotifers, cladocerans or copepods, and densities 

were determined from two 1-ml sub-samples using a Sedgwick-Rafter counting cell.  

Predator abundance was estimated as the combined gillnet catch-per-unit effort 

(methodology described below) of alligator gar (Atractosteus spatula), spotted gar 

(Lepisosteus oculatus), longnose gar (Lepisosteus osseus), blue catfish (Ictalurus 

furcatus), channel catfish (Ictalurus punctatus), largemouth bass (Micropterus 

salmoides), spotted bass (Micropterus punctulatus), and white crappie (Pomoxis 

annularis).    

Fish collection 

Large-bodied fish (> 100 mm SL) were collected with two experimental gillnets 

that consisted of three panels measuring 16.5 X 2 m, with 25.4-, 76-, and 51-mm bar 

mesh.  Gillnets were set between approximately 1700 h and 0700 h the next day.  The 
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duration in hours of each set was recorded for calculation of species catch-per-unit effort 

(# species h-1).  Small-bodied fish (< 100 mm SL) were collected using a 10 X 2 m bag 

seine with 6.4 mm mesh in the wings and 3.2 mm mesh in the bag.  A series of seine 

hauls was made perpendicular to shore along unique transects within the habitat until no 

new species were collected.   The total distance traveled per survey was estimated, and 

CPUE was calculated as # species m-1.  Electrofishing was used to supplement samples 

of species associated with woody debris (bluegill, white crappie) that were not as easily 

captured with seines and gillnets.  Collections were not made in the Brazos River during 

certain months due to high flows and oxbows were not sampled during November 2004 

due to extensive flooding.  All fishes were euthanized by immersion in tricaine 

methanesulfonate (MS222).  Large fish were placed on ice, transported to the laboratory 

and stored frozen.  Small fish were fixed in a 10% formalin solution and stored in 70% 

ethanol. 

Based on their positions within the triangular life history continuum proposed by 

Winemiller and Rose (1992), seven species were selected for estimation of reproductive 

activity in relation to biotic and abiotic characteristics  Among Brazos River fishes, the 

western mosquitofish (Gambusia affinis) and red shiner (Cyprinella lutrensis) represent 

the opportunistic strategy, bluegill (Lepomis macrochirus) and white crappie (Pomoxis 

annularis) represent the equilibrium strategy, and gizzard shad (Dorosoma cepedianum), 

spotted gar (Lepisosteus oculatus) and longnose gar (Lepisosteus osseus) represent the 

periodic strategy.  Opportunistic strategists are characterized by small adult size, short 

generation time, high reproductive effort, and extended breeding seasons.  Species with 
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this strategy can quickly colonize disturbed or newly available habitats.  Equilibrium 

strategists have characteristics (high juvenile survivorship, parental care, and large eggs) 

inferred to be adaptive in habitats where resources are limited and/or density dependence 

is strong.  Periodic strategists are characterized by delayed maturation, large adult body 

size, high fecundity, and contracted breeding seasons.  This strategy is predicted to 

perform well when resources for larvae are patchy in space or time (Winemiller and 

Rose 1993), and reproduction is synchronized with favorable periods that are relatively 

predictable between years.  Two gar species were included here, because there is strong 

habitat partitioning between these species. Longnose gar are more abundant in the river 

channel and spotted gar are more abundant in oxbows (Winemiller et al 2000; Zeug et al. 

2005). 

To validate that species used for analysis represented the three endpoint 

strategies in the Winemiller-Rose life history model, correspondence analysis (CA) was 

performed on six life history characteristics estimated for each species (Figure 2).  

Characteristics included in CA were: minimum length at maturity (Lmin), maximum 

length (Lmax), mean fecundity, length of the reproductive period, mean egg size, and the 

presence or absence of parental care.  Minimum length at maturity was defined as the 

smallest female observed with ripe gonads, and maximum length was defined as the 

largest female collected.  Length of the reproductive period was estimated as the number 

of months when ripe females were collected.  Females were classified as ripe based on 

the gonadosomatic index and presence of mature oocytes in ovaries.  Mature oocytes 

were those ≥  the greatest modal egg size observed during the reproductive period of 



                                                                                                                                           16 
 

each species.  Information regarding the presence or absence of parental care was 

obtained from literature.     

Sample processing 

Reproductive activity was estimated using the gonadosomatic index (GSI) for 

females [100 * (gonad mass/body mass)] (Figures 3, 4, and 5).  Individuals were 

measured to the nearest mm standard length (SL) and weighed to the nearest 0.01 g.  

Ovaries were removed, blotted dry, and weighed to the nearest 0.001 g on an analytical 

balance.  Ovaries were stored in a 10% formalin solution buffered with sodium 

phosphate for later fecundity and egg size estimation.  For most species, all individuals 

were processed.  Large numbers of mosquitofish and red shiners were collected in 

monthly surveys (> 100 individuals) and for these species, individuals were placed into 

5-mm size classes and 3 individuals from each size class were processed. 

Red shiner and mosquitofish fecundity was estimated by direct count.  Red shiner 

ovaries contained multiple batches of eggs based on size frequency distributions, and 

only the largest size class was used for fecundity estimation (batch fecundity).  For all 

other species, a sub-sample of the anterior portion of the ovary was removed and 

fecundity calculated as: 

Ftotal = (OWtotal x Esub)/OWsub 

where OWtotal is the total ovary weight, Esub is the number of eggs in the sub-sample, and 

OWsub is the weight of the sub-sample.  Mean egg size was estimated by measuring the 

largest egg in the ovary or sub-sample and averaging values for all individuals of a 

species in the sample.
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Figure 2. Ordination of species scores from correspondence analysis based on the six estimated life history characteristics.  
Axis 1 modeled 59.6 % of the total variation; axis 2 modeled 25.5 % of variation.  Axis 1 variable loadings:  Lmin = 0.45, Lmax 
= 0.36, reproductive period = 1.41, fecundity = -0.82, parental care = -6.19, egg size = 2.05.  Axis 2 variable loadings:  Lmin = 
-0.27, Lmax = -0.03, reproductive period = 2.40, fecundity = -0.48, parental care = 7.07, egg size = 0.29.
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To determine if GSI was a sufficient predictor of reproductive activity, linear 

regressions were performed to test the null hypothesis of no difference between GSI and 

modal egg size for each species.  For mosquitofish, embryo developmental stage was 

substituted for egg size (Haynes 1995).  Additionally regressions were performed to 

determine if body size (standard length) within species was related to GSI.  The 

relationship between GSI and egg size or developmental stage was positive and 

significant for all seven species indicating that GSI is an appropriate response variable 

(red shiner R2 = 0.48, P < 0.001, mosquitofish R2 = 0.16, P < 0.001, gizzard shad R2 = 

0.50, P < 0.001, spotted gar R2 = 0.10, P = 0.03, longnose gar R2 = 0.48, P < 0.001, 

white crappie R2 = 0.45, P < 0.001, bluegill R2 = 0.21, P < 0.001).  Additionally, peaks 

in juvenile abundance closely followed periods of high GSI (Zeug unpublished data).  

The relationship between standard length and GSI was significant for mosquitofish (R2 = 

0.10, P < 0.001) and spotted gar (R2 = 0.11, P = 0.03).  For these species, residuals of 

the relationship between SL and GSI were used as the response variable in place of raw 

GSI.   
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Figure 3. Plot of mean GSI values over the 2-year study period for the two opportunistic 
strategists. Species in each panel are as follows (a) = red shiner, (b) = mosquitofish.
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Figure 4. Plot of mean GSI values over the 2-year study period for the two equilibrium 
strategists. Species in each panel are as follows (a) = white crappie, (b) = bluegill.
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Figure 5. Plot of mean GSI values over the 2-year study period for the three periodic 
strategists. Species in each panel are as follows (a) = gizzard shad, (b) = spotted gar and 
(c) = longnose gar. 
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Model construction and selection 

Model sets were constructed for each species based on biotic and abiotic factors 

predicted by conceptual models (FPC, LFR) to influence fish reproductive activity.  

Both conceptual models predict associations between reproductive activity, flood 

dynamics, temperature and larval food resources.  The density of predators of early life 

stages also can be influenced by water level (Copp 1992) and was included as a predictor 

variable.  Measured variables considered for inclusion in models of reproductive activity 

included, mean monthly river discharge (calculated for the previous 30-years of record), 

days of floodplain isolation, temperature, photoperiod, rotifer density, copepod density, 

cladoceran density, and predator abundance.  

Correlation analysis was performed on independent variables to identify potential 

sources of multicolinearity.  Temperature was significantly and positively correlated 

with rotifer density and photoperiod.  Temperature was retained, and rotifer density and 

photoperiod were excluded from the analysis.  Temperature was retained because of its 

predicted importance in conceptual models.  Cladoceran and copepod densities were 

combined into the variable “microcrustacean density”.  Tests for normality were 

performed on dependent variables (GSI or residuals) prior to model construction.  When 

the assumption of normality was not met, data were log transformed as log10 (x + 1).  

Surveys in the Brazos River produced few crappie and bluegill, thus these species 

models included samples from oxbows only.  Additionally, the longnose gar model was 

calculated using samples exclusively from the Brazos River.    
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Independent variables used in models included: 30-year hydrograph, isolation 

days, microcrustacean density, temperature, and predator abundance.  To insure that 

models reflected biological reality as closely as possible, some variable combinations 

were excluded from consideration.  For example, predator abundance is predicted to be 

greater during low-water periods and lower during high-water periods when aquatic 

habitats are expanded (Copp 1992).  The variable isolation days reflected this change in 

water level during the study, whereas the 30-year hydrograph was not linked to 

conditions during the study when predator abundance was estimated.  Therefore predator 

abundance was considered in conjunction with isolation days but not with the 30-year 

hydrograph.  Twenty-one candidate models were evaluated.  Generalized linear models 

were constructed for mosquitofish, red shiner, longnose gar, spotted gar and bluegill, 

whereas autoregressive models were constructed for shad and white crappie due to first-

order autocorrelation in model residuals.  Both modeling techniques utilized maximum 

likelihood to estimate model parameters.  All models were constructed using SAS 

(Version 9.1.3)   

Best approximating models were selected using an information-theoretic 

approach.  Because it allows the evaluation of evidence in data for multiple working 

hypotheses, this methodology is superior to traditional hypothesis testing when using 

observational data (Burnham and Anderson 2002; Hobbs and Hilborn 2006).  In the 

present study, each candidate model was considered a working hypothesis.  This 

methodology has been successfully used to evaluate models for a wide range of 

ecosystems (Harig and Faush 2002; Sztatecsny et al. 2004; Torgersen and Close 2004).  
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Akaike’s Information Criterion corrected for small sample size (AICc) was used 

to select best approximating models from the candidate set.  Μodels were ranked 

using ∆AICc values, AICc weights (wr), and evidence ratios.  Model weights are 

interpreted as the probability that the model would be selected as the “best model” after 

many repetitions of model selection (Hobbs and Hilborn 2006).  Evidence ratios estimate 

support in the data for two models based on model weights.  Ratios were computed as 

wi/wj, where wi is the model weight for the best model in the candidate set.  Models with 

∆AICc < 2.00 and evidence ratios < 2.70 were considered competing models.  To reduce 

model selection uncertainty, model averaged estimates of regression coefficients and 

unconditional standard errors were calculated from the entire model set.  Model 

averaging can reduce model bias and increase precision of regression coefficient 

estimates (Burnham and Anderson 2002).  Unconditional 95% confidence intervals were 

used to determine the level of support for regression coefficients.  When confidence 

intervals included zero, the coefficient was assumed to have little support.   

Species abundance 

 Catch-per-unit effort of adults of each species was compared among habitats 

using generalized estimating equations (GEE).  Abundance estimates were log 

transformed (log10 x +1) in order to meet assumptions of the GEE procedure.  The 

variable “month” was included as the repeated variable in the model, and an 

autoregressive correlation structure among months was specified.  When significant 

differences were detected, pairwise tests were conducted.  Because the same response 
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variable was used in multiple tests, P-values were corrected using the Bonferroni 

correction (αadjusted = 0.013). 

RESULTS   

Life history classification 

 Correspondence analysis produced two axes that explained 85.1% of the 

variation in species life history characteristics (Figure 2).  Three end-point strategies 

were well differentiated in the CA ordination.  Axis one contrasted opportunistic species 

(red shiner and mosquitofish) that had longer reproductive periods and small body size 

from equilibrium species (bluegill and crappie) that had greater body size, fecundity and 

parental care.  Axis two contrasted periodic species (shad, spotted gar, and longnose gar) 

that had greater fecundity, body size at maturity, and maximum length, from equilibrium 

and opportunistic species that had more developed parental care and longer reproductive 

periods. 

Flood dynamics 

 Multiple flood events connected oxbow and channel habitats during the 2-year 

study period (Figure 6).  Flow dynamics did not appear to follow a seasonal pattern and 

floods occurred in all four seasons.  Nine flood events connected OXFREQ with the 

river channel for a total of 56 days of connectivity.  Four flood events connected 

OXRARE with the river channel for a total of 10 days of connectivity.  The 30-year 

hydrograph indicated mean flows were greatest in May and June and lowest in August 

and September.
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Figure 6. Daily stream flow hydrograph of the Brazos River during the two year study period.  The solid horizontal line 
represent flows required to connect OXFREQ with the river channel and the dashed line represent flows required to connect 
OXRARE. 

 



                                                                                                                                                          27
 

 

Opportunistic strategists 

 The best approximating model for mosquitofish indicated positive associations 

between GSI, the 30-year hydrograph and temperature (Table1).  The next best model 

was more than two times less likely (evidence ratio 2.35) and included variables from 

the best model with the addition of microcrustacean density.  Model averaged parameter 

estimates and confidence intervals indicated microcrustacean density had little support 

(Table 2).  The best model selected for red shiner had positive associations between GSI, 

the 30-year hydrograph and temperature (Table1).  Three competing models contained 

the two variables from the best model as well as combinations of microcrustacean 

density (negative association), isolation days (positive association) and predator 

abundance (negative association) (Table 1).  Model averaged parameter estimates 

indicated that only the 30-year hydrograph, temperature and predator abundance had 

support (Table 2).   

Periodic strategists    

The best gizzard shad model contained positive associations between GSI, the 

30-year hydrograph and microcrustacean density, and negative associations between 

GSI, days of habitat isolation and predator abundance.  The second best model was 2.57 

times less likely and consisted of the previous parameters with the addition of 

temperature (negative association).  Model averaged estimates indicated little support for 

isolation days and temperature (Table 2).  The highest ranked model for spotted gar 

included negative associations between GSI and temperature (Table 1).  The competing 

model included temperature and the 30-year hydrograph (negative association) and both 
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variables had good support (Table 2).  The best longnose gar model indicated negative 

associations between GSI and temperature.  The next best model (evidence ratio = 2.58) 

included temperature and a positive association with the 30-year hydrograph although 

the hydrograph had little support.      

Equilibrium strategists 

  Two competing models were selected for bluegill (Table 1).  The best model 

contained temperature and the 30-year hydrograph as predictors, and both associations 

were positive.  The competing model contained the two predictor variables from the best 

model and a negative association with microcrustacean density, however only the 

predictors from the best model had good support (Table 2).  The best model selected for 

white crappie included negative associations with GSI and temperature, and positive 

associations with GSI and microcrustacean density (Table 1).  The next best crappie 

model included the variables from the best model and a positive association with the 30-

year hydrograph. This model was 3.41 times less likely compared with the best model 

and the 30-year hydrograph had little support.   
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Table 1.  Best approximating model(s) for each species based on ∆ AICc values model 
weights and evidence ratios. K = the number of parameters estimated for each model and 
ER = evidence ratio.  β1 = 30-yr hydrograph, β2 = temperature, β3 = microcrustacean 
density, β4 = isolation days, β5 = predator abundance, β6 = autocorrelation correction 
parameter. 

Species Model(s)  ∆ AICc AICc weight ER K 
      

mosquitofish β1, β2 0.00 0.42 1.00 4 

(Gambusia affinis) β1, β2, β3 1.72 0.18 2.35 5 

      

 β1, β2 0.00 0.37 1.00 4 

red shiner β1, β2, β4 1.60 0.17 2.24 5 

(Cyprinella lutrensis) β1, β2, β3 1.64 0.16 2.29 5 

 β1, β2, β4, β5 1.90 0.14 2.60 6 
      

gizzard shad β1, β3, β4, β5, β6 0.00 0.67 1.00 7 

(Dorosoma cepedianum) β1, β2, β3 , β4, β5 β6 2.57 0.19 3.61 8 

      

spotted gar β2 0.00 0.27 1.00 3 

(Lepisosteus oculatus) β1, β2 0.11 0.26 1.05 4 

      

longnose gar β2 0.00 0.46 1.00 3 

(Lepisosteus osseus) β1, β2 2.58 0.13 3.63 4 

      

bluegill β1, β2 0.00 0.42 1.00 4 

(Lepomis macrochirus) β1, β2, β3 1.57 0.19 2.18 5 

      

white crappie β2, β3, β6 0.00 0.43 1.00 5 

(Pomoxis annularis) β1, β2, β4, β6 2.47 0.13 3.41 6 
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Table 2. Model averaged estimates of regression coefficients with unconditional 
95 % confidence intervals.  Asterisks indicate parameters that were found to 
have little support following calculation of unconditional confidence intervals.  
β1 = 30-yr hydrograph, β2 = temperature, β3 = microcrustacean density, β4 = 
isolation days, β5 = predator abundance, β6 = autocorrelation correction 
parameter. 
Species β1 β2 β3 
    

0.55 1.74 -0.03* mosquitofish 
(0.37 - 0.74) (1.45 - 2.02) (-0.01 - 0.07) 

    
0.49 1.56 -0.03* red shiner (0.33 - 0.64) (1.32 - 1.79) (-0.06 - 0.00) 

    
0.41 -0.03* 0.12 gizzard shad 

(0.28 - 0.54) (-0.30 - 0.24) (0.09 - 0.16) 
    

-0.31 -1.04 -0.01* spotted gar (-0.52 - -0.10) (-1.37 - -0.71) (-0.07 - 0.04) 
    

0.24* -0.94   -0.04* longnose gar 
(0.00 - 0.49) (-1.28 - -0.60) (-0.12 - 0.40) 

    
0.40 1.36 -0.05* bluegill (0.24 - 0.55) (1.12 - 1.60) (-0.09 - 0.00) 

    
0.10* -0.69 0.15 

white crappie (-0.14 - 0.34) (-0.99 - -0.40) (0.09 - 0.21) 
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Table 2. Continued   

Species β4 β5 β6 
    

-0.02* 0.53 - 
mosquitofish 

(-0.08 - 0.04) (0.18 - 0.89) - 
    

0.05* -0.40 - 
red shiner 

(0.00 - 0.10) (-0.68 - -0.13) - 

    
-0.03* -0.69 -0.32 gizzard shad 

(-0.08 - 0.03) (-0.94 - -0.43) (-0.48 - -0.16) 
    

-0.01* -0.20* - spotted gar 
(-0.08 - 0.07) (-0.63 - 0.23) - 

    
0.08* -0.51* - longnose gar 

(-0.05 - 0.21) (-1.13 - 0.11) - 
    

0.03* -0.15* - bluegill 
(-0.03 - 0.08) (-0.50 - 0.19) - 

    
-0.04* -0.30* -0.48 white crappie 

(-0.02 - 0.10) (-0.66 - 0.06) (-0.65 - -0.32) 
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Adult abundance 

 Significant differences among habitats were detected for all species with the 

exception of mosquitofish (Table 3).  Among oxbow lakes, species abundances were 

similar with the exception of gizzard shad that were significantly more abundant in 

OXFREQ than the other two habitats (Table 3).  Red shiners were more abundant in the 

river channel than oxbows (Figure 7).  Spotted gars were more abundant in oxbows, and 

longnose gars were more abundant in the river (Figure 7).  Bluegills were more abundant 

in OXRARE than the river channel, and white crappies were more abundant in oxbows 

relative to the river channel (Figure 7). 

DISCUSSION 

 Model selection indicated that temperature and the 30-year hydrograph had 

strong support as factors associated with reproductive activity of species with divergent 

life history strategies.  Five of the seven species examined had competing models that 

included well supported associations with the 30-year hydrograph, whereas isolation 

days during the study period had little support in data for any species.  This suggests that 

a subset of Brazos River fishes have reproductive ecologies adapted to long-term 

hydrologic dynamics which supports FPC model that stresses the importance of 

predictable flow periods to fish reproductive activity (Junk et al. 1989; Bayley 1991).  

The advantage of floodplain inundation should be greater when floods coincide with 

optimal temperatures (Gutreuter et al. 1999; Winemiller 2005; Schramm and Eggleton 

2006).  Over the 2-year study period, some floods occurred outside of species’  
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Table 3.  Results of generalized estimating equations comparing abundance of adults between habitats.  
Significance was assessed at α = 0.013 (Bonferroni corrected).  

Species All habitats  BR x OF  BR x OR  OF x OR 
  χ2 P  χ2 P  χ2 P  χ2 P 

            
mosquitofish 3.20 0.202  - -  - -  - - 
            
red shiner 14.50 < 0.001  14.19 < 0.001  13.99 < 0.001  2.24 0.135 
            
gizzard shad 18.14 < 0.001  17.45 < 0.001  4.29 0.038  13.80 < 0.001 
            
spotted gar 12.64 0.002  7.85 0.005  12.91 < 0.001  3.12 0.077 
            
longnose gar 12.89 0.002  13.05 0.002  13.32 < 0.001  0.11 0.735 
            
bluegill 11.04 0.004  3.69 0.055  8.27 0.004  6.08 0.014 
            
white crappie 17.69 < 0.001  11.87 0.001  13.42 < 0.001  2.92 0.087 
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Figure 7. Mean abundances and standard errors for adults of the seven selected species 
in each habitat.  The top panel (a) contains abundances of large species captured in 
gillnets and the bottom panel (b) contains small species captured with seines.  Closed 
bars = Brazos River, open bars = OXFREQ and gray bars = OXRARE. 
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reproductive periods (winter and fall), and this may have influenced the weak support 

for the short-term hydrologic predictor variable (isolation days). 

Relationships between GSI and temperature suggested that species with different 

life history traits may exploit floods differently.  Negative relationships between GSI and 

temperature were associated with species (longnose gar, gizzard shad and white crappie) 

that had greater fecundity (mean fecundity > 13,000) and maximum body size 

(maximum SL > 250 mm).  Reproductive activity of these species was greatest in spring 

as the 30-year hydrograph was increasing.  This strategy would allow early life stages to 

move into slack-water floodplain habitats that are important nursery areas for some 

species (Sabo and Kelso 1991; Killgore and Baker 1996; Pease et al. 2006).  Species 

with positive associations between GSI and temperature (mosquitofish, red shiner and 

bluegill) had small adult sizes (maximum SL < 110 mm) and extended reproductive 

periods (5-7 months).  Reproductive activity of these species coincided with peak flows 

that may allow them to colonize off-channel floodplain habitats and exploit them for 

reproduction during low-flow periods.  King et al. (2003) reported that mosquitofish 

were one of the few species that revealed an increase in juvenile abundance in response 

to flooding in an Australian floodplain river.  Only spotted gar had a negative association 

with the 30-year hydrograph.  Adults of this species are common in backwater habitats 

and may reproduce during low flow-periods as described in the LFR model (Humphries 

et al. 1999).      

Biotic predictor variables tended to have less support for most species and may 

have a greater effect on young-of-the-year survival whereas abitotic variables had a 
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greater influence on reproductive activity.  Despite this pattern, several well supported 

associations with biotic predictors were identified.  Crappie and shad had positive 

associations with microcrustacean density that were strongly supported by data.  The 

density of food resources for larvae is important to the production of strong year classes 

for species that produce many small offspring (Winemiller and Rose 1993), and shad 

and crappie had the greatest mean fecundity and smallest eggs of the seven species 

examined.  Gizzard shad and red shiner had negative associations with predator 

abundance, whereas mosquitofish had a positive association.  Zeug et al. (2005) found 

that red shiner abundance was significantly influenced by predator abundance in a 

Brazos oxbow, and juvenile gizzard shad are a common food item of Brazos predators 

(Zeug unpublished data).  Mosquitofish are able to exploit shallow habitats that may 

allow them to reproduce successfully despite greater predator abundance.       

 Copp (1989) suggested that patterns of adult abundance are good indicators of 

the reproductive function of a habitat.  Evaluation of adult abundance patterns in the 

Brazos River suggested that oxbow lakes were particularly important for equilibrium 

strategists (crappie, bluegill) that were rarely collected in the main channel where 

frequent sub-bankfull flows may disrupt reproductive activity.  Crappie and bluegill are 

nest building brood guarders, and reproduction in the channel may be less successful 

during flood conditions.  Bonvechio et al. (2005) found negative associations between 

flow rate and year class strength of equilibrium species (centrachids) in Florida rivers.  

Periodic species were abundant in Brazos River channel and floodplain habitats.  The 

larger size and greater longevity of periodic species allow them to survive during sub-
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optimal periods, and although some reproduction probably occurs every year 

(Humphries et al. 2002), strong year classes may be produced only when floods coincide 

with optimal temperatures (Sommer et al. 2001; Halls and Welcomme 2004).  

Opportunistic strategists were abundant in all habitats, and these species may be able to 

reproduce successfully in a variety of habitats and under a wide range of environmental 

conditions (Winemiller 1989; Spranza and Stanley 2000).  Some species may use 

multiple habitats during their life cycle (Schiemer 2000), however among the seven 

species surveyed in the Brazos, there was no obvious segregation between adult and 

juvenile habitats. 

Observed patterns of reproductive activity and habitat occupancy suggest that 

both flood dynamics and habitat heterogeneity were important for fish reproduction in 

rivers.  Pease et al. (2006) found that both flood timing and low velocity off-channel 

habitats were important for larval and juvenile fishes in the Rio Grande, New Mexico.  

Instream flow methodologies that focus on historical flow characteristics, such as the 

range of variability approach (RVA) proposed by Richter et al. (1997), may be superior 

to other methodologies (Jowett 1997) because fish reproductive ecologies appear to be 

adapted to long-term hydrologic dynamics.  Off-channel floodplain habitats, such as 

oxbow lakes, sloughs and marshes, provide valuable spawning and nursery areas for 

many fish species (Sabo and Kelso 1991; Killgore and Baker 1996; Swales et al. 1999) 

and appear to be particularly important for equilibrium-type species (Kwak 1988; Scott 

and Nielsen 1989).  Most instream flow strategies focus on in-channel or seasonally 

flooded habitats (Jowett 1997), however perennial-slack water areas also require 
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consideration.  Construction of levees or alteration of fluvial processes that drive the 

creation and succession of off-channel habitats would likely result in reduced 

productivity of species associated with these habitats (Aarts et al. 2004; Schiemer et al. 

2003). 

Species responses to flow regulation and flood management strategies may be 

predicted in the context of life history-environment relationships (Olden et al. 2006), 

however, caution should be used in the application of these results.  Only seven of 45 

species collected (16%) were included in our study.  The three endpoint model of 

Winemiller and Rose (1992) describes a gradient, and certain species have 

characteristics that would place them at intermediate positions between endpoint 

strategies.  Some species have highly specific physicochemical or other habitat 

requirements for reproduction that may be obscured by analyses at the level of life 

history strategy.  Only three habitats were surveyed for adult abundance estimates over 

the two year study however, a previous survey of 10 Brazos oxbows by Winemiller et al. 

(2000) indicated that habitats with similar geomorphic characteristics supported similar 

abundances of species with similar life history traits. 

Large rivers display a wide range of hydrologic dynamics and spatial habitat 

units that influence aquatic fauna (Puckridge et al. 1998; Thorp et al. 2006).  Alteration 

of either of these components can significantly reduce fish populations adapted to 

natural fluvial dynamics (Moyle and Light 1996; Aarts et al. 2004).  Consideration of 

how alternative life history strategies respond to flow and habitat features of fluvial 
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systems can increase the utility of conceptual models as guides for flow management 

and habitat restoration strategies.                          
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CHAPTER III 

RELATIONSHIPS BETWEEN HYDROLOGY, SPATIAL HETEROGENEITY, AND 

FISH RECRUITMENT DYNAMICS IN A TEMPERATE FLOODPLAIN RIVER. 

INTRODUCTION 

 Flood dynamics are predicted to be the primary environmental factor influencing 

fish recruitment in large rivers (Sparks, 1995; Agostinho et al. 2004; Winemiller, 2005).  

The flood pulse concept (FPC; Junk et al. 1989) suggests that annual floodplain 

inundation triggers blooms of primary and secondary production, and fish in these 

systems have reproductive ecologies adapted to exploit this pulse of production.  In 

temperate zone rivers, flood pulses that coincide with optimal temperatures have been 

associated with greater growth and survival of some species (Gutreuter et al. 1999; 

Sommer et al. 2001; Schramm and Eggleton 2006) and are predicted to increase fish 

recruitment, whereas the absence of a flood pulse or lack of synchronization between 

temperature and over-bank flooding reduces recruitment success (Bayley, 1991; Halls 

and Welcomme 2004).  Despite widespread acceptance of the FPC model, recent studies 

suggest that in rivers where flood dynamics do not exhibit the optimum described in the 

FPC, fish can recruit successfully during low-flow periods (Humphries et al. 1999; 

Humphries et al. 2002; King et al 2003).  Humphries et al. (1999) described this 

recruitment strategy as part of a low flow recruitment hypothesis (LFR) proposed to 

explain fish population dynamics in rivers with less predictable flow regimes. 

Habitat heterogeneity also has a significant impact on fish recruitment, and loss 

of certain habitat types due to hydrologic modification and floodplain disconnection may 



                                                                                                                                          41 
 

 

be the primary cause of reduced recruitment in modified rivers (Aarts et al. 2004).  

Fluvial dynamics create a mosaic of habitats within river-floodplain systems including 

off-channel habitats such as oxbow lakes, sloughs and other slack water areas (Amoros 

and Bornette 2002).  These habitats serve a variety of ecological functions including 

spawning and nursery areas and refuge from high flows in the main channel (Sabo and 

Kelso 1991; Humphries et al. 2006; Pease et al. 2006).  Physicochemical attributes of 

different habitat units have a strong influence on local species assemblages (Tejerina-

Garro et al. 1998; Winemiller et al. 2000; Suarez et al. 2004) and interactions between 

flood dynamics and habitat characteristics influence the value of different habitats for 

spawning, feeding or refuge (Feyrer et al. 2006). 

 Attempts to elucidate optimal conditions for recruitment are complicated by the 

diversity of reproductive tactics displayed by fishes in large rivers.  Flow and habitat 

characteristics that benefit one strategy may be detrimental to others (Sparks, 1995; 

Scheerer, 2002), and recruitment dynamics may not be synchronized among species with 

divergent strategies (Welcomme et al. 2006).  Because the performance of populations 

with particular suites of life history traits has been associated with both hydrologic 

dynamics (Merigoux et al. 2001; Magalhaes et al. 2003; Olden et al. 2006) and habitat 

characteristics (Persat et al. 1994; Townsend and Hildrew 1994; Winemiller, 1996), life 

history theory provides a good framework for evaluating environmental influences on 

recruitment dynamics.     

My goals for this study were to evaluate the relative influence of hydrology and 

habitat characteristics on recruitment of species with divergent life history strategies, and 
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to associate recruitment dynamics of each species with environmental characteristics in 

each habitat and hydrologic period.  I predicted that conceptual models of recruitment 

would apply to fish in the Brazos River and that hydrologic and habitat characteristics 

that maximize recruitment would be strongly associated with life history strategy.      

METHODS 

Study system 

The Brazos River is a meandering low-gradient river that flows southeast > 1400 

km from the Texas-New Mexico border to the Gulf of Mexico 2 km south of Freeport, 

Texas.  The current study was conducted on the middle Brazos River in east-central 

Texas (Figure 1).  The middle Brazos is partially regulated by dams near the city of 

Waco, Texas; however, flow dynamics are primarily driven by regional precipitation 

with contemporary fluvial dynamics approximating historical conditions based on 

historical USGS flow data.  Oxbow lakes are common on the Brazos floodplain and 

connections between oxbows and the active river channel occur at irregular intervals in 

response to flow magnitude and oxbow geomorphology. For additional study site details 

see Winemiller et al. (2000) and Zeug et al. (2005). 

Two oxbow lakes with different connection frequencies and a 7 km reach of the 

Brazos River channel located near the most upstream oxbow were surveyed monthly 

from June 2003 to May 2005.  These oxbow lakes were selected to represent a range of 

connection frequencies from rare to frequent.  One oxbow (OXFREQ) connected 

frequently at moderate levels of river discharge and the other oxbow (OXRARE) 

connected rarely at high levels of river discharge.  Flows required to connect oxbows 
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with the river channel were determined by surveys conducted by the Texas Water 

Development Board and calibrated to a United States Geological Survey (USGS) flow 

gauge located near the Brazos River survey reach. 

Biotic and abiotic characteristics 

 Environmental variables measured during each survey were selected based on 

predictions of conceptual models of fish recruitment in floodplain rivers (FPC, LFR).  

Temperature and dissolved oxygen were measured using a YSI 85 meter.  Maximum 

depth of each oxbow and the main channel site was recorded to the nearest 1 cm.  Days 

of isolation (i.e. no connection with the river) were calculated using daily stream flow 

data from USGS gauge and TWDB estimates of oxbow connection thresholds.  

Zooplankton were collected using a 10 l Shindler trap with an 80 µm mesh cod end.  

Organisms were identified as rotifers or microcrustaceans (copepods and cladocerans) 

and densities were estimated from two 1-ml sub-samples using a Sedgewick-Rafter 

counting cell. Predator abundance was estimated as the combined gillnet catch-per-unit 

effort of alligator gar (Atractosteus spatula), spotted gar (Lepisosteus oculatus), 

longnose gar (Lepisosteus osseus), blue catfish (Ictalurus furcatus), channel catfish 

(Ictalurus punctatus), largemouth bass (Micropterus salmoides), spotted bass 

(Micropterus punctulatus), and white crappie (Pomoxis annularis). 

Fish collection 

 Fishes were collected using a combination of standardized seine hauls and gillnet 

sets.  Small-bodied species and juveniles of large-bodied species were collected with a 

10 x 2-m bag seine composed of 6.4-mm mesh in the wings and 3.2-mm mesh in the 
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bag.  A series of seine hauls was made perpendicular to shore along unique transects 

within the habitat until no additional species were added to the cumulative list.  The total 

distance traveled with the seine was recorded for calculation on catch-per-unit effort 

(CPUE).  In order to collect large-bodied fishes, two multifilament gillnets were 

deployed between approximately 1700 h and 0700 h the next day.  Each gillnet 

contained three panels measuring 16.5 x 2 m with 25.4-, 76-, and 51-mm bar mesh.  The 

total hours of each set was recorded for CPUE calculations.  During certain months, 

samples were not collected in the Brazos River due to high flows. 

 Collected specimens were euthanized with tricaine methanesulfonate (MS222).  

Small individuals collected with the seine were then fixed in a 10% formalin solution 

and transferred to 70% ethanol for storage.  Large fish were placed on ice, returned to 

the lab, and stored frozen.  All individuals were identified, measured to the nearest mm 

standard length (SL), and weighed to the nearest gram. 

Data analysis 

Species were classified by life history strategy using the triangular model of fish 

life history evolution proposed by Winemiller and Rose (1992).  Species with similar life 

history strategies are predicted to have similar population responses to environmental 

variation including flow variation in lotic systems (Winemiller 1989; Humphries et al. 

1999).  Seven species representing three endpoint strategies (periodic, equilibrium and 

opportunistic) were selected for analysis of spatial and temporal recruitment variation.  

Periodic strategists have characteristics (delayed maturation, high fecundity, and large 

adult size) that are adaptive in environments where resources for larvae and juveniles are 
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patchy in space and time.  Species with this strategy usually have contracted breeding 

seasons synchronized with favorable periods that are relatively predictable between 

years.  Equilibrium strategists are characterized by greater parental investment per 

offspring and relatively low interannual variation in recruitment.  This strategy is 

proposed to be associated with resource limitation and/or high threat of predation 

mortality for early life stages.  Opportunistic strategists have characteristics (small adult 

size, extended breeding seasons, high reproductive output) that allow them to quickly 

colonize new habitats.  The western mosquitofish (Gambusia affinis) and red shiner 

(Cyprinella lutrensis) represent the opportunistic strategy, bluegill (Lepomis 

macrochirus) and white crappie (Pomoxis annularis) represent the equilibrium strategy, 

and gizzard shad (Dorosoma cepedianum), spotted gar (Lepisosteus oculatus) and 

longnose gar (Lepisosteus osseus) represent the periodic strategy.  Zeug and Winemiller 

(Unpublished manuscript) found that the life history characteristics of these species were 

concordant with the three endpoint strategies described by the Winemiller and Rose 

(1992) model.  Two gar species were included here, because there is strong habitat 

partitioning with longnose gar more abundant in the river channel and spotted gar more 

abundant in oxbows (Robertson et al. Unpublished manuscript).   

 Specimens were classified as adults or juveniles based on minimum size-at-

maturity estimates for each species (Chapter II).  Variation in recruitment of each 

species was evaluated spatially among two oxbow lakes and the Brazos River channel, 

and temporally between the two years each habitat was surveyed.  Year 1 was relatively 

dry and oxbow-river channel connections were infrequent, whereas year 2 was relatively 
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wet with frequent hydrologic connections among habitats (Figure 1).  Differences in 

juvenile abundance among habitats and years were tested using generalized estimating 

equations (GEE).  These models contained individual habitats and years as main effects 

and “month” was specified as the repeated variable with an autoregressive correlation 

structure.  When significant differences were detected, pairwise comparisons were made 

using Bonferroni corrected P-values to correct for the use of the same response variable 

in multiple tests.   

To provide a measure of recruitment independent of adult standing stock, species 

recruitment among habitats and years also was evaluated by comparing the ratio of 

juvenile-to-adult individuals using the log-likelihood test.  When significant differences 

were detected, pairwise comparisons for all possible habitat combinations (n = 3) were 

conducted.  Probability values for pairwise tests were corrected using the Bonferroni 

algorithm (αadjusted = 0.025).  Additionally, size-frequency distributions were constructed 

for each species and year to examine changes in population size structure through time.  

The GEE models were performed in SAS version 9.1 and log-likelihood tests were 

performed in NCSS 2000 version.   

Principle components analysis (PCA) was performed on the sample x 

environmental variable matrix of monthly data in order to associate variation in biotic 

and abiotic characteristics with variation in recruitment.    Prior to PCA, all variables 

were log transformed [log10 (x + 1)] in order to meet the assumption of normality.  PCA 

was conducted using CANOCO (Version 4, Microcomputer Power) 
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RESULTS 

Environmental characteristics 

  Principle components analysis produced 2 axes that explained 82.5% of the 

variation in environmental characteristics (Figure 8).  Axis 1 modeled 59.5% of the total 

variation and described a gradient between the most frequently connected oxbow 

(OXFREQ) that had greater microcrustacean densities, rotifer densities, and predator 

abundance, from the river channel that had greater depth and dissolved oxygen 

concentrations (Table 4).  Sample scores for the rarely connected oxbow (OXRARE) 

had intermediate values on axis one.  Axis two modeled 23.0% of the total variation and 

described differences between periods of hydrologic connectivity and isolation in oxbow 

lakes.  Low scores on axis two were associated with greater isolation days, rotifer 

density, and predator abundance.  High scores on axis two were associated with greater 

depth and microcrustacean density (Table 4). 
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Figure 8. Sample scores of environmental variables from principle components analysis.  Abbreviations are as follows: ID = 
isolation days, MD = microcrustacean density, RD = rotifer density, DO = dissolved oxygen and pred = predator abundance.  
Variable loadings are listed in Table 4.
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Table 4. Variable loadings on the first two axes from PCA and means with standard deviations (in parentheses) 
of environmental variables measured in the three habitats surveyed.  

Parameter Loadings  OXFREQ  OXRARE  Brazos 
  Axis 1 Axis 2                

            
Temperature (°C) -0.032 -0.033  22.6 (7.0)  23.6 (7.7) 22.3 (7.0) 
           
Dissolved oxygen (mg l-1) 0.303 -0.442  6.75 (2.48)  7.41 (1.97) 9.05 (1.71) 
           
Depth (cm) 0.696 0.329  120 (29)  188 (53) 310 (193) 
           
Rotifer density (# l-1) -0.796 -0.314  537 (642)  388 (606) 28 (35) 
           
Microcrustacean density (# l-1) -0.939 0.215  181 (179)  26 (56) 2 (3) 
           
Isolation days -0.077 -0.921  75 (65)  161 (128) - 
           
Predator abundance (# h-1) -0.110 -0.291  0.52 (0.40)  0.82 (0.46)  0.44 (0.28) 
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Equilibrium strategist recruitment 

 Surveys in the Brazos River yielded few juvenile white crappie (n = 5) or bluegill 

(n = 39), and the river channel was only included in comparisons of juvenile abundance 

for these species.  Significant differences in white crappie abundance were detected 

among habitats, and multiple comparisons indicated that abundance was greater in the 

most frequently connected oxbow than any other habitat (Tables 5 and 6).  The ratio of 

juvenile-to-adult crappie was also greatest in this habitat (Table 7).  Crappie abundance 

was similar among years; however, juvenile-to-adult ratios were significantly different 

with a greater ratio in the dry year (Tables 5 and 7).  Size frequency distributions 

indicated that the OXFREQ white crappie population was dominated by juveniles during 

both years; however, the year 2 (wet year) distribution suggested good recruitment of 

juveniles produced during year 1 (dry year) with an increase in the proportion of age-1 

individuals (Figure 9).  The OXRARE population was dominated by adults during the 

dry year (year 1) with two distinct peaks corresponding to age-1 and age-2 + individuals 

(Figure 9).  The lack of juvenile production in OXRARE during the dry year was 

reflected in the reduction of the proportion of age-1 crappie during the subsequent wet 

year. 

 Bluegill abundance was significantly greater in the rarely connected oxbow 

relative to the other two habitats, and abundance was not significantly different between 

years (Tables 5 and 6).  The bluegill juvenile-to-adult ratio was not significantly 

different among habitats or years (Table 7).  Size frequency distributions suggested that 
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bluegill populations in both oxbow lakes were dominated by juveniles with little 

between-year variation in size structure (Figure 10). 
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Figure 9. Size frequency distributions white crappie in OXFREQ (a) and OXRARE (b).  
Dashed lines indicate minimum size at maturity. Closed bars = dry year, open bars = wet 
year. 
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Table 5. Results of generalized estimating equations comparing juvenile 
abundance between habitats and years. 

Species   Habitat  Year   
Habitat x 

Year 
    χ2 P  χ2 P   χ2 P 

          
mosquitofish  8.43 0.015  4.51 0.034  1.21 0.547 
          
red shiner  10.29 0.006  6.50 0.011  4.15 0.125 
          
shad  9.85 0.007  10.45 0.001  9.47 0.009 
          
spotted gar  7.05 0.030  2.26 0.133  3.85 0.146 
          
longnose gar  3.82 0.148  4.63 0.031  2.26 0.323 
          
white crappie  7.74 0.021  0.46 0.497  2.60 0.273 
          
bluegill  9.17 0.010  3.19 0.074  3.33 0.189 
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Figure 10. Size frequency distributions bluegill in OXFREQ (a) and OXRARE (b).  
Dashed lines indicate minimum size at maturity estimates. Closed bars = dry year, open 
bars = wet year. 
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Table 6. Results of multiple comparisons of juvenile abundance between habitats 
using generalized estimating equations.  P-values were adjusted using the 
Bonferroni correction αadjusted = 0.025 

Species   BR x OXFREQ  BR x OXRARE  
OXFREQ x 
OXRARE 

    χ2 P  χ2 P  χ2 P 
          
mosquitofish  8.01 0.005  7.34 0.007  1.21 0.270 
          
red shiner  10.70 0.001  10.79 0.001  3.03 0.082 
          
shad  4.27 0.039  9.57 0.002  5.32 0.021 
          
spotted gar  5.38 0.020  6.49 0.011  1.87 0.172 
          
longnose gar  - -  - -  - - 
          
white crappie  6.88 0.009  2.08 0.149  7.66 0.006 
          
bluegill  5.06 0.024  8.56 0.003  8.46 0.004 
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Table 7. Results of log likelihood tests comparing the ratio of juvenile to adult individuals of each species among 
habitats and years.  Spotted gar ratios in oxbows were compared with longnose gar ratios in the river channel.  

  
OXFREQ x 
OXRARE  OXFREQ x BR   OXRARE x BR  Wet x Dry 

            
Species G P  G P   G P  G P 

            
white crappie 252.78 < 0.001  - -  - -  38.47 < 0.001 
            
bluegill 3.71 0.054  - -  - -  0.29 0.593 
            
gizzard shad 192.08 < 0.001  19.39 < 0.001  1.29 0.257  200.46 < 0.001 
            
gar 4.78 0.029  11.02 0.001  54.22 < 0.001  1.28 0.258 
            
mosquitofish 66.16 < 0.001  10.9 0.001  0.15 0.696  0.08 0.772 
            
red shiner 0.46 0.500  84.83 < 0.001  114.75 < 0.001  71.33 < 0.001 
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Periodic strategist recruitment 

 Variation in shad abundance was significant between habitats and years however 

a significant interaction between factors complicated interpretation of results (Table 5)  

Shad juvenile-to-adult ratios were greater in OXRARE and the river channel relative to 

OXFREQ, and the year-1 (dry year) ratio was significantly greater than the year-2 ratio 

(Table 7).  Shad populations in all habitats were primarily composed of juveniles and 

age-2+ individuals in year-1 (Figure 11).  Year-2 size distributions in both oxbow lakes 

had greater proportions of age-1 individuals suggesting good recruitment of juveniles 

produced in year 1 (Figure 11).  This trend was not apparent in the river channel where 

size frequency distributions were similar for both years (Figure 11). 

 Spotted gar abundance was greater in the two oxbows relative to the river 

channel and no difference was detected between years (Tables 5 and 6).  Longnose gar 

abundance in the river channel was similar to the two oxbow lakes, and abundance was 

greater in the wet year (Table 5).  Juvenile-to-adult ratios for the two gar species were 

greater in both oxbow lakes than the river channel, and no difference was detected 

between years (Table 7).  Size-frequency distributions in all habitats did not reveal any 

obvious adult cohorts.  The spotted gar population in OXRARE was dominated by 

juveniles during both years (Figure 12) whereas the OXFREQ population had similar 

proportions of juveniles and adults during both years (Figure 12).The Brazos River 

longnose gar population was dominated by adults during both years with few juveniles 

collected (Figure 13).
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Figure 11. Size frequency distributions of gizzard shad in the main channel (a), 
OXFREQ (b) and OXRARE (c).  Dashed lines indicate minimum size at maturity 
estimates. Closed bars = dry year, open bars = wet year. 
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Figure 12. Size frequency distributions of spotted gar in OXFREQ (a) and OXRARE (b).  
Dashed lines indicate minimum size at maturity estimates. Closed bars = dry year, open 
bars = wet year. 
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Figure 13. Size frequency distributions of longnose gar in the main river channel.  
Dashed lines indicate minimum size at maturity estimates. Closed bars = dry year, open 
bars = wet year. 
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Opportunistic strategist recruitment 

 Oxbow lakes had significantly greater mosquitofish abundance relative to the 

river, and abundance was greater in the dry year (Tables 5 and 6).  Mosquitofish 

juvenile-to-adult ratios were greater in the river and the rarely connected oxbow than the 

frequently connected oxbow.  There was no difference in ratios between years (Table 7).  

Populations in all habitats were dominated by juveniles; however, OXRARE and the 

river channel had greater proportions of adults (Figure 14). Size distributions in all 

habitats were consistent among years. 

 Red shiner abundance and juvenile-to-adult ratios were significantly greater in 

the river channel than oxbows (Tables 6 and 7).  Between years, both abundance and the 

juvenile-to-adult ratio were greater during the dry year.  Populations in OXRARE and 

the river channel were dominated by juveniles, and distributions were similar among 

years, whereas the OXFREQ population had a greater proportion of adults during year 2 

(Figure 15). 

DISCUSSION 

 Patterns of juvenile abundance indicated that both habitat characteristics and 

variation in hydrologic connectivity contributed to recruitment variability.  Oxbow lakes 

supported successful recruitment of species that spanned all three life history strategies, 

but were particularly important for equilibrium strategists (white crappie and bluegill) 

that were rarely collected in the river channel.  The reproductive ecology of both 

equilibrium species includes nest building, and high flows may reduce recruitment of 

these species in the river channel where flow is relatively unpredictable within and  
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Figure 14. Size frequency distributions of mosquitofish in the main river channel (a), 
OXFREQ (b) and OXRARE (c).  Dashed lines indicate minimum size at maturity 
estimates. 
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Figure 15. Size frequency distributions of red shiner in the main river channel (a), 
OXFREQ (b) and OXRARE (c).  Dashed lines indicate minimum size at maturity 
estimates. 
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between years (Winemiller, 1996; Bonvechio and Allen 2005).  The two species that 

were abundant in the river channel represented the periodic (longnose gar) and 

opportunistic (red shiner) life history strategies.  The storage effect allows periodic-type 

species, such as longnose gar, to produce strong year classes during optimal periods that 

may occur rarely in habitats such as the Brazos River channel where food resources for 

larvae appear to be less predictable compared to oxbow lakes.  Opportunistic species 

have extended breeding seasons that increase the probability that at least some offspring 

will encounter favorable conditions for recruitment despite relatively unpredictable 

environmental conditions (Winemiller, 1989; Humphries et al. 2002).  These species 

were common in all habitats although mosquitofish appeared to prefer oxbows, whereas 

red shiner preferred the main channel. 

Overall, oxbow lakes supported greater abundances of most species (white 

crappie, bluegill, shad, mosquitofish and spotted gar).  Off-channel floodplain habitats 

such as oxbow lakes, have been shown to be sources of production for certain fish 

populations (Crook and Gillanders 2006) and probably are sources of biological 

production in most river-floodplain systems (Junk et al. 1989; Winemiller, 2005).  

Oxbow lakes had greater rotifer and microcrustacean densities than the river channel and 

food resources may have influenced differences in juvenile abundance.  Among oxbows, 

abundance patterns were similar for mosquitofish, red shiner and spotted gar however, 

bluegill and shad were more abundant in the rarely connected oxbow, whereas white 

crappie were more abundant in the frequently connected oxbow.  Habitat-specific factors 

such as hydrology, depth, turbidity and geomorphology significantly influence species 
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composition and abundance in river-floodplain systems and likely contributed to 

observed patterns between oxbows in the current study (Halyk and Balon 1983; 

Rodriguez and Lewis 1997; Feyrer et al. 2004).  Only two oxbows were surveyed in the 

current study and population dynamics may vary among oxbows with similar connection 

frequencies however, a previous study of 10 Brazos oxbows by Winemiller et al. (2000) 

found that oxbows with similar geomorphology (yielding similar connection 

frequencies) supported similar fish assemblages.  Thus, my results probably represent a 

robust pattern of recruitment variation in response to abiotic factors in this system.    

Analysis of juvenile-to-adult ratios yielded additional recruitment patterns that 

could not be elucidated with abundance estimates alone.  Shad and crappie ratios were 

greatest in habitats that had the lowest adult abundance, a finding that suggests density 

dependent recruitment in these species (Vandenbos et al. 2006).  Spotted gar ratios in 

oxbow lakes were greater than longnose gar ratios in the river channel, and juveniles 

comprised a small proportion of the longnose gar population.  This implies that oxbow 

lakes provided better conditions for recruitment, however this may be an artifact of 

comparing ratios of different species.  Bluegill ratios were similar in the two oxbows, 

although abundance was significantly different.  Recruitment of this species appeared to 

be strongly associated with adult abundance.  The pattern of red shiner ratios was similar 

to that of abundance patterns with a greater ratio in the river channel relative to the two 

oxbow lakes.   

Annual floodplain inundation has been inferred to be the primary factor driving 

fish recruitment in large rivers (Junk et al. 1989; Bayley, 1991; Winemiller, 2005); 
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however, only one of seven species (longnose gar) was significantly more abundant in 

the wet year and no species had greater juvenile-to-adult ratios.  Red shiners, 

mosquitofish and gizzard shad were more abundant during the dry year, and three 

species (white crappie, gizzard shad and red shiner) had greater juvenile-to-adult ratios.  

Additionally, greater proportions of age-1 shad and crappie during the wet year 

suggested good recruitment of juveniles spawned during the previous dry year.  These 

findings suggest that recruitment dynamics in the Brazos River conform more closely to 

the low-flow recruitment hypothesis (LFR; Humphries et al. 1999) than the flood pulse 

concept (FPC; Junk et al. 1989). 

The low-flow recruitment hypothesis describes fish recruitment dynamics in 

rivers in where over-bank flooding is relatively unpredictable or aseasonal (Humphries 

et al. 1999).  Flood dynamics in the Brazos River during our two-year study period did 

not display a seasonal pattern.  King et al. (2003) found that most species in the Ovens 

River, Australia, were able to recruit in river channel and perennial floodplain habitats 

during hydrologic isolation, and similar patterns were apparent in the Brazos River.  

Periods of isolation (low flow) in oxbows, and to a lesser extent in the river channel, 

were associated with greater rotifer densities and planktonic invertebrates tend to be 

important food items consumed by fish larvae at the onset of exogenous feeding 

(Gehrke, 1992; Bremigan and Stein 1994; King, 2005).  The transition to exogenous 

feeding is a critical period that may determine species year-class strength, especially for 

periodic strategists that produce large numbers of small offspring (Miller et al. 1988; 

Winemiller and Rose 1993).  White crappie and gizzard shad had the greatest mean 
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fecundity and the smallest eggs of the seven species examined (Zeug and Winemiller 

unpublished manuscript) and both species produced a strong year class during the dry 

year.  Red shiners deposit their eggs in crevices and may require periods of low flow to 

reproduce successfully (Gale, 1986). 

Flooding can have large effects on fish recruitment both positive and negative 

and the limited duration of our study may have under-emphasized the importance of 

habitat connectivity.  Periods of hydrologic isolation were important for recruitment, yet 

extended isolation can result in oxbow desiccation and large-scale fish mortality 

(Winemiller et al 2000).  Periodic flooding is likely to be important for maintaining 

oxbow water levels and providing opportunities for faunal exchange with the river 

channel.  Zeug and Winemiller (Unpublished manuscript) found that reproductive 

activity of periodic species coincided with high flow periods in the 30-year hydrograph, 

and greater recruitment should be observed in years when flood dynamics are optimal 

(Bayley, 1991).  Periods of hydrologic connectivity were associated with lower predator 

abundance; however, floods during the study occurred outside of periodic species’ 

annual reproductive periods.           

   Observed patterns of species recruitment conformed well to tenets of the 

riverine ecosystem synthesis (RES) regarding community regulation (Thorp et al. 2006).  

The middle Brazos River can be classified as a floodplain functional process zone (FPZ) 

with individual oxbows and the river channel included as ecological nodes within the 

FPZ.  Recruitment success was dependent on interactions between geomorphic habitat 

features (oxbows with different connection frequencies and the river channel) and flood 
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dynamics.  These characteristics also were associated with recruitment of fish with 

particular life history strategies.  This differential recruitment success among habitats 

and hydrologic periods may be the primary factor driving differences in assemblage 

structure described previously in aquatic habitats of the Brazos River (Winemiller et al. 

2000; Zeug et al. 2005).   

The RES also emphasizes the importance of scale for investigations of ecological 

dynamics in lotic systems.  The spatial scale of the current study was sufficient for fishes 

that are able to move between habitat units during periods of hydrologic connectivity 

(Zeug et al. 2005).  Two years seemed to be sufficient to characterize recruitment of 

most species, with the possible exception of gars that have greater life spans relative to 

other species examined.  Flood dynamics were significantly different between years 

however, periods of severe drought can result in extensive drying of off-channel habitats 

and the current study did not cover the entire range of hydrologic dynamics that occur in 

the middle Brazos.  Populations of crappie and bluegill in the river channel, though 

small, are likely to be important for recolinization of floodplain habitats flowing 

extended droughts.  Future studies would benefit by increasing the temporal scale of 

analysis, especially in relation to long-lived periodic species that may have strong 

recruitment only during occasional years when flood dynamics are optimal.  Although 

individual oxbows were important habitats for recruitment during our two-year study, a 

given oxbow lake is a temporary floodplain feature when viewed over longer geological 

time scales.  Fluvial process such as erosion and deposition create these habitats and 

drive their succession.  Thus, fluvial geomorphologic dynamics over the long term are as 
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important for the maintenance of fish populations in the Brazos River as the dynamics of 

lateral connectivity and basal food web production that occur over shorter time scales. 
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CHAPTER IV 

CAN ALLOCHTHONOUS CARBON SOURCES SUPPORT LARGE RIVER FOOD 

WEBS? 

INTRODUCTION 

 Several conceptual models have been proposed to describe sources of organic 

carbon supporting aquatic consumers in large river-floodplain systems.  The river 

continuum concept (RCC; Vannote et al. 1980) proposes that organic material 

transported from upstream reaches and tributaries supports consumer biomass in lowland 

reaches.  This model was developed primarily from observations in small headwater 

streams and a few studies have implied weak longitudinal food web linkages in large 

rivers (Thorp et al. 1998; Huryn et al. 2002).  The flood pulse concept (FPC: Junk et al. 

1989) puts greater emphasis on lateral connectivity between the channel and floodplain 

habitats and predicts that terrestrial material originating on floodplains provides the 

majority of organic carbon supporting aquatic fauna in the main river channel.  Thorp 

and Delong (1994) proposed the riverine productivity model (RPM) that states carbon 

transported from upstream reaches and the floodplain is difficult for consumers to 

assimilate directly.  Autochthonous carbon sources (e.g. benthic algae, phytoplankton 

and direct inputs from riparian zones) are more labile and may be assimilated by 

consumer taxa in greater proportions despite the lower abundance of these carbon 

sources in the environment (Thorp et al. 1998). 

Recently, studies using stable isotopes have identified autochthonous algal 

carbon as the primary source of organic carbon supporting aquatic consumers in large 
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rivers (Thorp and Delong 2002 and references therein).  These studies have primarily 

focused on aquatic fauna in lotic main-channel habitats during low-flow periods.  Off-

channel aquatic habitats, such as oxbow lakes, are recognized as areas of high biological 

productivity in large river systems, yet they have received comparatively little attention 

with regards to the sources of carbon supporting consumers in these habitats.  Food webs 

are dynamic in space and time, and their structure can change in response to 

environmental drivers, species interactions, or a combination of these factors 

(Winemiller 1996; Woodward and Hildrew 2002; de Ruiter et al. 2005).  Variation in 

water level facilitates connectivity between different habitat units (main-channel and 

floodplain) and has the potential to significantly influence food web structure through 

the movement of potential source materials and consumer taxa (Winemiller 2005). 

 In North America, the fluvial dynamics of most large river-floodplain systems 

have been significantly altered, which complicates attempts to examine ecological 

dynamics under natural conditions (Sparks 1995; Michener and Haeuber 1998).  Here 

we use stable isotopes of carbon (δ13C) and nitrogen (δ15N) to examine proportional 

contributions of aquatic and terrestrial primary production sources to aquatic consumer 

taxa in the main channel and floodplain habitats of the Brazos River, Texas, USA over  

five months.  The hydrology of the Lower Brazos River is less modified than most other 

North American floodplain systems, and provides a unique opportunity to examine food 

web structure in a lowland river with frequent floodplain-river channel connections.  

Research goals were to identify the principal terrestrial and aquatic carbon sources 

supporting consumer taxa representing three trophic guilds in the main channel of the 
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Brazos River and two oxbow lakes with different flood-recurrence intervals in order to 

test predictions of the flood pulse concept and the riverine productivity model.  

Additionally, we use δ15N values to compare vertical trophic structure among the three 

habitats surveyed to reveal direct versus indirect assimilation of carbon from primary 

producers.  

We predicted that hydrologic connectivity and flow history would significantly 

influence carbon sources supporting consumer taxa.  Several studies that support the 

importance of autochthonous algal carbon were conducted during low-flow periods 

(Thorp et al. 1998; Bunn et al. 2003; Delong and Thorp 2005), whereas studies 

conducted during different hydrologic periods (both high and low-flow) or within 

habitats with different flow regimes have inferred that terrestrial carbon sources may 

significantly contribute to consumer biomass (Huryn et al. 2001; Wantzen et al. 2002; 

Herwig et al. 2004; Hoeinghaus et al. In press).   We predicted that autochthonous 

carbon sources in the Brazos main-channel would be important during low-flow periods 

(RPM), and allochthonous terrestrial sources would increase in importance following 

high flows that import terrestrial carbon from the floodplain (FPC), and reduce the 

availability of autochthonous sources via scouring and sedimentation (Huryn et al. 

2001).  Hydrologic disruptions in oxbow lakes are much less frequent and tend to be 

more gradual compared to those affecting the main channel (Winemiller et al. 2000; 

Zeug et al. 2005), and we predicted that autochthonous carbon sources would support a 

larger fraction of consumer biomass than the main channel. Greater fractions of 
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allochthonous material were predicted to be assimilated by for consumers in oxbows 

with shorter flood-recurrence intervals.   

METHODS 

Study site 

 The Brazos River is the 11th longest river in the United States draining an 

116,000 km2 catchment from its headwaters near the Texas-New Mexico border to its 

mouth near Freeport, Texas.  Agriculture and cattle grazing are prevalent land uses on 

the Brazos floodplain and large areas of native post oak (Quercus stellata) savanna are 

common.  The river is partially regulated by dams above the city of Waco, Texas, 

however, the middle and lower regions of the Brazos lack dams and levees.  

Consequently, the actively meandering channel continues to form aquatic floodplain 

features such as oxbow lakes.  Flood dynamics are primarily driven by regional 

precipitation patterns that are relatively unpredictable within and between years.   This 

high-flow variation yields aseasonal patterns of connectivity between the river channel 

and oxbow lakes that are similar to historical flow patterns (Winemiller 1996; Zeug et al. 

2005). 

 Samples of basal sources and consumer taxa for analysis of stable isotope ratios 

were collected from two oxbow lakes with different flood recurrence intervals and the 

main channel of the middle Brazos River between 30º 37’ and 30º 27’ N (Figure 1).  One 

of the oxbows connects to the river frequently (recurrence interval < 1 year) at moderate 

levels of river discharge and is hereafter referred to as OXFREQ.  The other oxbow 

connects to the river channel at high levels of discharge with a recurrence interval of 
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approximately 2 years and is hereafter referred to as OXRARE.  Samples from the main 

river channel were collected from a 7-km reach located near OXRARE.  Both oxbow 

lakes were located on cattle ranches but retained relatively unaltered riparian buffers 

surrounded by pasture.  Willow trees (Salix nigra) were the dominant riparian tree at 

both sites, and sycamores (Platanus occidentalis) also were common at OXRARE.  

Willows dominated the riparian zone of the river channel, and the floodplain contains 

row crops (primarily corn and cotton) and pasture with areas of native post oak savanna.  

Aquatic macrophytes were rare in the channel and sparse in oxbow lakes.   

Sample collection 

A previous survey of one Brazos oxbow found significant seasonal variation in 

isotopic ratios of primary producers (Jepsen 1999).  In order to capture this temporal 

variability for modeling contributions of production sources to consumer species that 

integrate variability in source materials over time, production sources were collected 

monthly at each site from September 2003 to August 2004.  Samples of dominant 

riparian vegetation (S. nigra, P. occidentalis) were collected when live leaves were 

available (early fall, spring and summer).  Leaves were clipped, placed in plastic bags, 

and frozen for later processing.  Samples of grasses from adjacent pastures were 

collected during flood periods (May and June) when water inundated these areas.  

Benthic algae were scraped directly off the mud substrate using a metal spatula.  

Samples were rinsed with distilled water to remove sediment and large particles of 

detritus and then examined under a microscope to remove small particles and 

microorganisms.  Because this collection and processing technique was unlikely to 
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produce pure samples, we hereafter refer to this source as phytomicrobenthos (benthic 

algae with associated microorganisms).  Samples of phytomicrobenthos were not 

collected in the river channel during certain months due to scouring and sediment 

deposition.  Water samples were collected in two 1-l opaque bottles and transported to 

the laboratory on ice.  Samples were passed through a 64-mm sieve to remove 

zooplankton and then examined under a microscope to insure the sample primarily 

contained phytoplankton.  Sieved samples were filtered onto pre-combusted (450ºC for 

24 hr) Whatman GF/F filters and frozen for later analysis.  Samples contained both 

phytoplankton and suspended organic matter and are hereafter referred to as “seston”.  

Seston samples could not be collected in the river channel during high flow periods due 

to heavy sediment loads.   

Fish and invertebrates were collected monthly from April 2004 to August 2004.  

Small-bodied species (< 100 mm) were collected with a 10 x 2 m bag seine and large-

bodied species (> 100 mm) were collected with experimental gillnets.  Abundance 

estimates of consumer taxa were standardized by the total number of meters traveled for 

seine hauls and the total hours for each gillnet set.  For a more detailed description of the 

collection methodology see Zeug et al. (2005).  Species collected for isotopic analysis 

were selected based on previous surveys that identified them as dominant consumers 

(Winemiller et al. 2000; Zeug et al. 2005) and their representation of different trophic 

guilds.  In oxbow lakes, gizzard shad (Dorosoma cepedianum), smallmouth buffalo 

(Ictiobus bubalus), grass shrimp (Palaemonetes kadiakensis), and crayfish (cambaridae) 

represented the detritivore/omnivore guild.  Western mosquitofish (Gambusia affinis), 
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red shiner (Cyprinella lutrensis), and bluegill (Lepomis macrochirus) represented the 

insectivore guild.  White crappie (Pomoxis annularis) and spotted gar (Lepisosteus 

oculatus) represented the piscivore guild.  Species assemblage structure of the river 

channel is significantly different than oxbow lakes (Zeug et al. 2005), and several lotic-

associated species were dominant guild members in the main channel.  In the river 

channel, gizzard shad, river carpsucker (Carpiodes carpio), and Ohio River shrimp 

(Macrobrachium ohione) represented the detritivore/omnivore guild.  Red shiner, 

bullhead minnow (Pimephales vigilax), and longear sunfish (Lepomis megalotis) 

represented the insectivore guild.  Longnose gar (Lepisosteus osseus) represented the 

piscivore guild.  During each month we attempted to collect three individuals of each 

species, however, in certain months three replicates were not available.  When more than 

3 specimens were collected, individuals were selected to represent the minimum, 

maximum, and approximate mean size in the sample.  All samples were placed in plastic 

bags and frozen for later processing. 

In the laboratory, fish and invertebrate samples were defrosted, measured to the 

nearest 0.1 mm (standard length for fishes and total length for decapods) and weighed to 

the nearest gram.  Samples of dorsal muscle were used for fishes, and abdominal muscle 

was used for decapods.  For some small species (mosquitofish and grass shrimp), 

composite samples of up to three similar sized individuals were used to ensure adequate 

sample mass. Muscle tissue was removed using a scalpel, rinsed with distilled water, and 

inspected to ensure samples were free of bone, scales, or exoskeleton fragments.  

Samples of muscle and processed basal source materials were placed in individually 
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labeled, acid-washed Petri dishes and dried for 48 h at 60ºC.  Dried samples were ground 

to a fine powder and sub-samples were weighed to the nearest 0.01 mg on an analytical 

balance.  Sub-samples were sealed within Ultra-Pure tin capsules (Costech Analytical 

Technologies, Inc) and then sent to the Analytical Chemistry Laboratory, Institute of 

Ecology, University of Georgia, for analysis of carbon and nitrogen isotope ratios.  

Isotopic results for carbon and nitrogen were quantified as deviations relative to isotopic 

standards (delta notation):  

δ13C or δ15N = [(Rsample / Rstandard) – 1] * 1000, 

where R = 13C/12C or 15N/14N.  For carbon isotopes, the standard was Pee Dee Belemnite 

limestone, and atmospheric nitrogen was the nitrogen standard. 

 Some samples were destroyed due to equipment malfunctions during isotopic 

analysis.  Destroyed consumer samples were re-analyzed when additional processed 

material was available however, samples of phytomicrobenthos and seston usually did 

not contain enough additional material to be re-analyzed. 

Data analysis 

The IsoSource procedure described by Phillips and Greg (2003) was performed 

to model the contribution of source materials to consumer taxa.  Plots of carbon and 

nitrogen ratios of source materials indicated that baseline nitrogen values (average δ15N 

of all production sources) may have been different between the three habitats surveyed.  

A one-way ANOVA indicated that differences among habitats were significant (F2,86 = 

32.19, P < 0.001), and Tukey’s multiple comparisons test indicated that differences were 

significant between each habitat (Figure 16).  Because of these differences, models were 
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run for each habitat separately using source and consumer taxa collected only in that 

habitat.  Plots revealed that some sources could be combined.  In OXRARE,  
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Figure 16. Box and whisker plots of average δ15N values of production sources in each 
habitat.  One-way ANOVA and Tukey’s multiple comparisons test indicated values were 
significantly different between each habitat. 
 

 

 

willow and sycamore had similar isotopic ratios and were combined into the variable C3 

terrestrial plants.  Grasses collected along the river channel and OXFREQ were C3.  In 

the river channel, C3 grasses had signatures similar to willow and were combined into 
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the variable C3.  Grasses in OXFREQ did not overlap with willow isotope ratios and 

these sources were not combined.  Although C3 grasses appeared to be dominant in the 

section of the Brazos channel that was surveyed, C4 plants also occur on the broader 

landscape therefore, isotopic values for Brazos River C4 grasses collected previously by 

K.O. Winemiller (unpublished data) were included in the Brazos River model.   

A four-source dual-isotope δ13C/δ15N model was run for consumer species in 

each habitat.  Sources in the river channel and OXRARE models included C3 

macrophytes, C4 macrophytes, phytomicrobenthos and seston.  Because C4 macrophytes 

used in the river channel model were not collected during the study period and δ15N 

values were higher than other production sources, an additional model was run for the 

Brazos using only δ13C values.  The OXFREQ model included C3 trees, C3 grasses, 

phytomicrobenthos and seston.  Nitrogen values were corrected for trophic fractionation 

using the value of 2.54 ‰ calculated from a meta-analysis of fractionation studies 

(Vanderklift and Ponsard 2003).  Each model examined source contributions in 1% 

intervals with a tolerance of 0.1‰. 

Trophic position (TP) of each species was estimated based on fractionation of 

δ15N between consumers and basal production sources (Vander Zanden & Rasmussen 

1999; Post 2002).  Calculations were performed using the methodology described in 

Jepsen and Winemiller (2002), and the trophic position of each consumer was calculated 

as: 

TP = ((δ15Nconsumer - δ15Nreference)/2.54) + 1, 
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where δ15Nreference was the mean  δ15N of basal sources (C3 macrophytes, C4 

macrophytes, phytomicrobenthos, and seston), and 2.54 ‰ was the mean trophic 

fractionation value from a meta-analysis of trophic fractionation studies (Vanderklift and 

Ponsard 2003).  Reference nitrogen values were calculated separately for each habitat 

due to the significant spatial difference in nitrogen ratios of basal sources discussed 

above.  Because reference values were calculated separately, estimates of consumer 

trophic positions were directly comparable among the three habitats surveyed. 

RESULTS 

 A total of 378 consumer and basal source samples was analyzed for carbon and 

nitrogen isotopic ratios with 85, 151, and 142 samples analyzed in the Brazos River, 

OXFREQ and OXRARE, respectively.  The months during which consumer taxa were 

sampled (April – August 2004) represented a period of greater than normal hydrologic 

connectivity in the Brazos River-floodplain and there was not a prolonged low-flow 

period in the main channel.  Five separate flood connections occurred between the river 

channel and OXFREQ, and OXRARE was connected to the river channel on three 

occasions.  In total, the river channel was hydrologically connected with at least one of 

the study oxbows for a total of 24 days.  

Mean δ13C values of basal sources were relatively well differentiated within each 

habitat, however some sources had different isotopic ratios between habitats.  Terrestrial 

C3 macrophytes had relatively light carbon ratios and had similar mean δ13C values 

among habitats (Brazos = -29.40 ‰, OXFREQ = -29.13 ‰, and OXRARE = -28.86 ‰).  

Terrestrial C4 macrophytes were relatively enriched in 13C and had similar values in the 



                                                                                                                                          80 
 

 

two habitats where they were collected (Brazos = -13.32 ‰, OXRARE = -12.78 ‰).  

Seston samples had similar values in the two oxbow lakes, and these ratios were 

intermediate between those of the two terrestrial sources (OXFREQ = -25.00 ‰, 

OXRARE = -26.37 ‰), whereas seston in the river channel was more 13C enriched (-

15.36 ‰) relative to oxbow samples.  Values in the river channel may have resulted 

from contamination of by sediment carbonates, or organic particles may have been 

primarily of C4 origin.  Samples of phytomicrobenthos had mean values of -20.15, -

25.50, and -17.63 ‰ in the river channel, OXFREQ and OXRARE, respectively.  

Factors such as current velocity, CO2 concentration and temperature can influence 

the δ13C values of benthic algae (Finlay et al. 1999), and may have contributed to the 

spatial variation observed in our study.  Coefficients of variation for δ13C of sources 

sampled over one year (September 2003 –August 2004) were generally greater for 

aquatic production sources (0.07 – 0.36) relative to terrestrial sources (0.04 – 0.11) 

(Figure 3), a result similar to that found by Jepsen (1999). 

δ15N values of sources were significantly different between habitats as discussed 

above.  Within habitats, the range of mean  δ15N values between sources was greater in 

the Brazos River (7.21 – 12.12 ‰) relative to OXFREQ (5.91 – 6.94 ‰), and OXRARE 

(3.78 – 4.90 ‰).  Coefficients of variation for source  δ15N were generally greater than 

δ13C (Figure 17) which supported results reported by Jepsen (1999) that there is 

considerable seasonal variation in nitrogen ratios of production sources in Brazos 

oxbows. 
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Figure 17. Coefficients of variation for δ13C (top panel) and δ15N (bottom panel) values 
of production sources sampled over a one-year period in each habitat.  PMB = 
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Carbon sources supporting aquatic consumers 

Consumer taxa in the Brazos River channel had a narrow range of δ13C values 

that were intermediate relative to the range of mean values of production sources (Figure 

18).  Ohio River shrimp were the most 13C enriched (-23.39 ‰) and bullhead minnow 

were the most depleted (-24.67 ‰) species.  IsoSource model solutions (1 – 99th 

percentile ranges) indicated that C3 macrophytes were the most important production 

source supporting biomass of all seven taxa examined, and C4 macrophytes also 

accounted for a significant fraction of assimilated carbon (Table 8).  Model results 

suggested that the two aquatic production sources (phytomicrobenthos and seston) 

probably made minor contributions, although 99th percentile values were greater for 

phytomicrobenthos relative to seston (Table 8).  Solutions from the carbon-only model 

supported the importance of C3 macrophytes to consumer biomass, however ranges for 

other sources had 1 percentile values of zero.   

Species in OXFREQ had a greater range of δ13C values relative to the river 

channel, and they were, on average, more 13C depleted (Figure 18).  IsoSource solutions 

indicated assimilation of material from a mixture of production sources.  

Phytomicrobenthos accounted for a large fraction of crayfish and mosquitofish biomass, 

with seston also being an important contributor (Table 9).  Terrestrial production sources 

appeared to contribute little to crayfish, whereas greater, although relatively minor, 

contributions were possible for mosquitofish.  Terrestrial C3 trees accounted for a large 

fraction of grass shrimp, white crappie, bluegill, and smallmouth buffalo biomass (Table 

9).  Seston contributions for these species also were important (1 percentile values > 0), 
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although 99th percentile values were relatively low for white crappie and smallmouth 

buffalo, suggesting that seston was a minor yet consistent contributor to biomass of these 

species (Table 9).  For bluegill and grass shrimp, large contributions from terrestrial C3 

grasses were also possible, although ranges of potential contributions were broad (Table 

9).  Red shiner and gizzard shad seemed to assimilate material from all four sources, 

although only the two aquatic sources had 1-percentile values > 0, indicating they likely 

were consistent contributors (Table 9).  Model results did not suggest a dominant 

production source for spotted gar.  As apex predators with broad diets, spotted gar likely 

feed on a prey assemblage that assimilate material from multiple aquatic and terrestrial 

sources. 

Carbon ratios of consumers in OXRARE had similar means and ranges as those 

in OXFREQ (Figure 18).  A large fraction of all consumer biomass was accounted for by 

terrestrial C3 macrophytes, with 1 percentile values ranging from 47 - 84%, and 99th 

percentile values ranging from 67 - 98% (Table 10).  Terrestrial C4 macrophytes likely 

contributed little to most consumers.  Similar to patterns in OXFREQ, 

phytomicrobenthos accounted for significant fractions of mosquitofish and crayfish 

biomass, and this also was an important source for red shiner.  Phytomicrobenthos also 

accounted for a smaller, yet similar fraction of spotted gar, bluegill, white crappie, and 

grass shrimp biomass.  Seston seemed to be a minor contributor for most consumers, 

although a relatively large fraction was possible for spotted gar (Table 10). 
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Table 8. Means and 1 - 99th percentile ranges (in parentheses) of sources contributions to Brazos River consumer 
biomass from IsoSource models.  Sample sizes for consumers are in parentheses next to species names. 

Species C4  C3  Phytomicrobenthos  Seston 
Fish         
red shiner (15) 0.28 (0.27-0.31)  0.68 (0.66-0.69)  0.02 (0.00-0.07)  0.01 (0.00-0.05) 
river carpsucker (3) 0.27 (0.23-0.33)  0.64 (0.59-0.67)  0.06 (0.00-0.16)  0.04 (0.00-0.11) 
gizzard shad (9) 0.25 (0.21-0.32)  0.62 (0.56-0.66)  0.08 (0.00-0.21)  0.05 (0.00-0.14) 
longnose gar (11) 0.29 (0.28-0.30)  0.69 (0.68-0.70)  0.01 (0.00-0.04)  0.01 (0.00-0.02) 
longear sunfish (2) 0.29 (0.27-0.30)  0.69 (0.67-0.70)  0.02 (0.00-0.05)  0.01 (0.00-0.03) 
bullhead minnow (12) 0.29 (0.29-0.30)  0.70 (0.70-0.70)  <0.01 (0.00-0.01)  <0.01 (0.00-0.01) 
Invertebrates        
Ohio River shrimp (2) 0.21 (0.15-0.27)  0.55 (0.47-0.61)  0.15 (0.00-0.35)  0.10 (0.00-0.22) 
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Table 9. Means and 1 - 99th percentile ranges (in parentheses) of sources contributions to OXFREQ consumer biomass 
from IsoSource models.  Sample sizes for consumers are in parentheses next to species names. 

Species C3 grasses  C3 trees  Phytomicrobenthos   Seston 
Fish         
red shiner (8) 0.33 (0.00 - 0.67)  0.16 (0.00 - 0.34)  0.28 (0.04 - 0.50)  0.24 (0.13 - 0.34) 
gizzard shad (17) 0.32 (0.00 - 0.66)  0.16 (0.00 - 0.34)  0.27 (0.03 - 0.49)  0.25 (0.14 - 0.35) 
mosquitofish (12) 0.15 (0.00 - 0.34)  0.08 (0.00 - 0.17)  0.53 (0.36 - 0.70)  0.24 (0.14 - 0.34) 
smallmouth buffalo (10) 0.07 (0.00 - 0.24)  0.83 (0.71 - 0.93)  0.03 (0.00 - 0.10)  0.07 (0.03 - 0.14) 
spotted gar (14) 0.35 (0.00 - 0.81)  0.26 (0.01 - 0.45)  0.15 (0.00 - 0.37)  0.24 (0.13 - 0.36) 
bluegill (11)  0.29 (0.00 -0.73)  0.36 (0.12 - 0.52)  0.12 (0.00 - 0.31)  0.23 (0.13 - 0.36) 
white crappie (25)  0.05 (0.00 -0.16)  0.84 (0.76 - 0.91)     0.02 (0.00 - 0.07)  0.09 (0.07 - 0.14) 
Invertebrates        
crayfish (13) 0.02 (0.00 - 0.08)  0.01 (0.00 - 0.04)  0.68 (0.57 - 0.82)  0.28 (0.17 - 0.36) 
grass shrimp (14) 0.20 (0.00 - 0.54)  0.49 (0.29 - 0.61)  0.08 (0.00 - 0.23)   0.23 (0.14 - 0.36) 
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Table 10. Means and 1 - 99th percentile ranges (in parentheses) of sources contributions to OXRARE consumer biomass 
from IsoSource models.  Sample sizes for consumers are in parentheses next to species names. 

Species C4  C3   Phytomicrobenthos   Seston 
Fish         
red shiner (11) 0.01 (0.00 - 0.03)  0.71 (0.67 - 0.74)  0.26 (0.23 - 0.28)  0.02 (0.00 - 0.06) 
gizzard shad (15) 0.01 (0.00 - 0.04)  0.92 (0.84 -0.98)  0.02 (0.00 - 0.06)  0.04 (0.00 - 0.11) 
mosquitofish (9) 0.01 (0.00 - 0.04)  0.73 (0.69 -0.75)     0.24 (0.21 -0.27)  0.02 (0.00 - 0.06) 
smallmouth buffalo (15)  0.02 (0.00 - 0.06)  0.89 (0.79 - 0.95)  0.04 (0.00 - 0.09)  0.05 (0.00 - 0.15) 
spotted gar (12) 0.07 (0.00 - 0.21)  0.57 (0.36 - 0.72)  0.23 (0.07 - 0.26)  0.12 (0.00 - 0.34) 
bluegill (15)  0.02 (0.00 - 0.06)  0.84 (0.77 - 0.89)  0.11 (0.06 -0.15)  0.03 (0.00 - 0.10) 
white crappie (17) 0.01 (0.00 - 0.03)  0.87 (0.81 - 0.90)  0.11 (0.08 -0.13)  0.02 (0.00 - 0.07) 
Invertebrates        
crayfish (2) 0.04 (0.00 - 0.11)  0.59 (0.47 - 0.67)  0.31 (0.21 - 0.38)  0.07 (0.00 - 0.19) 
grass shrimp (15)  0.03 (0.00 - 0.08)  0.79 (0.70 - 0.84)  0.15 (0.08 - 0.20)   0.04 (0.00 - 0.13) 
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Trophic position of consumers 

15N data indicated approximately 5 trophic levels in the river channel and 

OXRARE, and 4 trophic levels in OXFREQ (Figure 19).  In the river channel, no 

consumers had a trophic level below 3, suggesting that trophic level 2 may be dominated 

by aquatic insects that were not well sampled in our survey.  The third trophic level 

contained species in the detritivore/omnivore guild (gizzard shad, Ohio River shrimp and 

river carpsucker) and two species in the insectivore guild (red shiner and bullhead 

minnow), although the TP of bullhead minnow approached level 4 (3.7).  Longear 

sunfish and longnose gar comprised the fourth trophic level, and the longnose gar value 

approached trophic level 5 (TP = 4.8). 

 Trophic level 2 in OXFREQ included crayfish, grass shrimp and smallmouth 

buffalo.  Crayfish had a trophic position slightly less than 2.0 (TP = 1.9) which may have 

resulted from error in the estimation of reference nitrogen values.  Five species 

approximated trophic level 3 (gizzard shad, bluegill, mosquitofish, red shiner and white 

crappie) and spotted gar approached trophic level 4 (TP = 3.8).  In OXRARE, crayfish 

were the only species in trophic level 2, and similar to crayfish in OXFREQ, crayfish 

trophic position was slightly less than 2.0 (1.9).  Gizzard shad, grass shrimp, smallmouth 

buffalo, mosquitofish, red shiner, and bluegill comprised trophic level 3.  White crappie 

was the only species in trophic level 4, and spotted gar approximated trophic level 5 

(Figure 19). 
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            Figure 19. Trophic positions of main channel and oxbow consumers based on δ15N values.
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Isotopic evidence of faunal exchange 

Isotopic ratios of gizzard shad in the oxbow lakes had a wider range of values 

relative to shad in the river channel.  When isotope ratios were plotted by standard 

length, two distinct groupings were evident (Figure 20).  Shad < 150 mm in oxbow lakes 

had nitrogen and carbon ratios that were depleted relative to shad > 150 mm, whereas 

this trend was not apparent in the river channel where shad of all sizes had similar 

isotopic ratios.  Large shad in oxbow lakes had isotopic signatures more similar to shad 

in the river channel, which suggests that large shad immigrated into oxbow lakes from 

the river channel during flood periods.  Stomach contents analysis of shad in oxbow 

lakes indicated that large and small individuals consumed similar proportions of food 

items (Zeug, unpublished data), which supports the idea that differences in diet 

composition were not the source of isotopic variation.  Some of the large shad in oxbows 

had signatures similar to juveniles or intermediate between river and oxbow signatures, 

and these individuals may have been produced in situ or resided in oxbows for a period 

sufficient for muscle tissue to reach isotopic equilibrium (Figure 20).  The rarely flooded 

oxbow had a greater proportion of large shad with oxbow-like signatures (57%) relative 

to the frequently connected oxbow (20%) where opportunities for faunal exchange are 

more common. 

Two bluegill sunfish and 1 crappie captured in the river channel were relatively 

enriched in δ13C and had δ15N values less than some source materials (Figure 18).  These 

isotopic ratios were similar to values for these same species in oxbow lakes, which may
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Figure 20. Biplot of carbon and nitrogen isotope ratios of gizzard shad collected in the Brazos River channel and two   
oxbow lakes. 
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suggest these individuals migrated to the river channel during flood connections and had 

retained their “oxbow” isotopic signature.  Both of these species are abundant in oxbow 

lakes and relatively rare in river channel (Winemiller et al. 2000; Zeug et al. 2005). 

DISCUSSION 

Isotopic mixing model estimates indicated that terrestrial carbon (C3 

macrophytes) was the primary source supporting consumer biomass in the main channel 

and the rarely flooded oxbow, and accounted for a large fraction of biomass of certain 

consumers in the frequently flooded oxbow.  In the river channel, terrestrial C4 

macrophytes made a consistent, yet smaller contribution relative to C3 macrophytes, 

whereas this source only had the potential for minor contributions to oxbow consumers.  

Isotopic studies of other temperate and subtropical rivers have found that C4 

macrophytes are relatively unimportant as an energy and nutrient source contributing to 

consumer biomass (Thorp et al. 1998; Clapcott and Bunn 2003; Herwig et al. 2004), and 

the inclusion of isotopic values for C4 macrophyte samples that were not collected 

during the study interval could have overestimated their importance.  Surveys of tropical 

river food webs indicate relatively minor contributions from C4 macrophytes (Leite et al. 

2002; Watzen et al. 2002; Hoeinghaus et al. In press).  The large estimated contribution 

of terrestrial carbon to consumers within the Brazos River ecosystem contradicts recent 

studies reporting the importance of autochthonous algal carbon to large river food webs 

(Lewis et al. 2001; Thorp and Delong 2002; Douglas et al. 2005).   

   Hydrologic characteristics of the Brazos River could influence the importance 

of terrestrial relative to aquatic (algal) primary production sources.  The current study 
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was conducted during a period of greater than average flows in the middle Brazos River.  

High flows in the main channel resulted in scouring of benthic algae from shallow areas 

and/or deposition of large volumes of sediment that prevented collection of algal 

samples during certain periods.  IsoSource model results for certain consumer taxa in 

oxbow lakes, where flow disruptions were less frequent, indicated significant 

contributions from autochthonous algal carbon (phytomicrobenthos and seston).  

Mosquitofish, red shiner and crayfish in oxbows potentially had assimilated large 

amounts of carbon derived from benthic algae (phytomicrobenthos).  These species are 

small-bodied (< 100 mm) and exploit shallow littoral habitats where benthic algae are 

most abundant.  Thus, benthic algae may be a more ephemeral resource than terrestrial 

material during high flow periods in the channel, and greater contributions of algal 

carbon to certain consumers may be observed during stable low-flows.  Delong et al. 

(2001) reported little change in carbon sources supporting consumers in response to a 

flood in the Upper Mississippi River, however, the flow regime of the Brazos is much 

less predictable among years relative to other floodplain systems (Winemiller 1996).  

Shifts in the contribution of terrestrial and aquatic carbon sources to consumers based on 

resource availability, as mediated by river hydrology, were reported for a New Zealand 

river by Huryn et al. (2001).  Bunn et al. (2003) found that benthic algae were the 

primary carbon source supporting consumers in isolated water holes during a low-flow 

period in Cooper Creek, Australia.                   

Conspecifics collected from different habitats in the Brazos system had similar 

trophic positions in most cases, despite the significant spatial difference in reference 
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δ15N values.  This pattern suggests that materials assimilated by most of the consumers 

in the main channel and oxbow lakes were produced locally.  Finlay et al. (2002) 

reported that locally produced carbon sources supported consumer taxa in the Eel River, 

California.   The flood pulse concept predicts that production sources supporting 

consumers in the main channel are primarily terrestrial materials originating on the 

floodplain (Junk et al. 1989).  Our results support the importance of terrestrial materials 

to consumer biomass, and similar results have been inferred for other large rivers (Leite 

et al. 2002; Wantzen et al. 2002; Hoeinghaus In press), however, these materials did not 

appear to originate on the floodplain.  The riverine productivity model (Thorp and 

Delong 1994) emphasizes the importance of autochthonous production to consumer 

biomass in large rivers.  Direct terrestrial inputs from the riparian zone are included as 

one of the potential autochthonous production sources supporting consumers.  Although 

revisions of the RPM model have increasingly recognized the importance of algal carbon 

(Thorp et al. 1998; Thorp and Delong 2002; Delong and Thorp 2006), trophic dynamics 

in the main channel of the Brazos River appear to support the RPM model as originally 

proposed.  Consumers in oxbow lakes assimilated greater proportions of algal carbon in 

addition to smaller fractions of C3 terrestrial material, thus trophic dynamics in these 

habitats also supported the RPM model. 

Differences in δ15N values in the Brazos River and associated oxbows indicated a 

gradient of distance with the most enriched values in the river channel and the least 

enriched values in the most distant oxbow (≈1200 m from the main channel).  Enriched 

δ15N values in the river channel may result from agricultural nitrogen inputs and/or 
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sewage treatment plants located on tributaries of the main channel.  Allochthonous 

inputs of nitrogen have been show to influence consumer δ15N values in other aquatic 

systems (Cabana and Rasmussen 1996; Steffy and Kilham 2004; Schlacher et al. 2005).  

Oxbow lakes have small catchments and receive river water during flood pulses when 

potential sources of enriched δ15N should be diluted.  Despite the pattern of less 

enrichment with increasing distance, samples were only collected from three habitats, 

and future studies would benefit by collecting samples from more habitats encompassing 

a greater range of distances from the main channel.   

 Spatial variation in stable isotope ratios has been used to examine consumer 

habitat use as well as movement of consumers between different habitat units (Hansson 

et al. 1997; Fry 2002; Cunjak et al. 2005).  In the current study, variation in isotope 

ratios of several species suggested movement between the main channel and oxbow 

lakes during flood periods.  Large gizzard shad were inferred to show net movement 

from the river channel into oxbow lakes during flood periods, whereas, based on limited 

sample sizes, bluegill and white crappie moved mostly from oxbows to the river channel.  

Floodplain habitats are favorable for fish reproduction and recruitment (Sabo and Kelso 

1991; Killgore and Baker 1996), and adult gizzard shad frequently enter oxbow lakes to 

reproduce.  Zeug et al. (2005) found that juvenile gizzard shad were much more 

abundant in Brazos oxbows relative to the main channel.  Subsequent river-oxbow 

connections allow sub-adults to move back to the channel (oxbows are fine too).  

Crappie and bluegill seem to prefer lentic habitats and most individuals probably do not 

actively migrate to the main channel.  Because sub-samples of each species were 
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analyzed and not all species collected were analyzed for stable isotope ratios, the 

magnitudes of fish movement during floods could not be estimated.  Estimates of fish 

movement between habitats from isotopic data could be complemented with telemetry or 

mark-recapture studies (Cunjak et al. 2005).  If, in fact, consumer taxa assimilate 

material produced locally, fish movement between oxbow lakes and the main channel 

may be a significant pathway for the transfer of floodplain organic matter to the main 

river channel (Winemiller and Jepsen 1998). 

 Estimates of consumer trophic positions indicated approximately 5 trophic levels 

in the main channel and OXRARE, and 4 levels in OXFREQ.  The absence of a 5th 

trophic level in OXFREQ may have resulted from error in the estimation of reference 

nitrogen values, however, several species had similar trophic positions in OXFREQ and 

the other two habitats (crayfish, gizzard shad, mosquitofish and red shiner).  Longnose 

and spotted gars were the only species that approximated the 5th trophic level.  

Differences in prey assemblages among habitats may have influenced gar trophic 

positions.  Beaudoin et al. (1999) reported that trophic positions of northern pike (Esox 

lucius) could vary up to1 trophic level in relation to consumption of invertebrate versus 

fish prey. Analysis of gar stomachs revealed that individuals in OXFREQ primarily 

consumed crayfish (TP = 1.9), whereas gar in OXRARE consumed more shad (TP = 

3.2) and sunfish (TP = 3.7), and longnose gar consumed large volumes of catfish 

(Robertson et al. unpublished manuscript).  Few consumers in the detritivore/omnivore 

guild had trophic positions below three, and trophic level two is likely composed of 

aquatic invertebrates that were not well sampled in this study.  Species in this guild 
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consume large amounts of detritus but may assimilate large fractions of animal matter 

despite the lower abundance of the latter in consumer diets (Mantel et al. 2004; 

Winemiller et al. In press). 

 Stable isotopes are effective tracers of material assimilated by consumers 

because they integrate diet over relatively long time periods compared to stomach 

contents analysis.  The current study examined the isotopic composition of consumers 

over 5 months, a period potentially insufficient to characterize the contribution of 

different production sources in relation to the hydrologic dynamics of the Brazos River.  

Seasonal variation in production sources supporting food webs can be significant, 

especially in floodplain systems that experience large fluctuations in water level and 

associated changes in species assemblage structure (Winemiller 1990; Huryn et al. 

2001).  The relative importance of terrestrial and aquatic production sources varied 

spatially as well as among consumer taxa within habitats.  Identification of production 

sources supporting consumer biomass can be affected by the spatial and temporal scale 

of collections as well as the choice of species used in isotopic analysis, and these factors 

should be addressed in future studies of large-river food webs. 

 Identification of the trophic pathways supporting species in large river-floodplain 

systems is essential for their management and restoration (Winemiller 2005).  Our 

results indicated that multiple terrestrial and aquatic production sources supported 

aquatic consumer taxa.  Contributions from individual production sources varied among 

hydrologic periods, habitat units and species, which reinforces the need to examine the 

interaction between habitat heterogeneity and flow variability for the maintenance of 
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essential ecological functions in lotic systems (Poff et al. 1997; Bunn et al. 2002).  

Elimination of high flows due to dam and levee construction would impair the 

movement of floodplain carbon (in the form of mobile aquatic fauna) to the main 

channel and eliminate opportunities for some species to exploit off-channel areas for 

reproduction.  Movement of fauna between different habitat units was inferred from 

isotopic data and river-floodplain connections may be essential to the persistence of 

populations that exploit multiple habitat types during some point in their life cycle, and 

predators that feed on prey populations as they move between habitats. 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                          99 
 

 

CHAPTER V 

SUMMARY 

The results presented in the preceding chapters suggest that conceptual models 

describing ecological function in large rivers (FPC, LFR, and RPM) are too vague to 

provide accurate predictions regarding fish reproduction, recruitment and trophic 

dynamics for the diversity of fish life history tactics and trophic guilds in the Brazos 

River, and perhaps in large rivers in general.  These conceptual models are 

approximations of ecological structure and dynamics, yet they are often assumed to 

apply to large rivers with different hydrologic regimes despite a lack of empirical 

evaluation of these models (Humphreis et al. 1999; Thorp et al. 2006).  Hydrologic 

variation between different habitats and time periods was a consistent factor influencing 

ecological dynamics in this investigation, and my results provide the basis for a model of 

fish reproduction, recruitment and trophic dynamics in relation to the spatial 

heterogeneity and flow variability of the Brazos River.  Because these analyses were 

conducted at the level of life history strategy and trophic guilds, results provide a general 

approach for research on hydrologic influences on ecological dynamics as well as flow 

and habitat-related management prescriptions for impaired river systems. 

FISH REPRODUCTION AND RECRUITMENT 

Reproductive activity of fishes representing divergent life history strategies was 

positively associated with long-term flow dynamics similar to predictions of the flood 

pulse concept, however, fish with different life history strategies exploited different 

periods of the hydrograph and different habitat types.  Floods in the Brazos River are 
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short (days to weeks) relative to many tropical floodplain systems where floods may last 

for almost half the year.  This short period of floodplain connectivity reduces the 

probability of fish exploiting seasonally inundated areas for recruitment, because there is 

insufficient time for reproduction, larval rearing, and return to the main channel.  

However, timing reproduction to coincide with high flow periods allows fish to exploit 

perennial oxbow lakes that contain greater standing stocks of larval and juvenile food 

resources and which appear to be profitable habitats for most of the species examined. 

 Reproductive activity of periodic strategists was greatest during spring as 

temperatures were rising and the probability of flooding was increasing.  This strategy 

would allow larvae and juveniles of some species to be transported into oxbow lakes.  

Larvae and juveniles remain in oxbow lakes that are more favorable for recruitment 

relative to the main river channel, especially during periods of isolation when food 

resources are more abundant (Chapter II).  Isotopic ratios of gizzard shad supported this 

interpretation.  Adult shad populations in oxbow lakes contained individuals that 

immigrated from the river channel as well as individuals produced in situ.  Juvenile shad 

were more abundant in oxbow lakes and had isotopic signatures that suggest their 

biomass was produced from materials originating in oxbows.  Hydrologic connections 

between oxbows and the river channel following periods of isolation would allow 

juveniles produced in oxbows to return to the channel where conditions seem to be 

sufficient for adults.  Longnose gar are largely restricted to the river channel and spotted 

gar are most common in oxbow lakes.  These species can complete their entire life cycle 

in their preferred habitats, however there was no evidence to suggest a strong juvenile 
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year class of either species was produced during the study period.  Both species have 

long life spans and may produce a strong year class only when optimal conditions occur 

in their preferred habitat, which may happen many years apart.  Flood dynamics during 

the study did not conform to the long-term smoothed hydrograph, suggesting that flood 

connections did not occur during an optimal period for fishes generally.  Robertson et al. 

(unpublished manuscript) found that gar species did benefit from oxbow-river 

connections during the period of my study by feeding on fishes as they moved between 

habitats. 

 Equilibrium strategists preferred lentic oxbow lakes and were rarely collected in 

the river channel where frequent changes in discharge may disrupt their reproductive 

activities, such as nest building and brood guarding.  The white crappie population 

produced a strong year class during the dry year when flow disruptions were less 

common.  For species with this strategy, oxbow lakes are particularly important for the 

persistence of their populations in the Brazos River-floodplain system however, periodic 

flooding is important for maintaining water levels in oxbows.  Isotope data indicated that 

white crappie collected in the river channel originated in oxbow lakes.  Although 

populations of the two equilibrium species in the river channel were small, these 

populations are likely to be essential for recolonization of oxbow lakes following 

extended periods of drought that result in desiccation of oxbow habitats (Winemiller et 

al. 2000). 

 Reproductive activity of opportunistic species was greatest during periods with 

the highest flood probability.  This strategy would allow adults to colonize off-channel 
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habitats and exploit them for reproduction.  Life history traits of these species are well 

suited for rapid colonization of frequently disturbed, ephemeral habitats.  Opportunistic 

species had stronger recruitment during the dry year, suggesting that although high flow 

periods may facilitate colonization/reproduction, recruitment is greater during low flow 

periods. 

 These results support the growing contention of the importance of habitat 

heterogeneity and flow variability for fish populations in large rivers.  The relative 

importance of each factor was associated with life history strategies as well as individual 

species traits.  Fish populations in the Brazos River appear to be adapted to long-term 

hydrologic dynamics, and flow management strategies that focus on historical flows are 

more likely to support the persistence of fish populations with divergent life history traits 

than methods that seek to optimize one or a few flow elements (Richter et al. 1997).  

Off-channel habitats were critically important for the reproduction and recruitment of 

several species.  In addition to flow regime, fluvial dynamics, such as erosion and 

sediment deposition that drive the creation and geomorphic succession of these habitats 

are important to maintain the ecological integrity of large rivers over long time intervals. 

TROPHIC DYNAMICS 

 Terrestrial C3 macrophytes generally supported the greatest fraction of consumer 

biomass in the Brazos River, even though some consumers in oxbow lakes probably 

assimilated large fractions of algal carbon (phytomicrobenthos and seston).  This result 

contradicts an increasing recognition of the importance of autochthonous algal carbon to 

food webs in large rivers.  Several factors related to improvement in isotopic mixing 
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models and bias in sampling strategies for isotopic studies may have influenced these 

results. 

     Estimation of proportional contributions of source materials to consumers using 

traditional two end-member mixing models is complicated by overlapping isotopic ratios 

of sources. This often results in the combination of sources that are not functionally 

related (Phillips et al. 2005).  This is especially problematic because δ13C values for 

terrestrial macrophytes and algal sources often overlap (Thorp et al 1998; Leite et al. 

2002; Herwig et al. 2003).  By simultaneously incorporating multiple elements, the 

IsoSource mixing model allows for the estimation of source contributions when the 

number of sources is too large to permit a unique solution.  Future isotopic studies may 

reveal greater contributions of terrestrial materials to aquatic food webs as new isotopic 

mixing models are developed. 

 The temporal scale of isotopic investigations also may have a significant 

influence on the identification of production sources supporting consumer biomass.  

Most isotopic investigations involve sampling over short time scales (days to weeks) 

during low-flow periods that are easier for the collection of aquatic fauna.  During high-

flow periods, algae can be scoured from the benthos and terrestrial material can provide 

an alternative production source for consumers.  Huryn et al. (2001) found that terrestrial 

carbon sources were important during high-flow periods, and algal sources increased in 

importance during low-flow periods.  My isotopic study took place during a high-flow 

period, and terrestrial material was a significant source of consumer biomass in the 

channel.  Oxbow lakes were exposed to fewer hydrologic disturbances, and algae made 
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greater contributions to consumers in these habitats.  This bias toward low-flow periods 

in isotopic studies may represent a “hidden treatment” that should be addressed in future 

investigations of large river food webs. 

 In conclusion, conceptual models of ecological function in large rivers are too 

general to provide accurate predictions of fish reproduction, recruitment and trophic 

dynamics.  The results presented in the preceding chapters suggest that fish with 

divergent live history strategies utilize flow periods and habitat units for reproduction 

and recruitment in different ways according to their life history traits and habitat 

affinities.  Because a particular model may only apply to a sub-set of species with a 

certain suit of traits, or a certain stage of a species life cycle, conceptual models require 

evaluation with quantitative data before being applied to river restoration strategies.  

Production sources supporting aquatic fauna are influenced by hydrologic dynamics and 

predictions of conceptual models should be viewed as approximations, recognizing that 

large rivers are spatially heterogeneous and experience large scale changes in hydrology 

that have the potential to mediate sources of primary production supporting aquatic food 

webs.     
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