
NET PAY EVALUATION: A COMPARISON OF METHODS TO 

ESTIMATE NET PAY AND NET-TO-GROSS RATIO USING 

SURROGATE VARIABLES 

 

 
 
 

A Thesis 
 

by 
 

NICOLAS BOUFFIN 

 

 
Submitted to the Office of Graduate Studies of  

Texas A&M University 
in partial fulfillment of the requirements for the degree of 

 
MASTER OF SCIENCE 

 
 
 

 
 

August 2007 
 
 
 
 

Major Subject: Petroleum Engineering 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&amp;M Repository

https://core.ac.uk/display/4278214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

NET PAY EVALUATION: A COMPARISON OF METHODS TO 

ESTIMATE NET PAY AND NET-TO-GROSS RATIO USING 

SURROGATE VARIABLES 

 
 

A Thesis 
 

by 
 

NICOLAS BOUFFIN 

 
 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 
MASTER OF SCIENCE 

 
 
 

Approved by: 
 
Chair of Committee,   Jerry L. Jensen 
Committee Members, Thomas A. Blasingame 

                        Richard L. Gibson 
Head of Department, Stephen A. Holditch 

     
 
 

August 2007 
 

Major Subject: Petroleum Engineering 

 



 iii 

ABSTRACT 

 
Net Pay Evaluation: A Comparison of Methods to Estimate Net Pay and Net-to-Gross 

Ratio Using Surrogate Variables. (August 2007) 

Nicolas Bouffin, M.Eng., Ecole Nationale Supérieure de Géologie, Nancy (France) 

Chair of Advisory Committee: Dr. Jerry L. Jensen 

 

 Net pay (NP) and net-to-gross ratio (NGR) are often crucial quantities to 

characterize a reservoir and assess the amount of hydrocarbons in place. Numerous 

methods in the industry have been developed to evaluate NP and NGR, depending on the 

intended purposes. These methods usually involve the use of cut-off values of one or 

more surrogate variables to discriminate non-reservoir from reservoir rocks.  

 This study investigates statistical issues related to the selection of such cut-off 

values by considering the specific case of using porosity (φ) as the surrogate. Four 

methods are applied to permeability-porosity datasets to estimate porosity cut-off values. 

All the methods assume that a permeability cut-off value has been previously determined 

and each method is based on minimizing the prediction error when particular 

assumptions are satisfied.  

 The results show that delineating NP and evaluating NGR require different 

porosity cut-off values. In the case where porosity and the logarithm of permeability are 

joint normally distributed, NP delineation requires the use of the Y-on-X regression line 

to estimate the optimal porosity cut-off while the reduced major axis (RMA) line 

provides the optimal porosity cut-off value to evaluate NGR. 

 Alternatives to RMA and regression lines are also investigated, such as 

discriminant analysis and a data-oriented method using a probabilistic analysis of the 

porosity-permeability crossplots. Joint normal datasets are generated to test the ability of 

the methods to predict accurately the optimal porosity cut-off value for sampled sub 

datasets. These different methods have been compared to one another on the basis of the 
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bias, standard error and robustness of the estimates.  

 A set of field data has been used from the Travis Peak formation to test the 

performance of the methods. The conclusions of the study have been confirmed when 

applied to field data: as long as the initial assumptions concerning the distribution of 

data are verified, it is recommended to use the Y-on-X regression line to delineate NP 

while either the RMA line or discriminant analysis should be used for evaluating NGR. 

In the case where the assumptions on data distribution are not verified, the quadrant 

method should be used. 
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CHAPTER I 

INTRODUCTION 

BACKGROUND 

Net pay (NP) may be defined as “any interval that contains producible 

hydrocarbon at economic rates given a specific production method”. It thus represents 

the portion of the reservoir that contains high storability (driven by porosity), high 

transmissivity (driven by the fluid mobility, which refers to as the ratio of permeability 

to fluid viscosity), and a significant hydrocarbon saturation (driven by water saturation, 

Sw). Net pay can be interpreted as an effective thickness that is pertinent to 

identification of flow units and target intervals for well completions and stimulation 

programs (Worthington and Cosentino, 2005). The associated net-to-gross ratio (NGR) 

corresponds to the ratio of the net pay thickness to the total (or gross) thickness of the 

reservoir under consideration. 

Net pay and NGR are needed for several reservoir characterization activities. A 

major use of net pay is to compute volumetric hydrocarbons in-place. Another use of net 

pay is to determine the total energy of the reservoir i.e. both moveable and non-

moveable hydrocarbons are taken into consideration. Net pay for this purpose may be 

therefore much greater than that for volumetrics calculation (George and Stiles, 1978).  

A third use of net pay is to evaluate the potential amount of hydrocarbon available for 

secondary recovery, meaning net pay with favorable relative permeability to the injected 

fluid, i.e. “floodable net pay” (Cobb and Marek, 1998). Net pay and NGR are crucial to 

quantify the hydrocarbon reserves and have a significant impact on the economic 

viability of hydrocarbon reservoir production (Worthington and Cosentino, 2005). 

Net pay determination usually involves defining the threshold values (or cut-offs) 

of the characteristics of interest. These limiting values are designed to define those rock  

______________ 
This thesis follows the style and format of Petrophysics. 
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volumes that are not likely to contribute significantly to the hydrocarbon production. For 

example, regions with water saturations Sw > 0.5 may be considered non-pay. The 

establishment of these cut-off values i.e. 0.5, will vary according to the intended 

application and should be therefore fit for purpose, meaning that “the intended use of the 

net pay often determines how net pay is picked” (Snyder, 1971). Since the method to 

pick net pay (and to a larger extent NGR) depends on its usage, these uses determine 

also the method chosen for establishing cut-off values. 

 In conclusion, there is no systematic method for identifying cut-off variables and 

their values. The choice of variable and cut-off value depends strongly on the intended 

application of evaluated net pay and NGR. 

SUMMARY OF THE PROBLEM 

 The permeability cut-off is very often considered to be the controlling parameter 

in net pay and NGR evaluation especially in cases involving the flow regime or the 

reservoir recovery mechanism. The permeability cut-off, kc, is dependent on a limited 

number of parameters including the fluid mobility, the permeability distribution, the 

reservoir pressure differential, and the reservoir drive mechanism (primary or 

waterflood). Its range typically varies between 0.1 and 100 md depending mainly on the 

fluid mobility. Because of its low viscosity, gas mobility might remain significant in a 

tight reservoir so the reservoir is still producible: the mobility is therefore an 

“appropriate starting point” to determine net pay from permeability cut-off (Cobb and 

Marek, 1998).   

 Nonetheless there is no subsurface continuous permeability measurement, k, 

(“permeability log”) and core permeability measurements are not available throughout 

all wells. As a consequence, surrogate variables usually derived from well log 

measurements, such as porosity (φ), amount of shale (Vsh) and water saturation (Sw), are 

generally used to infer the locations and amount of net pay. The selection of cut-off 

values for these surrogate variables needs to be carefully done in order to avoid 

introducing further errors into the net pay identification process. It is then necessary for 
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this purpose to test the accuracy and robustness of the available methods providing cut-

offs and determine the optimal ones when evaluating either net pay or NGR. In the case 

where it is already determined based on the mentioned engineering and geological 

considerations, the permeability cut-off kc should be therefore related to those surrogate 

variables.  

 A common method to identify net pay using porosity (to a larger extent any 

surrogate variable such as water saturation Sw, shaliness Vsh or formation resistivity Rt) 

is to use semi logarithmic porosity vs. permeability crossplots and a least-squares 

regression line to obtain the porosity cut-off (Worthington and Cosentino, 2005). A 

porosity cut-off φc may be obtained from the regression line (Figure 1-1). 
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Fig. 1-1  Use of the Y-on-X line determined by least squares regression with porosity 

and log-permeability values. The porosity cut-off φφφφc is obtained from a permeability cut-off 

of 1 md (data from Dutton et al., 2003; Nelson and Kibler, 2003). 
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φc = 13.02 pu 
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 The use of the Y-on-X regression line is an example of methods which may 

provide porosity cut-off values. These methods provide estimates of the “best” cut-off 

value with associated statistical characteristics. The best value is the value which, when 

used, gives the smallest likelihood error of prediction.  This study will investigate which 

of these several porosity cut-off methods gives cut-off values which are optimal in term 

of bias, efficiency, and robustness when applied to evaluate net pay and NGR. 

OBJECTIVES OF THE STUDY 

 The main objective is to evaluate net pay and net-to-gross estimators of the 

porosity cut-off value for their bias, efficiency, and robustness. The study has three 

component objectives. 

 The first component will be to provide an analytical justification of the 

observations made by Jensen and Menke (2006). Assuming that the log permeability and 

porosity are joint normally distributed, they found that the Y-on-X regression line is 

required to obtain optimal cut-off values for identifying net pay whereas the optimal 

porosity cut-off for evaluating NGR is obtained from the reduced major axis (RMA) 

line. A derivative analysis will be conducted using the probability density function of a 

joint normal bivariate population.  

 The second component compares the performance of estimators for predicting 

cut-off values for net pay and net-to-gross using the Monte Carlo method. Log (k)-φ 

datasets that are joint normal distributed will be generated and the different porosity cut-

off estimators will be compared on these datasets. In order to study the optimal porosity 

cut-off for evaluating net pay, several methods will be investigated such as Y-on-X 

regression and RMA lines, discriminant analysis and purely data-oriented methods.  

 The second component results will include an assessment of the estimators when 

noise is present. These results will lead to recommendations as to which method is 

optimal depending on the purpose and the statistical properties of the studied data. 
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CHAPTER II 

PREVIOUS WORK 

 
 There is no generally accepted protocol to delineate NP and NGR on the basis of 

cut-off values: it can be done by using surrogate variables tied back to a permeability 

cut-off value, by using capillary pressure, and/or by analyzing the respective 

distributions of pay and non-pay fractions of the dataset, i.e. discriminant analysis. It 

results in numerous studies and recommendations in the literature.  

USE OF SURROGATES TO PREDICT NP AND NGR 

 A common approach is to define fixed permeability cut-off values according to 

the “Rule of Thumb”: gas-bearing rocks for which mdk 1.0≥  are admitted as net pay 

whereas oil-bearing rocks for which mdk 1≥ are pay. This approach is arbitrary since 

the rule of thumb is not taking into consideration the reservoir fluid characteristics. For 

instance a 1.0 md permeability cut-off may be appropriate in the case of medium-gravity 

oils whereas a 0.1 md permeability cut-off is adequate for light, low-viscosity oils 

(George and Stiles, 1978).     

 Since there is no continuous measurement of permeability, the practice has been 

therefore to relate core permeability to porosity and/or other log-derivable measurements 

such as Vsh, Sw, and Rt. The cut-off values should be “dynamically conditioned”, i.e. 

they should be tied back to a hydraulic parameter, such as absolute permeability, pore 

throat radius or fluid mobility (Worthington and Cosentino, 2005). 

Pirson (1958) developed a “coregraph” method using three independent cut-offs for k, φ 

and Sw. Another method from core and log analysis takes account of a different set of 

three net-pay cut-offs, shale factor Vsh, φ and Sw (Keener et al, 1967). McKenzie (1975) 

also defined “producible and non-producible rock types” by establishing an effective 

pore throat size correlated with the ratio
φ
k

. A porosity cut-off φc below which there is no 
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commercial permeability can be also considered. φ, Sw and a bulk-volume water (φ.Sw) 

cut-off values are used for evaluating NP and NGR of oil-bearing carbonates of the 

Willinston Basin (Teti and Krug, 1987). The main advantage of these methods is that 

log-derived measurements are used instead of core data allowing to directly delineating 

NP on well log data without requiring further laboratory measurement. In the early stage 

of the discovery and appraisal of a field, these methods may give a reasonable evaluation 

of NP and NGR of a potential reservoir. However, the establishment of the cut-off 

values depends greatly on the way the surrogate are tied back to the permeability cut-off 

value, which might create additional errors.  

USE OF CAPILLARY PRESSURE 

 Numerous models have been developed to predict permeability and delineate NP 

on the basis of the capillary pressure curves. Those curves are considered as direct 

indicator of permeability since capillary pressure curves are functions of the pore throat 

geometry and radius, grain sorting and to a smaller extent fluid properties (Vavra et al., 

1992). 

  The Winland method (Kolodzie, 1980) intends to correlate porosity and 

permeability to pore throat radius (r) corresponding to different mercury saturations 

(Spearing et al., 2001). Pore throat sizes are derived from the Washburn equation, 

expressed as follows, 

( )
r

Pc

σγ cos2= ,                                                                                                            (2-1)                                        

where Pc is the mercury/air capillary pressure, γ is the mercury/air interfacial tension, σ 

is the mercury/pore wall contact angle and r is the pore throat radius. 

The percentage of non-wetting fluid saturation, i.e. mercury, giving the best correlation 

between φ, k and r, is assumed to correspond to the modal class of pore throat radius 

when the pore network becomes interconnected. Winland found that the 35th percentile, 

corresponding to 35 percent of the pore volume (“R35”, at which he observed an 

inflexion on the mercury injection capillary curve vs. mercury saturation), gave the best 
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correlation for the Spindle Field data: it corresponds to a 0.5 �m pore throat threshold 

value. In order to delineate NP, a R35 throat radius vs permeability crossplot analysis is 

realized and the permeability cut-off is read off from a best fit line using the 0.5 �m 

threshold. 

 

 

Fig. 2-1  Winland model based on pore geometry (Lucia, 1999). 

 
 The other way of defining porosity and permeability cut-offs is to display 

permeability vs. porosity cross plot with the isopore-throat radius lines (Figure 2-1). The 

permeability and porosity cut-off values may be calculated based on a pore throat radius 

value. 

INFLUENCE OF THE RESERVOIR CHARACTERISTICS IN THE NP AND NGR 
EVALUATION PROCESS 

 In order to evaluate NGR, Egbele and Ezuka (2005) suggested associating each 

pore throat size (µm) 
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petrofacies (i.e. a rock type with defined petrophysical characteristics), with one unique 

pair of Log (k)-φ cut-off values instead of tying the traditional kc to porosity values. This 

approach is based on the argument that pore-throat geometries are very dissimilar from 

one petrofacies to another one. This complies with the recommendations from Morton-

Thompson and Woods (1993) who insist upon “a systematic, sedimentologically based 

reservoir zonation” as an essential component of effective pay determination. 

 Lucia (1999) demonstrated that by plotting interparticle porosity against 

permeability in carbonate reservoirs, one could derive the type of rock fabric and detect 

pore-size classes. Additional pore types (vuggy, dissolution-enhanced) might modify 

these relationships. The permeability and porosity cut-off values should be defined based 

on these considerations. A unique permeability cut-off value based on engineering 

considerations (i.e. mainly depending on the fluid mobility) will lead to several porosity 

cut-off values depending on the rock fabric, i.e. the particle size (Figure 2-2). 

 

 

Fig. 2-2  Lucia model for porosity-permeability relationships based on rock fabric 

(Haro, 2004; modified from Lucia, 1999). 
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STATISTICAL ANALYSIS OF THE NP AND NGR DETERMINATION USING 
SURROGATE VARIABLES  

 In the case where either determination of reservoir NGR and/or NP is obtained 

by cross-plotting surrogate quantities as Sw, Vsh, and/or φ, investigating the errors 

inherent to the regression methods giving log (k) vs. φ best fit lines  is crucial since the 

misuse of regression methods may lead to additional errors. Such statistical issues 

related to the selection of porosity cut-offs based on regression lines were investigated 

by Jensen and Menke (2006). Their study investigated the use of semilog porosity vs. 

permeability plot and the Y-on-X regression line to derive porosity cut-off values.  

  Jensen and Menke (2006) used a probabilistic approach to analyze the accuracy 

and errors in prediction of various porosity cut-off values. Their approach is based on 

defining four regions A, B, C, and D in the log(k)-φ (Figure 2-3), where the region 

boundaries are defined by the threshold values kc and φc. Region A (φ < φc and k < kc) 

corresponds to the non-pay fraction of the data correctly identified using the porosity 

cut-off value and region D represents the pay intervals ( φ ��> φc and k > kc) also correctly 

identified using the porosity cut-off value. Regions B ( )cc kkand ≥< φφ  and C 

( )cc kkand <≥ φφ   represent the respectively erroneous misidentification of non-pay 

for pay and of pay for non-pay. The probability that an event, for instance A, occurs is 

defined as prob(A) and may be calculated as the ratio of the number of points, i.e. pairs 

of (k-φ), that are included in the area A, to the total of points displayed in the k-

φ crossplot. The probabilities of events B, C, or D, are thus respectively defined as 

prob(B), prob(C), and prob(D).   
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Fig. 2-3  Permeability vs porosity cross plot divided into four distinct regions, A, B, 

C, and D based on cut-offs values kc and φφφφc (data from Dutton et al., 2003; Nelson and 

Kibler, 2003). 

 

 Depending on whether NP or NGR is to be estimated, two separate criteria 

emerge for the best value of φc. One criterion is to minimize the sum of the probabilities 

prob(B) and prob(C) in order to minimize the errors of mistaking pay for non pay and 

non-pay for pay and thus delineate net pay intervals. The alternative criterion is to 

equalize the probabilities prob(B) and prob(C) in order to cancel out the misidentified 

parts of the reservoir for NGR evaluation. 

 The systematic use of the Y-on-X regression line to predict porosity cut-off 

values might induce errors and happen to significantly differ from the optimal cut-off 

values for delineating net pay and evaluating NGR. In the case that log-permeabilities 

and porosities are assumed to be JND, Jensen and Menke (2006) observed that the 

regression line provides the optimal results for estimating net pay whereas the RMA line 

gives optimal results for NGR. 

B D 

C A 

kc= 1 md 

φc = 13.02 pu 
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USE OF DISCRIMINANT ANALYSIS 

 An alternative to using regression lines is to separate reservoir rocks from non-

reservoir rocks based on their statistical properties and probability distribution functions 

(Kraznowski, 1988; Li and Dria, 1997; Jensen and Menke, 2006).  In the case where the 

distributions of reservoir and non-reservoir rocks do not have distinctly separate ranges 

(Figure 2-4), establishing the boundary segregating the two distinct distributions, i.e., a 

discriminant function, could be more efficient and less erroneous than using a cut-off 

value. 
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Fig. 2-4  Histogram of distributions of non-reservoir and reservoir rocks which do 

not have distinct ranges. 

        Non-reservoir 
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CHAPTER III 

DESCRIPTION OF STATISTICAL METHODS  

 

Y-ON-X REGRESSION AND REDUCED MAJOR AXIS LINES 

General considerations concerning linear regression 

 The general problem of linear regression is to develop a predictor of a quantity Y 

(e.g. log permeability) from knowledge of the value of a variable X (e.g. porosity). The 

variable being investigated is the dependent or regressed variable, designated Y; 

individual observations of the dependent variable are indicated as yi. The other variable 

is the predictor or regressor variable and is denoted X, with individual observations, xi. 

The fitted line will cross the Y-axis at a point b0 (the intercept), and will have a slope b1. 

The expected relationship between Y and X is linear.  

The regression line equation is as follows:  

ii xbby .ˆ 10 += ,                                                                                                              (3-1)                                  

where iŷ is the estimated value of yi for any value xi. 

 Considering that only the variable Y is assumed to be measured with error gives 

specific coefficients b’s referring to the Y-on-X line. In contrary, in the case that only 

the variable X is assumed to be with errors, it gives distinct coefficients b’s that 

correspond to the X-on-Y line.    

Y-on-X regression line 

 The b’s (Equation 3-1) are usually determined by the least-squares regression and 

consists in minimizing the sum of the squared differences between the observed variable, 

yi , and the predicted responses as expressed by equation (3-2).    

( ) minˆ
1

2 =−�
=

n

i
ii yy ,                                                                                                   (3-2) 
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where n is the number of points. 

The justification of the technique is given by Jensen et al. (2003, p184-186) using 

differential calculus. The coefficients b0 and b1 are defined as follows (Davis, 2002, p. 

194-195): 
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Reduced major axis line 

 Another line is one where both variables X and Y are assumed to have errors. 

Estimation of b0 and b1 minimizes the sum of the areas of the triangles formed by the 

observations and the fitted line, ( ) ( )iiii xxyy ˆ.ˆ −− , i.e. the product of the deviations in 

both the X- and Y- directions is minimized. It results in what is called the reduced major 

axis, or more commonly referred as the “RMA line”. The RMA line is in fact more 

appropriate than standard regression lines when the independent variable X is measured 

with significant error. In this case, estimates of slope will be biased. 

The reduced major axis can also be expressed as an ordinary linear equation, such as 

equation (3-1). 

The coefficients are estimated as follows (Davis, 2002, p. 216-217): 
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XbYb 10 −=                                                                                                           (3-6)                                           

The joint normal distribution and its related lines 

 The joint normal distribution (JND) is defined by the following probability 

density function (PDF) (Jensen et al., 2003, p. 172). 

( )
�
�
�
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2*

exp
212

1
,
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yxf

YX

                                  (3-7) 

where
X

Xx
x

σ
µ−

=* ,
Y

Yy
y

σ
µ−=* , and 

YX

XY

σσ
σρ = . 

The marginal distributions of the variables X and Y, respectively φ and log (k), are 

normal. An example of a joint normal distribution is shown in Figure 3-1. 

 

Fig. 3-1  A joint normal PDF with the following statistical quantities �X=3, �Y=1, 

�X=12, �Y=-1, and �=0.7. 
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JND ellipses may be formed by taking ( ) cteyxf =, in the case where � is different from 

0: the plane formed by setting the PDF to a constant intersects the PDF and forms an 

ellipse. If � is equal to 0, the plane formed by ( ) cteyxf =, represents a circle. If a joint 

normal distributed dataset is generated from the PDF presented in figure 3-2, one may 

represent the RMA line and the associated regression lines in a standardized (X*, Y*) 

plane where 
X

XX
X

σ
µ−=* and 

Y

YY
Y

σ
µ−=* . 

The line which intersects the horizontal axis at 45°, corresponding to a slope of 1, thus 

represents the RMA line. On the basis of equations (3-5) and (3-6), the expression of the 

RMA axis may be expressed as follows: 

( )X
X

Y
Y XY µ

σ
σµ −+= .                                                                                               (3-8)                                                

The associated regression lines, Y-on-X and X-on-Y lines have respectively slopes equal 

to ρ  and ρ
1  (Figure 3-2). The three lines intersect at ( )YX ,  so that, near the center, 

the regression lines are not significantly different from the RMA line. This latter point, 

although obvious, will be discussed in more detail below because it affects whether 

choosing one or another of the possible lines makes any difference to the predicted 

porosity cut-off value.   

In the (X*, Y*) plane, the RMA line, the Y-on-X, and the X-on-Y regression lines may 

therefore be respectively expressed as follows: 
** .1 XY = ,                                                                                                                    (3-9)                                                                                                         

** . XY ρ= ,                                                                                                                 (3-10)                                                                                                        

** .
1

XY
ρ

= .                                                                                                                (3-11)                                                                                                        

The closer ρ is to 0, the more different from 1 the slopes of Y-on-X and X-on-Y 

regression lines are: the regression lines are in this case more and more distinct with 

respect to the RMA line. The Y-on-X regression line is also expected to be more 
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sensitive to noise and the degree to which the data are spread out than RMA line 

(Agterberg, 1974, Jensen et al., 2003).  
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Fig. 3-2  1000 point bivariate dataset generated from the PDF shown in figure 3-1. 

The RMA line with a slope of 1 is displayed in pink. The associated regression lines, Y-on-

X and X-on-Y, are respectively displayed in orange and red. 

 

Considering the porosity and log permeability crossplot, the value of the 

permeability cut-off, kc, and the coefficient of correlation, ρ, have a critical impact on the 

degree to which the lines are differentiated. In the case where kc is not significantly 

different from the average of the permeability data and/or the coefficient of correlation is 

close to 0, the different lines are not differentiated, leading to a unique porosity cut-off 

value.  

X-on-Y 

RMA 
Y-on-X 

ρ  

ρ
1  

1 
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RELATIONSHIP OF REGRESSION AND RMA LINES TO ERROR BEHAVIOR 

Jensen and Menke (2006) observed that the joint normality of Y = log (k) and X 

= φ makes the porosity cut-off value derived from the Y-on-X line optimal to delineate 

NP and the porosity cut-off value from the RMA line optimal to evaluate NGR. In order 

to evaluate NGR and equalize )(Bprob and )(Cprob , i.e. to equalize the errors of 

misidentifying pay for non-pay and non-pay for pay, the RMA line is required. When 

delineating net pay, i.e. minimizing the sum of the errors in identifying pay and non-pay, 

the optimal porosity cut-off is given by the Y-on-X regression line. Those results are 

valid in case the log k-φ dataset is assumed to be joint normal distributed.  

 Detailed justifications of those observations are presented in Appendix A. 

DISCRIMINANT ANALYSIS: AN ALTERNATIVE TO USING LINES TO DEFINE 
CUT-OFF VALUES 

This technique consists of identifying a cut-off value which separates reservoir 

rocks from non-reservoir rocks based on their distribution functions. In the case of the 

present study, the permeability cut-off value has been determined so that the pay fraction 

of the dataset (i.e. ckk ≥ ) may be segregated from the non-pay fraction of the data 

(i.e. ckk ≤ ). The statistical quantities of porosities for these two subsets may be 

calculated and are defined as follows: 

NPs : Standard deviation of porosity for non-pay intervals 

Ps :  Standard deviation of porosity for pay intervals 

Pφ :  Average of porosity for pay intervals 

NPφ : Average of porosity for non-pay intervals 

The procedure assumes that the porosity PDF’s for both the pay and non-pay fractions 

are known. Here, we assume both PDF’s are normal, whatever the value of kc. In the 

case where the non-pay and pay porosity PDF’s are not normally distributed, 

performance of the discriminant analysis might be altered. The normality of the two 
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fractions of the porosities should be tested prior to using the normal-PDF approach 

(discussed in Appendix B). If the bivariate dataset is significantly corrupted by noise and 

the number of sample is sufficiently high, the data will be more spread out and it will 

make the non-pay and pay fractions tend to normality. Errors are expected to make the 

method more efficient to predict porosity cut-off values. 

The PDF of the pay and non-pay porosities may be defined based on the expression of 

their normal distributions: 
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Considering that the misidentifications of pay for non-pay are equally undesirable and 

assuming that pay and non-pay are equally likely (Krzanowski, 1988, p. 332-348), it 

gives: 

( ) ( )
� �
∞+

∞− �
�
	




�
�
�

 −
−=

�
�
	




�
�
�

 −
−

C

C

dx
s

x

s
dx

s

x

s P

P

PNP

NP

NPφ

φ µ
π

µ

π
.

.2
exp.

2

1
.

.2
exp.

2

1
2

2

22

2

2
                     (3-14)        

where cφ is the porosity cut-off value. 

Introducing the estimated NGR into equation (3-14) so as to relax the assumption 

concerning the likelihood of pay and non-pay (Figure 3-3), it gives 
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 Rearranging, it gives 
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The equation can be solved to obtain a porosity cut-off value Cφ  which equalizes area A 
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and area B (Figure 3-3), which represent respectively the probability of mistaking pay 

for non-pay and non-pay for pay. 

 This method is expected to be used for evaluating NGR since the errors, related 

to the prediction of pay and non-pay, are aimed at being cancelled out. The assumption 

about the normality of the non-pay and pay porosities is less restrictive than the 

assumption about the joint normality of the original dataset.  This method should be 

compared to the performance of the RMA line for providing porosity cut-off value when 

evaluating NGR. As mentioned before, the discriminant analysis is expected to be less 

sensitive to the noise or the data scatters (inducing low correlation of the data) compared 

to the two previous methods, RMA and Y-on-X regression lines since it is a classic 

classification problem based on normal distributions, which are less affected by noise. 
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Fig. 3-3  Example of normal distributions of non-pay (blue) and pay porosity 

fraction (fuchsia), with the following characteristics: �NP=11.3, sNP=2.75, �P=15.2, sP=2.67 

and NGR=0.2. 
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DATA-ORIENTED QUADRANT METHODS 

 Another approach to the problem of estimating optimal porosity cut-off value so 

as to evaluate NP and NGR is to consider a purely data-oriented method. On the basis of 

the probabilistic framework from Jensen and Menke (2006), the data points are classified 

using the threshold values kc and φc. The probabilities A, B, C, and D may be estimated 

by counting the number of points belonging to one quadrant and making the ratio of this 

value over the total number of points.  

For instance, 
total

A

n
n

Aprob =)(                                                                                     (3-17) 

Where An represents the number of points in the quadrant A and totaln  represents the total 

number of points.  

  An algorithm may easily count points in each quadrant and calculate the 

probabilities for any given variable porosity cut-off value. The optimal porosity cut-off 

values minimizing the sum )()( CprobBprob +  and equalizing the probabilities 

)(Bprob and )(Cprob  may therefore be determined for any log (k)-φ dataset. 

These methods are certainly interesting since they require no assumption concerning the 

distribution of the dataset. Two distinct porosity cut-off values may be obtained from 

those two methods to evaluate NGR and NP. There are, however, two limitations. 

 The first limitation of this approach is that the technique is sensitive to errors and 

the number of available samples. The sampling of a reservoir may be considered as the 

discretization of the PDF of variables k and φ. In the case where the number of samples 

is low, the sampled points may not be sufficient to represent and quantify the numerical 

diversity of the actual values for k and φ, leading to erroneous values for the porosity 

cut-off. It is especially the case for data set with less than 100 points: significant errors in 

the prediction of NP and NGR may be expected.  

  The second limitation concerns numerical issues. It is much easier to equalize 

)(Bprob  and )(Cprob , i.e. to find the porosity cut-off value so that the difference 

)()( CprobBprob − is nil, than try to find the cut-off value which minimizes the 
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sum )()( CprobBprob + . In the case where the dataset is relatively small, several 

minima may occur so that it is difficult to assess the actual optimal cut-off value. Despite 

these limitations, this method provides estimates of optimal porosity cut-off values, 

either to delineate NP or evaluate NGR without any assumptions regarding the PDF’s of 

the variables.  

SUMMARY 

 Four distinct methods have been described so as to provide porosity cut-off 

values to predict NP and evaluate NGR. Two linear regression methods are presented, 

the Y-on-X regression line and the RMA line.  

 The Y-on-X line method, usually given by the least-squares regression method, 

intends to minimize the errors in the predicted variable, i.e. log (k), assuming that no 

error is made on the regressor variable, i.e. φ. It has been confirmed from derivative 

analysis that this method provides the optimal porosity cut-off value to predict NP when 

log(k) and φ are assumed as JND. The latter assumption has led to propose that the 

optimal porosity cut-off value to evaluate NGR is given by the RMA line. The RMA line 

is designed to minimize the product of the variation in both directions of the cross plot 

so the line is expected to be less dependent of the degree of dispersion of the data, i.e. 

scale-dependence, than the Y-on-X line.  

 Discriminant analysis is also presented to give prediction of NGR using porosity 

cut-off values from the statistical properties of the pay and non-pay fraction of 

porosities. The PDF’s of the two sub populations are assumed to be normal in this study. 

This method is less restrictive than the JND of log(k) and φ: PDF’s for k and φ, which 

might be different from the normal distribution, may be determined for each fraction of 

porosities.  

 The last method is the quarter method which intends to determine the optimal 

porosity cut-off values from the statistical analysis of the k-φ cross plot (Jensen and 

Menke, 2006). Despite the dependency on the degree of sampling, this method does not 

require any hypothesis regarding the distribution of the dataset.   
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 CHAPTER IV 

EVALUATION METHODS FOR NP AND NGR ESTIMATORS 

 

DEFINITIONS 

 Estimator assessment is a classic statistical problem covered by numerous 

authors. In practice, the true bivariate population of log(k) and φ value is sampled using 

core or log-derived measurements. A restricted number of points is measured, leading to 

an imperfect assessment of the characteristics of the true population, such as averages, 

standard deviations and coefficient of correlation. Limited sampling may lead to 

erroneous estimates of porosity cut-off values, cφ̂ derived from the methods, i.e. the 

estimators, such as Y-on-X regression line, RMA line, discriminant analysis, and the 

data-oriented “quadrant” methods. A good estimator is expected to have specific 

characteristics as follows: small bias, good efficiency, robustness and consistency 

(Jensen et al., p. 96).   

The bias may be defined by equation (4-1) as the difference between the expectation of 

the estimate, [ ]CE φ̂ , and the true value of the porosity cut-off, Cφ . 

[ ] [ ]CCCC EEBias φφφφ −=−= ˆˆ                                                                                     (4-1) 

In the case where the estimator bias is different from 0, i.e. meaning that the estimator 

tends to under-estimate or overestimate the true population optimal porosity cut-off Cφ , 

i.e. the estimator is referred to as biased. The confidence interval or standard error of the 

estimator allows assessing the accuracy and efficiency of the estimate 

( )[ ] ( )[ ] 5.05.0 ˆˆ
CCC VarVarerrorStd φφφ −==                                                                   (4-2) 

The estimator robustness depends on the degree to which the estimates are 

influenced by errors occurring in the dataset. In the case where an estimate is unbiased, 

i.e. the bias is close to 0, and the standard error is minimized, the estimator is called a 

minimum variance unbiased estimator (MVUE). It can be also defined as a qualitative 
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measure concerning how violation of the assumptions on which the estimator is based 

affect the results (e.g. is the estimator MVUE only if the samples are from a normal 

PDF, or is it still MVUE if the samples are from a log-normal or uniform PDF). The 

perturbation analysis allows evaluating the influence of variability on estimates by 

introducing noise, i.e. to assess the sensitivity of an estimator. Usually bias is ignored 

when it is small eg 10 % or less of the standard error. In the contrary, the root-mean 

squared error is considered to combine both bias and standard error.  

 For this purpose, the Monte Carlo method is really useful to assess the variability 

and performance of the estimates of porosity cut-off values given by the methods under 

investigation. The methods consist of generating stochastically values for k and φ from a 

population wit a known PDF. It allows simulating the behaviour of reservoir 

characteristics, characterized by a bivariate PDF, when sampled so as to assess the 

variability of the sub data sets and its influence on the estimates of porosity cut-off 

values.    

SELECTION OF A BIVARIATE POPULATION DISTRIBUTION 

 To compare the various methods for NP and NGR estimation in terms of their 

bias, standard errors and their robustness, a true population has to be selected in order to 

use Monte Carlo methods to test the performance of the estimators on generated sub 

datasets. Data sets corresponding to tight reservoirs are taken into consideration. The 

newly discovered reservoirs are tighter and tighter, i.e. with lower NGR and 

permeabilities, since the conventional resources have been extensively exploited. 

Although it has always been an issue to define cut-off values, the problem is much more 

important and crucial when establishing cut-off value on tight reservoirs since a small 

error in the porosity cut-off may lead to a significant variation in the estimated NGR and 

have a strong impact on the economic feasibility of a project. 

 There are thousands of possibilities for defining the φ−k distribution. A good 

model to start with is the joint normality of ( ) φ−klog . It should reasonable to assume 

that the marginal distribution of porosities and log-permeabilities are normally 
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distributed and that a correlation exists between those two variables. The assumption of 

JND is used in several studies for instance by Coker and Lindquist (1994). The use of 

this bivariate distribution also allows using the properties obtained from the derivative 

analysis: the optimal porosity cut-off values to evaluate NP and NGR may be determined 

from the quantities of the true population.    

The statistical quantities of the population used for this study are defined as follows: 

�φ=12 pu, �φ=3, �log(k)=-1, �log(k)=1, and ρ=0.7. It gives reservoir properties similar to a 

reservoir with an average permeability of 2.303*exp (�log(k) + 0.5*�log(k) ^2) = 1.4md 

(Figure 4-1). 
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Fig. 4-1  Example of 250 sample joint normal log permeability-porosity dataset 

generated from the joint normal population with the following statistical quantities �φφφφ=12 

pu, �φφφφ=3, �log(k)=-1, �log(k)=1, and ρρρρ=0.7. 

 

EVALUATION OF ESTIMATOR PERFORMANCE 

 The study population may be sampled for any desired number of samples (a 

simple algorithm is presented in Appendix C). In order to assess bias and standard 

deviations of the estimators, numerous sub sets of bivariate data will be generated for 

several degrees of sampling, i.e. the number of samples N extracted from the population.  
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 Numerous realizations for datasets with N= 25, 50, 75, 100, 250, 500, 1000, 5000 

and 10,000 samples will be created and for each dataset the methods will be applied so 

as to obtain estimates of the porosity cut-off values. For cases where N < 1000, 1000 

realizations are conducted to obtain a reliable estimation of the bias and standard error 

since the simulated results are expected to exhibit a significant variability. On the other 

hand, N ≥ 1000, only 100 realizations are done regarding that the simulated results are 

expected to be close to the irreducible values of bias and standard error, when N is large. 

On one hand, since the population is JND, the optimal porosity cut-off to delineate NP is 

that derived from the Y-on-X regression line using the statistical quantities of the 

population. 

From equation (3-10),  
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ρ
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− cNP

k
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)log()log(
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                                                                                      (4-3)                                                                  

and rearranging it gives 
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On the other hand, the optimal porosity cut-off to evaluate NGR is that derived from the 

RMA line using the statistical quantities of the population. 

From equation (3-9), 
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Rearranging, 

φσ
σ

φ φ +
−

= .
)log()log(

)log(k

c
cNGR

kk
.                                                                                 (4-6)                                                                  

Using the statistical quantities defined as follows �φ = 12 pu, �φ = 3, �log(k )= -1, �log(k) = 

1, and ρ = 0.7, the optimal porosity cut-off values may de determined for the population 

for any defined permeability cut-off value (Table 4-1). 
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Table 4-1 Porosity cut-off values derived from the RMA and Y-on-X regression line 

for several permeability cut-off values, kc, using the statistical quantities from the true joint 

normal population.  

kc 0.01 md 0.1 md 0.5 md 1 md 

φc(NGR), pu 9 12 14.09 15 

φc(NP), pu 7.71 12 14.996 16.2857 

 
 
 For every sub dataset, an estimate of the porosity cut-off value will be calculated 

along with the calculated quantities for different permeability cut-off values by using 

equations (4-3) and (4-5). The porosity cut-off values will be generated using the 

methods described in Chap. 3: φcY-on-X derived from the Y-on-X regression line, 

 φcRMA obtained from the RMA line, a porosity cut-off, φc, derived from the discriminant 

analysis by solving equation (3-16) and two distinct values from the data-oriented 

“quadrant” method (one porosity cut-of value minimizing the sum of the errors of 

mistaking pay for non-pay and pay for non-pay and the second one canceling out the 

errors).   For each sub set, the difference between the estimated cut-off value and the true 

cut-off value (determined from the quantities of the population) will be computed. The 

mean, i.e. bias, and standard error of those differences CC φφ −ˆ will be computed from 

those realizations: the four estimators are therefore assessed with respect to the degree of 

sampling by plotting the values of bias and standard errors versus the number of 

samples. 

 The biases of the estimates, expressed by equation (4-1), are plotted vs. the 

inverse of the number of sample since the bias is expected to be proportional to N1 as 

the expectancy of a discrete variable X is defined as follows: 

( ) �
=

=
N

i
iX

N
XE

1

1
                                                                                                           (4-7)                                             
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The standard errors of the estimates are plotted versus N1 . In fact, the standard 

deviation of a discrete variable may be expressed as follows: 

( )( )�
=

−=
N

i
i XEX

N
s

1

22 1
                                                                                              (4-8)                                                                              

where s represents the standard deviation and s2 the variance. 

 The standard errors of the estimates are therefore expected to be proportional to N1 . 

The analysis of the performance of the methods is realized by studying two plots, bias 

vs. N1 and standard error vs. N1 .  

 Various characteristics are investigated so as to evaluate the performance of the 

estimators. When the number of samples is sufficiently high, we can 

consider 01 →N and 01 →N . The values of bias and standard error may be therefore 

extrapolated to obtain the intercept to the Y-axis. These values of bias and standard error 

are irreducible since the degree of sampling is infinite, meaning they represent the 

minimum bias and standard error of estimates that can be obtained from a specific 

method.  

 First, bias at the intercept should be as low as possible, in order to obtain 

estimates that are not significantly different from the true value, i.e. “unbiased” (Figure 

4-2). Second, the value of standard error at the intercept should be compared to 0, by 

using hypothesis test for instance. In the case where the intercept is different from 0, it 

means that an irreducible variability exists which is independent of the problem of 

estimation (Appendix D presents test on the intercept of the standard error lines for the 

different methods). The use of an estimator with a high irreducible variability is not 

recommended and should be avoided. 
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Fig. 4-2  Example of bias of estimates derived from the Y-on-X line with respect to 

the number of samples. 
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Fig. 4-3  Example of standard error of estimates derived from the Y-on-X line with 

respect to the number of samples. 

 
 The other component of the plot analysis is to investigate the variations and 

trends of bias and standard errors of the estimates for the different methods. The bias 
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might be relatively constant or decrease with the number of samples. The standard error 

is expected to decrease linearly with the number of samples. The slope of the standard 

error line should be as low as possible to expect estimates with minimum variability.  

The standard error of an estimator also gives the confidence error of the estimates given 

by a method. For instance, for 50 sample datasets, the estimates of porosity cut-off 

values have a confidence interval of +/- 0.8 p.u. (Figure 4-3).   

The four methods will be thus compared and tested for their ability to predict 

accurate and reliable porosity cut-off values, on the basis of their bias and errors in the 

case where either NP or NGR is required to be evaluated. The estimates from the 

discriminant analysis and derived from the RMA line are nonetheless expected to be 

significantly biased for delineating NP. The estimates obtained from the Y-on-X 

regression line are also expected to be biased and higher than the true porosity cut-off 

value for evaluating NGR owing to the slope ρ, less than 1 (Figure 4-4).  
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Fig. 4-4  The RMA and Y-on-X line and their respective slope, leading to distinct 

porosity cut-off values. 
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The bias and standard errors will be estimated for all methods to both delineate NP and 

evaluate NGR based on the number of samples. The robustness of those estimators 

should also be taken into consideration since the joint normality of log(k) and φ may be 

corrupted by the measurement errors or reservoir characteristics inherent to the 

depositional setting (e.g. heterogeneities, multi pore type especially in carbonate rocks), 

which leads to the mixing of different permeability laws, Log (k) = a . φ + b. The 

introduction of noise also significantly deviate the datasets from the joint normality.  

Introducing noise is therefore necessary to assess the degree to which the estimates are 

influenced by errors occurring in the datasets and evaluate the robustness of the 

methods. The distribution of the noise is also an important issue and a uniform 

distribution was used in this study (Figure 4-5). 
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Fig. 4-5  Uniform distribution of noise, εεεε, whose range is comprised between -0.1 and 

0.1. 

 
Two different corrupted populations are generated by modifying the porosity and log (k) 

values of the original values as follows: 

 (k) noise1= (k) original *(1+ 3*ε) 

φnoise1=φoriginal *(1+ε) 
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(k) noise2= (k) original *(1+ 5*ε) 

φnoise2=φoriginal *(1+ 2*ε) 

where ε is a uniformly distributed random variable (Figure 4-5). 

 The relationships between porosity and log permeability are highly variable and 

mainly depend on the texture of the reservoir rock. In this study, we only consider the 

interparticle (or intercrystalline when the rock has been deposited by chemical process) 

case: the log (k) and φ relationship might be considered as linear with respect to the 

grain size (Lucia, 1999). A small variation of porosity expressed in porosity units, p.u. 

(driven by the pore diameter), thus induces a large variation in the permeability k 

expressed in md (driven by the pore throat size). Two magnitude of noise on porosity are 

selected, 10 % and 20 %, considering that measurement uncertainty of porosity is 

relatively low regarding the issues related to permeability measurements. However, 

these noises on porosity will lead to a greater variation in permeability which is fixed to 

respectively 30% and 50 %.  These noises are intended to corrupt the bivariate 

population from the joint normality. The first noise, noted noise 1, is of mild magnitude 

whereas the second one, noted noise 2, is of higher magnitude.  

 Porosity cut-off values will be estimated using the different methods on the 

corrupted datasets. Bias and standard errors of estimates will be then estimated. The 

robustness of the estimators will be determined from a comparison of the abilities of the 

methods to predict correct porosity cut-off values with and without noise. The ability of 

the estimators to predict original cut-of value will be investigated since the noise will 

spread out the data and alter the quantities of the generated datasets. The coefficient of 

correlation is indeed very sensitive to the degree to which the data are spread out. Thus, 

the Y-on-X regression line estimates may be significantly affected by the introduction of 

noise.  
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CHAPTER V 

RESULTS AND INTERPRETATIONS 

 

 Each method for estimating porosity cut-off values is successively presented in 

this chapter: bias and standard error of their estimates with regard to the degree of 

sampling are analyzed and evaluated in both qualitative and quantitative ways. All 

methods are evaluated for their ability to both predict NP and NGR, even though the 

assumption of JND would suggest a preference for the RMA line for NGR and the Y-on-

X line for NP. In the same way, the discriminant analysis is also expected to provide 

better results for NGR than for NP since the method intends to cancel out the 

misidentification of pay and non-pay fraction of the porosities, which is a similar 

approach to equalize the probabilities B and C.  

 The influence of the permeability cut-off value is investigated for both RMA and 

the Y-on-X line methods. A permeability cut-off of 1 md, i.e. one decade higher than the 

median permeability of the JND population is selected to realize the sensitivity 

assessment and evaluate the robustness of the estimators. The data sets are also 

respectively corrupted with noise 1 and noise 2: bias and standard errors of the obtained 

estimates are computed.  

 Finally, the methods are compared to one another regarding their bias, standard 

error and robustness for the selected permeability cut-off value of 1 md and the cases 

where there is no noise, data are corrupted with noise 1, and when data are corrupted 

with noise 2. 

BRIEF SUMMARY OF THE RESULTS 

 When evaluating NGR, the RMA line and the discriminant analysis provides 

estimates of porosity with good confidence interval and low bias. Those two methods are 

robust since the introduction of noise does not induce significant additional bias and 

standard error. Those methods, when used to delineate NP, give highly biased estimates 
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since the Y-on-X line gives the analytical optimal porosity cut-off value. The quadrant 

method is significantly less efficient than the RMA line and the discriminant analysis to 

predict NGR but it is an interesting method since no assumptions concerning the 

distribution of the data are required. 

 Regarding the delineation of NP, the Y-on-X line remains the method to be used 

to obtain porosity cut-off value. The overall performance of its estimates is lower than 

the RMA line since standard errors are nearly twice as high and the method is clearly 

less robust since the introduction of noise introduces an irreducible bias. The quadrant 

method is for this case not recommended since its estimates are highly biased and have a 

poor confidence interval: it should be used in the case where no assumption may be 

made on the distribution of the data and when N is large.          

PERFORMANCE OF THE Y-ON-X REGRESSION METHOD 

 The performance of the Y-on-X regression method for delineating NP and 

evaluating NGR is investigated by calculating the bias and the standard error of the 

estimator. Numerous realizations are made for each sampling case N: 1000 realizations 

for case where N < 1000 and 100 realizations for case where N is equal to 1000, 5000 

and 10,000 samples. The Y-on-X regression method is applied and porosity cut-of 

values are derived for different permeability cut-of fvalues. The bias and the standard 

error of the estimates of the optimal cut-off value for delineating NP may be therefore 

determined by using equations (4-1) and (4-2). 

 The bias of the estimators when delineating net pay exhibits symmetry centred 

on the permeability cut-off value of 0.1 md, which corresponds to the median 

permeability of the JND population (Figure 5-1). In this case, the variability of the 

estimator is minimized so that it can be defined as an MVUE. Whatever the permeability 

cut-off value is, the biases are considered as insignificant: for instance, bias for the case 

where kc= 1 md does not exceed 0.2 p.u., which represents less than 2 percent of error 

(Figure 5-1).   

 The bias of estimates is therefore proportional to the difference between the 
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permeability cut-off value and the median permeability of the population, i.e. in our case 

0.1 md. The higher or/and the lower the permeability cut-off value is than the 

permeability average, the higher the bias. We thus observe that bias of estimates is 

minimized for kc=0.1 md:  the Y-on-X and RMA lines are not significantly different 

from each other (Figure 5-1) at this location. It corresponds to the center of gravity of the 

ellipse representing the PDF for a JND population. The influence of the outliers is 

minimized in this area and the density of points is maximized, leading to an optimal 

estimation of the actual coefficient of correlation. The estimates are therefore unbiased. 
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Fig. 5-1  Biases of the estimator for delineating NP for various permeability cut-off 

value, kC.  

 
 As the permeability cut-off values are more and more decentred from the 

permeability average, the variability of the Y-on-X method will increase (Figure 5-2). It 

explains why the standard error of cases where kc=1 md and kc=0.01 md are the same.  

The variability of the Y-on-X method is significant: for instance, in the case N = 50 

samples are measured from the population assuming that kc = 1 md, the standard error is 

1 p.u., i.e. the predicted porosity cut-off value will have a 68% confidence interval of +/- 
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1 p.u. In order to decrease this variability in the measurement by 20 percent, i.e. to 

ensure a relatively lower error of +/- 0.8 p.u., 25 additional samples should be taken 

(Figure 5-2). The root-mean square error (root-MSE) is therefore 0.175 p.u.. 
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Fig. 5-2  Standard error of the estimator for delineating NP given by the Y-on-X 

regression line. 

 

 Best-fit lines may be fitted to the standard error points for the different 

permeability cut-off. The standard errors of estimates from the Y-on-X line exhibit a 

straight-line behaviour. The variability of the estimates is minimized for kc= 0.1 md, as 

the slope of the line is the lowest (Figure 5-2). The higher the absolute difference 

between the median permeability value, 0.1 md, and the permeability cut-off, the higher 

the variability of the estimates. Using the equations of the best-fit lines, the intercept 

may be calculated in order to obtain the value of standard error where n tends to infinity. 

Those values are tested so as to determine whether they are statistically different from 0 

(Appendix D). In the case where the intercept is 0, it means that no inherent variability 

exists when the degree of sampling is infinite. Obviously the intercepts are smaller than 

0.1 p.u. and assumed to be nil. 
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 On the basis of the analytical justification of the preferential use of the Y-on-X 

regression line to delineate NP, the use of the Y-on-X regression line so as to evaluate 

NGR will lead to an inherent bias (Figure 5-3). This bias derives from the fact that the 

Y-on-X line is not the analytical line for the NGR porosity cut-off. The standard error is 

not influenced by the value of the true optimal porosity value φc, either φcNP or φcNGR, as 

shown by equation (4-2) and Figure 5-4.  
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Fig. 5-3  Biases of the estimator for evaluating NGR for various permeability cut-off 

value, kC.  
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Fig. 5-4  Standard error of the estimator for evaluating NGR given by the Y-on-X 

regression line. 

 
 The robustness of the Y-on-X method is also investigated by using the two types 

of noise described in chapter IV. The corruption of the bivariate data drives an increase 

in the variability of the estimates in addition to higher biases (Figure 5-5). The behaviour 

of the standard error with respect to degree of sampling is no longer linear in the case 

where the datasets are corrupted with noise. In the case where the data sets are corrupted 

with mild noise (“noise 1”) the linearity of the standard error disappears for less than 75 

samples. When the data sets are corrupted with noise of higher magnitude, the standard 

error no longer evolves linearly with the number of samples for data sets with less than 

100 points (Figure 5-5).  
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Fig. 5-5  Bias and standard error of estimates given by the Y-on-X method for non-

corrupted data, data corrupted with noise of magnitude 1, and data corrupted with noise of 

magnitude 2. A permeability cut-off value of 1 md is used to derive the porosity cut-off 

value from the Y-on-X regression line. 

 
 The corruption of the joint normality induces an increase in bias of estimates. It 

is no longer insignificant and represents a significant systematic error comprised 
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between 1.1 and 1.5 p.u. when noise 2 is used.  

 The bias is not reduced to 0 when the number of samples tends to infinity, as 

shown on Figure 5-5. The estimates are still significantly biased even when N=5,000 

samples for datasets corrupted with noise 1 and 2 (Figure 5-5). It may be explained by 

the influence of the noise which will alter the correlation of the data: it will lead to 

systematic biases even though the number of sample is really large. 

All those observations highlight the great dependency of the Y-on-X regression on the 

degree to which data are spread out, i.e. the dependency on the value of ρ, the coefficient 

of correlation. This quantity is more affected by the corruption of the data than the others 

statistical quantities, such as averages and standard deviations. The bias of the estimates 

from the Y-on-X method increases as the number of samples decreases. In the case 

where 25 samples are available, for example, the initial bias of 0.2 pu with a joint normal 

dataset will reach 0.6 and 1.5 pu with datasets respectively corrupted with noises of 

magnitude 1 and noise of magnitude 2.   

 The non-linearity (for datasets with less than 75 samples) and the high variability 

of the estimator is still really significant for the case where kc= 0.1 md (Figure 5-6). In 

this case, the standard error of the estimator is approximately twice as small as that for 

the kc= 1 md. Bias does not differ significantly from 0 (when data sets are corrupted with 

noise 2 the bias does not exceed 0.1 p.u.), even though biases are increasing with fewer 

sampled data. 

 If 25 samples are measured, the porosity cut-off value estimates will have a bias of 0.1 

pu and a 68 % confidence interval of +/- 1.1 p.u. for data sets corrupted with noise 2. 

When the permeability cut-off value equals the median permeability of the population, 

the estimator’s bias and standard error are minimized.  
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Fig. 5-6  Bias and standard error of estimates given by the Y-on-X method for non-

corrupted data, data corrupted with noise of magnitude 1, and data corrupted with noise of 

magnitude 2. A permeability cut-off value of 0.1 md is used to derive the porosity cut-off 

value from the Y-on-X regression line. 

 

If the Y-on-X regression line is used to predict the optimal porosity cut-off value for 

evaluating NGR, an inherent bias is introduced leading to systematic improper porosity 
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cut-off values, whatever the noise is (Figure 5-7).   
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Fig. 5-7  Bias of estimates given by the Y-on-X method for non-corrupted data, data 

corrupted with noise of magnitude 1, and data corrupted with noise of magnitude 2. A 

permeability cut-off value of 1 md is used to derive the porosity cut-off value from the Y-

on-X regression line. 

 
 The Y-on-X regression line has been proven to provide optimal porosity cut-off 

values when log(k) and φ are joint normal distributed. However, the estimator presents a 

high dependency over the estimate of the coefficient of correlation, which induces an 

unavoidable bias, a high variability in the predicted porosity cut-off values and the non-

linearity of the standard error of the estimates. The cause of this variability may be due 

to the limited number of samples or the corruption of the joint normality.  

 The prediction of NP obtained from those porosity cut-off values might be 

significantly erroneous. When the number of sample is les than 100 points (when the 

behaviour of the standard error is likely to be non-linear), the measurement of additional 

samples is in this case greatly recommended since increasing the degree to which the 

reservoir is sampled may significantly decrease the variability of the estimates of cut-off 

values from the Y-on-X line. For instance, considering a permeability cut-off value of 1 
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md, measuring 50 extra samples from a 25 point dataset decreases the error of the 

estimates by 40 percent. 

PERFORMANCE OF THE RMA LINE METHOD 

 The same methodology is used to assess the performance of the RMA line to 

predict porosity cut-off values for delineating NP and evaluating NGR. The performance 

of the RMA method is therefore investigated by calculating the bias and the standard 

error of the estimates for delineating NP and evaluating NGR. For this purpose, 

numerous realizations are made for each sampling case: 1000 realizations for case where 

N < 1000 and 100 realizations for case where N is equal to 1000, 5000 and 10,000 

samples. Different permeability cut-off values are used to obtain the estimates of the 

porosity cut-off values through the RMA line equation, expressed by equation (4-5).  

The bias and the standard error of the estimates of cut-off value for evaluating NGR may 

be thereafter determined by using equations (4-1) and (4-2). The variability and the bias 

of the estimates will be dependent, in the same way as for the Y-on-X regression line, of 

the value of the permeability cut-off values. When the permeability cut-off value is close 

to the permeability average of the bivariate population, the RMA line and the Y-on-X 

line are not significantly different from one another. The biases are therefore relatively 

low, less than 0.1 pu, and may be considered as insignificant (Figure 5-8). The 

variability of the estimator is also minimized for the case where the permeability cut-off 

value is equal to 0.1 md: the estimator may de defined as a MVUE. Similarly to the Y-

on-X method, symmetry with respect to the permeability average value is therefore 

observed on the bias and standard error. 

 The standard error of the estimates from the RMA line is significantly lower than 

those from the Y-on-X line (Figures 5-4 and 5-8). The performance of the RMA line is 

much higher since the variability, i.e. the ability of the method to provide estimates with 

good confidence intervals, is lower. It may be interpreted by the analytical expressions 

of the respective equations for both lines, given by equations (3-9) and (3-10). In 

contrast to the Y-on-X line, the RMA line is independent of the coefficient of 
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correlation, meaning that this line is less sensitive to the outliers and the spatial 

distribution of the points on the log(k)-φ cross plot. It induces a lower variability of the 

estimates of porosity cut-off values. The Y-on-X line analytically remains the method 

which provides the optimal porosity cut-off for delineating NP whereas the RMA line 

gives the best estimates of porosity cut-off to evaluate NGR.    
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Fig. 5-8  Bias and standard error of porosity cut-off values given by the RMA line 

for different permeability cut-off values, kC.  
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The behaviour of the standard error of the estimates of porosity cut-off is clearly linear 

and the intercepts of those lines is insignificantly different from 0. 

For a permeability cut-off value of 1 md and for a 25 sample dataset, the estimate will be 

nearly unbiased, i.e. the expectancy of predictions made from the RMA 

line, [ ] puE CC 05.15ˆ =− φφ , is nearly equal to the optimal porosity cut-off 

value,φcNGR=15 pu.  The corresponding confidence interval will be +/- 0.65 pu (Figure 5-

8).  
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Fig. 5-9  Bias of estimates given by the RMA method. Various permeability cut-off 

values are used to derive porosity cut-off values so as to delineate NP. 

 
For the case kc=1 md and where 25 samples are available, sampling 25 additional points 

will decrease by 18 percent the variability of the estimates of the predicted porosity cut-

off values. The use of RMA line is recommended since it provides reliable estimates of 

porosity cut-off values to evaluate NGR, i.e. with no bias and low variability. 

Using the RMA line to predict optimal porosity cut-off values for delineating NP will 

lead to erroneous NP delineation since the method provides estimates that are inherently 

biased as shown on Figure 5-9. For instance, for kc = 1 md, the porosity cut-off values 
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from the RMA line are systematically underestimated by 1.25 p.u., i.e. 7.7 %: the bias is 

therefore higher than the standard error and must no longer be ignored. 

 When the permeability cut-off value equals the average of permeability of the 

population, it seems reasonable to use the RMA line instead of the Y-on-X line since the 

variability of estimates is lower (the standard error of the estimates for both delineate NP 

and evaluate NGR are the same as explained previously). 

 The robustness of the RMA method is also investigated by corrupting the 

original dataset with noise 1 and 2 using the same procedure as for the study of the 

performance of the Y-on-X line. The ability of the estimator to predict the optimal 

porosity cut-off value for evaluating NGR is thus assessed when a significant deviation 

from the joint normality is observed. Figures 5-10 and 5-11 show the bias and standard 

error of estimates given by the RMA line for two permeability cut-off value and various 

magnitude of corruption of the original joint normality. 

For instance, bias of estimates of porosity cut-off values is less sensitive to the 

corruption of data than the Y-on-X line: the introduction of the noise 2 lead to a bias of 

0.35 p.u., i.e. that the expectancy of the estimates for predicting NGR is slightly higher 

than the optimal value, φcNGR= 15 pu. These biases are constant whatever the number of 

sample is available (Figure 5-10).   

 The higher the magnitude of the noise is, the higher the variability of the 

estimates is. The variability of the estimates increase by 48 percent if the datasets are 

corrupted with noise 1, and increase by 81 percent if the datasets are corrupted with 

noise 2. The influence of the noise on the performance of the estimator is thus really 

important but the evolution of the variability with respect to the degree of sampling 

remains linear, on contrary to the variability of the Y-on-X method. Second, the 

variability of estimates is largely lower than those from the Y-on-X line and may be 

reduced by increasing the degree of sampling. For instance, estimates of porosity cut-off 

for 25 sample data sets have a 68% confidence interval of +/- 0.8 p.u.. Decreasing this 

variability by 25 percent requires sampling 25 additional points (Figure 5-10). 
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Fig. 5-10 Bias and standard error of estimates given by the RMA method for non-

corrupted data, data corrupted with noise of magnitude 1, and data corrupted with noise of 

magnitude 2. A permeability cut-off value of 1 md is used to derive the porosity cut-off 

value from the RMA line. 

 
 As expected, the estimates given by the RMA line for a permeability cut-off 

value of 0.1 md is a MVUE, i.e. an estimator with minimum variance and unbiased. The 

variability of the estimates of porosity cut-off value given by the RMA line are unbiased 

even though datasets are corrupted with noise 1 and noise 2 as the bias remains lower 
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than 0.1, as shown on Figure 5-11. 
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Fig. 5-11 Bias and standard error of estimates given by the RMA method for non-

corrupted data, data corrupted with noise of magnitude 1, and data corrupted with noise of 

magnitude 2. A permeability cut-off value of 0.1 md is used to derive the porosity cut-off 

value from the RMA line. 

 

 The RMA line is, indeed, a scale-independent line meaning that it is 
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uninfluenced by the degree to which the data are spread out.  The equation of the RMA 

line depends on the accuracy of the estimation of the following statistical quantities, 

averages and standard deviations of the bivariates, and the line is independent of the 

coefficient of correlation. The latter is greatly influenced by the corruption of the data 

and the variability of estimates obtained from Y-on-X method is more affected by the 

corruption of data than those obtained from the RMA line. The linearity of the standard 

errors and the low bias of the RMA method, in response to corruption of data, illustrate 

these considerations. 

 The use of the RMA line to predict porosity cut-off values for delineating NP 

leads to significantly high biased estimates of porosity cut-off values for a permeability 

cut-off of 1 md, as shown on Figure 5-12. This systematic bias is due to the fact that the 

RMA line is not the line which gives analytically the best porosity cut-off value to 

delineate NP. In the case where the bias may be corrected, it is reasonable to use the 

RMA line instead of the Y-on-X line since the standard error of its estimates is expected 

to be twice as low as those from the Y-on-X line. In the case where the permeability cut-

off value is a decade away from the permeability average, the bias of the estimator is 

relatively uninfluenced by the degree of sampling, i.e. the bias remains constant as 

shown on Figure 5-12. 
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Fig. 5-12 Biases of  estimates given by the RMA method for non-corrupted data, data 

corrupted with noise of magnitude 1, and data corrupted with noise of magnitude 2. 

Permeability cut-off values of 0.1 md and 1 md are used to derive porosity cut-off values so 

as to delineate NP. 

 

 To conclude, the RMA line is therefore really efficient to provide unbiased and 

accurate estimates of optimal porosity cut-off values to evaluate NGR. Whatever the 

degree of noise, the number of sample, or the value of the permeability cut-off, the RMA 
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method provides reasonably accurate estimates of porosity cut-off values to evaluate 

NGR. The analysis of the case where the RMA line is used to delineate NP raises the 

issue regarding the use of the systematic use of the RMA line to both delineate NP and 

evaluate NGR. For this purpose, the systematic bias which exists between the Y-on-X 

and the RMA line, proportional to the coefficient of correlation, should be corrected.     

PERFORMANCE OF THE DISCRIMINANT ANALYSIS 

 The relevancy of using the discriminant analysis in our case and its derived sub 

datasets is considered by testing the normality of the pay and non-pay fraction of 

porosities, those having been determined on the basis of the permeability cut-off value. 

Appendix B presents an example of probability plots for a 100 sample dataset extracted 

from the joint normal population under consideration for the study with a permeability 

cut-off of 1 md. The normality of the two fractions of the porosity is not rejected for our 

case. The classic methodology is used to assess the performance of the discriminant 

analysis to predict porosity cut-off values for delineating NP and evaluating NGR.  

For this purpose, numerous realizations are made for each sampling case: 400 

realizations for case where N < 1000 and 100 realizations for the case where N is equal 

to 1000 samples. Fewer realizations are done than for the Y-on-X and RMA lines due to 

CPU time issues. The case where the permeability cut-off is defined to be 1 md is taken 

so that bias and standard error of this method will be compared to the other 

methods.This method is designed to provide estimates of the optimal porosity cut-off 

value when evaluating NGR as shown on Figure 3-3. 

  In the case there is no noise, the discriminant analysis gives unbiased (less than 

0.1 p.u.) estimates of porosity cut-off values. When the dataset is corrupted with noise, a 

low bias is created, which does not exceed 0.35 pu in case where the noise is of 

magnitude 2. This method therefore provides accurate estimates of porosity cut-off 

values to evaluate NGR. When used to delineate NP, the method provides estimates that 

are highly biased and tends to underestimate the optimal value of the porosity cut-off 

value (Figure 5-13). The behavior of the standard error is linear and the intercept of the 
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lines are not significantly different from 0. The performance of the method is relatively 

good to evaluate NGR in comparison to the RMA line.  
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Fig. 5-13 Biases of estimates given by the discriminant analysis for non-corrupted 

data, data corrupted with noise of magnitude 1, and data corrupted with noise of 

magnitude 2. A permeability cut-off value of 1 md is used to derive porosity cut-off values 

so as to delineate NP and evaluate NGR. 

 



 52 

 The discriminant analysis actually provides a porosity cut-off value which 

cancels out the likelihood to mistake pay for non-pay and non-pay for pay. The 

performance of this statistical method is improved when the data are more corrupted. 

The robustness of the discriminant analysis is good since the introduction of noise 1 

induces an increase of 1.5 percent in the standard error and the introduction of noise 2 

increases by 19.6 percent the standard error of the estimates with respect to the standard 

errors of the original case (Figure 5-14).    
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Fig. 5-14 Standard error of estimates given by the discriminant analysis for non-

corrupted data, data corrupted with noise of magnitude 1, and data corrupted with noise of 

magnitude 2. A permeability cut-off value of 1 md is used to derive porosity cut-off values. 

 
The discriminant analysis is therefore clearly robust since the introduction of noise 

induces a small increase in the variability of estimates in comparison to the previous 

method, i.e. the Y-on-X and RMA lines.  

 Discriminant analysis is not expected to be suitable to predict porosity cut-off 

values for delineating net pay. In fact, the method is rather designed to cancel out the 

errors of mistaking pay porosities for non-pay porosities and non-pay porosities for pay 
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porosities. This method is a good alternative to evaluate NGR since the overall 

performance of the estimator is moderately poorer than that of RMA line; assumptions 

about the distribution of the pay and non-pay fraction are however less restrictive than 

the joint normality of the log (k)-φ.  

PERFORMANCE OF THE QUADRANT METHOD 

 The same procedure is used to assess the performance of the quadrant method to 

predict porosity cut-off values for delineating NP and evaluating NGR. For this purpose, 

numerous realizations are made for each sampling case: 400 realizations for case where 

N < 1000 and 100 realizations for the case where N is equal to 1000 samples (limited 

number of realizations has been done due to CPU time issues). The case where the 

permeability cut-off is defined to be 1 md on the basis of geological and engineering 

considerations is taken.  

 This methodology is greatly dependent on the data and may be inaccurate, 

especially for cases where the samples are limited. The efficiency of the quadrant 

method to predict optimal porosity-cut-off value to delineate NP is poor in the case 

where noise is introduced. The estimates are moderately biased for non-corrupted data 

but the variability of the estimator is really significant owing to data-sampling issues 

(Figure 5-15): the cut-off value is designed to minimize the sum of the probabilities B 

and C, which is relatively difficult on datasets with few samples (issues related to 

multiple occurrences of minima). 

 Considering the non-corrupted case and the case where the quarter method is 

used to delineate NP, the estimates of the porosity cut-off values are moderately biased 

but the related standard error is high (for 1000 samples the 68% confidence interval is 

still +/- 0.5 p.u.): the method is not reliable to provide unbiased, non erroneous estimates 

for a joint normal log(k)-φ dataset.  The robustness of the method to predict NP is 

therefore poor since the introduction of noise leads to an increase in the variability of the 

estimates (for 100 samples corrupted with noise 2, the confidence interval is increased 

from +/- 1.25 pu to +/- 1.75 pu and the bias is nearly tripled from slightly less than  0.5 
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pu to 1.5 pu. This methodology gives the optimal porosity cut-off value for any sub 

dataset, by minimizing the sum of probabilities B and C. It is obviously leading to the 

presence of a bias even for a significant number of samples.  
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Fig. 5-15 Biases and standard errors of estimates given by the quadrant method for 

non-corrupted data, data corrupted with noise of magnitude 1, and data corrupted with 

noise of magnitude 2. A permeability cut-off value of 1 md is used to derive the porosity 

cut-off value to delineate NP. 
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 The results for the case where the quadrant method is aimed to equalize the 

probabilities of B and C, i.e. evaluating NGR, are surprisingly different. The estimates of 

porosity cut-off values so as to evaluate NGR are fairly accurate and robust (Figure 5-

16). First, bias of estimates is significantly lower than those when NP is delineated. 

Second, the standard errors’ behavior of the estimates is linear and the intercept are not 

significantly different from 0. 

 The estimates obtained from the quadrant method on samples from the non-

corrupted population are unbiased and have a moderate variability. In order to decrease 

the variability by 40 percent for a 25 sample dataset, it requires doubling the number of 

samples, i.e. to sample 25 additional k-φ measurements. The estimator is robust since the 

introduction of noise induces moderate bias and variability (Figure 5-16). 
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Fig. 5-16 Biases and standard errors of estimates given by the quadrant method for 

non-corrupted data, data corrupted with noise of magnitude 1, and data corrupted with 

noise of magnitude 2. A permeability cut-off value of 1 md is used to derive the porosity 

cut-off value to evaluate NGR. 
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Fig. 5-16 Continued. 

 
 The method is therefore significantly more efficient to evaluate NGR than to 

predict NP. This may be explained by the numerical issues related to minimize the 

number of points in the two quadrants B and C, as it may occur that a dataset presents 

several minima. 

 Their estimates are indeed significantly biased. Even though these estimates have 

a systematic variability and are non robust, they are from a hypothesis-free method and 

gives the optimal value for a specific dataset, independently from the statistical 

characteristics of the original population from which data have been sampled. 

COMPARISON OF THE METHODS TO PREDICT NP AND EVALUATE NGR 

 We consider the case where kc = 1 md is determined from engineering and 

geological considerations a decade away from the median permeability, i.e. 0.1 md, and 

investigate standard error and bias of estimates. The different methods are first compared 

to one another on the basis of their ability to assess the optimal method to either predict 

NP or evaluate NGR on the basis of bias, standard error, and robustness. The reference 

optimal cut-off values are determined from the equations of the Y-on-X and RMA lines, 

as shown in chapter III for a permeability cut-off value of 1 md. 
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NP delineation 

 The RMA method is obviously the method with the lower standard errors 

whatever the magnitude of noise is. However, this method provides optimal porosity cut-

off estimates for evaluating NGR causing an inherent bias if the method is applied to 

predict porosity cut-off values to delineate NP. In the case where the data are not 

corrupted, the Y-on-X method provides nearly unbiased estimates of porosity cut-off, 

ranging between 0 and 0.2 pu (Figure 5-17). The standard error is however higher than 

those of the discriminant analysis and RMA line. Those two methods are nonetheless 

designed to provide cut-off values so as to predict NGR: the use of one of them to 

delineate NP will lead to a systematic, inherent bias, which tends to overestimate NP. 

The results from the quadrant method show that the estimator is not a good predictor of 

optimal porosity cut-off values since its bias and standard error are really high in the 

case where the data are joint normal. 
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Fig. 5-17 Bias and standard error of estimates given by the methods under 

investigation for non-corrupted data. A permeability cut-off value of 1 md is used to derive 

the porosity cut-off value to delineate NP. 
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Fig. 5-17 Continued. 

 
The corruption of data with a noise of moderate magnitude does not modify the 

hierarchy between the different methods. The Y-on-X line still gives porosity cut-off 

values with a low standard error, i.e. the confidence interval is relatively good, with the 

lowest bias. The standard errors of the estimates obtained from the RMA line and the 

discriminant analysis are lower than that of the Y-on-X method but with a significant 

inherent bias (Figure 5-18).    
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Fig. 5-18 Bias and standard error of estimates given by the methods under 

investigation for data corrupted with noise of moderate magnitude. A permeability cut-off 

value of 1 md is used to derive the porosity cut-off value to delineate NP. 

 

 When datasets are corrupted with a noise of high magnitude, the Y-on-X method 

gives estimates of porosity cut-off values whose variability is much higher than the 

standard error of the RMA line in particular. Since the Y-on-X axis is much more 
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sensitive to the degree to which data are spread out, the bias of the estimates derived 

from this method will be increased so that the bias of estimates from RMA line are lower 

than those from the Y-on-X method for dataset with less than 50 points, as shown Figure 

5-19. 
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Fig. 5-19 Bias and standard error of estimates given by the methods under 

investigation for data corrupted with noise of high magnitude. A permeability cut-off value 

of 1 md is used to derive the porosity cut-off value to delineate NP. 
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  It raises the problem regarding the possibility to correct the inherent bias related 

to the use of the RMA line to predict NP instead of using the Y-on-X.  In the case where 

it is possible to correct the inherent bias of the RMA line to predict NP, it would be 

clearly interesting to use the RMA line instead of the Y-on-X line to predict NP. The 

performance of the RMA line is indeed higher than that of the Y-on-X line since the 

RMA axis is independent of the coefficient of correlation which is strongly affected by 

any type of noise or perturbation. The bias of the estimates from the RMA line appear to 

be constant whatever the number of sample is so that it can be envisioned to try to 

quantify this bias.  When the joint normality is tested and validated, the Y-on-X method 

remains nonetheless the optimal estimator for predicting porosity cut-off value to 

delineate NP, despite a significant variability. 

NGR delineation 

 In any case, the Y-on-X method provides biased estimates of porosity cut-off 

values with poor confidence intervals. The discriminant analysis, the quadrant method 

and the RMA method provide fairly good estimates of porosity cut-off values so as to 

evaluate NGR.  Bias of their estimates is closed to zero, i.e. that the expectancy of 

estimates is centred on the optimal porosity cut-off value to evaluate NGR, as shown on 

Figure 5-20. The RMA line remains the best estimator by far since it shows the lowest 

standard error. The quadrant method and the discriminant analysis are more sensitive to 

the corruption of the joint normality than those from the RMA line; bias of these 

methods approximately equals 0.2 pu for datasets corrupted with noise of moderate 

magnitude and 0.4 pu for datasets corrupted with noise of high magnitude (Figures 5-21 

and 5-22).The estimates from RMA line are nearly unaffected by the corruption of the 

data.  

 As the magnitude of noise increases the variability of the discriminant analysis 

tends to be closer to the variability of the RMA line. It illustrates that the performance of 

the discriminant analysis is not significantly affected by the introduction of noise and the 
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corruption of the joint normality. When evaluating NGR, three methods are available to 

predict in a reliable way porosity cut-off value. The RMA line is the method which 

provides unbiased estimates with small confidence intervals.  
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Fig. 5-20 Bias and standard error of estimates given by the methods under 

investigation for non-corrupted data. A permeability cut-off value of 1 md is used to derive 

the porosity cut-off value to evaluate NGR. 
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 The issue is that the use of RMA line is dependent of the assumption of joint 

normality.  In the case where the joint normality is too restrictive, the discriminant 

analysis is an interesting alternative in order to evaluate NGR. 
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Fig. 5-21 Bias and standard error of estimates given by the methods under 

investigation for data corrupted with noise of moderate magnitude. A permeability cut-off 

value of 1 md is used to derive the porosity cut-off value to evaluate NGR. 
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 This comparison has shown that the RMA line is providing the optimal estimates 

of porosity cut-off values to evaluate NGR, in terms of their bias, standard error, and 

robustness. These considerations are only valid in the case where log(k)-φ are joint 

normal.  
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Fig. 5-22 Bias and standard error of estimates given by the methods under 

investigation for data corrupted with noise of high magnitude. A permeability cut-off value 

of 1 md is used to derive the porosity cut-off value to evaluate NGR. 
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The quadrant and the discriminant analysis methods offer two interesting alternatives 

since the variability of their estimates are slightly higher than that of the RMA but 

require less restrictive assumptions. 

 Delineating NP point by point by using a porosity cut-off value on the log-

derived reservoir porosities is expected to be more problematic, especially for datasets in 

which fewer than 75 samples are present. In fact, the Y-on-X line might be in this case 

expected to be biased and highly variable, leading to erroneous estimation of NP.    

Test case for the application of the methods  

 A core permeability and porosity dataset measured at reservoir pressure is 

presented from the Travis Peak formation in East Texas (from Luffel et al., 1991, Nelson 

and Kibler, 2003). The deposits consist of Lower Cretaceous complexes of delta lobes 

reworked by fluvial and marine processes. One specific facies of the formation, 

corresponding to fine-grained, moderately to well sorted sandstones (quartzarenites and 

subarkoses) is used for testing the methods.  

 The sandstone permeabilities are relatively tight, with an average of 0.03 md 

(Table 5-1). The porosity average is 7 pu. The variabilities, as shown by the standard 

deviations, are of the same magnitude as the quantities used in the Monte Carlo analysis 

of the different methods. The coefficient of correlation of the field data is high, i.e. 

0.879, but does not characterize the heterogeneities of density of points in the dataset 

(Figure 5-23). In fact, data in the lower permeability range, e.g. k < 0.1 md, are well 

correlated and the corresponding density of points is greater than that in the high 

permeability range. On the other hand, the density of points for k > 0.1 md is low and the 

correlation between porosity and permeability is poor. As a consequence, one may 

expect to observe significant variations in the performance of the estimators depending 

on the value of permeability cut-off value.  
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Table 5-1 Statistical quantities of the Travis Peak core measurements (N=320) and the 

equations of the Y-on-X regression and RMA lines. 

 

 porosity, pu log (k), md 

mean 7.028 -1.495 

std deviation 3.033 1.5157 

rho 0.8786 

Y-on-X log(k) = 0.439 φ − 4.5809 

RMA log(k) = 0.4997 φ − 5.0073 

 

For this purpose one will investigate cases where three different permeability cut-off 

values are defined, 1, 0.1, and 0.01 md, so as to illustrate the impact of this value on the 

NP and NGR evaluation process. The case where the permeability cut-off value equals 

the log-permeability average is not investigated in this analysis since the RMA and the 

Y-on-X lines intersect at this point. It is recommended in this case to use the RMA line 

both to delineate NP and evaluate NGR by using one unique porosity cut-off value. 
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Fig. 5-23 Log permeability vs. porosity cross plot from Travis Peak formation core 

measurements (data from Luffel et al., 1991, Nelson and Kibler, 2003). 
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The second objective of this analysis is to compare the results of analyzing this 

dataset with those from the Monte Carlo analysis. From the comparison, we aim to make 

recommendations so that anyone faced with producing optimal cut-offs from a dataset 

will have a guide. 

  First, a test of the joint normality of the Travis Peak dataset (the details are 

presented in Appendix E) shows that the hypothesis about the joint normality of the 

dataset is not rejected. The field data are thus assumed to be approximately joint 

normally distributed. Second, a test for the normality of the pay and non-pay fractions of 

porosities (Appendix B) shows that whatever the permeability cut-off value is, the 

normality of the sub fraction of porosities is not rejected, with the exception of the case 

where kc = 0.01 md. In this case, the pay fraction is not normal since the probability plot 

exhibits a significant deviation from linearity. These results suggest that the Travis Peak 

dataset and the datasets used from the Monte Carlo assessments have similar 

distributions. Therefore, we expect that the RMA line will be the most efficient method 

to evaluate the cut-off for NGR, or at least as efficient as the discriminant analysis and 

the quadrant method. The Y-on-X and the quadrant methods should provide unbiased 

estimates of porosity cut-off values for delineating NP. 

 The first component of the analysis of the dataset is to evaluate the performance 

of estimates of porosity cut-off value given by the Y-on-X regression line and the 

quadrant method in order to delineate NP. Unambiguous absolute minima are obtained 

for this dataset for the quadrant method with all three permeability cut-off values (Figure 

5-24). As the dataset is assumed to be joint normally distributed, the porosity cut-off 

values given by the discriminant analysis and the RMA line are expected to be 

significantly biased so those methods are not considered. 

 One obtains two different porosity cut-off values, respectively derived from the 

quadrant method and the Y-on-X line for the different permeability cut-off values (Table 

5-2). As expected, the cut-off values estimated by the quadrant method and the Y-on-X 

line differ by only a few percent and are not significantly different. The observed 

variations are caused by the imperfect discretization of the PDF of the formation by the 
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sampling as observed in the model (Figure 5-17).  
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Fig. 5-24 Example results for the quadrant method for the cases where kc = 1 md, kc = 

0.1 md, and kc = 0.01 md. The curves exhibit mimima for φφφφc = 6.1 p.u.,  φφφφc = 7.9 p.u., and φφφφc 

= 10.5 p.u.. 

 

Table 5-2 Porosity cut-off values given by the Y-on-X line and the quadrant method. 

The total probabilities of making misidentification of non-pay for pay and pay for non-pay 

are calculated, i.e. estimating the values of p(B)+p(C).   

 

kc= 0.01 md cut-off, pu % error 

Y-on-X 5.89 12.5 

quadrant 6.1 11.25 
 

kc= 0.1 md cut-off, pu % error 

Y-on-X 8.16 12.18 

quadrant 7.9 10.31 
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Table 5-2 Continued. 

  

kc= 1 md cut-off, pu % error 

Y-on-X 10.43 10.6 

quadrant 10.5 10.31 
 

 For this dataset, we do not know the true population porosity cut-off value for NP 

identification. Nonetheless, one can estimate confidence intervals for the values listed in 

Table 5-2 using the Monte Carlo analyses described earlier. For instance, for the case 

where kc = 1 md, Figure 5-17 gives the standard error of estimates from the Y-on-X line 

and the quadrant method for N = 320 samples to be 

φc (quadrant) = 10.5 ± 0.9 p.u.  

φc (Y-on-X) = 10.43 ± 0.3 p.u. 

Obviously, the errors in both mistaking pay for non-pay and non-pay for pay are the 

same for both methods but the confidence interval is smaller for estimates given by the 

Y-on-X regression line. As a consequence, it is obviously recommended to use the Y-on-

X line to delineate NP in this case (Table 5-2). 

 A similar procedure can be applied to obtain porosity cut-off values for NGR 

estimation. The Y-on-X line is discarded since it has been demonstrated that it provides 

biased estimates with large intervals of confidence when used to evaluate NGR. The 

discriminant analysis, the RMA line and the quadrant methods are thus considered for 

predicting NGR. An actual NGR is computed from the permeability cut-off values for 

comparison with NGR values estimated from the porosity cut-off values given by the 

RMA line, the discriminant analysis, and the quadrant methods (Table 5-3). 
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Table 5-3 Predicted NGR and errors of prediction determined from porosity cut-off 

values given by the methods under consideration. 

 

 kc= 0.01 md kc= 0.1 md kc= 1 md 
Actual NGR, 

percent 
51.8 34.68 22.19 

 

kc= 0.01 md cut-off, pu predicted NGR % error 

RMA 6.02 52.8 1.93 

Discriminant 6.20 50.62 -2.28 

Quadrant 6.1 51.25 -1.06 

  
kc= 0.1 md cut-off, pu predicted NGR % error 

RMA 8.02 34.06 -1.79 

Discriminant 7.8 36.56 5.42 

Quadrant 8.05 34.06 -1.79 

 

kc= 1 md cut-off, pu predicted NGR % error 

RMA 10.02 17.18 -22.58 

Discriminant 9.11 25 12.66 

Quadrant 9.3 22.5 1.40 
 

 

For the two first cases, where the permeability cut-off values respectively equal 0.01 and 

0.1 md, the errors in predicting NGR are not significantly different from one another. 

For the case kc = 0.01 md, errors in predicting NGR by using the discriminant analysis 

are slightly higher than those by using the RMA line and quadrant methods. The use of 

the discriminant analysis in spite of the non-normality of the pay fraction of porosities 

may have caused additional errors.  These results confirm the results from the Monte 
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Carlo testing: for datasets with N = 300 samples, the three estimators are providing 

unbiased estimates of porosity cut-off with small confidence intervals. It is however 

suggested to use the RMA line since it has been demonstrated that the estimates from the 

RMA line presents the lowest variability.   

 For the case where kc = 1 md, the RMA line does not, surprisingly, provide the 

best prediction for NGR (Table 5-3). It can be explained by issues related to the degree 

of sampling (higher density of points in the low permeability domain than in the high 

permeability domain) or that the joint normality is altered in the high permeability 

domain. The performance of the discriminant analysis is significantly better than that of 

the RMA line but remains lower than that of the quadrant method. The standard error of 

the estimators, i.e. the 68 % confidence interval, is used from Figure 5-20 so as to 

evaluate the uncertainty in the NGR evaluation for the case kc = 1 md: 

φc (quadrant) = 9.3 ± 0.275 p.u. 

φc (RMA) = 10.02 ± 0.18 p.u. 

φc (discriminant) = 9.11 ± 0.25 p.u. 

The confidence intervals of estimates of porosity cut-off values seem to be relatively 

small and insignificant. However, the small variability of the estimates given by the 

three methods induces a high variability in predicted NGR values. In fact, by considering 

the 68 % confidence interval of porosity cut-off values from the RMA line, it gives NGR 

values ranging from 15.31 to 18.5 percent. In the same way, the range of predicted NGR 

values by using the discriminant analysis is between 21.87 and 27.5 percent. The 68 % 

confidence interval for the NGR values predicted from the quadrant method gives a 

range between 18.7 and 26.3 percent. All these values indicate that the 95% confidence 

interval (± 2 �) would include an NGR of 22.19. 

 In the same way, the evaluation of the reliability of the NGR value obtained 

directly from the permeability cut-off value can also be investigated. A common 

procedure usually involves the use of the “leave-one-out” method, or jack-kniffing 

(Jensen et al., 2003, p. 111). It consists of successively removing one different sample 

from the original dataset with N samples so as to obtain N subdatasets with N-1 samples. 
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This procedure is not used in our analysis since the removal of one point from the Travis 

Peak dataset (N = 320 samples) will only induce an insignificant change in the NGR 

values: for instance, for the case kc = 1 md, the removal of one sample from either pay or 

non-pay fraction of data will modify the NGR values by about 0.3 %.  As an alternative 

approach, the confidence intervals for the NGR values determined from the permeability 

cut-off values, 1, 0.1, and 0.01 md, and shown in Table 5-3 are evaluated heuristically by 

setting the error of the permeability cut-offs to ± 10 %. For the case where kc = 1 md ± 

0.1, for example, the predicted NGR values vary from 21.56 to 22.5 percent, i.e. an 

absolute maximum variation of 3 percent with respect to the evaluated NGR value of 

22.19. For the case where kc = 0.1 md, it gives a range of predicted NGR values from 

33.125 to 35.31 percent, i.e. an absolute maximum variation of 4.5 percent with respect 

to the evaluated NGR value of 34.68 percent. Finally, for the case where kc = 0.01 md, it 

gives a range of predicted NGR values from 50.62 to 52.187 percent, i.e. a absolute 

maximum variation of 2.3 percent with respect to the evaluated NGR value of 51.8 

percent. Therefore, whatever the permeability cut-off value is, the variations in NGR 

values due to uncertainties are similar. Also, one can observe that for the case where kc = 

1 md, the variation in the NGR values evaluated from the porosity cut-off values is 

larger than the variation in the NGR values evaluated from the permeability cut-off 

values. This may be explained by the small density of points having permeabilities 

higher than 0.1 md, leading to the significant perturbation of the joint normality and the 

presence of outliers. Obviously the quadrant method should be preferred in the case 

where kc = 1 md since the estimates of NGR given by the RMA line and the discriminant 

analysis have larger errors. The normality of the pay fraction for these permeability cut-

off values may be also altered because of the lack of data, which induces an increase in 

the variability of the estimates. In fact, the probability plot presenting the pay fraction of 

porosities for kc = 1 md in Appendix B presents slight deviation from the normality for 

the bigger porosities.  

 In conclusion, Monte Carlo analysis of hypothetical datasets and analysis of the 

Travis Peak dataset suggests the following procedures for determining appropriate 
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porosity cut-off value: 

 For NGR estimation, the RMA line and the discriminant analysis methods 

perform best. The values of predicted NGR given by those two methods should be 

compared to those given by the quadrant to verify the efficiency of the prediction and 

evaluate the possible limitations of the application of the methods.  If no assumption can 

be made about the joint normality of the field dataset or the distribution of the pay and 

non-pay porosities, one has to resort to use the quadrant method. The Y-on-X method 

should be systematically discarded when the NGR is evaluated. The efficiency of the 

RMA line and the discriminant analysis methods may be significantly reduced in the 

case where the permeability cut-off is located in a crossplot area where the density of 

points is small and the influence of outliers is significant. In this case, the uncertainties 

in NGR values determined from the porosity cut-off (inherent to the methods used for 

obtaining the porosity cut-off values from the permeability cut-off values) may be 

significantly higher than uncertainties in NGR values determined from the permeability 

cut-off values. In this case, it is recommended to use the quadrant method in the case 

where it gives a better estimate for NGR.  

 When delineating NP, both Y-on-X line and the quadrant may be used. The 

former method, however, is preferred since it presents smaller variability of its estimates 

of porosity cut-off values than the latter method.  
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CHAPTER VI 

DISCUSSION AND RECOMMENDATIONS 

 
 The assumption of joint normality of log (k) and φ remains a good starting point 

to assess the performance of the estimators which are to be evaluated. The choice of the 

joint normality is both a theoretical convenience and a plausible distribution for log(k) 

and porosity. 

  From the observations made by Jensen and Menke (2006), confirmed by 

analytical calculus in Chapter II, the joint normality of bivariate dataset is convenient so 

as to know the optimal porosity cut-off values to delineate NP and evaluate NGR. These 

properties are convenient for estimating the performance of the methods and to assess, in 

a quantitative and qualitative way, the bias, standard errors and robustness of the 

estimates. In the case where NGR is evaluated, the study has shown that the estimates of 

the porosity cut-off values from the RMA line are only slightly affected in terms of their 

bias and standard errors by noise and the corruption of the joint normality. The use of 

RMA line and/or the discriminant analysis is therefore recommended to predict porosity 

cut-off values even if the joint normality is not clearly demonstrated. The estimates of 

their porosity cut-off values are relatively accurate, slightly biased and with low 

variability. The data-oriented quadrant method should be used in last resort because of 

its significant bias and higher variability, e.g. 10 % errors. 

 In the case where the intended use of the porosity cut-off value is to delineate NP 

point by point, the Y-on-X line gives the optimal porosity cut-off value for joint normal 

log (k) − φ. The main issue is that the estimator is expected to provide estimates with 

high variability, especially for datasets in which few points are present. It has also been 

demonstrated that the estimator is not robust since the introduction of significant noise, 

so that the joint normality is no longer present, leads to an increase in variability and the 

introduction of an irreducible and inherent significant bias of 1.1 p.u., when datasets are 

perturbed with noise 2. It leads to systematic errors in the prediction of the NP and it 
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may be interesting to use the quadrant method rather than the Y-on-X line. The Y-on-X 

method nonetheless remains a convenient and efficient method to provide porosity cut-

off values so as to delineate NP especially when the assumption of joint normality is not 

rejected. Bias is insignificant in the noise-free case and the standard error is smaller than 

+/- 1.3 p.u, i.e. +/- 8% of error, which is moderate. The RMA line and the discriminant 

analysis are designed to evaluate NGR: it is thus not adequate to use them directly to 

delineate NP because of the introduction of a significant bias. 

Despite its biased estimators with a poor interval of confidence, it is particularly 

interesting to consider the quadrant method when the assumption of joint normality is 

rejected. 

  When delineating NP, the correction of inherent bias of estimates given by the 

RMA line should be taken into consideration since this axis is scale invariant and less 

sensitive to the errors in measurements or deviations from the normality. The idea would 

be to use the RMA line to delineate NP and correct the systematic bias since the standard 

errors are always smaller than those of estimates given by the Y-on-X line.  

 The value of the permeability cut-off value with respect to the permeability 

average of the data is also an important parameter to take into account, so as to evaluate 

whether the two lines, RMA and Y-on-X are significantly different from each other and 

the consequences on the derived porosity cut-off values, as shown with the application 

of the methods on field data. Field datasets may present heterogeneous densities of 

points. In the domain where the density of points is small, the performance of the 

discriminant analysis, RMA line, and the Y-on-X regression line may deteriorate 

because of the presence of outliers. It may result in the choice of the quadrant method to 

evaluate NGR in the case where the performance of the method is better than that of the 

RMA line and discriminant analysis methods. 
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CHAPTER VII 

FURTHER WORK 

 

 The study and the comparison of the estimators for porosity cut-off values have 

been conducted by using joint normal datasets. This specific assumption is clearly 

restrictive but it remains a good start to investigate the performance of various methods 

under consideration for the study, in terms of their bias, standard error, and robustness. 

Other bivariate distributions should be investigated for comparison and ensure that the 

results and the qualitative classification of the methods are still valid and not 

significantly different. Joint normal bivariate (k) p- φ datasets may be used for this 

purpose, 0>p . The case where 0→p was investigated in this study. The optimal 

porosity cut-off values should be analytically determined by using derivative calculus on 

the PDF of the bivariate population under consideration.  

 The tentative correction of the inherent bias of estimates from the RMA line 

when delineating NP should be therefore investigated. The systematic bias seems to be 

in a certain extent invariant whatever the number of samples is. This bias might be 

assessed and quantified by using the expressions of the two equations, RMA and Y-on-X 

lines. 

 Regarding the discriminant analysis, a new equation may be considered by 

attempting to minimize the sum of the errors of misidentification of pay for non-pay and 

non-pay for pay, still assuming the normality of the two sub fraction of porosities. The 

sum of areas A and B (Figure 3-3) may be minimized with respect to the porosity cut-

off, by conducting a derivative calculus. 

The case where only one surrogate variable was investigated: the study and the 

considerations may be extended to multi-variate dataset so as to determine optimal Vshc, 

Swc, or Rtc. 
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CHAPTER VIII 

CONCLUSIONS 

 
 The study has shown that the systematic use of the ordinary least-squares 

regression for selecting porosity cut-off values from a permeability cut-off may lead to 

erroneous values and does not guarantee optimal predictions of NP and NGR. The use of 

a simple and interesting statistical bivariate distribution has led to the comparison of 

various methods in addition to the classic least-squares regression. As confirmed by 

Jensen and Menke (2006), this regression line does systematically predict the optimal 

porosity cut-off values: the use of another line, the Major Reduced Axis, presents 

interesting potential to derive porosity cut-off values because of the statistical properties 

of the axis.  

 The study provides a new vision the problem of selecting porosity cut-off values, 

or in a larger extent, of any surrogate variable, to delineate NP and evaluate NGR. It also 

suggests recommendation so as to predict accurately and efficiently porosity cut-off 

values so as to evaluate NP and NGR.  

Here are several tables summarizing the results, i.e. bias and standard errors of the 

estimates of porosity cut-off values, given by the different methods (Table 8-1). 
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Table 8-1 Bias and standard error of estimates given by the different methods under 

consideration in the study for noise-free and noised datasets. 

 
NP 

delineation 

N 

kc=1 md 

25 50 100 500 1000 

Y-on-X 0.204 0.075 0.023 0.015 -0.0038 

RMA -1.237 -1.249 -1.2798 -1.293 -1.288 

Discriminant -1.246 -1.208 -1.17 -1.2388 -1.252 

 

No noise 

Bias 

Quadrant 0.209 0.14 0.419 0.16 0.1023 

Y-on-X 1.278 0.82 0.55 0.247 0.17 

RMA 0.65 0.46 0.32 0.14 0.096 

Discriminant 0.86 0.58 0.399 0.19 0.139 

 

No noise 

Standard 

error Quadrant 1.37 1.137 1.239 0.74 0.55 

 

NP 

delineation 

N 

kc=1 md 

25 50 100 500 1000 

Y-on-X 0.64 0.38 0.32 0.28 0.27 

RMA -1.15 -1.15 -1.19 -1.19 -1.19 

Discriminant -1.24 -1.13 -1.2 -1.19 -1.18 

 

Noise 1 

Bias 

Quadrant 0.58 0.50 0.69 0.75 0.55 

Y-on-X 1.49 0.92 0.60 0.27 0.17 

RMA 0.68 0.48 0.36 0.15 - 

Discriminant 0.87 0.70 0.48 0.20 0.17 

 

Noise 1 

Standard 

error Quadrant 1.83 1.64 1.38 0.89 - 
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Table 8-1 Continued. 

 

NP 

delineation 

N 

kc=1 md 

25 50 100 500 1000 

Y-on-X 1.5 1.31 1.13 1.12 1.10 

RMA -0.93 -0.92 -0.93 -0.91 -0.93 

Discriminant -1.01 -0.93 -0.96 -0.94 -0.97 

 

Noise 2 

Bias 

Quadrant 1.03 1.38 1.51 1.69 1.79 

Y-on-X 2.29 1.30 0.86 0.38 0.21 

RMA 0.81 0.59 0.43 0.18 0.11 

Discriminant 1.00 0.726 0.61 0.22 0.18 

 

Noise 2 

Standard 

error Quadrant 1.98 1.81 1.50 1.21 - 

 

NGR 

evaluation 

N 

kc=1 md 

25 50 100 500 1000 

Y-on-X 1.56 1.36 1.31 1.30 1.28 

RMA 0.05 0.036 0.006 -0.007 -0.0027 

Discriminant 0.04 0.08 0.11 0.047 0.034 

 

No noise 

Bias 

Quadrant 0.05 -0.0061 0.007 -0.25 -0.02 

Y-on-X 1.278 0.82 0.55 0.247 0.17 

RMA 0.65 0.46 0.32 0.14 0.096 

Discriminant 0.86 0.58 0.399 0.19 0.139 

 

No noise 

Standard 

error Quadrant 1.07 0.64 0.45 0.22 0.14 
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Table 8-1 Continued. 

 

NGR 

evaluation 

N 

kc=1 md 

25 50 100 500 1000 

Y-on-X 1.89 1.67 1.61 1.57 1.56 

RMA 0.14 0.14 0.09 0.1 - 

Discriminant 0.04 0.15 0.086 0.095 0.139 

 

Noise 1 

Bias 

Quadrant 0.45 0.1 0.11 0.095 - 

Y-on-X 1.49 0.92 0.60 0.27 0.17 

RMA 0.68 0.48 0.36 0.15 - 

Discriminant 0.87 0.70 0.48 0.20 0.17 

 

Noise 1 

Standard 

error Quadrant 1.09 0.70 0.55 0.24 - 

 

NGR 

evaluation 

N 

kc=1 md 

25 50 100 500 1000 

Y-on-X 2.7 2.6 2.4 2.41 2.38 

RMA 0.36 0.37 0.36 0.15 - 

Discriminant 0.27 0.35 0.48 0.205 0.206 

 

Noise 2   

Bias 

Quadrant 0.46 0.42 0.35 0.32 - 

Y-on-X 2.29 1.30 0.86 0.38 0.21 

RMA 0.81 0.59 0.43 0.18 0.11 

Discriminant 1.00 0.726 0.61 0.22 0.18 

 

Noise 2  

Standard 

error Quadrant 1.16 1.0 0.6 0.26 - 
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NOMENCLATURE 

 

NP : net pay 

NGR : net-to-gross ratio  

φ : porosity expressed in porosity units, p.u. 

k : permeability expressed in md. 

φc : porosity cut-off value, expressed in p.u. 

kc : permeability cut-off value, expressed in md. 

φcRMA : porosity cut-off value given by the Reduced Major Axis line. 

φcY-on-X : porosity cut-off value given by the Y-on-X line. 

φcNP  :  optimal porosity cut-off value to delinate net pay. 

φcNGR  : optimal porosity cut-off value to evaluate net-to-gross ratio. 

log(k) : Base 10 logarithm of permeability in md. 

p.u. : porosity unit, expressed in percent. 

sNP : standard error of the non-pay fraction of porosities. 

sP : standard error of the pay fraction of porosities. 

NPφ µNP : mean of the non-pay fraction of porosities. 

Pφ  : mean of the pay fraction of porosities. 
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APPENDIX A 

RELATIONSHIP OF REGRESSION AND RMA LINES TO ERROR 

BEHAVIOR 

 
Assuming that log (k) and φ are assumed to have a joint normal distribution, their 

corresponding probability density function (PDF) is defined by equation (A-1): 
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On the basis of the probabilistic framework shown in Figure 2-3, Chapter II, the 

probabilities of respectively misidentifying pay for non-pay (represented by region B) 

and non-pay for pay (represented by region C), i.e. prob (B) and prob (C), may be 

expressed as follows: 

( ) ( )cc andkkprobBprob φφ ≤≥= loglog                                                       

( ) ( )cc andkkprobCprob φφ ≥≤= loglog                                                       

From equations (A-1), (A-2), and (A-3), ( )Bprob  and ( )Cprob  might be expressed as 

follows: 
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The following change of variables simplifies equations (A-4) and (A-5). 

φ
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1* = .                                                                                 (A-6)                                  

)log(

)log(*

k

ky
y

σ
µ−

=  hence dydy
k )log(

* 1
σ

= .                                                                      (A-7)                                                                   

 

It gives: 

( )
**

log
2

2***2*

2
*

*

12
2

exp
12

1
)( dydx

yyxx
Bprob

kc

c

� �
+∞

∞− �
�
	




�
�
�



−
+−−

−
=

φ

ρ
ρ

ρπ
                            (A-8) 

( )
**

log

2

2***2*

2

*

* 12
2

exp
12

1
)( dydx

yyxx
Cprob

kc

c

� �
∞−

+∞

�
�
	




�
�
�



−
+−−

−
=

φ ρ
ρ

ρπ
                            (A-9)                 

where 
φ

φ

σ
µφ

φ
−

= c
c

* and 
)log(

)log(*
log

log
k

kc

c

k
k

σ
µ−

= . 

The first part of derivative analysis is aimed to verify that the optimal porosity cut-off 

value for equalizing )()( CprobBprob = is given by the RMA line. The RMA line, 

expressed by equation (A-10), gives for **
C

φφ = in the standardized log(k*)-φ∗ crossplot:   

**log CCk φ= .                                                                                                               (A-10)                                                                                               

Substituting by equation (A-10) into equations (A-8) and (A-9) it gives: 
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It gives )()( CprobBprob = . 

The porosity cut-off value derived from the RMA line is therefore the optimal value 

φc=φcR for NGR estimation. φcR equalizes )(Bprob and )(Cprob and cancels out the 

errors of mistaking pay as non-pay and non-pay as pay. In the case where the assumption 

about the joint normality of the porosity-log permeability dataset applies, the use of the 
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RMA line is recommended to evaluate the NGR cut-off. 

 

Next we verify that the porosity cut-off value derived from the Y-on-X regression line 

minimizes the sum of the errors of misidentification of pay and non-

pay )()( CprobBprob + , in the case where the porosity-log permeability dataset is 

assumed to be joint normal distributed. 

On the basis of the properties related to the joint normality, the Y-on-X regression line 

gives for **
C

φφ = in the standardized log(k*)-φ∗ crossplot   

** .log CCk φρ= .                                                                                                            (A-13)    

where ρ  is the coefficient of correlation of the variables )log(k andφ . 

In order to demonstrate that )()( CprobBprob +  is minimized for the porosity cut-off 

value derived from the Y-on-X regression line, i.e. cYXc φφ =  , a derivative analysis 

confirms that )()( CprobBprob +  admits a minimum for cYXc φφ = . For this purpose it 

should be demonstrated that: 

 (i) The derivative of )()( CprobBprob + with respect to cφ  is equal to 0 for cYXc φφ =  

 (ii) The second derivative of )()( CprobBprob +  with respect to cφ  is positive 

for cYXc φφ =  

From equations (A-8) and (A-9), we obtain the derivatives of )(Bprob and )(Cprob  

with respect to cφ  are therefore expressed as follows:                         
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The probabilities )(Bprob and )(Cprob  may be expressed as follows, where f represents 

the PDF of the Log (k)-φ joint normal distribution: 
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Using equation (A-16), equation (A-20) becomes 
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Developing equation (A-21) gives 
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A new change of variable is conducted on equation (A-23): 
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The limits of the integral become: 

** log ckv =  hence 
( )

( )2

**

1

.log

ρ

φρ

−

−
= cck

X ,                                                                 (A-25)                                                      

 *
max

* log kv = hence 
( )2

**
max

1

.log

ρ

φρ

−

−
= ck

X .                                                               (A-26)                                                      

Using the equations (A-24), (A-25), and (A-26), equation (A-23) becomes 
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By setting +∞→maxlog ck , equation (A-27) becomes 
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Recalling the expression of )(Cprob , 
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The expression of )(Cprob may be slightly modified, as follows: 
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Rearranging equation (A-29), 
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On the basis on equation (A-17), equation (A-30) may be expressed as follows: 
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Developing equation (A-32), it gives 
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                                                                                                                                    (A-34) 

The same change of variable is applied to the integral of equation (A-34). 
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Let consider for this purpose a new variable X so as: 
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The limits of the integral become 

** log ckv =   hence  
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Using the equations (A-35), (A-36), and (A-37), equation (A-34) becomes 
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By setting −∞→*
minlog k , equation (A-38) becomes 
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In summary, the derivatives of )(Bprob and )(Cprob  with respect to cφ  can therefore be 

expressed as follows:                         
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By adding the equations (A-40a) and (A-40b), it gives 
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                                                                                                                                    (A-41) 

Substituting equation (A-13) into equation (A-41) gives 
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On the basis of the properties of the PDF of the normal distribution, the following 

integrals are defined (Jensen et al., 2003):  
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Equation (A-43) becomes  
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In the case where ** .log cCk φρ= , i.e. the porosity cut-off value is derived from the Y-on-

X regression line, the sum )()( CprobBprob + admits an extremum for cYXc φφ = . The 

variations of )()( CprobBprob + with respect to cφ should be investigated so as to 
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determine whether this extremum is a minimum or a maximum. 
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The sign of )()( CprobBprob + depends on the sign ofα .  
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In the case where 0<α , i.e.
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The variations of the derivative of )()( CprobBprob + with respect to cφ is summarized 

in the table below: 
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Table of variations of the derivative of prob(B)+prob(C) with respect to φφφφc. 

 

 
 
The sum )()( CprobBprob + is therefore minimized for cYXc φφ = . In order to evaluate 

NGR and equalize )(Bprob and )(Cprob , i.e. to equalize the errors of misidentifying 

pay for non-pay and non-pay for pay, the RMA line is required. When delineating net 

pay, i.e. minimizing the sum of the errors in identifying pay and non-pay, the optimal 

porosity cut-off is given by the Y-on-X regression line. Those results are valid in case 

the log k-φ dataset is assumed to be joint normal distributed.  
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APPENDIX B 

TEST FOR NORMALITY: PROBABILITY PLOTS 

 

The use of probability plot is a convenient method to test the normality of a univariate 

population. Let consider a population of n realizations{ }nn φφφφ ,.....,,........., 121 − , 

where nn φφφφφ ≤≤≤≤≤ −1321 ..... . The likelihood for any realization, φi, to occur may 

be defined by equation (B-1). 

[ ]ni
n

i
pi ,1,2

1

∈∀
−

=                                                                                 

These probability values are inverted so as to obtain normal distributed values Zi : 

[ ]ii perfZ *212 1 −−= −                                                                                 

The values of Zi may be plotted versus the values of φi: the more the univariate 

population deviates from the normal distribution, the less correlated the variates Zi and φi 

are. In this case, the data will significantly deviate from the straight line of slope 1. 

Example of probability plot
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The assumption of normality for the non-pay and pay fraction of porosities is tested. 100 

samples are generated from the joint normal bivariate population under investigation. A 
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permeability cut-off value of kc= 1 md is applied so as to segregate the non-pay from the 

pay fraction of porosities. The p(i) and Z(i) values are calculated from the porosity 

values and the probability plots for non-pay and pay-fraction are generated: 

 

Probability plot for NP porosities
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Probability plot for pay  porosities
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The pay and non-pay fraction of porosities do not deviate significantly from the line with 

slope 1, meaning they can be considered as normally distributed. The second plot shows 
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that even with a few data, the pay fraction of porosities still has a normal distribution. 

Probability plots may be created for other degree of sampling: it is expected that the 

normality of porosities will be more and more clearly expressed as the number of 

samples increases. The discriminant analysis may be properly used with these datasets 

generated from the population density under consideration.  

The probability plots are realized for the pay and non-pay fraction of the porosities for 

the Travis Peak formation.  

For the case where kc = 1 md, the normality of the two sub datasets is not rejected even 

though the normality is slightly altered for the larger and smaller porosities of the pay 

fraction. 

Non-pay fraction of porosities
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For the case where kc = 0.1 md, the normality of the two sub datasets is not rejected. 
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Non-pay fraction of porosities
Travis Peak formation
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Pay fraction of porosities
Travis Peak formation
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For the case where kc = 0.01 md, the normality of the non-pay fraction of the dataset is 

not rejected. However, the probability plot for the pay fraction of porosities clearly 

shows a deviation to the normality for porosities larger than 11 percent.  
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Non-pay fraction of porosities
Travis Peak formation

kc = 0.01 md
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Pay fraction of porosities
Travis Peak formation
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APPENDIX C 

BIVARIATE NORMAL DENSITY 

 

Sampling from a bivariate normal distribution, or joint normal distribution may be easily 

conducted by using a classic algorithm. 

The joint normal distribution is defined by the following PDF, 
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where
X

Xx
x

σ
µ−

=* ,
Y

Xy
y

σ
µ−

=* , and 
YX

XY

σσ
σρ = . 

So as to sample from the pdf defined by equation (C-1), two uncorrelated, standard 

normal variates, Z1 and Z2 are generated. For instance any random function may be used 

and then converted into a normal distribution function. 

( )1,0 2 ==Φ→ σµZ                                                         

The correlation is introduced by computing the two variates, X1 and X2, as shown by 

equations (C-3) and (C-4): 

1111 ZX σµ +=                                                                               

[ ]2
21222 1.. ρρσµ −++= ZZX                                                                     

The quantities �1 and �1 are the mean and standard deviation of the variate X1 whereas 

�1 and �1 are the mean and standard deviation of the variate X2. The parameter ρ 

corresponds to the coefficient of correlation between the variates X1 and X2. 

Joint normal bivariate datasets may be therefore generated with various numbers of 

paired values, i.e. samples of φ and k. 
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APPENDIX D 

HYPOTHESIS TEST ON INTERCEPT OF ESTIMATOR’S 

STANDARD ERRORS EQUATIONS   

The objective is to test that the intercepts, �0, of the equations of the standard errors for 

the different estimators under consideration are not significantly different from zero. 

Two-tailed t-tests using the null hypothesis H0: “�0=0”. The following results show that 

in all cases, the t-statistic is within the t-critical range obtained from a table of values for 

the t-distribution at the 5% confidence level. Therefore, H0 is accepted and the intercepts 

are found not to be significantly different from zero. 

 

Y-on-X No noise, 

kc=1.5 md 

No noise, 

kc=1 md 

No noise, 

kc=0.5 md 

No noise, 

kc=0.1 md 

�0 0.021607 -0.0371 0.018489 -0.009 

�= n-2 7 7 7 7 

T statistic -1.69852 -1.86093 -2.05524 -1.80515 

t critical range 

(two-tailed test) 
[-2.37, 2.37] [-2.37, 2.37] [-2.37, 2.37] [-2.37, 2.37] 

Conclusion accept Ho accept Ho  accept Ho accept Ho 
 

RMA No noise, 

kc=1.5 md 

No noise, 

kc=0.5 md 

�0 0.00463 0.003195 

�= n-2 7 7 

t statistic -2.31113 -1.59636 

t critical range 

(two-tailed test) 
[-2.37, 2.37] [-2.37, 2.37] 

Conclusion accept Ho accept Ho 
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RMA, kc=0.1 
md 

No noise 
Corrupted 

with noise 1 

Corrupted 

with noise 2 

�0 0.0022 0.007277 0.016806 

v= n-2 7 6 6 

t statistic -0.7129 0.480951 0.654535 

t critical range 

(two-tailed test) 
[-2.37, 2.37] 

[-2.447, 

2.447] 

[-2.447, 

2.447] 

Conclusion accept Ho  accept Ho accept Ho 
 

RMA, kc=1 md No noise 
Corrupted 

with noise 1 

Corrupted 

with noise 2 

�0 0.0022 0.00645 0.007855 

v= n-2 7 5 6 

t statistic -1.405 0.4495 -0.50925 

t critical range 

(two-tailed test) 
[-2.37, 2.37] 

[-2.571, 

2.571] 

[-2.447, 

2.447] 

Conclusion accept Ho  accept Ho accept Ho 
 

Discriminant, 
kc=1 md 

No noise 
Corrupted 

with noise 2 

Corrupted 

with noise 1 

�0 0.0019 0.075545 -0.075352 

v= n-2 5 5 5 

t statistic -0.757 0.361374 0.135364 

t critical range 

(two-tailed test) 
[-2.57, 2.57] [-2.57, 2.57] [-2.57, 2.57] 

Conclusion accept Ho  accept Ho accept Ho 
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Quarter (NGR),  
kc=1 md 

No noise 
Corrupted 

with noise 1 

Corrupted 

with noise 2 

�0 -0.0784 -0.030411 -0.056807 

v= n-2 5 4 4 

t statistic -1.58351 -0.55242 -0.59147 

t critical range 

(two-tailed test) 
[-2.57, 2.57] 

[-2.776, 

2.776] 

[-2.776, 

2.776] 

Conclusion accept Ho  accept Ho accept Ho 
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APPENDIX E 

TEST FOR JOINT NORMALITY 

 

The test for joint normality of the log(k)-φ dataset from the Travis Peak formation is 

conducted by using the quantities 
^

2
3U and 

^
2
4U which are a generalization of the first two 

non-zero components of the Lancaster’s test for univariate normality. 

One assumes that (x11,x12), (x21,x22), ………, (xn1,xn2) is a bivariate sample of size n. 

For i = 1, 2, 3,…., n, 
1

111,1, ).( −−= σµii xy                                                                                             

)1).().().(( 5.01
111,

1
222,2,

−−− −−−−= ρσµρσµ iii xxy                                             

where  µ1 and  σ1 represents respectively the average and standard deviation of the 

variables xi,1 and µ2 and σ2 represents respectively the average and standard deviation of 

the variables xi,2. 
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n
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s
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21.
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The components of 
^

2
3U are .6/,6/,2/,2/ 30031221 mmmm  The components of 

^
2
4U are .24/)3(,24/,6/,6/,2/)1( 4004133122 −− mmmmm  

In our case, testing for joint normality we found that 
^

2
4

^
2
3 UU + =250.10 with components 

equal to -0.31, 0.40, 0.33, 0.06, 0.2867, -0.47, 0.048, 0.06 and n = 320. No component 

does account for most of the quantity
^

2
4

^
2
3 UU + . The latter is nonetheless moderately 

insignificant in spite of the strong influence of the outliers. The hypothesis of joint 
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normality is therefore not rejected.   
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