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ABSTRACT

Applications of Algebraic Geometry to Object/Image Recognition. (August 2007)

Kevin Toney Abbott,

B.S., University of South Carolina; M.S., Texas A&M University

Chair of Advisory Committee: Dr. Peter Stiller

In recent years, new approaches to the problem of Automated Target Recognition

using techniques of shape theory and algebraic geometry have been explored. The

power of this shape theoretic approach is that it allows one to develop tests for

object/image matching that do not require knowledge of the object’s position in

relation to the sensor nor the internal parameters of the sensor. Furthermore, these

methods do not depend on the choice of coordinate systems in which the objects and

images are represented.

In this dissertation, we will expand on existing shape theoretic techniques and

adapt these techniques to new sensor models. In each model, we develop an appropri-

ate notion of shape for our objects and images and define the spaces of such shapes.

The goal in each case is to develop tests for matching object and image shapes un-

der an appropriate class of projections. The first tests we develop take the form of

systems of polynomial equations (the so-called object/image relations) that check for

exact matches of object/image pairs. Later, a more robust approach to matching is

obtained by defining metrics on the shape spaces. This allows us in each model to

develop a measure of “how close” an object is to being able to produce a given image.

We conclude this dissertation by computing a number of examples using these tests

for object/image matching.
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CHAPTER I

INTRODUCTION

A. Target Recognition

A crucial first step in the problem of Automated Target Recognition (ATR) is to un-

derstand how data extracted from a single image of an object can be used to determine

information about the geometry of the object. Unfortunately, without knowledge of

the object’s position in relation to the sensor and without knowledge of certain sensor

parameters (such as focal length in the case of an optical camera) efficiently recog-

nizing an object from this geometric information becomes a very difficult task, which

has forced existing methods to rely upon this information.

What we would like is an approach that is invariant to the viewpoint and inter-

nal parameters of the sensor. The methods that are currently being used compare

information taken from the image against templates that have been created for each

possible viewpoint - approximating the infinite number of possibilities by a finite

set of views [19]. In a strict sense, these methods are not viewpoint-invariant, and

furthermore, are extremely computationally expensive.

Through the techniques of shape theory and algebraic geometry, an alternative

has been made available which uses only information about the intrinsic geometry of

the object and its image. This new approach does not require a priori knowledge of the

sensor’s viewpoint in relation to the object nor does it depend on the sensor’s internal

parameters. In this dissertation, we expand on existing shape theoretic methods in

ATR and adapt these techniques to new target recognition models.

The journal model is SIAM Journal on Applied Mathematics.
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B. A Quick Review of Shape Theory

Since the reader may not be familiar with this branch of mathematics, we will give a

brief introduction to shape theory before beginning our discussion of the mathematical

aspects of target recognition. Additional details can be found in [16].

Shape theory has its beginnings in statistics with the work of David Kendall (see

[9], [10]). Being concerned with archaeological applications, Kendall was interested in

analyzing differences in shapes of artifacts. His approach was to represent an object

(or an image of an object) by a finite set of points corresponding to prominent fea-

tures called landmarks. In [16], landmarks are defined to be points chosen “to mark

the location of important features and to give a partial geometric description of the

image or object.” For example, in Fig. 1 we see an Iron Age brooch represented by

four feature points.

Fig. 1. Four landmarks on an Iron Age brooch (modified from [16]).

By representing objects and images by collections of feature points, Kendall

reduced the problem of analyzing the overall shapes of objects and images to the

problem of analyzing “shapes” of configurations of finitely many points.

What does Kendall mean by the “shape” of a configuration of points? Intuitively,

we think of figures as having the same shape if they differ by a rotation, a translation

or a dilation (scale factor). This is illustrated for triangles in Fig. 2.
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Fig. 2. All of these triangles have the same shape.

Kendall uses this natural concept to develop his idea of shape for configurations of

points. In [10], Kendall informally defines the shape of a set of data points to be

“what is left when the differences which can be attributed to translations, rotations,

and dilations have been quotiented out.” In other words, two configurations of points

have the same shape if they differ by a rotation, translation, or dilation.

To make this more precise we make the following definition.

Definition B.1. A map T : Rn → Rn is called a similarity transformation if it has

the form

(1.1) T (p) = λAp+ c

where λ > 0 is a real number, A ∈ SO(n) and c ∈ Rn. The group of similarity

transformations on Rn is denoted Sim(n).

Kendall’s notion of shape is now given as follows.

Definition B.2. Two configurations P1, P2, . . . , Pk and Q1, Q2, . . . , Qk of points in

Rn have the same shape if there is a similarity transformation T ∈ Sim(n) such that

T (Pi) = Qi for i = 1, . . . , k. The shape of a configuration of k points in Rn is its

equivalence class under the action of Sim(n) on Rn.
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One caveat that we should point out is that this definition of shape depends

on the ordering of the points. For example, suppose we have two configurations

P1 = (0, 0), P2 = (1, 0), P3 = (0, 2) and Q1 = (0, 0), Q2 = (0, 2), Q3 = (1, 0) so that

the configurations consist of the same three points but with a different labeling of

those points. Then, the similarity transformation that sends Q1 to P1 and Q2 to P2

is

(1.2) T (p) =
1

2

 0 1

−1 0

 p

However, we now see that T (Q3) =

 0

−1
2

 6= P3. Hence, by Kendall’s defini-

tion, the configurations P1, P2, P3 and Q1, Q2, Q3 do not have the same shape even

though they are equivalent as sets of points.

Some work has been done by Mirelle Boutin and Gregor Kemper in [2] and

David Sepiashvili in [14] addressing the action of the permutation group S(k) on

configurations of k points in Rn, but otherwise this problem remains to a large extent

open.

Now that we have an understanding of Kendall’s concept of shape, we would like

to better understand the space of shapes of configurations of k points in Rn. To avoid

going into too much detail, we will here give Kendall’s construction for configurations

of k points in R2. The construction for the more general case of k points in Rn can

be found in detail in [10] and [16].

Let Pi = (xi, yi) for i = 1, . . . , k be a configuration of k feature points in R2

which we will represent as a single vector

(1.3) (P1, P2, . . . , Pk) ∈
(
R2

)k
.
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To determine the shape of this configuration of landmarks, we must remove the in-

formation corresponding to rotation, translation, and scale.

To remove information coming from translations, we first compute the centroid

of our data set which is given by

(1.4) P =
1

n

k∑
i=1

Pi.

We then standardize our configuration with respect to translation so that its

centroid is 0 ∈ R2 giving us the new configuration vector

(1.5)
(
P1 − P , P2 − P , . . . , Pk − P

)
∈ F2k−2

which lies in the (2k − 2)-dimensional linear subspace

(1.6) F2k−2 =

{
(P1, P2, . . . , Pk) ∈ R2k |

k∑
i=1

Pi = 0

}
⊂ R2k.

We then standardize with respect to scale by dividing this new vector by the

centroid size of the configuration. That is, we scale this vector so that it has length

1 in the usual norm on R2k giving us the standardized configuration vector

(1.7)

τ(P1, P2, . . . , Pk) =

 P1 − P√∑k
i=1 ||Pi − P ||2

,
P2 − P√∑k

i=1 ||Pi − P ||2
, . . . ,

Pk − P√∑k
i=1 ||Pi − P ||2

 .

It should be noted that for this construction to make sense, the feature points

P1, P2, . . . , Pk must not be coincident, which will be a reasonable assumption in almost

all applications. Therefore, we will henceforth exclude this degenerate case from our

discussion.

Having made the assumption that at least two of the Pi are distinct, we can now
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see that the vector τ lies in the (2k − 3)-dimensional sphere

(1.8) S2k−3
∗ = F2k−2 ∩ S2k−1

We use the subscript ∗ to indicate that this is not the usual unit sphere in R2k−2, but

rather is considered to be lying in a (2k − 2)-dimensional linear subspace of R2k. In

[10], Kendall makes the following definitions regarding τ and S2k−3
∗ .

Definition B.3. We will call the vector τ(P1, . . . , Pk) the pre-shape of the config-

uration P1, . . . , Pk and we will refer to the sphere S2k−3
∗ as the pre-shape space for

configurations of k points in R2.

The final step is to remove information corresponding to rotations from our pre-

shapes. To do this, we should observe that the group of rotations on R2 is SO(2) and

that the action of SO(2) on the pre-shape space S2k−3
∗ is simply the action induced

by the usual action of SO(2) on R2. In other words, for a configuration P1, . . . , Pk in

R2 and a transformation A ∈ SO(2)

(1.9) A · τ(P1, . . . , Pk) = τ(AP1, . . . , APk).

We are now able to see that the shape space for configurations of k points in R2

(not all coincident) is the quotient space

(1.10) Σk
2 = S2k−3

∗ /SO(2)

under the action of SO(2) on S2k−3
∗ . Small points out in [16] that the equivalence

classes under this action are circles on S2k−3
∗ .

This definition of the shape space, however, has little meaning until we define a

metric on it, which will be the primary tool for comparing shapes of configurations

of feature points. Surprisingly, in [10] the natural metric that Kendall defines on the
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shape space Σk
2 is computed directly from pre-shape representatives without having

to coordinatize Σk
2 in any way.

Since the equivalence classes under the action of SO(2) on the pre-shape space are

circles, Kendall defines the distance between two shapes to be the minimum distance

between equivalence classes in S2k−3
∗ with it usual great circle metric.

The distance between two pre-shapes τ1, τ2 ∈ S2k−3
∗ is given by

(1.11) d(τ1, τ2) = cos−1 〈τ1, τ2〉 ,

and so the distance between the shapes of these two pre-shapes then becomes

(1.12) d([τ1], [τ2]) = inf{ d(γ1, γ2) | γ1 ∈ [τ1], γ2 ∈ [τ2] }.

To evaluate this metric, we make the usual identification of R2 with C. If for a

configuration P1, . . . , Pk of points in R2, we think of the Pi as complex numbers, the

pre-shape of the configuration becomes

(1.13)

τ(P1, P2, . . . , Pk) =

 P1 − P√∑k
i=1 |Pi − P |2

,
P2 − P√∑k
i=1 |Pi − P |2

, . . . ,
Pk − P√∑k
i=1 |Pi − P |2


viewed as a vector in Ck rather than R2k.

Now for two shapes σ1 = [τ1] and σ2 = [τ2], we write

(1.14) τi = (τi1, τi2, . . . , τik), i = 1, 2

where the τij are complex entries, and as we see in [10] and [16], the distance between

σ1 and σ2 is

(1.15) d(σ1, σ2) = cos−1

∣∣∣∣∣
k∑

i=1

τ1iτ 2i

∣∣∣∣∣
where τ 2i is the complex conjugate of τ2i. In [10], Kendall calls the metric given by
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1.15 the Procrustean metric on Σk
2.

In [9], Kendall asserts (and later shows in more detail in [10]) that the shape

space Σk
2 of k-tuples of points in R2 is isomorphic to the complex projective space

Pk−2
C . Moreover, the Procrustean metric on Σk

2 is equivalent to the usual Fubini-Study

metric on Pk−2
C .

C. Shape Theory and Object/Image Recognition

The techniques of shape theory apply in a very natural way to the problem of Au-

tomated Target Recognition. The approach is to first represent an object by a finite

set of feature points in 3-space (in some cases R3 in others P3
R) which we will call

an object configuration. For example, a jet might be represented by choosing feature

points corresponding to the nose, wingtips, and stabilizers as is shown in Fig 3.

Fig. 3. An F-35 fighter jet represented by 5 landmarks (modified from [12]).

When an image is generated of the object, the object configuration is projected

onto a plane in some fashion - the type of projection depending on the type of sensor

used to produce the image. For our purposes we will be primarily concerned with

the pinhole camera model, in which case we will consider the focal point projection

illustrated in Fig. 4. A projection, T , of this type maps a point, P , in 3-space onto



9

Fig. 4. An image of the jet in Fig. 3 generated by the focal point projection (modified

from [12]).

a plane, L, by intersecting the line, l, that passes through the point P and the focal

point F with L.

We will refer to the resulting configuration of points obtained by projecting the

object configuration as an image configuration. More generally, we will use this term

to refer to any configuration of points in the plane obtained as feature points on some

image.

The goal is relate object configurations and image configurations under projec-

tions appropriate to the sensor being modeled. We want a method of target recog-

nition that is invariant to changes in an object’s position and orientation in relation

to the sensor and invariant to the choice of coordinate system in which we represent
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our object and image. To achieve this invariance, the techniques we will use relate

the shapes of object and image configurations. As a result, the methods only use

information coming from the intrinsic geometry of our configurations.

By introducing projections into our analysis, our notion of shape will vary with

the type of sensor we are modeling. In this dissertation, we will be primarily concerned

with configurations of points modulo the action of either the Affine group or the

Projective General Linear group. However, in some cases we will be interested in the

classical case involving the Similarity group.

It was David Jacobs in [8] first introduced the idea of matching shapes of 3D and

2D configurations under projections. The theory in the context of ATR was further

developed by Asmuth, Stiller, and Wan in [20, 22, 21], Stiller in [17, 18], and Arnold

and Stiller in [19]. This dissertation continues in their work and adapts the shape

theoretic approach to new sensor models.

In Chapter II, we examine the Generalized Weak Perspective model for ob-

ject/image recognition laid out in [18]. In this case we consider our configurations of

points to be in affine space (Rn or Cn) and analyze their shapes modulo the action

of the group of affine transformations and the relationships that exist between object

and image configurations under generalized weak perspective projections (which we

will define in that chapter). We begin by reviewing the construction of the appropri-

ate shape spaces. We then present the equations that relate the shapes of object and

image configurations (given in [18]) and follow that by discussing the metrics on the

shape spaces. We end the chapter by introducing three notions of distance between

an object and an image shape and proving that they are all equivalent.

In Chapter III, we adapt the techniques of the Generalized Weak Perspective

case to the Full Perspective case which more accurately models the production of an

image by an optical camera. Here we consider our configurations to be in projective
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space (Pn
R or Pn

C) and investigate the relationship between the shapes of object and

image configurations (modulo the action of the Projective General Linear group)

under projection from a point in projective space. This projection is precisely the

focal point projection used by an optical camera to produce an image. We begin this

chapter by associating to each configuration of points a projective subvariety of a

Grassmannian (embedded in some projective space) and then analyzing the structure

of these varieties (called shape varieties). We follow this with a discussion of the

matching object/image equations, presented in a manner that depends only on the

shapes of the object and image configurations.

We conclude the chapter by investigating ways to embed our object and image

shape spaces into some projective space. To do this, we need to construct a moduli

space for our shape varieties - that is, we need to construct a map from the projective

space containing the shape varieties to some other projective space that effectively

collapses each shape variety to a single point and that sends distinct shape varieties

to distinct points. We first consider the Chow embedding (see [15]). However, the

dimension of the final projective space is so high that this method would be nearly

useless in practice. We instead develop a rational map into a much lower dimensional

projective space that has all the desired properties by composing a Veronese Map

(see [6]) with a projection into a projective space of lower dimension.

In Chapter IV, we will briefly examine the Conformal case in which we consider

shapes in the classical sense (that is, configurations modulo similarity transforma-

tions) and consider conformal projections (orthographic projection followed by a di-

lation). This case is much more useful in modeling radar image production. We will

begin the chapter by constructing the appropriate shape spaces and follow that by

computing the object/image equations for this case. We conclude the chapter with

an analysis of the metrics on the shape spaces.
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The dissertation will close with two final sections: Chapter V and and Appendix.

Chapter V will give a summary our results and conclusions and will give a brief glimpse

of avenues for further study. The Appendix will consist of detailed examples using

code written for the computer algebra package Macaulay2 and will include the actual

code used in these computations.



13

CHAPTER II

THE GENERALIZED WEAK PERSPECTIVE (AFFINE) MODEL

A. Generalized Weak Perspective Projections

In this chapter, we will concern ourselves with the problem of identifying images

which have been produced by an optical camera. As previously indicated, in our

mathematical model of this problem, we represent an object by a configuration of

feature points in 3-D, and we represent an image by a configuration of feature points

in 2-D. For this first model, we will consider our points to be in affine space - that

is, we will consider object configurations as points in A3
R = R3 and we will consider

image configurations as points in A2
R = R2. For reasons that we will shortly see, we

represent points P ∈ An
R in the form

(2.1) P =



x1

...

xn

1


.

Recall that in Chapter I, we noted that this type of sensor produces an image

by a focal point projection (see Fig. 4). Unfortunately, this focal-point projection is

nonlinear as a map from A3
R to A2

R. For example, suppose the map T : A3
R → A2

R is

a projection from the point F = (0, 0, 2) onto the plane R2 = {(x, y, z) ∈ A3
R|z = 0}

(we identify R2 with A2
R by dropping the third coordinate) and consider the points

P = (0, 0, 1) and Q = (0, 1, 0). Then we see in Fig. 5 that T (P ) + T (Q) = (0, 1, 0)

but T (P +Q) = (0, 0, 2). Hence, T is not linear.

Another problem arises from the fact that for a given projection T from a point F

onto a plane L ⊂ A3
R, there are points in A3

R (other than P ) for which T is undefined.
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Fig. 5. T (P ) + T (Q) and T (P +Q) drawn in the plane A = {(x, y, z)|x = 0}.

Namely, T is undefined for points lying in the plane K ⊂ A3
R passing through P that is

parallel to L since the line m through F and any given point P ∈ K will not intersect

L. If we consider T to be the projection above from the point F = (0, 0, 2) onto the

plane R2, then T is undefined for points lying in the plane K = {(x, y, z)|z = 2} as

shown in Fig. 6 below.

Fig. 6. The line m through the focal point F and a point P ∈ K does not intersect

R2 (drawn in the plane A = {(x, y, z}|x = 0).

We avoid these problems by choosing to approximate focal point projections by

generalized weak perspective (GWP) projections. When we represent points in An
R in
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the form 2.1, these projections (as maps from A3
R to A2

R) may be written as matrices

of the form

(2.2) T =


t11 t12 t13 t14

t21 t22 t23 t24

0 0 0 1


where T has maximal rank. The advantage to using this type of projection is that the

map is now linear (and more importantly regular) and is well-defined on A3
R which

allows us to attack the problem of object/image recognition using this model in an

algebraic geometric context.

In the proceeding sections, we will follow the presentation in [18] to (1) develop

the appropriate shape spaces for this model, (2) give necessary and sufficient condi-

tions for an image configuration to be a GWP projection of an object configuration,

and (3) define the natural metrics on the shape spaces. We will then define three

separate notions of distance between an object shape and an image shape and prove

that these three “metrics” are equivalent.

B. Shape in the GWP Model

We now want to define an appropriate notion of shape for our object and image

configurations in this model. That is, we want to define a group of transformations

on An
R whose action on configurations of k points in An

R allows us to relate shapes of

object and image configurations under GWP projections.

To begin, suppose the configuration Q1, Q2, . . . , Qk ∈ A2
R is the image of an

object configuration P1, P2, . . . , Pk ∈ A3
R under a GWP projection T i.e. T (Pi) = Qi
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for i = 1, . . . , k. Now suppose that we move Q1, Q2, . . . , Qk by a transformation

(2.3) A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


to another configurationQ′

1, Q
′
2, . . . , Q

′
k ∈ A2

R, and suppose that we move P1, P2, . . . , Pk

to the configuration P ′
1, P

′
2, . . . , P

′
k by a transformation

(2.4) B =



b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44


.

We should first note that since we want the matrix A to be a transformation on

A2
R, we must have that for every point q = (q1, q2, 1) ∈ A2

R, Aq is of the form (c1, c2, 1).

In particular, the third entry must be equal to 1 giving us that

(2.5) q1a31 + q2a32 + a33 = 1

for all q1, q2 ∈ R. It is then easy to see that a31 = a32 = 0 and a33 = 1. Thus, A must

be of the form

(2.6) A =


a11 a12 a13

a21 a22 a23

0 0 1

 .
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Similarly, since B must be a transformation on A3
R, it must be of the form

(2.7) B =



b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

0 0 0 1


.

Furthermore, since we want the set of allowable transformations to be a group,

A and B should be invertible. We now define these groups of transformations in

complete generality.

Definition B.1. Let K be a field. Then a map M : An
K → An

K is an affine transfor-

mation on An
K if it is of the form

(2.8) M(p) = Sp+ v

where S is an invertible n× n matrix over K and v ∈ An
K . The group of affine trans-

formations on An
K is denoted AffK(n) or simply Aff(n) when the field is understood.

If we represent points in An
K in the form of 2.1 then affine transformations take

the form

(2.9) M =



c1

S
...

cn

0 · · · 0 1


where S ∈ GL(n,K) and ci ∈ K for i = 1, . . . , n. This is precisely the form that our

transformations A and B take. Thus, we should consider two configurations (object

or image) to have the same shape if they differ by an affine transformation.

Definition B.2. We will refer to the equivalence class of a configuration of k points
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in An
R under the action of AffR(n) as the affine shape of the configuration.

We should note that the transformation M in 2.9 acts on An
k by a change of basis

by the matrix S followed by a repositioning of the origin to the point (c1, . . . , cn) ∈ An
K

i.e. an affine transformation corresponds to a change of affine coordinate system on

An
K . Since we want our method of object/image recognition to be independent of the

choice of coordinate system in which we represent our points, we can further see that

this is the “right” definition of shape for this model.

Returning to the setup at the beginning of this section, we observe that since

Q1, . . . , Qk is the image of P1, . . . , Pk under the GWP projection T , we must have

that Q′
1, . . . , Q

′
k is the image of P ′

1, . . . , P
′
k under the map ATB−1. The important

point to note here is that since A and B−1 are affine transformations, it is easy to see

that ATB−1 is in fact a GWP projection. Thus we are able to relate affine shapes

of object and image configurations (modulo affine transformations) under generalized

weak perspective projections i.e. matching is well-defined on the level of equivalence

classes.

C. The Affine Shape Spaces

Having defined shape in the generalized weak perspective model, we will now con-

struct the corresponding shape spaces. We will do this in complete generality for

configurations of k points in An
R. The 3-D object and 2-D image shape spaces then

become specific cases of the more general results. It should be noted that all of the

following constructions are valid when working in An
C.

Let Pi = (x1i, x2i, . . . , xni, 1) for i = 1, . . . , k be a configuration of points in An
R. In

our construction, we must assume that the Pi do not all lie in a single hyperplane. This

is a reasonable assumption since a configuration of points lying in a hyperplane in An
R
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could be considered to be a configuration of points in An−1
R . For instance, if an object

configuration lies in a single plane in A3
R then in some sense, that configuration is an

image and does not represent a real 3D object. Thus we will exclude this degenerate

case and henceforth assume that our configurations are noncoplanar. We will also

need to assume that k ≥ n + 1. This leaves us with the task of understanding the

quotient space
(
(An

R)k − V
)
/Aff(n) where k ≥ n + 1 and V ⊂ (An

R)k is the locus of

coplanar configurations.

We represent our configuration P1, . . . , Pk as the (n+ 1)× k matrix

(2.10) M(P1, . . . , Pk) =



x11 x12 x1k

x21 x22 · · · x2k

...
...

...

xn1 xn2 xnk

1 1 1


obtained by letting the coordinates of our points be the columns of the matrix.

We will refer to this matrix as a configuration matrix. We then identify our

configuration with a (k − n − 1)-dimensional subspace Kk−n−1 ⊂ Ak
R. In particular,

Kk−n−1 is the null space of the matrix M(P1, . . . , Pk) viewed as a map from Ak
R to

An+1
R . To see that Kk−n−1 has dimension k − n − 1, note that since the points of

our configuration P1, . . . , Pk are noncoplanar, the determinant of at least one of the

(n+ 1)× (n+ 1) minors of the configuration matrix, M , is nonzero. This means that

M has maximal rank n+ 1 and hence Kk−n−1 has dimension k− (n+ 1) = k−n− 1.

The important thing to notice is that if we apply an affine transformation A ∈
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AffR(n) to the configuration P1, P2, . . . , Pk we obtain a new (n+ 1)× k

(2.11) M ′ =



x′11 x′12 x′1k

x′21 x′22 · · · x′2k

...
...

...

x′n1 x′n2 x′nk

1 1 1


= AM,

but the null space of M ′ is exactly Kk−n−1, the null space of M . Thus we are able to

associate to the affine shape of a configuration of k points in An
R the (k−n− 1)-plane

Kk−n−1. Since Kk−n−1 ⊂ Hk−1 =
{

(v1, . . . , vk)|
∑k

i=1 vi = 0
}

, we are therefore able

to identify affine shapes of configurations with points in the Grassmannian Gr(k −

n− 1, Hk−1) of (k − n− 1)-dimensional subspaces of the hyperplane Hk−1 ⊂ Ak
R.

Theorem C.1. The shape space
(
(An

R)k − V
)
/Aff(n) for configurations of k points

in An
R is the Grassmannian Gr(k − n− 1, Hk−1).

Proof. Define φ :
(
(An

R)k − V
)
/Aff(n) → Gr(k−n−1, Hk−1) by sending the shape of

a configuration to the null space of its corresponding configuration matrix. We have

already seen that this map is well-defined on the quotient space
(
(An

R)k − V
)
/Aff(n).

To see that φ is surjective, let K ∈ Gr(k − n − 1, Hk−1). Then K ⊂ Ak
R is the

intersection of n + 1 independent hyperplanes given by the polynomial equations in
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the variables x1, . . . , xk

a11x1 + a12x2 + · · ·+ a1kxk = 0

a21x1 + a22x2 + · · ·+ a2kxk = 0

...

an1x1 + an2x2 + · · ·+ ankxk = 0

x1 + x2 + · · ·+ xk = 0.(2.12)

In other words, K is the null space of the matrix

(2.13) MK =



a11 a12 · · · a1k

a21 a22 · · · a2k

...
...

. . .
...

an1 an2 · · · ank

1 1 · · · 1


.

Thus K is the image of the shape of the configuration Pi = (a1i, . . . , ani, 1) under the

map φ, and hence φ is surjective.

Now suppose we have two configurations P1, . . . , Pk and Q1, . . . , Qk so that

φ([P1, . . . , Pk]) = φ([Q1, . . . , Qk]) = K ∈ Gr(k− n− 1, Hk−1). Since K ∈ Gr(k− n−

1, Hk−1), there is some (n+1)× (n+1) minor of MK that has a nonzero determinant.

For the remainder of this proof, we will assume this is the minor given by the first

n+1 columns of MK (the proof is the same no matter which minor you pick). Under

this assumption, K may be uniquely represented as the null space of a matrix of the

form
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(2.14)



0 1 0 0 · · · 0 a1 n+2 · · · a1k

0 0 1 0 · · · 0 a2 n+2 · · · a2k

0 0 0 1 · · · 0 a3 n+2 · · · a3k

...
...

...
...

. . .
...

. . .
...

0 0 0 0 · · · 1 an n+2 · · · ank

1 1 1 1 · · · 1 1 · · · 1


.

Next, consider the configuration matrices

(2.15) MP = M(P1, . . . , Pk) =



p11 p12 · · · p1k

p21 p22 · · · p2k

...
...

. . .
...

pn1 pn2 · · · pnk

1 1 · · · 1


and

(2.16) MQ = M(Q1, . . . , Qk) =



q11 q12 · · · q1k

q21 q22 · · · q2k

...
...

. . .
...

qn1 qn2 · · · qnk

1 1 · · · 1


.

Since the null spaces of MP , MQ and MK are the same, there are (n + 1) × (n + 1)
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invertible matrices A and B such that

(2.17) AMP =



0 1 0 0 · · · 0 p′1 n+2 · · · p′1k

0 0 1 0 · · · 0 p′2 n+2 · · · p′2k

0 0 0 1 · · · 0 p′3 n+2 · · · p′3k

...
...

...
...

. . .
...

. . .
...

0 0 0 0 · · · 1 p′n n+2 · · · p′nk

1 1 1 1 · · · 1 1 · · · 1


and

(2.18) BMQ =



0 1 0 0 · · · 0 q′1 n+2 · · · q′1k

0 0 1 0 · · · 0 q′2 n+2 · · · q′2k

0 0 0 1 · · · 0 q′3 n+2 · · · q′3k

...
...

...
...

. . .
...

. . .
...

0 0 0 0 · · · 1 q′n n+2 · · · q′nk

1 1 1 1 · · · 1 1 · · · 1


.

By moving the first n+1 columns to this standard position, the p′ij and q′ij are uniquely

determined. Thus we have that p′ij = aij = q′ij for all 1 ≤ i ≤ n, n+ 2 ≤ j ≤ k.

Moreover, since the (n + 1)th rows of MP and MQ are fixed by A and B re-

spectively, it is easy to see that A and B must be affine transformations. Thus,

AMP = BMQ and hence MP = A−1BMQ. Therefore, the configurations, P1, . . . , Pk

and Q1, . . . , Qk differ by the affine transformation A−1B and so have the same shape

thereby completing the proof that φ is injective.

Definition C.2. We will call the space AR(k, n) = Gr(k − n− 1, Hk−1) (k ≥ n+ 1)

the affine shape space for configurations of k points in An
R. In the case where n = 3

we will call Ok = AR(k, 3) = Gr(k− 4, Hk−1) affine object space (or just object space

when the context is understood). In the case where n = 2 we will call Ik = AR(k, 2) =
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Gr(k − 3, Hk−1) affine image space (or simply image space).

In any case, the affine shape space, AR(k, n) is a well understood manifold of

dimension n(k − n − 1), the structure of which we will use in the following sections

to further our knowledge of the affine shapes.

D. Affine Shape Coordinates

To be able to compare shapes of configurations in a quantifiable way (in particular,

to determine matching of object and image shapes under GWP projections) we will

need to, in some way, assign coordinates to our shapes. Since AR(k, n) is a real

manifold, it comes equipped with local coordinate charts, giving us a way define such

coordinates. However, this only allows us to compare shapes in an open subset of our

shape space rather than allowing us to consider all shapes under a single coordinate

system. For computational purposes, it would be more convenient to be able to define

global coordinates on our shape space. We are able to achieve this goal via the Plücker

embedding of the Grassmannian into a real projective space.

In general, the Plücker embedding maps a GrassmannianGr(n, V k) (n-dimensional

subspaces of a k-dimensional vector space V k) into the projective space P
(∧k−n V k

)
∼=

P( k
k−n)−1 ∼= P(k

n)−1 in the following way. Let K ∈ Gr(n, V k). Then K is the intersec-

tion of k − n hyperplanes in our vector space V k given by

(2.19)
k∑

i=1

ajie
∗
i = 0, j = 1, . . . , k − n

where e∗1, . . . , e∗k is a basis for V ∗, the dual vector space of V . More simply put, K
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is the null space of the matrix

(2.20) MK =



a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

. . .
...

ak−n 1 ak−n 2 . . . ak−n k


.

Now for each 1 ≤ i1 < i2 < . . . < ik−n ≤ k we define mi1,i2,...,ik−n
to be the

determinant of the (k−n)×(k−n) minor of MK whose columns are the i1, i2, . . . , ik−n

columns of MK , i.e.

(2.21) mi1,i2,...,ik−n
= det



a1i1 a1i2 . . . a1ik−n

a2i1 a2i2 . . . a2ik−n

...
...

. . .
...

ak−n i1 ak−n i2 . . . ak−n ik−n


.

The Plücker embedding is now defined to be the map

(2.22)

Φn,k : G(n, k) −→ P(k
n)−1

K 7−→ (m1,2,...,k−n, . . . ,mn+1,n+2,...,k) ,

(all maximal minors)

and the coordinates of Φn,k (K) are called the Plücker coordinates of K. We will

assume that the minors mi1,i2,...,ik−n
are ordered lexicographically.

It is important to note that this map does not depend on our choice of hyper-

planes, but does depend on our choice of basis for V k. We should also note that this

map does in fact embed G(n, k) as a closed projective variety in P(k
n)−1. In other

words, Φn,k (G(n, k)) is the zero locus of some system of polynomials f1, . . . , fs in the

variables x1,2,...,k−n, . . . , xn+1,...,k with coefficients in the base field of V k. We use the

variables x1,2,...,k−n, . . . , xn+1,...,k to indicate that the xi1,i2,...,ik−n
coordinate of Φn,k (K)
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is mi1,...,ir−n . The equations fi = 0, 1 ≤ i ≤ s are known as the Plücker relations. For

more on this, see [7] and [5].

The most obvious way to give global coordinates on AR(k, n) would be to embed

this shape space in P( k−1
k−n−1)−1

R via the Plücker embedding Φk−n−1,k−1. The problem

with this approach is that it requires us to choose coordinates on Hk−1 and then

represent K as the intersection of n hyperplanes in Hk−1.

An alternative method of producing global coordinates on AR(k, n) is obtained

by first observing that since Hk−1 is a hyperplane in Ak
R, every (k−n−1)-dimensional

linear subspace of Hk−1 is also a (k−n−1)-dimensional linear subspace of Ak
R. Thus,

we may view AR(k, n) = Gr(k− n− 1, Hk−1) as a submanifold of Gr(k− n− 1, k) =

Gr(k−n−1,Ak
R), in which case Φk−n−1,k embeds AR(k, n) in P( k

n+1)−1

R as a subvariety

of Φk−n−1,k(G(k−n− 1, k)). Under this map, a configuration Pi = (xi1, . . . , xin), i =

1, . . . , k (k ≥ n + 1) is mapped into P( k
n+1)−1

R by taking all maximal minors of the

matrix

(2.23) M =



x11 x21 xk1

x12 x22 · · · xk2

...
...

...

x1n xn2 xkn

1 1 1


.

Example D.1. Consider the following configuration of 4 points in R2

P1 = (0, 0), P2 = (1, 0), P3 = (0, 1), P4 = (1, 1)
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These points give us the matrix 
0 1 0 1

0 0 1 1

1 1 1 1

 .

To find the point in P( 4
2+1)−1 = P3 corresponding to this configuration, we compute

m1,2,3 = det


0 1 0

0 0 1

1 1 1

 = 1

m1,2,4 = det


0 1 1

0 0 1

1 1 1

 = 1

m1,3,4 = det


0 0 1

0 1 1

1 1 1

 = −1

m2,3,4 = det


1 0 1

0 1 1

1 1 1

 = −1.

So the configuration P1, P2, P3, P4 corresponds to the point (1 : 1 : −1 : −1) ∈ P3.

Embedding our shape space AR(k, n) into P( r
n+1)−1

R in this fashion is in some sense

a more natural way to give global coordinates on AR(k, n) than embedding it into

P(k−1
n )−1

R . This method allows us to work directly with the configuration matrix rather

than forcing us to choose a basis for Hk−1 and then rewrite our basis for Kk−n−1 in

terms of our chosen basis for Hk−1. Also, as we will see later in this paper, this

method is also more closely related to the one that we will use in the full perspective
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case.

Definition D.2. Given a configuration P1, . . . , Pk ∈ An
R we will refer to the Plücker

coordinates of Kk−n−1 (the null space of M(P1, . . . , Pk)) viewed as a subspace of Ak
R

(rather than Hk−1) as the shape coordinates of the configuration P1, . . . , Pk.

In Example D.1, the homogeneous coordinates (1 : 1 : −1 : −1) are the shape

coordinates of the configuration P1, P2, P3, P4.

E. Dual Shape Coordinates

Before we can give a system of polynomial equation relating shapes of object and

image configurations, we must first define the dual shape coordinates of a configuration

P1, . . . , Pk in An
R. It turns out that the general object/image relations can be written

easily in terms of standard shape coordinates and dual shape coordinates.

Let K be a (k− n− 1)-dimensional subspace of Ak
R. Then K is the null space of

an (n+ 1)× k matrix

(2.24) A =



a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

. . .
...

an+1 1 an+1 2 . . . ln+1 k


,

and its Plücker coordinates are (. . . : mi1,...,in+1 : . . .) where the mi1,...,in+1 represent

determinants of (n+ 1)× (n+ 1) minors of the matrix A.

Another way to associate Kk−n−1 with a point in projective space is to first

represent it as a (k − n− 1)× k matrix whose rows form a basis for Kk−n−1. Let us
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denote this matrix as

(2.25) B =



b11 b12 . . . b1k

b21 b22 . . . b2k

...
...

. . .
...

bk−n−1 1 bk−n−1 2 . . . bk−n−1 k


.

We then assign to Kk−n−1 the coordinates (. . . : m∗
i1,...,ik−n−1

: . . .) ∈ P( k
k−n−1)−1

R =

P( k
n+1)−1

R , where m∗
i1,...,ik−n−1

is the determinant of a (k − n − 1) × (k − n − 1) minor

of the matrix B. These coordinates are the dual Plücker coordinates of Kk−n−1.

It is important to note that the row span of A is the orthogonal complement

Kk−n−1⊥ and that the null space of the matrix B is also Kk−n−1⊥ . The relationship

this gives between the Plücker coordinates of Kk−n−1 and its dual Plücker coordinates

(which are the Plücker coordinates of K⊥) is well understood and is given in the

following theorem:

Theorem E.1. Let i1, . . . , ik be a permutation of 1, . . . , k, and assume 1 ≤ i1 < i2 <

. . . < in+1 ≤ k and 1 ≤ in+2 < in+3 < . . . < ik ≤ k. Then

(2.26) mi1,...,in+1 = cεi1,...,ikm
∗
in+2,...,ik

where c is a fixed constant and εi1,...,ik = ±1 depending on whether i1, . . . , ik is an

even (+1) or odd (−1) permutation.

Example E.2. Let K1 be a linear subspace of dimension 1 of R5 (so k = 5 and
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n = 3) with Plücker coordinates mi1i2i3i4 . Then for some fixed constant c

m1234 = cm∗
5

m1235 = −cm∗
4

m1245 = cm∗
3

m1345 = −cm∗
2

m2345 = cm∗
1.(2.27)

We now define the dual shape coordinates in the obvious way.

Definition E.3. Let P1, . . . , Pk be a configuration of points in An
R and let K ∈

AR(k, n) be its affine shape (i.e. K is the null space of the configuration matrix

M(P1, . . . , Pk)). Then the dual shape coordinates of the configuration P1, . . . , Pk are

the dual Plücker coordinates of K.

F. The Object/Image Relations

Given an object configuration P1, . . . , Pk and an image configuration Q1, . . . , Qk we

want to give necessary and sufficient conditions (the object/image relations) for the

Qi to be a generalized weak perspective projection of the Pi. Recall that we view our

object space Ok as a subvariety of P(n
4)−1

R and our image space Ik as a subvariety of

P(n
3)−1

R . As such, we want to view the set V of pairs (K,L) where L is an image shape

that comes from a generalized weak perspective projection of the object shape K (the

so-called set of matching object/image pairs) as a subvariety V ⊂ Ok ×I ⊂ P(n
4)−1

R ×

P(n
3)−1

R . Therefore, our object/image relations should be a system of bihomogeneous

polynomials in the object and image shape coordinates whose zero locus is precisely

V .

Recall that our object shapes are linear subspaces Kk−4 ⊂ Ak
R of dimension
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k − 4 and our image shapes are linear subspaces Lk−3 ⊂ Ak
R of dimension k − 3.

The following relates object and image shapes under generalized weak perspective

projection.

Lemma F.1. Let P1, . . . , Pk be an object configuration with corresponding object shape

Kk−4 and let Q1, . . . , Qk be an image configuration with corresponding image shape

Lk−3. Then the Qi are a generalized weak perspective projection of the Pi if and only

if

(2.28) Kk−4 ⊂ Lk−3 ⊂ Hk−1 ⊂ Ak
R

where Hk−1 =
{

(x1, . . . , xk) ∈ Ak
R|

∑k
i=1 xi = 0

}
.

The preceding lemma follows easily from the observation that there is a GWP

projection T such that M(Q1, . . . , Qk) = TM(P1, . . . , Pk) if and only if, the row

span of M(Q1, . . . , Qk) is contained in the row span of M(P1, . . . , Pk). The preceding

lemma and the incidence relations given in [7] give us our object/image relations.

Theorem F.2. Let Pi = (xi, yi, zi, 1), 1 ≤ i ≤ k be an object configuration with

corresponding matrix

M =



x1 x2 xk

y1 y2 · · · yk

z1 z2 zk

1 1 1


and let Qi = (ui, vi, 1), 1 ≤ i ≤ k be an image configuration with corresponding

matrix

N =


u1 u2 uk

v1 v2 · · · vk

1 1 1

 .
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For 1 ≤ i1 < i2 < i3 < i4 ≤ k and 1 ≤ j1 < j2 < j3 ≤ k define the object shape

coordinates

mi1,i2,i3,i4 = det



xi1 xi2 xi3 xi4

yi1 yi2 yi3 yi4

zi1 zi2 zi3 zi4

1 1 1 1


and the image shape coordinates

nj1,j2,j3 = det


ui1 ui2 ui3

vi1 vi2 vi3

1 1 1

 .

Then the points Q1, . . . , Qk are the images of P1, . . . , Pk under a generalized weak

perspective projection if and only if

(2.29)
∑

1≤λ1<λ2≤n

mα1,α2,λ1,λ2n
∗
λ1,λ2,β1,...,βk−5

= 0

for all choices of α1, α2 and β1, . . . , βk−5 where 1 ≤ α1 < α2 ≤ k and 1 ≤ β1 < β2 <

. . . < βk−5 ≤ k. The expressions mα1,α2,λ1,λ2 and n∗λ1,λ2,β1,...,βk−5
should be treated as

skew-symmetric in the entries of the indices.

Since we may write dual shape coordinates in terms of standard shape coordi-

nates, we may write the relations completely in terms of the shape coordinates. The

relations then become

(2.30)
∑

1≤λ1<λ2≤k

ελ1,λ2mα1,α2,λ1,λ2nγ1,γ2,γ3 = 0

for all choices of 1 ≤ α1 < α2 ≤ k and 1 ≤ β1 < β2 < . . . < βk−5 ≤ k where

1 ≤ γ1 < γ2 < γ3 ≤ k is the complement of {λ1, λ2, β1, . . . , βk−5} in {1, . . . , k} when

λ1, λ2, β1, . . . , βk−5 are distinct (otherwise n∗λ1,λ2,β1,...,βk−5
= 0) and ελ1,λ2 is the sign of
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the permutation

(2.31) γ1, γ2, γ3, λ1, λ2, β1, . . . , βk−5

of the numbers 1, . . . , k.

Example F.3. In the case of configurations of 5 points (k = 5), each of the bilinear

polynomials in 2.29 contains two αi and no βi giving us a total of
(
5
2

)
= 10 equations.

For α = 1, α = 2, we have the equation

∑
1≤λ1<λ2≤5

m12λ1λ2n
∗
λ1λ2

= 0.

Since the mi1i2i3i4 are skew-symmetric in the indices, if λi = αj for any i, j, then

mα1α2λ1λ2 = 0. Thus the preceding equation becomes,

m1234n
∗
34 +m1235n

∗
35 +m1245n

∗
45 = 0.

Rewriting the n∗λ1λ2
in standard shape coordinates according to Theorem E.1

gives us the equation

cm1234n125 − cm1235n124 + cm1245n123 = 0.

Since c 6= 0, we may divide by c to leave us with the equation

m1234n125 −m1235n124 +m1245n123 = 0.
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The full system of object/image equations for 5 points is

m1234n125 −m1235n124 +m1245n123 = 0

m1234n135 −m1235n134 +m1345n123 = 0

m1234n145 −m1245n134 +m1345n124 = 0

m1235n145 −m1245n135 +m1345n125 = 0

m1234n235 −m1235n234 +m2345n123 = 0

m1234n245 −m1245n234 +m2345n124 = 0

m1235n245 −m1245n235 +m2345n125 = 0

m1234n345 −m1345n234 +m2345n134 = 0

m1235n345 −m1345n235 +m2345n135 = 0

m1245n345 −m1345n245 +m2345n145 = 0.

It should be noted that, as the system of matching equations indicate, given an

object shape K, there are multiple image shapes that object could generate and given

an image shape L, there are multiple object shapes capable of producing that image.

See the Appendix for examples. In fact, these loci are linear “slices” of the object

and images spaces.

G. Metrics

While Theorem F.2 gives us a way to test for exact matches of object and image

shapes under GWP projection, it is not an effective test for matching in practical

application. Interference from external sources during image production and limited

precision in extracting image data can cause some error in constructing our point
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configurations. To deal with these problems, a more flexible method of matching is

needed. A more robust approach is made available to us by defining metrics on our

shape spaces. Using these metrics, we can create a measure of “how close” an image

and an object are to matching, rather than just testing for an exact match.

1. Metrics on the Shape Spaces

Let Ll be a linear subspace of An
R of dimension l and let Kk be a linear subspace

of An
R of dimension k with k ≥ l. Define θ1 ∈

[
0, π

2

]
and unit vectors u1 ∈ Ll and

v1 ∈ Kk to be such that

(2.32) cos(θ1) = max
{
uTv|u ∈ Ll, v ∈ Kk, ‖u‖ = ‖v‖ = 1

}
= uT

1 v1

where ‖·‖ is the usual Euclidean norm. In other words, we choose unit vectors u1 ∈ Ll

and v1 ∈ Kk so that the angle θ1 between them is a minimum.

Now for 2 ≤ j ≤ l, let Uj be the orthogonal complement of span(u1, . . . , uj−1) in

Ll and let Vj be the orthogonal complement of span(v1, . . . , vj−1) in Kk. We define

θj ∈
[
0, π

2

]
and unit vectors uj ∈ Uj ⊂ Ll and vj ∈ Vj ⊂ Kk to be such that

(2.33) cos(θj) = max
{
uTv|u ∈ Uj, v ∈ Uj, ‖u‖ = ‖v‖ = 1

}
= uT

j vj

Definition G.1. We call the angles θ1, θ2, . . . , θl the principal angles between Ll and

Kk. The corresponding vectors u1, . . . , ul and v1, . . . , vl are called principal vectors.

We should note that by this recursive construction, we have that θ1 ≤ θ2 ≤ . . . ≤

θl. We will for the remainder of this chapter assume that the principal angles between

two subspaces are listed in this ascending order. Another key point to observe is that

for each i, the principal vector ui is a unit vector in the span of the orthogonal

projection of the principal vector vi onto L and vice versa.
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To actually compute the principal angles between Ll and Kk, we first choose

orthonormal bases for Ll and Kk. We then arrange the basis for Ll as the columns

of an n × l matrix L, and we arrange the basis for Kk as the columns of an n × k

matrix K. Next, we compute the singular values λ1, . . . , λl of the l× k matrix LTK.

The values θi = arccos(λi) are the principal angles between Ll and Kk. For more on

computing principal angles, see [1].

We now use these principal angles to obtain a metric on the affine shape space

AR(k, n).

Definition G.2. P1, . . . , Pk and P̃1, . . . , P̃k are two configurations of k points in An
R

whose affine shapes are Kk−n−1, K̃k−n−1 ∈ AR(k, n) respectively. Then the affine

shape distance between Kk−n−1 and K̃k−n−1 is

(2.34) d
(
K, K̃

)
=

√√√√k−n−1∑
i=1

θ2
i

where θ1, . . . , θk−n−1 are the principal angles between Kk−n−1 and K̃k−n−1.

This metric is more commonly known as the Fubini-Study metric on the Grass-

mannian Gr(k−n−1, k). To avoid confusion as to which shape space we are working

in, we will in the case of object space (n = 3) denote this metric by dObj and in the

case of image space (n = 2) denote this metric by dImg.

2. A “Distance” Between Object Shapes and Image Shapes

Now we would like to develop a notion of distance between an object shape and an

image shape to measure that images failure to be a GWP projection of the object.

There are three natural ways that we may do this.

Let K ∈ Ok be an object shape and let L ∈ Ik be an image shape (not necessarily

matching). Let VK ⊂ Ik be the locus of image shapes that K could produce under
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GWP projection and let UL ⊂ Ok be the locus of objects capable of producing the

image L. The first way to compute a distance between K and L is to find the

minimum distance between the object shape K and the locus UL in Ok. Explicitly,

we compute

(2.35) d1(K,L) = min
K′⊂L

(dObj(K,K
′)) .

Similarly, we may compute a distance between K and L by minimizing the

distance between the image shape L and the locus VK in Ik. We compute this

explicitly as

(2.36) d2(K,L) = min
L′⊃K

(dImg(L
′, L)) .

The third way to compute a distance between K and L is much more concise.

As we saw in Lemma F.1, an image shape L is a GWP projection of K if and only

if K ⊂ L, so what we want is a measure of the failure of K to be contained in L.

This can be achieved using the principle angles. Simply put, the smaller the principal

angles between K and L, the closer K is to being contained in L. In particular, when

K ⊂ L, the principal angles between K and L are all zero. Thus, we compute this

third distance to be

(2.37) d(K,L) =

√√√√k−4∑
i=1

θi

where θ1, . . . , θk−4 are the principal angles between K and L. Note that there are

k − 4 principal angles because k − 4 = dim(K) < dim(L) = k − 3.

The important thing to note is that all three of these “metrics” are equal, which

we shall now prove through a series of lemmas. The key step in this proof is to show

that for two linear subspaces V,W ⊂ Ak
R (not necessarily of the same dimension), the
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principal angle distance d(V,W ) =
√∑m

i=1 θ
2
i is equal to the principal angle distance

d(V ⊥,W⊥) =
√∑m̃

i=1 θ̃
2
i . Here θ1, . . . , θm are the principal angles between V and W

and θ̃1, . . . , θ̃m̃ are the principal angles between V ⊥ and W⊥.

Let V and W be linear subspaces of Ak
R with dim(V ) = n and dim(W ) = m

with n ≤ m. We should first observe that if V ∩W has dimension greater than zero,

then the principal angles θ1, . . . , θdim(V ∩W ) are all zero. Thus, we may assume that

V ∩W = {0}. Similarly, we can assume that V ⊥ ∩W⊥ = {0} so that V +W = Ak
R

(in particular, k = n+m).

Let θ1, . . . , θn be the principal angles between V and W , and for each θi let

vi ∈ V and wi ∈ W be the principal vectors corresponding to θi. Remember that by

definition, ‖vi‖ = ‖wi‖ = 1 for all i. Then v1, . . . , vn forms an orthonormal basis for

V , and we may choose wn+1, . . . , wm in W so that w1, . . . , wm is an orthonormal basis

for W since w1, . . . , wn is an orthonormal set of vectors in W . Note also that since

Ak
R = V ⊕W , v1, . . . , vn, w1, . . . , wm form a basis for Ak

R.

For each vi let ṽi =
proj

W⊥ (vi)

‖proj
W⊥ (vi)‖ and for each wi let w̃i =

proj
W⊥ (wi)

‖proj
V⊥ (wi)‖ . Now, note

that for each i, wi = aiprojW (vi) for some ai and that vi = biprojV (wi) for some bi.

Thus, we have that for some scalars αi, βi, γi, λi

(2.38) vi = αiwi + βiṽi

and

(2.39) wi = γivi + λiw̃i.

Since we are assuming that V ∩W = {0} we may assume that βi and λi are nonzero.

Now define a linear map φ : Ak
R → Ak

R by φ(vi) = ṽi and φ(wi) = −w̃i. We will

show that φ is an isomorphism that preserves the usual inner product, 〈 , 〉 on Ak
R.
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Lemma G.3. ṽ1, . . . , ṽn forms an orthonormal basis for W⊥ and w̃1, . . . , w̃m form

an orthonormal basis for V ⊥.

Proof. We first prove that ṽ1, . . . , ṽn forms an orthonormal basis for W⊥. Since

k = n +m, dim(W⊥) = n so it is enough to show that ṽ1, . . . , ṽn is an orthonormal

set. We have already defined ṽ1, . . . , ṽn so that 〈ṽi, ṽi〉 = 1. So suppose i 6= j.

Then 〈wi, wj〉 = 0 since we know w1, . . . , wm form an orthonormal set and 〈wi, ṽj〉 =

〈ṽi, wj〉 = 0, since ṽi, ṽj ∈ W⊥ and wi, wj ∈ W . This gives us that

〈vi, vj〉 = 〈αiwi + βiṽi, αjwj + βj ṽj〉

= αiαj 〈wi, wj〉+ αiβj 〈wi, ṽj〉+ αjβi 〈ṽi, wj〉+ βiβj 〈ṽi, ṽj〉

= βiβj 〈ṽi, ṽj〉(2.40)

But 〈vi, vj〉 = 0 and thus 〈ṽi, ṽj〉 = 0 since βk 6= 0 for any k. Thus ṽ1, . . . , ṽn is

an orthonormal set and hence is an orthonormal basis for W⊥. A similar argument

shows that w̃1, . . . , w̃m form an orthonormal basis for V ⊥.

Proposition G.4. φ is an isomorphism.

Proof. Since Ak
R = V ⊕ W we have that Ak

R = V ⊥ ⊕ W⊥ which gives us that

ṽ1, . . . , ṽn,−w̃1, . . . ,−w̃m form a basis for Ak
R. Since φmaps the basis v1, . . . , vn, w1, . . . , wm

to the basis ṽ1, . . . , ṽn,−w̃1, . . . ,−w̃m in a one-to-one fashion, φ is an isomorphism.

Now we will show by a series of lemmas that φ preserves the inner product.

Lemma G.5. If i 6= j, then 〈vi, wj〉 = 〈ṽi, w̃j〉 = 0.
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Proof. We know that 〈wi, wj〉 = 0 and since ṽi ∈ W⊥, 〈ṽi, wj〉 = 0. Thus

〈vi, wj〉 = 〈αiwi + βiṽi, wj〉

= αi 〈wi, wj〉+ βi 〈ṽi, wj〉

= 0.(2.41)

Now, note that

ṽi =
1

βi

vi −
αi

βi

wi(2.42)

w̃j =
1

λj

wj −
γj

λj

wj.(2.43)

For simplicity, we will write

ṽi = Aivi +Biwi(2.44)

w̃j = Cjwj +Djvj.(2.45)

Now, since we have already seen that for i 6= j, 〈vi, wj〉 = 0 we have that

〈ṽi, w̃j〉 = 〈Aivi +Biwi, Cjwj +Djvj〉

= AiCj 〈vi, wj〉+ AiDj 〈vi, wj〉+ AiCj 〈vi, wj〉+BiDj 〈wi, vj〉

= 0.(2.46)

Lemma G.6. 〈vi, wi〉 = −〈ṽi, w̃i〉 .

Proof. As seen in the proof of the previous lemma,

ṽi = Aivi +Biwi(2.47)

w̃i = Ciwi +Divi(2.48)
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Hence, vi, wi, ṽi, and w̃i are all coplanar. Let θi be the angle between vi and wi, and

let θ̃i be the angle between ṽi, and w̃i. Since by definition, θi ≤ π
2
, we may draw

the vectors vi, wi, ṽi, and w̃i in the plane as in Fig. 7. We see that since the angle

Fig. 7. The angle between ṽi and w̃i is π − θi.

between vi and w̃i is π
2
, the angle between wi and w̃i is π

2
− θi. Similarly, since the

angle between wi and ṽi is π
2
, the angle between vi and ṽi is π

2
− θi.

From this we see that θ̃i = π − θi, and thus we have that

〈ṽi, w̃i〉 = cos(θ̃i)

= cos(π − θi)

= − cos(θi)

= −〈vi, wi〉 .(2.49)
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Proposition G.7. φ preserves the inner product.

Proof. Let x, y ∈ Ak
R. Then we have

x =
∑

i

(aivi) +
∑

i

(biwi)(2.50)

y =
∑

j

(cjvj) +
∑

j

(djwj).(2.51)

This gives us that

〈x, y〉 =

〈∑
i

(aivi) +
∑

i

(biwi),
∑

j

(cjvj) +
∑

j

(djwj)

〉

=
∑
i,j

aicj 〈vi, vj〉+
∑
i,j

(aidj + cibj) 〈vi, wj〉+
∑
i,j

bidj 〈wi, wj〉

=
∑

i

aici +
∑

i

(aidi + cibi) 〈vi, wi〉+
∑

i

bidi

=
∑

i

aici −
∑

i

(aidi + cibi) 〈ṽi, w̃i〉+
∑

i

bidi.(2.52)

We also have

〈φ(x), φ(y)〉 =

〈∑
i

(aiφ(vi)) +
∑

i

(biφ(wi)),
∑

j

(cjφ(vj)) +
∑

j

(djφ(wj))

〉

=

〈∑
i

(aiṽi)−
∑

i

(biw̃i),
∑

j

(cj ṽj) +
∑

j

(djw̃j)

〉

=
∑
i,j

aicj 〈ṽi, ṽj〉 −
∑
i,j

(aidj + cibj) 〈ṽi, w̃j〉+
∑
i,j

bidj 〈w̃i, w̃j〉

=
∑

i

aici −
∑

i

(aidi + cibi) 〈ṽi, w̃i〉+
∑

i

bidi

= 〈x, y〉 .(2.53)

Theorem G.8. The principal angle distance d(V ⊥,W⊥) between V ⊥ and W⊥ is equal

to the principal angle distance d(V,W ) between V and W .
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Proof. Since φ is an isomorphism that preserves the inner product, principal angles

between subspaces are preserved under φ. Thus, the principal angles between φ(V ) =

W⊥ and φ(W ) = V ⊥ are exactly the principal angles between V and W which gives

us that d(V ⊥,W⊥) = d(V,W ).

Now from Theorem G.8, we are in a position to prove the main result of this

chapter.

Theorem G.9 (Object/Image Metric Duality). Given an object shape K ∈ Ok and

an image shape L ∈ Ik, the distances

d1(K,L) = min
K′⊂L

dObj(K,K
′)(2.54)

d2(K,L) = min
L′⊃K

dImg(L
′, L)(2.55)

d(K,L) =

√√√√k−4∑
i=1

θ2
i(2.56)

where θ1, . . . , θk−4 are the principal angles between K and L and d is the principal

angle distance between subspaces.

Proof. We first note that by the construction of the principal angles, if v1, . . . , vk−4

are the principal vectors contained in L and W = span(v1, . . . , vk−4), then

d1(K,L) = min
K′⊂L

d(K,K ′)

= d(K,W )

= d(K,L).(2.57)
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Now we observe that

d2(K,L) = min
L′⊃K

d(L′, L)

= min
L′⊥⊂K⊥

d(L′⊥, L⊥).(2.58)

Now by 2.57, we see that

(2.59) d2(K,L) = d(K⊥, L⊥),

and by Theorem G.8, we have

(2.60) d2(K,L) = d(K,L).

This now gives us an explicit method for computing a distance between an object

shape and an image shape to determine “how close” a given object configuration is

to being capable of producing a given image configuration. To recap, the process for

computing the distance between an object shape Kk−4 and an image shape Lk−3 is

1. Compute orthonormal bases for Kk−4 and Lk−3

2. Make these basis vectors the columns of two matrices K and L

3. Compute the singular values λ1, . . . , λk−4 of LTK

4. Compute the principal angles θi = arccos(λi) between Kk−4 and Lk−3

5. The distance between Kk−4 an Lk−3 is d([K], [L]) =
√∑k−4

i=1 θ
2
i

For examples, see the Appendix.
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CHAPTER III

THE FULL PERSPECTIVE (PROJECTIVE) CASE

A. Full Perspective Projection

In this chapter, we continue to address the problem of identifying optical camera

images. Recall, that in our previous model, we chose to consider configurations of

points (object and image) in An
R up to affine transformation and that by doing this,

we were only able to approximate the focal-point projections by generalized weak

perspective projections. In this model, we will instead choose to consider our object

configurations to be in projective space, P3
R, and our image configurations to be in

the projective plane,P2
R. The advantage choosing to work in projective space is that a

focal point projection used by an optical camera is a projective linear map. Namely,

this map is the projection from a point P ∈ P3
R (here P is our focal point) which has

the form

(3.1) T =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34


where T has maximal rank 3. We call this type of map a full perspective projection.

Suppose that Q = (R : S : T ) ∈ P2
R is the image of P = (X : Y : Z : W ) ∈ P3

R

under a full perspective projection T (so Q = TP up to a scaling of the homogeneous

coordinates of P and Q). Then since we may scale the homogeneous coordinates of

P and Q, we have that for any 3 scalar matrix A and any 4 × 4 scalar matrix B,

Q = (ATB)P . Thus, the set of full perspective projections is equivalent to the set of

3× 4 matrices of rank 3 up to multiplication on the left or right by a scalar matrix.

In addition to now being able to accurately view the focal point projection as
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a projective linear map, we also have that projection from a point P ∈ P3
R is well

defined for all points in P3
R except for P . To see this, let T be a projection of P3

R onto

P2
R from a point P ∈ P3

R, and let v be any point in P3
R. Then T (v) is well-defined

unless v is in the null space T . Since T has maximal rank, the null space of T is a

one dimensional subspace of A4
R which is a single point in P3

R. However, we already

know that T is not defined at the point P from which we are projecting. Thus, we

see that the only point at which T is undefined is P . This causes us no problems

because in the optical camera model, we will be able to assume that the focal point

is not a point on our object.

B. Projective Shapes

Let T be a full perspective projection. Let A be a 3× 3 matrix with det(A) 6= 0 and

let B be a 4×4 matrix with det(B) 6= 0. Then A−1TB is again a 3×4 matrix of rank

3 i.e. A−1TB is again a full perspective projection. Note that, as previously observed,

if we multiply A and B by scalar matrices, the projection A−1TB remains unchanged

as a map between projective spaces. Thus, we should view A as an element of PGL(3)

and B as an element of PGL(4).In general, PGL(k) is the quotient GL(k)/S where

S is the subgroup of scalar matrices.

The impact of this observation is that the best we can hope to do is to relate

object configurations up to a PGL(4) transformation with image configurations up

to a PGL(3) transformation. As such, we should consider two configurations in Pn
R

to have the same shape if they differ by a PGL(n+ 1) transformation.

Ideally, we would like to have the space of shapes of configurations of k points

in Pn
R be equal to the quotient space (Pn

R)k/PGL(n+ 1). However, when we quotient

(Pn
R)k by PGL(n+ 1), we do not arrive at a reasonable moduli space for our shapes.
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Thus, we will be required to restrict our attention so some open set of configura-

tions U ⊂ (Pn
R)k. At a very minimum, we should assume that for a configuration,

P1, . . . , Pk ∈ Pn
R, the points do not all lie in a single hyperplane.

In the affine case, we were able to assign to each shape a distinct point in a Grass-

mannian viewed as a subvariety of a projective space. In the full perspective case,

our ability to scale the homogeneous coordinates of the points of our configurations

complicates matters so that no convenient analogue of the affine shape coordinates is

available. We circumvent this problem by instead identifying the shape of a configu-

ration with a natural projective variety.

Although ultimately we want to consider configurations of k points in P2
R and

P3
R, let us begin by examining configurations of 4 points in P1

R. Let Pi = (xi : yi) ∈ P1
R

for 1 ≤ i ≤ 4 and assume that at least two of these points are distinct. In the spirit

of the affine case we place this configuration with these homogeneous coordinates in

a matrix

(3.2) M(P1, P2, P3, P4) =

 x1 x2 x3 x4

y1 y2 y3 y4

 .

As in the affine case, we associate to the configuration P1, P2, P3, P4 the point

(3.3) (m12 : m13 : m14 : m23 : m24 : m34) ∈ Gr(2, 4) ⊂ P(4
2)−1

R = P5
R

where

(3.4) mij = det

 xi xj

yi yj

 .

Note that since the points are not all coincident, at least one of the mij is nonzero

so that we have a well-defined point in projective space. Note also that the point

3.3 is invariant when we act on the configuration matrix from the left by a PGL(2)
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transformation.

There is an indexing convention that we should observe. Suppose, 1 ≤ i, j ≤ 4.

Then since,

(3.5) mij = det

 xi xj

yi yj

 and mji = det

 xj xi

yj yi


we have that mij = −mji. In particular mii = 0 for all i.

Now, if for each 1 ≤ i ≤ 4 we scale the homogeneous coordinates of Pi by a

nonzero constant ai, we have the same configuration of points in P1
R, but our config-

uration matrix is now

(3.6)

 x1 x2 x3 x4

y1 y2 y3 y4




a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4


which corresponds to the point

(3.7) (a1a2m12 : a1a3m13 : a1a4m14 : a2a3m23 : a2a4m24 : a3a4m34) ∈ Gr(2, 4) ⊂ P5
R.

Thus for a given configuration of 4 points in P1
R with some fixed homogeneous

coordinates we have a map Φ : (R∗)4 → Gr(2, 4) given by

(3.8)

Φ(a1, a2, a3, a4) = (a1a2m12 : a1a3m13 : a1a4m14 : a2a3m23 : a2a4m24 : a3a4m34)

(here R∗ is the multiplicative group of nonzero elements of R). Notice however that

(3.9)
Φ(a, a, a, a) = a2(m12 : m13 : m14 : m23 : m24 : m34)

= (m12 : m13 : m14 : m23 : m24 : m34).
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So we have in fact a well defined map Φ : (R∗)4/R∗ ∼= (R∗)3 → Gr(2, 4) whose image

is a quasiprojective variety which we will denote V(P1, P2, P3, P4) ⊂ Gr(2, 4) ⊂ P5
R

(or simply V when the configuration we are working with is understood). Thus, to

each configuration we may assign a projective variety V(P1, P2, P3, P4), the closure of

V in P5
R.

Definition B.1. We will call the projective variety V(P1, P2, P3, P4) the shape variety

of the configuration P1, P2, P3, P4.

Theorem B.2. Every configuration P1, P2, P3, P4 is assigned a unique shape variety

V(P1, P2, P3, P4), and two configurations P1, P2, P3, P4 and P ′
1, P

′
2, P

′
3, P

′
4 have the same

shape variety if and only if they differ by a PGL(2) transformation (and hence have

the same shape).

Proof. The fact that every configuration is assigned a unique variety is obvious. It is

also clear from our construction of the shape varieties that if two configurations have

the same shape, then they also have the same shape variety.

So suppose that the two configurations Pi = (xi : yi), 1 ≤ i ≤ 4 and P ′
i =

(x′i : y′i), 1 ≤ i ≤ 4 have the same shape variety. Since V is the image of the

irreducible variety, (R∗)4/R∗, V must be irreducible. So we have that V must also be

irreducible. From this, we see that V(P1, P2, P3, P4) = V(P ′
1, P

′
2, P

′
3, P

′
4) if and only if

V(P1, P2, P3, P4) = V(P ′
1, P

′
2, P

′
3, P

′
4). Thus, for some a1, a2, a3, a4 ∈ R∗

(m12 : m13 : m14 : m23 :m24 : m34) =

(a1a2m
′
12 : a1a3m

′
13 : a1a4m

′
14 : a2a3m

′
23 : a2a4m

′
24 : a3a4m

′
34)

where mij = det

 xi xj

yi yj

 and m′
ij = det

 x′i x′j

y′i y′j

. So we have that the matri-
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ces  x1 x2 x3 x4

y1 y2 y3 y4

 and

 a1x
′
1 a2x

′
2 a3x

′
3 a4x

′
4

a1y
′
1 a2y

′
2 a3y

′
3 a4y

′
4


give the same point under the Plücker embedding and hence are in fact the same

linear subspace of R4. Thus the matrices differ by the left action of a GL(2) matrix

from which we see that the configurations P1, P2, P3, P4 and P ′
1, P

′
2, P

′
3, P

′
4 differ by a

PGL(2) transformation.

Now, having placed shapes of configurations P1, P2, P3, P4 ∈ P1
R (up to a PGL(2)

transformation) in one-to-one correspondence with the projective varieties

V(P1, P2, P3, P4), we would like understand the relations that the points in V must

satisfy. So let P1, P2, P3, P4 ∈ P1
R. Compute m12, . . . ,m34 for some fixed homogeneous

coordinates of P1, P2, P3, P4 and let (x12 : x13 : x14 : x23 : x24 : x34) be a point in

V = V(P1, P2, P3, P4). Then for some a1, a2, a3, a4 ∈ R∗ the following must hold

x12 − a1a2m12 = 0

x13 − a1a2m13 = 0

x14 − a1a4m14 = 0

x23 − a2a3m23 = 0

x24 − a2a4m24 = 0

x34 − a3a4m34 = 0.

Using Gröebner bases, we eliminate the ai’s from this system and obtain the

following Theorem.

Theorem B.3. V ⊂ Gr(2, 4) is the zero locus of three polynomials in the variables
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x12, . . . , x34

f1 = m12m34x13x24 −m13m24x12x34

f2 = m12m34x14x23 −m14m23x12x34

f3 = m13m24x14x23 −m14m23x13x24.(3.10)

These same relations can also be obtained by observing that if i1, i2, i3, i4 and

j1, j2, j3, j4 are two appropriate permutations of 1,2,3,4 then

(3.11)
mi1i2mi3i4xj1j2xj3j4

mj1j2mj3j4xi1i2xi3i4

=
mi1i2mi3i4(aj1aj2mj1j2)(aj3aj4mj3j4)

mj1j2mj3j4(ai1ai2mi1i2)(ai3ai4mi3i4)
= 1.

Notice that in each of the monomials of f1, f2, and f3, the numbers 1, 2, 3, and

4 each appear once as entries of the indices of the mij. Thus, if we were to choose

different homogeneous coordinates for P1, P2, P3, P4, we would have a new system of

polynomials

f ′1 = (a1a2m12)(a3a4m34)x13x24 − (a1a3m13)(a2a4m24)x12x34(3.12)

f ′2 = (a1a2m12)(a3a4m34)x14x23 − (a1a4m14)(a2a3m23)x12x34

f ′3 = (a1a3m13)(a2a4m24)x14x23 − (a1a4m14)(a2a3m23)x13x24,

but the zero locus of f ′1, f
′
2, f

′
3 is precisely the zero locus of f1, f2, f3 since f ′i =

a1a2a3a4fi. This tells us that the polynomials f1, f2, f3 define our shape variety as

a subvariety of Gr(2, 4) independent of our choice of homogeneous coordinates for

P1, P2, P3, P4.

We should also note that since (m12 : m13 : m14 : m23 : m24 : m34) and (x12 :
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x13 : x14 : x23 : x24 : x34) are points in Gr(2, 4) ⊂ P5
R, the Plücker relations

p1 = m12m34 −m13m24 +m14m23 = 0

p2 = x12x34 − x13x24 + x14x23 = 0

are satisfied. It is easily seen that as ideals in R[m12, . . . ,m34, x12, . . . , x34],

(3.13)

〈f1, f2, f3, p1, p2〉 = 〈f1, p1, p2〉

= 〈f2, p1, p2〉

= 〈f3, p1, p2〉 .

From this we see that V (f1) = V (f2) = V (f3) as subvarieties of Gr(2, 4) ⊂ P5
R

and hence V is defined as the zero locus of any one of f1, f2, f3. In particular V is a

hypersurface in Gr(2, 4) and so has dimension dim(V ) = dim(Gr(2, 4))-1=3.

The preceding discussion can be easily generalized to the case of k points in

Pn
R where k ≥ n + 1. Two configurations have the same shape if they differ by a

PGL(n+ 1) transformation. For each configuration Pi = (x0i, . . . , xni), 1 ≤ i ≤ k of

k points in Pn
R, we have a map Φ : (R∗)k/R∗ → Gr(n+1, k) obtained by constructing

the configuration matrix

(3.14) M(P1, . . . , Pk) =



x01 x02 x0k

x11 x12 · · · x1k

...
...

...

xn1 xn2 xnk


whose columns are homogeneous coordinates of P1, . . . , Pk in Pn

R and then scaling the

columns of that matrix. We denote the image of Φ by V(P1, . . . , Pk). We call the

projective variety V(P1, . . . , Pk) the shape variety of the configuration P1, . . . , Pk and
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we have the following theorem.

Theorem B.4. Two configurations P1, . . . , Pk and P ′
1, . . . , P

′
k of k point in Pn

R have

the same shape (up to a PGL(n + 1) transformation) if and only if they have the

same shape variety.

Proof. The proof of this result is exactly the same as that of Theorem B.2 but with

more complicated notation.

Explicitly, the map Φ : (R∗)k/R∗ → Gr(n+ 1, k) is given by

(3.15) Φ(a1, . . . , ar) = (aI1mI1 : . . . : aIN
mIN

)

where I1, . . . , IN (N =
(

k
n+1

)
) are the (n + 1)-subsets of {1, . . . , k} (ordered lexico-

graphically), aIj
=

∏
l∈Ij

al, and mIj
is the determinant of the (n+1)× (n+1) minor

of M(P1, . . . , Pk) whose columns are given by the elements of Ij.

As in the case of 4 points in P1
R, we enforce an indexing convention on the mI .

If I = (i1, i2, . . . , in+1) and if σ is a permutation of 1, 2, . . . , n+ 1, then

(3.16) miσ(1)...iσ(n+1)
= det



x0σ(1) x0σ(2) · · · x0σ(n+1)

x1σ(1) x1σ(2) · · · x1σ(n+1)

...
...

. . .
...

xnσ(1) xnσ(2) · · · xnσ(n+1).


Thus mi1i2...in+1 = εmiσ(1)...iσ(n+1)

where ε is the sign of the permutation σ. Note that

if is = it for some s 6= t, then mi1i2...in+1 = 0.

Since we have only made the assumption that the points of our configurations

do not lie in a single hyperplane, it is conceivable that there is a configuration

P1, . . . , Pk ∈ Pn
R such that mI1 = 1 and mIj

= 0 for 2 ≤ j ≤
(

k
n+1

)
. In this case

(3.17) V(P1, . . . , Pk) = {(1 : 0 : 0 : · · · : 0)} .
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Now let Q1, . . . , Qk ∈ Pn
R be a configuration with mI1 6= 0. Then since we may

obtain some points of V(Q1, . . . , Qk) from V(Q1, . . . , Qk) by allowing some (but not

all) of the ai to be equal to zero, we see that (1 : 0 : 0 : · · · : 0) ∈ V(Q1, . . . , Qk) by

letting ai = 1 for i = 1, . . . , n + 1 and letting ai = 0 for i = n + 2, . . . , k. This gives

us that V(P1, . . . , Pk) ⊂ V(Q1, . . . , Qk).

To avoid having one shape variety wholly contained in another and to ensure

that the shape varieties have similar structure, we should restrict our attention to

configurations whose shape variety has maximal dimension. In other words, we only

want to consider configurations for which the map Φ is injective (so that dim(V) =

k − 1), rather than allowing all noncoplanar configurations.

Theorem B.5. Suppose P1, . . . , Pk is a configuration of k points in Pn
R so that there

is a subset Pi1 , . . . , Pin+2 of n + 2 points in this configuration having the following

properties:

1. for every subset J = {j1, . . . , jn+1} ⊂ {i1, . . . , in+2} the points Pj1 , . . . , Pjn+1 do

not lie in a single hyperplane (i.e. mJ 6= 0)

2. there is some subset S = {s1, . . . , sn} ⊂ {i1, . . . , in+2} such that for all Pt not

in the set
{
Pi1 , . . . , Pin+2

}
we have that the points Ps1 , . . . , Psn , Pt do not all lie

in a single hyperplane (i.e. ms1...snt 6= 0).

Then, the map Φ is injective.

Proof. We will show that under these conditions,

(aI1mI1 : . . . : aIN
mIN

) = (mI1 : . . . : mIN
) ⇔ ai = aj for all i, j.

Note that

(aI1mI1 : . . . : aIN
mIN

) = (mI1 : . . . : mIN
)
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if and only for all i 6= j,

aIi
mIi

aIj
mIj

=
mIi

mIj

assuming of course that mIj
6= 0.

First, let α, β ∈ {1, . . . , k} be such that α, β are not in the set {i1, . . . , in+2}.

Then by condition 2, if we let A = (s1, . . . , sn, α) and let B = (s1, . . . , sn, β) we have

that mA 6= 0 and mB 6= 0. Thus since

aAmA

aBmB

=
mA

mB

we have that

aα

aβ

= 1

and hence aα = aβ.

Now suppose α, β ∈ {i1, . . . , in+2} with α 6= β, and let {j1, . . . , jn} = {i1, . . . , in+2}

−{α, β}. Let A = (j1, . . . , jn, α) and let B = (j1, . . . , jn, β). Then mA and mB are

nonzero and hence

aAmA

aBmB

=
mA

mB

from which we see that

aα

aβ

= 1.

Thus we again see that aα = aβ.

Finally, suppose α, β ∈ {1, . . . , k} are such that α ∈ {i1, . . . , in+2} but β is

not. Let γ ∈ {i1, . . . , in+2} − {s1, . . . , sn} so that aα = aγ by the above case. Let

A = (s1, . . . , sn, γ) and B = (s1, . . . , sn, β). Then mA and mB are both nonzero and

once again

aAmA

aBmB

=
mA

mB

.
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Now we have that

aγ

aβ

= 1

which gives us that aα = aγ = aβ.

Thus, for configurations satisfying conditions 1 and 2, the map Φ is injective.

Up to this point, our constructions in the general case of k points in Pn
R (k ≥ n+1)

have been identical to our constructions in the case of 4 points in P1
R. We do see a

slight variation when we compute the defining equations of the shape varieties of

configurations of k points in Pn
R for k > 4. For example, consider the case of 5 points

P1, . . . , P5 in P1
R. Then as in the case of 4 points P1

R the quadratic relations

(3.18) mi1i2mi3i4xσ(i1)σ(i2)xσ(i3)σ(i4) −mσ(i1)σ(i2)mσ(i3)σ(i4)xi1i2xi3i4 = 0

must hold for every {i1, i2, i3, i4} ⊂ {1, 2, 3, 4, 5} (i1, i2, i3, i4 distinct) and for every

appropriate permutation σ of {i1, i2, i3, i4}. We also observe that for an arbitrary

point (x12 : . . . : x45) in

V(P1, . . . , P5) there exist a1, . . . , a5 ∈ R∗ such that

(3.19)
m13m23m45x12x34x35

m12m34m35x13x23x45

=
m13m23m45(a1a2m12)(a3a4m34)(a3a5m35)

m12m34m35(a1a3m13)(a2a3m23)(a4a5m45)
= 1

giving us the relation

(3.20) f = m13m23m45x12x34x35 −m12m34m35x13x23x45 = 0.

The important point here is that for 4 points in P1
R each of the numbers 1,2,3,

and 4 appeared exactly once in each monomial as an entry of an index of some mij,

but now we have the number 3 appearing in each monomial twice as an entry of an

index of an mij. However we if choose new homogeneous coordinates for P1, . . . , P5

by scaling our current homogeneous coordinates of Pi by ai, we get a new polynomial
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f ′ = a1a2a
2
3a4a5f whose zero locus is exactly the same as that of the polynomial f .

In particular, we see that the ideal of the shape variety of a configuration of 5 points

in P1
R is generated by quadratic and cubic polynomials rather than just quadratic

polynomials as we had in the case of 4 points in P1
R.

In general we see that for configurations of k points in Pn
R, the defining equations

are given by the following theorem.

Theorem B.6. For a configuration P1, . . . , Pk of k points in Pn
R, the variety

V(P1, . . . , Pk) as a subvariety of the Grassmannian Gr(n+1, k) ⊂ P( k
n+1)−1

R is the zero

locus of the following system of polynomials

(3.21) mI1mI2 · · ·mIrxJ1xJ2 · · ·xJr −mJ1mJ2 · · ·mJrxI1xI2 · · ·xIr

where I1, . . . , Ir, J1, . . . , Jr are n+1-subsets of {1, . . . k} with the property that
⋃r

i=1 Ii =⋃r
i=1 Ji as multisets and r ranges from 2 to some positive integer N(k, n).

Proof. For a multiset I ⊂ {1, . . . , k} and a1, . . . , ak ∈ R∗, define aI =
∏

i∈I ai. Now

for an arbitrary point (x12···n+1 : · · · : xk−n···k) ∈ V(P1, . . . , Pk) we have that for some

a1, . . . , ak ∈ R∗, xI = aImI for every (n + 1)-subset I of {1, . . . , k}. Now if for

some r ≥ 1, I1, . . . , Ir, J1, . . . , Jr are n+1-subsets of {1, . . . k} with the property that⋃r
i=1 Ii =

⋃r
i=1 Ji as multisets, then

mI1mI2 · · ·mIrxJ1xJ2 · · ·xJr

mJ1mJ2 · · ·mJrxI1xI2 · · ·xIr

=
mI1mI2 · · ·mIr(aJ1mJ1)(aJ2mJ2) · · · (aJrmJr)

mJ1mJ2 · · ·mJr(aI1mI1)(aI2mI2) · · · (aIrmIr)
= 1

giving us the relation

mI1mI2 · · ·mIrxJ1xJ2 · · ·xJr −mJ1mJ2 · · ·mJrxI1xI2 · · ·xIr .

It is easy to see that the only other relations that points in V(P1, . . . , Pk) must satisfy

are the Plücker relations. Thus the polynomials given in 3.21 generate an ideal whose
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zero locus is the variety V noting that since the polynomial ring R[x12···n+1, . . . , xk−n···k]

is Noetherian, there is an upper bound N(k, n) on the degrees of the polynomials

needed to generate the ideal.

We do not know the exact value of N(k, n), but computing the equations of the

shape varieties for small k and n using a Gröebner basis elimination seems to indicate

that N(k, n) = k − 2. There is also some evidence to indicate that the ideal of a

shape variety is in fact generated by the quadratic relations

(3.22) mi1i2mi3i4xσ(i1)σ(i2)xσ(i3)σ(i4) −mσ(i1)σ(i2)mσ(i3)σ(i4)xi1i2xi3i4

together with the Plücker relations. See the Appendix for examples.

C. Projective Object/Image Equations

Let P1, . . . , Pk ∈ P3
R be an object configuration consisiting of k points in projective

3-space, and let Q1, . . . , Qk ∈ P2
R be an image configuration consisting of k points in

the projective plane. We want to (as in the affine case) find necessary and sufficient

conditions for the Qi to be a full perspective projection of the Pi. Since every choice

of homogeneous coordinates for P1, . . . , Pk gives a unique point in Gr(4, k) ⊂ P(k
4)−1

R

and every choice of homogeneous coordinates for Q1, . . . , Qk gives a unique point in

Gr(3, k) ⊂ P(k
3)−1

R , the set V ⊂ Gr(4, k) × G(3, k) of matching object/image pairs

should be a projective variety defined by a system of bihomogeneous polynomials in

the Plücker coordinates m1234, . . . ,mk−3...k on Gr(4, k) and the Plücker coordinates

n123, . . . , nk−2...k on G(3, k). These relations should be satisfied independent of our

choice of homogeneous coordinates for our object and image configurations. In other

words, we should have that if an image configuration Q1, . . . , Qn is a full perspective

projection of an object configuration P1, . . . , Pn then the product variety
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V(P1, . . . , Pn)× V(Q1, . . . , Qn) should be completely contained in V .

Our first approach to computing the projective object/image relations is to adapt

the methods we used in deriving the affine object/image equations. Let Pi = (xi :

yi : zi : wi) ∈ P3
R, i = 1, . . . , k be an object configuration and let Qi = (ri : si : ti) ∈

P2
R, i = 1, . . . , k be an image configuration. Then the image configuration Q1, . . . , Qk

is a full perspective projection of the object configuration P1, . . . , Pk if there is a 3×4

matrix A = (aij) of rank 3 and nonzero scalars α1, . . . , αk, β1, . . . , βk such that

(3.23)


r1 r2 rk

s1 s2 · · · sk

t1 t2 tk





α1 0 · · · 0

0 α2 · · · 0

...
...

. . .
...

0 0 · · · αk



=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34





x1 x2 xk

y1 y2 · · · yk

z1 z2 zk

w1 w2 wk





β1 0 · · · 0

0 β2 · · · 0

...
...

. . .
...

0 0 · · · βk


.

Since the diagonal matrices are invertible, we may rewrite equation 3.23 as

(3.24)


r1 r2 rk

s1 s2 · · · sk

t1 t2 tk





λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λk



=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34





x1 x2 xk

y1 y2 · · · yk

z1 z2 zk

w1 w2 wk


.

We now have that Q1, . . . , Qk is a full perspective projection of P1, . . . , Pk if and
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only if for some nonzero λ1, . . . , λk ∈ R∗ the null space of

x1 x2 xk

y1 y2 · · · yk

z1 z2 zk

w1 w2 wk


is contained in the null space of


r1 r2 rk

s1 s2 · · · sk

t1 t2 tk





λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λk


.

If we let m1234, . . . ,mk−3···k be the Plücker coordinates of the null space of

M(P1, . . . , Pk) in Gr(4, k) and let n123, . . . , nk−2···k be the Plücker coordinates of the

null space of M(Q1, . . . , Qk) in Gr(3, k), then the above incidence relation is given by

the system of polynomial equations

(3.25)
∑

1≤ζ1<ζ2≤k

εζ1,ζ2λγ1λγ2λγ3nγ1,γ2,γ3mα1,α2,ζ1,ζ2 = 0

for all choices of 1 ≤ α1 < α2 ≤ k and 1 ≤ β1 < β2 < . . . < βk−5 ≤ k where

1 ≤ γ1 < γ2 < γ3 ≤ k is the complement of {ζ1, ζ2, β1, . . . , βk−5} in {1, . . . , k} when

ζ1, ζ2, β1, . . . , βk−5 are distinct and εζ1,ζ2 is the sign of the permutation

γ1, γ2, γ3, ζ1, ζ2, β1, . . . , βk−5

of the numbers 1, . . . , k(see Chapter II and [7]).

Letting cγ1,γ2,γ3 = λγ1λγ2λγ3 we then have a system of equations

(3.26)
∑

1≤ζ1<ζ2≤k

εζ1,ζ2cγ1γ2γ3nγ1,γ2,γ3mα1,α2,ζ1,ζ2 = 0
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which is linear in the ci1i2i3 , the ni1i2i3 , and the mi1i2i3i4 .

Since ci1i2i3 = λi1λi2λi3 , we see that

(3.27) ci1i2i3cj1j2j3 = λi1λi2λi3λj1λj2λj3 = cσ(i1)σ(i2)σ(i3)cσ(j1)σ(j2)σ(j3)

for all ii, i2, i3, j1, j2, j3 ∈ {1, . . . , k} and for all permutations σ of ii, i2, i3, j1, j2, j3.

This gives us the relations

(3.28) ci1i2i3cj1j2j3 − cσ(i1)σ(i2)σ(i3)cσ(j1)σ(j2)σ(j3) = 0.

In fact, it is true that if Il = (il1, il2, il3) for l = 1, . . . , N with il1, il2, il3 ∈

{1, . . . , k} and if σ is a permutation of i11, i12, i13; . . . ; iN1, iN2, iN3, then

(3.29) cI1cI2 · · · cIN
− cσI1cσI2 · · · cσIN

= 0

where σIl = (σ(il1), σ(il2), σ(il3)).

It is possible to use the quadratic relations 3.28 to rewrite equation 3.29 in the

form

(3.30) cI1cI2 . . . cIN
= cI1cI′2 . . . cI′N

so that

(3.31) cI2 . . . cIN
= cI′2 . . . cI′N .

Continuing this process inductively, we will eventually arrive at one of the quadratic

relations 3.28. Thus, we see that in the polynomial ring R[c123, . . . , ck−2...k], the ideal

generated by the polynomials cI1cI2 · · · cIN
− cσI1cσI2 · · · cσIN

is actually generated by

the quadratic relations ci1i2i3cj1j2j3 − cσ(i1)σ(i2)σ(i3)cσ(j1)σ(j2)σ(j3). Let I be this ideal.

So to find the locus of pairs of matching object and image shapes, we should begin

by looking in P(k
3)−1

R ×P(k
3)−1

R ×P(k
4)−1

R with coordinates c123, . . . , ck−2···k, n123 . . . , nk−2···k,
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m1234, . . . ,mk−3···k. As we have seen the ci1i2i3 should satisfy the quadratic relations

ci1i2i3cj1j2j3 − cσ(i1)σ(i2)σ(i3)cσ(j1)σ(j2)σ(j3) = 0, and the ni1i2i3 and mj1j2j3j4 should satisfy

the Plücker relations on Gr(3, k) and Gr(4, k) respectively. Thus we want to only

consider points in V (I)×Gr(3, k)×Gr(4, k) ⊂ P(k
3)−1

R ×P(k
3)−1

R ×P(k
4)−1

R where V (I)

is the zero locus of the ideal I.

Let Ṽ be the zero locus of the linear polynomials

∑
1≤ζ1<ζ2≤k

εζ1,ζ2cγ1,γ2,γ3nγ1,γ2,γ3mα1,α2,ζ1,ζ2

in V (I) × Gr(3, k) × Gr(4, k) ⊂ P(k
3)−1

R × P(k
3)−1

R × P(k
4)−1

R . Then the variety V of

matching object/image pairs is the projection

(3.32)

Ṽ ⊂ V (I)×Gr(3, k)×Gr(4, k)y
Gr(3, k)×Gr(4, k)

of Ṽ onto Gr(3, k)×Gr(4, k).

To give necessary and sufficient conditions for an image shape (given in the

Plücker coordinates ni1i2i3) to be a full perspective projection of an object shape (given

in the Plücker coordinatesmi1i2i3i4) is simply to give a generating set for the ideal of V .

Such a generating set may be obtained by using Gröebner bases or resultants to com-

pute a generating set for the elimination ideal (J +I)∩R[n123, . . . , nk−2···k,m1234, . . . ,

mk−3···k] where J is the ideal of the polynomials

(3.33)
∑

1≤ζ1<ζ2≤k

εζ1,ζ2cγ1,γ2,γ3nγ1,γ2,γ3mα1,α2,ζ1,ζ2 .

This elimination however, can be very computationally expensive, and as such, we

are unable to give the complete set of matching equations here.
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A more manageable method is seen in [18], but here some more stringent assump-

tions are made concerning the position of the points of our configurations. Consider

an object configuration Pi = (xi : yi : zi : wi) ∈ P3
R, i = 1, . . . , k with P1, P2, P3, P4, P5

in general position. We may then move the configuration by a projective linear trans-

formation so that P1 = (1 : 0 : 0 : 0), P2 = (0 : 1 : 0 : 0), P3 = (0 : 0 : 1 : 0), P4 = (0 :

0 : 0 : 1) and P5 = (1 : 1 : 1 : 1). Assume also that for all i ≥ 6, Pi does not lie in the

plane spanned by P1, P2, P3 so that Pi = (p3i−17 : p3i−16 : p3i−15 : 1). These pj form a

fundamental set of invariants for the shape of our object configuration.

The projective linear map T moving P1, P2, P3, P4, P5 to this standard position

is given by

T (x : y : z : w) =


det



x2 x3 x4 x

y2 y3 y4 y

z2 z3 z4 z

w2 w3 w4 w


m1345m1245m1235 :

det



x1 x3 x4 x

y1 y3 y4 y

z1 z3 z4 z

w1 w3 w4 w


m2345m1245m1235 :

det



x1 x2 x4 x

y1 y2 y4 y

z1 z2 z4 z

w1 w2 w4 w


m2345m1345m1235 :
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det



x1 x2 x3 x

y1 y2 y3 y

z1 z2 z3 z

w1 w2 w3 w


m2345m1345m1245


.(3.34)

In particular, we have that for all i = 1, . . . , k

T (Pi) = (m234im1345m1245m1235 : m134im2345m1245m1235 :

m124im2345m1345m1235 : m123im2345m1345m1245).(3.35)

Since none of P6, . . . , Pk lie in the span of P1, P2, P3, the values m123i are nonzero

for i ≥ 6. Furthermore, by our general position hypothesis, m2345,m1345,m1245 are

also nonzero. Thus

p3i−17 =
m234im1235

m123im2345

p3i−16 =
m134im1235

m123im1345

p3i−15 =
m124im1235

m123im1245

.(3.36)

Note that the pj are defined independent of our choice of homogeneous coordinates

for P1, . . . , Pk for if we scale the homogeneous coordinates of each Pi by a nonzero

constant ai, we get

p3i−17 =
(a2a3a4aim234i)(a1a2a3a5m1235)

(a1a2a3aim123i)(a2a3a4a5m2345)
=
m234im1235

m123im2345

p3i−16 =
(a1a3a4aim134i)(a1a2a3a5m1235)

(a1a2a3aim123i)(a1a3a4a5m1345)
=
m134im1235

m123im1345

p3i−15 =
(a1a2a4aim124i)(a1a2a3a5m1235)

(a1a2a3aim123i)(a1a2a4a5m1245)
=
m124im1235

m123im1245

.(3.37)

Similarly let Qi = (ri, si, ti) ∈ P2
R, i = 1, . . . , k be an image configuration with

Q1, Q2, Q3, Q4 in general position such that for i ≥ 5, Qi is not on the line defined by
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Q1 and Q2. We move the configuration by a projective linear transformation so that

Q1 = (1 : 0 : 0), Q2 = (0 : 1 : 0), Q3 = (0 : 0 : 1), Q4 = (1 : 1 : 1) and for each i ≥ 5,

Qi = (q2i−9 : q2i−8 : 1). These qj form a fundamental set of invariants for the shape

of this image configuration.

In this case, the projective transformation S on P2
R sending Q1, Q2, Q3, Q4 to

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1) is given by

S (r : s : t)) =

det


r2 r3 r

s2 s3 s

t2 t3 t

n134n124 :

det


r1 r3 t

s1 s3 s

t1 t3 t

n234n124 :

det


r1 r2 r

s1 s2 s

t1 t2 r

n234n134

 .(3.38)

This gives us that

(3.39) S(Qi) = (n23in134n124 : n13in234n124 : n12in234n134)

from which we see that

q2i−9 =
n23in124

n12in234

q2i−8 =
n13in124

n12in134

.(3.40)

We note that (as in the case of object configurations) the projective invariants q1, . . . ,

q2k−8 are defined independent of our choice of homogeneous coordinates forQ1, . . . , Qk.
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When we make the preceding assumptions about the positioning of our config-

urations, the object/image equations have been completely determined ([18]). For

example, in the case where n = 6, we have only one object/image equation given in

terms of the projective invariants:

−q2q3p2p3 + q3p2p3 − q3p3 − q1q4p1 − q1p1p2 + q1p1(3.41)

= −q1q4p1p3 + q4p1p3 − q4p3 − q2q3p2 − q2p1p2 + q2p2.

Making the appropriate substitutions and then clearing denominators and removing a

monomial factors we have an object/image relation in terms of the Plücker coordinates

n125n136n234m1236m1246m1345m2345 − n123n136n234m1236m1246m1345m2345

−n126n135n234m1236m1245m1346m2345 + n124n135n236m1236m1245m1346m2345

+n125n134n236m1235m1245m1346m2345 − n124n135n236m1235m1246m1346m2345

+n126n134n235m1236m1245m1345m2346 − n124n136n235m1236m1245m1345m2346

−n125n136n234m1235m1246m1345m2346 + n124n136n235m1235m1246m1345m2346

+n126n135n234m1235m1245m1346m2346 − n126n134n235m1235m1245m1346m2346 = 0.

(3.42)

We should note that since the pi and qi are defined independent of our choice

of homogeneous coordinates for the Pi and Qi, the relation 3.42 will be satisfied

independent of our choice of homogeneous coordinates. This can be verified by simply

counting the number of times each of the numbers 1, . . . , 6 appear as entries of the

indices of the ni1i2i3 and mj1j2j3j4 in each monomial.

Now let σ be a permutation of 1, . . . , k. Suppose that in our object configuration

P1, . . . , Pk ∈ P3
R the points Pσ(1), Pσ(2), Pσ(3), Pσ(4), Pσ(5) are in general position and

that for all i ≥ 6, Pσ(i) is not in the span of Pσ(1), Pσ(2), Pσ(3). Then we may move our
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configuration by a projective transformation so that Pσ(1) = (1 : 0 : 0 : 0), Pσ(2) = (0 :

1 : 0 : 0), Pσ(3) = (0 : 0 : 1 : 0), Pσ(4) = (0 : 0 : 0 : 1), Pσ(5) = (1 : 1 : 1 : 1), and for

i ≥ 6, Pσ(i) = (p′3i−17 : p′3i−16 : p′3i−15 : 1).

Similarly, let τ be a permutation of 1, . . . , k, and suppose that in our image con-

figuration Q1, . . . , Qk ∈ P2
R the points Qτ(1), Qτ(2), Qτ(3), Qτ(4) are in general position

and that for all i ≥ 6, Qτ(i) is not in the span of Qτ(1)and Qτ(2). We now move

Q1, . . . , Qk by a projective transformation so that Qτ(1) = (1 : 0 : 0), Qτ(2) = (0 : 1 :

0), Qτ(3) = (0 : 0 : 1), Qτ(4) = (1 : 1 : 1) and for i ≥ 5, Qτ(i) = (q′2i−9 : q′2i−8 : 1).

We now have a new set of object invariants p′1, . . . , p
′
3k−15 and a new set of

image invariants q′1, . . . , q
′
2k−8 which, as before, may be written in terms of Plücker

coordinates

p′3i−17 =
mσ(2)σ(3)σ(4)σ(i)mσ(1)σ(2)σ(3)σ(5)

mσ(1)σ(2)σ(3)σ(i)mσ(2)σ(3)σ(4)σ(5)

p′3i−16 =
mσ(1)σ(3)σ(4)σ(i)mσ(1)σ(2)σ(3)σ(5)

mσ(1)σ(2)σ(3)σ(i)mσ(1)σ(3)σ(4)σ(5)

p′3i−15 =
mσ(1)σ(2)σ(4)σ(i)mσ(1)σ(2)σ(3)σ(5)

mσ(1)σ(2)σ(3)σ(i)mσ(1)σ(2)σ(4)σ(5)

q′2i−9 =
nτ(2)τ(3)τ(i)nτ(1)τ(2)τ(4)

nτ(1)τ(2)τ(i)nτ(2)τ(3)τ(4)

q′2i−9 =
nτ(1)τ(3)τ(i)nτ(1)τ(2)τ(4)

nτ(1)τ(2)τ(i)nτ(1)τ(3)τ(4)

(3.43)

keeping in mind that we view the mj1j2j3j4 and the ni1i2i3 as skew-symmetric in their

indices.

Using the method of [18] we get a new set of object/image relations in terms of

these new invariants which we may again write in terms of Plücker coordinates. We

should notice that since our projective transformations are completely determined

by sending Pσ(1), Pσ(2), Pσ(3), Pσ(4), Pσ(5) to (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 :

0), (0 : 0 : 0 : 1), (1 : 1 : 1 : 1) respectively and by sending Qτ(1), Qτ(2), Qτ(3), Qτ(4)
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to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1) respectively, we may assume that

σ(6) < . . . < σ(k) and that τ(5) < . . . < τ(k). Taking all of these object/image

relations as σ ranges over all permutations of 1, . . . , k with σ(6) < . . . < σ(k) and

as τ ranges over all permutations of 1, . . . , k with τ(5) < . . . < τ(k) gives us a

global system of object/image relations (we use global here to mean that all of our

configurations satisfy the conditions in Theorem B.5). Even in the case of k = 6, this

list of polynomials is too long to list here and so is omitted.

D. Projective Shape Spaces in PN
R

One shortcoming of the shape variety approach that we have presented in this chapter

is that it gives us no natural notion of distance between our projective shapes. At

first glance it seems that we should be able to define the distance between two shapes

to be the minimum distance between their respective shape varieties in PN
R . However,

even in the case of 4 points in P1
R this “metric” fails.

As we saw in section B, the shape variety of a generic configuration of 4 points

in P1
R has dimension 3. Since all of the shape varieties in this case are subvarieties of

the 4-dimensional variety Gr(2, 4) ⊂ P5
R we see that in general, the shape varieties of

two configurations of 4 points in P1
R will intersect.

For example, consider the configurations P1 = (1 : 0), P2 = (0 : 1), P3 = (1 :

1), P4 = (1 : 2) and Q1 = (1 : 0), Q2 = (0 : 1), Q3 = (1 : 1), Q4 = (1 : 3) in

P1
R. Since Pi = Qi for i = 1, 2, 3 and since P4 6= Q4, these two configurations have

distinct shapes. Both of these configurations satisfy the conditions of Theorem B.5

and thus their respective shape varieties have dimension 3. Since these two varieties

are contained in Gr(2, 4) (which has dimension 4), they must intersect making the

minimum distance between these two shape varieties zero. This gives us that the
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distance between these two shapes is zero, which we certainly don’t want to happen.

What we need is an embedding of our shape space into some higher dimensional

projective space PN
R so that each projective shape will be represented by a single

point in PN
R . In doing this, we obtain a metric on our shape space induced by the

Fubini-Study metric on PN
R .

To achieve this representation of projective shapes as points in some projective

space, we will need to restrict our attention to the open set Uk,n ⊂ (Pn
R)k consisting

of configurations P1, . . . , Pk ∈ Pn
R whose points are in general linear position. That

is, we will assume that no n + 1 of them lie in a single hyperplane so that all of the

mi1···in+1 are nonzero. Since none of the mi1···in+1 are zero, we see from Theorem B.6

that the shape varieties all have the same dimension and degree. We will then embed

the space of projective shapes Uk,n/PGL(n+ 1) into some real projective space PN
R .

1. The Chow Embedding

The Chow embedding is a map which assigns to each projective variety in Pn
R of

dimension m and degree d a unique point in some higher dimensional projective space

PN
R in the following way. Let V be a projective variety in Pn

R of dimensionm and degree

d. Then the locus of projective linear subspaces of dimension codim(V )−1 = n−m−1

that have nonempty intersection with V is a hypersurface in Gr(n − m,n + 1) ⊂

P(n+1
n−d)−1

R . This hypersurface is the zero locus of a homogeneous polynomial F of

degree d in the Plücker coordinates on Gr(n − m,n + 1). The coefficients of the

monomials of F are called the Chow coordinates of the variety V and the point in PN
R

with these coordinates is called the Chow point of V . The Chow embedding is the

map that sends an m-dimensional variety V ⊂ Pn
R of degree d to its corresponding

Chow point.

Since the shape varieties of configurations of k points in Pn
R in general position
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all have the same dimension and degree, we can use the Chow embedding to assign to

each projective shape a unique point in PN
R . In the case of 4 points in P1

R, the Chow

forms of the shape varieties have been computed by Jody Wilson, Peter Stiller, and

Amit Khetan using the methods of [11]. For a configuration of P1, P2, P3, P4 ∈ P1
R,

the Chow form of V (P1, P2, P3, P4) is

−m14m23m12m34x56x35x24x12 +m2
14m

2
23x56x26x15x12

−m14m23m24m13x56x25x24x13 −m14m23m12m34x56x25x24x13

+m14m23m24m13x46x36x15x12 +m2
24m

2
13x46x36x14x13

−m14m23m12m34x46x35x25x12 +m24m13m12m34x46x35x23x14

+m14m23m12m34x46x
2
25x13 −m14m23m12m34x45x25x23x15

+m24m13m12m34x45x36x24x13 +m2
12m

2
34x45x35x24x23

−m14m23m12m34x45x26x25x13 +m14m23m12m34x45x26x23x15.(3.44)

The drawback to this approach is that the projective space containing the Chow

points is of extremely high dimension. In the simplest nontrivial case of 4 points in

P1
R we have one Chow coordinate for each degree 4 monomial in the

(
6
2

)
= 15 variables

x12, x13, . . . , x56. There are
(
15+4

4

)
= 3876 such monomials so the target space of our

embedding is P3875
R .

In general, for k points in Pn
R the shape varieties are k−1 dimensional varieties in

P( k
n+1)−1

R . So for a given configuration P1, . . . , Pk we are looking for projective linear

subspaces of P( k
n+1)−1

R of dimension
(

k
n+1

)
−1−(k−1)−1 =

(
k

n+1

)
−k−1 that intersect

V (P1, . . . , Pk). The locus of such subspaces is a hypersurface on Gr
((

k
n+1

)
− k,

(
k

n+1

))
which lies in a projective space of dimension

 (
k

n+1

)
(

k
n+1

)
− k

− 1 =

 (
k

n+1

)
k

− 1.

In the case of 6 points in P2
R (k = 6, n = 2), this space will have dimension
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 (
6
3

)
6

 − 1 =
(
20
6

)
− 1 = 38759. If the Chow form then has degree d, the target

space for this “simple” case is P(38760+d
d )−1

R . In this large of a space, it is nearly

impossible use the Chow coordinates to compute the distance between two shapes.

Notice, that in the case of 4 points in P1
R, the Chow points are contained in

P12
R ⊂ P3876

R where all but twelve of the coordinates are zero. This gives us some

hope that in the general case of k points in Pn
R we may be able to compose the Chow

embedding with a projection onto a lower dimensional projective space so that we

may view our shapes as points in a more manageable dimension. However, this still

leaves us with the task of computing the Chow Forms for our shape varieties which

is, in general, extremely difficult. For more on computing these polynomials see [3],

[4], and [11].

2. An Alternative to the Chow Embedding

Since computing the Chow form is so difficult, let us instead try to find another map

that embeds the shape space Uk,n/PGL(n + 1) in a projective space PN
R of lower

dimension. We begin by considering 4 points, in P1
R in general position (i.e. all 4

points are distinct).

Let U ′
4,1 ⊂ Gr(2, 4) be the open set of points whose Plücker coordinates come from

a configuration in U4,1 ⊂ (P1
R)4 (i.e. a configuration in general position). Consider

the configuration Pi = (xi : yi), i = 1, 2, 3, 4 in U4,1 ⊂ (P1
R)4. As we have seen, with

these homogeneous coordinates this configuration corresponds to a point

(3.45) (m12 : m13 : m14 : m23 : m24 : m34) ∈ U ′
4,1 ⊂ Gr(2, 4) ⊂ P5

R

where mij = xiyj − xjyi. Scaling these homogeneous coordinates of each Pi by a
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ai 6= 0 gives us a new point

(3.46) (a1a2m12 : a1a3m13 : a1a4m14 : a2a3m23 : a2a4m24 : a3a4m34) ∈ U ′
4,1.

What we want is a map φ4,1 : U ′
4,1 ⊂ Gr(2, 4) → PN

R that sends all of the points

(a1a2m12 : a1a3m13 : a1a4m14 : a2a3m23 : a2a4m24 : a3a4m34) as ai ranges over R∗ to

the same point in PN
R . In other words, φ4,1 should collapse each V(P1, P2, P3, P4) to

a single point. Moreover, φ4,1 should send distinct V(P1, P2, P3, P4) to distinct points

in PN
R . Notice that since we are working on U ′

4,1 we need only concern ourselves

with V(P1, P2, P3, P4) ∩ U ′
4,1 = V(P1, P2, P3, P4) rather than the entire shape variety

V(P1, P2, P3, P4) ⊂ P5
R.

Consider the map φ4,1 : U ′
4,1 → P2

R given by

(3.47) φ4,1(m12 : m13 : m14 : m23 : m24 : m34) = (m12m34 : m13m24 : m14m23).

When we scale the homogeneous coordinates (xi : yi) by a1, a2, a3, a4 ∈ R∗ we have

φ4,1(a1a2m12 : a1a3m13 : a1a4m14 : a2a3m23 : a2a4m24 : a3a4m34)

= (a1a2a3a4m12m34 : a1a2a3a4m13m24 : a1a2a3a4m14m23)

= a1a2a3a4(m12m34 : m13m24 : m14m23)

= (m12m34 : m13m24 : m14m23).(3.48)

Thus, φ4,1 maps all configurations in U ′
4,1 of the same shape to the same point in P2

R

and so induces a well defined map φ4,1 : U4,1/PGL(2) → P2
R.

Now for a configuration P1, P2, P3, P4 ∈ P1
R in general position, we may move

the points by a projective transformation so that P1 = (1 : 0), P2 = (0 : 1), P3 =

(1 : 1), P4 = (t : 1). The value t 6= 0, 1 (as with the pi and qi in section C) is

the fundamental invariant of the shape of the configuration. In other words, distinct
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values of t yield configurations with distinct shapes.

When we move our configuration to this standard position, the Plücker coordi-

nates become

m12 = 1 m23 = −1

m13 = 1 m24 = −t

m14 = 1 m34 = 1− t.(3.49)

In terms of the invariant t, the map φ4,1 is given by

φ4,1(m12 : m13 : m14 : m23 : m24 : m34) = (1− t : −t : −1)

= (t− 1 : t : 1)(3.50)

We can now see that φ4,1 sends distinct shapes to distinct points in P2
R and hence the

induced map φ4,1 : U4,1/PGL(2) → P2
R is in fact an embedding of our shape space.

Definition D.1. Let P1, P2, P3, P4 be a configuration of points in P1
R and letm12, m13,

m14, m23, m24, m34 be the Plücker coordinates corresponding to some choice of homo-

geneous coordinates for P1, P2, P3, P4. Then we call the coordinates of φ4,1(m12,m13,

m14,m23,m24,m34) the projective shape coordinates of the configuration P1, P2, P3, P4.

Notice that the map φ4,1 is the composition of the degree 2 Veronese map ν5,2|U ′4,1
:

P5
R → P(7

2)−1

R (restricted to U ′
4,1) with a coordinate projection π onto P2

R defined by

selecting degree 2 monomials in the mij where the values 1,2,3,4 each appear exactly

once as an entry in the index of some mij. In general this composition is a rational

map that is not defined when m12m34 = m13m24 = m14m23 = 0. By restricting to the

open set U ′
4,1, we force each mij to be nonzero so that φ4,1 is a well-defined regular

map from U ′
4,1 into P2

R.

We can extend this notion of shape coordinates to configurations P1, . . . , Pk ∈ Pn
R
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whose points are in general position. We do this by defining a map φk,n : U ′
k,n ⊂

Gr(n+ 1, k) → PN
R that effectively collapses each V(P1, . . . , Pk) to a single point and

sends distinct shape varieties to distinct points in PN
R . Such a map will then induce

an embedding φk,n : Uk,n/PGL(n+ 1) → PN
R of our shape space in PN

R .

We define φk,n(m1...n+1 : . . . : mk−n...k) = (M1 : M2 : . . . : MN) where the Mi are

monomials of degree d in the mi1...in+1 such that each of the numbers 1, . . . , k appears

t times as entries of indices of the mi1...in+1 in Ml, l = 1, . . . , N . Here we want to

choose t and d to be the smallest integers with t ≥ 2 and d(n + 1) = kt. So if n + 1

does not divide k, we have d = lcm(k,n+1)
n+1

and t = lcm(k,n+1)
k

. If n + 1 divides k, then

lcm(k, n+ 1) = k making lcm(k,n+1)
k

equal to 1. In this case, we will let t = 2 making

d = 2k
n+1

Theorem D.2. The map φk,n : Uk,n/PGL(n + 1) → PN
R induced by the map φk,n :

U ′
k,n → PN

R embeds the shape space Uk,n/PGL(n+ 1) in PN
R for some N .

Proof. To show that φk,n is an embedding, we need to show that for all configurations

P1, . . . , Pk in Uk,n, φk,n(V(P1, . . . , Pk)) is a single point in PN
R and that φk,n maps

distinct V(P1, . . . , Pk) to distinct points in PN
R .

Let P1, . . . , Pk be a configuration in Uk,n with Plücker coordinates mi1i2...in+1 and

suppose that φk,n(. . . : mi1i2...in+1 : . . .) = (M1 : M2 : . . . : MN). If we scale the

homogeneous coordinates of each Pi by some ai ∈ R∗, then each Mi is scaled by

at
1a

t
2 · · · at

k since each of the numbers 1, . . . , k appears t times in the indices of Mi.

Thus we get

φk,n(. . . : ai1ai2 · · · ain+1mi1i2...in+1 : . . .) = at
1a

t
2 · · · at

k(M1 : M2 : . . . : MN)

= (M1 : M2 : . . . : MN)(3.51)

and hence φk,n(V(P1, . . . , Pk)) is the single point (M1 : M2 : . . . : MN).
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To see that φk,n sends distinct V(P1, . . . , Pk) to distinct points, we first observe

that since P1, . . . , Pk are in general position, we may move the Pi by a projective trans-

formation and scale the homogeneous coordinates so that the configuration matrix

is

(3.52) M(P1, . . . , Pk) =



1 0 · · · 0 1 p1 pn+1 · · · pn(k−n−3)+1

0 1 · · · 0 1 p2 pn+2 · · · pn(k−n−3)+2

...
...

. . .
...

...
...

...
. . .

...

0 0 · · · 1 1 pn p2n · · · pn(k−n−3)+n

1 1 · · · 1 1 1 1 · · · 1


As we saw in section C, the values p1, . . . , pn(k−n−3)+n form a fundamental set of

invariants for the shape of the configuration. If we let I1, . . . , In+1 be the n-subsets

of {1, 2, 3, . . . , n + 1} ordered reverse lexicographically, then we can compute (as we

did for configurations in P2
R and P3

R) for n+ 3 ≤ i ≤ k and 1 ≤ j ≤ n

(3.53) pn(i−n−3)+j =
mIj∪{i}mIn+1∪{n+2}

mIn+1∪{i}mIj∪{n+2}
.

For instance, pn(i−n−3)+1 = (m23...n+1 i)(m12...n n+2)
(m12...ni)(m23...n+1 n+2)

.

The important thing to observe here is that for each pr, there are distinct mono-

mials Mα and Mβ such that Mα

Mβ
= pr. We note here that since our configurations

are in general position, all of the mi1...in+1 are nonzero and hence all of the Mi are

nonzero.

Now consider two configurations P1, . . . , Pk and P ′
1, . . . , P

′
k in Uk,n with pro-

jective invariants p1, . . . , pn(k−n−2) and p′1, . . . , p
′
n(k−n−2) respectively. Suppose that

φk,n(V(P1, . . . , Pk)) = (M1, . . . ,MN) and that φk,n(V(P ′
1, . . . , P

′
k)) = (M ′

1, . . . ,M
′
N).

If P1, . . . , Pk and P ′
1, . . . , P

′
k do not have the same shape, then for some r, pr 6= p′r.

Hence for some α 6= β, Mα

Mβ
6= M ′

α

M ′
β

from which we see that φk,n(V(P1, . . . , Pk)) 6=



76

φk,n(V(P ′
1, . . . , P

′
k)).

Consider 6 points in P3
R. Then the monomials Mi will be of degree d = lcm(6,4)

4
=

12
4

= 3 and each of the numbers 1,2,3,4,5,6 will appear t = 2 times in the indices of

the mi1i2i3i4 in each Mi. In this case, the map φ6,3 is given by

φ6,3(m1234 : . . . : m3456) = (m1234m1256m3456 : m1234m1356m2456 : m1234m1456m2356 :

m1235m1246m3456 : m1235m1346m2456 : m1235m1456m2346 :

m1236m1245m3456 : m1236m1345m2456 : m1236m1456m2345 :

m1245m1346m2356 : m1245m1356m2346 : m1246m1345m2356 :

m1246m1356m2345 : m1256m1345m2346 : m1256m1346m2345).(3.54)

In particular, this map embeds our shape space in P14
R which is much more convenient

for computations than the extremely high dimensional space we arrive at using the

Chow forms.

Suppose now that we have 6 points in P2
R. Then in this case n = 2 and k = 6

so that n + 1 divides k. If we do not make the assumption that t ≥ 2, then we can

define a map ψ : U ′
6,2 ⊂ Gr(3, 6) → P9

R that collapses the V(P1, . . . , P6) to points by

ψ(n123 : . . . : n456) = (n123n456 : n124n356 : n125n346 : n126n345 : n134n256 :

n135n246 : n136n245 : n145n236 : n146n235 : n156n234)(3.55)

Here the ni1,i2,i3nj1,j2,j3 are all of the degree 2 monomials in which each of the values

1, 2, 3, 4, 5, 6 appears exactly once.
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Consider the configuration

(3.56)

P1 = (1 : 0 : 0) P4 = (1 : 1 : 1)

P2 = (0 : 1 : 0) P5 = (2 : 4 : 1)

P3 = (0 : 0 : 1) P6 = (1 : 3 : 1)

with Plücker coordinates (1 : 1 : 1 : 1 : −1 : −4 : −3 : −3 : −2 : 1 : 1 : 2 : 1 : 1 : 0 :

−1 : 2 : 2 : 2 : 2) and the configuration

(3.57)

Q1 = (1 : 0 : 0) Q4 = (1 : 1 : 1)

Q2 = (0 : 1 : 0) Q5 = (−2 : 0 : 1)

Q3 = (0 : 0 : 1) Q6 = (−3 : −1 : 1)

which has Plücker coordinates (1 : 1 : 1 : 1 : −1 : 0 : 1 : 1 : 2 : 1 : 1 : −2 : −3 : −3 :

−4 : −1 : 2 : 2 : 2 : 2). We can see that these two configurations have distinct shapes

since they have different projective invariants (as defined in section C).

We now have that ψ identifies the configuration P1, P2, P3, P4, P5, P6 with the

point

ψ(1 : 1 : 1 : 1 : −1 : −4 : −3 : −3 : −2 :1 : 1 : 2 : 1 : 1 : 0 : −1 : 2 : 2 : 2 : 2)

= (2 : 2 : 2 : 2 : 1 : 0 : −3 : −3 : −4 : 1)(3.58)

and identifies the configuration Q1, Q2, Q3, Q4, Q5, Q6 with the point

ψ(1 : 1 : 1 : 1 : −1 : 0 : 1 : 1 : 2 : 1 : 1 :− 2 : −3 : −3 : −4 : −1 : 2 : 2 : 2 : 2)

= (2 : 2 : 2 : 2 : 1 : 0 : −3 : −3 : −4 : 1).(3.59)

Thus, under the map ψ, we have two distinct shapes identified with the same point

in P9
R. So we see that the assumption t ≥ 2 is necessary.
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CHAPTER IV

THE CONFORMAL CASE

In this chapter, we will return to the classical case in which we consider configurations

of k points (at least 2 distinct) in An
R up to a similarity transformation (definition

B.1), and we will attempt to relate such shapes under conformal projections. This

type of projection is an orthogonal projection followed by a translation and a dilation.

When we represent points in An
R in the form

(4.1)



x1

...

xn

1


such projections take the form

(4.2) T =



t1

λS
...

tn

0 · · · 0 1


where λ > 0, (t1, . . . , tn, 1) ∈ An

R, and S is a n×m matrix whose rows are orthonormal

vectors in Rm with the usual inner product. Here S gives us the orthogonal projection,

λ is the scale factor of the dilation, and (t1, . . . , tn, 1) is the translation.

We choose to consider similarity shapes under conformal projections because

they effectively model radar imaging. For now, we will be considering our objects to

be configurations of points in the plane A2
R and our images to be configurations of

points on the line A1
R.
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A. The Object and Image Shape Spaces

We have already seen in Chapter I that the space of shapes of configurations of k

points (at least 2 distinct) in A2
R up to similarity transformations is the complex

projective space, Pk−2
C . We will use a slightly different construction here than the

one used in Chapter I. Consider k points z0, . . . , zk−1 in A2
R which we will treat as a

vector (z0, . . . , zk−1) ∈ Ak
C when we make the natural identification of A2

R with C. We

then identify configurations of k points in A2
R modulo translation with Ak−1

C −{0} by

moving (z0, . . . , zk−1) to (0, z1 − z0, z2 − z0, . . . , zk−1 − z0). Since we are assuming at

least two of our points are distinct, (z1 − z0, . . . , zk−1 − z0) ∈ Ak−1
C is nonzero.

Now having removed translation, we want to identify the space Ak−1
C −{0}modulo

rotation and scale. Since rotation and scale is simply multiplication by a nonzero

complex number, we see that the shape space for k points in A2
R up to similarity

transformation is the complex projective space Pk−2
C . For this chapter, we will refer

to Pk−2
C as object space.

Definition A.1. We call the homogeneous coordinates (w1 : . . . : wk−1) ∈ Pk−2
C of the

shape of an object configuration the shape coordinates of that object configuration.

What then is the space of image shapes? In other words, we want to know

what the shape space is for k points (at least 2 distinct) in A1
R up to similarity

transformations. Notice that there are no rotations on A1
R since SO(1) is the group

of all 1 × 1 matrices of determinant 1 which consists only of the matrix (1). We

should observe though, that if we identify A1
R with a line in A2

R, then reflecting a

configuration in A1
R is equivalent to rotating that configuration 180 degrees in A2

R. In

this light, we will stipulate that similarity transformations on A1
R (and only A1

R) will

include reflections.

So we will consider two image configurations P1, . . . , Pk and Q1, . . . , Qk in A1
R
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equivalent if they differ by a translation, dilation, and/or reflection. Now consider the

configuration P0, . . . , Pk−1 ∈ A1
R which we will represent as a vector (P0, . . . , Pk−1) ∈

Ak
R. We identify configurations of k points in A1

R modulo translations with Ak−1
R −{0}

by moving (P0, . . . , Pk−1) to (0, P1 − P0, . . . , Pk − P1).

So now we want to identify configurations in Ak−1
R − {0} up to reflection and

scale. Note that reflection and scale is simply multiplication by some λ ∈ R∗. From

this we see that the shape space of configurations of k points in A1
R up to similarity

transformation is the projective space Pk−2
R .

Definition A.2. We call the homogeneous coordinates (u1 : . . . : uk−1) ∈ Pk−2
R of the

shape of an image configuration the shape coordinates of that image configuration.

B. The Object/Image Relations

As in the affine and projective models, we again want to find necessary and sufficient

conditions for an image configuration Q1, . . . , Qk in A1
R to be a conformal projection

of an object configuration P1, . . . , Pk. Let A be a similarity transformation on A1
R,

let B be a similarity transformation on A2
R, and let T be a conformal projection from

A2
R to A1

R. Then A,B, and T take the forms

A =

 γ s

0 1

(4.3)

B =


e −f t1

f e t2

0 0 1

(4.4)

T =

 a b c

0 0 1

(4.5)
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where γ ∈ R∗, e, f ∈ R with e and f not both zero, and a, b, c ∈ R with a and b not

both zero. Then

(4.6) ATB =

 γ(ea+ fb) γ(−fa+ eb) s̃

0 0 1


where s̃ = γat1 + γbt2 + γc+ s.

Suppose that ATB is not a conformal projection. Then ea+ fb = −fa+ eb = 0.

If e = 0, then f 6= 0 (since det

 e −f

f e

 6= 0) and fb = −fa = 0. Thus, a = b = 0

in which case T is not a conformal projection. If e 6= 0 then since ea + fb = 0,

a = −fb
e

. From this we get that −fa + eb = f2b
e

+ eb = b
(

f2+e2

e

)
= 0 which implies

that b = 0 (f2+e2

e
6= 0 since e 6= 0). Hence, a = −fb

e
= 0 so that T is again not a

conformal projection. In either case, we arrive at a contradiction, and so ATB must

be a conformal projection.

This tells us that we may relate shapes of image configurations and shapes of

object configurations under conformal projections. So the set V of matching objects

and images should be the zero locus in Pk−2
C × Pk−2

R of some system of equations in

the object and image shape coordinates.

We will begin by considering configurations of 4 points. Let Pi = (xi, yi, 1), i =

0, . . . , 3 be an object configuration and let Qi = (ui, 1), i = 0, . . . , 3 be an image

configuration. Then the image Q0, Q1, Q2, Q3 is a conformal projection of the object

P0, P1, P2, P3 if there exist a, b, c ∈ R with a and b not both zero such that

(4.7)

 u0 u1 u2 u3

1 1 1 1

 =

 a b c

0 0 1




x0 x1 x2 x3

y0 y1 y2 y3

1 1 1 1

 .

So if Q0, Q1, Q2, Q3 is the image of P0, P1, P2, P3 under a conformal projection, then
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the system

(4.8) ui = axi + byi + c, for i = 1, 2, 3, 4

is satisfied for some a, b, c ∈ R with a and b not both zero.

If we use Gröebner bases to eliminate a, b, and c from this system of polynomial

equations, we are left with one single object/image relation

u0(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)

−u1(x0y2 − x2y0 − x0y3 + x3y0 + x2y3 − x3y2)

+u2(x0y1 − x1y0 − x0y3 + x3y0 + x1y3 − x3y1)

−u3(x0y1 − x1y0 − x0y2 + x2y0 + x1y2 − x2y1) = 0.(4.9)

Equation 4.9 is equivalent to the equation

(4.10) det



u0 u1 u2 u3

x0 x1 x2 x3

y0 y1 y2 y3

1 1 1 1


= 0.

If we assume that (x0, x1, x2, x3), (y0, y1, y2, y3), and (1, 1, 1, 1) are linearly indepen-

dent, then 4.10 simply means that (u0, u1, u2, u3) lies in the span of (x0, x1, x2, x3),

(y0, y1, y2, y3), and (1, 1, 1, 1). The vectors (x0, x1, x2, x3), (y0, y1, y2, y3), and (1, 1, 1, 1)

are linearly independent if and only if the configuration Pi = (xi, yi, 1) is not collinear.

Suppose that the configuration Pi = (xi, yi, 1), i = 0, 1, 2, 3 is collinear. Then

we may rotate the configuration P0, P1, P2, P3 so that yi = 0 for all i so that the
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object/image equation 4.10 becomes

(4.11) det



u0 u1 u2 u3

x0 x1 x2 x3

0 0 0 0

1 1 1 1


= 0

which is satisfied for any configuration Qi = (ui, 1) of four points in A1
R. What this

seems to suggest is that for every collinear object configuration P0, P1, P2, P3 in A2
R

and for every image configuration Q0, Q1, Q2, Q3, there is a conformal projection π

so that Pi = π(Qi) for i = 0, 1, 2, 3, which is clearly not true. To avoid this problem,

we will choose to only consider noncollinear configurations of points in A2
R.

In the general case of k points, we can see that an image configuration Qi =

(ui, 1), i = 0, . . . , k − 1 is a conformal projection of an object configuration Pi =

(xi, yi, 1), i = 0, . . . , k−1 if and only if (u0, . . . , uk−1) lies in the span of (x0, . . . , xk−1),

(y0, . . . , yk−1), and (1, . . . , 1). Since we are assuming P0, . . . , Pk−1 are not collinear,

the object/image relations then become

(4.12) det



ui0 ui1 ui2 ui3

xi0 xi1 xi2 xi3

yi0 yi1 yi2 yi3

1 1 1 1


= 0

for all 0 ≤ i0 < i1 < i2 < i3 ≤ k − 1.

How do we write these relations in terms of the shape coordinates? Let Pi =

(xi, yi, 1), i = 0, . . . , k − 1 be an object configuration, and let Let Qi = (ui, 1), i =

0, . . . , k − 1 be an image configuration. We may move P0, P1, . . . , Pk−1 by a trans-

lation so that P0 = (0, 0, 1) and Pi = (x̃i, ỹi, 1) for i = 1, . . . , k − 1, and we may
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move Q0, Q1, . . . , Qk−1 by a translation so that Q0 = (0, 1) and Qi = (ũi, 1) for

i = 1, . . . , k − 1. Notice that (ũ1 : . . . : ũk−1) are the shape coordinates of the image

configuration Q0, Q1, . . . , Qk−1, and (z1 : . . . : zk−1) where zj = x̃j + iỹj ∈ C are the

shape coordinates of the object configuration P0, P1, . . . , Pk−1.

When we place our configurations in this standard position, we see that Q0,

Q1, . . . , Qk−1 is a conformal projection of P0, P1, . . . , Pk−1 if there exist a, b ∈ R not

both zero such that

(4.13)

 ũ1 ũ2 · · · ũk−1

1 1 . . . 1

 =

 a b 0

0 0 1




x̃1 x̃2 · · · x̃k−1

ỹ1 ỹ2 · · · ỹk−1

1 1 1


or equivalently

(4.14)

(
ũ1 ũ2 · · · ũk−1

)
=

(
a b

)  x̃1 x̃2 · · · x̃k−1

ỹ1 ỹ2 · · · ỹk−1

 .

So we have that Q0, Q1, . . . , Qk−1 is a conformal projection of P0, P1, . . . , Pk−1

if (ũ1, . . . , ũk−1) lies in the span of (x̃1, . . . , x̃k−1) and (ỹ1, . . . , ỹk−1). By making

the assumption that P0, . . . , Pk−1 is a noncollinear configuration, (x̃1, . . . , x̃k−1) and

(ỹ1, . . . , ỹk−1) are linearly independent Thus, in terms of the image shape coordinates

(ũ1 : . . . : ũk−1) and the object shape coordinates (z0 : . . . : zk−1) (zj = x̃j + iỹj ∈ C),

the object/image relations become

(4.15) det


ũi1 ũi2 ũi3

x̃i1 x̃i2 x̃i3

ỹi1 ỹi2 ỹi3

 = 0.
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C. The Relationship with Affine Shapes

There are two important points to notice in our analysis so far in this chapter. First,

every conformal projection

(4.16)

 a b c

0 0 1


is necessarily a generalized weak perspective projection. This is only true for confor-

mal projections of Ak
R onto A1

R.

Second, similarity transformations on A1
R (as we have defined them) and affine

transformations on A1
R are equivalent. Thus, from our work with affine shapes from

Chapter II we see that if P0, . . . , Pk−1 is an object configuration, if Q0, . . . , Qk−1 is an

image configuration, and if there is a conformal projection π : A2
R → A1

R such that

Qi = π(Pi) for all i, then for every affine transformation A on A2
R, there is a conformal

projection πA such that Qi = πA(APi).

Let W be the locus of shapes (x1 + iy1 : . . . : xk−1 + iyk−1) ∈ Pk−2
C of collinear

configurations P0, . . . , Pk−1. W then is the set of solutions to the system

(4.17) xmyn − xnym = 0 for 1 ≤ m < n ≤ k − 1.

Now, a conformal projection π induces a projection πSim

(4.18)

Pk−2
C −W

πSim

y
Pk−2

R

and induces a projection πAff

(4.19)

AR(k, 2)

πAff

y
Pk−2

R .
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Since every similarity transformation is an affine transformation, there is a map

φ : Pk−2
C −W → AR(k, 2) such that

(4.20)

Pk−2
C −W

φ−−−→ AR(k, 2)

πSim

y πAff

y
Pk−2

R Pk−2
R

commutes. Explicitly the map φ maps the shape (z1 : . . . : zk−1) ∈ Pk−2
C − W to

(m123 : . . . : mk−2 k−1 k) ∈ AR(k, 2) ⊂ P(k
3)−1

R where

(4.21) mj1j2j3 = det


1
2
(zj1 + zj1)

1
2
(zj2 + zj2)

1
2
(zj3 + zj3)

1
2i

(zj1 − zj1)
1
2i

(zj2 − zj2)
1
2i

(zj3 − zj3)

1 1 1

 .

Notice that if zj = xj + iyj, then 1
2
(zj +zj) = xj and 1

2i
(zj−zj) = yj. Notice also that

we must remove the set W of shapes of collinear configurations from Pk−2
C in order

for φ to be well-defined.

So the map πSim gives a fibering of the shape space Pk−2
C −W . In particular, if

an image shape (u1 : . . . : uk−1) ∈ Pk−2
R is a conformal projection of an object shape

(z1 : . . . , zk−1) ∈ Pk−2
C − W , the fiber π−1

Sim(u1 : . . . : uk−1) contains all shapes of

configurations of k points in A2
R up to similarity transformation that differ from by

(z1 : . . . : zk−1) by an affine transformation of A2
R.

D. Metrics

As in the affine case, we would like to have a measure of an image shape’s failure to

be a conformal projection of a given object shape. The natural way to do this is to

begin with the metrics on the object and image shape spaces.

Since in this model, our shape spaces are projective spaces they come equipped

with their respective Fubini-Study metrics. Let dI denote the Fubini-Study metric on
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our image space Pk−2
R , and let dO denote the Fubini-Study metric on our object space

Pk−2
C −W . Now consider an object shape z ∈ Pk−2

C −W and an image shape u ∈ Pk−2
R .

Define O(u) ⊂ Pk−2
C −W to be the set of all object shapes capable of producing the

image shape u under a conformal projection. Similarly, let I(z) ⊂ Pk−2
R be the set of

all possible images of z under conformal projection. We may then define two measures

of distance d1 and d2 between z and u given by

d1(z, u) = min
z′∈O(u)

dO(z, z′)(4.22)

d2(z, u) = min
u′∈I(z)

dI(u
′, u).(4.23)

Ideally, we would like to show that d1 and d2 are equal (perhaps up to some scale

factor) as we did in the affine case. However, at this point we are unable to even

verify this for specific examples. The problem we face comes from the fact that most

methods of computing the distance d1 (such as the method of Lagrange multipliers)

require us to work in the compact space Pk−2
C rather than Pk−2

C −W .

For a specific image shape u ∈ Pk−2
R , the set O(u) as a subvariety of Pk−2

C −W

is defined by the object/image relations 4.12 (after substituting the homogeneous

coordinates of u). However, as we noted earlier the subvariety of Pk−2
C defined by the

object/image relations is the union of O(u) with the set W of all shapes of collinear

configurations. Because of this, when we attempt to compute the distance d1(z, u)

for any object shape z ∈ Pk−2
C − W and any image shape u ∈ Pk−2

R , we arrive at

d1(z, u) = 0.

To address this problem, we should try to understand the set O′(u) ⊂ Pk−2
C

consisting of all shapes of k points in A2
R (at least two distinct) capable of producing

the image shape u ∈ Pk−2
R . This should be the union of O(u) and the set of all shapes

w ∈ W of collinear configurations capable of producing the shape u under conformal
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projection. It is clear that there is only one shape w ∈ W that can be conformally

projected to u. Thus, O′(u) = O(u) ∪ {w}.

What we should do, is redefine the distance d1(z, u) between an image shape u

and an object shape z ∈ Pk−2
C to be the minimum distance between z and O′(u) in

Pk−2
C with the Fubini-Study metric i.e. d1(z, u) = minz′∈O′(u)dO(z, z′). To be able to

compute this distance, we will need to know all of the equations that define O′(u).

This system will include the object/image relations 4.12 together with some other

set J of equations that eliminate the extraneous shapes in W that our first set of

object/image relations left. Determining precisely the system J will be left for a

future paper.
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CHAPTER V

CONCLUSION

In this dissertation we have investigated several target recognition models in a shape

theoretic and algebraic geometric context. Doing so has allowed us to consider match-

ing of objects and images independent of the sensor viewpoint, internal sensor pa-

rameters and choice of coordinate systems in which we represent our objects and

images.

We first extended the theory in the generalized weak perspective (GWP) model

by introducing three notions of distance between an affine object shape and an affine

image shape and proving that these three “metrics” are equivalent (the so called

duality of the object and image shape metrics).

We followed this by adapting the shape theoretic techniques of the GWP model

to the full perspective model. We defined an appropriate notion of shape for this

model and gave a representation of shape as a projective subvariety of a Grassman-

nian. These projective varieties are given by systems of polynomials in the Plücker

coordinates on our Grassmannian whose coefficients are monomials in the Plücker

coordinates mi1i2...in+1 of the null space of the matrix of the configuration. We then

gave ways to compute the object/image relations for this model and gave explicitly

this matching equation for configurations of 6 points. We emphasize that these rela-

tions give a correspondence between object and image shapes under full perspective

projection.

We concluded the discussion of this model by giving two ways to embed the shape

space Uk,n/PGL(n+ 1) for configurations of k points in Pn
R in general position into a

projective space Pn
R. We first considered the Chow embedding, which is the natural

geometric map to use for identifying the shape varieties with points in PN
R . Due to the
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difficulty in computing the Chow form of a variety and the high dimension of the target

space PN
R , this turns out not to be an effective method for representing projective

shapes as single points in projective space. To avoid this problem we constructed

another map φk,n : U ′
k,n ⊂ Gr(n + 1, k) → PN ′

R which induces an embedding of

the shape space into projective space PN ′

R . This projective space has a much lower

dimension than the target space of the Chow embedding making it much more useful

for practical computations.

Finally, we examined the conformal model where we considered shapes of object

configurations in A2
R and shapes of image configurations in A1

R up to similarity trans-

formations, and investigated the relationship between such shapes under conformal

projections. We were able to give necessary and sufficient conditions for an image

configuration to be a conformal projection of a noncollinear object configuration in

terms of their shapes. We then investigated the metrics on the object and image

shape spaces and defined two notions of distance between an object shape and an

image shape.

In this research there are several unanswered questions. In particular, the theory

in the full perspective and conformal cases is incomplete. Firstly, the map φk,n induces

an embedding of the shape space Uk,n/PGL(n+1) as a subset U of a projective space

PN
R , but we have only considered configurations whose points are in general position.

It seems that the boundary points of U should correspond to shapes of degenerate

configurations where some of the mi1i2...in+1 are zero. Instead of only considering

configurations in Uk,n (those whose points are in general position), we should consider

configurations in a larger open subset Ũk,n ⊂ (Pn
R)k so that the image of the induced

map φk,n : Ũk,n/PGL(n + 1) → PN ′

R is U , the Zariski closure of U in PN ′

R . In some

sense, this set Ũk,n should be the largest set of configurations we can consider and

still maintain a reasonable quotient space Ũk,n/PGL(n + 1). These are likely to be
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the stable or semi-stable configurations as defined in [13].

Secondly, as in the affine case, we would like to define a “distance” d between

a projective object shape K and a projective image shape L. The natural way to

do this would be to define a metric dO on the projective object shape space and

a metric dI on the projective image shape space, and then compute d(K,L) to be

either minL′ dO(K,L′) where L′ ranges over all object shapes capable of producing

the image L or minK′ dI(K
′, L) where K ′ ranges over the shapes of all possible im-

ages of the object K. If we define dO to be the metric on our object space induced

by the Fubini-Study metric on PN1
R (after embedding the object space via the map

φk,3) and dI to be the metric on our image space induced by the Fubini-Study met-

ric on PN2
R (after embedding the image space via the map φk,3), are the “metrics”,

d1(K,L) = minL′ dO(K,L′) and d2(K,L) = minK′ dI(K
′, L) equivalent? If not, can

we define some other metrics on the projective object and image spaces so that this

object/image metric duality does hold?

In the conformal case, we still need to determine the defining equations of the

set Ø′(u) ⊂ Pk−2
C of all object shapes capable of producing the image shape u ∈ Pk−2

R

under a conformal projection. Upon doing this, we would then like to show that the

distances d1(z, u) and d2(z, u) between an object shape z and an image shape u are

equal.

A natural next step in this research would be to consider our shape spaces modulo

the action of the permutation group Sk on the points of our configurations. So far

we have considered our configurations to be ordered k-tuples of points in An
R or Pn

R.

In this way, we have been considering the configurations P1 = (1 : 0 : 0), P2 = (0 :

1 : 0), P3 = (0 : 0 : 1) and P ′
1 = (0 : 1 : 0), P ′

2 = (0 : 0 : 1), P ′
3 = (1 : 0 : 0) to

be distinct. The difference in the two configurations is in the labeling that we have

chosen to place on the points rather than the geometry of the configuration. Thus we
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would ultimately like to study the shape spaces of configurations up to a permutation

of the points and the action of some group of transformations.
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APPENDIX A

EXAMPLES

In this appendix, we will give a number of examples using the techniques presented

in this dissertation and include the code used in these computations. The majority of

the code is written for the computer algebra package Macaulay2. However, due to the

fact that Macaulay2 cannot evaluate trigonometric functions, we will use MATLAB

in our computations of the metrics in our target recognition models. In this appendix,

the reader should assume we are using Macaulay2 unless otherwise noted.

A. The Affine Case

In this first section, we will use the “affShapes” package to compute examples in the

generalized weak perspective model.

1. Affine Object Shapes

We first define three 3D objects.

i1 : Ob1= matrix {{1, 2, -3, 8, 0, 3}, {0, -2, -4, 6, 7, -5}, {-1,

5, 0, 1, -7, 10}, {1, 1, 1, 1, 1, 1}}

o1 = | 1 2 -3 8 0 3 |

| 0 -2 -4 6 7 -5 |

| -1 5 0 1 -7 10 |

| 1 1 1 1 1 1 |
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4 6

o1 : Matrix ZZ <--- ZZ

i2 : Ob2= matrix {{-3, 7, -10, 8, 1, 4}, {-9, 3, 1, 4, 6, -8}, {-4,

9, 4, 6, -10, -10}, {1, 1, 1, 1, 1, 1}}

o2 = | -3 7 -10 8 1 4 |

| -9 3 1 4 6 -8 |

| -4 9 4 6 -10 -10 |

| 1 1 1 1 1 1 |

4 6

o2 : Matrix ZZ <--- ZZ

i3 : Ob3= matrix {{-4, 18, 7, -10, -36, 39}, {-2, 17, -3, 11, -21,

33},{3,9,-1,5,0,4}, {1, 1, 1, 1, 1, 1}}

o3 = | -4 18 7 -10 -36 39 |

| -2 17 -3 11 -21 33 |

| 3 9 -1 5 0 4 |

| 1 1 1 1 1 1 |

4 6

o3 : Matrix ZZ <--- ZZ
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We use the function “maxMinors” to compute the shape coordinates of the con-

figurations (which are the maximal minors of the configuration matrices).

i4 : load "affShapes"

--loaded maxMinors

--loaded perm

--loaded affShapes

i5 : CoordsOb1=maxMinors Ob1

o5 = {20, 125, -37, -200, 60, 5, -95, 59, 193, -305, 210, -58, 26,

-50, -344}

o5 : List

i6 : CoordsOb2=maxMinors Ob2

o6 = {757, 3805, 1513, -461, 288, 2369, -3560, -1336, 400, 2168,

-51, -868, -4261, 548, 3992}

o6 : List

i7 : CoordsOb3=maxMinors Ob3

o7 = {-1960, -7, -2149, -1600, 4120, 1769, 2049, -2357, -2255, 2383,

5602, -6666, -6166, 6334, 232}
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o7 : List

Notice that if we scale the shape coordinates so that the first entry is 1, the second

coordinates become 25
4
, 3805

757
, and 1

280
. So we see that these three objects have distinct

shapes.

Now we define an affine transformation on A3
R.

i8 : affTrans=matrix {{5, 6, -2, -1}, {4, -3, 3, 2}, {1, 7, -4, 1},

{0, 0, 0, 1}}

o8 = | 5 6 -2 -1 |

| 4 -3 3 2 |

| 1 7 -4 1 |

| 0 0 0 1 |

4 4

o8 : Matrix ZZ <--- ZZ

If we move object Ob1 by this affine transformation, we obtain a new object config-

uration having the same shape coordinates.

i9 : TransOb1=affTrans*Ob1

o9 = | 6 -13 -40 73 55 -36 |

| 3 31 2 19 -40 59 |

| 6 -31 -30 47 78 -71 |

| 1 1 1 1 1 1 |
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4 6

o9 : Matrix ZZ <--- ZZ

i10 : coordsTransOb1=maxMinors TransOb1

o10 = {140, 875, -259, -1400, 420, 35, -665, 413, 1351, -2135, 1470,

-406, 182, -350, -2408}

o10 : List

In particular, we note that the shape coordinates of Ob1 and TransOb1 differ by a

factor of det(affTrans).

i11 : det(affTrans)

o11 = 7

i12 : (1/7)*coordsTransOb1

o12 = {20, 125, -37, -200, 60, 5, -95, 59, 193, -305, 210, -58, 26,

-50, -344}

o12 : List

If we only need to test for matching but do not need the specific shape coor-

dinates, we may use the “sameAffShape” function of the “affShapes” package. This

function will take two configuration matrices and return “true” if the configurations
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have the same shape and “false” otherwise. The determination is made by checking

that the shape coordinates give the same point in projective space.

i13 : sameAffShape(Ob1,Ob2)

o13 = false

i14 : sameAffShape(Ob1,TransOb1)

o14 = true

2. Projections

We now define three generalized weak perspective projections from A3
R to A2

R and

apply them to our object shapes.

i15 : proj1=matrix{{0,-2,3,-1},{1,0,3,0},{0,0,0,1}}

o15 = | 0 -2 3 -1 |

| 1 0 3 0 |

| 0 0 0 1 |

3 4

o15 : Matrix ZZ <--- ZZ

i16 : proj2=matrix{{-5,1,3,-2},{2,6,4,0},{0,0,0,1}}

o16 = | -5 1 3 -2 |
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| 2 6 4 0 |

| 0 0 0 1 |

3 4

o16 : Matrix ZZ <--- ZZ

i17 : proj3=matrix{{1,5,0,2},{4,-1,0,3},{0,0,0,1}}

o17 = | 1 5 0 2 |

| 4 -1 0 3 |

| 0 0 0 1 |

3 4

o17 : Matrix ZZ <--- ZZ

i18 : Im1=proj1*Ob1

o18 = | -4 18 7 -10 -36 39 |

| -2 17 -3 11 -21 33 |

| 1 1 1 1 1 1 |

3 6

o18 : Matrix ZZ <--- ZZ

i19 : Im2=proj2*Ob1
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o19 = | -10 1 9 -33 -16 8 |

| -2 12 -30 56 14 16 |

| 1 1 1 1 1 1 |

3 6

o19 : Matrix ZZ <--- ZZ

i20 : Im3=proj3*Ob3

o20 = | -12 105 -6 47 -139 206 |

| -11 58 34 -48 -120 126 |

| 1 1 1 1 1 1 |

3 6

o20 : Matrix ZZ <--- ZZ

i21 : Im4=proj1*Ob3

o21 = | 12 -8 2 -8 41 -55 |

| 5 45 4 5 -36 51 |

| 1 1 1 1 1 1 |

3 6

o21 : Matrix ZZ <--- ZZ
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We use the “maxMinors” function to compute the shape coordinates of the four

images we have just generated.

i22 : coordsIm1=maxMinors Im1

o22 = {-231, 400, 190, -47, 137, -241, 428, 530, -769, -303, -494,

-662, 244, 740, -322, -66, 908, -1060, -972, 996}

o22 : List

i23 : coordsIm2=maxMinors Im2

o23 = {-574, 960, 260, -54, 458, 136, 846, -20, -1458, -396, -1076,

-698, 326, 680, -444, -82, 302, -1846, -1106, 1042}

o23 : List

i24 : coordsIm3=maxMinors Im3

o24 = {4851, -8400, -3990, 987, -2877, 5061, -8988, -11130, 16149,

6363, 10374, 13902, -5124, -15540, 6762, 1386, -19068, 22260, 20412,

-20916}

o24 : List

i25 : coordsIm4=maxMinors Im4
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o25 = {420, 800, -340, 1760, -20, 439, -527, 820, -920, -1413, -400,

1199, -1867, 1960, -1880, -3513, 361, -413, -447, 327}

o25 : List

We should notice here that if we scale the shape coordinates of the images Im1,

Im2, and Im4 so that the first coordinate is one, the second coordinates become −400
231

,

−480
287

, and 40
21

respectively. From this we see that Im1, Im2, and Im4 have distinct

shapes. Notice that even though Im1 and Im2 are both generalized weak perspective

projections of the object configuration Ob1, they do not have the same shape. This

verifies our assertion in Chapter II that a single object can produce multiple image

shapes under generalized weak perspective projection.

Similarly, we see that the images Im1 and Im3 have the same shape even though

they are GWP projections of two objects having distinct shapes.

i26 : -1/21*coordsIm3

o26 = {-231, 400, 190, -47, 137, -241, 428, 530, -769, -303, -494,

-662, 244, 740, -322, -66, 908, -1060, -972, 996}

o26 : List

This confirms our assertion in Chapter II that given an image shape, there are multiple

object shapes capable of producing that image shape under GWP projection.
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3. Object/Image Equations

Now we will evaluate the affine object/image relations for particular object and im-

age shapes. We will generate the affine object/image relations using the “affOIrels”

function (part of the “affShapes” package).

i27 : rels=affOIrels(6)

o27={-2}|n_{1,4,5}m_{0,1,2,3}-n_{1,3,5}m_{0,1,2,4}+n_{1,3,4}m_{0,1,2,5}

+n_{1,2,5}m_{0,1,3,4}-n_{1,2,4}m_{0,1,3,5}+n_{1,2,3}m_{0,1,4,5} |

{-2} |-n_{0,4,5}m_{0,1,2,3}+n_{0,3,5}m_{0,1,2,4}-n_{0,3,4}m_{0,1,2,5}

-n_{0,2,5}m_{0,1,3,4}+n_{0,2,4}m_{0,1,3,5}-n_{0,2,3}m_{0,1,4,5} |

{-2} | n_{0,1,5}m_{0,1,3,4}-n_{0,1,4}m_{0,1,3,5}+n_{0,1,3}m_{0,1,4,5} |

{-2} |-n_{0,1,5}m_{0,1,2,4}+n_{0,1,4}m_{0,1,2,5}-n_{0,1,2}m_{0,1,4,5} |

{-2} | n_{0,1,5}m_{0,1,2,3}-n_{0,1,3}m_{0,1,2,5}+n_{0,1,2}m_{0,1,3,5} |

{-2} |-n_{0,1,4}m_{0,1,2,3}+n_{0,1,3}m_{0,1,2,4}-n_{0,1,2}m_{0,1,3,4} |

{-2} | n_{2,4,5}m_{0,1,2,3}-n_{2,3,5}m_{0,1,2,4}+n_{2,3,4}m_{0,1,2,5}

+n_{1,2,5}m_{0,2,3,4}-n_{1,2,4}m_{0,2,3,5}+n_{1,2,3}m_{0,2,4,5} |

{-2} |-n_{0,2,5}m_{0,2,3,4}+n_{0,2,4}m_{0,2,3,5}-n_{0,2,3}m_{0,2,4,5} |

{-2} |-n_{0,4,5}m_{0,1,2,3}+n_{0,3,5}m_{0,1,2,4}-n_{0,3,4}m_{0,1,2,5}

+n_{0,1,5}m_{0,2,3,4}-n_{0,1,4}m_{0,2,3,5}+n_{0,1,3}m_{0,2,4,5} |

{-2} |-n_{0,2,5}m_{0,1,2,4}+n_{0,2,4}m_{0,1,2,5}-n_{0,1,2}m_{0,2,4,5} |

{-2} | n_{0,2,5}m_{0,1,2,3}-n_{0,2,3}m_{0,1,2,5}+n_{0,1,2}m_{0,2,3,5} |

{-2} |-n_{0,2,4}m_{0,1,2,3}+n_{0,2,3}m_{0,1,2,4}-n_{0,1,2}m_{0,2,3,4} |

{-2} | n_{3,4,5}m_{0,1,2,3}-n_{2,3,5}m_{0,1,3,4}+n_{2,3,4}m_{0,1,3,5}

+n_{1,3,5}m_{0,2,3,4}-n_{1,3,4}m_{0,2,3,5}+n_{1,2,3}m_{0,3,4,5} |

{-2} |-n_{0,3,5}m_{0,2,3,4}+n_{0,3,4}m_{0,2,3,5}-n_{0,2,3}m_{0,3,4,5} |
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{-2} | n_{0,3,5}m_{0,1,3,4}-n_{0,3,4}m_{0,1,3,5}+n_{0,1,3}m_{0,3,4,5} |

{-2} |-n_{0,4,5}m_{0,1,2,3}-n_{0,2,5}m_{0,1,3,4}+n_{0,2,4}m_{0,1,3,5}

+n_{0,1,5}m_{0,2,3,4}-n_{0,1,4}m_{0,2,3,5}-n_{0,1,2}m_{0,3,4,5} |

{-2} | n_{0,3,5}m_{0,1,2,3}-n_{0,2,3}m_{0,1,3,5}+n_{0,1,3}m_{0,2,3,5} |

{-2} |-n_{0,3,4}m_{0,1,2,3}+n_{0,2,3}m_{0,1,3,4}-n_{0,1,3}m_{0,2,3,4} |

{-2} | n_{3,4,5}m_{0,1,2,4}-n_{2,4,5}m_{0,1,3,4}+n_{2,3,4}m_{0,1,4,5}

+n_{1,4,5}m_{0,2,3,4}-n_{1,3,4}m_{0,2,4,5}+n_{1,2,4}m_{0,3,4,5} |

{-2} |-n_{0,4,5}m_{0,2,3,4}+n_{0,3,4}m_{0,2,4,5}-n_{0,2,4}m_{0,3,4,5} |

{-2} | n_{0,4,5}m_{0,1,3,4}-n_{0,3,4}m_{0,1,4,5}+n_{0,1,4}m_{0,3,4,5} |

{-2} |-n_{0,4,5}m_{0,1,2,4}+n_{0,2,4}m_{0,1,4,5}-n_{0,1,4}m_{0,2,4,5} |

{-2} | n_{0,3,5}m_{0,1,2,4}-n_{0,2,5}m_{0,1,3,4}-n_{0,2,3}m_{0,1,4,5}

+n_{0,1,5}m_{0,2,3,4}+n_{0,1,3}m_{0,2,4,5}-n_{0,1,2}m_{0,3,4,5} |

{-2} |-n_{0,3,4}m_{0,1,2,4}+n_{0,2,4}m_{0,1,3,4}-n_{0,1,4}m_{0,2,3,4} |

{-2} | n_{3,4,5}m_{0,1,2,5}-n_{2,4,5}m_{0,1,3,5}+n_{2,3,5}m_{0,1,4,5}

+n_{1,4,5}m_{0,2,3,5}-n_{1,3,5}m_{0,2,4,5}+n_{1,2,5}m_{0,3,4,5} |

{-2} |-n_{0,4,5}m_{0,2,3,5}+n_{0,3,5}m_{0,2,4,5}-n_{0,2,5}m_{0,3,4,5} |

{-2} | n_{0,4,5}m_{0,1,3,5}-n_{0,3,5}m_{0,1,4,5}+n_{0,1,5}m_{0,3,4,5} |

{-2} |-n_{0,4,5}m_{0,1,2,5}+n_{0,2,5}m_{0,1,4,5}-n_{0,1,5}m_{0,2,4,5} |

{-2} | n_{0,3,5}m_{0,1,2,5}-n_{0,2,5}m_{0,1,3,5}+n_{0,1,5}m_{0,2,3,5} |

{-2} |-n_{0,3,4}m_{0,1,2,5}+n_{0,2,4}m_{0,1,3,5}-n_{0,2,3}m_{0,1,4,5}

-n_{0,1,4}m_{0,2,3,5}+n_{0,1,3}m_{0,2,4,5}-n_{0,1,2}m_{0,3,4,5} |

{-2} | n_{1,2,5}m_{1,2,3,4}-n_{1,2,4}m_{1,2,3,5}+n_{1,2,3}m_{1,2,4,5} |

{-2} | n_{2,4,5}m_{0,1,2,3}-n_{2,3,5}m_{0,1,2,4}+n_{2,3,4}m_{0,1,2,5}

-n_{0,2,5}m_{1,2,3,4}+n_{0,2,4}m_{1,2,3,5}-n_{0,2,3}m_{1,2,4,5} |

{-2} |-n_{1,4,5}m_{0,1,2,3}+n_{1,3,5}m_{0,1,2,4}-n_{1,3,4}m_{0,1,2,5}

+n_{0,1,5}m_{1,2,3,4}-n_{0,1,4}m_{1,2,3,5}+n_{0,1,3}m_{1,2,4,5} |
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{-2} |-n_{1,2,5}m_{0,1,2,4}+n_{1,2,4}m_{0,1,2,5}-n_{0,1,2}m_{1,2,4,5} |

{-2} | n_{1,2,5}m_{0,1,2,3}-n_{1,2,3}m_{0,1,2,5}+n_{0,1,2}m_{1,2,3,5} |

{-2} |-n_{1,2,4}m_{0,1,2,3}+n_{1,2,3}m_{0,1,2,4}-n_{0,1,2}m_{1,2,3,4} |

{-2} | n_{1,3,5}m_{1,2,3,4}-n_{1,3,4}m_{1,2,3,5}+n_{1,2,3}m_{1,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,2,3}-n_{2,3,5}m_{0,1,3,4}+n_{2,3,4}m_{0,1,3,5}

-n_{0,3,5}m_{1,2,3,4}+n_{0,3,4}m_{1,2,3,5}-n_{0,2,3}m_{1,3,4,5} |

{-2} | n_{1,3,5}m_{0,1,3,4}-n_{1,3,4}m_{0,1,3,5}+n_{0,1,3}m_{1,3,4,5} |

{-2} |-n_{1,4,5}m_{0,1,2,3}-n_{1,2,5}m_{0,1,3,4}+n_{1,2,4}m_{0,1,3,5}

+n_{0,1,5}m_{1,2,3,4}-n_{0,1,4}m_{1,2,3,5}-n_{0,1,2}m_{1,3,4,5} |

{-2} | n_{1,3,5}m_{0,1,2,3}-n_{1,2,3}m_{0,1,3,5}+n_{0,1,3}m_{1,2,3,5} |

{-2} |-n_{1,3,4}m_{0,1,2,3}+n_{1,2,3}m_{0,1,3,4}-n_{0,1,3}m_{1,2,3,4} |

{-2} | n_{1,4,5}m_{1,2,3,4}-n_{1,3,4}m_{1,2,4,5}+n_{1,2,4}m_{1,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,2,4}-n_{2,4,5}m_{0,1,3,4}+n_{2,3,4}m_{0,1,4,5}

-n_{0,4,5}m_{1,2,3,4}+n_{0,3,4}m_{1,2,4,5}-n_{0,2,4}m_{1,3,4,5} |

{-2} | n_{1,4,5}m_{0,1,3,4}-n_{1,3,4}m_{0,1,4,5}+n_{0,1,4}m_{1,3,4,5} |

{-2} |-n_{1,4,5}m_{0,1,2,4}+n_{1,2,4}m_{0,1,4,5}-n_{0,1,4}m_{1,2,4,5} |

{-2} | n_{1,3,5}m_{0,1,2,4}-n_{1,2,5}m_{0,1,3,4}-n_{1,2,3}m_{0,1,4,5}

+n_{0,1,5}m_{1,2,3,4}+n_{0,1,3}m_{1,2,4,5}-n_{0,1,2}m_{1,3,4,5} |

{-2} |-n_{1,3,4}m_{0,1,2,4}+n_{1,2,4}m_{0,1,3,4}-n_{0,1,4}m_{1,2,3,4} |

{-2} | n_{1,4,5}m_{1,2,3,5}-n_{1,3,5}m_{1,2,4,5}+n_{1,2,5}m_{1,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,2,5}-n_{2,4,5}m_{0,1,3,5}+n_{2,3,5}m_{0,1,4,5}

-n_{0,4,5}m_{1,2,3,5}+n_{0,3,5}m_{1,2,4,5}-n_{0,2,5}m_{1,3,4,5} |

{-2} | n_{1,4,5}m_{0,1,3,5}-n_{1,3,5}m_{0,1,4,5}+n_{0,1,5}m_{1,3,4,5} |

{-2} |-n_{1,4,5}m_{0,1,2,5}+n_{1,2,5}m_{0,1,4,5}-n_{0,1,5}m_{1,2,4,5} |

{-2} | n_{1,3,5}m_{0,1,2,5}-n_{1,2,5}m_{0,1,3,5}+n_{0,1,5}m_{1,2,3,5} |

{-2} |-n_{1,3,4}m_{0,1,2,5}+n_{1,2,4}m_{0,1,3,5}-n_{1,2,3}m_{0,1,4,5}
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-n_{0,1,4}m_{1,2,3,5}+n_{0,1,3}m_{1,2,4,5}-n_{0,1,2}m_{1,3,4,5} |

{-2} | n_{2,3,5}m_{1,2,3,4}-n_{2,3,4}m_{1,2,3,5}+n_{1,2,3}m_{2,3,4,5} |

{-2} |-n_{2,3,5}m_{0,2,3,4}+n_{2,3,4}m_{0,2,3,5}-n_{0,2,3}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,2,3}+n_{1,3,5}m_{0,2,3,4}-n_{1,3,4}m_{0,2,3,5}

-n_{0,3,5}m_{1,2,3,4}+n_{0,3,4}m_{1,2,3,5}+n_{0,1,3}m_{2,3,4,5} |

{-2} |-n_{2,4,5}m_{0,1,2,3}-n_{1,2,5}m_{0,2,3,4}+n_{1,2,4}m_{0,2,3,5}

+n_{0,2,5}m_{1,2,3,4}-n_{0,2,4}m_{1,2,3,5}-n_{0,1,2}m_{2,3,4,5} |

{-2} | n_{2,3,5}m_{0,1,2,3}-n_{1,2,3}m_{0,2,3,5}+n_{0,2,3}m_{1,2,3,5} |

{-2} |-n_{2,3,4}m_{0,1,2,3}+n_{1,2,3}m_{0,2,3,4}-n_{0,2,3}m_{1,2,3,4} |

{-2} | n_{2,4,5}m_{1,2,3,4}-n_{2,3,4}m_{1,2,4,5}+n_{1,2,4}m_{2,3,4,5} |

{-2} |-n_{2,4,5}m_{0,2,3,4}+n_{2,3,4}m_{0,2,4,5}-n_{0,2,4}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,2,4}+n_{1,4,5}m_{0,2,3,4}-n_{1,3,4}m_{0,2,4,5}

-n_{0,4,5}m_{1,2,3,4}+n_{0,3,4}m_{1,2,4,5}+n_{0,1,4}m_{2,3,4,5} |

{-2} |-n_{2,4,5}m_{0,1,2,4}+n_{1,2,4}m_{0,2,4,5}-n_{0,2,4}m_{1,2,4,5} |

{-2} | n_{2,3,5}m_{0,1,2,4}-n_{1,2,5}m_{0,2,3,4}-n_{1,2,3}m_{0,2,4,5}

+n_{0,2,5}m_{1,2,3,4}+n_{0,2,3}m_{1,2,4,5}-n_{0,1,2}m_{2,3,4,5} |

{-2} |-n_{2,3,4}m_{0,1,2,4}+n_{1,2,4}m_{0,2,3,4}-n_{0,2,4}m_{1,2,3,4} |

{-2} | n_{2,4,5}m_{1,2,3,5}-n_{2,3,5}m_{1,2,4,5}+n_{1,2,5}m_{2,3,4,5} |

{-2} |-n_{2,4,5}m_{0,2,3,5}+n_{2,3,5}m_{0,2,4,5}-n_{0,2,5}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,2,5}+n_{1,4,5}m_{0,2,3,5}-n_{1,3,5}m_{0,2,4,5}

-n_{0,4,5}m_{1,2,3,5}+n_{0,3,5}m_{1,2,4,5}+n_{0,1,5}m_{2,3,4,5} |

{-2} |-n_{2,4,5}m_{0,1,2,5}+n_{1,2,5}m_{0,2,4,5}-n_{0,2,5}m_{1,2,4,5} |

{-2} | n_{2,3,5}m_{0,1,2,5}-n_{1,2,5}m_{0,2,3,5}+n_{0,2,5}m_{1,2,3,5} |

{-2} |-n_{2,3,4}m_{0,1,2,5}+n_{1,2,4}m_{0,2,3,5}-n_{1,2,3}m_{0,2,4,5}

-n_{0,2,4}m_{1,2,3,5}+n_{0,2,3}m_{1,2,4,5}-n_{0,1,2}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{1,2,3,4}-n_{2,3,4}m_{1,3,4,5}+n_{1,3,4}m_{2,3,4,5} |
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{-2} |-n_{3,4,5}m_{0,2,3,4}+n_{2,3,4}m_{0,3,4,5}-n_{0,3,4}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,3,4}-n_{1,3,4}m_{0,3,4,5}+n_{0,3,4}m_{1,3,4,5} |

{-2} |-n_{2,4,5}m_{0,1,3,4}+n_{1,4,5}m_{0,2,3,4}+n_{1,2,4}m_{0,3,4,5}

-n_{0,4,5}m_{1,2,3,4}-n_{0,2,4}m_{1,3,4,5}+n_{0,1,4}m_{2,3,4,5} |

{-2} | n_{2,3,5}m_{0,1,3,4}-n_{1,3,5}m_{0,2,3,4}-n_{1,2,3}m_{0,3,4,5}

+n_{0,3,5}m_{1,2,3,4}+n_{0,2,3}m_{1,3,4,5}-n_{0,1,3}m_{2,3,4,5} |

{-2} |-n_{2,3,4}m_{0,1,3,4}+n_{1,3,4}m_{0,2,3,4}-n_{0,3,4}m_{1,2,3,4} |

{-2} | n_{3,4,5}m_{1,2,3,5}-n_{2,3,5}m_{1,3,4,5}+n_{1,3,5}m_{2,3,4,5} |

{-2} |-n_{3,4,5}m_{0,2,3,5}+n_{2,3,5}m_{0,3,4,5}-n_{0,3,5}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,3,5}-n_{1,3,5}m_{0,3,4,5}+n_{0,3,5}m_{1,3,4,5} |

{-2} |-n_{2,4,5}m_{0,1,3,5}+n_{1,4,5}m_{0,2,3,5}+n_{1,2,5}m_{0,3,4,5}

-n_{0,4,5}m_{1,2,3,5}-n_{0,2,5}m_{1,3,4,5}+n_{0,1,5}m_{2,3,4,5} |

{-2} | n_{2,3,5}m_{0,1,3,5}-n_{1,3,5}m_{0,2,3,5}+n_{0,3,5}m_{1,2,3,5} |

{-2} |-n_{2,3,4}m_{0,1,3,5}+n_{1,3,4}m_{0,2,3,5}-n_{1,2,3}m_{0,3,4,5}

-n_{0,3,4}m_{1,2,3,5}+n_{0,2,3}m_{1,3,4,5}-n_{0,1,3}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{1,2,4,5}-n_{2,4,5}m_{1,3,4,5}+n_{1,4,5}m_{2,3,4,5} |

{-2} |-n_{3,4,5}m_{0,2,4,5}+n_{2,4,5}m_{0,3,4,5}-n_{0,4,5}m_{2,3,4,5} |

{-2} | n_{3,4,5}m_{0,1,4,5}-n_{1,4,5}m_{0,3,4,5}+n_{0,4,5}m_{1,3,4,5} |

{-2} |-n_{2,4,5}m_{0,1,4,5}+n_{1,4,5}m_{0,2,4,5}-n_{0,4,5}m_{1,2,4,5} |

{-2} | n_{2,3,5}m_{0,1,4,5}-n_{1,3,5}m_{0,2,4,5}+n_{1,2,5}m_{0,3,4,5}

+n_{0,3,5}m_{1,2,4,5}-n_{0,2,5}m_{1,3,4,5}+n_{0,1,5}m_{2,3,4,5} |

{-2} |-n_{2,3,4}m_{0,1,4,5}+n_{1,3,4}m_{0,2,4,5}-n_{1,2,4}m_{0,3,4,5}

-n_{0,3,4}m_{1,2,4,5}+n_{0,2,4}m_{1,3,4,5}-n_{0,1,4}m_{2,3,4,5} |

90 1

o27 : Matrix R2 <--- R2



111

First, let us consider the object Ob1 with shape coordinates CoordsOb1 and the

image Im1 with shape coordinates coordsIm1. Since we already know that Im1 is the

image of Ob1 under the GWP projection proj1, we expect all of these polynomials

to evaluate to zero in this case.

i28 : substitute(rels,matrix {coordsIm1|CoordsOb1})

o28 = 0

90 1

o28 : Matrix ZZ <--- ZZ

This computation confirms that Im1 is in fact a GWP projection of Ob1.

We may also use the function “OImatch” (also in the “affShapes” package) to

evaluate the object/image relations. This function takes a list of object shape co-

ordinates, a list of image shape coordinates, and the number of points k in our

configurations and returns a value of “true” if the object/image pair is a match and

“false” otherwise. This result is obtained by evaluating the object/image relations

for the given object/image pair.

i29 : OImatch(CoordsOb1, coordsIm1,6)

o29 = true

Now consider the object Ob1 and the image Im4. Now we use the “OImatch”

function to test for matching.

i30 : OImatch(CoordsOb1, coordsIm4,6)

o30 = false
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Hence, there is no GWP projection that maps Ob1 to Im4.

4. Metrics

Since Macauly2 lacks the ability to work with trigonometric functions, we will use

MATLAB to perform our computations in this section. MATLAB also provides us

with the “null” command, which we use to compute orthonormal bases for the null

spaces of our configuration matrices.

Let K1 be the shape of the object Ob1, and let K2 be the shape of the object Ob2.

To compute the distance dObj(K1,K2) between our object shapes we first compute

orthonormal bases for the null spaces of the matrices Ob1 and Ob2.

>> Ob1=[1, 2, -3, 8, 0, 3 ; 0, -2, -4, 6, 7, -5 ; -1, 5, 0, 1, -7, 10 ;

1, 1, 1, 1, 1, 1]

Ob1 =

1 2 -3 8 0 3

0 -2 -4 6 7 -5

-1 5 0 1 -7 10

1 1 1 1 1 1

>> Ob2=[-3, 7, -10, 8, 1, 4 ; -9, 3, 1, 4, 6, -8 ; -4, 9, 4, 6, -10,

-10 ; 1, 1, 1, 1, 1, 1]

Ob2 =
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-3 7 -10 8 1 4

-9 3 1 4 6 -8

-4 9 4 6 -10 -10

1 1 1 1 1 1

>> K1=null(Ob1)

K1 =

-0.6512 -0.1709

0.2005 -0.8126

0.5482 0.2696

0.3502 0.1573

-0.1455 0.1077

-0.3022 0.4488

>> K2=null(Ob2)

K2 =

-0.1406 -0.6577

0.6618 -0.1253

-0.0145 0.3744

-0.7204 0.0679

0.0968 -0.2473

0.1169 0.5881
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Next we compute the singular values of K1T K2.

>> [U,S,V]=svd(K1’*K2)

U =

-0.4916 -0.8708

-0.8708 0.4916

S =

0.9073 0

0 0.2540

V =

0.5915 -0.8063

-0.8063 -0.5915

>> singVals=diag(S)

singVals =

0.9073
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0.2540

The principal angles between K1 and K2 are then the arccosines of the singular values.

>> princAngs=acos(singVals)

princAngs =

0.4340

1.3140

The distance dObj(K1,K2) is
√

princAngs(1)2 + princAngs(2)2 (here princAngs(i) is

the ith entry of the vector princAngs) which is simply
√

(princAngs)T ∗ princAngs.

>> dist=sqrt(princAngs’*princAngs)

dist =

1.3838

So we have dObj(K1,K2)=1.3838 (after rounding). Notice that since we have already

determined that Ob1 and Ob2 do not have the same shape, we expect the distance

dObj(K1,K2) to be nonzero.

Now let L1 and L3 be the shapes of the image configurations Im1 and Im3

respectively. Then we may use the same process to compute the distance dImg(L1,L3),

but we can do this much more consicely.

>> Im1=[-4,18,7,-10,-36,39 ; -2,17,-3,11,-21,33 ; 1,1,1,1,1,1]

Im1 =
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-4 18 7 -10 -36 39

-2 17 -3 11 -21 33

1 1 1 1 1 1

>> Im3=[-12,105,-6,47,-139,206 ; -11,58,34,-48,-120,126 ; 1,1,1,1,1,1]

Im3 =

-12 105 -6 47 -139 206

-11 58 34 -48 -120 126

1 1 1 1 1 1

>> dist=sqrt((acos(svd((null(Im1))’*null(Im3))))’*

(acos(svd((null(Im1))’*null(Im3)))))

dist =

2.5810e-08

As we have already observed, Im1 and Im3 have the same shape, so the distance

dist=dImg(L1,L3) between L1 and L3 should be zero which is what we have effectively

computed here.

Finally, let K1 be the shape of the object Ob1, and let L1 and L4 be the shapes

of the images Im1 and Im4 respectively. Let us compute the distances d(K1,L1) and

d(K1,L4).
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>> Ob1=[1, 2, -3, 8, 0, 3 ; 0, -2, -4, 6, 7, -5 ; -1, 5, 0, 1, -7, 10 ;

1, 1, 1, 1, 1, 1]

Ob1 =

1 2 -3 8 0 3

0 -2 -4 6 7 -5

-1 5 0 1 -7 10

1 1 1 1 1 1

>> Im1=[-4,18,7,-10,-36,39 ; -2,17,-3,11,-21,33 ; 1,1,1,1,1,1]

Im1 =

-4 18 7 -10 -36 39

-2 17 -3 11 -21 33

1 1 1 1 1 1

>> Im4=[12,-8,2,-8,41,-55 ; 5,45,4,5,-36,51 ; 1,1,1,1,1,1]

Im4 =

12 -8 2 -8 41 -55

5 45 4 5 -36 51

1 1 1 1 1 1
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>> distK1L1=sqrt((acos(svd((null(Im1))’*null(Ob1))))’

*(acos(svd((null(Im1))’*null(Ob1)))))

distK1L1 =

2.1073e-08

>> distK1L4=sqrt((acos(svd((null(Im4))’*null(Ob1))))’

*(acos(svd((null(Im4))’*null(Ob1)))))

distK1L4 =

1.2960

Notice that since Im1 is a GWP projection of Ob1, the distance distK1L1=d(K1,L1)

is zero. We observe also that the distance distK1L4=d(K1,L4) between K1 and L4 is

nonzero because Im4 is not a GWP projection of Ob1.
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B. The Projective Case

In this appendix, we will use the “projShapes” package to perform computations in-

volving shapes in the full perspective model. To maintain consistency with Macaulay2’s

indexing conventions, all indexing will begin with zero rather than 1. So a configura-

tion of k points in Pn
R will be represented as P0, . . . , Pk−1 rather than P1, . . . , Pk, and

the corresponding Plücker coordinates will be represeted by x01...,n, . . . , xk−n−1...k−1

rather than x1...n+1, . . . , xk−n...k.

1. Projective Shape Varieties

To begin, let us define three object configurations.

i1 : Ob1= matrix {{1, 2, -3, 8, 0, 3}, {0, -2, -4, 6, 7, -5}, {-1,

5, 0, 1, -7, 10}, {1, 1, 1, 1, 1, 1}}

o1 = | 1 2 -3 8 0 3 |

| 0 -2 -4 6 7 -5 |

| -1 5 0 1 -7 10 |

| 1 1 1 1 1 1 |

4 6

o1 : Matrix ZZ <--- ZZ

i2 : Ob2= matrix {{-3, 7, -10, 8, 1, 4}, {-9, 3, 1, 4, 6, -8}, {-4,

9, 4, 6, -10, -10}, {-1, 5, 0, 3, 2, 2}}

o2 = | -3 7 -10 8 1 4 |
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| -9 3 1 4 6 -8 |

| -4 9 4 6 -10 -10 |

| -1 5 0 3 2 2 |

4 6

o2 : Matrix ZZ <--- ZZ

i3 : Ob3= matrix {{3, 40, 28, -18, -54, 76}, {0, -38, -56, 74, 83,

-81}, {-16, 12, 8, -40, -59, 39}, {0, 14, 52, -82, -59, 37}}

o3 = | 3 40 28 -18 -54 76 |

| 0 -38 -56 74 83 -81 |

| -16 12 8 -40 -59 39 |

| 0 14 52 -82 -59 37 |

4 6

o3 : Matrix ZZ <--- ZZ

Next we compute the shape varieties of these object configurations using the

“ShapeVar” function. The shape varieties are obtained by computing the kernel of the

map φ : k[x0123, . . . , x2345] → k[a0, . . . , a5] defined by φ(xi0i1i2i3) = ai0ai1ai2ai3mi0i1i2i3

where mi0i1i2i3 is the determinant of the i0i1i2i3 minor of the configuration matrix.

i4 : load "projShapes"

--loaded diag

--loaded maxMinors

--loaded projShapes
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i5 : V1=ShapeVar(Ob1)

o5 = {-2} | x_{0,3,4,5}x_{1,2,4,5}-x_{0,2,4,5}x_{1,3,4,5}

+x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,5}-x_{0,2,3,5}x_{1,3,4,5}

+x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,5}-x_{0,2,3,5}x_{1,2,4,5}

+x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,5}-x_{0,1,3,5}x_{1,2,4,5}

+x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,3,4,5}

+x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,2,4,5}

+x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,4}-x_{0,1,3,4}x_{1,2,4,5}

+x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,3,4}-x_{0,1,3,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,5}x_{1,2,3,4}-x_{0,1,2,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,5}-x_{0,1,3,5}x_{0,2,4,5}

+x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,4}-x_{0,1,3,4}x_{0,2,4,5}
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+x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,3,4}-x_{0,1,3,4}x_{0,2,3,5}

+x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,5}x_{0,2,3,4}-x_{0,1,2,4}x_{0,2,3,5}

+x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,2,5}x_{0,1,3,4}-x_{0,1,2,4}x_{0,1,3,5}

+x_{0,1,2,3}x_{0,1,4,5} |

{-2} | x_{0,2,4,5}x_{1,3,4,5}+12456x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,3,4,5}+11423x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,3,4,5}+5789x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,4,5}+12457x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,4,5}+1332x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,2,4,5}+13518x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,4,5}-11068x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,1,3,4}x_{1,2,4,5}+11260x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,5}+11424x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,5}+1333x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,2,3,5}+9626x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,5}-11067x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,1,3,4}x_{1,2,3,5}+12808x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,4}x_{1,2,3,5}+3090x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,4}+5790x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,4}+13519x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,3,4}+9627x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,4}+11261x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,3,4}+12809x_{0,1,2,3}x_{1,3,4,5} |
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{-2} | x_{0,1,2,5}x_{1,2,3,4}+3091x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,4,5}-4069x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,3,4}x_{0,2,4,5}+2810x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,5}-4068x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,3,4}x_{0,2,3,5}-13113x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,4}x_{0,2,3,5}-7088x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,4}+2811x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,3,4}-13112x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,5}x_{0,2,3,4}-7087x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,2,4}x_{0,1,3,5}-75x_{0,1,2,3}x_{0,1,4,5} |

{-2} | x_{0,1,2,5}x_{0,1,3,4}-74x_{0,1,2,3}x_{0,1,4,5} |

45 1

o5 : Matrix R1 <--- R1

i6 : V2=ShapeVar(Ob2)

o6 = {-2} | x_{0,3,4,5}x_{1,2,4,5}-x_{0,2,4,5}x_{1,3,4,5}

+x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,5}-x_{0,2,3,5}x_{1,3,4,5}

+x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,5}-x_{0,2,3,5}x_{1,2,4,5}

+x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,5}-x_{0,1,3,5}x_{1,2,4,5}

+x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,3,4,5}
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+x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,2,4,5}

+x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,4}-x_{0,1,3,4}x_{1,2,4,5}

+x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,3,4}-x_{0,1,3,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,5}x_{1,2,3,4}-x_{0,1,2,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,5}-x_{0,1,3,5}x_{0,2,4,5}

+x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,4}-x_{0,1,3,4}x_{0,2,4,5}

+x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,3,4}-x_{0,1,3,4}x_{0,2,3,5}

+x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,5}x_{0,2,3,4}-x_{0,1,2,4}x_{0,2,3,5}

+x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,2,5}x_{0,1,3,4}-x_{0,1,2,4}x_{0,1,3,5}

+x_{0,1,2,3}x_{0,1,4,5} |

{-2} | x_{0,2,4,5}x_{1,3,4,5}+13816x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,3,4,5}-9764x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,3,4,5}-14044x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,4,5}+13817x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,4,5}-10269x_{0,1,2,5}x_{2,3,4,5} |
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{-2} | x_{0,2,3,4}x_{1,2,4,5}+15137x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,4,5}+11568x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,1,3,4}x_{1,2,4,5}+9033x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,5}-9763x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,5}-10268x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,2,3,5}-4530x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,5}+11569x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,1,3,4}x_{1,2,3,5}+1699x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,4}x_{1,2,3,5}+740x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,4}-14043x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,4}+15138x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,3,4}-4529x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,4}+9034x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,3,4}+1700x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,5}x_{1,2,3,4}+741x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,4,5}-7495x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,3,4}x_{0,2,4,5}-13394x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,5}-7494x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,3,4}x_{0,2,3,5}-9894x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,4}x_{0,2,3,5}-4706x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,4}-13393x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,3,4}-9893x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,5}x_{0,2,3,4}-4705x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,2,4}x_{0,1,3,5}-156x_{0,1,2,3}x_{0,1,4,5} |

{-2} | x_{0,1,2,5}x_{0,1,3,4}-155x_{0,1,2,3}x_{0,1,4,5} |
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45 1

o6 : Matrix R1 <--- R1

i7 : V3=ShapeVar(Ob3)

o7 = {-2} | x_{0,3,4,5}x_{1,2,4,5}-x_{0,2,4,5}x_{1,3,4,5}

+x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,5}-x_{0,2,3,5}x_{1,3,4,5}

+x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,5}-x_{0,2,3,5}x_{1,2,4,5}

+x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,5}-x_{0,1,3,5}x_{1,2,4,5}

+x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,3,4,5}

+x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,2,4,5}

+x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,4}-x_{0,1,3,4}x_{1,2,4,5}

+x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,3,4}-x_{0,2,3,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,3,4}-x_{0,1,3,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,5}x_{1,2,3,4}-x_{0,1,2,4}x_{1,2,3,5}

+x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,5}-x_{0,1,3,5}x_{0,2,4,5}
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+x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,4}-x_{0,1,3,4}x_{0,2,4,5}

+x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,3,4}-x_{0,1,3,4}x_{0,2,3,5}

+x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,5}x_{0,2,3,4}-x_{0,1,2,4}x_{0,2,3,5}

+x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,2,5}x_{0,1,3,4}-x_{0,1,2,4}x_{0,1,3,5}

+x_{0,1,2,3}x_{0,1,4,5} |

{-2} | x_{0,2,4,5}x_{1,3,4,5}+12456x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,3,4,5}+11423x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,3,4,5}+5789x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,4,5}+12457x_{0,1,4,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,4,5}+1332x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,2,4,5}+13518x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,4,5}-11068x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,1,3,4}x_{1,2,4,5}+11260x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,5}+11424x_{0,1,3,5}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,5}+1333x_{0,1,2,5}x_{2,3,4,5} |

{-2} | x_{0,2,3,4}x_{1,2,3,5}+9626x_{0,1,2,3}x_{2,3,4,5} |

{-2} | x_{0,1,4,5}x_{1,2,3,5}-11067x_{0,1,2,5}x_{1,3,4,5} |

{-2} | x_{0,1,3,4}x_{1,2,3,5}+12808x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,4}x_{1,2,3,5}+3090x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,3,4,5}x_{1,2,3,4}+5790x_{0,1,3,4}x_{2,3,4,5} |

{-2} | x_{0,2,4,5}x_{1,2,3,4}+13519x_{0,1,2,4}x_{2,3,4,5} |

{-2} | x_{0,2,3,5}x_{1,2,3,4}+9627x_{0,1,2,3}x_{2,3,4,5} |



128

{-2} | x_{0,1,4,5}x_{1,2,3,4}+11261x_{0,1,2,4}x_{1,3,4,5} |

{-2} | x_{0,1,3,5}x_{1,2,3,4}+12809x_{0,1,2,3}x_{1,3,4,5} |

{-2} | x_{0,1,2,5}x_{1,2,3,4}+3091x_{0,1,2,3}x_{1,2,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,4,5}-4069x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,3,4}x_{0,2,4,5}+2810x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,5}-4068x_{0,1,2,5}x_{0,3,4,5} |

{-2} | x_{0,1,3,4}x_{0,2,3,5}-13113x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,4}x_{0,2,3,5}-7088x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,4,5}x_{0,2,3,4}+2811x_{0,1,2,4}x_{0,3,4,5} |

{-2} | x_{0,1,3,5}x_{0,2,3,4}-13112x_{0,1,2,3}x_{0,3,4,5} |

{-2} | x_{0,1,2,5}x_{0,2,3,4}-7087x_{0,1,2,3}x_{0,2,4,5} |

{-2} | x_{0,1,2,4}x_{0,1,3,5}-75x_{0,1,2,3}x_{0,1,4,5} |

{-2} | x_{0,1,2,5}x_{0,1,3,4}-74x_{0,1,2,3}x_{0,1,4,5} |

45 1

o7 : Matrix R1 <--- R1

Now we use the “sameShape” function to compare the shapes of the objects Ob1,

Ob2, and Ob3. This function takes two configuration and returns “true” if they have

the same shape and “false” otherwise. This determination is made by testing for

equality of the shape varieties.

i8 : sameShape(Ob1,Ob2)

o8 = false

i9 : sameShape(Ob1,Ob3)
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o9 = true

Notice that Ob1 and Ob3 do in fact differ by a PGL(4) transformation.

i10 : projTrans= matrix {{-1, -4, 5, 9}, {4, 9, -4, -8}, {-2, -3, 4,

-10}, {-4, -9, 0, 4}}

o10 = | -1 -4 5 9 |

| 4 9 -4 -8 |

| -2 -3 4 -10 |

| -4 -9 0 4 |

4 4

o10 : Matrix ZZ <--- ZZ

i11 : det(projTrans)

o11 = -376

i12 : projTrans*Ob1

o12 = | 3 40 28 -18 -54 76 |

| 0 -38 -56 74 83 -81 |

| -16 12 8 -40 -59 39 |

| 0 14 52 -82 -59 37 |
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4 6

o12 : Matrix ZZ <--- ZZ

2. Generic Shape Varieties

Here we will compute the ideal of the shape variety of an arbitrary configuration

of k points in projective n-space using the “genShapeVar” function. This function

computes the generators of the ideal of a shape variety by removing the variables

a0, . . . , ak−1 from the system of equations

(A.1) xi0...in − ai0ai1 · · · aik−1
mi0...in = 0

as {i0, . . . , in} ranges over all n+1-subsets of {0, . . . , k−1}. We compute these ideals

for several small k and n (genShapeVar(k,n) is a generating set for the ideal of the

shape variety of an arbitrary configuration of k points in Pn
R).

i13 : V41=genShapeVar(4,1)

o13={-4} | m_{0,1}m_{2,3}x_{0,2}x_{1,3}-m_{0,2}m_{1,3}x_{0,1}x_{2,3} |

{-4} | m_{0,1}m_{2,3}x_{0,3}x_{1,2}-m_{0,3}m_{1,2}x_{0,1}x_{2,3} |

{-4} | m_{0,2}m_{1,3}x_{0,3}x_{1,2}-m_{0,3}m_{1,2}x_{0,2}x_{1,3} |

{-2} | m_{0,3}m_{1,2}-m_{0,2}m_{1,3}+m_{0,1}m_{2,3} |

{-2} | x_{0,3}x_{1,2}-x_{0,2}x_{1,3}+x_{0,1}x_{2,3} |

5 1

o13 : Matrix S2 <--- S2
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i14 : V51=genShapeVar(5,1)

o14={-4} | m_{1,2}m_{3,4}x_{1,3}x_{2,4}-m_{1,3}m_{2,4}x_{1,2}x_{3,4} |

{-4} | m_{0,2}m_{3,4}x_{0,3}x_{2,4}-m_{0,3}m_{2,4}x_{0,2}x_{3,4} |

{-4} | m_{1,2}m_{3,4}x_{1,4}x_{2,3}-m_{1,4}m_{2,3}x_{1,2}x_{3,4} |

{-4} | m_{1,3}m_{2,4}x_{1,4}x_{2,3}-m_{1,4}m_{2,3}x_{1,3}x_{2,4} |

{-4} | m_{0,2}m_{3,4}x_{0,4}x_{2,3}-m_{0,4}m_{2,3}x_{0,2}x_{3,4} |

{-4} | m_{0,3}m_{2,4}x_{0,4}x_{2,3}-m_{0,4}m_{2,3}x_{0,3}x_{2,4} |

{-4} | m_{0,1}m_{3,4}x_{0,3}x_{1,4}-m_{0,3}m_{1,4}x_{0,1}x_{3,4} |

{-4} | m_{0,1}m_{2,4}x_{0,2}x_{1,4}-m_{0,2}m_{1,4}x_{0,1}x_{2,4} |

{-4} | m_{0,1}m_{3,4}x_{0,4}x_{1,3}-m_{0,4}m_{1,3}x_{0,1}x_{3,4} |

{-4} | m_{0,3}m_{1,4}x_{0,4}x_{1,3}-m_{0,4}m_{1,3}x_{0,3}x_{1,4} |

{-4} | m_{0,1}m_{2,3}x_{0,2}x_{1,3}-m_{0,2}m_{1,3}x_{0,1}x_{2,3} |

{-4} | m_{0,1}m_{2,4}x_{0,4}x_{1,2}-m_{0,4}m_{1,2}x_{0,1}x_{2,4} |

{-4} | m_{0,2}m_{1,4}x_{0,4}x_{1,2}-m_{0,4}m_{1,2}x_{0,2}x_{1,4} |

{-4} | m_{0,1}m_{2,3}x_{0,3}x_{1,2}-m_{0,3}m_{1,2}x_{0,1}x_{2,3} |

{-4} | m_{0,2}m_{1,3}x_{0,3}x_{1,2}-m_{0,3}m_{1,2}x_{0,2}x_{1,3} |

{-6} | m_{0,2}m_{1,2}m_{3,4}x_{0,1}x_{2,3}x_{2,4}

-m_{0,1}m_{2,3}m_{2,4}x_{0,2}x_{1,2}x_{3,4} |

{-6} | m_{0,4}m_{1,2}m_{3,4}x_{0,3}x_{1,4}x_{2,4}

-m_{0,3}m_{1,4}m_{2,4}x_{0,4}x_{1,2}x_{3,4} |

{-6} | m_{0,2}m_{1,4}m_{3,4}x_{0,4}x_{1,3}x_{2,4}

-m_{0,4}m_{1,3}m_{2,4}x_{0,2}x_{1,4}x_{3,4} |

{-6} | m_{0,1}m_{2,3}m_{3,4}x_{0,3}x_{1,3}x_{2,4}

-m_{0,3}m_{1,3}m_{2,4}x_{0,1}x_{2,3}x_{3,4} |

{-6} | m_{0,1}m_{2,4}m_{3,4}x_{0,4}x_{1,4}x_{2,3}
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-m_{0,4}m_{1,4}m_{2,3}x_{0,1}x_{2,4}x_{3,4} |

{-6} | m_{0,2}m_{1,3}m_{3,4}x_{0,3}x_{1,4}x_{2,3}

-m_{0,3}m_{1,4}m_{2,3}x_{0,2}x_{1,3}x_{3,4} |

{-6} | m_{0,3}m_{1,2}m_{2,4}x_{0,2}x_{1,4}x_{2,3}

-m_{0,2}m_{1,4}m_{2,3}x_{0,3}x_{1,2}x_{2,4} |

{-6} | m_{0,3}m_{1,2}m_{3,4}x_{0,4}x_{1,3}x_{2,3}

-m_{0,4}m_{1,3}m_{2,3}x_{0,3}x_{1,2}x_{3,4} |

{-6} | m_{0,2}m_{1,3}m_{2,4}x_{0,4}x_{1,2}x_{2,3}

-m_{0,4}m_{1,2}m_{2,3}x_{0,2}x_{1,3}x_{2,4} |

{-6} | m_{0,1}m_{1,2}m_{3,4}x_{0,2}x_{1,3}x_{1,4}

-m_{0,2}m_{1,3}m_{1,4}x_{0,1}x_{1,2}x_{3,4} |

{-6} | m_{0,1}m_{1,3}m_{2,4}x_{0,3}x_{1,2}x_{1,4}

-m_{0,3}m_{1,2}m_{1,4}x_{0,1}x_{1,3}x_{2,4} |

{-6} | m_{0,1}m_{0,4}m_{2,3}x_{0,2}x_{0,3}x_{1,4}

-m_{0,2}m_{0,3}m_{1,4}x_{0,1}x_{0,4}x_{2,3} |

{-6} | m_{0,1}m_{1,4}m_{2,3}x_{0,4}x_{1,2}x_{1,3}

-m_{0,4}m_{1,2}m_{1,3}x_{0,1}x_{1,4}x_{2,3} |

{-6} | m_{0,1}m_{0,3}m_{2,4}x_{0,2}x_{0,4}x_{1,3}

-m_{0,2}m_{0,4}m_{1,3}x_{0,1}x_{0,3}x_{2,4} |

{-6} | m_{0,1}m_{0,2}m_{3,4}x_{0,3}x_{0,4}x_{1,2}

-m_{0,3}m_{0,4}m_{1,2}x_{0,1}x_{0,2}x_{3,4} |

{-2} | m_{1,3}m_{2,3}-m_{1,2}m_{2,4}+m_{0,3}m_{3,4} |

{-2} | m_{1,3}m_{1,4}-m_{0,4}m_{2,4}+m_{0,2}m_{3,4} |

{-2} | m_{1,2}m_{1,4}-m_{0,4}m_{2,3}+m_{0,1}m_{3,4} |

{-2} | m_{0,3}m_{1,4}-m_{0,2}m_{2,3}+m_{0,1}m_{2,4} |

{-2} | m_{0,3}m_{0,4}-m_{0,2}m_{1,2}+m_{0,1}m_{1,3} |
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{-2} | x_{1,3}x_{2,3}-x_{1,2}x_{2,4}+x_{0,3}x_{3,4} |

{-2} | x_{1,3}x_{1,4}-x_{0,4}x_{2,4}+x_{0,2}x_{3,4} |

{-2} | x_{1,2}x_{1,4}-x_{0,4}x_{2,3}+x_{0,1}x_{3,4} |

{-2} | x_{0,3}x_{1,4}-x_{0,2}x_{2,3}+x_{0,1}x_{2,4} |

{-2} | x_{0,3}x_{0,4}-x_{0,2}x_{1,2}+x_{0,1}x_{1,3} |

40 1

o14 : Matrix S2 <--- S2

i14 : V61=genShapeVar(6,1)

o14={-4} | m_{2,3}m_{4,5}x_{2,4}x_{3,5}-m_{2,4}m_{3,5}x_{2,3}x_{4,5} |

.

.(45 degree 2 polynomials)

.

{-4} | m_{0,2}m_{1,3}x_{0,3}x_{1,2}-m_{0,3}m_{1,2}x_{0,2}x_{1,3} |

{-6} | m_{1,3}m_{2,3}m_{4,5}x_{1,2}x_{3,4}x_{3,5}

-m_{1,2}m_{3,4}m_{3,5}x_{1,3}x_{2,3}x_{4,5} |

.

.(150 degree 3 polynomials)

.

{-6} | m_{0,1}m_{0,2}m_{3,4}x_{0,3}x_{0,4}x_{1,2}

-m_{0,3}m_{0,4}m_{1,2}x_{0,1}x_{0,2}x_{3,4} |

{-8} | m_{0,3}m_{1,3}m_{2,5}m_{4,5}x_{0,1}x_{2,4}x_{3,5}^2

-m_{0,1}m_{2,4}m_{3,5}^2x_{0,3}x_{1,3}x_{2,5}x_{4,5} |

.
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.(90 degree 4 polynomials)

.

{-8} | m_{0,1}^2m_{2,3}m_{4,5}x_{0,4}x_{0,5}x_{1,2}x_{1,3}

-m_{0,4}m_{0,5}m_{1,2}m_{1,3}x_{0,1}^2x_{2,3}x_{4,5} |

{-2} | m_{2,3}m_{3,4}-m_{1,5}m_{3,5}+m_{1,2}m_{4,5} |

{-2} | m_{2,3}m_{2,5}-m_{1,4}m_{3,5}+m_{0,5}m_{4,5} |

{-2} | m_{2,3}m_{2,4}-m_{1,3}m_{3,5}+m_{0,4}m_{4,5} |

{-2} | m_{1,5}m_{2,5}-m_{1,4}m_{3,4}+m_{0,3}m_{4,5} |

{-2} | m_{1,5}m_{2,4}-m_{1,3}m_{3,4}+m_{0,2}m_{4,5} |

{-2} | m_{1,4}m_{2,4}-m_{1,3}m_{2,5}+m_{0,1}m_{4,5} |

{-2} | m_{1,2}m_{2,5}-m_{0,5}m_{3,4}+m_{0,3}m_{3,5} |

{-2} | m_{1,2}m_{2,4}-m_{0,4}m_{3,4}+m_{0,2}m_{3,5} |

{-2} | m_{1,2}m_{1,4}-m_{0,5}m_{1,5}+m_{0,3}m_{2,3} |

{-2} | m_{1,2}m_{1,3}-m_{0,4}m_{1,5}+m_{0,2}m_{2,3} |

{-2} | m_{0,5}m_{2,4}-m_{0,4}m_{2,5}+m_{0,1}m_{3,5} |

{-2} | m_{0,5}m_{1,3}-m_{0,4}m_{1,4}+m_{0,1}m_{2,3} |

{-2} | m_{0,3}m_{2,4}-m_{0,2}m_{2,5}+m_{0,1}m_{3,4} |

{-2} | m_{0,3}m_{1,3}-m_{0,2}m_{1,4}+m_{0,1}m_{1,5} |

{-2} | m_{0,3}m_{0,4}-m_{0,2}m_{0,5}+m_{0,1}m_{1,2} |

{-2} | x_{2,3}x_{3,4}-x_{1,5}x_{3,5}+x_{1,2}x_{4,5} |

{-2} | x_{2,3}x_{2,5}-x_{1,4}x_{3,5}+x_{0,5}x_{4,5} |

{-2} | x_{2,3}x_{2,4}-x_{1,3}x_{3,5}+x_{0,4}x_{4,5} |

{-2} | x_{1,5}x_{2,5}-x_{1,4}x_{3,4}+x_{0,3}x_{4,5} |

{-2} | x_{1,5}x_{2,4}-x_{1,3}x_{3,4}+x_{0,2}x_{4,5} |

{-2} | x_{1,4}x_{2,4}-x_{1,3}x_{2,5}+x_{0,1}x_{4,5} |

{-2} | x_{1,2}x_{2,5}-x_{0,5}x_{3,4}+x_{0,3}x_{3,5} |
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{-2} | x_{1,2}x_{2,4}-x_{0,4}x_{3,4}+x_{0,2}x_{3,5} |

{-2} | x_{1,2}x_{1,4}-x_{0,5}x_{1,5}+x_{0,3}x_{2,3} |

{-2} | x_{1,2}x_{1,3}-x_{0,4}x_{1,5}+x_{0,2}x_{2,3} |

{-2} | x_{0,5}x_{2,4}-x_{0,4}x_{2,5}+x_{0,1}x_{3,5} |

{-2} | x_{0,5}x_{1,3}-x_{0,4}x_{1,4}+x_{0,1}x_{2,3} |

{-2} | x_{0,3}x_{2,4}-x_{0,2}x_{2,5}+x_{0,1}x_{3,4} |

{-2} | x_{0,3}x_{1,3}-x_{0,2}x_{1,4}+x_{0,1}x_{1,5} |

{-2} | x_{0,3}x_{0,4}-x_{0,2}x_{0,5}+x_{0,1}x_{1,2} |

315 1

o14 : Matrix S2 <--- S2

i15 : V52=genShapeVar(5,2)

o15 = {-4} | m_{0,1,4}m_{2,3,4}x_{0,2,4}x_{1,3,4}

-m_{0,2,4}m_{1,3,4}x_{0,1,4}x_{2,3,4} |

.

.(15 degree 2 polynomials)

.

{-4} | m_{0,1,3}m_{0,2,4}x_{0,1,4}x_{0,2,3}

-m_{0,1,4}m_{0,2,3}x_{0,1,3}x_{0,2,4} |

{-6} | m_{0,1,4}m_{1,2,3}m_{2,3,4}x_{0,2,3}x_{1,2,4}x_{1,3,4}

-m_{0,2,3}m_{1,2,4}m_{1,3,4}x_{0,1,4}x_{1,2,3}x_{2,3,4} |

.

.(15 degree 3 polynomials)

.
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{-6} | m_{0,1,2}m_{0,1,3}m_{2,3,4}x_{0,1,4}x_{0,2,3}x_{1,2,3}

-m_{0,1,4}m_{0,2,3}m_{1,2,3}x_{0,1,2}x_{0,1,3}x_{2,3,4} |

{-2} | m_{1,2,3}m_{1,2,4}-m_{0,3,4}m_{1,3,4}+m_{0,2,4}m_{2,3,4} |

{-2} | m_{0,2,3}m_{1,2,4}-m_{0,1,4}m_{1,3,4}+m_{0,1,3}m_{2,3,4} |

{-2} | m_{0,2,3}m_{0,3,4}-m_{0,1,4}m_{1,2,3}+m_{0,1,2}m_{2,3,4} |

{-2} | m_{0,2,3}m_{0,2,4}-m_{0,1,3}m_{1,2,3}+m_{0,1,2}m_{1,3,4} |

{-2} | m_{0,1,4}m_{0,2,4}-m_{0,1,3}m_{0,3,4}+m_{0,1,2}m_{1,2,4} |

{-2} | x_{1,2,3}x_{1,2,4}-x_{0,3,4}x_{1,3,4}+x_{0,2,4}x_{2,3,4} |

{-2} | x_{0,2,3}x_{1,2,4}-x_{0,1,4}x_{1,3,4}+x_{0,1,3}x_{2,3,4} |

{-2} | x_{0,2,3}x_{0,3,4}-x_{0,1,4}x_{1,2,3}+x_{0,1,2}x_{2,3,4} |

{-2} | x_{0,2,3}x_{0,2,4}-x_{0,1,3}x_{1,2,3}+x_{0,1,2}x_{1,3,4} |

{-2} | x_{0,1,4}x_{0,2,4}-x_{0,1,3}x_{0,3,4}+x_{0,1,2}x_{1,2,4} |

40 1

o15 : Matrix S2 <--- S2

Notice that in all of these cases, the maximum degree appearing in the generating

set for the ideal of the shape variety k − 2 (where k is the number of points in our

configurations). This seems to indicate that we must include polynomials of degree i

for each i = 2, . . . , k−2 as generators of the ideal of the shape variety of a configuration

of k points in Pn
R.

Let us consider configurations of 5 points in P1
R. The ideal of the shape variety

for such a configuration is generated by V51.

We compute the quadratic relations 3.18 (from Chapter III) for 5 points in P1
R

using the “quadRels” function.
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i16 : Qrels51=quadRels(5,1)

o16={0} | 0 |

{-4} | m_{0,1}m_{2,3}x_{0,2}x_{1,3}-m_{0,2}m_{1,3}x_{0,1}x_{2,3} |

{-4} | m_{0,1}m_{2,3}x_{0,3}x_{1,2}-m_{0,3}m_{1,2}x_{0,1}x_{2,3} |

{-4} | m_{0,1}m_{2,4}x_{0,2}x_{1,4}-m_{0,2}m_{1,4}x_{0,1}x_{2,4} |

{-4} | m_{0,1}m_{2,4}x_{0,4}x_{1,2}-m_{0,4}m_{1,2}x_{0,1}x_{2,4} |

{-4} | m_{0,1}m_{3,4}x_{0,3}x_{1,4}-m_{0,3}m_{1,4}x_{0,1}x_{3,4} |

{-4} | m_{0,1}m_{3,4}x_{0,4}x_{1,3}-m_{0,4}m_{1,3}x_{0,1}x_{3,4} |

{-4} | -m_{0,1}m_{2,3}x_{0,2}x_{1,3}+m_{0,2}m_{1,3}x_{0,1}x_{2,3} |

{-4} | m_{0,2}m_{1,3}x_{0,3}x_{1,2}-m_{0,3}m_{1,2}x_{0,2}x_{1,3} |

{-4} | -m_{0,1}m_{2,4}x_{0,2}x_{1,4}+m_{0,2}m_{1,4}x_{0,1}x_{2,4} |

{-4} | m_{0,2}m_{1,4}x_{0,4}x_{1,2}-m_{0,4}m_{1,2}x_{0,2}x_{1,4} |

{-4} | m_{0,2}m_{3,4}x_{0,3}x_{2,4}-m_{0,3}m_{2,4}x_{0,2}x_{3,4} |

{-4} | m_{0,2}m_{3,4}x_{0,4}x_{2,3}-m_{0,4}m_{2,3}x_{0,2}x_{3,4} |

{-4} | -m_{0,1}m_{2,3}x_{0,3}x_{1,2}+m_{0,3}m_{1,2}x_{0,1}x_{2,3} |

{-4} | -m_{0,2}m_{1,3}x_{0,3}x_{1,2}+m_{0,3}m_{1,2}x_{0,2}x_{1,3} |

{-4} | -m_{0,1}m_{3,4}x_{0,3}x_{1,4}+m_{0,3}m_{1,4}x_{0,1}x_{3,4} |

{-4} | m_{0,3}m_{1,4}x_{0,4}x_{1,3}-m_{0,4}m_{1,3}x_{0,3}x_{1,4} |

{-4} | -m_{0,2}m_{3,4}x_{0,3}x_{2,4}+m_{0,3}m_{2,4}x_{0,2}x_{3,4} |

{-4} | m_{0,3}m_{2,4}x_{0,4}x_{2,3}-m_{0,4}m_{2,3}x_{0,3}x_{2,4} |

{-4} | -m_{0,1}m_{2,4}x_{0,4}x_{1,2}+m_{0,4}m_{1,2}x_{0,1}x_{2,4} |

{-4} | -m_{0,2}m_{1,4}x_{0,4}x_{1,2}+m_{0,4}m_{1,2}x_{0,2}x_{1,4} |

{-4} | -m_{0,1}m_{3,4}x_{0,4}x_{1,3}+m_{0,4}m_{1,3}x_{0,1}x_{3,4} |

{-4} | -m_{0,3}m_{1,4}x_{0,4}x_{1,3}+m_{0,4}m_{1,3}x_{0,3}x_{1,4} |

{-4} | -m_{0,2}m_{3,4}x_{0,4}x_{2,3}+m_{0,4}m_{2,3}x_{0,2}x_{3,4} |
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{-4} | -m_{0,3}m_{2,4}x_{0,4}x_{2,3}+m_{0,4}m_{2,3}x_{0,3}x_{2,4} |

{-4} | m_{1,2}m_{3,4}x_{1,3}x_{2,4}-m_{1,3}m_{2,4}x_{1,2}x_{3,4} |

{-4} | m_{1,2}m_{3,4}x_{1,4}x_{2,3}-m_{1,4}m_{2,3}x_{1,2}x_{3,4} |

{-4} | -m_{1,2}m_{3,4}x_{1,3}x_{2,4}+m_{1,3}m_{2,4}x_{1,2}x_{3,4} |

{-4} | m_{1,3}m_{2,4}x_{1,4}x_{2,3}-m_{1,4}m_{2,3}x_{1,3}x_{2,4} |

{-4} | -m_{1,2}m_{3,4}x_{1,4}x_{2,3}+m_{1,4}m_{2,3}x_{1,2}x_{3,4} |

{-4} | -m_{1,3}m_{2,4}x_{1,4}x_{2,3}+m_{1,4}m_{2,3}x_{1,3}x_{2,4} |

{-2} | m_{1,3}m_{2,3}-m_{1,2}m_{2,4}+m_{0,3}m_{3,4} |

{-2} | m_{1,3}m_{1,4}-m_{0,4}m_{2,4}+m_{0,2}m_{3,4} |

{-2} | m_{1,2}m_{1,4}-m_{0,4}m_{2,3}+m_{0,1}m_{3,4} |

{-2} | m_{0,3}m_{1,4}-m_{0,2}m_{2,3}+m_{0,1}m_{2,4} |

{-2} | m_{0,3}m_{0,4}-m_{0,2}m_{1,2}+m_{0,1}m_{1,3} |

{-2} | x_{1,3}x_{2,3}-x_{1,2}x_{2,4}+x_{0,3}x_{3,4} |

{-2} | x_{1,3}x_{1,4}-x_{0,4}x_{2,4}+x_{0,2}x_{3,4} |

{-2} | x_{1,2}x_{1,4}-x_{0,4}x_{2,3}+x_{0,1}x_{3,4} |

{-2} | x_{0,3}x_{1,4}-x_{0,2}x_{2,3}+x_{0,1}x_{2,4} |

{-2} | x_{0,3}x_{0,4}-x_{0,2}x_{1,2}+x_{0,1}x_{1,3} |

41 1

o16 : Matrix R <--- R

We see in the following computation that Qrels51 and V51 generate the same ideal.

i17 : MM1=map(ring V51, ring Qrels51);

o17 : RingMap S2 <--- T1
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i18 : ideal(MM1(Qrels51))==ideal(V51)

o18 = true

So the ideal of the shape variety of a configuration of 5 points in P1
R is generated by

the quadratic polynomials

(A.2) mi1i2mi3i4xσ(i1)σ(i2)xσ(i3)σ(i4) −mσ(i1)σ(i2)mσ(i3)σ(i4)xi1i2xi3i4

with no need to include the higher degree polynomials in our generating set.

The same is true for 6 points in P1
R and 5 points in P2

R.

i19 : Qrels61=quadRels(6,1);

121 1

o19 : Matrix T1 <--- T1

i20 : MM2=map(ring V61, ring Qrels61);

o20 : RingMap S2 <--- T1

i21 : ideal(MM2(Qrels61))==ideal(V61)

o21 = true

i22 : Qrels52=quadRels(5,2);

41 1
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o22 : Matrix T1 <--- T1

i23 : MM3=map(ring V52, ring Qrels52);

o23 : RingMap S2 <--- T1

i24 : ideal(MM3(Qrels52))==ideal(V52)

o24 = true

Our computations of the shape varieties of Ob1, Ob2, and Ob3 seem to indicate that

these quadratic polynomials generate the ideal of the shape variety in the case of 6

points in P3
R as well.

3. Embeddings of the Projective Shape Spaces in PN
R

We will now compute the map φk,n which embeds the shape space Uk,n/PGL(n+ 1)

of configurations of k points in Pn
R (in general position) in some projective space

PN
R for some small k and n. To do this, we use the “shapeEmbed” function of the

“projShapes” package.

The map φ6,3 : U ′
6,3 ⊂ Gr(4, 6) → P14

R sends a point (w0123 : . . . , w2345) ∈ U ′
6,3 to

the point P ∈ P14
R given below.

i25 : P=shapeEmbed(6,3)

o25 = {-3} | w_{0,1,2,5}w_{0,1,3,4}w_{2,3,4,5} |

{-3} | w_{0,1,2,4}w_{0,1,3,5}w_{2,3,4,5} |

{-3} | w_{0,1,4,5}w_{0,2,3,5}w_{1,2,3,4} |
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{-3} | w_{0,1,3,5}w_{0,2,3,4}w_{1,2,4,5} |

{-3} | w_{0,1,2,3}w_{0,3,4,5}w_{1,2,4,5} |

{-3} | w_{0,1,3,4}w_{0,2,4,5}w_{1,2,3,5} |

{-3} | w_{0,1,4,5}w_{0,2,3,4}w_{1,2,3,5} |

{-3} | w_{0,1,2,3}w_{0,1,4,5}w_{2,3,4,5} |

{-3} | w_{0,1,2,5}w_{0,3,4,5}w_{1,2,3,4} |

{-3} | w_{0,1,3,4}w_{0,2,3,5}w_{1,2,4,5} |

{-3} | w_{0,1,3,5}w_{0,2,4,5}w_{1,2,3,4} |

{-3} | w_{0,1,2,5}w_{0,2,3,4}w_{1,3,4,5} |

{-3} | w_{0,1,2,4}w_{0,2,3,5}w_{1,3,4,5} |

{-3} | w_{0,1,2,3}w_{0,2,4,5}w_{1,3,4,5} |

{-3} | w_{0,1,2,4}w_{0,3,4,5}w_{1,2,3,5} |

15 1

o25 : Matrix R <--- R

The shapes of the configurations Ob1, Ob2, and Ob3 are then points in P14
R

obtained by substituting some representative Plücker coordinates for the wijkl in P .

i26 : shapeOb1=substitute(P,matrix {maxMinors Ob1})

o26 = | -2545600 |

| -2580000 |

| 61950 |

| -148200 |

| -158600 |

| 2238800 |
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| 27550 |

| -34400 |

| 2369850 |

| -306800 |

| 2431800 |

| -175750 |

| -368750 |

| -193000 |

| 2211250 |

15 1

o26 : Matrix ZZ <--- ZZ

i27 : shapeOb2=substitute(P,matrix {maxMinors Ob2})

o27 = | -57988879284 |

| -68720542640 |

| 19426518156 |

| -57968286080 |

| 4424544696 |

| 4445137900 |

| 8694854800 |

| -10731663356 |

| -8674261596 |

| -53543741384 |

| 10752256560 |
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| -66663140880 |

| -72970259540 |

| -6307118660 |

| -4249716900 |

15 1

o27 : Matrix ZZ <--- ZZ

i28 : shapeOb3=substitute(P,matrix {maxMinors Ob3})

o28 = | 135317416345600 |

| 137146030080000 |

| -3293099443200 |

| 7877923123200 |

| 8430759833600 |

| -119008733388800 |

| -1464485708800 |

| 1828613734400 |

| -125975007513600 |

| 16308682956800 |

| -129268106956800 |

| 9342408832000 |

| 19601782400000 |

| 10259373568000 |

| -117544247680000 |
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15 1

o28 : Matrix ZZ <--- ZZ

If we scale each of these points by the greatest common divisor of their entries,

we obtain new homogeneous coordinates.

i29 : sf1=gcd(flatten entries shapeOb1)

o29 = 50

i30 : shapeOb1=transpose matrix {(flatten entries shapeOb1)/sf1}

o30 = | -50912 |

| -51600 |

| 1239 |

| -2964 |

| -3172 |

| 44776 |

| 551 |

| -688 |

| 47397 |

| -6136 |

| 48636 |

| -3515 |

| -7375 |

| -3860 |

| 44225 |
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15 1

o30 : Matrix QQ <--- QQ

i31 : sf2=gcd(flatten entries shapeOb2)

o31 = 4

i32 : shapeOb2=transpose matrix {(flatten entries shapeOb2)/sf2}

o32 = | -14497219821 |

| -17180135660 |

| 4856629539 |

| -14492071520 |

| 1106136174 |

| 1111284475 |

| 2173713700 |

| -2682915839 |

| -2168565399 |

| -13385935346 |

| 2688064140 |

| -16665785220 |

| -18242564885 |

| -1576779665 |

| -1062429225 |
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15 1

o32 : Matrix QQ <--- QQ

i33 : sf3=gcd(flatten entries shapeOb3)

o33 = 2657868800

i34 : shapeOb3=transpose matrix {(flatten entries shapeOb3)/sf3}

o34 = | 50912 |

| 51600 |

| -1239 |

| 2964 |

| 3172 |

| -44776 |

| -551 |

| 688 |

| -47397 |

| 6136 |

| -48636 |

| 3515 |

| 7375 |

| 3860 |

| -44225 |

15 1
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o34 : Matrix QQ <--- QQ

Notice that after scaling, we see that shapeOb1 and shapeOb3 are the same point

in P14
R which indicates that the configurations Ob1 and Ob3 have the same shape.

This agrees with previous result obtained by comparing the shape varieties of Ob1

and Ob3. We also see from this computation that Ob1 and Ob2 have distinct shapes

which confirms our earlier result obtained by comparing their shape varieties.

4. Metrics

Here we will compute the distances between our shapes thought of as points in real

projective space with the Fubini-Study metric. If Z,W are two points in a real

projective space given as column vectors in homogeneous coordinates so that ‖Z‖ =

‖W‖ = 1, then the distance between Z and W is

(A.3) d(Z,W ) = arccos
√
|ZTW |.

We use this metric to compute the distances between the shapes of Ob1, Ob2, and

Ob3 in MATLAB.

>> shapeOb1=[-2545600, -2580000, 61950, -148200, -158600, 2238800,

27550, -34400, 2369850, -306800, 2431800, -175750, -368750, -193000,

2211250]’

shapeOb1 =

-2545600

-2580000

61950
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-148200

-158600

2238800

27550

-34400

2369850

-306800

2431800

-175750

-368750

-193000

2211250

>> shapeOb2=[-57988879284, -68720542640, 19426518156, -57968286080,

4424544696, 4445137900, 8694854800, -10731663356, -8674261596,

-53543741384, 10752256560, -66663140880, -72970259540, -6307118660,

-4249716900]’

shapeOb2 =

1.0e+10 *

-5.7989

-6.8721

1.9427

-5.7968
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0.4425

0.4445

0.8695

-1.0732

-0.8674

-5.3544

1.0752

-6.6663

-7.2970

-0.6307

-0.4250

>> shapeOb3=[135317416345600, 137146030080000, -3293099443200,

7877923123200, 8430759833600, -119008733388800, -1464485708800,

1828613734400, -125975007513600, 16308682956800, -129268106956800,

9342408832000, 19601782400000, 10259373568000, -117544247680000]’

shapeOb3 =

1.0e+14 *

1.3532

1.3715

-0.0329

0.0788

0.0843
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-1.1901

-0.0146

0.0183

-1.2598

0.1631

-1.2927

0.0934

0.1960

0.1026

-1.1754

>> shapeOb1=(1/norm(shapeOb1))*shapeOb1

shapeOb1 =

-0.4308

-0.4366

0.0105

-0.0251

-0.0268

0.3789

0.0047

-0.0058

0.4010

-0.0519

0.4115
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-0.0297

-0.0624

-0.0327

0.3742

>> shapeOb2=(1/norm(shapeOb2))*shapeOb2

shapeOb2 =

-0.3672

-0.4352

0.1230

-0.3671

0.0280

0.0281

0.0551

-0.0680

-0.0549

-0.3391

0.0681

-0.4221

-0.4621

-0.0399

-0.0269

>> shapeOb3=(1/norm(shapeOb3))*shapeOb3
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shapeOb3 =

0.4308

0.4366

-0.0105

0.0251

0.0268

-0.3789

-0.0047

0.0058

-0.4010

0.0519

-0.4115

0.0297

0.0624

0.0327

-0.3742

>> distOb1Ob2=acos(sqrt(abs(shapeOb1’*shapeOb2)))

distOb1Ob2 =

0.8602

>> distOb1Ob3=acos(sqrt(abs(shapeOb1’*shapeOb3)))
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distOb1Ob3 =

1.4901e-08

>> distOb2Ob3=acos(sqrt(abs(shapeOb2’*shapeOb3)))

distOb2Ob3 =

0.8602

As we have already observed, Ob1 and Ob3 have the same shape, which is why the

distance distOb1Ob3 between Ob1 and Ob3 is zero. The distance distOb1Ob2 is

nonzero because Ob1 and Ob2 have distinct shapes (as previously noted).
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C. The Code

Here we give the code for the “affShapes” and “projShapes” packages as well as the

code for the “perms” and “maxMinors” packages.

1. The “affShapes” Package

This package includes functions necessary for computations in the affine target recog-

nition model.

load "maxMinors"

load "perms"

affOIrels=(k)->(ImInd=sort(subsets(k,3));

DualImInd=sort(subsets(k,k-3));

ObInd=sort(subsets(k,4));

Nvars={};

for i from 0 to #DualImInd-1 do Nvars=Nvars|{N_(DualImInd#i)};

mvars={};

for i from 0 to #ObInd-1 do mvars=mvars|{m_(ObInd#i)};

R1=ZZ/31991[Nvars,mvars];

Nvars={};

for i from 0 to #DualImInd-1 do Nvars=Nvars|{N_(DualImInd#i)};

mvars={};

for i from 0 to #ObInd-1 do mvars=mvars|{m_(ObInd#i)};

Alist=sort(subsets(k,2));

Blist=sort(subsets(k,k-5));

Llist=Alist;

for i from 0 to #Alist-1 do {
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for j from 0 to #Alist-1 do{

p_{i,j};

};

};

OIeqns1={};

for i from 0 to #Alist-1 do {

for j from 0 to #Blist-1 do{

p#{i,j}=0;

for l from 0 to #Llist-1 do{

ALlist=(Alist#i)|(Llist#l);

BLlist=(Blist#j)|(Llist#l);

em=permsign(sort(ALlist),ALlist);

eN=permsign(sort(BLlist),BLlist);

if #(unique(ALlist))<4 or #(unique(BLlist))<k-3 then p#{i,j}=p#{i,j}

else p#{i,j}=p#{i,j}+em*eN*m_(sort(ALlist))*N_(sort(BLlist));

};

OIeqns1=OIeqns1|{p#{i,j}};

};

};

nvars={};

for i from 0 to #ImInd-1 do nvars=nvars|{n_(ImInd#i)};

R2=ZZ/31991[nvars,mvars];

mvars={};

for i from 0 to #ObInd-1 do mvars=mvars|{m_(ObInd#i)};

nvars={};

for i from 0 to #ImInd-1 do nvars=nvars|{n_(ImInd#i)};
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mapList={};

for i from 0 to #DualImInd-1 do {

j=#DualImInd-1;

L=(DualImInd#i)|(ImInd#(j-i));

sortedL=sort(L);

e=permsign(sortedL,L);

mapList=mapList|{e*n_(ImInd#(j-i))};

};

mapList=mapList|mvars;

mm=map(R2,R1,mapList);

OIeqns=mm(transpose matrix {OIeqns1})

)

--return the affine object/image relations for configurations of k

--points.

OImatch=(O,I,k)->(rels=affOIrels(k);

if #O != (k!/((4!)*(k-4)!)) or #I != (k!/((3!)*(k-3)!)) then end

else eval=substitute(rels,matrix {I|O});

if ideal(eval)==0 then test=true

else test=false;

test

)

--takes a list O of object shape coordinates, a list I of image shape
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--coordinates, and an integer k (the number of points in the

--configurations) and returns true if the object/image pair is a match

--and false otherwise.

sameAffShape=(M,N)->(kM=#(flatten entries M);

kN=#(flatten entries N);

nM=#(entries M);

nN=#(entries N);

if kM!=kN or nM!=nN then test=false

else(

coordsM=maxMinors(M);

coordsN=maxMinors(N);

L={};

for i from 0 to #coordsM-1 do {

L=L|{(coordsM#i)/(coordsN#i)};

};

if #unique(L)==1 then test=true

else test=false;

);

test

)

--takes two configuration matrices M and N and returns true if the

--configurations have the same shape and false otherwise.
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2. The “projShapes” Package

This package includes functions necessary for computations in the projective target

recognition model.

load "diag"

load "maxMinors"

load "perms"

ShapeVar=(M)->(n=#(entries M);

k=#(entries transpose M);

Ind=sort(subsets(k,n));

xvars={};

for i from 0 to #Ind-1 do xvars=xvars|{x_(Ind#i)};

R1=QQ[xvars];

xvars={};

for i from 0 to #Ind-1 do xvars=xvars|{x_(Ind#i)};

R2=QQ[y_0..y_(k-1)];

D=diag genericMatrix(R2,y_0,1,k);

mapList=maxMinors(M*D);

mm=map(R2,R1,mapList);

eqns=transpose mingens kernel mm;

zvars={};

for i from 0 to #Ind-1 do zvars=zvars|{z_(Ind#i)};

R3=QQ[zvars];

R4=QQ[t_{0,0}..t_{k-1,n}];

tmat=genericMatrix(R4,t_{0,0},n,k);

tlist={};
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for i from 0 to #Ind-1 do tlist=tlist|{det(submatrix(tmat,Ind#i))};

pluckMap=map(R4,R3,tlist);

plucks=kernel(pluckMap);

Xmap=map(R1,R3,xvars);

xplucks=Xmap(plucks);

I=transpose gens (xplucks+ideal(eqns))

)

--takes a configuration matrix M and returns the matrix of

--generators of the ideal of its shape variety (this ideal

--includes the Plucker relations).

sameShape=(M,N)->(m1=#(entries M);

m2=#(entries transpose M);

n1=#(entries N);

n2=#(entries transpose N);

if m1!=n1 or m2!=n2 then TorF=false

else(VM=ShapeVar(M);

VN=ShapeVar(N);

mm=map(ring VM, ring VN);

if ideal(VM)==ideal(mm(VN)) then TorF=true

else TorF=false

);

TorF

)
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--returns true if the configurations M and N have the same

--shape and false otherwise.

genShapeVar=(p,n)->(Ind=subsets(p,n+1);

Ind=sort Ind;

k= #Ind;

wvars={};

for i from 0 to k-1 do wvars= wvars|{w_(Ind#i)};

S1=QQ[A_0..A_(p-1),wvars];

wvars={w_(Ind#0)};

for i from 1 to k-1 do wvars=wvars|{w_(Ind#i)};

alist=sequence(A_(Ind#0#0));

for i from 1 to (#Ind#0)-1 do alist=append(alist,A_(Ind#0#i));

monomialList={(times alist)*w_(Ind#0)};

for i from 1 to k-1 do (

alist=sequence(A_(Ind#i#0));

for j from 1 to (#Ind#i)-1 do(

alist=append(alist,A_(Ind#i#j)));

mon=(times alist)*w_(Ind#i);

monomialList=monomialList|{mon});

xvars={};

for i from 0 to k-1 do xvars= xvars|{x_(Ind#i)};

mvars={};

for i from 0 to k-1 do mvars= mvars|{m_(Ind#i)};

S2=QQ[mvars,xvars];

xvars={};
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for i from 0 to k-1 do xvars= xvars|{x_(Ind#i)};

mvars={};

for i from 0 to k-1 do mvars= mvars|{m_(Ind#i)};

mapList=wvars|monomialList;

mm=map(S1,S2,mapList);

eqnideal=ideal mingens kernel mm;

zvars={};

for i from 0 to #Ind-1 do zvars=zvars|{z_(Ind#i)};

S3=QQ[zvars];

S4=QQ[t_{0,0}..t_{k-1,n}];

tmat=genericMatrix(S4,t_{0,0},n+1,k);

tlist={};

for i from 0 to #Ind-1 do tlist=tlist|{det(submatrix(tmat,Ind#i))};

pluckMap=map(S4,S3,tlist);

plucks=kernel(pluckMap);

Mmap=map(S2,S3,mvars);

Xmap=map(S2,S3,xvars);

mplucks=Mmap(plucks);

xplucks=Xmap(plucks);

eqns=transpose gens(eqnideal+mplucks+xplucks)

)

--takes an integer p (the number of points in the configuration)

--and an integer n (the dimension of the projective space containing

--the configuration) and returns the matrix of generators of the

--ideal of the shape variety of a generic configuration of p points
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--in projective n-space.

quadRels=(k,n)->(Ind=sort(subsets(k,n+1));

mvars={};

xvars={};

for i from 0 to #Ind-1 do{

mvars=mvars|{m_(Ind#i)};

xvars=xvars|{x_(Ind#i)};

};

T1=QQ[mvars,xvars];

mvars={};

xvars={};

for i from 0 to #Ind-1 do{

mvars=mvars|{m_(Ind#i)};

xvars=xvars|{x_(Ind#i)};

};

L={};

Perms=perms(toList(sequence(0..(2*(n+1)-1))));

for i from 0 to #Ind-2 do{

for j from i+1 to #Ind-1 do{

I=(Ind#i)|(Ind#j);

J={};

for i from 0 to #Perms-1 do J=J|{I_(Perms#i)};

for l from 0 to #J-1 do {

I1=sort(take(J#l,n+1));

I2=sort(drop(J#l,n+1));
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if #(unique I1)==(n+1) and #(unique I2)==(n+1) then

L=unique (L|{m_(Ind#i)*m_(Ind#j)*x_(I1)*x_(I2)-m_(I1)

*m_(I2)*x_(Ind#i)*x_(Ind#j)});

};

};

};

eqns=transpose gens ideal L;

zvars={};

for i from 0 to #Ind-1 do zvars=zvars|{z_(Ind#i)};

T2=QQ[zvars];

T3=QQ[t_{0,0}..t_{k-1,n}];

tmat=genericMatrix(T3,t_{0,0},n+1,k);

tlist={};

for i from 0 to #Ind-1 do tlist=tlist|{det(submatrix(tmat,Ind#i))};

pluckMap=map(T3,T2,tlist);

plucks=kernel(pluckMap);

Mmap=map(T1,T2,mvars);

Xmap=map(T1,T2,xvars);

mplucks=Mmap(plucks);

xplucks=Xmap(plucks);

Eqns=transpose gens(ideal(eqns)+mplucks+xplucks)

)

--takes an integer k and an integer n and returns the quadratic

--relations that must be satisfied by the points in the shape

--variety of an arbitrary configuration of k points in projective
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--n-space.

shapeEmbed=(k,n)->(Ind=sort(subsets(k,n+1));

d=k/(gcd(k,n+1));

t=(n+1)/(gcd(k,n+1));

if t==1 then (t=2;

d=2*d;

);

toInt=map(ZZ,QQ);

t=toInt(t);

d=toInt(d);

tester={};

for i from 0 to k-1 do {

L=toList(t:i);

tester=tester|L;

};

out=set Ind;

for i from 1 to d-1 do {

out=set apply(toList (out**set Ind),j->flatten toList j);

};

IndList=unique apply(toList out, j->(if sort(flatten(j))==tester

then j));

IndList=unique apply(IndList, j->sort(pack(n+1,j)));

wvars={};

for i from 0 to #Ind-1 do wvars=wvars|{w_(Ind#i)};
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R=QQ[wvars];

monList={};

for i from 0 to #IndList-1 do {

wlist=apply(IndList#i,j->w_j);

monList=monList|{times toSequence wlist};

};

transpose matrix {monList}

)

--computes the point in projective N-space corresponding to the

--shape of an arbitrary configuration of k points in projective

--n-space.

shapeSpace=(k,n)->(Target=shapeEmbed(k,n);

L=flatten entries Target;

N=#L-1;

R=QQ[x_0..x_N];

mm=map(ring Target, R, L);

SS=transpose gens kernel mm

)

--computes the generators of the ideal of the image of the map

--shapeEmbed(k,n).

3. The “perms” Package

This package includes functions for working with permutations of lists.
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perms = (L)->(n=#L;

if n==1 then L else

(tester = sort(L);

out=set L;

for i from 1 to n-1 do

(out=set apply(toList (out**set L),j->flatten toList j));

permlist=unique apply(toList out, k->(if sort(k)==tester then k)));

sort(permlist)

)

--produce permutations of input list L (thanks go to

--Henry Schenk for this function).

perms2 = (L)->(r=#L;

if r==1 then L else

(tester = sort(L);

out=L;

for i from 1 to r-1 do {

out=apply(toList ((set out)**(set L)),j->flatten toList j);

};

permlist={};

for i from 0 to #out-1 do{

if sort(out#i)==tester then permlist=unique permlist|{out#i};

};

);
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sort(permlist)

)

--produce permutations of input list L (use if output

--of "perms" has null entries)

permdeg = (L)->(newperm=L;

I=sort L;

ddd=1;

while newperm != I do {

newperm = L_newperm;

ddd=ddd+1;

};

ddd

)

--return the degree of a permutation of a list {0 .. n}

permpower = (L,n)->(newperm=L;

for i from 2 to n do {

newperm=L_newperm;
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};

newperm

)

--return the nth power of a permutation of a list {0..k}

perminv = (L)->(r=permdeg(L);

permpower(L,r-1)

)

--return the inverse of a permutation of a list {0..n}

posi=(a,L) -> (r=#L;

scan(r,i-> if (L#i)==a then posit = i);

posit

)

--return the position of the element a in a list L

--(thanks go to Henry Schenk for this function).

permsign=(P,Q)->(l=apply(P,i->posi(i,Q));

r=#P;

det map(ZZ^r,r,(i,j)->if l#i==j then 1 else 0)
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)

--returns the sign of a permutation P of a list Q

--(thanks go to Henry Schenk for this function).

4. The “maxMinors” and “diag” Functions

maxMinors=M->(rows = #(entries M); --number of rows

columns = #((entries M)#0); --number of columns

if rows > columns then M=transpose M

else M=M;

end=sort subsets(columns,rows);

Mminors={};

for i from 0 to #Ind-1 do Mminors = Mminors|{det submatrix(M,Ind#i)};

Mminors

)

--Compute the determinants of the maximial minors of a matrix M.

--Returns the values in a list.

diag=M->(R=ring M;

map(R^(numgens source M), source M,(i,j) -> if i === j then M_(0,i)

else 0)

)

--takes a 1 by n matrix M and returns a n by n diagonal matrix whose

--diagonal entries are the entries of M.



170

VITA

Kevin Toney Abbott was born in Columbia, South Carolina. He received his

Bachelor of Science in mathematics from the University of South Carolina in May

2001 and received his Master of Science in mathematics from Texas A&M University

in December 2003. Upon completing his dissertation under the direction of Professor

Peter Stiller, he received his Ph.D. in mathematics from Texas A&M University in

August 2007. He may be contacted by writing to 11911 Freedom Drive, Suite 800,

Reston, VA, 20190.


