

AN OPEN SOURCE SOFTWARE SELECTION PROCESS

AND A CASE STUDY

A Record of Study

by

GUOBIN HE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF ENGINEERING

August 2007

Major Subject: Engineering

College of Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4278185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN OPEN SOURCE SOFTWARE SELECTION PROCESS

AND A CASE STUDY

A Record of Study

by

GUOBIN HE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF ENGINEERING

Approved by:

Chair of Committee, Dick B. Simmons
Committee Members, William M. Lively
 Jianer Chen
 Sheng-Jen Hsieh
 John Fierstien
Head of Doctor of
Engineering Programs, N.K. Anand

August 2007

Major Subject: Engineering

College of Engineering

 iii

ABSTRACT

An Open Source Software Selection Process and a Case Study. (August 2007)

Guobin He,

B.S., National University of Defense Technology;

M.S., Beijing University of Aeronautics and Astronautics

Chair of Advisory Committee: Dr. Dick B. Simmons

In this study, I design an empirical open source software selection process, which reuses

some ideas from Commercial Off-the-Shelf selection methods and addresses the

characteristics of the open source software. Basically, it consists of three basic steps:

identification, screening and evaluation. The identification step is to find all possible

alternatives to open source software that can meet the high level requirements. The next

step is screening, in which the refined requirements are applied to filter the alternatives.

The evaluation step is based on the Analytic Hierarchy Process, in which the alternatives

are inspected from functional suitability, source code, support strength and popularity. In

more detail, under functionality suitability criterion, alternatives to open source software

are evaluated in viewing of how much functionality can fit in with the functional user

requirements. The source code of the alternatives is evaluated from six criteria:

programming language, code size, code comment, code intra-module complexity and

code inter-module complexity. The evaluation of support strength depends on the

evaluation of field support and support resources. The field support includes commercial

support and community support. The community support specifically refers to the direct

responses from the community to the support requests. Aside from field support, open

 iv

source software projects also provide various support-related resources such as,

documents, wiki, blog, etc. To determine the popularity of the alternatives, I evaluate

them from software use, development participation and web popularity.

In the case study, I utilize the process to select the best open source unified

modeling language tool from the ten alternatives for the software development process.

After the screening phase, the four competitive alternatives, BOUML, ArgoUML, UMLet

and Violet, are evaluated from functionality, source code, support strength and popularity

criteria. The evaluation result indicates that ArgoUML is the best tool for the requirement.

The case study demonstrates the effectiveness of the selection process. Various important

attributes of open source software are taken into consideration systematically and the

final decision is reached based on comprehensive investigation and analysis. The process

provides an operable solution to the open source selection problem in practice.

 v

DEDICATION

This record of study is dedicated to my parents, my wife and my baby, for their love and

support.

 vi

ACKNOWLEDGEMENTS

Two years ago, I decided to focus on my career development in industry. Therefore, I

switched from the Doctor of Philosophy program to the Doctor of Engineering program.

Now in retrospect, I feel I made a correct decision and am better prepared for the future

career challenges. Thanks to the College of Engineering at Texas A&M University for

setting up such a good program to help students fulfill their interests and prepare them for

future career goals. Particularly I would like to thank my advisor, Dr. Dick B. Simmons,

for his constant understanding, encouragement, advice, patience and guidance. He helped

me select the appropriate topic and patiently guided me through the record of study

process.

I would like to express my gratitude to my committee members, Dr. William M.

Lively, Dr. Jianer Chen and Dr. Sheng-Jen Hsieh for their support. It is a wonderful

experience for me to work with these professors.

Many thanks go to Dr. Dezhen Song for his involvement on my advisory

committee, particularly in the final defense.

Special thanks to Mr. John Fierstien, for his involvement on my advisory

committee as my internship supervisor. Mr. John Fierstien brought me into a fast growing

company and gave me the opportunity to work on several projects.

I would like to thank Guangtong Cao, Rui Li, Yingwei Yu, Xingfu Wu, Lui

Cheng and Xu Yang for their friendship and help during my study.

 vii

In the end, I owe a special debt of gratitude to my wife, my baby and my parents

for their great love and sacrifices.

 viii

TABLE OF CONTENTS

 Page

ABSTRACT... iii

DEDICATION.. v

ACKNOWLEDGEMENTS... vi

TABLE OF CONTENTS... viii

LIST OF FIGURES ... xi

LIST OF TABLES.. xii

1 INTRODUCTION .. 1

1.1 Open Source Software ...1

1.2 OSS Development Process ..3

1.3 Software Evaluation...6

1.4 OSS Selection Process: State of the Art ..9

1.5 OSS Selection Process Based on Analytical Hierarchy Process16

2 OPEN SOURCE SOFTWARE MULTIPLICITY OBSERVATION....................... 25

2.1 What Is Open Source Software Multiplicity?..25

2.2 Sampling Design..27

2.3 Sampling Results ...33

3 OPEN SOURCE LICENSING ... 36

 ix

Page

3.1 Introduction: Intellectual Property Protection ...36

3.2 Categories of Open Source Software License ...40

3.3 Licenses That Are Popular and Widely Used or With Strong Communities41

3.4 Comparison..53

4 OPEN SOURCE SOFTWARE FUNCTIONALITY AND SOURCE CODE

ANALYSIS... 54

4.1 Open Source Software Functionality...54

4.2 Open Source Software Functionality Suitability Evaluation.............................59

4.3 Open Source Software Source Code Evaluation ...65

4.4 Summary..73

5 OPEN SOURCE SOFTWARE SUPPORT AND POPULARITY ANALYSIS...... 74

5.1 Open Source Software Support Evaluation ...74

5.2 Open Source Software Popularity Evaluation ...82

6 A CASE STUDY: USING OSS SELECTION PROCESS TO SELECT OPEN

SOURCE UML DESIGN TOOL.. 88

6.1 Motivation..88

6.2 Unified Modeling Language: A Brief Introduction...89

6.3 Open Source UML Tool Identification and Screen ...91

6.4 Open Source UML Tools Evaluation ..93

6.5 Summary of the Case Study ..116

 x

Page

7 SUMMARY.. 117

REFERENCES ... 118

VITA... 130

 xi

LIST OF FIGURES

 Page

Figure 1-1 OSS Community Model .. 5

Figure 1-2 OSS Selection Process .. 18

Figure 1-3 OSS Evaluation ... 19

Figure 1-4 Analytic Hierarchy Process... 20

Figure 2-1 Open Source Sample Project Classifications .. 34

Figure 3-1 Open Source Software Community Activity ... 42

Figure 4-1 OSS Project Distribution on Different Topics .. 58

Figure 4-2 Observation of Functional Evolution of OSS Project Emule........................ 59

Figure 4-3 Example of Inconsistent Mappings .. 61

Figure 4-4 Functional Suitability Evaluation Hierarchy... 63

Figure 4-5 Linux Kernel Code Size Growth .. 66

Figure 4-6 Control Complexity Growth of OSS Project Emule 67

Figure 4-7 Structural Complexity Growth of OSS Project Emule 67

Figure 4-8 Source Code Evaluation Hierarchy... 68

Figure 4-9 Programming Languages in OSS Projects .. 69

Figure 5-1 Support Strength Evaluation Hierarchy .. 77

Figure 5-2 Popularity Evaluation Hierarchy... 84

Figure 6-1 Use Case of the Modeling Tool .. 95

Figure 6-2 Composite Priority .. 116

 xii

LIST OF TABLES

 Page

Table 1-1 CapGemini Model .. 12

Table 1-2 AHP Ranking Scale.. 21

Table 2-1 Sampling Results .. 35

Table 3-1 Copyright and Patent Comparison.. 39

Table 3-2 OSS Licenses Characteristics Comparison .. 53

Table 5-1 OSS Community Support Sampling Results.. 78

Table 6-1 Functional Suitability Pair Comparison ... 97

Table 6-2 Use Case Diagram Pair Comparison .. 98

Table 6-3 Activity Diagram Pair Comparison .. 98

Table 6-4 Communication Diagram Pair Comparison ... 99

Table 6-5 Component Diagram Pair Comparison .. 99

Table 6-6 Class Diagram Pair Comparison .. 100

Table 6-7 Sequence Diagram Pair Comparison.. 100

Table 6-8 Object Diagram Pair Comparison .. 101

Table 6-9 State Machine Diagram Pair Comparison .. 101

Table 6-10 Deployment Diagram Pair Comparison .. 102

Table 6-11 XMI Pair Comparison ... 102

Table 6-12 Export Pair Comparison .. 103

Table 6-13 Manipulation Pair Comparison.. 103

Table 6-14 Out-of-Box Function Compatibility Pair Comparison 104

 xiii

Page

Table 6-15 Extendable Function Compatibility Pair Comparison................................. 105

Table 6-16 Contributory Function Compatibility Pair Comparison 105

Table 6-17 Collected Data for Source Code .. 106

Table 6-18 Programming Language Pair Comparison .. 107

Table 6-19 Code Size Pair Comparison... 107

Table 6-20 Comment Pair Comparison ... 107

Table 6-21 Intra-Module Complexity Pair Comparison.. 108

Table 6-22 Inter-Module Complexity Pair Comparison.. 108

Table 6-23 Source Code Pair Comparison... 109

Table 6-24 Relevance Pair Comparison .. 110

Table 6-25 Capacity Pair Comparison... 110

Table 6-26 Understandability Pair Comparison .. 111

Table 6-27 Support Resource Pair Comparison... 111

Table 6-28 Field Support Pair Comparison ... 112

Table 6-29 Support Strength Pair Comparison.. 112

Table 6-30 Software Use Pair Comparison ... 113

Table 6-31 Development Participation Pair Comparison .. 113

Table 6-32 Web Popularity Pair Comparison.. 114

Table 6-33 Popularity Pair Comparison .. 114

Table 6-34 OSS Evaluation Pair Comparison ... 115

 1

1 INTRODUCTION

1.1 Open Source Software

1.1.1 History

At the early stage of computer software development, the computer professionals shared

the software freely. However, with the popularity of computer software, people started to

charge fee for software use and release software binary code instead of source code. The

software became proprietary. On the one hand, the emergence of proprietary software

attracted many companies to enter the software market and led to software industry boom

in 1990s; on the other hand, it was believed to suppress knowledge sharing and

distribution and give rise to monopoly. In 1984, Richard Stallman, launched the GNU

project aiming at developing a free operating system. He believed that the source code is

fundamental to the furthering of computer science and freely available source code is

truly necessary for innovation to continue [1]. In 1985, he established The Free Software

Foundation (FSF) to promote free software movement, a social movement which

advocates users’ rights to use, study, copy, modify, and redistribute computer programs

[2]. The name of Open Source Software was accepted as a new label for free software in

“Open Source Summit” in 1998. In the same year, the organization, Open Source

Initiative (www.opensource.org) (OSI), was founded to promote open source software.

OSI gives an open source definition and certifies open source licenses. Also, the open

This record of study follows the style and format of IEEE Transactions of Software
Engineering.

 2

source movement was launched to advocate open source software. Open source

movement focuses on advocating the benefits of open source software. In contrast, free

software movement emphasizes the freedom of use. Although OSI’s open source

software is defined differently from the FSF’s free software, in practice, people treat open

source software and free software as the same. They use Free/Open Software (FOSS),

Free/Libre/Open Source Software (FLOSS) or open source software/free software

(OSS/FS) as the general term. In our paper, we stay with the term - open source software

(OSS).

1.1.2 The Formal Definition

As mentioned, FSF and OSI have different definitions for Open Source/Free Software.

FSF defines free software as software with four freedoms [3]. These freedoms include the

freedom to run the program, for any purpose (freedom 0); the freedom to study how the

program works, and adapt it to your needs (freedom 1). Access to the source code is the

precondition for this; the freedom to redistribute copies so you can help your neighbor

(freedom 2) and the freedom to improve the program, and release your improvements to

the public, so that the whole community benefits (freedom 3). Access to the source code

is a precondition for this. In this paper, we use the definition from Open Source Initiative

[4][5]. This definition gives a list of criteria which open source software should confirm to:

1. Free Redistribution. There is no restriction in the license from selling or giving

away the software as a component.

2. The software should include source code.

 3

3. The license must allow modifications and derived works, and must allow them to

be distributed under the same terms as the license of the original software.

4. Integrity of the author’s source code.

5. No discrimination against persons or groups.

6. No discrimination against fields of endeavor.

7. Any users whom the software is distributed to have all the rights defined in the

license.

8. License must not be specific to a product.

9. License must not restrict other software.

10. License must be technology-neutral.

There are two related terms we should distinguish from OSS. The first is “Freeware”.

There is no definition for this term but it refers to the type of software which can be used

without any cost and in unlimited time. Freeware does not expose the source code, so it is

not OSS. The second is “Shareware”. In many cases, before releasing a new version of

proprietary software, the software developers would issue free trial versions. These trial

versions are called shareware. Shareware usually comes with partial features of its

proprietary counterpart and its use is limited to a certain time period. It is only a piece of

binary code and does not expose the source code.

1.2 OSS Development Process

The OSS development process is different from the traditional development process.

Basically traditional development process involves requirement analysis, design,

implementation, testing and maintenance stages [6]. The whole process is undertaken by

 4

teams or groups comprised of software professionals. This is not the case for OSS

development. According to the popular article by Eric S. Raymond: The Cathedral and

the Bazaar [7], OSS development model can be divided into two phases: the cathedral

phase and the bazaar phase.

Typically the idea of an OSS project appears as a special requirement, i.e.

“something the computer ought to be doing for me” [7]. Eric Raymond describes this

requirement as “a developer’s personal itch” [7]. At the same time, the requirement cannot

be fulfilled by software accessible to a developer. Otherwise, the developer will choose

either to use it or even directly participate in the development. After some analysis on

risk, schedule and requirement [6], the developer (or a team) may start his own project if

he feels he has strong motivation. The developer will implement a software prototype for

the project. The implementation also may follow a traditional development process and

therefore experience more or less requirement analysis, design, implementation and

testing. Then the developer publicizes the prototype with its source code, which ends the

cathedral phase. In order to successfully enter the bazaar phase, the prototype should be

extensible to allow multiple developers to work on the project simultaneously [6][8][9].

More important, even if the prototype does not work well currently, it should present a

plausible promise to “convince potential co-developers that it can be evolved into

something really neat in the foreseeable future” [7]. At the same time, the effective

communication and license model should also be established.

The Bazaar phase starts the community building of the OSS. The OSS project

success is closely related with whether the community building is active or not. The

community is comprised of developers and users but the distinction between developer

 5

and users is blurred. Despite the project is still controlled by a core development team,

any users can voluntarily become co-developers. According to the tightness of the

connection with the development, people propose an onion-like model [10][11][12][13] for the

community illustrated in figure 1-1. Core developers undertake most development and

administration work. Co-developers submit code patches and review the code. The code

patches will be checked into the code by core developers after being reviewed and

accepted. Active users do not work on the source code but they make their contribution

via using the software and submitting bug reports or feature requests. Passive users are

Figure 1-1 OSS Community Model (excerpted from [11])

just regular software users. The bazaar phase is characterized with peer review,

concurrent development and opening up requirement [6]. Peer view is helpful for finding

and solving the problems in the project. As Eric Raymond said [7], “Given a large enough

 6

beta-tester and co-developer base, almost every problem will be characterized quickly

and the fix obvious to someone”. Concurrent development means during the same time

period the development proceeds by multiple developers and in various activities such as

fixing bugs or implementing new features. In bazaar phase, OSS requirements are shaped

by the multiple voluntary feature requests and suggestions. Although too many multiple

requirement propositions may pose a problem to project management, such opening can

help OSS developers understand what requirements users really need or prefer.

1.3 Software Evaluation

Software evaluation is an important field in Software Engineering. People want to have

an idea on how good the software is, which will help select the software or improve the

software development. There is a standard ISO 9126 [60] drawn up for software evaluation.

This standard discusses the software evaluation from four respects: quality model,

external metrics, internal metrics and quality in use metrics. The quality model sets a set

of characteristics: functionality, reliability, usability, efficiency, maintainability, and

portability. Since the topic of software evaluation is too broad, here we narrow down our

discussion to COTS (commercial-of-the-shelf) evaluation. We are interested in COTS

evaluation mainly because it is similar to OSS in some respects. First, there exist a large

number of COTS products. When people try to use COTS, they may face several options

and they need to select the best fit via evaluating each COTS; Second, COTS promotes

software reuse, which is also involved in OSS adoption. Some OSS is released in the

form of reusable component. More important, people may integrate OSS into their

software in order to reduce work and save time. The difference is that OSS reuse mostly

 7

belongs to white box reuse while COTS reuse is a black box reuse; Third, during the

integration, the adaption work may be required for both software. In the following

paragraphs, we will introduce COTS evaluation methods: OTSO [14][15], CRE[16], PORE[17]

and Opal[18]

OTSO (Off-The-Shelf Option) model introduces a multiple criteria decision

technique, Analytic Hierarchy Process (AHP), into the COTS selection. It defines six

phases: search, screening, evaluation, analysis, deployment and assessment. At the

beginning, a user searches the possible COTS alternatives. Next he selects the COTS

alternatives which he believes need to be evaluated in more details. Then he evaluates

these alternatives with usually multiple criteria. The evaluation results should be carefully

analyzed and the best fit is selected. After the COTS is deployed, the assessment

regarding the success of adopting COTS takes place, which aims to improve the selection

process in the future. The evaluation criteria are generated during the search, screening

and evaluation phases. Generally they can be categorized into four areas: functional

requirements, product quality characteristics, strategic concerns, and domain and

architecture compatibility [14]. The multiple evaluation criteria are organized into a

hierarchy with the aid of AHP. Under the hierarchy, COTS alternatives are compared

and ranked step by step. In the end, the one with the highest priority is the best alternative.

CRE (COTS-Based Requirements Engineering) emphasizes on non-functional

requirements modeling to assist the process of evaluation and selection of COTS products

[16]. It is an iterative process consisting of four phases: identification, description,

evaluation and acceptance. In the identification phase, evaluation criteria are defined in

view of the factors which may affect the COTS selection. The criteria and the

 8

requirement description, particularly the non-functional requirements, are refined in the

description phase. At the same time, the requirements are also prioritized and the product

information is acquired. At the evaluation stage, users evaluate COTS alternatives based

on cost versus benefit comparison. The authors proposed several methods regarding

decision making such as weighted scoring method (WSM) and AHP. The final

acceptance phase involves purchasing and legal issue resolving.

PORE (Procurement-oriented requirements engineering) is a template-based

method regarding requirements acquisition for selecting COTS products. The selection

proceeds in the fashion of incrementally rejecting COTS products by checking the

compliance with the requirement. It consists of three templates which are designed to

acquire requirements for COTS selection at three stages. Template 1 focuses on acquiring

the requirement from product supplier data. Template 2 guides the acquire requirement

from supplier-led product demonstration. In particular, it helps examine individual

requirement compliance. Template 3 assists evaluating COTS with the requirement

acquired through product exploration. PORE is an iterative process. Each stage can be

repeated for multiple times.

 OPAL is a method with a supporting tool called OPAL. It consists of three phases:

identifying goals and requirements, preparing call for tenders and selecting best COTS

bid. In the first phase, the customer defines and weights the requirements. Then in the

next phase, these requirements are compiled into the software requirement specifications

and transformed into a questionnaire. Each question in this questionnaire has a scoring

scale and the COTS suppliers need to complete this questionnaire. Finally in the third

 9

phase the best COTS product is selected by evaluating the requirement weights and the

scores in the questionnaire.

From the description of these COTS selection methods, we can see some common

characteristics among of these methods. First, the selection in these methods is comprised

of several phases, which commonly include identification and evaluation activities. The

examples are OTSO, CRE and OPAL. Second, COTS venders play an important role in

these selection methods. In CRE, OPAL and OPAL, the product information is acquired

from the vender side. Third, multiple criteria decision technique is widely adopted in

these COTS methods such as AHP in OTSO and CRE.

1.4 OSS Selection Process: State of the Art

1.4.1 The Challenge

After many years’ development, there has been a large repository of OSS accumulated.

For instance, more than 10,000 open source software is registered on a single website,

SourceForge.net. Due to developers’ common interest or motivation, multiple OSS may

share the identical functionality. As an IT manager decides what open source software his

team or company will use as their tools or platforms, he may run into a selection problem.

For instance, for automatic documentation tool, he has at least 13 options.

(http://en.wikipedia.org/wiki/Comparison_of_documentation_generators). Hence which

one is the best match is a serious question for him to answer. OSS has a lot attributes.

Even though most of these attributes are open to the public, it is still hard and error-prone

to select the best alternative without a systematic process. Directly applying the

proprietary software selection processes such as COTS selection models on OSS is

 10

inappropriate. Essentially, they are different in two aspects: to begin with, proprietary

software does not come with its source code. Hence source code is not considered in any

of these proprietary software selection methods. However, source code is an important

factor affecting both OSS reuse and maintenance. Next, usually OSS is unfinished and

still under development. No parities would ensure its quality, functionalities and support.

Users have to adopt it at their own risk. In another word, OSS suppliers will not get

involved into this selection. It rests on users’ own decision to evaluate the software and

make sure it can be used in their projects. To solve the problems, people in software

industry start to work on this topic and have proposed a couple of models.

1.4.2 The Navica/Golden Open Source Maturity Model

Navica/Golden Open Source Maturity Model (OSMM) was created by Navica’s CEO,

Bernard Golden. It is a formal process to assess the maturity level of open source

software[19]. People can access this model and use it on their own purpose, which means

the model is open source as well.

Basically, OSMM consists of three phases: assessing key product element

maturity, assigning weighting factor and calculating product maturity score [20]. Key

elements include product software, support, documentation, training, integrations and

professional services. These elements are crucial for software success. The assessment of

each key element can be divided into four steps: defining what the specific requirement;

locating the necessary resources, for example, the means of acquiring technical support;

assessing the extent the usefulness of the open source software, for example, is the

software well documented for further development, and as the last step, assigning

 11

maturity score according to the result from the third step. In phase two, each key element

is assigned with a weight factor based on its importance to overall maturity. Then in

phase three, the final overall maturity score is calculated by using the following equation:

overall maturity score = �(i=1, n) (wi*mi) (mi is the i-th key element and wi is the weighting

score for mi).

To facilitate the evaluation process, OSMM provides a set of document templates

such as product requirements template, product software template and professional

support template etc. These templates set a framework and check list for each phase or

step in OSMM. For instance, the technical support maturity assessment template gives a

list of how many points each type of technical support are assigned. A user can use the

support checklist to arrange his/her support assessment activities. The reviewed result can

be recorded in the support assessment table.

1.4.3 CapGemini Open Source Maturity Model

CapGemini[21] uses its model to provide consultation service for its customers. It is an

evaluation work flow, which involves the interaction between its consultants and

customers. The kernel index in this model is “product indicators”. These indicators are

results of measuring a number of objective and measurable facts [21] related with the open

source software. Product indicators can be grouped into four groups: product, integration,

use and acceptance. Table 1-1 [21] could give us a clear idea of each indicator and what

characteristics of open software it measures.

 12

Table 1-1 CapGemini Model

Group Indicator Purpose Immature Mature
Age The active

development time

The project has just

started

The software has been

developed for a while

Selling Points The features which

can attract users

None or under-

developed

Acceptable and useful

Developer

Community

The group of people

who develop the

software

Small unorganized

group

Active developer

community

Human

Hierarchy

The organization of

development

Few lead developer Multiple lead

developers

Product

Licensing Legal issues Unclear or unsuited Commercial and open

source uses

Collaboration Integration with

other software

No consideration yet Adequate attention to

integration with other

products

Modularity Whether if it can

tailored to meet

specific

requirements

Monolithic code Tailor-able if

necessary

Integration

Standards Supporting current

standards

Incompliant with

standards

Compliant with current

standards

Support How to get technical

support

Restricted and far

from enough support

Highly accessible

support

Use Deployment The means of

supporting

deployment

Hard to deploy and

maintain

Easy to deploy and

maintain via training

and documentation.

User

Community

Software user group Small Large and well

organized

Acceptance Market How much the

software has been

accepted

Few reference Many references and

successful application

cases.

 13

1.4.4 Business Readiness Rating

Business Readiness Rating Model [22] is developed by Spike Source, the Center for Open

Source Investigation at Carnegie Mello West, and Intel Corporation. The authors of this

model claim to make a model which is Complete, Simple, Adaptable, and Consistent.

Analogue to previous models, this model is comprised of four phases: Quick Assessment

Filter, Target Usage Assessment, Data Collection& Processing and Data Translation. The

rating has five ranks from 1, “Unacceptable”, to 5, “Excellent” [22].

In the first Quick Assessment Filter phase, the final usage is determined, which

can be categorized into four types: mission-critical, regular, development and

experimentation. With the final usage, users can remove some inappropriate candidates

by checking a couple of properties such as licensing, compliance with standards, stable

supporting organizations, references etc. This evaluation is coarse-grained, just in aim for

filtering out some candidates which are obviously unable to fit the future purpose. Next,

users need to select several most important assessment categories. The model

recommends these categories should be less than 7. These assessment categories include

functionality, usability, quality, security, performance, scalability, architecture, support,

documentation, adoption, community and professionalism. These categories are similar to

the categories in Navica/Golden and CapGemini. The third phase, data collection and

processing, is a time-consuming process, because all measurement data should be

collected for each category and compared with a normalized scale. This comparison is to

answer the questions such as “I know the software has been downloaded for 2000 times

per month, is this a good indicator for its maturity?”. In the last phase, data translation,

the final Business Readiness Rating score is calculated based on the ratings computed in

 14

the previous phase for each category and the weighting factors. Different from the

weighting factors used in Navica/Golden, these weighting factors measures the extent of

importance of each metric in each category.

1.4.5 Karin van den Berg’s Open Source Evaluation Model

This Open Source Evaluation Model[23] is described in Karin van den Berg’s master

thesis. The author presents the criteria which are collected from the open source

evaluation literature. The criteria cover the important aspects of open source software:

community, release activity, longevity, license, support, documentation, security,

functionality, integration, modularity, standards, collaboration with other software and

software requirements [23]. There are two steps in the evaluation process. First, four

criteria, functionality, community, release activity and longevity, are used to select the

candidates. The selection is either an elimination of the candidates which do not meet the

minimal requirement on functionality and release activity or a ranking base on the four

criteria listed above [23]. The first selection method is called Elimination by Aspects

model and the second one is the Linear Weighted Attribute Model. The author gives a

case study to show the effectiveness the model by using Course Management System.

1.4.6 David A. Wheeler’s Open Source Evaluation Model

According to the model [24], OSS is evaluated in four steps: identify, read reviews,

compare and analyze. Identify step is to find out what potential candidates are available.

David A. Wheeler gave several recommendations to fulfill this task. The first is the well-

 15

known open source software lists such as his own Generally Recognized as Mature

(GRAM) list, the IDA Open Source Migration Guidelines and the table of

equivalents/replacements/analogs of Windows software in Linux [24]. The second choice

is doing a search in open source websites. After identification, users need to read existing

reviews. The author pointed out users should notice the popularity and market share as

they read the reviews. He listed two reviews in his paper. One is a Content Management

Problems and Open Source Solutions and the other is Software Configuration

Management Systems [24]. The third step is comparing the crucial software attributes with

users’ requirements. These attributes are functionality, cost, market share, support,

maintenance, reliability, performance, scalability, usability, security,

flexibility/customizability, interoperability and legal/license issues [24]. At last, users need

to do an analysis among the most competitive candidates. The author recommended using

the software on representative work loads [24], which is close to software testing.

1.4.7 Summary

These OSS evaluation models are intuitive and not as well defined as those COTS

evaluation methods. They give an OSS selection guideline which is still not quite

operable. For instance, in BRR, to measure the reference deployment, users have to find

out whether the software is scalable and tested in real use. But how to do that is

questionable since few OSS provide such information. Also, BRR mentions measuring

the difficulty to enter core developer team. If the waiting only takes a while, then the

software would be ranked as excellent on this point. But how long is a while? Although

most of methods point out the various attributes that OSS users should consider during

 16

the selection process, how to organize the various attributes and make a wise decision has

not been elegantly solved. One example is OSMM. It treats support and documentation as

parallel evaluation criteria. But in reality, the documentation is a means of support for

OSS projects. In addition, these OSS evaluation methods do not emphasize the source

code evaluation. But source code is a most important component of OSS, which may

affect the OSS maintenance and further development.

In order to solve these problems, we design a new OSS selection process. Our

process reuses the mature practices which have been adopted by proprietary software

evaluation methods. For instance, as with OTSO and CRE, the process uses analytic

hierarchy process to organize the multiple criteria and reach a wise decision. Also, our

process takes into account the characteristics of OSS. One example is the criterion design.

To ensure the practicability, we provide several indicators which can help measure the

OSS alternatives under certain criteria. For sake of simplicity, our selection process does

not consider the non-functional requirements. But we believe it can be extended to handle

these requirements without major changes. In the end, we will give a case study to show

the effectiveness of our selection process.

1.5 OSS Selection Process Based on Analytical Hierarchy Process

1.5.1 The OSS Selection Process

We design a new empirical OSS selection process (figure 1-2). This process reuses some

ideas from COTS selection methods and addresses the OSS own characteristics. Basically

it consists of three basic steps: identification, screening and evaluation. The identification

step is similar to the search phase in OTSO and the identification phase in CRE. The goal

 17

is also to find all possible alternatives which may meet our major requirements. At this

step, we only need to apply the high-level requirements. For example, if we want to find

OSS which supports Internet Relay Chat (IRC), then IRC is the criterion regarding

identifying the potential OSS. The OSS information sources are similar to the sources

discussed in COTS selection process [66][16], which include Internet, publications,

conference, expert/co-workers and Linux distributions. Specifically, OSS websites are an

important resource on the Internet [24]. These websites can be categorized into two types.

One type is the project host websites, which provide necessary infrastructure for OSS

development. An example is Sourceforge.net (www.sourceforge.net), the largest OSS

host website in the world. Another example is GNU’s Savannah

(http://savannah.gnu.org/). The other type website is OSS index websites. These websites

usually collect an OSS repository and provide some information or comments related

with each OSS project. The examples are Freshmeat (freshmeat.net), IceWalkers

(www.icewalker.com), Ohloh (www.ohloh.net) and Free Software Directory

(http://directory.fsf.org/). The next step is screening, in which the refined requirements

are applied to reduce the OSS alternatives. The requirements used in this step aim at the

OSS distinct properties such as underlying platform, implementation language, dependent

modules, standard compliance and license. Usually the OSS project will provide such

information directly. Therefore the screening would not take a large amount of time. The

criteria can be expressed as a scope or range which users can accept. For example, users

require the OSS should be able to run on either Windows or Linux. Then the OSS

alternatives only running on MacOS or some embedded OS such as vxWorks and WinCE

are screened out in this step. The remaining OSS alternatives after this step are believed

 18

to be the competitive candidates. Locating the best fit among them requires a scrutiny,

which is undertaken in evaluation process. Among these steps the evaluation is the most

important. It is worth noting that the process is iterative. If we realize that our initial

criteria are too strict and should be adjusted during the evaluation or screen, we can

always go back to the prior step and start from there again.

Figure 1-2 OSS Selection Process

The evaluation step is based on the Analytic Hierarchy Process. OSS alternatives

are inspected carefully from functional suitability, source code, support strength and

popularity (figure 1-3). As for functional suitability, we sort out the OSS alternatives

according to how well they satisfy the functional requirements. Under the source code

criteria, we want to find out which OSS alternative we are more willing to work on for

maintenance and reuse. Support strength evaluation refers to examining the support

availability of the OSS. Popularity evaluation means determining how popular each OSS

alternative is relative to others.

Identification

Screen

E
valuation

OSS Repository OSS alternatives OSS competitive
alternatives

Selected OSS

 19

Figure 1-3 OSS Evaluation

Here is the organization of the whole report. The rest of this section will give an

introduction of AHP. Next we will give a description of our OSS multiplicity observation.

In section 3, we will discuss OSS license because it is an important issue in the screen

step. Since evaluation is the major step in our OSS selection process, we will focus on it

in the next two sections: section 4 for functional suitability and source code; section 5 for

support strength and popularity. In the last section, we will give a case study regarding

the application of our selection process.

1.5.2 The Analytic Hierarchy Process (AHP)

AHP is a decision making technique proposed by Thosmas L. Satty. It allows decision

makers to model a complex problem with multiple attributes or criteria into a hierarchical

structure [25] [26][27]. Basically AHP can be decomposed into five steps:

1. Establishing the hierarchical structure in view of the objective, criteria,

alternatives and their relationships.

2. Do pair comparison between the elements regarding each criterion at its

subsequent level

OSS Evaluation

Functional Suitability Source Code Support Strength Popularity

 20

3. Compute the priority vector based on the pair comparison results.

4. Compute the consistency ratio. If the consistency ratio is out of a reasonable

scope, tune the pair comparison value until the consistency is acceptable

5. Develop the final priority vector of the alternatives for the final objective.

The first step is establishing the hierarchical structure in view of the objective, criteria,

alternatives and their relationships. The objective is at the top of the hierarchy. It is the

ultimate evaluation goal. Below the objective is multiple criteria (C1, …, Cm), which need

to be examined in order to make a decision on the objective. Each criterion may depend

on sub-criteria on the next level but the criteria on the same level should be independent.

This criteria refinement continues until the evaluation of alternatives (A1, …, An) can be

carried out. Figure 1-4 gives an example of such hierarchy. From this figure, we can see

Criterion2 at the second level depends on three sub-criteria, C21, C22 and C23. Under these

sub-criteria are alternatives.

Figure 1-4 Analytic Hierarchy Process

Objective

Criterion1 Criterion2 Criterionm

Criterion21 Criterion22 Criterion23

….

Alternative1

…. ….

Alternative2 Alternative3 …. Alternativen

 21

At the second step, the dependent elements of each criterion at the subsequent

level are pair wise compared and the priority of these elements is inferred from the

comparison results. For example, under C21, the alternative group, A1, …, An, are

compared in pairs. Thereby we have a reciprocal matrix An*n. The element of this matrix,

aij, is the relative preference between Ai and Aj evaluated with respect to C21. In another

word, Ai is aij times as preferable as Aj. The value is a number on the scale recommended

by Thomas Satty. Table 1-2 shows more details of the scale [27]. The upper limit is set as

9 because it is sufficient to make a distinction and compliant with the psychological limit

of human [27][29].

Table 1-2 AHP Ranking Scale

Intensity of importance Definition

1 Equal importance

3 Weak importance of one over another

5 Essential or strong importance

7 Very Strong or demonstrated importance

9 Absolute importance

2,4,6,8 Intermediate values between adjacent scale values

Reciprocals of above

nonzero

If activity I has one of the above nonzero numbers

assigned to it when compared with activity j, then j has

the reciprocal value when compared with i

Rationals Ratios arising from the scale

The priority rankings are derived by computing the eigenvector from the pair wise

matrix. Let us give an explanation about this computation [26][27]. Assume the exact

 22

priority vector of A1, …, An is w={w1, …, wn}. Then if the pair wise comparison is

precise, element aij in matrix A should equal to wi/wj. Then we have the following

equation [27]:

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

n

n

nnn

n

n

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

...

..........................

...

...

321

2

3

2

2

2

1

2

1

3

1

2

1

1

1

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

nw

w

w

w

...
3

2

1

 = n

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

nw

w

w

w

...
3

2

1

From the matrix theory, we know w is an eigenvector of A with eigenvalue n.

There are several methods to estimate eigenvector. One method is the process of

averaging over the normalized columns [27][28]. Below are the details of this process. The

second method is simpler: First, multiply the n elements in each row and take the nth root

and then normalize the results [27]. In addition, it is possible that we have the priority

vector without going through the pair comparison. In this case, we must make sure the

priority ratios truly represent the judgment.

 23

�
�
�
�

�

�

�
�
�
�

�

�

nnnnn

n

n

aaaa

aaaa

aaaa

...
..................

...
...

321

2232221

1131211

 =>

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

����

����

����

====

====

====

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

in

nn

i

n

i

n

i

n

in

n

ii

ss

i

in

n

iii

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

1111

1111

1111

...

........................

...

...

3

3

2

2

1

1

2

3

23

21

21

1

3

13

2

12

1

11

=>

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
	

�
�

�
	

�
�

�
	

�
�

�
�

�
�

�
�

=

=

=

=

=

=

n
a

a

n
a

a

n
a

a

n

j
n

i

n

j
n

i

n

j
n

i

in

nj

in

j

in

j

1

1

1

1

1

1

...

2

1

The pair wise comparison is based on subjective judgment, which may bring the

inconsistency problem. The inconsistency means there exists elements aij and ajk in A,

aik�aij*ajk. For instance, if Ai is 2 times more important than Aj and Aj is 3 times more

important than Ak, then Ai should be 6 times more important than Ak. However, Ai may

be deemed as only 4 times more important than Ak, which leads to an inconsistency. In

this case, based on the matrix theory [26][27], the priority vector w should satisfy the

equation Aw=�maxw. �max is the maximum eigenvalue of A. The inconsistency can be

estimated by measuring how close �max is to n, i.e. calculating the consistency index

 24

(�max-n)/(n-1). The consistency index divided by the average consistent index of the

randomly generated reciprocal matrix (its elements are from 1 to 9) is consistency ratio

[27]. AHP allows inconsistency to some extent. In practice, if the consistency ratio is less

than 0.1, we believe the inconsistency is acceptable.

Once all priority vectors under each criterion have been determined, we can continue

to compute the final priority vector of the alternatives for the objective. The computation

is from bottom to top. For instance, assume the priority vectors under C21, C22 and C23 are

v1, v2 and v3. The priority ranking vector of C21, C22 and C23 under C2 is u. Then the

priority vector of the alternatives for criterion C2 equals to [v1 v2 v3]*u. [v1 v2 v3] is an n*3

matrix. In the same way, we compute the final priority vector after all priority vectors of

the alternatives under criteria C1, …, Cm have been computed.

 25

2 OPEN SOURCE SOFTWARE MULTIPLICITY OBSERVATION

2.1 What Is Open Source Software Multiplicity?

The reason behind the multiple choices for OSS users is multiple OSS projects share

common features. We call this phenomenon as open source software multiplicity in this

report. An OSS project has many features. These features are listed in the project’s

description, document or website. Project description is the mission statement for the

project. Usually it is a short introduction written by project initiator to brief the selling

points of the project. For example, according to OSS project Notepad++’s description

(http://sourceforge.net/projects/notepad-plus/), its features include source code editor,

written in C++ with Win32 API, supporting editing several programming languages and

customizable GUI. All of these features can be divided into two categories: functionality

and non-functionality. In this example, C++ and Win32 API implementation is the non-

functional feature and the rest belong to the functionality category. Among the functional

features, source code editor is the most important since it defines the basic usage for this

OSS. The other functional features can be seen as extension or enhancement based on

this feature. In the paper, we define an OSS project’s fundamental functionality as its key

feature. If two OSS projects have the identical key features, they are deemed as similar

projects or we call the two projects match. In practice, key feature can be used in the OSS

identification step. It can be extracted from the high-level requirement and serve as the

key words to search the OSS projects. The result is a list of similar OSS projects.

 26

OSS project hosting websites have done some work on partitioning OSS projects based

on common functional features. Projects are clustered into different topics or categories

to help users locate the software projects. Sourceforge.net provides an up to four level

software map. Likewise, Freshmeat.net has two level software categories. In

Sourceforge.net, a topic is first proposed by certain open source software developers, and

then publicly reviewed by all website users. If it is agreed by many people, it may be

added into the Software Map [30]. In Freshmeat.net, the categories are determined by

website administrators. It is project initiator who decides which topic or category the OSS

project belongs to. The classification provides a means of project functionalities filtering.

For instance, if a user wants to have a FTP client on SourceForge.net, she can simply

check the software list under the topic directory path: Internet->File Transfer Protocol

(FTP). The shortcoming of these classifications is that they are a bit over coarse-grained.

In the previous example, there are 620 software projects under the FTP topic.

Comparatively, key feature is more precise and closer to the real functional requirements

from users. Also, these classifications tolerate some ambiguity and arbitrariness. For

instance, both StarUML (http://sourceforge.net/projects/staruml/) and UMLet

(http://sourceforge.net/projects/umlet/) are UML modeling tool, but on SourceForge.net,

StarUML is under topic CASE and UMLet’s topic is undefined.

In this report, we will give a rough observation of OSS multiplicity. It relies on the

subjective judgment and the result may not be precise. However, our goal is limited, i.e.

to indicate the possible extent of the multiplicity. In another word, we want to investigate

the problem: for an OSS project, is it possible that its key feature overlap with any other

OSS project key features? The answer is not of benefit to the OSS selection process but

 27

it can let us know more about the necessity of OSS selection. Since the OSS project

repository is huge, it is impossible to check every OSS project. We will use Simple

Random Sampling (SRS) approach to get a sample which can represent the whole OSS

repository. In order to reduce subjectivity and ambiguity, a set of rules regarding key

feature extraction and similarity criteria will be defined. An alternative of SRS may be

statistical clustering, which partition a set into subsets (clusters). OSS project multiplicity

can be measured based on the cluster sizes. Compared with SRS, this approach can give a

more precise estimate of OSS project multiplicity. However, we do not use it here

because, first, how to group OSS projects into different categories is not our main

concern; second, it may involve too much work. Key feature extraction and similar

project searching rely on personal judgment and are hard to automate.

2.2 Sampling Design

2.2.1 Simple Random Sample

Simple Random Sampling is one of the most widely used sampling techniques. A simple

random sample with size n is drawn from the population N without replacement such that

each possible sample of size n has the same chance of being chosen [32]. In our SRS

design, the population is the OSS projects registered on SourceForge.net. Until

November 12, 2006, there are 114,701 project registered on SourceForge.net. We assume

these OSS projects are indexed from 1 to 114,711. The sample is determined by the index

set generated by a free randomizer, Research Randomizer (www.randomizer.org). In

order to measure OSS project multiplicity, we can estimate the average number of similar

OSS projects from the sample at confidence level 95% by using the following equation:

 28

n = N�σ2/((N-1)D+σ2) where D=B2/4 [31]

(n is the sample size, N is the population size. B is the bound on the error of estimation.

σ2 is the population variance.). However, it is not easy to calculate the appropriate sample

size because the population variance is not available in this equation. To circumvent this

problem, we shift the sampling objective to the population proportion. Specifically, OSS

multiplicity can be measured by estimating the proportion of OSS projects in the

population which have other similar OSS projects. Then the sample size calculation

equation at the same confidence level becomes:

 n = Npq/((N-1)D+pq) where D=B2/4 [31]

n, N and B are the same as the previous equation. p is the proportion to be estimated and

q is 1-p. Even though p is also unknown here, we can assume p=0.5 to assure the

maximum variability [31][32]. Now if B=10%, N=110,000, n=110,000*0.25/275.2475=100.

Hence, we can randomly choose 100 OSS projects as the sample from the population. To

be more conservative, we select 120 projects as our sample in the real observation.

2.2.2 Sampling Implementation

2.2.2.1 Sampling Process

Sampling process can be seen as a simulation of users’ OSS searching, i.e. locating the

potential candidates which match major functionality requirements. The difference is that

in our sampling, the functionality requirements are the key feature extracted from each

sample OSS project. Basically, the process consists in three big steps: key feature

extraction, key word searching and similar project matching. In the first step, we need to

 29

decide the key feature from the OSS project description. Aside from the project

description, project website, FAQ and documents are also helpful. In the following

section, we will discuss the key feature extraction rules. There exist some cases in which

it is impossible to summarize the OSS project’s functionalities. The project description is

not well written and there are no website, FAQ and documentations. For example, project

team-i-share’s goal is simply depicted as “all-sharing application”

(http://sourceforge.net/projects/team-i-share/), from which the key feature cannot be

defined. As such, its key feature is empty and it does not have any similar OSS projects.

The output of this step is the key words concluded from the key feature. For instance, the

key words for project Notepad++ are “source code editor”. The second step is searching

the possible similar candidates with the key words from the population. We use the

searching function provided by Sourceforge.net. It returns a list of OSS projects sorted by

the relevance, which is calculated by looking at the number of times the search string is

found in the name and project description [33]. The search function can dramatically filter

out unrelated projects but there are still too many OSS projects included into the list that

are not the real match. In order to find out the similar OSS projects, we have to go

through the list, read each project’s description and even documents and website if

available. Since the sampling involves personal knowledge and judgment, several rules

are stipulated to minimize possible subjective mistake and ambiguity.

2.2.2.2 Key Feature Extraction

OSS project descriptions do not have a standard format. Mostly they are just a paragraph

including the main goal and the important features the projects will implement. However,

this is not always the case. Some OSS projects give users some reference software

 30

projects or products. Some OSS projects list what tools they use and what platforms they

are aiming at. Different OSS project description may give rise to different understanding

of its key feature, which poses a problem for extracting key feature. To alleviate this

problem, we classify OSS projects based on their goals and set up the rules to guide key

feature extraction accordingly.

Generally speaking, OSS projects can be classified into Extension, Specialization,

Porting, Replacement, Tool, Localization, User Interface and Originality. Extension

refers to enhancing or adding functions to an existing software product. For example,

project ZenStar mIRC Script (http://sourceforge.net/projects/zenstar/) is an extension of

mIRC, an Internet Relay Client (IRC), (http://www.mirc.com) because it is designed to

add functionality such as auto-nick completion, to mIRC. Specialization emphasizes on

improving nonfunctional features such as performance, storage, response time etc. For

example, project Business Maker ERP (http://sourceforge.net/projects/custom-erp/)

advocates enhancing modularity into ERP system. OSS projects in Porting aim at porting

some software products from one platform to another platform or implementing them

with different languages. For example, GridLayout Panel for .NET

(http://sourceforge.net/projects/dnetgridlayout/) implements Layout management concept

or layout manager, which originally is on Java, on .NET platform. Replacement means

providing an open source solution as an alternative to a software product. In many cases,

the reference software is proprietary software or widely accepted open source software.

For example, Ao Server Mod By Shura (http://sourceforge.net/projects/aoserverbyshura/)

is a project aiming at implementing a free alternative to massive multiplayer online role-

playing games. Tools, also called as utilities, are mainly for supporting software

 31

development. They are composed of script, API, SDK, library, framework, kit etc. For

example, project blex (http://sourceforge.net/projects/blex/) is a platform-independent

software development kit. Many OSS projects are created to support foreign languages,

for instance, Arabic encoding, Chinese input etc. Therefore we have a Localization class

to represent these OSS projects. User Interface is a class of OSS projects which provide a

user interface or front end for some software products. For example, project

TortoiseDarcs (http://tortoisedarcs.sourceforge.net/) is a GUI frontend for darcs, an open

source source code management system. In reality, these OSS projects can also be

ascribed to Extension or Specialty (for enhancing user-friendly). However, since the

number of this type of OSS projects is substantial, we put them into a separate class. The

last class is Originality. By name the project in this class should contain innovative work

or ideas. In addition, it cannot be merged into any other classes. Actually some of major

motivations of OSS developers are intellectual challenge and self-actualization, which

drive them to do something new and innovative [34][35]. One example is Arcade Mass

Conspiracy (http://sourceforge.net/projects/arcadeworkers/), which is to produce arcade

games in functional language, Ocaml.

The OSS project classification is helpful for determining key features. Some types

of features are crucial for a certain class of OSS projects but may not be considered as the

key feature for another class of OSS projects. For OSS projects in Extension,

Specialization and Replacement classes, key feature should include the reference

software because it is a determinant of the software basic use. In particular, the key

features of Extension projects should subsume the added enhancements, for they

constitute the most important selling points for these projects. But the nonfunctional

 32

enhancement in OSS Specialization projects will not be treated as key feature because

these features are hard to evaluate and different users may have different standards. The

verification of these features tends to happen in the later screening stage. Usually the key

feature does not contain programming languages. However, for OSS Tools projects, it is

added up to keep key feature in line with their ultimate goal. Based on the same reason,

for Porting projects, we include the underlying platform into their key features.

2.2.2.3 Similarity Criteria

After we decide the key feature for the OSS project, the search with the input of the key

words generates a list of OSS projects. There are several criteria to help locate the similar

projects among this list. For simplicity, suppose we have sample project A and project B

in the generated project list. We use FK1 to denote the key feature of sample project A

and FK2 as the key feature of project B. First, if A is in Extension class and B is similar to

A, B should also belong to Extension class as well. This is also the case for projects in

Localization, UI and Tool classes. Second, FK1 contains multiple key features. If any key

feature in FK1 is also in FK2, then B is an A’s similar project. The example is a

Localization class project: Write Dari and Farsi with Naveesinda

(http://sourceforge.net/projects/naveesinda2-0/). It provides the inputting function on

English keyboard for a set of languages such as Farsi, Dari, Arabic, Pashtu, Russian,

Cyrillic etc. If another project also implements the inputting function for any of these

languages, we believe it matches project Write Dari and Farsi with Naveesinda. Third, if

FK1 is a subset of FK2 then B matches A. For example, project CDDA Ripper XP

(http://sourceforge.net/projects/cddarip/) is an audio CD ripper program. Project

 33

BonkEnc Audio Encoder (http://sourceforge.net/projects/bonkenc/) has more features. It

is not only a CD ripper but also an audio encoder and converter. Base on the third rule,

we believe BonkEnc Audio Encoder matches CDDA Ripper XP. Forth, if FK2 is a special

case of FK1, or in another word, FK2 is a non-functional enhancement of FK1, B matches

A. For example, project Snakelets (http://sourceforge.net/projects/snakelets/) is a web

application server. Project Porcupine Web Application Server

(http://sourceforge.net/projects/porcupineserver/) is an object oriented web application

server, which can be seen as a specialization of web application server. As such, project

Porcupine matches project Snakelets.

2.3 Sampling Results

The following pie chart (figure 2-1) shows the percentage of each class of OSS projects

accounts for among the sample set, which reflects the distribution of OSS project

developers’ interests. The chart shows the doing something new is the focus for OSS

project developers. But there are still enough interests on providing development support

and re-implementing a software product to different platforms or with different languages.

 34

Open Source Project Classification

Extension
6% Porting

12%

Specialization
7%

Tools
20%

Replacement
3%

UI
6%

Localiztion
2%

Originality
44%

Extension Porting Specialization Tools Replacement UI Localiztion Originality

Figure 2-1 Open Source Sample Project Classifications

Table 2-1 is the sampling result. More than half of the sample projects have no

less than 1 other similar projects. If we raise the threshold to 3, there are still 25.8%

projects left. The confidence interval in this sampling test is 10% (the actual interval is a

bit smaller than 10% since we select more than 100 sample projects). The percentage

range column lists the range of the percentage estimate in the population, which is

(percentage in the sample set – 10%, percentage in the sample set + 10%). From this

column, we can easily conclude that there are a substantial percentage of OSS projects

which share the same fundamental functionality feature with multiple other OSS projects.

Therefore, if we need to use some OSS projects for our project, we may have to make a

selection among these similar projects to determine which one is the best fit.

 35

Table 2-1 Sampling Results

Sample Projects Percentage in the sample set Percentage Range in the
population

Sample projects which
has no less than 1 similar
projects

52.5% 42.5%~62.5%

Sample projects which
has no less than 2 similar
projects

36.7% 26.7%~46.7%

Sample projects which
has no less than 3 similar
projects

25.8% 15.8%~35.8%

 36

3 OPEN SOURCE LICENSING

3.1 Introduction: Intellectual Property Protection

The development of OSS has profoundly affected how software is licensed and

distributed. In this section, we will discuss briefly the intellectual property law and

introduce the common categories of OSS license. The intellectual property law

distinguishes three kinds of creations - copyright, patent and trademark.

3.1.1 Copyright

Per the Copyright Law of the United States of America, “Copyright protection subsists in

original works of authorship fixed in any tangible medium of expression, now known or

later developed, from which they can be perceived, reproduced, or otherwise

communicated, either directly or with the aid of a machine or device.” [37]. The 1976

Copyright Act generally gives the copyright owner the exclusive right to reproduce the

copyrighted work, to prepare derivative works, to distribute copies or phonorecords of the

copyrighted work, to perform the copyrighted work publicly, or to display the

copyrighted work publicly [37]. Since copyright protection subsists in the original works

of authorship, neither a copyright notice nor a registration is required to obtain a

copyright. Copyright simply exists when an original work is created. This rule also

applies to software. For example, a software program that is written by an engineer is

automatically protected by copyright law without the requirement of filing a registration.

The copyright law of the United States of America also states that copyright only protects

the expression of the original work of authorship, not “the idea, procedure, process,

 37

system, method of operation, concept, principle, or discovery, that described, explained,

illustrated, or embodied in such work” [37]. For example, a description of a product could

be copyrighted, but this would only prevent others from copying the description; it would

not prevent others from writing a description of their own or from making and using the

product. This is the fundamental difference between copyright and patent, which will be

discussed later in this section.

Not in all circumstances the creator of an original work is the owner of the

copyright. Works that are created by employee within the scope of ownership are “works

made for hire” [36]. Works that are created for hire are owned by the employer, not the

employee, even though he or she is the creator of the original work. Another important

concept discussed in the U.S. Copyright law is that the compilation and derivative works

are also copyrightable. “The copyright in a compilation or derivative work extends only

to the material contributed by the author of such work, as distinguished from the

preexisting material employed in the work, and does not imply any exclusive right in the

preexisting material. The copyright in such work is independent of, and does not affect or

enlarge the scope, duration, ownership, or subsistence of, any copyright protection in the

preexisting material.” [37].

In addition, the protection of copyright is limited to a certain period of time.

Under the current U.S. Copyright law, copyrights last for the life of the author with

additional 70 years. For corporate copyright, it lasts the shorter of 95 years from

publication or 120 years from creation.

 38

3.1.2 Patent and Trademark

Patents in the United States are governed by the Patent Act (35 U.S. Code), which

established the United States Patent and Trademark Office (the USPTO). Section 101 of

the U.S. Patent Act defines the general requirements for a patent as “Whoever invents or

discovers any new and useful process, machine, manufacture, or composition of matter,

or any new and useful improvements thereof, may obtain a patent, subject to the

conditions and requirements of this title.” [38] Therefore, for an invention to be patentable,

it must be new, useful and unobvious. [36] The rights granted under patent law are very

different than rights granted under copyright law discussed above. Patent law gives the

patent holder the right to exclude others from making, using, offering to sell, selling or

importing the invention. In contrast, copyright law protects the expression of the original

work of authorship, which prevents others from copying or modifying the original work.

Copyright law does not protect against someone else from independently creating the

same or similar expression. [39]

A trademark is a word, name, phrase, symbol, design or combination of those,

that is used to indicate the source of the goods or services and to distinguish them from

the goods or services of others. Trademark rights are to prevent others from using a

confusingly similar mark, but not to prevent others from selling the same goods or

providing the same services under a clearly different mark [40]. Under the U.S. trademark

law, the trademark owner must maintain the quality of the goods or services that are

under his or her trademark when the trademark is licensed to others [36]. Thus, based on

the OSS principle that the OSS license “must allow modifications and derived works, and

must allow them to be distributed under the same terms as the license of the original

 39

software” [36], open source license can not include trademark license since an OSS

licensor can not maintain control over the quality of the derivative works. [36] However,

certain OSS license includes a trademark protection clause to prevent licensees using its

trade name or trade marks.

3.1.3 Differences between Copyright and Patent

Table 3-1 below is a brief comparison between copyright and patent:

Table 3-1 Copyright and Patent Comparison

Criteria Copyright Patent

Subject Matter Expression of ideas Ideas

Rights Prevent others from copying or

modifying of an original work

Prevent others from making,

using, selling, offering to sell or

importing the invention

Standard Low - original work of authorship High - new, useful, unobvious

Registration Not necessary Strict procedures to obtain

patent registration

Duration Copyrights last for the life of the

author plus 70 years, or for a work

of corporate authorship, the shorter

of 95 years from publication or

120 years from creation

New patents last for 20 years

from the date the patent

application is filed

 40

3.2 Categories of Open Source Software License

Open source license comply with the intellectual property law. It is built upon the

foundation of intellectual property law, primarily on copyright law. The OSS is owned by

its author, who licenses the software to the public under generous terms [36]. The software

that is distributed under the licenses which comply with the Open Source Definition and

are approved by the Open Source Initiative board of directors is OSI certified open source

software (www.opensource.org). OSI certification has become a standard in the OSS

community such that the world's largest OSS host web site SourceForge.net requires that

the software development projects seeking to be hosted on its website should either use

OSI approved licenses or meet the requirements of the Open Source Definition set by the

OSI [41].

By the time of this writing, there are over 50 OSI approved licenses listed on the OSI

website (www.opensource.org). The large number of the OSS licenses makes it very

difficult to understand the characteristics of each license and the differences among them.

This fact has brought attention of the OSI board of directors. A License Proliferation

Committee was formed to identify and mitigate or remove issues caused by license

proliferation. The OSI License Proliferation committee started to divide the OSI

approved licenses into groups and help people initially picking a license to use one of the

more popular licenses, thereby helping to reduce the numbers of different licenses

commonly used. [42] The following groups are listed on the OSI website [42]:

• Licenses that are popular and widely used or with strong communities

• Special purpose licenses

 41

• Licenses that are redundant with more popular licenses

• Non-reusable licenses

• Other/Miscellaneous licenses

From a licensor’s point of view, this classification methodology gives some guidance

as to which ones are more commonly used, so that a licensor can choose from a smaller

population. However, this classification methodology does not divide licenses according

to their critical characteristics. The licenses within the same category might have very

diverse purposes and suitable to different OSS sub-communities. We will focus our

discussion on the nine licenses that are “most popular and widely used or with strong

communities” [42] hereafter. This category includes Apache License 2.0, New BSD

license, GNU General Public License (GPL version 2), GNU Library or “Lesser” General

Public License (LGPL version 2), MIT license, Mozilla Public License 1.1 (MPL),

Common Development and Distribution License, Common Public License and Eclipse

Public License. OSI recommends developers to consider these license first when they are

selecting a license for their OSS [42] and we believe these licenses are more important for

our selection process. We will also try to give a more useful classification method based

on the characteristics of these nine licenses.

3.3 Licenses That Are Popular and Widely Used or With Strong Communities

We studied 122,798 OSS project on Sourceforge.net with registration date on or before

April 22, 2007. We found out that total 89,141 projects, or 72.59% of the population, are

licensed under the nine licenses that are defined by OSI as “popular and widely used or

with strong communities”. Thus, our discussion will be focused on these nine licenses.

 42

As mentioned in the section above, even though the nine licenses were recommended by

the OSI as “most popular, widely used or with strong community”, choosing one from

them can still be confusing. Each of these nine licenses has its own characteristics. They

serve the different purposes of licensors and impose different level of restrictions to the

licensees. We will use figure 3-1 to explain the development pattern of an “open source

community”. Understanding of such pattern will help us to better learn what type of OSS

community a licensor wants to create, and in turn what level of restrictions are applied by

different type of licenses. The figure is revised from the “Virtuous Cycle Model of Free

and Open Source Community Activity” from the “Free and Open Source Software

Licensing White Paper” by Sun Microsystems Inc. [44]

Figure 3-1 Open Source Software Community Activity (revised and excerpted from [44])

Figure 3-1 shows an endless cycle that the OSS developer community shares the source

code commons, creates derivative works based on the source code commons and

contributes back to the source code commons. [44]

An Open Source Software Community

Source Code Commons

Derivative Works

OSS Developer Community

Use of source code
controlled by license

Contribution back
to commons
affected by License

 43

Derivative works is defined in the U.S. Copyright Law as “a work that is based on

(or derived from) one or more already existing works, is copyrightable if it includes what

the copyright law calls an ‘original work of authorship’.”[43] The U.S. Copyright Law also

regulates that “only the owner of copyright in a work has the right to prepare, or to

authorize someone else to create, a new version of that work.” [43] However, one of the

OSS principles is that OSS license “must allow modifications and derived works” [36].

Therefore, all OSS licenses must grant the rights to licenses to create derivative works.

For a licensor, the decision making of selecting a license for his or her software

development depends on what kind of a community he or she wants to create. [44]

Different license promotes different structure of how the derivative works can be created

based on the original commons, and more importantly, how the derivative works must be

distributed. A license with no restrictions of how the derivative works should be

distributed will theoretically create a relatively “quiet” community since the licensees

who create the derivative work do not have to contribute back to the source code

commons. On the contrary, a license with restrictions that the derivative works must be

licensed under the same license term as the original source code commons would help

build up a rather “growing” community because licensees are committed to distribute the

derivative works under the same OSS license, which in turn will keep this community

growing. For a licensee, it is important to understand the level of restrictions when

selecting OSS, and comply with the responsibility and commitment required by such

license.

With understanding of the development pattern of the OSS community, we examine

several OSS license classification methodology available today, such as OSI

 44

classification discussed in the previous section; the academic licenses and reciprocal

licenses discussed in [36]; “the “two principle model” defined in [45]; the “three major

categorizations” introduced by Sun Microsystems Inc. [44]; and the “three classes of

licenses” based on the “restrictiveness of the agreement” described in [46]. We believe

the classification methodologies introduced by Sun Microsystems Inc. and discussed in

[46] are meaningful for the OSS selection, which categorizes open source licenses by the

level of restrictions applied to the derivative works. This classification considers two

critical characteristics of the OSS licenses: [46]

• Whether the open source license requires that derivative works to be distributed

under the same terms and conditions of the same open source license. We

consider these licenses as “restrictive”. [46] This requirement is sometimes referred

to as “copyleft” [47], which the Free Software Foundation describes as “a general

method for making a program or other work free, and requiring all modified and

extended versions of the program to be free as well.” [47]

• Whether works that are not derived from program under such license must be

distributed under the same terms and conditions of such license if they are

distributed with the modifications derived from programs under such license as a

whole. We consider such licenses as “highly restrictive” [46]. This requirement is

sometimes referred to as “strong copyleft” [48].

Using this classification methodology, we divided the nine “Licenses that are popular and

widely used or with strong communities” [42] into the following three categories:

 45

3.3.1 Unrestrictive Licenses

Licenses within this category grant all necessary copyrights and patent rights to licensees

free of charge, “including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software” [49]. These licenses

place no restrictions as to what licenses need to be used for derivative works. The

following licenses belong to this category:

3.3.1.1 BSD License (Berkeley Software Distribution License)

The original BSD license is the first open source license that was designed to promote

free use, modify and distribute some software from University of California without any

return obligation whatsoever from the licensee. [36] The license permits the redistribution

and use the licensed software or its modifications in source and binary forms [50], thus any

derivative works based on an OSS product licensed under BSD license can be distributed

in any way the creator of the derivative works desires, even in commercial licenses.

This is not to say that BSD license does not impose any conditions on the licensee.

BSD imposes three conditions [50]. First, the redistribution of source code must include

the copyright notice which is Copyright(c) <YEAR>, <OWNER>, the three conditions

and the warranty and liability disclaimer; second, the redistribution of binary code must

include the same items in its documents and or other materials provided with the

distribution; the third condition is also called the no-endorsement clause stating that

“neither the name of the licensor nor the names of its contributors may be used to endorse

or promote products derived from this software without specific prior written permission”.

[50] None of these conditions impose any restrictions to licensee to use, modify, or

 46

redistribute the software and no restrictions were set by BSD license as to what license

the derivative work must use.

One thing we should notice is that the BSD license we discuss in last paragraphs

is actually new BSD license. Its old version includes an advertisement clause which

requires the display of an acknowledgement of the University of California, Berkeley and

its contributors. This clause has been removed in 1999. However, when we select the

OSS alternatives with BSD license, we should notice what version it uses.

3.3.1.2 MIT License

The MIT license [49], also called X license or X11 license, is almost equivalent to the

BSD license except that the MIT license gives more clarification about the rights, i.e. “to

use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the

software”[49]. Also it does not have the no-endorsement clause.

3.3.1.3 Apache License

The Apache license [51] provides not only grants of copyright license but also grants of

patent license which includes the rights of making, using, selling, offering to sell or

importing. Particularly as for patent right grants, Apache license contains a termination

clause which takes effective if a licensee initiates a patent litigation against the work

contributor. Also it includes a clause to protect “Apache” trademark by stating that “This

License does not grant permission to use the trade names, trademarks, service marks, or

product names of the Licensor, except as required for reasonable and customary use in

describing the origin of the Work and reproducing the content of the NOTICE file” [51].

 47

Similar to BSD and MIT licenses, it has the warranty disclaimer and the limitation of

liability clause.

3.3.1.4 Summary

In summary, the non-restrictive licenses share the following characteristics:

• Grant licensee the necessary copyrights and patent rights to use, copy, sell and

distribute the software.

• Unrestrictive development of derivative works [44]

• The derivative works can be licensed in any way as the developer desires. No

restriction to the way how the derivative works should be licensed.

3.3.2 Highly Restrictive License

We will introduce the Highly Restrictive License before we discuss the Restrictive

License, because the most representative highly restrictive license is GNU General Public

License (GPL), which is the first OSS license that introduces the idea that any derivative

works created from the GPL-licensed software must be distributed under the same license.

Similar with unrestrictive licenses, restrictive licenses and highly restrictive licenses also

“gives licensees legal permission to copy, distribute and/or modify the software”. [52] The

key difference between restrictive/highly restrictive licenses and unrestrictive licenses is

that the derivative works created based on the software under restrictive licenses and

highly restrictive licenses must be licensed under the same terms and conditions in the

restrictive licenses. As we discussed previously, such restriction helps to keep the

 48

derivative works based on the public commons remain open to public, thus to keep the

open source software community growing.

3.3.2.1 GNU General Public License (GPL)

GPL is the most influential OSS license. It aims at ensuring the freedom “to share and

change free software – to make sure the software is free for all its users” [52]. It requires

any work as a whole must be licensed without any change and under the same GPL’s

terms as long as it “contains or is derived” [52] from a portion of GPL licensed program.

We need to pay close attention to the scope defined in the GPL, since this is the key

difference between restrictive license and highly restrictive license. GPL makes clear that

the restrictions applies to non-derivative work if it is distributed with the original GPL

licensed work or the derivative work.[52] The restrictions loses effectiveness on the

portion of work that are not derived from the GPL-licensed software, can be “reasonably

considered independent and separate works in themselves”, and separately distributed. [52]

GPL license writers further clarify their intent “to exercise the right to control the

distribution of derivative or collective works based on the Program”. [52] Furthermore,

GPL does not allow the sublicense the program which is mainly for the prevention of

imposing additional restrictions. As with the unrestrictive licenses, GPL also has no

warranty and limited liability clauses.

3.3.2.2 GNU Lesser General Public License (LGPL)

The GNU Lesser General Public License (LGPL) is revision based on GPL. It is intended

for software library, which is defined in LGPL as “a collection of software functions

and/or data prepared so as to be conveniently linked with application programs (which

 49

use some of those functions and data) to form executables.”[53] The main difference

between the GPL and the LGPL is that the latter distinguish “the work uses the library”

from the derivative work. “The work uses the library” is defined as a program which is

compiled or linked with the library and free of any portion of the library and its derivative

work. [53] Under LGPL, the program parts other than the library may be licensed under

other OSS license or even proprietary licenses, but the source code of the library must be

provided. Also, LGPL requires that if the program is an “executable linked with the

library” [53], it must provide “object code and/or source code” [53] such that the user can

relink the modified library.

3.3.2.3 Summary

In summary, the key characteristic of the highly restrictive license are the follows:

• Grant licensee the necessary copyrights and patent rights to use, copy, sell and

distribute the software.

• Unrestrictive development of derivative works [44]

• Modifications derived from software under such license must be distributed under

the same terms and conditions

• Works that are not derived from software under such license must be distributed

under the same terms and conditions if they are distributed with the software as a

whole.

 50

3.3.3 Restrictive Licenses

As discussed in the section of the highly restrictive licenses, the key difference between

restrictive license and highly restrictive license is whether works that are not derived

from program under a license must be distributed under the same terms and conditions of

such license if they are distributed with the modifications derived from program under

such license as a whole. The most popular restrictive licenses are Mozilla Public License

(MPL), Common Development and Distribution License (CDDL), Common Public

License (CPL) and Eclipse Public License (EPL).

3.3.3.1 Mozilla Public License (MPL)

In the late 1990’s, due to Microsoft bundling its web browser, Internet Explorer, with the

windows operating system, Netscape’s web browser product Netscape Communicator

rapidly lost its market share. Instead of shutting down the development of this software,

Netscape decided to license the Netscape Communicator to the public under an OSS

license [36] [54]. Netscape does not want to use the unrestrictive licenses because these

licenses do not require modifications to the source commons to be contributed back to the

community. It does not choose GPL license either since the company would like to be

able to collect modifications to the code made by open source developers and re-license

them for use in commercial products. Thus, the Mozilla Public License (MPL) was

created by Netscape to meet its special requirements.

MPL is often considered as a hybridization of the BSD license and GNU General

Public License. It is worth noting that MPL license uses files to define its governing

scope rather than the program in GPL. The restrictions in MPL is applied on the original

code and the modifications which is recursively defined as the work derived from the

 51

original code or the modifications. MPL defines this work as covered code and requires it

to be governed by the license terms. The work other than the covered code is not

restricted. To put it another way, “someone can take an MPL-licensed work and build

upon it with new components. The resulting work can be distributed with the MPL

covering the use of the original work and any license covering the rest. Clearly in this

way a company could add closed source components to an MPL-licensed work and thus

build a proprietary product.” [55] We consider the MPL as restrictive license since MPL

requires modifications to be licensed under MPL. But its restriction is weaker than GPL’s

since MPL allows the added work to use any license as the developer desires. In practice,

if we adopt an OSS project with MPL license into our software product, we can limit our

modifications within the same files as the OSS source code. These files are distributed

under MPL license in the software release. Other source files can either be kept

proprietary or released under other licenses. In addition, as with Apache license, MPL

also provides the grants of patent license and contains a termination clause.

3.3.3.2 Common Development and Distribution License (CDDL)

The Common Development and Distribution License (CDDL) [56][57] was created by Sun

Microsystems, Inc. based on the Mozilla Public License, version 1.1. CDDL is by large

the same license as MPL with some improvements, such as “clarified the definition of

Modifications, to make it easier for readers to understand what is covered by the license

and what is not” and “focused the ‘patent peace’ provisions to cover only software

released under this license” [56].

 52

3.3.3.3 Common Public License (CPL)

The Common Public License (CPL) [58] is a license template created by IBM. Similar to

GPL, CPL requires that the changes and additions (contributions) to the CPL-licensed

software (Program) must be licensed under the same terms and conditions of CPL if the

contributions are distributed under source code form. However, it also states the

contributions exclude the works which are “separate modules of software distributed in

conjunction with the Program under their own license agreement”, and “not derivative

works of the Program.” [58] Therefore, the restriction can be avoided if both conditions are

met. CPL emphasizes that it is users’ own risk to make sure “the Program does not

infringe the patent or other intellectual property rights of any other entity” [58]. It is

important to point out that in order to promote the ability of working with both

proprietary software and OSS, CPL includes commercial distribution clauses specifying

the responsibilities of commercial distributors.

3.3.3.4 Eclipse Public License (EPL)

Eclipse Public License (EPL) is very similar to CPL. The only slight difference is that

EPL does not contain the statement regarding license termination in the case of patent

litigation specifically against contributors. [59]

3.3.3.5 Summary

In summary, the restrictive licenses share the following characteristics:

• Grant licensee the necessary copyrights and patent rights to use, copy, sell and

distribute the software.

• Unrestrictive development of derivative works [44]

 53

• Modifications derived from software under such licenses must be distributed

under the same terms and conditions of such licenses

3.4 Comparison

Table 3-2 summarizes the important characteristics of the nine licenses discussed in the

section above. In the OSS selection process, this table can serve as a useful reference

when we need to decide if an OSS license is compliant with our selection goal. In

particular, there are two things we need to pay attention to. One is that we need to make

sure if there is no patent infringement or third party intellectual property right violation.

For those licenses which do not explicitly grant patent license, we may need to apply for

a patent license from the licensor if the derivative work involves the patent rights [36]. The

other thing is we should check whether there are any requirements in the license such as

including a copyright notice in the source code.

Table 3-2 OSS Licenses Characteristics Comparison

Licenses

Access
to

Source
Code

No
Restriction
to Create
Derivative

Work

Restriction
on

Licensing
Derivative

Works

Restrictions on
Licensing Non-

Derivative Works
Distributed with
Derivative Works

Trademark
protection

Explicit
Grant of
Patent

License

BSD Y Y N N N N

MIT Y Y N N N N

Apache Y Y N N Y Y

GPL Y Y Y Y N N

LGPL Y Y Y Y N N

MPL Y Y Y N N Y

CDDL Y Y Y N N Y

CPL Y Y Y N N Y

EPL Y Y Y N N Y

 54

4 OPEN SOURCE SOFTWARE FUNCTIONALITY AND SOURCE

CODE ANALYSIS

4.1 Open Source Software Functionality

4.1.1 Software Functionality

As we evaluate a software product, functionality is one of prime factors which need

careful consideration. In ISO 9126 standard, functionality is defined as a part of software

quality. Specifically, it refers to the capability of the software to provide functions which

meet stated and implied needs when the software is used under specified conditions [60]. It

consists of five sub-characteristics: suitability, accuracy, interoperability and security [61].

Suitability means the whether the software functionality can meet users’ requirements.

Accuracy refers to the correctness of software functionality. Interoperability is the

capability of the software interacting with other software. Security measures the

capability of the software in perspective of hacking prevention. Usually software

functionality is evaluated in two scenarios: in the software testing stage or before

adopting a third-party software product. The evaluation can be categorized into four

levels: functional testing, checklist, component testing and formal proof [61]. Functional

testing covers how well the system executes the functions it is supposed to execute –

including user commands, data manipulation, searches and business processes, user

screens, and integration [62]. In order to measure software functionality in an objective

 55

way, function point metrics were developed by Allan Albrecht of IBM in 1979 [63]. It

reflects the size of functionality in users’ point of view.

There is a lot of work related with software functionality evaluation which has

been done. Barbara Ann Kitchenham & Lindsay Jones suggest a feature analysis

evaluation should include five areas: scope of the evaluation, basis of the evaluation,

roles and responsibilities, procedures, assumptions and constraints made and time scale

and effort involved. The evaluations could be carried out in four ways: screening mode,

case study, formal experiment and survey [64]. In accompany with software quality

definition in ISO 9126, ISO/IEC also issued an evaluation process standard: ISO 14598.

The process consists of four phases [65]. The first phase is establishing evaluation

requirements, which means identifying evaluation purpose and setting up a quality model.

The second phase is specifying the metrics related to the ISO 9126 characteristics.

Thereafter the evaluation goes to the third phase: designing the activities and plan the

necessary resources. The last phase is carrying out the evaluation and recording the

results. Requirements analysis Software functionality evaluation has been intensively

applied in COTS selection. OTSO (Off-The-Shelf-Option) method uses the required main

functionality (e.g., “visualization of earth’s surface” or “hypertext browser”) and some

key constraints (e.g., “must run on Unix and MS-Windows” or “cost must be less than

$X”) as its COTS search criteria. [66] In Function Fit Analysis [67] mentioned in [68], the

functional suitability is evaluated by ‘fit’ calculation, i.e. calculating the percentage of

COTS out-of-box functions over the required functions. The method is simple since it

ignores functions which may require modification or enhancement work. But these

functions should be taken into consideration for evaluating OSS functional suitability.

 56

Procurement-Oriented Requirement Engineering (PORE) [17] points out the necessity of

analyzing the functional requirements but it does not give a detailed description of how to

accordingly filter the COTS alternatives. Alejandra Cechich and Mario Piattini presented

a method to evaluate COTS functional suitability in the early stage [68]. In their method,

functionality is divided into several sets according to how COTS’ functionality matches

with required functionality [68]. More details regarding this method will be discussed later.

4.1.2 OSS Functionality Overview

OSS functionality is mainly proposed from two sources. As we have discussed in the first

section, the first is the OSS project authors. The second is OSS project developers and

users. The functional requirements are requested from the project communities via

various ways such as email and discussion board. Normally these requirements are

simply assertions without references. In some case, the requirements are elicited because

some developers want them and they are willing to provide efforts to make them

operational. [6][69].

Open source software functionality is described in many places on its project

website. The first is the project news or feature list. When a new version is released, the

project team will post a message which may include a brief introduction for the new

version’s functionality. Some OSS projects will summarize its major functions on the

feature list. The second is the documents such as user manuals. The documents clearly

present what features the software possesses in more details. The third is the feature

request tracking system. This system keeps a list of feature requests submitted by users.

The requests are reviewed by developers. If a request is accepted, the task of

 57

implementing the request will be assigned to a developer. The request has two statuses.

One is open denoting it has not been handled yet. The other is closed which means the

request has been handled. Going through these requests could give us an idea of what

functional changes or enhancement may be involved for the future versions. The forth is

the change log or CVS log. According to GNU coding standards, these logs record all

changes developers make to the source code which includes the enhancements to the

software functionality. Besides, these logs also list what functional errors or bugs have

been fixed by code changes.

On Sourceforge.net, OSS projects are categorized into different topics according

to their functionality. [70] shows the number of projects in each top categories. However,

their revelation is only one snapshot of the project repository on Sourceforge.net. We did

a similar survey but with the aim of disclosing OSS functional distribution in a longer

time period. Figure 4-1 shows the number of registered OSS projects in different years on

sourceforge.net. We can see Internet, Software Development, System, Communication,

Games/Entertainment, Multimedia and Scientific/Engineering stay the top seven topics

from year 2001 to year 2007. There are some changes in the rest of the topics. The

number of Database projects was surpassed by the number of Office/business projects

around 2005; the same case for Desktop Environment and Education projects. These

ordering changes show more efforts from the open source community have been invested

to Office/Business and Education areas. The projects in topic Formats and Protocols

grow fastest. In 2001, there were only 14 such projects but in 2007 the projects boom to

1708, 122 times as many as six years ago.

 58

0

5000

10000

15000

20000

25000

Communic
ati

on
s

Databa
se

Desk
top E

nv
iro

nment

Edu
ca

tio
n

For
mats

and
 P

ro
toc

ols

Gam
es

/E
nter

tainmen
t

Int
ern

et

Mult
im

edia

Offic
e/B

usin
es

s

Othe
r/N

on
lis

ted
 T

op
ic

Prin
tin

g

Relig
ion

 an
d P

hil
os

oph
y

Scie
ntifi

c/E
ngin

ee
rin

g

Sec
urity

Soc
iology

Soft
ware

 D
eve

lopm
en

t

Sys
tem

Ter
mina

ls

Tex
t E

dit
ors

OSS project category

N
um

be
r

o
f O

S
S

 p
ro

je
ct

s

2007

2005

2003

2001

Figure 4-1 OSS Project Distribution on Different Topics

4.1.3 A Case Study of OSS Functionality Evolution

To gain a better understanding of OSS functionality, let us take a look at how OSS

functionality evolves. According to Lehman’s software evolution law VI: functional

content of a program must be continually increased to maintain user satisfaction over its

lifetime [71]. Here we use OSS project Emule (http://sourceforge.net/projects/emule/) as a

case study to examine if this law is still applicable to open source software which has a

different development process. The software metric for measuring functionality evolution

is the number of features added per release version. The data source is the change log. As

we have mentioned in previous paragraphs, the change log records the changes which the

new version possesses in comparison with the old versions. In our cast study we only

count the number of newly added features. We investigate the change log of project

Emule from its first version (version 0.02) to current version (version 0.47c). The

 59

development time spans more than 4 years, from July, 2002 to September, 2006. Figure

4-2 clearly shows the functionality evolution of OSS project Emule is compliant with the

Lehman’s software evolution law VI.

Emule functionality Observation

0

50

100

150

200

250

300

350

400

450

0.11a 0.17a 0.20b 0.23a 0.26a 0.27c 0.30a 0.42b 0.43a 0.45a 0.47c

Version

A
dd

ed
 fe

at
ur

es

Series1

Figure 4-2 Observation of Functional Evolution of OSS Project Emule

4.2 Open Source Software Functionality Suitability Evaluation

4.2.1 OSS Functional Suitability

Analog to evaluating proprietary software functional suitability, OSS functional

suitability should also take into consideration how much the software functionality can fit

in with the requirements. The difference is, for users, proprietary software is a “black

box”. If there is a feature which is neither provided by the software nor extendable from

the existing API or interface, users may have to dismiss the software. In the worst

scenario, they cannot find any potential matches and have to start to implement their own

 60

software from the scratch. OSS can be used as a black box as well. But at the same time,

it can be seen as a “white box”, since its source code is always available. Users could

implement the features they want and adapt OSS for their own purposes via working on

the source code. Therefore, OSS features could be inspected from three criteria: OSS out-

of-box functions and functions which can be extended from the source code. On the one

hand, since OSS functional suitability has something in common with proprietary

software functional suitability, we might be able to reuse some existing functional

suitability evaluation. On the other hand, OSS functional suitability has its own

characteristics. We have to change or extend the evaluation method to adapt it to open

source software.

Here we choose the COTS assessment developed by Alejandra Cechich and

Mario Piattini [68] as the starting point of our OSS functional suitability evaluation. In our

point of view, compared with other methods, this approach is more formally defined and

the authors provided a case study to illustrate its effectiveness. Let us give a brief

introduction of Alejandra Cechich and Mario Piattini’s COTS functional suitability

assessment. This method is adapted from a component assessment invented by Dr.

Alexander [72]. It assumes there is a framework A defined with scenarios and the

component type that it can adopt is C. The specification of A defines the specification of

C, Sc. The specification of component Ki, Ski, should be compliant with Sc. There are two

mappings mentioned in Dr. Alexander’s method: synthetic mapping and semantic

mapping. The first evaluates interface matching and the second one measures behavior

compatibility. The Alejandra Cechich and Mario Piattini’s functional suitability

evaluation focuses on semantic mapping measured by semantic distance. Suppose the

 61

function is the mapping relationship between values in the input domain and output range.

It is believed the semantic inconsistency is caused by the mismatching in input domains,

output ranges or mappings between input domain and output ranges [72]. For example,

figure 4-3 (modified from the figure in [72][68]) illustrates a typical situation in which

inconsistent mappings exist between the intersecting domains and ranges. From the figure,

we could see functional mappings a->�, c->� , d->� and e->� cannot be matched because

the argument of function in Sc falls out of the domain intersection such as a-> �, the

image of the function falls out of the range intersection such as c-> � and d-> � or the

arguments of the functions in Sk falls out of the domain intersection such as e-> �. Even if

both the argument and image of function fall into the respective intersections, the

inconsistency may also arise due to the unequal mappings such as b->� and b->�.

Figure 4-3 Example of Inconsistent Mappings (modified and excerpted from [72])

To analyze the semantic inconsistence systematically, Alejandra Cechich and

Mario Piattini designed two groups of scenario-based measures. One is called component

level and the other is solution level. These two groups are similar except component level

measures estimate the inconsistency for a particular component and solution level

measures include all components in the solution. In Component level group, there are

dom(Sk) dom(Sc) ran(Sc) ran(Sk)
a

Sk

Sc

b

c
�
�

� �
d

� e �

 62

four criteria: Compatible Functionality (CFc), Missed Functionality (MFc), Added

Functionality (AFc) and Component Contribution (CCf). CFc is the number of common

functional mapping shared by Sk and Sc. MFc is the number of functional mappings in Sc

but not in Sk. Conversely, AFc is the number of functional mappings in Sk but not in Sc.

CCf indicates the percentage of functional requirements in Sc could be satisfied by Sk.

Alejandra Cechich and Mario Piattini’s functional suitability evaluation method

has some limitations. First of all, it treats every function equally. But in reality, some

functions are definitely more important than others. For instance, assume we have

component C1 and C2. CFc1 > CFc2 but C2 has a critical function which C1 does not have.

Then it is not clear for users which component they should choose. Second, the metrics

used in the method are only a coarse indicator of suitability on analyzed components [68].

The authors did not provide a screening process based on these metrics. To adapt this

method to evaluate OSS functional suitability, we will enhance it with Analytic

Hierarchy Process (AHP). For sake of simplicity, in this paper we do not consider the

functional suitability on solution level. We assume our goal is finding out one OSS

alternative rather than several OSS alternatives to meet our functional requirements.

4.2.2 OSS Functional Suitability Evaluation Process

As mentioned, our functionality suitability measurement is based on AHP. Here we reuse

notation Sk and Sc. Sk refers to the function set provided by the OSS and Sc refers to the

function set from users’ requirements. In our measurement, the alternatives are OSS

alternatives. The criteria to evaluate the functional suitability are divided into two levels.

The criteria in the first level are out-of-box function compatibility (OF): the functions

 63

shared by Sk and Sc, extensible function compatibility (EF): functions which are a subset

of Sc and could be extended from the OSS, and contributive function compatibility (CF):

functions which are provided by Sk but not required by Sc. If we use equation to define

these sets, we have CF = Sk ∩ Sc; EF = Sc – Sk; and CF = Sk – Sc. At the second level, OF

is further divided into functions in the Sc: f1, …, fn.

Figure 4-4 Functional Suitability Evaluation Hierarchy

Let us discuss this hierarchy (figure 4-4) in more details from the bottom up. First,

we pair-wise compare functions f1, …, fn in Sc according to the relative importance of the

function. The priority vector of the pair wise matrix is computed and the vector values

serve as the weight for the criteria. Under each function, we compare how well each OSS

alternative implements it relative to other OSS alternatives. Secondly, as we compare the

OSS alternatives under extensible function compatibility, the major concern is the

amount of work to implement the missing functions. In the evaluation process, we

estimate the workload for an OSS alternative based on the number and complexity of

functions which needs to be implemented. We prioritize all functions in Sc according to

their complexity. Assume an OSS alternative’s EF = {fi, …, fi+k}and w(fi’) is the

complexity weight of function fi’ (i<=i’<=i+k). Then its extension workload can be

OF EF CF

f1 f2 fn …

Functional Suitability

 64

estimated via the equation w(fi)+…+w(fi+k). The workload estimation serves as an

indicator when we compare OSS alternatives in terms of extensible function

compatibility. In practice, if we cannot evaluate the implementation complexity of

functional requirements, we can simply use the number of missing functions as the

indicator. In the end, the evaluation of OSS alternatives as to contributive function

compatibility bases on our judgment of how these functions could help meet the possible

requirements in the future even if they are currently redundant. Similarly, if we happen

not to have any preference, we can simply employ the number of the contributive

functions as well.

In order to carry out the functional suitability evaluation, we need to determine Sc

and Sk. The measurement of Sc fits in with a functional user requirements (FUR)

extracting model presented in the standard ISO/IEC 19761, COSMIC Full Function

Points (COSMIC-FFP) [73]. The model is called “pre-implementation FUR model”[73] in

that the extraction is based on the software engineering artifacts existing before the

software is being implemented. The artifacts are requirements definition artifacts, data

analysis/modeling artifacts and artifacts from functional decomposition of requirements.

As for measuring Sk, the functions provided by the OSS alternatives are initially derived

from functionality related artifacts such as software documents, feature list and mission

statement etc. Since OSS does not have the venders’ guarantee and its functionality

related artifacts may contain imprecise information, we need to design test cases to make

sure how much each claimed function is fulfilled; thereby Sk can be determined in the

end.

 65

4.3 Open Source Software Source Code Evaluation

4.3.1 OSS Source Code Overview

One of the major difference between OSS and the proprietary software is the OSS’s

source code is open to public, which lends users more flexibility when they adopt OSS in

their project. If users are not satisfied with the OSS, they can customize it to fit their own

purposes. In addition, since OSS support is not as reliable as the support of proprietary

software (we will discuss it in next section), in many cases users have to maintain the

code in order to solve the problems on their own. How hard users can do this is

determined by the complexity of the source code. Normally, the more complicated the

source code is, the more customization or maintenance work would be involved.

Therefore, it is important to evaluate the complexity of the OSS source code and taking it

into consideration in our OSS selection process.

OSS source code has gained a lot of attention. Godfrey and Tu did a case study on

Linux kernel to investigate the evolution of OSS [74]. Figure 4-5 [74] is one of their results

showing the fast size growth from June 1994 to Dec 1999 for Linux kernel. In

 66

Figure 4-5 Linux Kernel Code Size Growth (excerpted from [74])

particular, the development releases even grew at a super-linear rate over time. Lehman’s

software evolution law II [71] states “as a program is evolved its complexity increases

unless work is done to maintain or reduce it”. The growth of Linux kernel indicates this

law may also be applicable to OSS. Since code size does not reflect the program

complexity, here we do two small case studies on OSS project Emule to further examine

Lehman’s program complexity evolution law on OSS. In the first experiment, we

measured the McCabe’s cyclomatic number (MVG) per module. In the second we used

information flow complexity metric IF4 [75]. The details of these metrics will be presented

later. Here we need to make clear that MVG measures the control complexity within a

module and IF4 measures the structural complexity of the source code. From figure 4-6

and figure 4-7, we can see by and large the source code complexity keeps increasing as

 67

Emule evolves. We noticed that on version 0.42, the values of both complexity metrics

declined. Our guess is there was some maintenance work done on that version. Aside

MVG in Emule Evolution

0
5

10
15
20
25
30
35
40
45

0.02 0.12 0.18 0.24 0.27 0.3 0.42 0.47

Emule Version

M
V
G

 V
al

u
e

Series1

Figure 4-6 Control Complexity Growth of OSS Project Emule

IF4 in Emule Evolution

0

200

400

600

800

1000

1200

1400

0.02 0.12 0.18 0.24 0.27 0.3 0.42 0.47

Emule V ersio n

Series1

Figure 4-7 Structural Complexity Growth of OSS Project Emule

from the source code complexity evolution, people also care about OSS source code

quality. There are mixed voices over this issue. Some researchers found out the structural

code quality of the Linux applications provides results higher than that which someone

countering open source might expect but lower than the quality implied by the standard

 68

[76]. However, some study showed that the LINUX TCP stack (2.4.19) is the best in class

with 0.1 defects per KLOC compared with commercial stacks with an average of 0.55

defects per KLOC [77].

4.3.2 OSS Source Code Evaluation Process

Analog to functionality evaluation, we also apply AHP approach to evaluate OSS source

code. The sub-criteria under criterion source code are programming language, code size,

code comment, code intra-module complexity and code inter-module complexity (figure

4-8). These sub-criteria set a framework for investigating the source code when a user

wants to find out which OSS product is relatively easier for her/him to maintain, port or

extend. Under each sub-criterion, the user could compare OSS alternatives based on the

measuring results of corresponding software metric. In the rest of this section, we will

discuss these source code sub-criteria in details.

Figure 4-8 Source Code Evaluation Hierarchy

Programming language is no doubt an important factor which the user will take

into account at the beginning of source code evaluation. Due to effects of the user’s

Source Code

Language Size Comment Intra-Module Inter-Module

 69

experiences and habit and programming language’s own complexity, the user normally

has a preference over programming languages. On the other hand, various OSS is written

with different languages. The following figure gives an overview of the programming

languages used in OSS development. The OSS projects in the figure are registered on

Sourceforge.net before March 10, 2007 (119644 in total). We use the search and filtering

tools provided by Sourceforge.net. Figure 4-9 discloses two facts: first, multiple

programming languages have been used in OSS source code; second, Java, C++, C and

PHP are the most popular languages in OSS development. To calculate the score for the

programming language criterion, the user needs to compare the OSS alternatives pair

wise according to his/her own preference and the specific requirements from the future

development such as the interaction with other components or performance.

Programming Languages in OSS Projects

0

5000

10000

15000

20000

25000

Java C++ C PHP Perl Python C# Visual
Basic

Programming Language

N
um

be
r

of
 O

S
S

 p
ro

je
ct

s

Java C++ C
PHP Perl
Python C#
Visual
Basic

Figure 4-9 Programming Languages in OSS Projects

 70

Aside from programming language criterion, we will employ software metric to

help prioritize OSS alternatives. People have come up many metrics for measuring

software source code such as source lines of code (LOC), Cohesion, Software Package

Metrics, Coupling, Cyclomatic complexity etc. Here we will adopt a subset of these

metrics into our OSS selection process to indicate the potential complexity of the source

code. The determination of metrics is based on two concerns: the applicability and the

availability. The applicability means the metrics should be applicable to both Object-

Oriented program and procedural program. After all, OSS alternatives may consist of

both programs. The availability means these metrics can be measured by some software

tools. As such, we employ lines of code (LOC), Lines of comments (COM), McCabe’s

cyclomatic number (MVG))/Weighted methods per class (WMC) and Information flow

[76] in our process. These metrics are applicable to both procedural program and object-

oriented program (we treat WMC as an extension of cyclomatic number to Object-

oriented program). Some metrics such as Coupling Between Objects (CBO) and the Lack

of Cohesion of Methods (LCOM) are only applicable for object-oriented program. Our

metrics may not be optimal but they can give users an approximate indication of the

source code complexity. In addition, they are relatively easy to be measured. For Java

and C++ code, these metrics could be measured automatically by an open source code

analyzing tool, CCCC (http://sourceforge.net/projects/cccc) [78].

Code size sub-criterion is evaluated based on the metric Line of Code (LOC).

Lines of Code is a traditional software metric. It refers to the number of lines in the

source code excluding the blank and comments [79]. Normally people prefer the program

with the smaller size if they could have multiple options which could provide the same

 71

functionality. The program with smaller LOC tends to have better understandability and

maintainability. When we compare the OSS alternatives, we think the OSS with smaller

source code is superior to the OSS with bigger code. However, minor gap between source

code sizes would not bring much difference for code complexity.

Comments help users understand the source code, thereby lowering the effort on

development and maintenance. Metric Lines of comments (COM) measures the

understandability of the programs and thereby indicate indirectly the maintainability as

well. To calculate this metrics, simply count the number of lines of comments in the

program. The problem of COM is: large code may have more lines of comments but

these comments are sparser than the smaller code with fewer comments. To overcome

this problem, we use an extension of COM, Line of code per line of comment (L_C). It

equals to LC divided by COM. The comparison of L_Cs between two OSS alternatives

determines the value in the pair wise matrix under comment sub-criterion.

Intra-module complexity is evaluated according to metric McCabe’s cyclomatic

number or weighted methods per class .McCabe’s cyclomatic number (MVG) [80] is a

software metric measuring the number of independent paths through a program. The

calculation is based on the control flow graph of the program. Assume we have program

P and its control flow graph G. P’s cyclomatic number MVG(P) = E – N + R. E is the

edge number of G. N is the vertex number of G and R is the number of connected

components in G. In practice, for structured program, the calculation can be simplified to

counting the number of decision point in the program. McCabe’s cyclomatic number

could reveal the understandability and testability of the program. It mainly measures the

complexity for procedural program and object oriented program at method level. For

 72

object-oriented program, Chidamber and Kemerer [81] proposed weighted methods per

class (WMC). It can be either calculated by counting the number of member functions of

a class or summing up the cylomatic number of the member functions. In our process we

take the latter approach since it is more sophisticated. It is worth noting that module

initially refers to a function or procedure but now its scope has been expanded to class as

well. Therefore we replace the average WMC per class with the average MVG per

module. This metric can be applied to both procedural programs and object-oriented

programs.

Metric Information Flow [75] (IF4) is employed to evaluate inter-module complexity.

It measures how well a program complies with structure design. The calculation is based

on two sub-metrics: Fan-in and Fan-out. Fan-in refers to how many external modules

cause the information flowing into the given module. Conversely, Fan-out counts the

external modules which lead to the information flowing out of the given module. Usually

Fan-in and Fan-out are computed based on the call graph. To estimate the overall

complexity in the information flow, the inventors of Fan-in and Fan-out, Henry and

Kafura came up with the composite metric IF4. There are several formulas to compute

IF4 from Fan-in and Fan-out such as (procedure length)*(Fan-in*Fan-out)2. In our

process we use the formula (Fan-in*Fan-out)2 adopted in [78]. High IF4 implies more

complex inter-module control flow and tighter coupling. As we mentioned before, for

object-oriented programs, there is also a coupling metric: Coupling Between Object

(CBO). The metric counts the number of other classes which a class couples with. The

coupling relation includes the object of this class calling or being called by the objects of

other classes. From the definition, we can see this metric is also related to the information

 73

flow both into and out of the class. In order to have a metric which can be applied to both

procedural program and object-oriented program, we employ IF4 per module to measure

the inter-module coupling complexity.

4.4 Summary

In this section, we discuss how to evaluate OSS functional suitability and source code

complexity. Our OSS functional suitability evaluation method is extended from

Alejandra Cechich and Mario Piattini’s COTS functional suitability evaluation method. It

combines a screening process based on the priorities of multiple functional requirements.

To evaluate source code complexity, we propose a set of software metrics: LOC, COM,

MVG per module and IF4 per module. These metrics serve as indicators to expose the

source code complexity from different respects.

 74

5 OPEN SOURCE SOFTWARE SUPPORT AND POPULARITY

ANALYSIS

5.1 Open Source Software Support Evaluation

5.1.1 OSS Support Overview

One of the difficulties OSS adopters will encounter is the support issue. Due to the

importance of support in OSS adoption, we evaluate the support strength in our selection

process. As with proprietary software, some OSS equips commercial support from some

professional companies. For instance, some top IT companies have provided the OSS

support service such as HP, IBM and RedHat. HP boasts its over 6,500 support

professionals involving in implementing and supporting Linux and open source projects

(http://opensource.hp.com/). IBM claims that “it provides support for both open source

offerings and for associated IBM commercial software offerings” [82]. In recent years

many small companies entered this market and start to provide support for pre-selected

OSS packages, also known as certified bundle [83] or software stack [84]. One example is

OpenLogic (www.openlogic.com) which supports more than 200 certified OSS projects.

Although OSS users can acquire commercial support, there is still a significant amount of

OSS without any commercial support service. People believe the lack of support hinders

open source popularity [85]. Nevertheless, this does not necessarily mean the users have to

completely rely on themselves to tackle the technical problems regarding software

operation or further development. OSS provides some means to help users seek support

 75

such as document, wiki, blog, IRC, tracker system, mailing list, forum, direct developer

emails etc. This support is contributed from the whole OSS community ranging over core

developers, co-developers, active users and regular users. Normally the community

members are geographically distributed and the information is shared via the Internet. If a

user has a question, he/she could either look for the answer from the existing resources or

directly ask for help via certain online communication medium such as mailing list or

forum. Karim R. Lakhani and Eric von Hipper investigated the effectiveness of the forum

support and underlying motivation of help providers in open source Apache system [86].

Their study shows that among their 4.5-month real-time sample “only about one-fourth”

of the questions posted do not receive an answer” and a majority of information seekers

feel the replies to their questions are helpful [86]. Since Apache system is a pretty mature

system and has been developed for a long time, this result may not hold for all OSS but it

points out how effective the forum support can reach. In terms of motivation, the authors

did a survey on the support question providers. The potential motivations included

expecting reciprocity, gaining reputation, helping the cause etc. The survey confirms that

providing the help is essentially voluntary [86] but no motivation is the dominant reason

for providing such support.

5.1.2 OSS Support Evaluation Criteria

To evaluate the strength of OSS support, we need to determine what criteria should be

included into our process. In view of the OSS support characteristics, we set up two

criteria on the second level of evaluation hierarchy (figure 5-1): field support and support

resources. The field support includes commercial support and community support. The

 76

community support specifically refers to the direct responses from the community to the

support requests. Usually this support occurs on the online information sharing platforms

comprised of tracker system, mailing list, forum, IRC and direct developer emails. The

reason of taking commercial support under consideration is because it is more reliable

and responsive. Even though commercial support may add some costs, it could save a lot

of efforts and time for OSS users. For mission critical or deadline restrictive software

projects, users may prefer purchasing the service to ensure the smooth adoption. However,

it is also likely that users do not need any commercial supports. They prefer OSS

alternatives with stronger community support. The details regarding how to evaluate the

OSS community support will be discussed later. Besides field support, OSS projects also

provide various support-related resources such as documents, wiki, blog etc. OSS

documents are an important support resource. Some projects even mark their documents

with the support tag. One example is OSS project Emule. It explicitly puts a document

repository on its “Help&Support” webpage. OSS documents include user manual, FAQ,

reference, tutorials, developer guide/cookbook and publications. Usually when users want

to learn OSS in more details, they will start to read the documents first. Aside from the

documents, there are some other support-related resources such as screenshot, feature list,

news, related links, blog, mailing list or forum archives etc. They may not be as closely

related with support as the documents. But users can still find useful information out of

these resources. The support resources are evaluated from three respects: relevance,

capacity and understandability. Relevance refers to how closely the resources are related

with the users’ support requirements. For example, if a user is concerned with the further

development, then the OSS alternative with developer guide, cook book or any other

 77

development related materials will be preferred than those OSS alternatives which do not

possess such resources. Capacity indicates how much information is contained in these

resources. The more information support resources contain, the better chance the support

request can be satisfied. Under understandability criterion, OSS alternatives are evaluated

according to how difficult the information can be acquired and understood from the

support resources. Or put it in another way, understandability measures the effectiveness

of the supportive information sharing.

Figure 5-1 Support Strength Evaluation Hierarchy

5.1.3 OSS Community Support Evaluation

5.1.3.1 Community Support Strength Indicators

Since users request community support mainly via tracker system, mailing list, forum,

IRC and direct developer email, it is necessary to evaluate the support strength from each

of these communication channels. The following table lists a sampling result from the 96

OSS projects regarding support channels. The population is over 60,000 OSS projects on

Sourceforge.net with files. The confidence level is 95% and confidence interval is 10%.

Support Strength

Field Support Support Resources

Relevance Capacity Understandability

 78

From table 5-1, we can see tracker system, mailing list and forum are fairly common

among OSS projects but few OSS projects have adopted IRC for support purpose. For

sake of simplicity, we do not consider IRC in our community support evaluation. Also,

since usually the direct email does not have any historic records and the exchange emails

between the help seeker and the developer are not open to the public, it is hard or even

impossible to evaluate its support strength. Therefore in the evaluation we only take into

consideration whether it exists or not. To be more accurate, all other things being equal,

an OSS project with direct email support is deemed to have a better support than the OSS

project without direct email support.

Table 5-1 OSS Community Support Sampling Results

Community
Support Mailing List Forum Tracker System IRC

Direct Email

Percentage
of Samples 24% 79% 89% 0

17.7%

To facilitate the measurement of the support strength, we designed several

indicators for each support channel. The indicators aim to reflect the vigorousness of

support activities on these channels and they should not be hard to measure. More

important, we should be able to integrate these indicators to evaluate the strength of

whole community support. The reason for the integration requirement is because OSS

may not treat these support channels equally. Some projects only rely on one or two

channels to provide support. For instance, project Emule does not have any mailing list or

tracker system. Its community support activities are mainly carried out through the forum.

 79

Therefore, when we compare its community support with other projects, we cannot do it

in the fashion of channel versus channel. We have to treat all supports from the different

channels as a whole. It is worth noting that due to the loosely OSS project management

style, the evaluation will encounter the problems such as lack of historical information. It

is hard to precisely determine the community support strength. Our strategy is making the

best approximation with the available information.

5.1.3.2 Tracker System

Tracker system is a tool mostly provided by OSS host websites to track issues such as

bugs, feature and support. We are interested in support request tracker, which is installed

for users to seek help from the project developers. To better explain how the tracker

system works, let us use the tracker system from Sourceforge.net as an example. After a

user submits a support request, the request will be assigned with “open” status. The status

will become “pending” if the project administrators need more input regarding the

request. Once the request is answered or rejected, its status will be changed to “close”. If

the request is not answered in a predefined time period, its status will be set as “deleted”

[87]. To evaluate the support from support request tracker, we came up with two indicators.

The first is the mean response time. The response time on the tracker system can be

defined as the time interval between request submission and close. This indicator directly

shows the responsiveness of support. But this indicator is not easy to get measured

without appropriate tools. In addition, it may miss some requests which are set as private

and not displayed in the front end. The second indicator is the average number of closed

support entries in a certain time period (in our process we use one week). This indicator

indirectly addresses the major concern: “Has the support been active lately”? On

 80

Sourceforge.net, the value of this indicator can be acquired from the tracker activity

statistics which records the number of tracker items closed for the time period [88].

5.1.3.3 Mailing list

Mailing list is an important community support channel. In most cases, the OSS mailing

list subscription is publicly open. Some OSS projects even provide a group of specialized

mailing list. People have observed that successful OSS projects tend to make better use of

mailing list than unsuccessful projects [89]. The observation was made by checking

whether a sample project has no mailing list, one mailing list or multiple specialized

mailing lists. One possible indicator could be the subscription number for the support-

related mailing lists. Higher mailing list subscription number means more people joining

the list and users could expect to get better support if the project mailing list owns a large

member set. However, many OSS project mailing lists do not expose the subscriber

number and this indicator cannot be integrated with the tracker system indicator either.

Therefore, we employ an indicator compatible with the tracker system indicator: the

number of replying messages in a certain time period such as one week. The advantage of

this indicator is that it is not hard to measure if the project keeps the archive of historical

mails. For those projects which do not come with such archive, users can subscribe the

mailing list and spend one week on recording the number of replying messages in the

mailing list. Its disadvantage is that, similar to the tracker system, the measurement may

miss some replies since they are sent only to the original sender instead of the whole

mailing list group.

 81

5.1.3.4 Forum

Compared with mailing list and tracker system, forum is more informal. On some forums,

users can submit their posts anonymously. Usually the forum keeps an archive of old

posts. All messages and replies are posted on the forum, which lend itself to the analysis.

OSS host website provides forum for the projects but some projects set up their own

forums, which are in many cases more sophisticated. Similar to mailing list, many OSS

projects also divide their forum into multiple sub-forums. Each sub-forum either focuses

on a certain topic or mainly attracts certain specific groups like developers. For instance,

OSS project Emule equips with its own forum (http://forum.emule-project.net/). The

forum consists of nine sub-forums ranging over General Discussions, Support, Hardware

Help, Bug Reports, Feature Requests and Translations etc. If users want to seek support,

they could go to Support and Hardware Help sub-forums for help. The basic unit in a

forum is post. The post could initiate a discussion or respond to another post. The

discussion starting post is called as a topic. In order to measure the support strength from

the forum, we choose the number of replying posts in a certain time period (here we use

the one week as well). The large number of replying posts implies the forum participants

are more willing to answer the questions. In addition, it is not hard to measure and can be

integrated with mailing list and tracker system indicators.

5.1.3.5 Wrap-up

After we calculate the indicator values for each support channels, we use their sum as the

overall indicator for community support strength. Since the community activity is fairly

dynamic and the indicator is only a rough estimation for the community support strength,

we have to take a conservative approach when we compare alternatives based on it. To be

 82

more exact, one alternative’s community supports are preferable to the other only if there

is a significant difference between the indicator values of these two alternatives. In

addition, regarding the direct developer email, it affects the community support

comparison only in the case where two alternatives have pretty close indicator values but

one has the developer email support and one does not. We believe this strategy is

reasonable since the developers are normally fewer than users.

5.2 Open Source Software Popularity Evaluation

5.2.1 OSS Popularity Criteria

When people have multiple choices of OSS alternatives, one easy way to find the best fit

is simply adopting the most popular one. This strategy works in some cases since a

popular OSS project tends to more mature. The OSS development process shows that the

community participation is an important factor related with the success. Popular OSS

more likely goes through more thorough development and testing by its large and active

community. However, this strategy is a bit over simplistic. First of all, it is hard, or even

impossible to exactly measure the OSS software popularity. The popularity of proprietary

software can be measured by counting the number of its release or license, which can be

acquired from software vender. But OSS usually is freely distributed. It is hard to collect

such data. Second, this strategy ignores other requirements. Even if we know an OSS

project is more popular than the other, it is still inappropriate to select the first one since

the latter one may have some features we want but the first one does not have. Popularity

discloses a part but not all of the necessary information regarding the software. Third,

there is a possibility that among the OSS candidates we could not find an OSS which is

 83

significantly more popular than any other projects. In another word, these projects’

popularities are closely matched. Then the strategy is not applicable any more. There are

several ways to measure OSS project popularity. Freshmeat.net, one of the largest index

website for OSS on Unix and cross-platform, defines a popularity measure as “((record

hits + URL hits)*(subscriptions +1))^(1/2)” (http://freshmeat.net/faq/view/30/). However,

this method is not general enough. Not all of OSS host or index websites provide such

statistics data.

A simple popularity criterion is software use. The indicator is number of

downloads. This criterion is similar to the release or license count used to measure

proprietary software. High number of downloads implies that the OSS has been widely

adopted and put into use. However, as [90][91] point it out, the potential problem of this

measure is the ignorance of other software distribution channels. In reality, OSS may be

distributed via other media, for instance, the off-line hardcopy. Particularly, an important

channel is Linux distributions such as RedHat, SuSE and Debian [90]. Selected OSS

packages and tools have been included into the distributions as a part of the whole

solution such that users could install them without looking for the downloading source.

Nevertheless, even though the number of downloads is not a reliable measure for OSS

project use, it is still useful. The popularity of the OSS with 1 million downloads is very

likely more popular than the OSS with only 1 hundred downloads. After all, on-line

downloading is one of the major OSS distribution means. More importantly, most OSS

projects provide the download statistics directly. To solve the problem, we can check

whether OSS has been included into certain Linux distributions. There are various

websites where we can look up that information. For instance, website

 84

http://packages.debian.org/stable lists the package issued with Debian Linux and

www.rpmfind.net keeps a repository of RPMs and the distribution information. However,

these websites do not provide the downloading statistics. Given the large volume of

Linux distributions, we can simply deem the software included into the distributions as

popular software but this workaround does not completely solve the problem. In our

process, we combine software use with other criteria. More precisely, we employ two

other criteria to evaluate popularity: development participation and web popularity

(figure 5-2). There is also unreliability involved into the OSS alternative evaluation under

these two criteria. But our idea is combining these multiple independent criteria together

to mitigate the overall unreliability.

Figure 5-2 Popularity Evaluation Hierarchy

5.2.2 Development Participation

The OSS developers voluntarily join the project development motivated by their interest

or intention to gain experiences and reputation from the project growth. The developer

here refers to both core developers and co-developers. OSS with a larger developer group

implies it attracts more attention from the community and share more common interests.

Popularity

Software Use Development Participation Web Popularity

 85

Conversely, more developers can speed up the development process, improve the support

and eventually enhance the OSS popularity. Hence, we believe the number of developers

could indicate the OSS popularity. Practically, there are two ways of counting developers.

Usually OSS projects will list the members formally joining the development. More

broadly, the active participants can also be counted via examining the mailing and other

fora [90]. In our process, we follow the first method because it is much simpler. It is

noteworthy that this indicator may not be consistent with the number of downloads.

Otherwise, it is redundant and can be replaced with the latter. There exist cases where an

OSS project with high download number has fewer developers than an OSS project with

much lower download number. For example, we have two file sharing OSS projects:

ABC [Yet Another Bittorrent Client] (http://sourceforge.net/projects/pingpong-abc) and

Suicide Gnutella Client (http://sourceforge.net/projects/suicide). ABC has 4 developers

and Suicide Gnutella Client has 5 developers. But project ABC has been downloaded for

more than 10 million times and there are only more than 1 thousand downloads for the

latter.

5.2.3 Web Popularity

OSS project popularity can be estimated by checking how many times it is referred on the

Internet. An OSS project with many web references is more likely to be a popular project.

The web references can be counted by using web search engine such as Google, Yahoo or

Windows Live. [92] introduces three methods regarding estimating the web references.

The simplest method is counting the number of pages containing all of the words in

project’s name [92]. This method is simple and gives a rough estimation of the web

 86

references but it also counts the web pages which refer to other meanings of words

building up the name of the project [92]. For instance, an OSS’s name is Oscar

(http://sourceforge.net/projects/oscar). Certainly most of web pages returned by search

engines with this name keyword will not be related with the project. A strict alternative is

license-reference counting [92]. The method only counts the web pages which contain the

whole phrase defined in the software license terms. Compared with the first method, it

will include far less redundant web pages, which makes it accurate. The disadvantage of

this method is it is not applicable to OSS projects whose licenses do not define a name

for reference. The third method can be seen as a compromise of the last two. It is stricter

than the first method but less conservative and more applicable than the second one [92].

The method counts the back links to project’s homepage on the Internet [92]. Among the

back links there are some internal links originated from the same domain as the project’s

homepage. Whether these internal links are excluded from the total count of the back

links subdivides the method into two variants. In our process, we choose the variant

which discounts the internal links as the web popularity indicator. The indicator’s value

can be measured by using search engines such as Yahoo site explorer or Alltheweb.com.

In addition, this indicator is not consistent with the two previous indicators. The

counterexample is project BBman (http://bbman.sourceforge.net/) and PCMan X

(http://pcmanx.sourceforge.net/). Both projects are telnet clients, have the same license

and oriented to the same platforms. The back link count of BBman is around 30

(measured from Alltheweb.com) and the count of PCMan X is around 6. In contrast,

BBman has only 1 developer and PCMan X has 11 developers. BBman has been

 87

downloaded by 23,194 times on Sourceforge.net and the number of downloads for

PCMan X is 58131 (All the data is measured on May 6, 2007).

 88

6 A CASE STUDY: USING OSS SELECTION PROCESS TO

SELECT OPEN SOURCE UML DESIGN TOOL

6.1 Motivation

UML (Unified Modeling Language) is a graphic-notation based object modeling

language. Currently UML is widely applied into software development process with the

dominance of object technology. According to Computer World Survey in 2005 [93], 33%

of developers reported that UML was in use at their organization. In reality, it has

become a standard visual modeling tool for project manager, architect and developers in

software industry. With the aid of UML, it is much easier for software development

participants to share their ideas, locate the problems and refine the design and

implementation. Aside from the software development, it can also be used into business

modeling [94], database design [95] and software testing [96]. To facilitate the UML

modeling process, people have invented many software tools. The most notable one is

IBM Rational Rose. Rose is a proprietary UML visual modeling software tool. It supports

the UML standards and can generate code for various programming languages such as

C++, Java and Visual Basic etc. Other proprietary UML tools include Visual Paradigm,

Borland Together and Microsoft Visio. Besides the proprietary tools, there are also

various UML design open source tool. For example: ArgoUML, BOUML and so on. As

mentioned before, compared with proprietary UML tools, these tools are free and

customizable. Since each of these tools has its own merits and shortcomings, it is hard to

tell which one is the best in general. Additionally, the selection should also combine with

 89

the specific requirements. In this case study, we would like to utilize our OSS selection

process to determine the best open source UML tool among a few alternatives for our

usage. The study will demonstrate how the selection process proceeds. The scenario and

requirements considered in this case study are summarized from the author’s internship in

a private software company for Gas&Oil applications. In the rest of the report, we will

call this internship worksite as company S.

6.2 Unified Modeling Language: A Brief Introduction

Let us introduce more details of UML. There are many versions of UML: from version

1.1, the first mature version released in 1997, to version 2.1.1, the newest version

released in February 2007. Particularly version 1.4 has been accepted by ISO as ISO/IEC

19501 and became an international standard. In our report, we discuss UML version 2.0

released in August, 2005 since it is the latest version many UML tools support. UML is

not a method but it complies with and lends itself to most Object-oriented Analysis &

Design (OOA&D) methodologies. Before starting UML-based development project, it is

recommended to select a methodology [97]. There are various methodologies available

such as Rational Unified Process, and Agile Programming etc. UML 2.0 defines thirteen

diagrams, which can be categorized into two large types: structure diagrams and behavior

diagrams [98]. Structure diagrams include the class diagram, object diagram, component

diagram, composite structure diagram, package diagram and deployment diagram.

Behaviors diagrams include activities diagram, interaction diagram, state machines

diagram and use case diagram. In the following paragraphs, we will give more details of

 90

these diagrams based on the UML version 2.0 Superstructure specifications [98] and other

introductory materials [97][99][100].

In UML structural diagrams, class diagram describes the classes and their

relationships in a software system. Object diagram is a snapshot of the interaction among

class objects during the execution. Component diagram illustrates the architectural layout

of the software. Composite structure diagram shows the internal composition and

interaction within a class at runtime. Deployment diagram models the hardware

infrastructure underlying the software and how the software connects with it. Package

diagram depicts the logic units and their relationship in the software. The graphic nodes

of structure diagrams are class, interface, instance specification and package. The edges

(or paths) depict the relationships among these nodes which include association,

aggregation, composition, dependency, generalization, interface realization, realization,

usage etc. Association is a general relationship depicting the connections between the

instances of the associated types. Aggregation is a refined association which only allows

the part-whole relationship. Composition requires one associated type instance containing

an instance of the other type. Generalization means one associated type is a general form

of the other. If the change in one type will lead to the change in the other one, then their

relationship is defined as dependency. Usage is a dependency with one more constraint:

the operation of one type depends on whether the other type is present or not. Realization

refers to the case where one associated type contains the implementation of the other. If

the type without the implementation is an interface, then the relationship becomes

interface realization.

 91

UML behavior diagrams focus on the operation and communication related with

the software. Among the behavior diagrams, activity diagram models the workflow in the

business process. It emphasizes sequence and conditions for coordinating low-level

behaviors [98]. State machine model describes the state transition during the execution,

which can help users better understand the runtime behavior of the software. Use case

diagram has been widely used in business or requirement analysis. This diagram makes a

description of how users interact with the system. In particular, in behavior diagrams

there is a subset called interaction diagrams. Interaction diagrams place extra emphasis

on the communication part in software behavior. It includes communication diagram,

interaction overview flow diagram, sequence diagram and timing diagram.

Communication diagram evolves from the collaboration diagram from previous UML

versions. It shows the communication in the form of message sequence among the objects

or parts. Interaction overview flow diagram is a newly introduced diagram in UML 2.0

and can be seen as a specialized activity diagram. The graphic nodes in this diagram are

frames. Users can either inline other interaction diagrams or specify what activity or

operation happens in these frames. Sequence diagram models the interaction sequence at

runtime. The diagram is a good tool to mirror the complex runtime collaboration

involving several participants. Time diagram is also a new diagram introduced by UML

2.0. It explores the time constraints related with the operation or activity.

6.3 Open Source UML Tool Identification and Screen

As we start our open source UML tool selection process, we identify the multiple

potential UML tools. The identification criterion is that the tool should support UML

 92

modeling. Thereby we have ten open source UML tools: StarUML

(http://staruml.sourceforge.net/en/), ArgoUML (http://argouml.tigris.org/), BOUML

(http://bouml.free.fr/), UMLet (http://sourceforge.net/projects/umlet/),

Gaphor(http://gaphor.devjavu.com/), Dia(http://live.gnome.org/Dia),

Violet(http://alexdp.free.fr/violetumleditor/page.php), Astade (http://astade.tigris.org/),

UML Pad (http://web.tiscali.it/ggbhome/umlpad/umlpad.htm) and Umbrello UML

Modeller (http://uml.sourceforge.net/index.php).

In the screen step, we reject OSS alternatives according to our refined

requirements. We aim at finding an OSS UML tool which can run on windows platform

and supports multiple UML diagrams. We require the tool should be implemented with

C++ or Java since we are familiar with these two languages. In addition, the tools should

not depend on other modules which we have no prior experiences to work with.

According to the requirements, we can simply check these tools’ supporting platforms,

programming languages and dependent modules. Thereby StarUML, Gaphor, Dia,

Astade, UML Pad and UMbrello UML Modelers are screened out in this process.

Umbrello UML Modeller is not selected since it mainly works on Linux platform.

StarUML does not pass the screen phase because StarUML is implemented with Borland

Delphi. Dia, Gaphor, Astade and UML Pad depend on other modules which make them

inappropriate for further evaluation. In more details, Dia and Gaphor depend on GTK+

toolkit. UML Pad and Astade are based on wxWidgets. Besides, the selected tool is

mainly for internal use, which does not exceed the license restrictions of these tools.

Therefore the license requirement does not have any alternatives rejected in this step.

 93

Now there are four competitive alternatives left: ArgUML, BOUML, UMLet and

Violet. Before we evaluate these tools, we give a brief introduction about them.

ArgoUML is an OSS project host on Tigris.Org. The first version of ArgoUML was

distributed by University of California at Irvine in 1998. In 1999 it became an OSS

project. It is written with Java and therefore platform independent. In the case study, we

will use its newest version: version 0.24. BOUML is claimed as a tool supporting UML 2.

It runs on multiple platforms including Windows. In our case study, we use its version

2.23.1. UMLet is a UML tool developed with Java. It runs either stand-alone or as an

Eclipse plug-in. We evaluate its version 7.1. Violet is an UML editor developed with

Java. The authors claim it is easy to learn and use. In the evaluation, we use its version

0.20. In addition, to facilitate our evaluation, we use a free online AHP tool, Web-

HIPRE (http://www.hipre.hut.fi/). This tool is developed by Systems Analysis Laboratory

of Helsinki University of Technology. It is a Java applet for multiple criteria decision

analysis [102]. The tool uses the consistency measure (CM) instead of consistency ratio to

estimate the consistency. The use of the CM is similar to the CR [102]. We still try to

control the CM lower than 0.1 to make sure the inconsistency is within the acceptable

limit in our evaluation.

6.4 Open Source UML Tools Evaluation

6.4.1 Functional Requirement Analysis

As mentioned, our ultimate goal is to find an open source UML modeling tool supporting

our development process. The ideal tool would meet most of our requirements and leave

the extension work to the minimum. Despite the fact that the development process of

 94

company S is not strictly defined and still under renovation, the process can

approximately be attributed to an iterative and incremental development process. In the

development there are two major threads: product and project. The project is a part of the

product. It represents a major task within the product development such as implementing

a feature or a component. The development process involves several roles: project

manager, department manager, developer, tester and user. Project manager is usually an

expert on the application area, i.e. geography and geology. He takes charge of interaction

with users, writing project specification, planning, project organizing and educating

engineers with the domain knowledge. Department manager coordinates the development

of whole product. He oversees all projects and occasionally participates into the critical

development incidents, for instance, specification release or modification, difficult

implementation or design issue discussion etc. Developer and tester assume the

responsibilities of specification implementation and verification. In particular, the

developer should also design the software. Normally the design is object-oriented. If any

developer or tester encounters a technical or scheduling problem which they cannot

handle by themselves, they will discuss with the project manager or the department

manager depending on the problem scope to find out a solution. Sometimes the solution

may involve updating the specification or schedule. During the whole development, users

can give their comments or expectation on the software.

The development process requires modeling from many aspects. The following

use case diagram (figure 6-1) illustrates the use cases involving the modeling.

Specifically, in the process, project manager needs to model the workflow and

requirements for the project. He also models the project architecture based on the

 95

business logic analysis. Department manager has the similar modeling requirement but

his focus is software product. Aside from the requirement and architecture, he needs to

describe the execution environment for the product. Comparatively, developer does more

modeling work during the implementation. He models the software structure, runtime

operation and program state transition. The software structure is mainly defined on the

class level. To test the program, tester also needs to gain an understanding of the program

status and how the modules interact with each other.

������

���������

���	�
��������

�����������������

������

���������������
����

��������	�
�������������

�������������������

��������	�
���������������� 	�
��!�����
����

����������������������

����������
�������������

����������
��������

����������
��"����������

��������	�
��������

�������������!�������������

Figure 6-1 Use Case of the Modeling Tool

According to the modeling requirements in the development process, we can determine

our requirement from UML. In UML, use case diagram is a good tool for department

manager, project manager to model requirements. Similarly, activity diagram and

communication diagram can be used by department manager and project manager to

 96

describe the business workflow. To model high-level architecture, project manager and

department manager can use component diagram. In particular, department manager can

describe the product actual running time environment or configuration via deployment

diagram. Developer modeling activities need support from class diagram, communication

diagram, sequence diagram, object diagram and state machine diagram. These diagrams

help developer model program’s structure and dynamic behavior including runtime

operation, status, and interoperation among modules. For tester, state machine diagram,

sequence diagram and communication diagram can assist analyzing the interaction and

status of the program. In summary, there are nine UML diagrams needed in the

development process: use case diagram, activity diagram, communication diagram,

component diagram, class diagram, sequence diagram, object diagram, state machine

diagram and deployment diagram.

Besides UML diagrams, the development process has some extra requirements.

First of all, we need the support for XML Metadata Interchange (XMI). XMI is also a

standard of OMG [101]. It is an XML-based data exchange format for sharing objects

using XML. One of its major applications is supporting the interchange of UML models.

We hope this feature could help us share the UML models on various UML modeling

tools and ensure the reuse if we change our UML modeling tool in the future. Second, the

feature of diagram exporting is also useful for us. In many cases, we need to add the

diagrams into related documents or presentation slides. For instance, the developer can

put a sequence diagram into the document, based on which he can discuss with tester or

manager the scenario of a program bug or logic problem. Third, we prefer the tool which

 97

provides the better manipulation of diagram such as zooming in/out, undo/redo,

customizing font size and background color etc.

6.4.2 Functional Suitability

To measure functional suitability, we need to examine OSS out-of-box function

compatibility, extensible function compatibility and contributive function compatibility.

Most importantly, we need to instantiate the hierarchy regarding functional suitability

first. The following tables (table 6-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) show

the comparisons with respect to the criteria at each level of functional suitability

evaluation hierarchy. Before each table is presented, we will give a brief introduction

about how comparison is made. The consistency measure value is also listed.

Table 6-1 is the result of pair wise comparison between each functional suitability

criterion. In our case study, we prefer the tools which can meet more of our requirements.

The contributory functions are a plus but not as important as other criteria. (CM=0.085)

Table 6-1 Functional Suitability Pair Comparison

Functional

Suitability

OF EF CF Priority

OF 1 5 6 0.726

EF 1/5 1 2 0.172

CF 1/6 ½ 1 0.102

ArgoUML, Violet, BOUML and UMLet provide the basic elements of use case

diagram such as actor, use case, extend, include, generalization etc. Violet does not have

 98

a subject frame. UMLet is more compatible with UML 2.0 specification in that it

provides more elements defined in UML 2.0 such as extension point. Also it provides

some predefined templates for users’ convenience. (CM=0.094)

Table 6-2 Use Case Diagram Pair Comparison

ArgoUML and BOUML have relatively better support for activity diagram. They

are furnished with almost all necessary diagram nodes including action, final, initial,

decision, joint etc. BOUML provides more decision and joint nodes but it does not have

signal nodes. UMLet and Violet provide basic graphic nodes for activity diagram.

(CM=0.067)

Table 6-3 Activity Diagram Pair Comparison

Use Case Violet ArgoUML BOUML UMLet Priority

Violet 1 1/3 1/3 1/5 0.078

ArgoUML 3 1 1 1/3 0.200

BOUML 3 1 1 1/3 0.200

UMLet 5 3 3 1 0.522

Activity Violet ArgoUML BOUML UMLet Priority

Violet 1 1/3 1/3 1 0.124

ArgoUML 3 1 1.5 3 0.414

BOUML 3 0.67 1 3 0.338

UMLet 1 1/3 1/3 1 0.124

 99

Violet and UMLet do not explicitly support communication diagram. But we can

still use UMLet to draw this diagram by utilizing the elements originally set for other

diagrams. ArgoUML has the best support for this diagram. BOUML supports this

diagram but it does not have the message node. (CM=0.078)

Table 6-4 Communication Diagram Pair Comparison

Communication Violet ArgoUML BOUML UMLet Priority

Violet 1 1/7 ¼ ½ 0.068

ArgoUML 7 1 3 4 0.564

BOUML 4 1/3 1 2 0.238

UMLet 2 1/4 ½ 1 0.130

ArgoUML and Violet do not support the component diagram. UMLet does not

directly support it either but it provides some nodes with which users can draw diagrams

close to it. BOUML supports this diagram (CM=0.085).

Table 6-5 Component Diagram Pair Comparison

Component Violet ArgoUML BOUML UMLet Priority

Violet 1 1 1/5 1/3 0.095

ArgoUML 1 1 1/5 1/3 0.095

BOUML 5 5 1 3 0.560

UMLet 3 3 1/3 1 0.249

 100

In terms of class diagram, all of four tools support the diagram very well.

Relatively UMLet is a bit weak since it is not as easy to use as other tools (CM=0).

Table 6-6 Class Diagram Pair Comparison

The sequence diagram is well supported by the four tools as well. Particularly,

UMLet and BOUML provide more nodes to describe the communication such as

asynchronized message. The ranking of the tools on this function is fairly close. (CM=0).

Table 6-7 Sequence Diagram Pair Comparison

ArgoUML does not support object diagram. BOUML supports it but the function

is fairly hard to use. Comparatively, drawing object diagrams on Violet or UMLet is

simple and effective.

Class Violet ArgoUML BOUML UMLet Priority

Violet 1 1 1 2 0.286

ArgoUML 1 1 1 2 0.286

BOUML 1 1 1 2 0.286

UMLet 1/2 1/2 1/2 1 0.143

Sequence Violet ArgoUML BOUML UMLet Priority

Violet 1 1 1/2 1/2 0.167

ArgoUML 1 1 1/2 1/2 0.167

BOUML 2 2 1 1 0.333

UMLet 2 2 1 1 0.333

 101

Table 6-8 Object Diagram Pair Comparison

All of four tools support state machine diagram but Violet and UMLet only

provide the basic nodes. In contrast, ArgoUML and BOUML have more nodes which

give users more flexibility and convenience (CM=0.069).

Table 6-9 State Machine Diagram Pair Comparison

ArgoUML, BOUML and UMLet support deployment diagram fairly well. Violet

does not have this feature (CM=0.06).

Object Violet ArgoUML BOUML UMLet Priority

Violet 1 3 2 1 0.351

ArgoUML 1/3 1 1/2 1/3 0.109

BOUML 1/2 2 1 1/2 0.189

UMLet 1 3 2 1 0.351

State Machine Violet ArgoUML BOUML UMLet Priority

Violet 1 1/4 1/3 1 0.116

ArgoUML 4 1 1.5 3 0.442

BOUML 3 2/3 1 2 0.304

UMLet 1 1/3 1/2 1 0.138

 102

Table 6-10 Deployment Diagram Pair Comparison

With BOUML, users can import and export XMI up to version 2.1. ArgoUML has

this function as well but this support is only compliant with XMI 1.2 standard. UMLet

and Violet do not have this function (CM=0.093).

Table 6-11 XMI Pair Comparison

XMI Violet ArgoUML BOUML UMLet Priority

Violet 1 1/5 1/5 1 0.081

ArgoUML 5 1 1/2 5 0.346

BOUML 5 2 1 5 0.492

UMLet 1 1/5 1/5 1 0.081

All of these four tools support export the diagram into certain types of image.

Modelers can use ArgoUML to generate png, gif, svg, ps and eps image files. BOUML

supports png and svg file export. UMLet can generate jpg, svg, pdf and eps formats.

Violet supports jpg and bmp. Particularly BOUML and Violet supports the direct

diagram export to the clipboard. (CM=0.05).

Deployment Violet ArgoUML BOUML UMLet Priority

Violet 1 1/5 1/5 1/5 0.062

ArgoUML 5 1 1 1.5 0.342

BOUML 5 1 1 1.5 0.342

UMLet 5 2/3 2/3 1 0.254

 103

Table 6-12 Export Pair Comparison

Export Violet ArgoUML BOUML UMLet Priority

Violet 1 2 1/2 2 0.263

ArgoUML 1/2 1 1/3 1 0.141

BOUML 2 3 1 3 0.455

UMLet 1/2 1 1/3 1 0.141

ArgoUML and BOUML provide plentiful operations for manipulating the

diagrams. In ArgoUML, users can do operations such as search, zoom in/out, pan etc.

BOUML’s diagram operations include copy/paste, display style, font, zoom in/out, and

search. UMLet and Violet have relatively fewer operations. With UMLet, users can

undo/redo, pan or change the node color. Violet supports zoom in/out and undo/redo

features. (CM=0.059)

Table 6-13 Manipulation Pair Comparison

The following matrix (table 6-14) is the pair wise comparison regarding out-of-

box function compatibility criterion. We emphasize on use case, class, sequence, state

machine diagrams since we believe these diagrams are more important to the

development. Diagram manipulation is also important because we want to have more

Manipulation Violet ArgoUML BOUML UMLet Priority

Violet 1 1/4 1/5 1.5 0.099

ArgoUML 4 1 1 5 0.400

BOUML 5 1 1 5 0.424

UMLet 2/3 1/5 1/5 1 0.077

 104

flexibility to draw or modify the diagrams. Activity diagram, component diagram,

communication diagram and export support are relatively less important. The least

important functions are object diagram, deployment diagram and XMI support.

(CM=0.084) (Note: to save the space we use the alphabets on the header line. A

represents use case, B for activity, C for communication and so on and so forth).

Table 6-14 Out-of-Box Function Compatibility Pair Comparison

OF A B C D E F G H I J K L Priority

Use Case 1 5 5 5 1 1 7 1 7 5 1 7 0.158

Activity 1/5 1 1 1 1/5 1/5 3 1/5 3 1 1/5 3 0.039

Communication 1/5 1 1 1 1/5 1/5 3 1/5 3 1 1/5 3 0.039

Component 1/5 1 1 1 1/5 1/5 3 1/5 3 1 1/5 3 0.039

Class 1 5 5 5 1 1 7 1 7 5 1 7 0.158

Sequence 1 5 5 5 1 1 7 1 7 5 1 7 0.158

Object 1/7 1/3 1/3 1/3 1/7 1/7 1 1/7 1 1/3 1/7 1 0.018

State Machine 1 5 5 5 1 1 7 1 7 5 1 7 0.158

XMI 1/7 1/3 1/3 1/3 1/7 1/7 1 1/7 1 1/3 1/7 1 0.018

Export 1/5 1 1 1 1/5 1/5 3 1/5 3 1 1/5 3 0.039

Manipulation 1 5 5 5 1 1 7 1 7 5 1 7 0.158

Deploy 1/7 1/3 1/3 1/3 1/7 1/7 1 1/7 1 1/3 1/7 1 0.018

In terms of extensible functional compatibility, in order to meet the requirements,

we have to do more extension work on Violet than other UML tools. Violet lacks the

support of component diagram, deployment diagram, XMI. The extension work on

UMLet would also be significant. We need to add up XMI support and several diagram

operations. The extension work on ArgoUML is adding object diagram support.

 105

Table 6-15 Extendable Function Compatibility Pair Comparison

EF Violet ArgoUML BOUML UMLet Priority

Violet 1 1/5 1/5 1 0.083

ArgoUML 5 1 1.5 5 0.460

BOUML 5 2/3 1 5 0.375

UMLet 1 1/5 1/5 1 0.083

As for contributory functions, ArgoUML and BOUML have some functions

which are highly preferable. For example, both tools support code generation. ArgoUML

even has the critics feature to help the modeler make high quality diagram. BOUML can

import model from Rational Rose and generate html files. (CM=0.086)

Table 6-16 Contributory Function Compatibility Pair Comparison

CF Violet ArgoUML BOUML UMLet Priority

Violet 1 5 3 9 0.585

ArgoUML 1/5 1 1/3 2 0.103

BOUML 1/3 3 1 5 0.256

UMLet 1/9 1/2 1/5 1 0.055

In the end, the OSS alternative priority vector regarding functional suitability is

<Violet:0.127, ArgoUML: 0.324, BOUML: 0.356, UMLet: 0.193>.

6.4.3 Code Complexity

As discussed in the previous section, we evaluate the code complexity from programming

language, code size, comment percentage, intra-module complexity and inter-module

 106

complexity. We use OSS tool CCCC [78] to calculate the values of the corresponding

metrics. Table 6-17 shows the data we collected by using this tool.

Table 6-17 Collected Data for Source Code

The following five tables (table 6-18, 19, 20, 21, 22) show the pair wise

comparison results under source code sub-criteria. Regarding the programming language,

we prefer C++ over Java since we have more experience on C++ programming.

Therefore, BOUML is ranked higher than other UML tools. (CM=0). As UML tools are

compared in view of their sizes, the tool with smaller size is more preferable. The reason

is the smaller code is easier to understand and maintain. (CM=0.088). Under comment

criterion, the tools with low L_C are deemed better than the ones with high L_C

(CM=0.072). Smaller MVG per module means the code is less complicated within its

modules on average (CM=0.05). Likewise, small IF4 per module indicates the loose

coupling among the source code modules (CM=0.099).

 Violet ArgoUML BOUML UMLet

Language Java Java C++ Java

LOC 17508 145200 101253 4750

L_C 2.024 1.33 5.237 3.674

MVG per module 3.34 10.666 33.804 2.878

IF4 per module 1559.72 6237.55 18182.403 630.029

 107

Table 6-18 Programming Language Pair Comparison

Table 6-19 Code Size Pair Comparison

Table 6-20 Comment Pair Comparison

Comment Violet ArgoUML BOUML UMLet Priority

Violet 1 2/3 3 2 0.318

ArgoUML 1.5 1 3 2 0.390

BOUML 1/3 1/3 1 2/3 0.117

UMLet 1/2 1/2 1/5 1 0.175

Programming

Language

Violet ArgoUML BOUML UMLet Priority

Violet 1 1 1/3 1 0.167

ArgoUML 1 1 1/3 1 0.167

BOUML 3 3 1 3 0.5

UMLet 1 1 1/3 1 0.167

Size Violet ArgoUML BOUML UMLet Priority

Violet 1 4 3 1/3 0.243

ArgoUML 1/4 1 1/2 1/8 0.061

BOUML 1/3 2 1 1/6 0.099

UMLet 3 8 6 1 0.596

 108

Table 6-21 Intra-Module Complexity Pair Comparison

Intra-Module Violet ArgoUML BOUML UMLet Priority

Violet 1 2 3 1 0.351

ArgoUML 1/2 1 2 1/2 0.189

BOUML 1/3 1/2 1 1/3 0.109

UMLet 1 2 3 1 0.351

Table 6-22 Inter-Module Complexity Pair Comparison

We compare the relative importance of sub-criteria under source code (table 6-23).

At the first place, we favor the source code which is implemented with our acceptable

languages and contain enough comments. Among size, intra-module complexity and

inter-module complexity, we think size and intra-module complexity is a bit more

important than inter-module complexity.

Inter-Module Violet ArgoUML BOUML UMLet Priority

Violet 1 3 4 2/3 0.334

ArgoUML 1/3 1 2 1/4 0.128

BOUML 1/4 ½ 1 2/9 0.082

UMLet 1.5 4 4.5 1 0.455

 109

Table 6-23 Source Code Pair Comparison

The overall priority vector regarding the source code is <Violet:0.254,

ArgoUML:0.203, BOUML:0.246, UMLet:0.297>.

6.4.4 Support Strength

Let us examine the alternatives under relevance criterion first. We want to get an idea

from the support resources regarding how to use the software, the software architecture

and its user interface. Respectively, ArgoUML provides user manual, quick guide, user

interface tour and developer cookbook. BOUML has the screen shots, online help file and

tutorials. UMLet gives some sample diagrams and FAQ. Violet only provides a user

interface tour and demo. Accordingly, the alternatives are compared regarding relevance

in table 6-24 (CM=0.094):

Source

Code

Language Size Comment Intra-

Module

Inter-

Module

Priority

Language 1 2 1.5 3 4 0.355

Size 1/2 1 2/3 2 3 0.199

Comment 2/3 1.5 1 2.5 3 0.259

Intra-

Module

1/3 ½ 2/5 1 1 0.109

Inter-

Module

1/4 1/3 1/3 2/3 1 0.087

 110

Table 6-24 Relevance Pair Comparison

In terms of capacity (table 6-25), ArgoUML’s support resources are very

informative. After going through its various support resources, we get a good

understanding of this software. BOUML’s support resources are relatively weaker but

they still include a lot of information such as the comparison between BOUML with

other UML tools. UMLet and Violet’s support resources are less informative than

ArgoUML and BOUML. (CM=0.088)

Table 6-25 Capacity Pair Comparison

The support resources of these four alternatives are all well written and easy to

understand. Therefore we treat them equally on this point (table 6-26). (CM=0)

Relevance Violet ArgoUML BOUML UMLet Priority

Violet 1 1/6 1/3 1 0.085

ArgoUML 6 1 4 6 0.614

BOUML 3 ¼ 1 3 0.216

UMLet 1 1/6 1/3 1 0.085

Capacity Violet ArgoUML BOUML UMLet Priority

Violet 1 1/8 ¼ ½ 0.061

ArgoUML 8 1 3 6 0.596

BOUML 4 1/3 1 3 0.243

UMLet 2 1/6 1/3 1 0.099

 111

Table 6-26 Understandability Pair Comparison

Table 6-27 is the sub-criteria comparison under the support resource criteria. In

this case study, we emphasize on the relevance of the resource. Besides, between capacity

and understandability, we favor the capacity. (CM=0.042)

Table 6-27 Support Resource Pair Comparison

We do not want to buy commercial support for our OSS UML tool. Thus the

commercial support is ignored in the field support evaluation. We count the number of

replies in mailing list, tracker system and forum from Jan 24 to Jan 30, 2007. ArgoUML

provides community support via mailing list and the indicator value is 94. BOUML uses

only mailing list as well and the value is 16. Violet and UMLet have tracker system,

mailing list and forum set up on Sourceforge.net but there are nearly no activities on them

(table 6-28). (CM=0.071).

Understandability Violet ArgoUML BOUML UMLet Priority

Violet 1 1 1 1 0.25

ArgoUML 1 1 1 1 0.25

BOUML 1 1 1 1 0.25

UMLet 1 1 1 1 0.25

Support Resource Relevance Capacity Understandability Priority

Relevance 1 3 7 0.669

Capacity 1/3 1 3 0.243

Understandability 1/7 1/3 1 0.088

 112

Table 6-28 Field Support Pair Comparison

Field Support Violet ArgoUML BOUML UMLet Priority

Violet 1 1/7 1/3 1 0.079

ArgoUML 7 1 4 7 0.635

BOUML 3 1/4 1 3 0.207

UMLet 1 1/7 1/3 1 0.079

For the whole support strength (table 6-29), we think support resources are

slightly importantly than field support since the resources are more dependable. We have

the small comparison as following (CM=0):

Table 6-29 Support Strength Pair Comparison

Finally the support strength priority vector is <Violet:0.088, ArgoUML:0.597,

BOUML: 0.220, UMLet:0.095}.

6.4.5 Popularity

According to ArgoUML website download statistics, ArgoUML has been downloaded

around 1,290,000 times till Feb 2007. BOUML’s download totals more than 90,000. On

Support Strength Field Support Support

Resources

Priority

Field Support 1 1/2 0.333

Support

Resources

2 1 0.667

 113

Sourceforge.net, Violet has been downloaded 48 till Feb, 2007. It has two websites, one

of which provides download without any statistics data. UMLet is registered on

Sourceforge.net where its download count is 0. It includes another download source on

its website also without any statistics data. As such, in pair wise comparison (table 6-30),

we assume both tools’ software use is less preferable than ArgoUML and BOUML but

the difference is not significant. (CM=0.065).

Table 6-30 Software Use Pair Comparison

Software Use Violet ArgoUML BOUML UMLet Priority

Violet 1 1/4 1/2 1 0.121

ArgoUML 4 1 3 4 0.538

BOUML 2 1/3 1 2 0.220

UMLet 1 1/4 1/2 1 0.121

On ArgoUML’s website, it lists around 30 developers. BOUML is developed by

only one developer. UMLet and Violet has two developers (table 6-31). (CM=0).

Table 6-31 Development Participation Pair Comparison

Development

Participation

Violet ArgoUML BOUML UMLet Priority

Violet 1 1/5 1 1 0.125

ArgoUML 5 1 5 5 0.625

BOUML 1 1/5 1 1 0.125

UMLet 1 1/5 1 1 0.125

 114

In the case study, we use Alltheweb.com to compute the indicator for web

popularity. Violet’s websites (Violet has two websites) are referred for199 times. Also,

ArgoUML, BOUML and UMLet’s external back link numbers are respectively 4,550,

309 and 553. The results are shown in table 6-32. (CM=0).

Table 6-32 Web Popularity Pair Comparison

Web Popularity Violet ArgoUML BOUML UMLet Priority

Violet 1 1/5 1 1 0.125

ArgoUML 5 1 5 5 0.625

BOUML 1 1/5 1 1 0.125

UMLet 1 1/5 1 1 0.125

Table 6-33 shows how we compare the popularity related criteria. We prefer

development participation and web popularity since we believe the indicator values under

these two criteria are more reliable than the indicator value under software use.

Table 6-33 Popularity Pair Comparison

Popularity Software

Use

Development

Participation

Web Popularity Priority

Software

Use

1 1/5 1/5 0.091

Development

Participation

5 1 1 0.455

Web

Popularity

5 1 1 0.455

 115

The final priority vector regarding the popularity is <Violet:0.125,

ArgoUML:0.617, BOUML:0.134, UMLet:0.125>

6.4.6 Wrap up

In the evaluation, we compare the criteria under the objective in the hierarchy (table 6-

34). We emphasize the functional suitability because we want to reduce the secondary

development work. Source code is important than support strength and popularity

because after all we have to deal with it when we adopt the OSS UML tool. There is no

preference between support strength and popularity. (CM=0.05)

Table 6-34 OSS Evaluation Pair Comparison

OSS Evaluation Functional

Suitability

Source

Code

Support

Strength

Popularity Priority

Functional

Suitability

1 2 3 3 0.455

Source Code 1/2 1 2 2 0.263

Support

Strength

1/3 1/2 1 1 0.141

Popularity 1/3 1/2 1 1 0.141

The last step of the evaluation is developing the final priority vector of the

alternatives for the final objective. The priority vector is <Violet:0.155, ArgoUML:0.372,

BOUML:0.277, UMLet:0.197>. Figure 6-2 shows how much functional suitability,

source code, support strength and popularity contribute to the final priority. From this

vector, it is easy to see ArgoUML is the best OSS UML tool for our requirement.

 116

Composite Priorities

0

0.1

0.2

0.3

0.4

0.5

Violet ArgoUML BOUML UMLet

Open Source UML Alternatives

R
an

ki
ng

 V
al

ue
s

Popularity

Support Strength

Source Code

Functional Suitability

Figure 6-2 Composite Priority

6.5 Summary of the Case Study

This case study illustrates how to apply the OSS selection process to solving the problem

of selecting the best open source UML tool. From this case study, we can see with the aid

of the selection process, we find the best open source UML modeling tool out of ten

alternatives for our development. In the evaluation AHP helps effectively organize the

multiple attributes and reach the final decision. There are three lessons learned from this

case study. First, the process still requires more CASE tool support. For example, we

need a software metric measurement tool supporting more programming languages.

Second, the redundant criteria should be recommended in the case that the evaluation

regarding certain criteria cannot proceed if there is some information missing. Third,

when we set the function criteria under out of box function compatibility, we should be

careful to make sure the function criteria are independent.

 117

7 SUMMARY

I propose an open source software selection process which consists of three phases:

identification, screening and evaluation. In the first phase, potential open source

alternatives are identified based on the high-level requirements; then the refined

requirements such as underlying platform, implementation language, dependent modules,

standard compliance and license, are applied to reduce the alternatives. The evaluation

phase is a scrutiny on the remaining competitive alternatives from functionality, source

code, support strength and popularity. The multi-criteria decision technique, analytic

hierarchy process, plays an important role in the evaluation. It helps users organize

various open source software related criteria and make an informed decision by

calculating the relative priority rankings of alternatives under each criterion.

 The selection process is operable and effective to solve the problem in practice,

which is demonstrated in the cases study. Via following the process, I successfully select

the best unified modeling tool among ten potential alternatives to satisfy the development

requirements. The decision is well-founded since it takes into consideration not only the

attributes of the alternatives but also the specific requirements.

 118

REFERENCES

[1] C. DiBona, S. Ockman and M. Stone, Open Sources Voice from the Open Source

Revolution, O’Reilly & Associates, 1999.

[2] “The Free Software Foundation”, http://www.fsf.org, accessed on April 1, 2007.

[3] “The Free Software Definition”, http://www.fsf.org/licensing/essays/free-sw.html,

accessed on April 1, 2007.

[4] S. Hissam, C. B. Weinstock, Daniel Plakosh and Jayatirtha Asundi, “Perspectives

on Open Source Software, Software Engineering Institute”, technical report,

CMU/SEI-2001-TR-019, Carnegie Mellon University , Nov 2001.

[5] “The Open Source Definition Version 1.8”,

http://www.opensource.org/docs/definition.html, accessed on April 1, 2007, 2001.

[6] A. Senyard, M. Michlmayr, “How to Have a Successful Free Software Project”,

Proc. the 11th Asia-Pacific Software Engineering Conference (APSEC’04), pp.84-

91, Dec 2004.

[7] E.S. Raymond, The Cathedral and the Bazaar, O’Reilly Media Inc., 2001.

[8] B. Arief, C. Gacek, and T. Lawrie, “Software Architectures and Open Source

Software – Where can Research Leverage the Most?” Proc. Making Sense of the

Bazaar: 1st Workshop on Open Source Software Engineering, May 2001.

[9] I. Stamelos, L. Angelis, A. Oikonomou, and G.L. Bleris, “Code Quality Analysis

in Open Source software development”, Information Systems Journal, vol 12,

issue 1, pp 43-60, Jane 2002.

 119

[10] K. Crowston and J. Howison, “The Social Structure of Free and Open Source

Software Development”, First Monday, vol 10, number 2, Feb 2005.

[11] K. Crowston, H. Annabi, J. Howison, C. Masango, “Effective Work Practices

for Software Engineering: Free/Libre Open Source Software Development”, Proc.

2004 ACM workshop on Interdisciplinary Software Engineering Research, pp18-

26, 2004.

[12] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two Case Studies of Open

Source Software Development: Apache And Mozilla”, ACM Transcations on

Software Engineering and Methodology, vol 11, number 3, pp.309-346, July 2002.

[13] J. Y. Moon and L. Sproull, “Essence of Distributed Work: The Case of the

Linux Kernel”, First Monday, vol 5, number 11, Nov. 2000.

[14] J. Kontio, “OTSO: A Systematic Process for Reusable Software Component

Selection”, technical report, CS-TR-3478, University of Maryland, December

1995.

[15] J. Kontio, “A Case Study in Applying a Systematic Method for (COTS)

Selection”, Proc.18th International Conference on Software Engineering

(ICSE’96), pp.201-209, March 1996.

[16] C. Alves and J. Castro, “CRE: A Systematic Method for COTS Components

Selection”, XV Brazilian Symposium on Software Engineering, pp.193-207, Oct.

2001.

[17] N. A. Maiden and C. Ncube, “Acquiring COTS Software Selection

Requirements”, IEEE Software, vol 15, issue 2, ISSN: 0740-7459, pp.46-56,

March/April 1998.

 120

[18] M. Krystkowiak, V. Betry, E. Dubois, “Efficient COTS Selection with OPAL

Tool”, Proc. International Workshop on Models and Processes for the Evaluation

of COTS Component (MPEC 2004) W7S Workshop - the 26th International

Conference on Software Engineering, pp.23-26, May 2004.

[19] C. Murphy, “The Open Source Maturity Model is a Vital Tool for Planning

Open Source Success”, www.navicasoft.com/pages/osmm.htm, accessed on April

1, 2007.

[20] B. Golden, “Make Open Source Software Ready for the Enterprise: The Open

Source Maturity Model, Extracted from Succeeding with Open Source”, Addison-

Wesley Professional, Oct 2005.

[21] F. Duijnhouwer and C. Widdows, “Open Source Maturity Model, Capgemini

Expert Letter”,

http://www.seriouslyopen.org/nuke/html/modules/Downloads/osmm/GB_Expert_

Letter_Open_Source_Maturity_Model_1.5.3.pdf, accessed on April 1, 2007,

August 2003.

[22] “Business Readiness Rating for Open Source-A Proposed Open Standard to

Facilitate Assessment and Adoption of Open Source Software”, www.openbrr.org,

accessed on April 1, 2007, BRR 2005-RFC1.

[23] K. v. d. Berg, “Finding Open options, An Open Source Software Evaluation

Model with a Case Study on Course Management Systems”, Master thesis,

Tilburg University, August 2005.

 121

[24] D. Wheeler, “How to Evaluate Open Source Software/Free Software (OSS/FS)

Programs”, http://www.dwheeler.com/oss_fs_eval.html, accessed on April 1,

2007, Jan 2006.

[25] E. Forman, DSc. Decision by Objectives, World Scientific Publishing Company,

1st edition, Feb 15 2002.

[26] L. Santillo, “Early & Quick COSMIC-FFP Analysis Using Analytic Hierarchy

Process”, Lecture Notes in Computer Science, vol. 2006, Proc. the 10th

International Workshop on New Approach in Software Measurement, Springer-

Verlag, pp.147-160, Oct 2000.

[27] T. L. Satty, The Analytic Hierarchy Process, McGraw-Hill Inc., 1980.

[28] J. McCaffrey, “The Analytic Hierarchy Process”, MSDN Magazine, vol 20, No

6, pp.139-144, June 2005.

[29] G.A. Miller, “The Magical Number Seven Plus or Minus Two: Some Limits on

Our Capacity for Processing Information”, Psychological Review, vol. 63, pp81-

97, Mar 1956.

[30] “Document E09, SourceForge.net: Software Map”,

http://sourceforge.net/docs/B09#topic_suggestion, accessed on April 1, 2007.

[31] S. Mendenhall, W. Mendenhall and L. Ott, Elementary Survey Sampling (third

edition), Duxbury Press, Boston.

[32] A. C. Tamhane and D. D. Dunlop, Statistics and Data Analysis from Elementary

to Intermediate, Prentice Hall, Oct 1999.

 122

[33] “Document B06, SourceForge.net: Search”,

http://sourceforge.net/docman/display_doc.php?docid=32777&group_id=1,

accessed on April 1, 2007.

[34] M. Sturmer, “Open Source Community Building”, PhD thesis, University of

Bern, March 2005.

[35] J. E. Robbins, “Adopting Open Source Software Engineering (OSSE) Practices

by Adopting OSSE Tools”, in Making Sense of the Bazaar: Perspectives on Open

Source and Free Software, J. Feller, B Fitzgerald, S. Hissam, and K. Lakhani,

MIT Press, 2004.

[36] L. Rosen, Open Source Licensing Software Freedom and Intellectual Property

Law, Prentice Hall, 2004.

[37] The Copyright Law of the United States, June 2003 Edition of Circular 92.

[38] U.S. Patent Act -- 35 USCS Sects. 1 – 376.

[39] Daniel A. Tysver, “Rights Granted Under U.S. Patent Law”, www.bitlaw.com,

accessed on April 1, 2007.

[40] “Copyright vs. Trademark vs. Patent”, www.lawmart.com, accessed on April 1,

2007.

[41] “Open Source License Overview”,

http://sourceforge.net/docman/display_doc.php?docid=778&group_id=1,

accessed on April 1, 2007.

[42] “Report of License Proliferation Committee and draft FAQ”,

www.opensource.org, accessed on April 1, 2007.

 123

[43] “Copyright Registration for Derivative Works, Circular 14”,

http://www.copyright.gov/circs/circ14.pdf, accessed on April 1, 2007.

[44] “Free and Open Source Software Licensing White Paper”,

http://www.opensolaris.org/, accessed on April 1, 2007, April 2006.

[45] S. J. Davidson, “A Primer on Open Source Software for Business People and

Lawyers”, World Intellectual Property Organization,

http://www.wipo.int/sme/en/documents/opensource_software_primer.htm,

accessed on April 1, 2007.

[46] J. Lerner and J. Tirole, “The Scope of Open Source Licensing”, Journal of Law,

Economics, and Organization, vol. 21(1), pp.20-56, April 2005.

[47] “What Is CopyLeft”, http://www.gnu.org/copyleft/, accessed on April 1, 2007.

[48] “Various Licenses and Comments about Them”,

http://www.fsf.org/licensing/licenses/, accessed on April 1, 2007).

[49] “The MIT License”, http://www.opensource.org/licenses/mit-license.php,

accessed on April 1, 2007.

[50] “The BSD License”, http://www.opensource.org/licenses/bsd-license.php,

accessed on April 1, 2007.

[51] “Apache License, Version 2.0”,

http://www.opensource.org/licenses/apache2.0.php, accessed on April 1, 2007.

[52] “The GNU General Public License (GPL), Version 2”,

http://www.opensource.org/licenses/gpl-license.php, accessed on April 1, 2007,

June 1991.

 124

[53] “GNU Lesser General Public License, Version 2.1”,

http://www.opensource.org/licenses/lgpl-license.php, accessed on April 1, 2007,

February 1999.

[54] “The Mozilla Public License 1.1 (MPL 1.1)”,

http://www.opensource.org/licenses/mozilla1.1.php, accessed on April 1, 2007.

[55] R. Wilson, “The Mozilla Public License – An Overview”, http://www.oss-

watch.ac.uk/resources/mpl.xml, accessed on April 1, 2007, Nov 2005.

[56] “Common Development and Distribution License (CDDL) Description and

High-Level Summary of Changes”,

http://www.sun.com/cddl/CDDL_why_summary.html, accessed on April 1, 2007.

[57] “Common Development and Distribution License (CDDL), Version 1.0”,

http://www.opensource.org/licenses/cddl1.php, accessed on April 1, 2007.

[58] “Common Public License Version 1.0”,

http://www.opensource.org/licenses/cpl1.0.php, accessed on April 1, 2007.

[59] “Eclipse Public License – v 1.0”, http://www.opensource.org/licenses/eclipse-

1.0.php, accessed on April 1, 2007.

[60] International Organization for Standardization, “Information Technology-

Software Product Evaluation: Quality Characteristics and Guidelines for Their

Use”, International Organization for Standardization/International

Electrotechnical Commission 9126, March 1991.

[61] T. Punter, R. v. Solingen, J. Trienekens, “Software Product Evaluation –

Current Status and Future Needs for Customers and Industry”, Proc. 4th

Conference on Evaluation of Information Technology, Oct 1997.

 125

[62] S. Hildreth, “Software QA 101: The Basics of Testing”,

http://www.informit.com/articles/article.asp?p=333473&rl=1, accessed on April 1,

2007, Sept 3, 2004.

[63] A. Abran, “Function Points: A Study of Their Measurement Processes and Scale

Transformations”, The Journal of Systems and Software, vol 25, pp 171-184, May

1994.

[64] B. A. Kitchenham and L. Jones, “Evaluating Software Engineering Methods

and Tool Part 7: Planning Feature Analysis Evaluation”, ACM SIGSOFT Software

Engineering Notes, vol 22, issue 4, pp. 21-24, July 1997.

[65] T. Euler, “An Adaptable Software Product Evaluation Metric”, Proc. Software

Engineering and Applications, Nov. 2005.

[66] J. Kontio, S. Chen, K. Limperos, R. Tesoriero, G. Caldiera, and M. Deutsch, “A

COTS Selection Method and Experiences of Its Use”, in Proc. The Twentieth

Annual Software Engineering Workshop, Nov 1995.

[67] L. Holmes, “Evaluating COTS Using Function Fit Analysis”,

http://www.qpmg.com/evaluating_cots.htm, accessed on April 1 2007.

[68] A. Cechich, M. Piattini, “Early Detection of COTS Component Functional

Suitability”, Information and Software Technology, vol 49, issue 2, pp. 108-21,

Feb 2007.

[69] W. Scacchi, “Understanding the Requirements for Developing Open Source

Software Systems”, IEEE Proceedings – Software, vol 149, issue 1, pp. 24-39,

Feb 2002.

 126

[70] D. German, A. Mockus, “Automating the Measurement of Open Source

Projects”, Proc. Taking Stock of the Bazaar: 3rd Workshop on Open Source

Software Engineering, International Conference on Software Engineering, pp. 63-

68, May 2003.

[71] M M Lehman, “Laws of Software Evolution Revisited”, Lecture Notes in

Computer Science vol. 1149, Proc. the 5th European Workshop on Software

Process Technology, pp. 108-124, 1996.

[72] R. T. Alexander, M. R. Blackburn, “Component Assessment Using

Specification-Based Analysis and Testing,” Technical Report, SPC-98095-CMC,

Software Productivity Consortium, May 1999.

[73] “Measurement Manual (The COSMIC Implementation Guide for ISO/IEC

19761:2003) Version 2.2”, http://www.cosmicon.com/, accessed on April 1 2007,

Jan 2003.

[74] M.W.Godfrey and Q. Tu, “Evolution in Open Source Software: A Case Study”,

Proc. International Conference of Software Maintenance (ICSM-00), pp. 131-142,

Oct 2000.

[75] S. Henry,and K. Kafura, “Software Structure Metrics Based on Information

Flow”, IEEE Transactions on Software Engineering, vol 7, pp.510-518, Sept.

1981.

[76] I. Stamelos, L. Angelis, A. Oikonomou and G. L. Bleris, “Code Quality

Analysis in Open Source Development”, Information Systems Journal, vol 12,

issue 1, pp. 43-60, 2002.

 127

[77] “How Open-Source and Commercial Software Compare: A Quantitative

Analysis of TCP/IP Implementations in Commercial Software and in the Linux

Kernel”, www.reasoning.com, accessed on April 1, 2007, 2003.

[78] T. Littlefair B.Sc, “An Investigation into the Use of Software Code Metrics in

the Industrial Software Development Environment”, PhD Thesis of Edith Cowan

University, June 2001.

[79] B. W. Boehm, Software Engineering Economics, Prentice Hall PTR, Oct 1981.

[80] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on Software

Engineering, vol 2, pp. 308-320, Dec 1976.

[81] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented

Design”, IEEE Transactions on Software Engineering, vol 20, number 6, pp.476-

494, June 1994.

[82] “Integrating Open Source into Your Business”,

ftp://ftp.software.ibm.com/linux/pdfs/integratingOS21Aug06.pdf, accessed on

April 1, 2007.

[83] D. Woods and G. Guliani, Open Source for the Enterprise, O’Reilly &

Associate, July 2005.

[84] R. Zachary, “Six Options for Open-Source Support”, Information Week’s

Optimize Magazine, Issue 53, March 2006.

[85] E. Lai, “Panel: Lack of Support Hinders Open-Source Popularity”,

http://www.computerworld.com/softwaretopics/software/story/0,10801,108740,0

0.html, accessed on April 1 2007, Feb 16, 2006.

 128

[86] K. R. Lakhani and E. v. Hippel, “How Open Source Software Works: “Free”

User-to-User Assistance”, Elsevier Science B.V. Research Policy, vol 32, pp. 923-

943, 2003.

[87] “Tracker: Bug Reporting, Support Requests, Feature Requests, Patches”,

http://sourceforge.net/docman/display_doc.php?docid=24202&group_id=1#purpo

se, accessed on April 1, 2007.

[88] “Document D04: Statistics”,

http://sourceforge.net/docman/display_doc.php?docid=14040&group_id=1,

accessed on April 1, 2007.

[89] M. Michlmayr, “Software Process Maturity and Success of Free Software

Projects”, In Zielnski, K., Szmuc, T. (Eds.), Software Engineering: Evolution and

Emerging Technologies, pp. 3-14, 2005.

[90] K. Crowston, H. Annabi and J. Howison, “Defining Open Source Software

Project Success”, Proc. International Conference on Information System (ICIS),

Dec. 2003.

[91] J. Howison and K. Crowston, “The Perils and Pitfalls of Mining SourceForge”,

Proc. the Workshop on Mining Software Repositories at the 26th International

Conference on Software Engineering, 2004.

[92] D. Weiss, “Measuring Success of Open Source Projects Using Web Search

Engines”, Proc. the First International Conference on Open Source Systems (OSS

2005), pp.93-99, 2005.

 129

[93] “Computerworld Development Survey Gives Nod to C#”,

http://www.computerworld.com/developmenttopics/development/story/0,10801,1

00542,00.html, accessed on April 1, 2007, March 2005.

[94] G. McLeod, “Extending UML for Enterprise and Business Process Modeling”,

Proc. International Workshop UML 98, pp. 195-204, June 1998.

[95] R. J. Muller, “Database Design for Smarties: Using UML for Data Modeling”,

Morgan Kaufmann, Feb. 1999.

[96] Y.G.Kim, H.S.Hong, SM.Cho, D.H.Bae and S.D. Cha, “Test Cases Generation

from UML State Diagrams”, IEEE Proceedings: Software, vol. 146, no. 4, pp.

187-192, Aug 1999.

[97] J. Siegel, “Introduction to OMG UML”,

http://www.omg.org/gettingstarted/what_is_uml.htm, accessed on April 1, 2007,

July 2005.

[98] Object Management Group (OMG), “Unified Modeling Languages:

Superstructure, version 2.0, formal/05-07-04”, August 2005.

[99] C. Kobryn, “Object Modeling with UML: Introduction to UML”,

www.omg.org/docs/omg/01-03-02.ppt, accessed on April 1, 2007.

[100] S. W. Ambler, “Agile Models Distilled: Potential Artifacts for Agile Modeling”,

http://www.agilemodeling.com/artifacts/, accessed on April 1, 2007, April 2006.

[101] Object Management Group (OMG), “XML Metadata Interchange (XMI)

Specification, v2.0, formal/03-05-02”, May 2003.

[102] J. Mustajoki, R. Hmlinen, “Web-HIPRE: Global Decision Support by Value

Tree and AHP Analysis”, INFOR Journal, vol. 38, no. 3, pp.208-220, 2000.

 130

VITA

Guobin He received a B.S. degree in Computer Engineering from National University of

Defense Technology, China, in 1994 and an M.S. degree in Computer Science at Beijing

University of Aeronautics and Astronautics in 1999. He began to pursue his Ph.D. degree

in Computer Science at Texas A&M University in 2001, focusing on parallel computing

and compilers. In 2006, he switched to the Doctor of Engineering program, concentrating

on software engineering. He can be reached via email at guobinhe@gmail.com. The

mailing address is Dr. Dick B. Simmons, Department of Computer Science, Texas A&M

University, College Station, TX 77843.

