

EFFICIENT CASE-BASED REASONING THROUGH FEATURE WEIGHTING,

AND ITS APPLICATION IN PROTEIN CRYSTALLOGRAPHY

A Dissertation

by

KRESHNA GOPAL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2007

Major Subject: Computer Science

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/4278162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EFFICIENT CASE-BASED REASONING THROUGH FEATURE WEIGHTING,

AND ITS APPLICATION IN PROTEIN CRYSTALLOGRAPHY

A Dissertation

by

KRESHNA GOPAL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Thomas R. Ioerger
Committee Members, James C. Sacchettini
 Jianer Chen

Nancy M. Amato
Head of Department, Valerie E. Taylor

August 2007

Major Subject: Computer Science

iii

ABSTRACT

Efficient Case-Based Reasoning through Feature Weighting, and Its Application in

Protein Crystallography. (August 2007)

Kreshna Gopal, B.Tech., Indian Institute of Technology, Kanpur;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Thomas R. Ioerger

Data preprocessing is critical for machine learning, data mining, and pattern

recognition. In particular, selecting relevant and non-redundant features in high-

dimensional data is important to efficiently construct models that accurately describe the

data. In this work, I present SLIDER, an algorithm that weights features to reflect

relevance in determining similarity between instances. Accurate weighting of features

improves the similarity measure, which is useful in learning algorithms like nearest

neighbor and case-based reasoning. SLIDER performs a greedy search for optimum

weights in an exponentially large space of weight vectors. Exhaustive search being

intractable, the algorithm reduces the search space by focusing on pivotal weights at

which representative instances are equidistant to truly similar and different instances in

Euclidean space. SLIDER then evaluates those weights heuristically, based on

effectiveness in properly ranking pre-determined matches of a set of cases, relative to

mismatches.

I analytically show that by choosing feature weights that minimize the mean rank of

matches relative to mismatches, the separation between the distributions of Euclidean

distances for matches and mismatches is increased. This leads to a better distance metric,

and consequently increases the probability of retrieving true matches from a database. I

also discuss how SLIDER is used to improve the efficiency and effectiveness of case

retrieval in a case-based reasoning system that automatically interprets electron density

maps to determine the three-dimensional structures of proteins. Electron density patterns

for regions in a protein are represented by numerical features, which are used in a

iv

distance metric to efficiently retrieve matching patterns by searching a large database.

These pre-selected cases are then evaluated by more expensive methods to identify truly

good matches – this strategy speeds up the retrieval of matching density regions, thereby

enabling fast and accurate protein model-building. This two-phase case retrieval

approach is potentially useful in many case-based reasoning systems, especially those

with computationally expensive case matching and large case libraries.

v

ACKNOWLEDGMENTS

My most earnest acknowledgment must go to Thomas Ioerger, my long-time teacher,

advisor, and chair of my M.S. and Ph.D. committees. His classes on artificial

intelligence, machine learning, and intelligent agents were enlightening. I am immensely

indebted to him for his great ideas, continual support, and valuable lessons in developing

my research and writing skills. His guidance and commitment to science have been

inspirational to me.

I am also very thankful to the other members of my committee, James Sacchettini,

Jianer Chen, and Nancy Amato. It has been a privilege working with them. Their

numerous comments and suggestions on my research were very helpful. Dr.

Sacchettini’s insights on crystallography and biochemistry were invaluable. I owe much

of my understanding of computer algorithms to the outstanding classes taught by Dr.

Chen and Dr. Amato.

I would also like to thank my colleagues in the TEXTAL group, especially Tod Romo,

Erik McKee, and Jacob Smith, for the numerous informative discussions on

computational crystallography.

It has been a great pleasure working with the faculty, staff, and students in the

Department of Computer Science at Texas A&M University. In particular, I am very

grateful to Bart Childs and Donald Friesen for their critical support in the advancement

of my graduate studies. Also, I immensely enjoyed interacting with students in the

various classes I taught. Finally, I would like to thank my friends Jeff Beckmann, Lydia

Tapia, and Carlos Monroy for the enjoyable coffee and lunch breaks.

vi

TABLE OF CONTENTS

 Page

ABSTRACT…………………………………………………………………. iii

ACKNOWLEDGMENTS…………………………………………………… v

TABLE OF CONTENTS……………………………………………………. vi

LIST OF FIGURES………………………………………………………….. ix

LIST OF TABLES…………………………………………………………… xii

CHAPTER

 I INTRODUCTION………………………………………………… 1

 1.1 Feature Relevance……………………………………….. 1
 1.2 Feature Weighting with SLIDER……………………....... 2
 1.3 Two-Phase Case Retrieval……………………………..... 4
 1.4 Efficient Case Retrieval: an Application in Protein
 Crystallography………………………………………….. 5
 1.5 Dissertation Outline……………………………………… 6

 II FEATURE SELECTION AND WEIGHTING…………………… 8

 2.1 Feature Relevance……………………………………...... 8
 2.2 Filters and Wrappers…………………………………...... 10

 2.3 Feature Selection as a Heuristic Search…………………. 11
 2.4 Feature Weighting……………………………………….. 11
 2.5 Context-Sensitivity and Feature Interaction…………....... 12
 2.6 Classification vs. Ranking……………………………….. 13
 2.7 Previous Work Related to SLIDER……………………… 14
 2.8 Case-Based Reasoning…………………………………… 15
 2.9 Nearest Neighbor Learning………………………………. 16

 III X-RAY PROTEIN CRYSTALLOGRAPHY……………………… 18

 3.1 Proteins…………………………………………………… 18
 3.2 Structural Genomics……………………………………… 21
 3.3 X-ray Crystallography…………………………………… 22
 3.4 Automated Electron Density Map Interpretation………… 24
 3.5 Database Approaches in Structural Bioinformatics……… 26
 3.6 Overview of the TEXTAL System………………………. 28
 3.7 Building the Backbone…………………………………… 31
 3.8 Building Side Chains…………………………………….. 33
 3.9 Post-Processing………………………………………....... 34

vii

CHAPTER Page

 3.10 Other TEXTAL Modules…………………………………. 35
 3.11 Quality of Models Built by TEXTAL……………………. 36
 3.12 Features in TEXTAL……………………………………... 38
 3.13 Feature-Based Approaches in Structural Bioinformatics… 41

 IV SLIDER…………………………………………………………… 43

 4.1 A Two-Phase Case Retrieval Strategy…………………… 43
 4.2 The SLIDER Algorithm…………………………………. 44
 4.3 A Linear Programming Approach to Feature
 Weighting………………………………………………… 50

 V RELATIONSHIP BETWEEN IMPROVING RANKING
 AND THE PROBABILITY OF SUCCESSFUL RETRIEVAL….. 53

 5.1 Probabilistic Analysis of the Relationship between
 Distance and Ranking……………………………………. 53

5.2 The Impact of Optimizing the Mean Rank
 of Matches……………………………………………….. 57

 VI EMPIRICAL RESULTS………………………………………….. 68

 6.1 Experimental Setup for SLIDER………………………… 68
 6.2 Analysis of the Weights Assigned by SLIDER…………. 71
 6.3 SLIDER’s Impact on Retrieval for Ideal Maps…………. 75
 6.4 Comparing SLIDER to Other Feature Selection
 and Weighting Algorithms………………………………. 81

 VII DATABASE RETRIEVAL AND FEATURE WEIGHTING:
 APPLICATION TO PROTEIN CRYSTALLOGRAPHY………... 85

 7.1 Size of the TEXTAL Database…………………………….. 85
 7.2 Composition of the TEXTAL Database……………………. 87
 7.3 Distribution of Amino Acids………………………………. 90
 7.4 Definition of a True Match for a Side Chain………………. 91

7.5 Density Correlation and Feature-Based Distance………….. 96
 7.6 SLIDER’s Impact on Retrieval for Real Maps……………. 100

 7.7 Interpretation of Feature Weights……………………......... 101

 VIII CONCLUSION…………………………………………………… 105

 8.1 Feature Weighting and SLIDER………………………… 105
 8.2 Application to Protein Crystallography…………………. 107

viii

 Page

 8.3 Limitations and Future Work……………………………. 108

REFERENCES………………………………………………………………. 111

VITA………………………………………………………………………… 125

ix

LIST OF FIGURES

 FIGURE Page

3.1 Generic structure of an amino acid…………………………………… 19

3.2 Secondary and tertiary structures in proteins………………………… 20

3.3 Example of electron density around a fragment of a protein……..….. 24

3.4 Architecture of the TEXTAL system………………………………… 30

 3.5 Models of tryparedoxin-I, a monomer of 147 residues……………… 38

4.1 Finding a “crossover” weight………………………………………… 46

4.2 Finding the optimum weight w*……………………………………… 48

4.3 The SLIDER algorithm………………………………………………. 50

 5.1 Probability density functions of Euclidean distance for similar
 and different cases……………………………………………………. 54

 5.2 Special case of probability density functions………………………… 55

 5.3 Special case of distance distributions where the distance metric
 completely misleads similarity assessment………………………….... 56

5.4 Weight update in SLIDER leads to “separation” between PS and PD.... 59

5.5 Distribution of Euclidean distances for a random query electron
 density region…………………………………………………………. 60

5.6 Cumulative distribution functions CS and CD before and after
 updating feature weights………………………………………………. 61

5.7 Probability density functions after an affine transformation………….. 65

6.1 The number of “good matches” � grows exponentially with
 tolerance �…………………………………………………………….. 71

6.2 The relative weights of 76 features returned by SLIDER for L1
 (Manhattan), L2 (Euclidean), and L3………………………………….. 74

6.3 Weighted Manhattan metrics find more matches than non-weighted
 Manhattan distance……………………………………………………. 77

6.4 Continuous weights are more effective than binary weights (using
 Euclidean distance) in retrieval of matching electron density patterns
 from a database………………………………………………………... 78

x

 FIGURE Page

6.5 Weighted L3 metrics outperform the non-weighted (uniform)
 L3 metric………………………………………………………………. 78

6.6 Weighted Manhattan metrics find more matches than the
 non-weighted Manhattan metric………………………………………. 79

6.7 Continuous weights are more effective than binary weights (using
 Euclidean distance) in retrieval of matching electron density patterns… 79

6.8 Weighted L3 metrics outperform the non-weighted (uniform) L3
 metric…………………………………………………………………... 80

6.9 Weighted metrics retrieve more matches with the same residue
 identity than non-weighted metrics…………………………………… 80

6.10 Effectiveness of various weighted and non-weighted metrics………… 81

6.11 Weighted Euclidean distance places more matches in the top 400
 cases than non-weighted Euclidean distance…………………………. 83

6.12 Weighted Euclidean distance places more matches in the top k cases
 than non-weighted Euclidean…………………………………………. 84

6.13 SLIDER is more effective in weighting features (such that true
 matches are highly ranked and retrieved from the TEXTAL database)
 as compared to other standard feature weighting and selection
 algorithms…………………………………………………………….... 84

7.1 Quality of models built by TEXTAL with databases of various sizes… 87

7.2 Quality of models built by TEXTAL with databases of ideal and real
 maps…………………………………………………………………… 88

7.3 Quality of models built by TEXTAL with databases of maps that are
 scaled and those that are not scaled……..…………………………….. 89

7.4 Distribution of amino acids in TEXTAL’s database………………….. 90

7.5 Sensitivity of prediction of amino acid type using an SVM classifier… 93

7.6 Specificity of prediction of amino acid type using an SVM classifier… 94

7.7 Scatter plot of the number of rotamers vs. the sensitivity of pattern
 recognition for the 20 amino acids…………………………………….. 95

7.8 Scatter plot of the number of rotamers vs. the specificity of pattern
 recognition for the 20 amino acids…………………………………….. 95

7.9 Distribution of density correlation coefficient (CC) for 1000 random
 pairs from the TEXTAL database……………………………………... 96

xi

 FIGURE Page

7.10 Distribution of density correlation coefficient (CC) between a
 random region and the top 400 cases filtered (using a feature-based
 distance) from the TEXTAL database……………………………….. 97

 7.11 The mean density correlation coefficient (CC) increases with top
 k cases pre-selected…………………………………………………... 98

xii

 LIST OF TABLES

 TABLE Page

3.1 Quality of models that TEXTAL outputs…………………………….. 37

3.2 Definitions of features used in TEXTAL…………………………….. 40

6.1 Irrelevant features…………………………………………………….. 72

6.2 Relevant features……………………………………………………… 73

7.1 Number of rotamers for each amino acid……………………………… 94

7.2 Absolute rank of matches filtered by Euclidean distance………..….… 99

7.3 Performance of TEXTAL, with and without SLIDER weights………. 101

7.4 Feature weights at different radii……………………………………... 102

1

CHAPTER I

INTRODUCTION

1.1. Feature Relevance

A central problem in machine learning is that irrelevant features (or attributes) tend to

mask relevant ones, leading to inefficient learning and inaccurate predictions (Blum and

Langley, 1997). Feature selection is thus receiving much attention, especially with the

emergence of very large (and rich) data sets in applications like information retrieval,

document classification, microarray analysis, proteomics, etc. (Liu, 2005). By

eliminating irrelevant and redundant attributes, we can significantly reduce the volume

of data needed for learning, and thereby improve the efficiency and robustness of

learning, enhance prediction accuracy, augment comprehensibility of models built, and

in certain cases, make data acquisition less expensive.

The importance of feature selection cannot be overemphasized. No learning algorithm

can compensate for poor feature selection, like predicting gas mileage based on the color

of a car. Feature selection has become indispensable for large, real-world data sets,

sometimes involving as many as 100,000 features (in document classification or

genomics, for example). Forman (2005) shows that how the performance of the naïve

Bayes classifier degrades rapidly with addition of more than 50 features in the field of

text classification. Even robust learning algorithms like support vector machines (Vapnik,

1998) will perform significantly better with irrelevant features discarded. Almuallim and

Dietterich (1994) formally analyze the inductive bias that prefers hypotheses definable

over as few features as possible in Boolean domains. They establish a lower limit for the

number training examples required to ensure PAC-learning (Valiant, 1984) a concept in

terms of the number of relevant and irrelevant features.

This dissertation follows the style of Bioinformatics.

2

Features are widely used to compare entities they are expected to describe. Cases or

instances are typically compared by a similarity (or distance) function based on

numerical features that describe the relevant aspects of the instances. Defining a suitable

feature-based measure of similarity is a fundamental requirement in pattern recognition

(Duda et al., 2001), instance-based learning (Aha, 1990), case-based reasoning

(Kolodner, 1993; Leake, 1996), and other machine learning techniques (Mitchell, 1997).

Typically, a preliminary set of many potentially useful features is defined first, and a

subset of these features is then automatically selected.

The central difficulty in automated feature selection is the intractability of exhaustive

search (there are 2n possible subsets of n features). There are many algorithms that have

been proposed for feature selection (Subramanian et al., 1997). These algorithms are

commonly categorized into two major groups: filters and wrappers. This distinction is

based on how feature subsets are evaluated. Filter methods (Kira and Rendell, 1992)

perform the evaluation by using some properties of the features involved, such as

correlations, information gain, dependencies, separability, etc. Wrapper methods (John

et al., 1994) use part of the data sample to iteratively evaluate subsets of selected

features by running the induction program itself, based on techniques such as cross-

validation.

The feature selection problem can also be thought of as a heuristic search over a space

of states, each of which represents a subset of features (Blum and Langley, 1997).

Another approach to determine feature relevance is to apply a weighting function to

features, which effectively assigns degrees of relevance to features (Littlestone, 1992).

1.2. Feature Weighting with SLIDER

In this work, we present a feature weighting algorithm called SLIDER (Gopal et al.,

2005b; Gopal et al., 2004c), in which numerical weights are assigned to features to

reflect their relevance in comparing instances (using a distance metric). Feature

weighting is a generalization of feature selection. The latter can be viewed as feature

weighting with only two possible weights, say 0 and 1. As we shall see later, our feature

3

weighting algorithm effectively does a lot of feature selection as well, by assigning

weights equal to 0, or negligibly small. We argue that feature weighting is a refinement

of feature selection, and can potentially improve over feature selection algorithms, at

least in certain domains. We later provide empirical results to support this claim.

Like many feature selection and weighting algorithms, SLIDER starts with an initial

set of weights, and iteratively selects new weights for evaluation, then does the

evaluation, and retains the weights if they are the best ones found so far. It stops when

finding even better weights seems unlikely, or is computationally too expensive. The

critical decisions that SLIDER makes in every iteration are: (1) selecting a new weight

vector for evaluation – out of an exponentially large set of options, and (2) evaluating the

weight vector to determine if it outperforms the current best one.

To evaluate or compare two weight vectors, one common (and intuitive) strategy is to

run the induction task itself on a known data set, using the different weight sets. This is

effectively a wrapper method, which may be expensive (as is typical of wrappers, which

must repeatedly run the underlying induction algorithm). SLIDER uses a simpler (and

less expensive) strategy to evaluate a set of weights. It is a filter approach that uses a

heuristic to assess how the feature-based distance measure ranks pre-determined matches

(of training instances) relative to a set of mismatches:

The heuristic that SLIDER uses to evaluate a set of weights is as follows: given a

training instance, we look at how well the distance metric (such as weighted Euclidean

distance) ranks an instance known to be similar to the training instance, relative to a set

of known different ones. This is done for a set of training examples, and the average

rank of the similar instances is a measure of how good the weight vector is.

Exhaustive search through a space of weights is intractable. Therefore, given a true

match and a true mismatch for an example, SLIDER focuses on only those weights

which cause the example to be equidistant to its match and its mismatch in Euclidean

space. These “crossover” weights are the ones that will influence the accuracy of ranking,

since the evaluation based on ranking of matches is more likely to change at the

crossover weights. This makes the search very effective i.e. by limiting the space of

4

weights to be searched, and identifying only the weights that are more likely to make a

significant difference, the efficiency and effectiveness of learning are largely ensured.

We emphasize the fact that SLIDER tries to maximize the number of instances (from

the training set) for which true matches are closer to training examples than mismatches

in weighted Euclidean space. An alternative approach would be finding weights such the

aggregate distance between instances and their matches is smaller than that between the

instances and their mismatches. As we shall discuss later, this alternative formulation can

be fairly efficiently solved by linear programming. However, we empirically show that

SLIDER outperforms the linear programming approach. The objective function that

SLIDER tries to optimize is a much harder problem (NP-hard, in fact), which justifies

the use of a heuristic function (based on ranking) to guide the search for optimal weights.

Next we now discuss how SLIDER is used to improve the efficiency of case retrieval,

based on a two-phase retrieval strategy that we propose for expensive case-based

reasoning systems.

1.3. Two-Phase Case Retrieval

Many case-based reasoning systems need a large database of cases for coverage of a

wide variety of problem instances. But large databases may cause degradation in

efficiency, especially if the case matching function to determine similarity is

computationally expensive (Smyth and Cunningham, 1996). Thus, we propose the use of

an approximate, inexpensive, feature-based distance metric (like Euclidean distance) to

filter a small number, say k, of potential matches, using the nearest neighbor rule (Fix

and Hodges, 1951) – a more accurate matching function is then used to do the final

ranking.

The feature-based similarity metric is expected to approximate a correct, objective,

and usually expensive matching method. By weighting the features with SLIDER, the

accuracy of the similarity metric is improved, and hence fewer potential matches needs

to be filtered to ensure retrieval of true matches.

5

This two-phase method for case retrieval has been previously proposed, in different

flavors and application domains. For example, Forbus et al. (2001) propose MAC/FAC

(for “many are called but few are chosen”), a general strategy for efficient, similarity-

based retrieval. Branting and Aha (1995) propose similar stratified or hierarchical case-

based reasoning methods in the planning domain. Other similar applications include

feature-based recognition of side chain contact environments (Mooney et al., 2005) and

information retrieval (Jones et al., 2000).

In this work, we provide a theoretical analysis to relate the impact of feature weighting

by SLIDER on the number of true matches in the top k ranked cases. We analytically

show that by minimizing the mean rank of matches (for a training set), we are separating

the distributions of distances between training cases and their matches as well as

mismatches, such that the distance metric is effectively improved. This leads to an

enrichment of the top k cases with more matches, and thus, the probability of getting a

true match ranked below k is increased.

1.4. Efficient Case Retrieval: an Application in Protein Crystallography

We describe the use of SLIDER and the two-phase case retrieval method in a

crystallographic protein model-building program called TEXTAL (Ioerger and

Sacchettini, 2003). TEXTAL uses artificial intelligence and pattern recognition to

automatically interpret electron density maps of proteins to determine their three-

dimensional (3D) molecular structures. TEXTAL uses a database of about 50,000

spherical regions of electron density patterns and their structures (from previously solved

maps) to interpret regions in a new electron density map (for a protein whose structure is

not known). Given an electron density pattern in a spherical region of the unknown

structure, we first select 400 density patterns out of the 50,000 cases in the database,

using a weighted distance metric based on 76 features (determined by domain experts)

that describe the electron density i.e. less than 1% of the database is filtered. The filtered

6

cases are then evaluated by a more expensive method (density correlation) to determine

truly matching structural fragments.

The weights of the 76 features in TEXTAL are determined by SLIDER. It should be

noted that a good match need not be the absolute best one according to the objective

metric. It can be any of the top few matches (based on a tolerance on how high we wish

the objective evaluation to be to qualify as a match). Given a query pattern, our aim is to

obtain as many good matches as possible (anywhere) in the top k, since the expensive

objective will re-rank the top k matches, and identify the truly good ones. The

effectiveness of this case retrieval system largely hinges on the ability of SLIDER to

assign appropriate weights to the features.

SLIDER and the case retrieval method proved to be important in the effectiveness of

TEXTAL, which is used in crystallography laboratories around the world. By assigning

feature weights judiciously, the distance metric is improved, and matches are efficiently

retrieved from a large database.

1.5. Dissertation Outline

The rest of this document is organized as follows:

• Chapter II discusses the feature selection and weighting problem in general, and

summarizes the main related work in the literature on artificial intelligence and

machine learning. We also provide a brief overview of the two machine learning

paradigms used in this work, namely case-based reasoning and nearest neighbor

learning.

• Chapter III provides more details on the application domain. First, we discuss the

principles and challenges of X-ray crystallography methods to determine protein

structures, and we summarize other work related to automated interpretation of

electron density maps. The TEXTAL system is then described in its entirety. This

will show how the case-based reasoning component is related to the other parts of

the system, and will provide the context and motivation for efficient case retrieval

7

and feature weighting. We also describe the features that experts defined in this

domain, and discuss the rationale behind these choices.

• Chapter IV describes the SLIDER algorithm in details. We also discuss a two-

phase case retrieval strategy that sets the context for SLIDER. We also present a

feature weighting approach based on linear programming, which is closely related

to SLIDER.

• Chapter V provides a probabilistic analysis to support the heuristic used to

evaluate weights in SLIDER, and shows how the method leads to an increased

probability of retrieving a true match from a database.

• Chapter VI presents empirical results in the protein crystallography domain from a

machine learning perspective. The experimental setup is first described and then

we provide an empirical analysis of SLIDER and the two-phase case retrieval

strategy. We also compare SLIDER to other well-known feature selection and

weighting algorithms.

• Chapter VII presents more empirical results with emphasis on the domain of

protein crystallography. We discuss the contribution of the methods we propose to

the field of automated electron density map interpretation.

• Chapter VIII concludes this work by summarizing its salient features, discussing

the limitations of the proposed methods, and describing prospects for future work.

8

CHAPTER II

 FEATURE SELECTION AND WEIGHTING

2.1. Feature Relevance

Automated reasoning and learning systems need information to work effectively. But

too much information may cause accuracy and efficiency to degrade. Thus determining

what information is relevant is an important endeavor in machine learning and data

mining – not only it simplifies the problem, but also avoids wastage of computational

effort. The human brain, it is believed, spends about 90% of its effort in discarding

inputs obtained through the senses (Subramanian et al., 1997). Assessment of relevance

in learning systems can be made for various types of information – a training example, a

proposition, an inference rule, a feature, past experience (in case-based reasoning), etc.

Any of these entities of information can be generally defined as irrelevant for a task if

the correct output does not change by a significant amount if the entity is changed;

otherwise the information entity is defined as relevant (Galles and Pearl, 1997). This

definition of relevance is by no means comprehensive. In fact, a general framework for

reasoning about relevance is hard to formulate. For instance, Kohavi and John (1997)

show that determining the relevance of features in an induction task cannot be made

independently of the induction algorithm. In (John et al., 1994), the difficulties of

defining relevance are highlighted, and different degrees of relevance (weak and strong)

are proposed.

Relevance of features is widely studied in machine learning and data mining tasks

(Blum and Langley, 1997; Pyle, 1999) like pattern classification (Jain and Zongker,

1997), instance-based learning (Aha, 1990), and case-based reasoning (Riesbeck and

Schank, 1989). In these applications, patterns or examples are typically compared to

detect similarities. Potentially useful features are generally defined by an expert, or

extracted by automated techniques (Liu and Motoda, 1998), and a subset of these

features is automatically selected (or highly weighted), based on their relevance to the

task at hand (Aha, 1998). This reduction in dimensionality generally speeds up the

9

learning algorithm, improves predictive accuracy, and makes the results more

comprehensible. Irrelevant features tend to mislead pattern matching; the problem is

particularly acute in nearest neighbor methods, where irrelevant features can seriously

hamper learning (Langley and Iba, 1993). For instance, Forman (2005) shows a decrease

of over 10% in classification accuracy with irrelevant features in a text classification

domain, using the naïve Bayes classifier.

Determining an optimal subset of features is intractable, since there are 2n possible

subsets of n features. Many feature selection problems have been shown to be NP-hard

(Blum and Rivest, 1992). A dimensionality in the order of a hundred is considered large,

and an exhaustive search of feature subset space is computationally prohibitive.

However, in recent applications there are datasets with tens to hundreds of thousands

features available. These trends pose new challenges to scale up and cope with the curse

of dimensionality.

Another recent trend is the increasing need and use of feature selection for clustering

with unlabeled data i.e. unsupervised learning (Dy and Brodley, 2004), as opposed to

feature selection for classification with labeled data (supervised learning).

Feature selection has been widely applied to a variety of applications. In text

classification (Forman, 2003), free text documents are categorized in to pre-defined

groups. Documents are usually represented by a “bag-of-words”, with typically tens of

thousands words (or features). Given the huge volume of documents available online,

such applications are gaining significant practical importance. Another information

retrieval area that is benefiting from feature selection is content-based image retrieval

(Rui et al., 1999; Yavlinsky et al., 2004), where large collections of images are handled

based on visual features rather than text-based annotations.

The rapid growth of genomic databases is also presenting many opportunities (and

challenges) for feature selection. For instance, gene expression microarray experiments

(Berens et al., 2005) handle the expression levels of thousands or tens of thousands of

genes. Thus, dimensionality reduction by filtering relevant genes is necessary for

10

effective data mining. The problem in this area is particularly challenging because the

number of samples or experiments (i.e. training instances) is often very limited.

2.2. Filters and Wrappers

In general, feature selection methods proposed in the machine learning literature can

be categorized into two major groups:

1. Filter methods try to build classifiers that take into account some properties of the

features involved, such as correlations, dependencies, separability, information gain,

etc. (Liu and Motoda, 1998). They evaluate the goodness of a feature subset (or a

single feature) by looking at the intrinsic characteristics of the training data,

independently of the induction algorithm (like classification). The feature selection is

done before the induction step; thus irrelevant features are filtered out before

induction occurs. For instance, in RELIEF, Kira and Rendell (1992) use a statistical

measure of relevance, based on similar and different instances, where similarity and

difference is measured by Euclidean distance.

2. Wrapper methods use part of the data to iteratively evaluate the subset of selected

features using performance on the induction algorithm for evaluation; this is done by

techniques such as cross-validation. In wrapper methods, features are selected by

taking the bias of the induction algorithm into account (John et al., 1994). The

advantage of wrapper methods is that the induction method is expected to provide a

better estimate of accuracy, as compared to filter-based methods that have imperfect

inductive biases. The disadvantage of wrappers is their high computational cost.

Wrappers solve the real problem many times over to search for the relevant features,

and can thus be very time-consuming. Filters are usually much faster since they try to

solve a simpler version of the problem; but this surrogate may not be an appropriate

measure of true performance. There are several hybrid algorithms that have been

proposed to combine the two models, for instance by pre-determining candidate feature

subsets using a fast and independent performance measure (i.e. a filter approach), and

11

making the final selection of the best subset using the induction algorithm, as in a

wrapper (Das, 2001).

2.3. Feature Selection as a Heuristic Search

The feature selection problem can also be thought of as a heuristic search over a space

of states, each of which represents a subset of features (Blum and Langley, 1997). In this

search paradigm, the following need to be defined: (1) the starting state, (2) the

organization of the search, or how to generate feature subsets, (3) how to evaluate

alternative feature subsets, and (4) when to stop. For example, in forward selection, we

start with an empty feature set and iteratively add features. In backward elimination, we

start with all features, and then remove one feature at a time. The search can also start

from both ends, with features added and removed simultaneously (i.e. bidirectional). It

is possible to get trapped in local optima; this can potentially be addressed by starting

from a randomly generated state, or introducing stochasticity through techniques like

random-start hill climbing or simulated annealing (Russel and Norvig, 1995). In

(Devijver and Kittler, 1982) and (Liu and Yu, 2005), several methods to organize the

search and reduce the search space are presented.

2.4. Feature Weighting

In feature weighting, degrees of perceived relevance are assigned to features. Feature

selection is a specific case of feature weighting, where only two alternative weights (say

0 and 1) are used. Most feature weighting methods employ some variation of gradient

descent, in which all the weights are updated simultaneously e.g. the perceptron update

rule (Rosenblatt, 1958), least-mean squares (Widrow and Hoff, 1960), and neural

networks (Baluja and Pomerleau, 1997). For instance, in Winnow (Littlestone, 1992),

weights are updated in a multiplicative manner, rather than an additive one as in a

perceptron. Feature weighting has also been implemented as a filter method, for example

by using conditional probability distributions (Stanfill, 1987), or information-theoretic

metrics (Daelemans et al., 1994). Finally, a wrapper approach to feature weighting can

12

also be employed, like in DIET (Kohavi et al., 1997), where instead of feature subsets, a

space of discrete space weights is searched.

Weighting of features when computing distance corresponds to stretching the axes in

the Euclidean space, such that the axes for more relevant features are lengthened, and

shortened for axes of less relevant ones. A major disadvantage of this increase in the

number of possibilities of defining distance is a higher risk of overfitting i.e. the training

data is modeled too well, such that the performance over new problems is poor.

Blum and Langley (1997) argue that feature selection is most natural when the result

is expected to be understood and interpreted by humans, or fed into another algorithm.

Feature weighting, on the other hand, are generally purely motivated to enhance the

performance of the induction algorithm. But it has also been argued that there may be

little benefit in increasing the number of possible weights beyond two (0 and 1). More

fine-grained weighting may degrade performance due to overfitting (Kohavi et al.,

1997).

Another approach is discriminate among the contribution of various features is

through feature ranking, for instance by using metrics like the Pearson correlation

coefficient, or Fisher’s criterion (the ratio of the between-class variance to the within-

class variance). Many algorithms adopt this approach to feature selection because of its

simplicity, scalability, and good predictive accuracy in real-world datasets (Guyon and

Elisseeff, 2003; Bekkerman et al., 2003; Weston et al., 2003).

2.5. Context-Sensitivity and Feature Interaction

A different type of criterion for determining feature or attribute relevance is sensitivity

to the context. Different features may be relevant for different instances, making

attribute relevance a function of the instance and sensitive to the location in the feature

space. This motivates local feature weighting methods (Domingos, 1997; Howe and

Cardie, 1997; Grenier et al., 1997). Nonetheless, in this work we assume that relevance

of features is global, independent of the instance.

13

Another facet of the feature weighting problem is feature interaction. Sometimes

information is shared among attributes, and one attribute is effectively meaningful when

considered in conjunction with other attributes (Ioerger, 1999; Jakulin and Bratko,

2004). Thus, an attribute may appear irrelevant when analyzed independently, but its

relevance manifests itself when combined with other attributes.

2.6. Classification vs. Ranking

Learning a weighted distance metric for the purpose of nearest neighbor classification

has been widely studied and successfully applied (Short and Fukunaga, 1980; Stanfill

and Waltz, 1986; Paredes and Vidal, 2006; Kohavi et al., 1997). Nonetheless, we often

wish to retrieve instances, such as relevant documents from the web, or potentially

useful planning solutions from a plan library. In these applications, there is no explicit

classification, and similarity is usually measured by a continuous metric – the objective

is to rank, rather than classify instances. In this work, we focus on finding relevant

features for the purpose of ranking and retrieval, rather than classification.

The optimization of ranking is a widely studied problem. In (Burges et al., 2005) a

gradient descent method called RankNet is proposed to rank search results from the

Web. Joachims (2002) uses a support vector machine approach for learning retrieval

functions of search engines, utilizing clickthrough data for training. RankBoost is an

algorithm that combines a collection of ranking or preference functions based on a

boosting approach to learning (Freund et al., 2003). In (Cohen et al., 1997) and (Dwork

et al., 2001), other methods are proposed to combine multiple preference functions to

create an ordering, and applied to Web searches.

14

2.7. Previous Work Related to SLIDER

SLIDER’s strategy to optimize the weighted Euclidean distance for the purpose of

case ranking and retrieval can be related to research in the following two areas: feature

selection, and learning how to rank instances.

We earlier presented various approaches to feature selection, such as filters and

wrappers. In particular, RELIEF (Kira and Rendell, 1992; Kokonenko, 1994; Sun and Li,

2006) adopts a filter approach to select features. Somewhat like SLIDER, RELIEF uses

training data that consists of triplets of an instance X, its near-hit, and its near-miss (i.e.

two instances in the close neighborhood of X in Euclidean space, where the near-hit is in

the same class as X, whereas the near-miss is in a different class). RELIEF uses the

training data to iteratively compute a feature weight vector representing the relevance of

the features, and a feature is selected if its relevance value is above a threshold. Given

each training triplet, the relevance value for each feature is adjusted by an amount

directly proportional to square of the distance (based on that feature) between X and its

near-hit and near-miss. In contrast, SLIDER does not adjust weights based on an

aggregate of distance values, but rather on the number of times a training instance is

closer to its match in Euclidean space, as compared to a mismatch.

There are other methods that, like SLIDER, concentrate on learning to order (rather

than classify). For instance, Cohen, Schapire and Singer (1997) address the problem of

finding an ordering that agrees with a known preference judgment or feedback (which is

analogous to our strategy of looking at known matches and mismatches). They first learn

a binary preference function, which returns a numerical measure of how certain one

instance should be ranked before another. Then, the learned preference function is used

to order a set of instances such that the total ordering agrees, as much as possible, with

all pairwise preference judgments (based on the learned preference function). The

problem of finding a total order that agrees best with the preference function is shown to

be NP-hard. We should point out that in SLIDER, the ultimate aim is not a total order of

instances – rather it is the more modest objective of ranking the (rare) matches as best

15

possible. Nonetheless, in our attempt to optimize feature weights, we try to maximize the

number of instances (in a training set) with correct pairwise preference judgments.

In the next two sections, we provide a brief overview of the two machine learning

techniques that underlie our feature weighting algorithm, namely case-based reasoning

and nearest neighbor learning. In this work, weighted features are used to measure

similarity between instances through nearest neighbor learning. This enables efficient

case retrieval in case-based reasoning systems that involve large databases.

2.8. Case-Based Reasoning

Case-based reasoning, or CBR (Riesbeck and Schank, 1989; Kolodner, 1993; Leake,

1996) is a problem solving paradigm where domain expertise is captured in a database of

specific knowledge of concrete past situations (or cases), instead of general rules that

relate problems and their solutions. Each case typically contains descriptions of the

problem and its solution; the knowledge and reasoning that were needed to solve past

problems are not recorded, but are implicit in the solutions.

CBR is a type of instance-based learning (Aha, 1990) where a general, explicit

description of the target function is avoided. This approach is also referred to a lazy

learning (Aha, 1997), since all inference (such as classification) is deferred to the time

when a new problem is encountered. The advantage of this kind of delayed learning is

that instead of formulating solutions for the entire space of problems, reasoning is done

locally (and differently) for every new problem. But the major disadvantage is that all

computation is done at the time when a problem needs to be solved, and not when cases

themselves are encountered.

Thus case retrieval can be computationally very expensive in CBR systems, especially

when case matching is expensive and the database of solved cases is large. Typically,

large case libraries are necessary for good problem coverage and quality solutions

(Smyth and Cunningham, 1996). A lot of CBR research is devoted to the organization

and indexing of the case library to make case retrieval as quick and accurate as possible.

16

 A CBR approach to solve a new problem typically involves the following main

processes:

1. Case matching and retrieval: The new problem is compared to the library of past

cases, and the most similar case (or cases) is retrieved. A set of relevant problem

descriptors needs to be defined to match cases. A similarity measure is typically used

to compare cases, and some sort of similarity threshold is needed to select the best

cases.

2. Case reuse: The information and knowledge in cases retrieved are used to solve the

new problem.

3. Case revision: If necessary, the solution is revised and adapted. Revising the solution

generated by the reuse process is necessary when the solution proves incorrect. This

also provides an opportunity to learn from failures (Hammond, 1989).

4. Case retention: The new problem and its solution are (optionally) retained as a new

case, depending on how useful it is expected to be in solving future problems. This

step involves deciding what information to retain, how to retain it, and how it should

be indexed for future retrieval.

2.9. Nearest Neighbor Learning

Nearest neighbor (NN) learning is a simple form of instance-based, lazy learning that

has been thoroughly studied and applied (Cover and Hart, 1967; Fix and Hodges, 1951).

The nearest neighbor algorithm represents all instances or cases as points in the n-

dimensional space, where each of the n dimensions correspond to a numerical feature

that describe the instance i.e. any instance in the space is represented by a vector of n

features. The nearest neighbors of an instance are those that are closest to the instance in

the space, based on a distance measure such as Manhattan, Euclidean (or Minkowski

distance, in general), Mahanalobis, and other more sophisticated measures (such as those

based on statistical properties of the data).

17

Nearest neighbor learning can be used to classify instances into one of a finite set of

classes i.e. the target function is discrete-valued. This function can be real-valued as

well, where the true difference between two instances is in terms of a continuous value.

It may be misleading to consider only the single closest neighbor (as in 1-NN) because

the chances of error may be very high. Typically we consider k nearest neighbors (k-

NN). These k neighbors may have the same weight, or can be weighted differently, for

example by assigning greater weight to closer neighbors. If weights are to be assigned,

then all examples can be considered (Shepard, 1968) – examples far way will have

practically no influence in classification or predicting the target function.

Nearest neighbor algorithms have proven to be effective for many practical problems.

It is robust to noise, especially since averaging over k neighbors reduces the impact of

noisy examples. Also, it handles large training sets well. Nonetheless, being a lazy

learner that delays all computation until a new instance is encountered, the efficiency of

learning can be an issue, which may require better indexing methods, such as kd-trees

(Bentley, 1975).

An important problem in nearest neighbor methods is that the distance between

instances is based on all features. While other learning methods (such as decision trees or

rule-based systems) narrow down the set of features when formulating the hypothesis,

nearest neighbor learning generally does not discriminate between relevant and irrelevant

features. Irrelevant features are effectively forms of noise, and be can be very misleading

in the measurement of similarity between instances. As the number of features (irrelevant

ones, in particular) increases, the curse of dimensionality becomes very serious.

18

CHAPTER III

X-RAY PROTEIN CRYSTALLOGRAPHY

3.1. Proteins

Proteins are large and complex macromolecules that are essential to the chemical

processes in living systems. For example, enzymes are proteins that are responsible for

catalyzing the thousands of chemical reactions in the cell. Lysozyme is an example of an

enzyme that helps fight bacterial infections. Proteins also include hormones that regulate

metabolism e.g. insulin stimulates the uptake of excess glucose by liver cells for

conversion to glycogen. Other functions of proteins include transportation (e.g.

hemoglobin found in red blood cells carry oxygen from the lung to the tissues),

mechanical work (e.g. actin and myosin, which enable contraction in the muscle), etc.

Proteins also play signaling, regulatory, and immune-response roles in cells.

Proteins are made up of amino acids (also called residues) that are linked through

covalent chemical linkages known as peptide bonds. The amino acids form linear

polymeric structures called polypeptide chains. Typically these chains contain 100 to

1000 amino acids, arranged in a specific order for a given protein. The average number

of residues in natural proteins is about 300. There are twenty unique amino acids that are

commonly found in nature. Every amino acid has the same generic structure (Figure 3.1):

There is a central carbon atom (called C�) that is bonded to a hydrogen atom, a carboxyl

group, an amino group, and a side chain or “R” group. Thus the � carbon atom in amino

acids is chiral (except when the R group is a hydrogen); all amino acids found in

proteins occur in the L-configuration about the chiral carbon atom (Murray et al., 2000).

The R group gives an amino acid its particular characteristics. The physicochemical

properties of a protein are determined by the analogous properties of the amino acids in

it.

19

Fig. 3.1. Generic structure of an amino acid. The � Carbon atom (C�) is linked to a hydrogen
atom, an amino group (-NH2), a carboxyl group (-COOH), and a side chain (or “R” group).

In the polypeptide chain of a protein, the carboxyl group of one amino acid links with

the amino group of the next amino acid in the protein sequence. A protein is typically

viewed as a main chain or backbone (which is the chain of C� atoms, connected through

another carbon and an oxygen), with side chains hanging off the C� atoms.

The side chains vary in their complexity and properties. For example, the side chain of

glycine is simply a hydrogen, whereas the side chain of tryptophan is aromatic (i.e. it

contains the benzene ring). Amino acids are classified by the chemical nature of their

side chains. One useful classification is in terms of polarity and affinity to water: the

polar amino acids have side chains that interact with water (hydrophilic), while those of

non-polar amino acids do not (hydrophobic).

The term primary structure denotes the precise linear sequence of amino acids that

constitutes the polypeptide chain of the protein molecule. The interaction of sequential

amino acid subunits results in secondary structures, such as part of a chain twisted into a

linear helix (called the �-helix). Another common secondary structure consists of two or

more sequences within the same protein that are arranged adjacently and in parallel, but

with alternating orientation such that hydrogen bonds can form between the two strands.

These are called �-pleated sheets. The side chains in a � sheet structure may also be

arranged such that the adjacent side chains on one side of the sheet are mostly

hydrophobic, while those adjacent to each other on the alternate side of the sheet are

C� N

R

 C

 H

H

H O

O

H

20

mostly hydrophilic. Some sequences involved in a � sheet take a hairpin turn in

orientation, when traced along the backbone.

Every protein has a characteristic 3D shape, known as the tertiary structure (Figure

3.2). Fibrous proteins, such as collagen, consist of roughly parallel polypeptide chains

forming fibers or sheets, and are usually not soluble in water. Globular proteins tend to

be tightly and extensively folded into an ellipsoid or sphere. Two or more chains that are

linked by weak forces and that behave mostly as a single structural and functional entity

are said to exhibit quaternary structure.

Fig. 3.2. Secondary and tertiary structures in proteins. Shown is the cartoon of mycobacterium
tuberculosis SecA, a protein whose structure was solved in the Sacchettini Lab at Texas A&M
University.

21

Proteins may also shift among several similar structures in performing their biological

function. These tertiary or quaternary structures are usually referred to as conformations,

and transitions among them are called conformational changes.

The precise 3D shape of a protein molecule is referred to as its native state; the protein

generally needs to be in its native structure to perform its biological function. A protein

usually folds into its native state based only on the sequence of amino acids. Sometimes

special molecules called chaperones help proteins fold into the correct 3D shape, or

conformation. In a seminal study, Anfinsen and his collaborators (1954) showed that the

sequence of amino acids in a polypeptide chain determines the folding pattern. That is,

the intricate process of protein folding could be completely explained by the physical

and chemical interactions among the residues.

 If the 3D structure of a protein is altered (by changing the temperature, pH or salt

concentration for instance), the protein is said to be denatured, which usually results in a

loss of biological activity. Protein misfolding can cause diseases like Alzheimer's, cystic

fibrosis, mad cow disease, and many types of cancer.

Diseases are also caused by mutations in a person’s DNA, since these errors often

change the amino acid composition of proteins encoded by genes. For instance, cells

with altered enzymes may lose the ability to catalyze certain chemical reactions, or cells

with a mutant receptor may fail to bind to that receptor’s ligand.

3.2. Structural Genomics

Determination of the native 3D structure of proteins, and of how folding (and

misfolding) occurs are important endeavors. Knowledge of a protein structure is

essential to fully understand how the protein functions, and how to change the function

by protein engineering. The structure helps understand the protein’s role in diseases, and

the design of drugs (for example, inhibitors).

In the past few years, the genomic sequence databases have grown phenomenally. The

entire genomes of the human, plus those of various organisms are now known and

accessible. Keeping up the protein structure determination rate with this growth of

22

genomic information has become a major challenge. In fact, the ratio of solved crystal

structures to the number of discovered proteins is about 0.15 (Tsigelny, 2002). This

wealth of sequence information can serve as the foundation to developing a

comprehensive view of the protein structure universe. Structural genomics (Burley,

1999) is a worldwide initiative aimed at determining a large number of protein structures

mainly by high-throughput X-ray crystallography and Nuclear Magnetic Resonance

(NMR) spectroscopy methods. The initiative is expected to yield a large number of

experimental protein structures (tens of thousands) and an even larger number of

calculated comparative protein structure models (millions). This will have tremendous

impact on all areas of biological science, including human health and diseases, natural

ecosystems, plant genetics, etc.

3.3. X-ray Crystallography

X-ray crystallography is the most widely used technique to accurately determine the

structure of proteins and other macromolecules. It is based on the fact that X-rays can be

diffracted by crystals. X-rays are scattered by the electrons around atoms, and this

scattering from periodic arrangements of atoms in a crystal results in diffraction patterns.

These patterns are detected and used to reconstruct the electron density, from which the

macromolecular model (i.e. atoms and their coordinates) can be determined. X-ray

crystallography usually produces accurate molecular structures, from global folds to

atomic-level bonding details.

Crystallographic structure determination involves many steps: first the protein has to

be isolated, purified, and crystallized. After crystallization, X-rays are shone through the

crystal and diffraction data (intensities of diffraction spots) are collected. The diffraction

pattern can in principle be used to reconstruct a map of the electron density around the

molecule by inverse Fourier transform, although phases for the structure factors (Fourier

coefficients) have to be estimated. This is necessary because the diffraction spots contain

information only about the amplitudes of diffracted waves; the phase information, which

is also required for calculating the map, is lost. Approximate phase information can be

23

obtained by a variety of experimental techniques, including multi-wavelength anomalous

diffraction, multiple isomorphous replacement, and molecular replacement (McRee,

1999a).

The sample of diffraction spots at which intensities can be collected is limited, which

constrains the degree to which atoms can be distinguished from one another. This

imposes limits on the resolution of the map, measured in Å (or Angstrom, where 1 Å =

10-10m). The resolution is determined by a variety of experimental factors. At 4 Å, the

backbone may appear connected, but side chains might not be very distinguishable. At 3

Å, it may be possible to discriminate a few residues. In 2 Å maps, all residues usually

appear quite distinct, and at 1 Å, we can even see the density around individual atoms.

In the majority of cases, data can be collected only at medium resolution. Thus, the

major focus (and challenge) of automated map interpretation is for the 2-3 Å resolution

range.

There have been many recent improvements in many areas of X-ray crystallography.

For instance, developments of gene technology allow expression of large amounts of

proteins, which enables trying a larger variety of crystal growth conditions; this

improves the chances of obtaining suitable crystals. The process can be further speeded

up by the use of crystallization robots. Other significant advances include new X-ray

detectors (like electronic area detectors) and X-ray sources (such as high energy electron

or position synchrotrons). The use of more intense X-ray radiation allows for rapid data

collection, and thus less damage to the crystal, which can therefore be used for longer

periods and in smaller sizes.

However, the model-building step in protein crystallography remains a major

bottleneck. Manual interpretation of maps is time-consuming and error-prone, especially

if the data quality is poor. The automation of map interpretation has proven to be

difficult because it requires extensive domain knowledge and experience.

24

3.4. Automated Electron Density Map Interpretation

The final step in protein crystallography is model-building, or determining

coordinates of atoms from an electron density map. Model-building is typically a two-

stage process. First, the path of the polypeptide chain through the density is determined.

Then, amino acids are fitted into the density map; each amino acid has several rotational

degrees of freedom and can adopt various conformations. The directionality of the chain

must also be determined. Computer graphics programs are widely used to visualize and

manipulate the model as well as the density in 3D. Contoured meshes are used to portray

the density at various levels of detail (Figure 3.3). Fitting of maps is a decision-making

process that must take into account factors like the quality of the electron density,

stereochemistry of amino acids, recognition of secondary structures, etc.

Fig. 3.3. Example of electron density around a fragment of a protein. The fragment shown
consists of two strands of a �-sheet in exocytosis-sensitive phosphoprotein. The electron density
map has been calculated from the solved structure at 2.8 Å. This image was generated with
PyMOL (W.L. DeLano, http://www.pymol.org).

Once a preliminary structure has been built, it can often be used to obtain better phase

information and generate an improved map, which can then be re-interpreted. This

25

process can go through many cycles, and it may take weeks or sometimes months of

effort for an expert crystallographer to produce a refined structure, even with the help of

molecular 3D visualization programs. The difficulty of manual structure determination

depends on factors like the size of the structure, resolution of the data, complexity of the

molecular packing, etc. There can be many sources of errors and noise, which distort the

electron density map, making interpretation difficult (Richardson and Richardson, 1985).

There is also a subjective component to model-building (Mowbray, 1999; Branden and

Jones, 1990); decisions of an expert are often based on what seems most reasonable in

specific situations, based on background knowledge and experience.

Various tools and techniques have been proposed for automated map interpretation:

treating model-building and phase refinement as one unified procedure using free atom

insertion in ARP/wARP (Perrakis et al., 1999), fitting �-helices and �-sheets, followed

by local sequence assignment and extension through loops in MAID (Levitt, 2001),

template matching and iterative fragment extension in RESOLVE (Terwilliger, 2002),

C� tracing, fuzzy logic sequence assignment and real-space torsion angle refinement in

X-AUTOFIT (Oldfield, 2003), artificial intelligence and expert systems (Feigenbaum et

al., 1977; Terry, 1983), molecular-scene analysis (Leherte et al., 1997), using templates

from the Protein Data Bank (Jones et al., 1991), template convolution and other FFT-

based approaches (Kleywegt and Jones, 1997), using a database of protein domains in

DADI (Diller et al., 1999), artificial intelligence and pattern recognition techniques in

TEXTAL (Ioerger and Sacchettini, 2003), etc. Many of these approaches require user-

intervention or work well only with high quality data. TEXTAL, however, has been

designed to be fully automated, and to work with medium quality data (around 2.8 Å

resolution). Most maps are, in fact, noisy and fall in the low-medium resolution category

due to difficulties in protein crystallization and other limitations of the data collection

methods.

26

3.5. Database Approaches in Structural Bioinformatics

The determination of the 3D structure of proteins is an important and challenging

problem, especially with the rapid growth of protein sequence data derived from large-

scale DNA sequencing efforts, such as the Human Genome Project (Collins et al., 2003).

Despite the advances in structural genomics (Chandonia and Brenner, 2006), the output

of experimentally determined protein structures (typically by X-ray crystallography or

NMR spectroscopy) is lagging far behind the output of protein sequences.

A number of computational approaches have also been proposed for protein structure

prediction from the sequence (Baker and Sali, 2001). For instance, ab initio techniques,

such as molecular dynamics, tries to solve a structure from basic principles, such as

finding the minimum energy configuration that a protein folds into. But these methods

typically require vast computational resources, and have thus been applied to very small

proteins. Comparative techniques (such as homology modeling and threading) use

solved structures as templates to predict new structures (Bowie et al., 1991; Zhang and

Skolnick, 2005). Despite advances in these techniques, protein structures are still largely

solved by time-consuming and expensive experimental methods: around 90% of the

structures available in the Protein Data Bank have been determined by X-ray

crystallography. Roughly 9% of the known protein structures have been obtained by

NMR.

The arguments for database approaches in structural bioinformatics are compelling:

although there are a huge number of actual proteins (millions), there is a limited set of

structural motifs that exist in all proteins (thousands). A significant portion of new

protein structures contain folds that are related to those seen before. Furthermore, the

underlying difficulty of protein structure determination or prediction is the

astronomically large number of possible conformations a polypeptide chain can fold into,

given that an unfolded polypeptide chain has a very large number of degrees of freedom

(Levinthal, 1968). Thus, exploiting existing solutions is a natural approach to solve

protein structures. This is the basis of comparative (or homology) modeling, and related

27

methods such as sequence comparison (Altschul et al., 1997) and Hidden Markov

Models (Krogh et al., 1994).

In crystallographic model-building, there are a number of database approaches that

have been successfully used. One of the first applications of structural databases was

described by Jones and Thirup (1986). They observed that some structural components

could be constructed from other similar ones (such as the two turns in retinol-binding

protein that could be reconstructed from only three other protein structures). They went

on to create a database consisting of a small number (initially 37) of well-refined high-

resolution protein structures that could be used to construct new protein models using

crystallographic data, NMR data, or homology modeling (Jones and Thirup, 1986).

Another example is ESSENS (Kleywegt and Jones, 1997), a routine that interprets

electron density maps by recognizing given templates at each point of the map through

an exhaustive six-dimensional search in real space. This idea was extended by Cowtan

(1998), who used FFT methods to improve the search in reciprocal space in the FFFEAR

program.

The idea behind DADI (Database Assisted Density Interpretation) is similar. DADI

interprets electron density maps through the use of a small database of protein domains

(Diller et al., 1999). The rationale behind DADI’s approach is to exploit redundancy in

protein domains by first working with entire domains, then with the secondary structure

elements of these domains, and finally with individual residues of the secondary

structure.

RESOLVE (Terwilliger, 2003) is another program that interprets electron density

maps by using existing solved structures. First, secondary structures (�-helices and �-

strands) are located and constructed from templates derived from refined protein

structures. Then, fragment libraries consisting of sequences of three amino acids are

used to extend the initially determined helices and strands.

McRee (1999b) also proposed methods to build the main chain and side chains by

fitting an electron density map with fragments from a main chain library, and a rotamer

library of side chains. A more recent system is Automatic Crystallographic Map

28

Interpreter (ACMI), which uses a probabilistic model known as a Markov field to

represent the protein (Dimaio et al., 2006). Residues are modeled as nodes in a graph,

while edges model pairwise structural interactions. ACMI uses a library of templates (of

5 connected residues) to match side chains locally.

TEXTAL (Ioerger and Sacchettini, 2003) uses of database of 200 proteins (electron

density maps and their structures) to build side chains in a new map by finding matching

(local) density patterns, and retrieving their corresponding structures. It should be noted

that TEXTAL finds matching side chains locally, independent of neighboring side

chains, and of the sequence. This is different from other database approaches, like

RESOLVE and ACMI, where alignment with the sequence is factored in when matching

templates are selected. In TEXTAL, there is an independent sequence alignment step

that is performed after building a preliminary model.

3.6. Overview of the TEXTAL System

TEXTAL is a program that uses artificial intelligence and pattern recognition

techniques to fully automate electron density map interpretation, thereby saving

considerable effort and time required by human experts to solve a protein structure.

TEXTAL takes a real-space pattern recognition approach to model-building. It has been

designed to be robust to noise, and has been optimized for medium resolution X-ray

diffraction data (in the 2.4 to 3.0 Å range).

TEXTAL tries to mimic the typical strategy employed by human crystallographers

when they interpret electron density maps. It adopts a divide-and-conquer, multi-stage

approach to the problem, involving three main steps:

First, it builds a set of chains of C� atoms representing the backbone. (Recall that

C� atoms are the connection points along the backbone where the side chains are

attached). This is done by using a neural network to predict the positions of the C�

atoms that lie along the backbone trace (medial axis of the density contours), and

connecting them to form chains of C�s.

29

Second, side chains are fitted into the density based on pattern recognition of the local

density around the C� atoms. A case-based reasoning approach is used for fitting side

chains, where we match the density regions around C�s with instances in a database of

regions, retrieve corresponding residue structures (i.e. atomic coordinates) that best fit

the density, and concatenate them to build a complete structure.

Third, the structure is refined through post-processing routines, such as aligning the

sequence built with the true sequence, and improving the fit to the density by real-space

refinement. The model obtained can then be manually improved by the crystallographer,

and used to obtain better phases. An improved map can thus be generated, and input

back to TEXTAL.

Figure 3.4 shows the overall architecture of the TEXTAL system. TEXTAL is

available to the community of crystallographers in three ways: (1) as downloadable

binary distributions (http://textal.tamu.edu), (2) through a web-based interface called

WebTex (Gopal et al., 2006a; http://textal.tamu.edu), and (3) as the model-building

component of the PHENIX (Python-based Hierarchical ENvironment for Integrated

Xtallography) system, a comprehensive software package for automated X-ray crystal

structure determination (Adams et al., 2002; Adams et al., 2004; http://www.phenix-

online.org).

In the next few sections, we provide a brief description of the system, with emphasis

on issues related to case-based reasoning and feature relevance. For a more detailed

discussion on TEXTAL and its sub-systems, refer to previous work (Holton et al., 2002;

Ioerger and Sacchettini, 2002; Ioerger and Sacchettini, 2003; Gopal et al., 2003; Gopal

et al., 2005a; Romo et al., 2005; Gopal et al., 2006b).

30

 Protein crystal Collect data at synchrotron X-ray diffraction data Electron density map

Fig. 3.4. Architecture of the TEXTAL system. There are four main sub-systems: FINDMOL,
CAPRA, LOOKUP, and POST-PROCESSING.

X-rays

Crystal

Identify a contiguous biological molecular unit in the electron density map.

TRACE MAP: creates a skeleton of the map i.e. finds trace points along the medial axis.

CALCULATE FEATURES: describes 5 Å spheres around trace points using features.

PREDICT C� POSITIONS: uses neural network to predict distances to true C� atoms.

PATCH & STITCH CHAINS: link disconnected chains.

REFINE CHAINS: improves geometry of chains by adjusting bond lengths and angles.

SEQUENCE ALIGNMENT: aligns residue sequence from LOOKUP with true sequence.

REAL-SPACE REFINEMENT: moves atoms slightly to improve the fit to the density.

Retrieves matching cases from a database and fits these solved side chains for
each C� atom determined by CAPRA.

Map covering single
molecule

FINDMOL

LOOKUP: Models side chains

Map with trace points

Database of
regions from
previously

solved electron
density maps

side chain

local density

POST-PROCESSING: Refines the model

CAPRA: Models the backbone

Final output model: can be
used to generate a better map

Model of backbone

Preliminary model

C� atoms linked into chains

BUILD CHAINS: heuristic search to select and link C� atoms into chains.

Detector

31

3.7. Building the Backbone

The determination of the backbone is done by a system called CAPRA, or C-Alpha

Pattern Recognition Algorithm (Ioerger and Sacchettini, 2002). The input to CAPRA is

either an electron density map, or X-ray diffraction data (reflection file), which is

converted into a map at a resolution TEXTAL is designed to work best (i.e. 2.8 Å). As

shown in the architecture of the TEXTAL system (Figure 3.4), CAPRA comprises of the

following steps:

• TRACE MAP: Given an electron density map, this routine creates a chain of grid

points along the medial axis of the contours of the map. This is analogous to

skeletonization programs (Greer, 1985; Swanson, 1994). The trace points represent

the shape of the density contours in a compact form.

• CALCULATE FEATURES: This module takes a map as input, and computes

numerical features of spherical regions defined around each of the trace points from

TRACE MAP. These features are subsequently used to determine the positions of

C� atoms, and to model side chains.

• PREDICT Cα POSITIONS: To determine the 3D coordinates of C� atoms, a

traditional feed-forward neural network is used to predict the distance of various

candidate positions (along the trace of the density) to the nearest true C�, and to

select the ones that are predicted to be closest (Ioerger and Sacchettini, 2002). The

objective of the neural network is to learn the relationship between characteristics of

electron density patterns around a coordinate and its proximity to a C� atom. We use

the 19 features (defined at 3 and 4 Å) to characterize the local density; these features

are input to the network, which uses one layer of 20 hidden units with sigmoid

thresholds, and outputs the predicted distance to a true C� atom. The network is

trained with a set of coordinates in maps of solved proteins with known distances to

true C�s, and the network weights are optimized using backpropagation (Hinton,

1989).

• BUILD CHAINS: An approach based on artificial intelligence is used to link the C�

atoms (as predicted by the neural network described above) into backbone chains.

32

The primary criterion is based on connectivity in the density map, although there are

often many alternative branches, creating ambiguity. Linking C� atoms into chains

is a combinatorial search problem; whenever possible, an exhaustive search is done

to create a solution that maximizes chain length. When a complete search becomes

intractable, TEXTAL uses a heuristic function to guide the search for the best way to

connect C� atoms, based on criteria that favor better adherence to stereochemical

constraints and secondary structures. These heuristics and decision criteria try to

capture the type of reasoning that experienced crystallographers employ, such as

following apparent α-helices and β-strands. It should be emphasized that automation

of this process is particularly challenging because noisy data can be easily

misleading, such as breaks in backbone connectivity or close contacts between side

chains. A more thorough discussion on the methods used to build the backbone can

be found in (Ioerger and Sacchettini, 2002).

• PATCH & STITCH CHAINS: These are backbone improvement steps that follow

the initial construction of the backbone chains. The PATCH CHAINS module

connects chains together in regions where density is weak by adjusting the contour

level. The STITCH CHAINS module attempts to further connect different chains,

especially in regions of weak density e.g. where the backbone makes a loop. A case-

based reasoning approach is employed to “stitch” chains together. Regions of the

structure that probably should have been connected (typically at close extremities of

different chains) are identified and a database of protein structure fragments,

(constructed from about 100 PDB files) is searched to find the most plausible

fragment that could connect them. The case matching is done by superposing all

chain fragments (of 7 to 11 consecutive C� atoms) from the database with the region

under consideration, and computing the root mean square deviation. If the deviation

is small enough, and the electron density in the region is adequately high, then

stitching is justified, which may entail adding new C� atoms, guided by the retrieved

case. These approaches are necessary to deal with noise in real-world diffraction

datasets.

33

• REFINE CHAINS: This module improves the geometry of the C� chains with

respect to typical atomic bond lengths and angles. The distance between consecutive

C� atoms (as predicted by the neural network) tend to vary widely between 2.5 and

5.0 Å. A refinement procedure is applied to the chains to adjust the distance between

adjacent C�s to about 3.8 Å, as it is the case in proteins. The routine also reduces

other defects in the backbone, like implausible bond angles.

3.8. Building Side Chains

Placement of side chains is done by a sub-system called LOOKUP. The program takes

a set of C� chains and an electron density map as inputs, and uses case-based reasoning

and nearest neighbor learning to effectively and efficiently retrieve, from a database,

spherical regions (of 5 Å radius) that are structurally similar to regions from the

unsolved map. The regions centered around C� atoms in the backbone model produced

by CAPRA are compared to a large database of about 50,000 regions from 200 maps of

proteins (for which the local structures of the regions are known and cover a very wide

range of structural motifs in proteins). The corresponding local structures are retrieved

and assembled together to produce a preliminary model, which can be further refined by

post-processing routines. Matching regions are found by an efficient case retrieval

system that uses a similarity metric based on 76 numerical features that locally

characterize the spherical regions (the focus of this work).

Given an unsolved spherical query pattern of electron density, its distance from every

case in the database can be determined, and the most similar (smallest distance) can be

returned as the best match. In TEXTAL, the similarity (or distance) between two regions

is measured by density correlation, a metric that involves the computation of the optimal

superposition between two patterns. Since the number of possible 3D rotations is very

large, the computation of density correlation is computationally expensive, which we

cannot afford to run over the whole database. Thus, we use an approximate, inexpensive,

feature-based distance metric to select a small subset of k potential matches, and the

density correlation procedure then makes the final ranking. In previous work (Gopal et

34

al., 2004b), we evaluated and compared various feature-based distance metrics for this

approach.

It should be noted that a good feature-based match need not be the absolute best one

according to the objective metric (density correlation). It can be the top few matches

(based on a tolerance on how high we wish the density correlation value to be for the

region to qualify as a match). Given a query pattern, our aim is to try to get as many

potentially good matches (anywhere) in the top k, since the expensive objective will be

employed to re-rank the top k matches and identify the truly good ones (Gopal et al.,

2004a).

Recently a simplex optimization (Romo et al., 2006; Nelder and Mead, 1965) routine

was incorporated into LOOKUP. It iteratively optimizes the placement of the C� atoms

and the side chain orientation relative to local density correlation. The method proved to

be robust, and improved the modeling in terms of both the identity of the residues built,

and the geometry of the model.

3.9. Post-Processing

POST-PROCESSING routines refine the initial model built by LOOKUP. There are

two main routines in this sub-system: (i) Sequence alignment, where the sequence of

residues in the initial model produced by LOOKUP is aligned with the known sequence

of amino acids in the protein, based on a dynamic programming approach proposed by

Smith and Waterman (1981). This enables another round of LOOKUP to make

corrections in the amino acid identities initially determined. (ii) Real-space refinement,

where slight adjustments in the positions of atoms are made to better fit the density

(Diamond, 1971).

35

3.10. Other TEXTAL Modules

There are additional stand-alone modules that complement the three main stages (i.e.

building the backbone, placing side chains, and post-processing). The four main modules

in this category are:

1. FINDMOL identifies a contiguous biological molecular unit of the protein in an

electron density map (McKee et al., 2005). The boundaries of the repeating asymmetric

unit often cut the molecule into multiple fragments, which makes map interpretation

difficult. FINDMOL can identify a contiguous region of density in which to build by

using a combination of clustering and symmetry operations.

2. A pattern recognition approach is used to automatically detect disulfide bridges in

electron density maps (Ioerger, 2005). A disulfide bridge is a covalent bond between the

sulfur atoms of two cysteine residues from different parts of the polypeptide chain. The

residues with disulfide bridges can be located anywhere in the chain, and this cross-

linking contributes to the stability of the protein. Disulfide bridges occur in roughly one

out of every four proteins; localizing them in an electron density map can facilitate

model-building, especially since the presence of a disulfide bridge reveals the position of

cysteine residues. Disulfide bridges are detected by the following method: First, local

spherical regions in the electron density map are characterized by nineteen numerical

features calculated at four different radii (the same features used for building side

chains). Then a linear discriminant model is applied to estimate resemblance of the local

density pattern to a disulfide bridge, based on a training set with known disulfide and

non-disulfide examples. The training cases are used to determine the parameters of the

linear discriminant. In particular, the Fisher linear discriminant model is used to

optimally maximize class separation, while minimizing variance within each class. This

classification method projects the high-dimensional data onto an optimal line in feature-

space, along which classification is performed, using a single threshold to distinguish

between the two classes.

3. A routine to identify non-crystallographic symmetry (i.e. symmetry that exists

locally within the asymmetric unit of the crystal) has recently been added (Pai et al.,

36

2006). This is achieved by analyzing similarities in density patterns between regions of

the map.

4. Finally, a method has been developed to improve the performance of LOOKUP and

sequence alignment. It involves exploiting information on selenium sites from seleno-

methionine multi-wavelength anomalous diffraction (MAD) experiments to enhance side

chain building and sequence alignment through identification of methionine residues

immediately after CAPRA has identified C� atoms and built chains.

3.11. Quality of Models Built by TEXTAL

The payoff of TEXTAL is mostly in terms of time saved to solve a structure. While a

crystallographer may spend several days and sometimes weeks of painstaking effort to

interpret a single map, TEXTAL produces a solution in a couple of hours, without

human intervention. Even if the model produced by TEXTAL is only partially accurate,

it provides a reasonable initial solution, which can be manually refined by the

crystallographer to produce a more accurate and complete model.

The quality of output produced by TEXTAL depends on the size and complexity of the

structure, and the quality of the data. TEXTAL and its sub-systems have been designed

to work for a wide variety of proteins, of different sizes, with different structural

components. TEXTAL usually outputs a reasonable model even with average quality

data (i.e. around 3 Å resolution). Table 3.1 shows results for five representative proteins

of various sizes, with maps spanning a wide range of resolution (from 1.8 Å to 2.8 Å).

The proteins are epsin (Hyman et al., 2000), tryparedoxin-I (Alphey et al., 1999),

antitrypsin (Kim et al., 2001), nsf-d2 (Yu et al., 1998), and penicillopepsin (James and

Sielecki, 1983). Typically CAPRA builds about 80-90% of the backbone, with less than

1 Å root mean square distance error. (For perspective, the average distance between

consecutive C� atoms in proteins is 3.8 Å). TEXTAL usually predicts more than 50% of

the side chains with the correct identity. In cases where TEXTAL cannot find the exact

amino acid, it typically places one that is structurally similar to the correct one. The

model produced by TEXTAL can be manually improved, or used to generate better

37

phase information and create a better electron density map, which can be fed back into

TEXTAL for subsequent model-building. For an average-sized protein (300 residues),

TEXTAL’s processing time is about 2 hours. Figure 3.5 shows examples of models built

by TEXTAL from experimental data, and compare them to the true structures.

Table 3.1. Quality of models that TEXTAL outputs

Protein name
No. of

residues

Resolution

 of data (Å)

Percentage

built

RMS error

 (Å)

Correctly predicted

 residues (%)

Epsin 149 1.8 99 0.87 91

Tryparedoxin-I 147 2.0 96 0.86 93

Antitrypsin 394 2.1 81 1.12 52

Nsf-d2 273 2.4 98 1.10 90

Penicillopepsin 323 2.8 92 0.87 78

The table shows the quality of representative models built by TEXTAL, given data at five
different resolutions. TEXTAL typically builds around 90% of the model in the 1.8-3.0 Å
resolution range. The root mean square (RMS) errors shown are for all atoms in the models. The
RMS error for C� atoms only is less that 1.0 Å. The last column shows the percentage of
residues whose identity is correctly determined, after corrections with sequence alignment.

38

Fig. 3.5. Models of tryparedoxin-I, a monomer of 147 residues. The manually built and refined
model is shown in gray; the model built by TEXTAL is shown in white. TEXTAL builds 96% of
the structure. Figure 3.5(a) shows how TEXTAL builds the �-helices, �-sheets, and loops fairly
accurately. TEXTAL correctly identifies 93% of the residues; the placement of residues is also
accurate, as shown in Figure 3.5(b). The root mean square error over all atoms is 0.86 Å. These
images were generated with PyMOL (W.L. DeLano, http://www.pymol.org).

3.12. Features in TEXTAL

The fundamental pattern recognition approach in TEXTAL is based on extracting

numerical features that attempt to capture relevant information about local electron

density for various purposes (such as identifying C� atoms, comparing side chains, or

detecting disulfide bridges). The features were derived manually based on knowledge

about crystallography, and have the important property of being rotation-invariant (since

the regions that we want to compare can occur in any 3D orientation). Nineteen features

have been defined in TEXTAL (Table 3.2); the features are calculated at different radii.

For instance, to model side chains, we calculate the features over spheres of size 3, 4, 5,

and 6 Å. This is necessary since amino acids vary in shape and size, and each feature

captures slightly different information at different sizes.

The features are categorized into four classes that capture different types of

information about density patterns:

a b

39

1. Statistical features like mean, standard deviation, skewness, and kurtosis of electron

density distribution for a set of grid points in the spherical region.

2. Features based on moments of inertia, which gives the distribution of density in three

dimensions. The primary moment lies along the path around which the density is

most widely distributed; the secondary and tertiary moments are orthogonal to the

primary moment (and to each other) and describe directions in space that have

narrower density distributions. The magnitudes of the three moments of inertia are

taken as features. The various ratios of eigenvalues for the three mutually

perpendicular moments of inertia are also defined as features.

3. A feature that captures how symmetric or balanced the region is, based on the

distance from the center of the sphere to its center of mass.

4. Features that capture information about the shape of the pattern: typically an amino

acid has three “spokes” emanating from its C� (one to the side chain and two to the

main chain in opposite directions). These spokes are identified, and various features

are calculated based on the angles between these spokes. We specifically look at the

minimum, median and maximum angle among the spokes. The three spokes are

defined as vectors from the center to the surface of the sphere with maximum radial

sum, where the radial sum is calculated as the sum of the densities evaluated at points

sampled evenly along the spoke. Computation of all possible spoke directions is too

expensive; thus a finite number of trial spokes are sampled, and the best triplet of

spokes is then computed. Besides the minimum, median and maximum spoke angles,

other features include the sum of spoke angles, radial sum for each spoke, and the

area of the triangle formed by the endpoints of the three spokes.

40

Table 3.2. Definitions of features used in TEXTAL
Feature class Description of feature Method of computation

(�i is the electron density value at

the ith of n grid points in a region)

Mean (1/n)� �i

Standard deviation [(1/n)� (�i-�)2]1/2

Skewness [(1/n)� (�i-�)3]1/3

Statistical

Kurtosis [(1/n)� (�i-�)4]1/4

Magnitude of primary moment

Magnitude of secondary moment

Magnitude of tertiary moment

Ratio of primary to secondary moment

Ratio of primary to tertiary moment

Moments of

Inertia

Ratio of secondary to tertiary moment

Compute inertia matrix,

diagonalize & sort eigenvalues.

Symmetry Distance from center of sphere to

center of mass

|<xc,yc,zc>|, where xc = (1/n)�xi�i,

yc = (1/n)�yi�i, zc = (1/n)�zi�i

Minimum angle between spokes

Maximum angle between spokes

Median angle between spokes

Sum of spoke angles

Radial sum of first spoke

Radial sum of second spoke

Radial sum of third spoke

 Shape

Spoke triangle area

Find three “spokes” i.e. three

distinct vectors with highest

density summation, and compute

information like minimum,

maximum, median, sum of

angles, etc.

This table defines the features used to describe spherical electron density patterns in TEXTAL.
The features are grouped into four classes; each feature has four versions for different radii of the
sphere (3, 4, 5 and 6 Å).

41

3.13. Feature-Based Approaches in Structural Bioinformatics

The use of features to capture localized information on protein structures is quite

common in structural bioinformatics. For instance, S-BLEST (Mooney et al., 2005)

annotates protein structures with information on the environment of proteins. The

information is derived from a database of annotated amino acids, and the comparison is

done based on k-nearest neighbor search, using Manhattan distance on 66 features (each

at four radii).

There are strong similarities between the approaches in S-BLEST and TEXTAL in

terms of features. Nonetheless, S-BLEST’s features are different from TEXTAL’s in

various respects: first, they are centered around the C� atoms, whereas in TEXTAL, they

are centered on C� aroms. The radii used in S-BLEST are also different from those in

TEXTAL (they range from 1.875 to 7.5 Å, whereas in TEXTAL they are from 3 to 6 Å).

More fundamentally, features in TEXTAL capture structural properties in electron

density patterns around C� atoms, whereas in S-BLEST, they describe geometric as well

as functional properties of residues in actual solved structures. The features in S-BLEST

are used in a non-weighted Manhattan distance to determine similarity – it may be

helpful to use SILDER to weight the features, and thereby improve the distance metric

used by S-BLEST.

Another type of local information that is captured in electron density maps is critical

points (Leherte et al., 1997), which are points that correspond to local maxima of

electron density local features in electron density maps. In a crystallographic threading

system subsequently proposed by Ableson and Glasgow (1999), features on the

environment of critical points (like maximum peak, distance to solvent, size, volume,

mass, etc.) are analyzed and combined with information on the sequence to construct a

protein model.

The Buccaneer program proposed by Cowtan (2006) repeatedly applies an electron

density likelihood function to identify C� positions in a noisy electron density map. The

density likelihood function is used to recognize characteristic features corresponding to a

42

C� position in a sphere of density whose radius is 4 Å. This approach is related to that of

CAPRA, but unlike CAPRA, the features used in Buccaneer are not rotation-invariant.

43

CHAPTER IV

SLIDER

In this chapter, we first provide a formal and general definition of the case-based

reasoning system and case retrieval strategy that we propose. We then describe the main

features of the SLIDER algorithm, and discuss its significance in efficient case retrieval.

We also present an alternative approach to feature weighting based on linear

programming – this approach is closely related to SLIDER, but is nonetheless

fundamentally different, especially in terms of computational complexity.

4.1. A Two-Phase Case Retrieval Strategy

 Consider a case-based reasoning system with a database � consisting of� N cases, and a

set of query instances Q. We here assume that��� and Q are drawn from the same

distribution of instances, each of which is represented by a set F of numerical features.

We also define �, a finite set of possible similarity judgments between two cases. For

example, in the binary case, � = {�������, ���		
�
��} i.e. two cases can be either similar

or different (in TEXTAL, we use the electron density correlation measure to determine

the true similarity between two density regions on a continuous scale – a correlation

above a certain threshold is taken to imply similarity, and below implies dissimilarity).

We define a retrieval function
 that maps a ‹��
��,����
› onto a similarity value in � i.e.

: Q × � � �. In this analysis, we consider similarity as dichotomous, for simplicity –

that is, a case is either similar or different to a query.

Now given a query instance q, let the set of cases in � that are truly similar to q be S.

Let there be NS such cases i.e. |S| = NS. Let the set of cases different from q be D, where

|D| = ND = N�– NS. We define the distance between q and case x in � by the weighted

Euclidean metric:

44

 2

1

(,) ()
F

F i i i
i

d q x w q x
=

= −� (4.1)

where xi and qi are the ith feature of x and q respectively, and wi is the weight of that

feature. This distance is a surrogate measure of true similarity, where a smaller distance

implies higher similarity. We compute dF(q,x) for all x’s in � and rank the x’s according

to their distances to q in increasing order. Our aim in the proposed filtering method is to

rank as many truly similar cases as possible in the top k ranked instances, where

k N� (e.g. k/N 	 0.01). If the features are properly selected (or weighted), the distance

measure should reflect true dissimilarity better; this will enrich the top k cases with more

matches, and increase the expected probability of selecting at least one true match. It

will also imply affordance of a lower k, and hence more efficient retrieval. Without

optimized weights, we would have to set k higher to ensure retrieval of enough matches.

The choice of k depends on domain-dependent factors like how expensive case matching

is, and how much time performance are we willing to sacrifice for a desired level of

accuracy (Gopal et al., 2004a). In TEXTAL, k is set to 400, for a database of 50,000

cases i.e. only 0.8% of the database is filtered, and further evaluated by a more

expensive comparison (density correlation).

4.2. The SLIDER Algorithm

We now provide a more detailed explanation of how weights are tuned by SLIDER.

We first consider two-component mixtures (i.e. involving two features, where their

weights sum up to 1) and then extend it to an arbitrary number of features. The distance

metric we use is weighted Euclidean. Nonetheless this method can be applied to

Minkowski distances in general (Gopal et al., 2005b).

The weighted Euclidean distance between two instances x and y, using two features i

and j (with weights wi and wj respectively, where wi + wj = 1) is defined as:

 { } () ()22

, (,) i i i j j ji jd x y w x y w x y= − + − (4.2)

45

We can drop the square root in (4.2), since it is a monotonic transformation, and we use

distances as a relative measure (their absolute values are not intrinsically meaningful).

Thus d{i,j}(x,y) can be re-defined as:

{ } () ()

() ()

22

,

22

(,)

(1)

i i i j j ji j

i i j j

d x y w x y w x y

w x y w x y

= − + −

= − − + −

 (4.3)

where w is set to wj, the weight of feature j. Consider an instance x that has y as its

closest neighbor according to feature i, and z as its closest neighbor according to feature j

i.e. the nearest neighbor of x is y when w = 0, and it is z when w = 1 (w is the weight of

feature j). If w “slides” from 0 to 1, then there is a weight wc at which d{i,j}(x,y) =

d{i,j}(x,z); this point is called a “crossover”. By expanding d{i,j}(x,y) = d{i,j}(x,z), we get:

() () () ()2 22 2(1) (1)i i j j i i j jw x y w x y w x z w x z− − + − = − − + − (4.4)

Solving for w, and setting it to wc, we get:

() ()

() () () ()
2 2

2 22

i i i i
c

j j i i i i j j

x z x y
w

x y x y x z x z

− − −
=

− − − + − − −
 (4.5)

In other words, wc is a weight where there is a net increase (or decrease) in accuracy,

depending on which of y and z is truly closer to x. The concept of a crossover point is

illustrated in Figure 4.1. When there is an increase in accuracy (i.e. the match becomes

closer to x than the mismatch, for all weights above wc), it is referred to as “positive

crossover”, and “negative crossover” otherwise. We can find the crossover weights for a

training set of 3-tuples, and choose the optimum weight w* that represents the best

compromise between positive and negative crossover weights.

It should be noted that not all 3-tuples of instances will have a crossover for a given

pair of features. In fact, there will not be a crossover point if, for all values of w, the

distance between x and its match is always larger (or smaller) than the distance between

x and its mismatch (i.e. the lines representing distances d{i,j}(x,y) and d{i,j}(x,z) in Figure

4.1 do not intersect).

46

 Distance, D

 d{i,j}(x,y)

 d{i,j}(x,z)

 wj

Fig. 4.1. Finding a “crossover” weight. As the weight of feature j, wj, slides from 0 to 1, the
weighted Euclidean distance between x and y [d{i,j}(x,y)] changes linearly from lesser to greater
than that between x and z [d{i,j}(x,z)]. The crossover occurs at wc i.e. there is a change in accuracy
of prediction at wc, depending on whether y or z is truly more similar to x.

Crossover points can also be determined by considering two subsets of features

(instead of just two features). Consider two feature subsets A and B, with corresponding

Euclidean distances dA and dB respectively. A composite metric, dA+B, can be defined as

dA+B(x,y) = wdA(x,y) + (1 – w)dB(x,y). As w slides from 0 to 1, it may cause a switch of

neighbors, as described earlier. Thus, w can be used to determine the new weight vector

that increases accuracy, based on crossover points. In SLIDER, we randomly choose one

feature (singleton set A) and evaluate it against all remaining features (set B).

SLIDER starts by assigning the same weight to all features i.e. wi = 1/|F|, 1
 j
 |F|. It

then uses a hill-climbing approach by iteratively choosing a (random) feature, adjusting

its weight to make the distance metric more accurate, and stopping when there is no net

increase in the quality of the weights. Now we describe how, in each iteration of the

algorithm, (1) the “optimum” weight w* (the best crossover weight, over a set of

examples) is determined, and (2) we decide whether the quality of the weight set has

improved or not.

The optimum weight w* with respect to a set of examples in a given iteration is

determined as follows. We randomly choose a feature and find all crossover points from

the set of training examples T by sliding the weight of that feature against those of all

other features combined. Each 3-tuple may have a crossover, and our goal is to find the

(xj – yj)
2

(xj – zj)
2

(xj – zj)
2

(xj – yj)
2

 0 wc 1

47

weight that maximizes the difference between positive and negative crossovers. Any

crossover point wc divides the line segment [0,1] (that represents the weight of feature j,

which can range from 0 and 1) into two line segments: [0,wc] and [wc,1]. One line

segment is “positive” in the sense that any weight of feature j in that segment will yield a

distance metric that correctly places the match of x closer to x than the mismatch. The

other segment is “negative” in that the metric does the opposite. If for each crossover

point we increase the score of the positive segment by 1, then there is one or more line

segment(s) with a maximum score. We define the optimum weight w* (of the chosen

feature j) as the midpoint of any one of the segments with the maximum score.

We now describe how w* is computed more formally. Given a feature j (randomly

chosen in each iteration of SLIDER), a training example , ,t x x x T+ −= ∈ (where x is an

example feature vector, x+ is a match of x, and x− is a mismatch of x), and a

corresponding crossover weight wc (of feature j), we first define the composite distances

between x and x+ , and that between x and x− :

{ } {1,.., 1, 1,.., }(,) (,) (1) (,)F j j j j j Fd x x w d x x w d x x+ + +
− += + − (4.6)

{ } {1,.., 1, 1,.., }(,) (,) (1) (,)F j j j j j Fd x x w d x x w d x x− − −
− += + − (4.7)

Note that (,) (,)F Fd x x d x x+ −= when wj = wc. Now we define a step function � to

capture the notion of positive and negative line segments (for feature j), given a training

example t:

(,) 1jw tΓ = for all wj where (,) (,)F Fd x x d x x+ −< ,

 0 otherwise. (4.8)

If we find wj’s with the maximum (,)jw tΓ summed over all training examples i.e.

argmax (,)
jw j

t T

w t
∈

Γ� , we shall get at least one interval of wj with that maximum value.

The midpoint of that interval is assigned to w*.

We illustrate how w* is determined by an example. Consider two positive crossover

points (0.2, 0.7), and two negative crossover points (0.3, 0.5). For a positive crossover c+,

48

the line segment [c+,1] is the positive side, and for a negative crossover c_, the segment

[0,c_] is positive. Figure 4.2 shows how the four positive line segments overlap. The

optimum resulting line segment is [0.2,0.3]. Any point in that segment will give the best

ranking; we choose the midpoint of that segment as the optimum weight i.e. w* = 0.25.

 0.0 0.2 0.3 0.5 0.7 1.0

 0.0 0.2 w* 0.3 0.5 0.7 1.0

Fig. 4.2. Finding the optimum weight w*. Given two positive crossovers (0.2 and 0.7) and two
negative crossovers (0.3 and 0.5), the four corresponding positive line segments are shown (in
thick lines) at the top. This splits [0, 1] into 5 segments, and the segment [0.2, 0.3] has the
highest score (of 3) in terms of the sum of (,)w tΓ over all training examples t; the scores
(plotted at the bottom) are the number of positive line segments that intersect that range. We
return the midpoint 0.25 of [0.2, 0.3] as w*.

To evaluate the chosen weight vector, we compute how well the corresponding

weighted Euclidean distance ranks matches relative to mismatches. We use an

independent validation set V of instances (different from the training set T to find

crossover weights), and for each instance in V we find a true match from our database �.

Our goal is to estimate the average rank of the match against any sample of mismatches

2

3

1

Weight of feature j, w

(,)
t T

w t
∈

Γ�

w

49

drawn from �. Given a weight vector w
��

 that we want to evaluate, we define the rank

(),R v w
��

 for an instance v in V as the average rank over n samples � = { �1, �2, …, �n}

of mismatching instances from � i.e.

() ()
1

1
, , ,

n

i
ii

R v w rank v w
=

= Φ
Φ �

�� ��
 (4.9)

where rank(v,�i, w
��

) is the rank of the match of validation instance v relative to all

instances in �i, using the underlying metric with weight vector w
��

. Note that lower rank

implies more similar to the query instance (i.e. the match should ideally have rank = 1).

For practical purposes, we estimate R using a randomly drawn sample of 100

mismatches (singleton set �) from our database of 50,000 instances. (The larger the

sample, the more accurate the estimate will be; nonetheless, computation of density

correlation being expensive, we can afford only a limited number of mismatches.) Then

we compute the average R over all instances v in V i.e.

() 1
, (,)

v V

R V w R v w
V ∈

= �
�� ��

 (4.10)

The pseudo-code for the SLIDER algorithm is given in Figure 4.3.

50

Inputs: 1. Training set T of ‹instance, match, mismatch› 3-tuples (all drawn from �);
 2. Validation set V of instances; for each instance in V, one match and 100 mismatches,
 drawn from �;
 3. Set F of features.

 Output: Optimized weight vector *w
���

 = ‹w1*, w2*, …, w|F|*›

 Initialize weights of all F features uniformly i.e. wi = 1/|F|, 1
 i
 |F|.

 repeat
 Select feature ƒ randomly.
 Set wƒ to 0 and adjust other weights proportionally so that they add up to 1.
 Find all crossover points from T by sliding wƒ from 0 to 1.
 Find “optimum” weight of ƒ, wƒ* i.e. the midpoint of line segment with best score (Fig. 4.2).
 Set wƒ to wƒ* and other weights are proportionally decreased to keep sum of weights 1.

 Compute mean rank of matches for new weight vector, (),R V w
��

 using (4.10)

 if (),R V w
��

decreases (improves) then best weights *w
���

 is set to w
��

 until (),R V w
��

 reaches a plateau or number of iterations exceeds a threshold.

 return *w
���

Fig. 4.3. The SLIDER algorithm.

4.3. A Linear Programming Approach to Feature Weighting

In this section, we present an alternative approach to feature weighting based on linear

programming (for comparison). Although SLIDER bears some resemblance to linear

programming, there are nonetheless some key differences between the two. Note that

SLIDER aims at maximizing the number of training 3-tuples , ,x x x+ − where the

weighted Euclidean distance between instance x and x+ (where x+ is truly similar to x)

is smaller than the distance between x and x− (where x− is truly different from x). In

contrast, the linear programming approach tries to optimize the aggregate difference in

51

the absolute weighted Euclidean distances themselves; we now describe this formulation

of the problem in more precise terms.

 Given a training set T ={ }1 1 1, , ,..., , ,m m mx x x x x x+ − + − of m such 3-tuples (similarity

and difference are defined as in SLIDER, i.e. based on density correlation), the linear

programming method tries to weight features such that for each 3-tuple, the weighted

Euclidean distance between ix and ix− is larger than that between xi and ix+ . If we take

the difference of the square of the Euclidean distances, the same inequality will hold. We

define this difference, �i, in (squared) distances as follows, where xi,j is the jth feature

value for xi:

2 2
, , , ,

1 1

() ()
F F

i j i j i j j i j i j
j j

w x x w x x− +

= =

Ω = − − −� � (4.11)

This can be re-written as:

 ,
1

F

i j i j
j

w
=

Ω = ∆� (4.12)

where

 2 2
, , , , ,() ()i j i j i j i j i jx x x x− +∆ = − − − (4.13)

Now we wish to find wj’s, such that �i � 0 for every instance , ,i i ix x x+ − in T (or as

many as possible). It is very unlikely that this constraint can be satisfied simultaneously

for all instances in T. Thus, we use slack variables
1,
2, …,
m (one variable for each of

the m 3-tuples in T) that are constrained to be positive, and that make up for �i whenever

�i is negative. Thus, we define the feature weighting problem as the following

optimization in linear programming: Find wj’s that minimize
1 +
2 + …. +
m, subject

to the following constraints:

i. 0
 wj
 1 for each feature j, and
1

1
F

j
j

w
=

=� ;

ii. ,
1

0
F

j i j i
j

w σ
=

∆ + ≥� for each 3-tuple , ,i i ix x x+ − in T;

52

iii. 0iσ ≥ for each 3-tuple , ,i i ix x x+ − in T.

This optimization problem is different from the (harder) problem of maximizing the

number of cases where the distance between an instance and its match is greater than the

distance between the instance and its mismatch. The two are closely related, but the

linear programming formulation is much more tractable – the worst-case complexity of

linear programming is polynomial, and there are several algorithms that are known to

perform well both in theory and practice (Karmakar, 1984). In contrast, the former

optimization problem is a constraint satisfaction problem (CSP), which is known to be

NP-hard (Ceberio and Kreinovich, 2005). The NP-hardness of the problem of

maximizing the maximum number of instances that are closer to their matches than their

mismatches motivates the need for heuristics such as the one used in SLIDER.

53

CHAPTER V

RELATIONSHIP BETWEEN IMPROVING RANKING AND THE

PROBABILITY OF SUCCESSFUL RETRIEVAL

In this chapter, we develop a theoretical foundation for SLIDER. We show how the

ranking-based heuristic used to evaluate weight vectors leads to a greater probability of

retrieving a match in the two-phase filtering method employed for case retrieval. (Note:

This chapter will refer to many terms and equations defined in Chapter IV).

5.1. Probabilistic Analysis of the Relationship between Distance and Ranking

Before evaluating the impact of feature weighting on the effectiveness of case

retrieval, we first establish the relationship between the real-valued Euclidean distances

for matches and the ranks of the matches (relative to mismatches).

Given a query q and a set of weights, let the weighted Euclidean distances between q

and cases in � that are truly similar to q (i.e. set S) have a probability density function

PS. Also, let the distances between q and cases that are different from q (i.e. set D) have

a probability density function PD. We expect the mean of PS to be smaller than the mean

of PD (Figure 5.1).

54

Fig. 5.1. Probability density functions of Euclidean distance for similar and different cases.
Given a query instance q, we show typical probability distributions of distance for cases similar
to q (PS), and cases different from q (PD). We expect that the mean of PS to be smaller than the
mean of PD.

Now each case similar to q in � is (independently) ranked relative to the different

ones i.e. the rank of the match ranges from 0 to ND (matches are not ranked relative to

each other). It can be shown that the mean rank r� of the true matches of q is given by

the following:

0 0

() ()
x

D S D
x y

r N P x P y dydx
∞

= =

= � �� (5.1)

The rationale for this double integral is as follows: PS(x) is the probability that the

Euclidean distance between q and a match is x. The (inner) integral over y of the PD(y)

component is the fraction of cases in � different from q that have a distance smaller

than x. It is the area under PD from 0 to x, or the cumulative distribution at x (we set the

lower limits to 0 since the Euclidean distance is always 0 or greater). If we sum this

fraction [weighted by PS(x)] for all x’s, and multiply by ND, we get the average number

of mismatches that have a Euclidean distance smaller than the match i.e. we get the

average rank of matches.

Consider the following three special cases:

Case 1: The distance between q and any match is smaller than the distance between q

and any mismatch. This scenario (Figure 5.2) is one where the distance metric perfectly

Probability
density
function

 Weighted Euclidean distance

PS: Cases similar to q

PD: Cases different from q

55

distinguishes similar cases from different ones. Every match gets a perfect rank (i.e.

zero) relative to mismatches [since the area under PD (from 0 to x) is zero for every x in

PS(x)]; the mean rank of matches is thus expected to be zero, which is what (5.1) yields

for this special case.

Fig. 5.2. Special case of probability density functions. The Euclidean distance between query
case q and x, for all x’s similar to and different from q – in this scenario the distance metric
perfectly discriminates similar cases from different ones.

Case 2: The distance between q and any match is larger than the distance between q

and any mismatch. This is an odd scenario (Figure 5.3) where the distance metric is

completely misleading in case matching. The mean rank of matches here is ND, which

is the worst possible. It can be easily verified from (5.1) that r� is indeed equal to ND

for this special case.

Weighted Euclidean distance

PS: Cases similar to q

PD: Cases different from q

Probability

density
function

56

Fig. 5.3. Special case of distance distributions where the distance metric completely misleads
similarity assessment. This is the worst possible scenario, where every match is ranked last when
compared to mismatches.

Case 3: The probability density functions of distances to cases similar to and different

from q are the same i.e. PS = PD. That is, the features and the distance metric contain no

information about what constitutes similarity (or difference). In the absence of any

discriminating ability (by assigning distances randomly, for instance), the distance

metric would rank a match anywhere from 0 to ND with equal likelihood. Thus, one

would expect the average rank to be ND/2. We now show that r� is indeed equal to ND/2

when PS = PD. We first re-write (5.1) as follows:

0

() ()D S D
x

r N P x C x dx
∞

=

= �� (5.2)

where CD(x) is the cumulative distribution function of distance to mismatches at x. Let

CS(x) be the cumulative distribution function of distance to matches at x i.e.

() ()S S

d
C x P x

dx
= (5.3)

From (5.2) and (5.3) we get

 []
0

() ()D S D
x

d
r N C x C x dx

dx

∞

=

= �� (5.4)

Now if PS = PD, then CS = CD, and therefore

PD: Cases different from q

Probability
density
function

PS: Cases similar to q

Weighted Euclidean distance

57

 []
0

() ()D S S
x

d
r N C x C x dx

dx

∞

=

= �� (5.5)

We know that

2 2d
dx

dy
y y

dx
= (5.6)

Also, CS(0) = 0, and CS(�) = 1. We use these facts to derive the expected result:

[]

[]

0

0

()* ()
2

() ()
2

2

D
S S

x

xD
S S x

D

N d
r C x C x dx

dx

N
C x C x

N

∞

=

=∞

=

=

= ∗

=

��

 (5.7)

More generally, we expect the two distributions to overlap partially, and SLIDER tries

to push them further apart (i.e. move PD to the right of PS) to make r� approach 0. In the

next section, we show that the way SLIDER updates weights has this effect on the

probability density functions.

5.2. The Impact of Optimizing the Mean Rank of Matches

We now discuss the impact of SLIDER’s strategy to select weights that minimize the

mean rank of matches. SLIDER chooses weights that improve (decrease) the average

rank of matches (for a training set) relative to mismatches. Recall that the algorithm

works as follows: First m training examples are randomly selected; for each example, all

similar cases as well as different ones are pre-determined, using the true similarity

measure. SLIDER greedily searches a space of weight vectors and selects those weights

that cause a decrease in the mean rank R of matches [R is defined in (4.10)]. The value

of R is essentially an empirical estimate of r� as defined in (5.1), averaged over a

sample of m training cases i.e.

58

1

1 m

i

i

R r
m =

= � � (5.8)

It should be pointed out that the computation of R can be very expensive, since it

implies exhaustively searching the database (many times) to find all true matches. Thus,

in SLIDER we use an approximation of R , where we rank only one match of a query,

relative to a fixed number (say 100) of mismatches sampled from the background

distribution.

We hypothesize that a decrease in R that SLIDER seeks in every iteration reflects

(for a typical q in the query space Q) “separation” between PS and PD, where PD shifts

relatively further to the right (larger distance), and PS shifts relatively to the left (Figure

5.4). These shifts are consequences of choosing better weights. That is, in every iteration

of the weighting algorithm, R is decreased and more information is provided to the

distance metric (through the weights) to enable separation (and hence distinction)

between similar and different cases.

We emphasize that it is neither necessary, nor sufficient that the Euclidean distances

to true matches decrease (and distances to mismatches increase) so as to improve R .

Altering the distance metric (via a change in weights) can make the distance (to a match

or mismatch) increase or decrease. What really matters is that there is a relative amount

of change between distances to matches and mismatches. In fact, the mean distance of PS

and PD can both increase or decrease for the method to work, as long as they separate as

described above. Assuming that they are roughly Gaussian, the change in R will

therefore depend on the combined change in the means �S and �D, standard deviations �S

and �D (of PS and PD respectively). For simplicity, we assume that �S and �D remain

more or less invariant.

59

Fig. 5.4. Weight update in SLIDER leads to “separation” between PS and PD. We here show a
simplified scenario where the distributions are Gaussian and variances do not change when
feature weights are updated.

Figure 5.5 shows typical probability density functions of the Euclidean distance from

the TEXTAL system. This particular example is for 1000 matches and 1000 mismatches

drawn from the TEXTAL database, given a random query electron density pattern. The

distance metric uses 76 features that are uniformly weighted. We here define a region to

be a match if its electron density correlation with the query exceeds 0.8; it is mismatch if

the correlation is lower than 0.6 (density correlation ranges from 0 to 1, where a

correlation of 1 implies perfect similarity). We can observe that assuming the

distributions to be Gaussian is fairly realistic.

Probability
density
function

 Weighted Euclidean distance

 PS

PD

 Before weight update
 After weight update

 Before weight update

60

Fig. 5.5. Distribution of Euclidean distances for a random query electron density region. We
show the distances for 1000 matches and 1000 mismatches (from the TEXTAL database) for the
query region. 76 numerical features are used in the distance metric; the features are uniformly
weighted.

We hypothesize that a decrease in R (as targeted by SLIDER) represents a decrease

in r� (5.1), which in turn signifies a relative separation between the distributions PS and

PD. We now show that this separation leads to an increase in accuracy of retrieval (in

terms of the probability of getting a match in the top k cases selected from the database).

Given a new query case q (that comes from the same distribution where the training

examples were drawn from), we define dk as the kth smallest distance between q and all

its mismatches in the database. If we define successful retrieval for q as the ranking of at

least one match of q below k, then the probability of successful retrieval (Psuccess) is

given by

1 [1 ()] SN
success S kP C d= − − (5.9)

where NS is the number of true matches of q in �. The rationale behind (5.9) is that

Psuccess = 1 – Pfailure, where Pfailure is the probability that not a single match is ranked

below k. The latter situation arises when a given match does not have a distance less than

Distribution of Euclidean distances

0 %
5 %

10 %
15 %
20 %

30 %

1 2 3 4 5 6 7 8
Euclidean distance (arbitrary units)

Mismatches

Matches

25 %

61

dk, and this should occur NS times for retrieval failure. Our goal is to maximize Psuccess; a

lower bound of Psuccess is CS(dk), which applies when there is only match i.e. NS = 1.

Figure 5.6 shows how the cumulative distribution functions CS and CD are expected to

change, given the relative separation in PS and PD, assuming that PS and PD are

approximately Gaussian, and their variances do not change. We also show the kth

smallest Euclidean distance, both before and after the weight update. This is equal to the

distance where CD = k/ND. Figure 5.6 shows how CS(dk) increases when weights are

modified (we shall later prove that CS(dk) indeed increases with weight update). This

increase is tantamount to an increase in probability of retrieving a true match from the

database (Psuccess), as per (5.9).

 k/ND

Fig. 5.6. Cumulative distribution functions CS and CD before and after updating feature weights.
This is a simplified version where PS and PD are Gaussian and their variances do not change with
weight update. dk is the kth smallest distance from the query to all its mismatches in the database.
The change in weights causes CS and dk to change, and leads to an increase in CS(dk).

It may seem that Psuccess is independent of CD(dk), which is unintuitive, and incorrect.

In fact, CS(dk) and CD(dk) are related as follows:

Cumulative
distribution

function

Weighted Euclidean distance

CS after weight update

CD before weight update

CD after weight update

CS before weight update
Difference in CS(dk)
with weight update

dk before
weight update

dk after
weight update

62

 () ()S S k D D kN C d N C d k+ = (5.10)

From (5.10), we can see that CS(dk) and CD(dk) are inversely related – an increase in one

automatically entails a decrease in the other. Thus, Psuccess depends on CS(dk) as much as

CD(dk).

It seems intuitive that the number of matches retrieved in top k as well as Psuccess will

increase with the weight update, based on the qualitative arguments presented so far

(Figure 5.6). But now we provide an analytical basis for this intuitive result. More

specifically, we show that a decrease in the mean rank R of matches implies an increase

in Psuccess.

We know that R decreases with the update in weights (as targeted by the SLIDER

algorithm, shown in Figure 4.3). This is represented as integrals, using (5.2):

0

() ()D S D
x

N P x C x dx
∞

=
� > � �

0

() ()D S D
x

N P x C x dx
∞

=
� (5.11)

where ()SP x and �()SP x are the probability density functions for similar cases before and

after the weight update respectively. ()DC x and
�()DC x are the cumulative distribution

functions for different cases before and after the weight update respectively. (The “~”

symbol is used to denote means and standard deviations after the weight update). If PS(x)

and PD(x) are assumed to be Gaussian before and after the weights are changed, then

(5.11) can be expanded to the following:

() ()2 2 2 2() / 2 () / 2

0 02 2

S S D Dx yx

x yS D

e e
dydx

µ σ µ σ

σ π σ π

− − − −∞

= =
� � >

� �()
�

� �()
�

2 22 2() / 2 () / 2

02 2

S S D Dx yx

x yS D

e e
dydx

µ σ µ σ

σ π σ π

− − − −∞

=−∞ =
� � (5.12)

Given that there is no analytical solution to the cumulative distribution of the normal

density function, we make the following affine transformations that will put the

functions in the same frame of reference and enable comparison between the

distributions before and after updating the weights. The transformations essentially

reduce DP and �DP to the standard normal distribution (with mean = 0, and standard

63

deviation = 1). The location and scale parameters of SP and �SP have to be transformed

in the same proportions to maintain the inequality in (5.12). Let () /D Dz x µ σ= − and

() /D Dw y µ σ= − ; we express (5.12) in terms of z and w by first substituting x by

()D Dzσ µ+ , y by ()D Dwσ µ+ , dx by Ddzσ and dy by Ddwσ on the LHS of (5.12). We

also adjust the limits of the integration accordingly. If we make the corresponding

transformations on the RHS of (5.12) as well, we obtain

()
()()

2 2 2() / 2

2 2

D D S Sz z w

D D
z wS D

e e
dw dz

σ µ µ σ

σ σ
σ π σ π

− + −∞ −

=−∞ =−∞
� �

>

� � � �()
� �

�() �()
22

2() / 2

2 2

D D S Sz z w

D D
z wS D

e e
dw dz

σ µ µ σ

σ σ
σ π σ π

− + −∞ −

=−∞ =−∞
� � (5.13)

We convert (5.13) into

()

()

2
2

2/ 2 /

/ 2 2

S D
S D

D
z

z w

z wS D

e e
dwdz

µ µ σ σ
σ

σ σ π π

� �− � �− −� � 	
� �∞ −
 �

=−∞ =−∞
� �

>

� �

�
� �()

� �()

2
2

2
/ 2 /

2/ 2

S D
S D

D

z
z w

z wS D

e e
dwdz

µ µ σ σ
σ

πσ σ π

� �− � �− −� � 	
� � � �∞ −
 �

=−∞ =−∞
� � (5.14)

This can be simplified into

 () (;0,1)
z

S
z w

P z N w dwdz
∞

=−∞ =−∞
� � > �() (;0,1)

z

S
z w

P z N w dwdz
∞

=−∞ =−∞
� � (5.15)

where N(w;0,1) is the standard normal function (with variable w). ()SP z and �()SP z are

the transformed probability density functions of distances to matches before and after

weight update (the affine transformation is denoted by the underline) i.e.

2
2/ 2(/)

()
(/) 2

S D
S D

D
z

S
S D

e
P z

µ µ σ σ
σ

σ σ π

� �− � �− −� � � �

 �

= (5.16)

64

 �

� �

�
� �

� �

2
2/ 2(/)

()
(/) 2

S D
S D

D

z

S
S D

e
P z

µ µ σ σ
σ

σ σ π

� �− � �− −� �� � � �

 �

= (5.17)

It can be observed that SP and
�

SP are themselves normal distributions with means and

variances as follows:

 2() ; , (/)S D
S S D

D

P z N z
µ µ σ σ

σ
� �−= � �

 �

 (5.18)

and

 �
� �

�
� � 2() ; , (/)S D

S S D
D

P z N z
µ µ σ σ

σ
� �−= � �

 �

 (5.19)

With the affine transformation, the probability density functions in Figure 5.4 are

transformed as shown in Figure 5.7 (if we assume the variances do not change with

weight update i.e. Sσ = �Sσ and Dσ = �Dσ). We observe that the mean of the affine

transformed density function for matches changes from S D

D

µ µ
σ
−

 to
� �

�
S D

D

µ µ
σ
−

 with the

update in weights.

65

Fig. 5.7. Probability density functions after an affine transformation. If the underlying
distributions are normal and their variances remain unchanged with weight update, then DP and
�

DP become the standard normal distribution after the affine transformation described above. SP

and �SP are proportionally adjusted; after the transformation, they become normal distributions
with means and variances as defined in (5.18) and (5.19).

From (5.15), we can deduce that for all x,

()
x

S
z

P z dz
=−∞
� < �()

x

S
z

P z dz
=−∞
� (5.20)

This step can be formally proved as follows: Given our assumption that the variances of

the distributions are equal, �SP is a translation of SP along the weight axis i.e.

�() ()S SP z P z ξ= + for some constant ξ . We need to show that 0ξ > , which would lead

to (5.20). To prove that 0ξ > , we re-write (5.15) as follows:

 () ()S S
z

P z C z dz
∞

=−∞
� > �() ()S S

z

P z C z dz
∞

=−∞
� , where () (;0,1)

z

S
w

C z N w dw
=−∞

= � (5.21)

Substituting �()SP z by ()SP z ξ+ , we get

() ()S S
z

P z C z dz
∞

=−∞
� > () ()S S

z

P z C z dzξ
∞

=−∞

+� (5.22)

Weighted Euclidean distance

Probability
density
function

�
SP

SP

� (0,1)D DP P N= =

�
k kd d=

66

The translation factor ξ can be applied to ()SC z instead of ()SP z (in the opposite

direction), without changing the inequality (5.22) i.e.

() ()S S
z

P z C z dz
∞

=−∞
� > () ()S S

z

P z C z dzξ
∞

=−∞

−� (5.23)

i.e.

[]() () () 0S S S
z

P z C z C z dzξ
∞

=−∞

− − >� (5.24)

Now since SP is always non-negative, and ()SC z increases monotonically with z, we

conclude that () ()S SC z C z ξ− − > 0 i.e. ξ > 0. So, given the assumption that the

variance of �SP and the variance of SP are equal, we infer (5.20) i.e. SP is to the right of

�
SP , or 0ξ > .

Furthermore, the mean of ()SP z is greater than the mean of �()SP z . This can be

written as the following [using (5.18) and (5.19)]:

S D

D

µ µ
σ
−

 >
� �

�
S D

D

µ µ
σ
−

 (5.25)

We observe that the changes in the distributions of distances that is expected from

feature weight update do not require that the absolute mean Sµ of distances for matches

to decrease, or the absolute mean Dµ of distances for mismatches to increase. What is

necessary is that the relative difference between the means decreases [i.e. S Dµ µ− >

� �
S Dµ µ− , from (5.25)], assuming that the variances do not change.

We are particularly interested in how CS(dk) (the cumulative distribution function of

matches at the distance cutoff dk corresponding to the kth smallest distance) changes,

since we recall from (5.9) that Psuccess increases monotonically with CS(dk). We note that

dk and �kd are the Euclidean distances at which the cumulative distribution functions

equal k/ND (Figure 5.6). kd and �kd are defined as follows:

67

 k D
k

D

d
d

µ
σ
−= and �

� �

�

Dk
k

D

d
d

µ
σ
−= (5.26)

The transformed probability density functions of mismatches before and after weight

update are the same; they are, in fact, the standard normal distribution, as shown in

Figure 5.7 i.e. � (0,1)D DP P N= = . It follows that �
k kd d= , since the weighted Euclidean

distances at cumulative probability = k/ND would the same for DP and �DP . So, given

that �
k kd d= , the following inequality holds [using (5.20)]:

()
kd

S
z

P z dz
=−∞
� < �

�

()
kd

S
z

P z dz
=−∞
� (5.27)

In other words, the affine transformed cumulative function at dk increases with a

change in weights i.e. � �()S kC d > ()S kC d . This implies an increase in Psuccess [from (5.9)]

i.e. an increase in the expected probability of getting at least one true match in the k

filtered cases.

68

CHAPTER VI

EMPIRICAL RESULTS

In this chapter, we present empirical results of SLIDER from the protein

crystallography domain, based on the TEXTAL system that interprets electron density

maps to determine the 3D structures of proteins. The results are presented here from a

machine learning perspective; in the next chapter we discuss the significance of the

results in protein crystallography.

First, we analyze the impact of weighting these 76 features in the two-phase case

retrieval strategy. We also compare SLIDER’s performance to that of other feature

selection and weighting algorithms. We also evaluate the effectiveness of the filtering

approach to case retrieval in TEXTAL, using various approximate similarity measures.

6.1. Experimental Setup for SLIDER

In this evaluation, we use SLIDER to optimize weights for three different weighted

distance metrics: Manhattan, Euclidean, and Minkowski distance of order 3 (or L3). We

closely look at which of the 76 features get how much weight, and analyze the

dependence of weighting on the distance metric.

We also compare three different weighting schemes: (1) continuous weights, where

we use the actual weights determined by SLIDER in the distance metric; (2) binary

weights, where we convert the weights obtained from SLIDER to either 0 or 1. We use a

threshold weight for that purpose – any weight below that threshold is converted into a

0, and any weight above the threshold is converted into a 1. Finally, for the purpose of

comparison, we use uniform weights i.e. all features are weighted equally.

We assess SLIDER’s performance on “ideal” protein maps i.e. maps that have been

artificially generated by back-transforming from their correct structures at 2.8 Å. (In the

next chapter, we discuss the impact of SLIDER for solving real, experimentally

determined maps.) Analysis of the performance of SLIDER on ideal maps is insightful

69

since it reduces the confusion that noise, variance in resolution, and phase error in real

maps may introduce.

We use a database of ideal maps for our case-based reasoning approach. Ideal maps

are more suitable than real maps, since the latter usually have a lot of variance, and

noise, and tend to confuse the pattern recognition. Ideal maps computed at 2.8 Å leads to

better case matching and retrieval in solving real maps that are also re-computed at 2.8

Å. In general, we use ideal maps for the various machine learning tasks in TEXTAL,

such as in training sets for the neural network to determine Cα positions, or for tuning

feature weights in SLIDER.

Our evaluation of SLIDER on ideal maps involves four sets of data: (1) A training set

of 3-tuples, each with an instance (of density pattern), a match and a mismatch to

determine crossover points and tune the weights. In Figure 4.3, this set is referred to as

the training set T. (2) Another training set of examples, each with an instance, a match

and a set of mismatches, for the purpose of evaluating weight vectors in the heuristic

search for optimum weights. In Figure 4.3, this set is referred to as the validation set V.

(3) A database from where matches are actually retrieved. (4) An independent test set.

These four sets were constructed using maps from independent sets of proteins in

PDBSelect (Hobohm et al., 1992), a subset of the PDB database (Berman et al., 1992).

As mentioned earlier, the maps were artificially generated at 2.8 Å from their correct

structures, and the regions were defined as 5 Å spheres centered on Cα atoms.

In this experiment, the training set T (used to tune the weights) consisted of 200 3-

tuples of density regions (drawn randomly from 48 proteins in PDBSelect). For each

example, a match and a mismatch were pre-determined by the calculation of density

correlation. An instance is defined as a match (mismatch) if its density correlation to the

corresponding example is above (below) 0.7, a threshold above which local patterns of

density tend to look similar.

For the validation set V (used to evaluate weight vectors), we chose 100 density

regions obtained from 51 proteins in PDBSelect (independently of the proteins used for

tuning the weights). For each region, we exhaustively searched a database of about

70

30,000 regions (obtained from yet another 137 proteins in PDBselect) to find their true,

objective matches (based on density correlation). We then used the weighted feature-

based distance metrics to rank all the 30,000 regions according to similarity, and find out

how many truly good matches are found in the top k by the feature-based metric.

As discussed earlier, one need not be searching for absolute best match, since the

second, third, and other subsequent best matches will often be adequate. So we use a

more relaxed notion of a good match: Given an example x, a database � and an

objective similarity metric obj, an example y in � is said to be good match of x if

(,) (,)

(,)
obj x b obj x y

obj x b
δ− < (6.1)

where � (δ ≥ 0) is a tolerance, and b is the absolute best match of x in � i.e. b =

d
argmax (,)obj x d

∈ ����

.

We here assume that obj > 0, and it increases with similarity. This definition accepts

multiple hits (in the database) as reasonable matches if they have a similarity within

some threshold of the best possible score. For any given tolerance �, let the number of

good matches be �. In this domain, the objective similarity metric obj is density

correlation between two spherical regions, which involves an expensive rotational search

for the best possible superposition. Figure 6.1 shows how the average number of

matches � (over the test set of 100 regions) varies with tolerance �, using a database of

about 30,000 instances. Domain experts found that a tolerance of about 0.02 is

reasonable to produce useful models of side chains. (Note that density correlation ranges

from 0 to 1; if the absolute best match has a correlation of 0.90, then with a tolerance of

0.01, all cases with correlation between 0.89 and 0.90 are considered to be similar – all

others are different).

71

Number of "good matches" for various levels of
tolerance (in a database of ~30k instances)

0

20

40

60

80

100

120

140

0 0.01 0.02 0.03 0.04 0.05 0.06

Tolerance

A
ve

ra
ge

 n
um

be
r

 o
f m

at
ch

es

Fig. 6.1. The number of “good matches” � grows exponentially with the tolerance �.

6.2. Analysis of the Weights Assigned by SLIDER

Since SLIDER is greedy and non-deterministic, we run it ten times for each of the

three distance metrics (Manhattan, Euclidean, and L3). The average weight for each of

the 76 features was calculated and proportionally adjusted so that all weights sum up to

1. For all the three distance metrics, between 23 and 31 features (out of 76) were

selected (we take a feature to be selected if its weight is greater than 0.01). Moreover,

there is strong tendency to choose the same features, and even weigh them similarly.

There are 34 features for which all three metrics have yielded zero weight. Table 6.1

shows all features that were found to be irrelevant by SLIDER for all three metrics. We

emphasize that these features need not be irrelevant in absolute terms; they might just be

useless in the context of other features deemed relevant, especially in situations where

some features are redundant. Table 6.2 shows those features that were found relevant for

any of the three metrics – the average weights over ten runs are also shown, with their

standard errors.

72

It should be noted that when different SLIDER runs “select” different features, the

features selected may actually be quite similar, in two ways: (1) The features could be

closely related e.g. standard deviation, skewness, and kurtosis, or the three moments of

inertia; (2) They could be the same feature (like mean density) but calculated over

different radii, especially those radii that are close to each other.

Figure 6.2a tries to capture this concordance in returned weights by first sorting the

features based on radius and then listing them in a particular order (such that related

features are as close together as possible). Figure 6.2b groups the features the other way

round i.e. first it lists all features (in the same order as in Figure 6.2a), and then sorts

them based on radius, in ascending order. The weights have been linearly graded on a

five-level scale, where darker shade implies higher weight.

 Table 6.1. Irrelevant features

Name (and radii in Å) of features with weight = 0

 Mean (3, 4)
 Standard deviation (4, 5, 6)
 Skewness (4, 5, 6)
 Kurtosis (5)
 Primary moment of inertia (6)
 Secondary moment of inertia (3, 4, 5, 6)
 Tertiary moment of inertia (4)
 Ratio of primary to secondary moment of inertia (5, 6)
 Ratio of primary to tertiary moment of inertia (6)
 Ratio of secondary to tertiary moment of inertia (5, 6)
 Distance to center of mass (6)
 Maximum angle between spokes (3, 6)
 Minimum angle between spokes (4, 6)
 Median angle between spokes (6)
 Radial sum of first spoke (3, 4, 5, 6)
 Radial sum of second spoke (3)
 Radial sum of third spoke (4, 5, 6)

The list of 34 features found irrelevant by SLIDER for all 3 metrics.

73

 Table 6.2. Relevant features

Feature name (radius in Å) Manhattan Euclidean L3

Mean (5) .046 ± .015 .028 ± .008 .036 ± .012
Mean (6) .020 ± .011 .026 ± .007 .000 ± .002
Standard deviation (3) .000 ± .008 .042 ± .007 .000 ± .005
Skewness (3) .017 ± .007 .030 ± .006 .000 ± .006
Kurtosis (3) .033 ± .007 .000 ± .005 .000 ± .004
Kurtosis (4) .016 ± .006 .000 ± .005 .000 ± .008
Kurtosis (6) .000 ± .004 .000 ± .004 .026 ± .009
Primary moment of inertia (3) .021 ± .005 .000 ± .006 .000 ± .009
Primary moment of inertia (4) .000 ± .006 .031 ± .008 .024 ± .008
Primary moment of inertia (5) .000 ± .000 .000 ± .000 .024 ± .012
Tertiary moment of inertia (3) .000 ± .000 .000 ± .007 .023 ± .009
Tertiary moment of inertia (5) .017 ± .009 .029 ± .009 .025 ± .010
Tertiary moment of inertia (6) .000 ± .006 .023 ± .006 .025 ± .006
Ratio of primary to secondary MOI (3) .029 ± .006 .056 ± .004 .062 ± .009
Ratio of primary to secondary MOI (4) .014 ± .005 .023 ± .003 .000 ± .002
Ratio of primary to tertiary MOI (3) .000 ± .002 .030 ± .008 .000 ± .004
Ratio of primary to tertiary MOI (4) .026 ± .008 .024 ± .006 .000 ± .005
Ratio of primary to tertiary MOI (5) .018 ± .007 .000 ± .006 .022 ± .005
Ratio of secondary to tertiary MOI (3) .087 ± .011 .040 ± .007 .067 ± .015
Ratio of secondary to tertiary MOI (4) .035 ± .007 .036 ± .007 .029 ± .005
Distance to center of mass (3) .109 ± .005 .114 ± .006 .116 ± .012
Distance to center of mass (4) .017 ± .006 .026 ± .007 .024 ± .006
Distance to center of mass (5) .021 ± .007 .028 ± .005 .000 ± .006
Maximum angle between spokes (4) .032 ± .007 .031 ± .005 .000 ± .004
Maximum angle between spokes (5) .022 ± .007 .049 ± .007 .055 ± .013
Median angle between spokes (3) .000 ± .003 .000 ± .005 .030 ± .005
Median angle between spokes (4) .026 ± .006 .026 ± .006 .000 ± .003
Median angle between spokes (5) .034 ± .005 .031 ± .005 .041 ± .007
Minimum angle between spokes (3) .024 ± .006 .000 ± .004 .000 ± .003
Minimum angle between spokes (5) .026 ± .006 .044 ± .004 .026 ± .007
Sum of spoke angles (3) .000 ± .000 .000 ± .003 .026 ± .008
Sum of spoke angles (4) .018 ± .006 .000 ± .006 .000 ± .006
Sum of spoke angles (5) .088 ± .019 .054 ± .013 .106 ± .017
Sum of spoke angles (6) .039 ± .006 .000 ± .006 .044 ± .014
Radial sum of second spoke (4) .000 ± .000 .000 ± .004 .025 ± .011
Radial sum of second spoke (5) .020 ± .009 .000 ± .005 .000 ± .001
Radial sum of second spoke (6) .015 ± .007 .000 ± .002 .000 ± .000
Radial sum of third spoke (5) .000 ± .006 .025 ± .009 .000 ± .000
Spoke triangle area (3) .037 ± .010 .034 ± .006 .000 ± .006
Spoke triangle area (4) .024 ± .005 .034 ± .006 .045 ± .012
Spoke triangle area (5) .050 ± .016 .062 ± .013 .097 ± .015
Spoke triangle area (6) .018 ± .007 .025 ± .005 .000 ± .002

List of features found relevant (i.e. non-zero weights) for any of the three Minkowski distance
metrics. The weights are averaged over multiple runs. The standard errors are also shown.

74

Feat. No. L1 L2 L3

RADIUS = 3Å
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

RADIUS = 4Å
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

RADIUS = 5Å
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

RADIUS = 6Å
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Radius L1 L2 L3
AVERAGE DENSITY (1)

3
4
5
6

DISTANCE TO CENTER OF MASS (2)
3
4
5
6

MOMENTS OF INERTIA (3,4,5)
3
4
5
6
3
4
5
6
3
4
5
6

RATIOS OF MOM. OF INERTIA (6,7,8)
3
4
5
6
3
4
5
6
3
4
5
6

STANDARD DEVIATION (9)
3
4
5
6

SKEWNESS (10)
3
4
5
6

KURTOSIS (11)
3
4
5
6

MAXIMUM SPOKE ANGLE (12)
3
4
5
6

MEDIAN SPOKE ANGLE (13)
3
4
5
6

MINIMUM SPOKE ANGLE (14)
3
4
5
6

RADIAL SUM OF SPOKES (15,16,17)
3
4
5
6
3
4
5
6
3
4
5
6

SUM OF SPOKE ANGLES (18)
3
4
5
6

SPOKE AREA (19)
3
4
5
6

Fig. 6.2. The relative weights of 76 features returned by SLIDER for L1 (Manhattan), L2
(Euclidean), and L3. In Fig. 6.2(a), the features are first sorted by radius, and for each radius, 19
features are listed in a specific order. In Fig. 6.2(b), the 19 features are first listed in the same
order as in Fig. 6.2(a), and then sorted by radius. Darker shade implies higher weight. The white
cells represent features with zero weight.

a b

75

We make the following remarks regarding the feature weights computed by SLIDER:

• The consistency in features selected (and weighted) across the three metrics shows

that the algorithm converges. But the risk of local minima still exists; this is partially

addressed by the randomized choice of a feature in each iteration. The major cause of

local minima is the fact that the weight of only one feature is greedily adjusted at a

time.

• The absolute moments of inertia seem irrelevant individually, but their ratios provide

more information related to the shape of the density pattern (e.g. spherical,

ellipsoidal, etc.). This exemplifies the feature interaction problem (Jakulin and

Bratko, 2004; Ioerger, 1999), where several features may not appear relevant on an

individual basis, but when looked at in combination, they contribute significantly to

the description of the pattern.

• The strong similarity of weights across the three Minkowski metrics is largely

expected. Some weights are relevant, irrespective of the underlying metric. For

example, the distance between the center of sphere and its center of mass at 3Å is

weighted highly for all three metrics. Nonetheless, there are differences, and

interestingly, these differences do capture the sensitivity of “optimum” weights to

the metric being used. An important point to note is that, given a distance metric,

using continuous weights does not improve pattern matching (as compared to binary

weights) if the weights used are those optimized for another metric e.g. the weights

determined by SLIDER for Euclidean will not make continuous weights outperform

binary weights for Manhattan.

6.3. SLIDER’s Impact on Retrieval for Ideal Maps

In this section, we analyze the contribution of SLIDER in retrieving matches from a

database, given 100 test cases (electron density patterns) from ideal maps i.e. maps that

have been calculated (back-transformed) from known protein structures.

76

Figures 6.3-6.5 plot the number of good matches (averaged over the test set) that the

three Minkowski metrics obtain (from the database of 30,000 regions) in the top k, for

various values of tolerance (at a constant k = 500).

Figures 6.6-6.8 plot the average number of good matches in the top k for the three

metrics, this time varying k (keeping tolerance fixed at .02). We can observe that both

feature selection (binary weights) and feature weighting (continuous weights) improve

over uniform weights (all 76 features equally weighted). Furthermore, continuous

weights are better than binary weights for all three metrics.

Figures 6.3-6.5 show that as tolerance increases, more matches are found, but at a

higher rate for the weighted metrics compared to the non-weighted one. Of course, it can

be argued that only one good match needs to be found, which can be achieved by setting

k sufficiently high. But the improved retrieval allows us to use a lower k, and hence

improve efficiency by reducing the database search time.

Figures 6.6-6.8 examine how performance scales with k, at constant tolerance. The

results again show that using weights determined by SLIDER gives the best

performance, since it needs the smallest value of k for the same number of hits (good

matches).

Figure 6.9 shows the effectiveness of case retrieval in a different way: the number of

instances retrieved in the top 500 that have the same amino acid identity as that of the

test region. We can see that the weighted schemes help in getting more side chains of

similar identity in the top 500. Similar results are obtained for other values of k (not

shown). Selecting as many correct residues as possible in the top k is helpful in the

sequence alignment step of TEXTAL – it is often rewarding to look at several top

matches (rather than just the first), and see a better alignment with the sequence can be

obtained with the second, third, or subsequent matches. Note, however, that even regions

with the correct amino acid identity are not necessarily good matches, as they might

represent a different side chain conformation. Conversely, sometimes residues of

alternative amino acid identity can be good matches, due to structural similarity (e.g.

between valine and threonine, or glutamate and glutamine).

77

Figure 6.10 compares the effectiveness of retrieval of the Euclidean metric to the

Mahalabonis distance (Duda et al., 2001), which is a distance metric that takes into

account some statistical properties of the data. The Mahalanobis distance is based on the

correlations between the feature values; it effectively selects or weights features based

on feature covariances. From Figure 6.10, it can be observed that, while the Mahalabonis

metric outperforms the non-weighted Euclidean measure, both binary and continuous

weighting schemes based on SLIDER outperform the Mahalabonis distance.

Effectiveness of case retrieval using
Manhattan (k = 500)

0

2

4

6

8

10

12

14

0 0.02 0.04 0.06

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k
=

50
0

Uniform

Binary

Continuous

Fig. 6.3. Weighted Manhattan metrics find more matches than non-weighted Manhattan distance.
The results shown are for top k = 500 from a database of ~30,000 regions (for various levels of
tolerance). Also, continuous weights outperform binary weights.

78

Effectiveness of case retrieval using
Euclidean (k = 500)

0

2

4

6

8

10

12

14

0 0.02 0.04 0.06

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k
=

50
0

Uniform

Binary

Continuous

Fig. 6.4. Continuous weights are more effective than binary weights (using Euclidean distance)
in retrieval of matching electron density patterns from a database. Both weighted metrics
outperform the non-weighted (uniform weights) metric.

Effectiveness of case retrieval using L3 (k = 500)

0

2

4

6

8

10

12

0 0.02 0.04 0.06

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es
 fo

un
d

in
 to

p
k

=
50

0

Uniform

Binary

Continuous

Fig. 6.5. Weighted L3 metrics outperform the non-weighted (uniform) L3 metric. Continuous
weights outperform binary weights.

79

Effectiveness of retrieval using Manhattan
(tolerance = .02)

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000

k

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k
Uniform

Binary

Continuous

Fig. 6.6. Weighted Manhattan metrics find more matches than the non-weighted Manhattan
metric. The results shown are for various values of k from a database of ~30,000 regions
(tolerance = .02). Also, continuous weights outperform binary weights.

Effectiveness of retrieval using Euclidean
(tolerance = .02)

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000

k

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k

Uniform

Binary

Continuous

Fig. 6.7. Continuous weights are more effective than binary weights (using Euclidean distance)
in retrieval of matching electron density patterns. The database has about ~30,000 regions. The
results shown are for k ranging from 1000 to 3000. Both weighted metrics outperform the non-
weighted (uniform weights) metric.

80

Effectiveness of retrieval using L3

(tolerance = .02)

0

1

2

3

4

5

6

0 1000 2000 3000 4000

k

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k
Uniform

Binary

Continuous

Fig. 6.8. Weighted L3 metrics outperform the non-weighted (uniform) L3 metric. Continuous
weights outperform binary weights.

Effectiveness of metrics in retrieving correct
amino acids in top k = 500

0

10

20

30

40

50

60

70

80

Manhattan Euclidean L3N
um

be
r

of
 r

es
id

ue
s

of
 s

am
e

id
en

tit
y

in
 to

p
50

0

Uniform

Binary

Continous

Fig. 6.9. Weighted metrics retrieve more matches with the same residue identity than non-
weighted metrics. The results shown are for k = 500. Similar results are obtained with other
values of k.

81

Effectiveness of retrieval of weighted and non-
weighted metrics

0

2

4

6

8

10

12

14

0 0.02 0.04 0.06

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k
=

50
0 Euclidean with

uniform weights

Euclidean with
binary weights

Euclidean with
continuous

Mahalanobis

Fig. 6.10. Effectiveness of various weighted and non-weighted metrics. Mahalanobis distance
outperforms the non-weighted (uniform) Euclidean metric in obtaining matches in the top k =
500 for various levels of tolerance. But weighted Euclidean distances (using weights determined
by SLIDER) are more effective than the Mahalanobis metric in case matching and retrieval.

6.4. Comparing SLIDER to Other Feature Selection and Weighting Algorithms

In this section, our main aim is to compare the performance of SLIDER to that of

other feature selection and weighting algorithms. In this experiment, we do an analysis

similar to that in section 6.3, but with the actual database that TEXTAL currently uses

(containing about 50,000 instances).

Figure 6.11 illustrates how the weighted Euclidean metric (with weights determined

by SLIDER) performs compared to the non-weighted (uniform) Euclidean distance in

the retrieval of matches in the top k = 400 cases. Again, we compare the two metrics for

various tolerances in defining similarity, using density correlation. With feature weights

determined by SLIDER, about twice as many matches are found at each level of

tolerance (compared to uniform weights). Figure 6.12 shows the effectiveness of

weighting in a slightly different way – at a fixed tolerance (of 0.02), we show how many

82

truly similar cases are placed in the top k, for varying values of k. Again, by using

SLIDER weights, the number of matches retrieved is roughly doubled.

In Figure 6.13, we broaden the comparison (with the same experimental data) and

examine how SLIDER performs compared to other standard feature selection and

weighting methods. The actual induction algorithm (retrieval from the database) is too

expensive and impractical to be used to evaluate and select weights, as in typical

wrappers. So, in all the algorithms we use the mean rank of matches [R , as defined in

(4.10)] to tune the weights. Figure 6.13 shows retrieval accuracy for the weighted

Euclidean distance metric using SLIDER weights, uniform weights (i.e. non-weighted),

and weights determined by the following algorithms:

1. DIET (Kohavi et al., 1997) is a wrapper approach that searches a space of discrete

weights. It uses a set of p+1 possible weights: 0, 1/p, 2/p, …, (p -1)/p, 1 (the results

shown are based on p = 10). The operators in this heuristic search replace the current

weight of a feature by either the next larger or smaller value in the allowed set

(unless the minimum or maximum has been reached) based on improvement in

ranking.

2. Sequential forward and backward selection (SFS and SBS) start from an empty and

full set of features respectively, and greedily add or remove one feature at a time,

depending on which addition or deletion improves ranking the most (Kittler, 1978).

3. The linear programming (LP) method (described in section 4.3) that approaches the

feature weighting problem in a way that is related to SLIDER, but with some

fundamental differences. SLIDER aims at maximizing the number of training

instances where the weighted Euclidean distance between an instance and its

mismatch is greater than the distance between the instance and its match. In contrast,

the LP approach tries to optimize the aggregate difference in the (squared) weighted

Euclidean distances themselves. The GNU Linear Programming Kit

(http://www.gnu.org/software/glpk/glpk.html) was used to solve the optimization

problem.

83

Figure 6.13 shows that SLIDER weights outperform weights determined by all other

methods, including the LP approach. This can be attributed to the way SLIDER chooses

candidate weights for evaluation, based on crossover points, as discussed in Chapter IV.

Effectiveness of case retrieval using Euclidean
distance (k = 400)

0

5

10

15

20

25

30

35

40

0.01 0.02 0.03 0.04 0.05

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k
=

40
0

Non-weighted

Weighted

Fig. 6.11. Weighted Euclidean distance places more matches in the top 400 cases than non-
weighted Euclidean distance. This is true for various values of tolerance, which determines how
lenient we are in defining similarity, based on density correlation – with higher tolerance, more
cases will qualify as being similar.

84

Effectiveness of case retrieval using Euclidean
distance (tolerance = 0.02)

0

5

10

15

20

500 1000 1500 2000 2500 3000

k

A
ve

ra
ge

 n
um

be
r

of

m
at

ch
es

 fo
un

d
in

 to
p

k

Non-weighted

Weighted

Fig. 6.12. Weighted Euclidean distance places more matches in the top k cases than non-
weighted Euclidean. This is true for various values of k (at a fixed tolerance in the evaluation of
similarity based on density correlation).

Effectiveness of case retrieval using various
weighted Euclidean distances (k = 400)

0

5

10

15

20

25

30

35

40

0.01 0.02 0.03 0.04 0.05

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es
 fo

u
nd

 in

to
p

k
=

40
0

Uniform weights

SFS

DIET

LP

SBS

SLIDER

Fig. 6.13. SLIDER is more effective in weighting features (such that true matches are highly
ranked and retrieved from the TEXTAL database) as compared to other standard feature
weighting and selection algorithms.

85

CHAPTER VII

DATABASE RETRIEVAL AND FEATURE WEIGHTING:

APPLICATION TO PROTEIN CRYSTALLOGRAPHY

In the previous chapter, we presented empirical results (in protein crystallography)

from a machine learning perspective, with minimal analysis and discussion relevant to

the domain. In this chapter, we discuss the significance of the methods we developed

(for efficient case retrieval and feature weighting) in enhancing protein model-building

through interpretation of electron density maps. We also relate the challenges and

methods in our work to other work done in protein crystallography (and structural

bioinformatics, in general), particularly those that are based on exploiting information

available in databases, and the use of features.

7.1. Size of the TEXTAL Database

Accurate and fast automated protein model-building are critical to high-throughput

structural genomics pipelines. After data collection, crystallographers usually build

protein models iteratively and incrementally, using a number of tools to improve the

map and the model. They have to experiment with many possible scenarios, and this can

be very time-consuming. So, it is of practical importance for automated electron map

interpretation methods to solve structures quickly (in less than a few hours). Database

approaches are usually expensive, because a large number of instances are required for

adequate coverage of all possible variations of the problem. In TEXTAL, we use a large

library of side chains that covers all the 20 amino acids, for different conformations, and

in various orientations. To achieve a reasonable tradeoff between efficiency of model-

building, and good coverage of density patterns (and hence quality of solutions), we

adopt the two-phase strategy discussed earlier: given a local density region in the input

map, we quickly compare the region to every instance in the database (about 50,000

local spherical regions from 200 proteins) using an efficient feature-based metric. This

86

enables us filter the most promising k candidates, which are then analyzed by a more

expensive method (density correlation) to find the best match.

We empirically observed that a database of about 50,000 regions is suitable for this

approach. Figure 7.1 shows how TEXTAL performs on test maps, using databases of

different sizes (with the same distribution of residues) and a constant k = 400. We show

the percentages of structurally similar residues that TEXTAL found for the test proteins.

(The 20 amino acids are divided into 10 groups, where amino acids within a group are

structurally similar e.g. alanine and glycine, or valine and threonine; some groups have

only one amino acid, such as proline and isoleucine.) We also observed that the gain in

performance beyond 50,000 is not significant.

Our set of test cases includes real (experimentally determined) maps for the following

proteins: (i) CzrA (chromosome-determined zinc-responsible operon A) is a dimer

consisting of 96 amino acids in four α-helices (Eicken et al., 2003); (ii) IF-5A

(translation initiation factor 5a) consists of a pair of β-barrel domains; it has 137

amino acids (Peat et al., 1998); (iii) MVK (mevalonate kinase) is a medium-sized protein

with 317 amino acids, including both α and β secondary structures (Yang et al., 2002);

(iv) PCA (mycolic acid cyclopropane synthase) has 262 amino acids, and is made up of

both �-helices and �-sheets (Huang et al., 2002).

Note that a database of 50,000 regions seems large, because there are only a limited

number of rotamers for each amino acid. Nonetheless, we need more instances, because

TEXTAL may not find the right rotamer from the library, since the rotamer may be in a

different orientation relative to the density region in the input map. Furthermore, a large

database will lead to more robust modeling because input maps are typically at low

resolution, noisy, and distorted. The two-phase approach that we propose makes a large

library affordable, because the filtering process is very efficient (since it involves

computing Euclidean distances). The effectiveness of the filtering depends on a good

distance metric (based on relevant and properly weighted features) that enrich the pre-

selected k examples with as many true matches as possible. This is the motivation to

weigh the features to reflect their relevance in comparing instances.

87

Performance of TEXTAL with database of various
sizes

0

10

20

30

40

50

60

CzrA IF-5A MVK PCA

Protein

%
 o

f s
tr

uc
tu

ra
lly

 s
im

ila
r

re
si

du
es

 fo
un

d 200 structures (50,000
regions)

50 structures (16,000
regions)

25 structures (9,000
regions)

Performance of TEXTAL vs. database size

20

25

30

35

40

45

50

55

0 10,000 20,000 30,000 40,000 50,000 60,000

Number of regions in database

%
 o

f s
tr

uc
tu

al
ly

 s
im

ila
r

re
si

du
es

 fo
un

d

CzrA

IF-5A

MVK

PCA

Fig. 7.1. Quality of models built by TEXTAL with databases of various sizes.

7.2. Composition of the TEXTAL Database

The database that TEXTAL uses is made of maps that are computed (back-

transformed at 2.8 Å) from manually built and refined structures from the PDB. It can be

argued that the database should consist of maps at various resolutions and phase error,

a

b

88

since real maps that we need to solve will vary in terms of resolution, phase error, and

other types of noise. This hypothesis was tested by using a database of real maps. The

results are shown in Figure 7.2, where we compare the performance of TEXTAL using

two databases of similar sizes (and with similar proportions of amino acids): one with

“ideal” maps, and the other with real maps. It can be observed that TEXTAL performs

better with the database of ideal maps. We argue that although the input map will

invariably be noisy, a database of real maps (at different resolutions and with noise) will

tend to confuse pattern recognition. By keeping the database uniform and “clean”, there

seems to be a better chance of distinguishing patterns in a real map. We also tried

introducing controlled (uniform) error in the database (such as a phase error of 40°), but

this did not improve the recognition of density patterns.

Performance of TEXTAL: Ideal vs. real maps

0
5

10
15
20
25
30
35
40
45

CzrA IF-5A MVK PCA

Protein

%
 o

f s
tr

uc
tu

ra
lly

 s
im

ila
r

re
si

du
es

 fo
un

d

Ideal maps (8,000
regions)

Real maps (8,000
regions)

Fig. 7.2. Quality of models built by TEXTAL with databases of ideal and real maps. Using real
maps does not improve the performance of TEXTAL.

One variation that led to significant improvement is uniform scaling of the electron

density maps i.e. modifying the density values such that maps can be meaningfully

89

compared. The scaling of density is similar to a normalization procedure, where the

mean density is zero, and the standard deviation is 1.0. In TEXTAL, we first reset too

high and too low density values, because they most likely are due to solvent and other

forms of noise, rather than protein. Thus, two threshold density values �1 and �2 are

determined for a given map, such that the highest 20% of density points lie above �1 and

the lowest 20% of density points lie below �2. Given a point with density �, the scaled

density ρ′ is given by 1 2 1 2[() / 2] /[() / 2]ρ ρ θ θ θ θ′ = − + − . The same scaling is done for

the input map as well.

Not surprisingly, this led to more accurate comparison between density patterns, and

hence better modeling of side chains. Figure 7.3 shows the percentage of amino acids for

which a structurally similar amino acid is retrieved by TEXTAL, using a non-scaled and

a scaled database.

Performance of TEXTAL: non-scaled vs. scaled
maps

0

10

20

30

40

50

60

CzrA IF-5A MVK PCA

Protein

%
 o

f s
tr

uc
tu

ra
lly

 s
im

ila
r

re
si

du
es

 fo
un

d

Database with non-
scaled maps

Database with scaled
maps

Fig. 7.3. Quality of models built by TEXTAL with databases of maps that are scaled and those
that are not scaled. Scaling of the database maps (and the input map) leads to significant
improvement in the performance of TEXTAL.

90

7.3. Distribution of Amino Acids

Since TEXTAL’s database constitutes of artificially created maps from manually

determined and refined proteins, the distribution of the twenty amino acids in the

database will more or less reflect the distribution that is found in naturally occurring

proteins (Figure 7.4).

Fig. 7.4. Distribution of amino acids in TEXTAL’s database.

It can be argued that the database should be biased so that it keeps only limited

number of the possible rotamers of each residue. For instance, since there is one rotamer

of alanine, having multiple instances of alanines is redundant. With this approach, a

smaller database will be needed. There are several rotamer libraries that are publicly

available (Lovell et al., 2000; Dunbrack, 2002), and used in crystallographic protein

modeling programs (McRee, 1999b; Perrakis et al., 1999).

Nonetheless, TEXTAL uses a very large database that covers all rotamers that occur

in real structures – the rationale behind this is the fact that TEXTAL is designed for low

resolution, noisy maps, and variations due to noise may not be adequately covered by a

small library of rotamers. Another form of noise is the error in finding the coordinates of

C� atoms. TEXTAL uses a neural network approach (Ioerger and Sacchettini, 2002) to

find C� coordinates, and they have limited accuracy (usually, a root mean square error of

91

less than 1 Å), which can easily mislead pattern matching for side chains. Also,

TEXTAL attempts to get only structurally similar residues in a preliminary phase of side

chain placement. Subsequent sequence alignment and real-space refinement steps correct

the amino acid identities and fit them better into the density. Furthermore, the two-phase

approach used in TEXTAL makes the use of a large database with a lot of redundancy

affordable.

7.4. Definition of a True Match for a Side Chain

Ideally, given a electron density region around a C�, TEXTAL should retrieve the

right rotamer of the right amino acid that the region contains. But in practice, the

situation is more complicated. As mentioned earlier, one of the problems is that the C�

coordinates determined from electron density map may not be accurate. They may be off

the correct C� by a certain distance. More importantly, there may be wrong insertions

and deletions of C� atoms, owing to noise like broken or weak density. Furthermore, we

try to find a match for a spherical sphere of density, where we look at the density

patterns at different radii (3, 4, 5, and 6 Å). Amino acids vary in shape and size; at a

smaller radius (like 3 Å), we may not capture enough information about the density

corresponding to a (large) residue. On the other hand, with a large radius (6 Å), we may

have noise from density patterns for neighboring residues.

These complications make prediction of amino acid identity difficult. We used a

classifier based on support vector machines (Vapnik, 1998) to predict the exact residue

identity, using the 76 features described earlier. We trained 20 two-class classifiers to

predict whether a region contains a given amino acid or not i.e. one classifier for each

amino acid. The classifiers were trained with 1000 positive and 1000 negative examples

for each amino acid. We used the Gist SVM classifier (Pavlidis et al., 2004) for these

experiments.

As expected, the SVM classifier performed reasonably well with precise C�

coordinates, but the performance degraded with inaccurate C� predictions. We analyzed

how difficult it is to predict the identities of various amino acids.

92

Figures 7.5 and 7.6 show results obtained when we use an SVM classifier that, given a

pattern for an amino acid (correctly centered around its true C�) and an amino acid

identity X, it predicts whether the pattern is for X or not. Figure 7.5 gives the sensitivity

of prediction in descending order for all amino acids, and Figure 7.6 gives the specificity

of prediction in descending order. The sensitivity and specificity are related to Receiver

Operating Characteristic (ROC) analysis. If TP, TN, FP, FN are rates for true positives,

true negatives, false positives, and false negatives respectively, then sensitivity

[TP/(TP+FN)] can be thought of as the likelihood of spotting a positive case when

presented with one. Specificity [TN/(TN+FP)] can be thought of as the likelihood of

spotting a negative case when presented with one. We observe that there is significant

consistency in the ranks of the amino acids in terms of sensitivity and specificity. We

also observe that amino acids that are small and spherical in shape tend to be most easily

recognizable (e.g. alanine, glycine, and proline). Proline is particular distinct with its

ring that contains a nitrogen atom. On the other hand, “long” amino acids (such as

arginine, lysine, and leucine) tend to be least recognizable, probably because we look at

features covering spherical regions of density. The presence of a large sulfur atom in a

cysteine and methionine tends to make them somewhat more distinct. Amino acids with

benzene rings can also be recognized with relative ease – it is interesting that the three

aromatic amino acids (tyrosine, tryptophan, and phenylalaline) are ranked next to each

other in the middle of the sensitivity chart.

We note that there is significant (negative) correlation between number of rotamers

for an amino acid and the sensitivity (as well as specificity) of the accuracy with which it

can be recognized. Table 7.1 provides the number of rotamers for each amino acid

(Lovell et al., 2000), and Figures 7.7 and 7.8 are scatter plots of number of rotamers

versus sensitivity and specificity respectively. The linear coefficient correlation for

sensitivity vs. number of rotamers is -0.55, and for specificity vs. number of rotamers, it

is -0.53. This clearly shows that it is easier to recognize amino acids with fewer rotamers

from the features that we use. This result is intuitive since more rotamers effectively

93

makes pattern recognition more confusing, since one amino acid can be represented by

more feature vectors, even if we assume that there is no noise in the features.

Note that the above SVM-based predictions assume accurate C� positions. With real,

noisy maps, the problem becomes much harder. Given that TEXTAL places amino acids

for medium-low resolution maps (and therefore imprecise C� coordinates), we adopt a

strategy of finding structurally similar residues in an as robust way as possible (i.e.

insensitive to orientation, translation, and noise). Once structurally similar residues are

found, we improve on the accuracy in terms of residue identity by aligning with the true

sequence, substituting some residues (based on a substitution matrix that captures the

types of amino acid prediction errors that TEXTAL makes), and doing a real-space

refinement of the model.

Sensitivity of SVM prediction

0

0.2

0.4

0.6

0.8

1

1.2

G
LY

A
LA

P
R

O

V
A

L

C
Y

S

H
IS

IL
E

T
H

R

M
E

T

T
Y

R

T
R

P

P
H

E

A
S

P

A
S

N

G
LU

S
E

R

LE
U

A
R

G

G
LN

LY
S

Amino acid

T
P

/(
T

P
+F

N
)

Fig. 7.5. Sensitivity of prediction of amino acid type using an SVM classifier.

94

Specificity of SVM prediction

0

0.2

0.4

0.6

0.8

1

P
R

O

G
LY

A
LA

V
A

L

A
S

N

A
S

P

P
H

E

LE
U

TR
P

H
IS

M
E

T

TY
R

TH
R

C
Y

S

IL
E

G
LU

LY
S

G
LN

A
R

G

S
E

R

Amino acid

TN
/(T

N
+F

P
)

Fig. 7.6. Specificity of prediction of amino acid type using an SVM classifier.

Table 7.1. Number of rotamers for each amino acid

Amino acid Number of rotamers
ALA 1
ARG 34
ASN 7
ASP 5
CYS 3
GLN 9
GLU 8
GLY 1
HIS 8
ILE 7
LEU 5
LYS 27
MET 13
PHE 4
PRO 3
SER 3
THR 3
TRP 7
TYR 4
VAL 3

95

Number of rotamers vs. sensitivity of SVM
classification of 20 amino acids

0

10

20

30

40

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Sensitivity

N
um

be
r

of
 r

ot
am

er
s

Fig. 7.7. Scatter plot of the number of rotamers vs. the sensitivity of pattern recognition for the
20 amino acids. The linear correlation coefficient is -0.55.

Number of rotamers vs. specificity of SVM
classification

0

10

20

30

40

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Specificity

N
um

be
r

of
 r

ot
am

er
s

Fig. 7.8. Scatter plot of the number of rotamers vs. the specificity of pattern recognition for the
20 amino acids. The linear correlation coefficient is -0.53.

96

7.5. Density Correlation and Feature-Based Distance

If finding the true amino acid identity is difficult, we need another metric to find the

(structural) similarity between two regions of density. We use a measure that superposes

two density regions (one from the unsolved protein, and the other from the map library),

and evaluate the density correlation to find out how similar they are. This density

correlation coefficient (CC) is expensive to compute, and it is impractical to compare

each region of the input to every region in our database. That is why we filter a small

number of cases from the database using feature-based distance measure. In this section,

we analyze the relationship with these two metrics. In Figure 7.9, we show the

distribution of CC for 1000 pairs of regions randomly chosen from the database. Figure

7.10 shows the typical distribution of CC for the top 400 cases filtered from the database,

given a random query region. We can see the difference in the distribution, which shows

the ability of the feature-based metric to filter regions with high density correlation

values.

Fig. 7.9. Distribution of density correlation coefficient (CC) for 1000 random pairs from the
TEXTAL database.

97

Fig. 7.10. Distribution of density correlation coefficient (CC) between a random region and the
top 400 cases filtered (using a feature-based distance) from the TEXTAL database.

One important question is what k should be set to. Our aim is to set k the lowest

possible (so that as few density correlations values as possible have to be computed),

without sacrificing the quality of solutions obtained. Figures 7.11a and 7.11b show how

the average density correlation coefficient (CC) of all side chains for two test proteins

solved by TEXTAL (CzrA and IF-5A respectively) varies with various top k cases

filtered. We observe that the gain in CC is significant till the top 2,000 to 3,000 are pre-

selected, which is close to theoretically determined results (Gopal et al., 2004a)

98

Fig. 7.11. The mean density correlation coefficient (CC) increases with top k cases pre-selected.
CC reaches a plateau with k at about 3000 for both CzrA (Fig. 7.11(a))and IF-5A (Fig. 7.11(b)).

Table 7.2 analyzes the choice of k from a slightly different perspective. For one

representative of each amino acid, we first determine its truly best match (highest

density correlation) found in the top k = 400, and k = 100. We then compare this best

match found in the top k to all other instances in the database, and rank it based on

density correlation. We call this rank absolute rank. Table 7.2 shows the absolute ranks

i.e. the rank of the best match found in the top k based on density correlation, relative to

all instances in the database. It can be observed that with k = 400, we find a match

ranked fairly close to the absolute best one. With k = 100, the match found are often

poorly ranked ones.

a b

99

 Table 7.2. Absolute rank of matches filtered by Euclidean distance

Absolute rank of best match found in top k
Amino acid

k = 400 k = 100

ALA 34 150

ARG 87 768

ASN 9 12

ASP 8 8

CYS 4 4

GLN 7 7

GLU 12 12

GLY 10 17

HIS 32 43

ILE 36 354

LEU 2 22

LYS 1 1

MET 5 5

PHE 16 20

PRO 27 354

SER 6 6

THR 4 32

TRP 2 2

TYR 1 30

VAL 5 8

For one representative instance of each amino acid, we first determine its truly best match
(highest density correlation) found in the top k = 400, and k = 100 (pre-selected by Euclidean
distance). We then compare this best match found in the top k to all other instances in the
database, and rank it based on density correlation. This rank is referred to as absolute rank. With
k = 400, significantly better instances (lower rank) are retrieved as compared to k = 100.

100

7.6. SLIDER’s Impact on Retrieval for Real Maps

In this section, we evaluate the contribution of SLIDER in solving real maps. We run

TEXTAL (including the sequence alignment and real-space refinement steps) on the four

test cases mentioned in section 7.1, using Euclidean distance with uniform weights as

well as with weights determined by SLIDER. The distance metric is invoked in the

LOOKUP system, which performs the database search. The other components (CAPRA

and POST-PROCESSING) do not depend on the distance metric. As mentioned earlier,

the database we use in TEXTAL is made up of ideal (back-transformed) maps. The

training set that SLIDER uses to determine the weights is also generated from ideal

maps. Experimental maps are noisy and have high variance in terms of quality and

resolution; thus we achieve better case retrieval and tuning of weights if ideal maps are

used for training and in the database.

Table 7.3 shows the percentage of amino acids that were correctly determined by

TEXTAL on our test cases, using the weighted and non-weighted Euclidean measure,

setting k to 100. Given an unsolved query region, the top 100 potential matches are

retrieved from a database (of about 50,000 regions) by the Euclidean distance metric,

and the final selection is done by choosing the one with the highest density correlation

with the query region. We can observe that feature weighting by SLIDER seems to

contribute little to the performance of TEXTAL for the first two (smaller) proteins (CzrA

and IF-5A). Nonetheless, in the last two cases (MVK and PCA), the percentage of amino

acids correctly identified increases significantly when SLIDER weights are used. The

wide variation in the performance of TEXTAL (and the contribution of SLIDER) on

different real maps can most likely be attributed to differences in qualities of the maps.

The accuracy with which CAPRA places the Cα atoms is also influenced by the quality

of the map, and the performance of LOOKUP is sensitive to that of CAPRA. Thus the

“interpretability” of maps varies widely, depending on resolution and degree of phase

error.

We emphasize that the improvement in accuracy in predicting residue identities is not

necessarily the direct contribution of better feature weighting – its contribution is often

101

indirect, in the sense that by helping in the retrieval of slightly better matches, SLIDER

helps the sequence alignment routine (Romo et al., 2006) recognize protein fragments,

and make more appropriate corrections in amino acid identities.

 Table 7.3. Performance of TEXTAL, with and without SLIDER weights

% of residues correctly identified by TEXTAL

Protein

No of

residues Euclidean distance with
uniform weights

Euclidean distance with
SLIDER weights

 CzrA 96 98.9 95.6

IF-5A 137 78.1 79.7

MVK 317 25.4 54.7

PCA 262 23.9 57.7

SLIDER makes little contribution in model-building of CzrA and IF-5A, but contributes
significantly in the cases of MVK and PCA, which are larger proteins.

7.7. Interpretation of Feature Weights

In this previous chapter we discussed feature weighting from the perspective of

efficiency of case retrieval. But do the features determined as relevant by SLIDER meet

the expectations of a crystallographer? In this section, we analyze feature relevance

from the perspective of the domain.

The descriptions of the features are provided in section 3.12. As pointed out earlier,

although SLIDER may select/weight features differently in different runs, the different

features selected may actually be quite similar e.g. closely related features, like standard

deviation and skewness. Also, there may be more redundancy in terms of the same

feature at close radius values e.g. average density at 3 and 4 Å. Thus, the features may

not be relevant or irrelevant in absolute terms, but they might seem useful or useless in

the context of other features selected or rejected. Table 6.1 lists the features that were

found irrelevant for all the three metrics analyzed (L1, L2, and L3). So these features can

102

be considered to be largely irrelevant. Table 6.2 lists the features that were found

relevant for any of the three metrics. Not all of them are highly relevant; the weight also

matters – the differences in feature relevance based on weights are captured in Figure 6.2.

We first discuss the impact of radius on relevance (irrespective of the feature

identities), and then we analyze the features individually. Table 7.4 shows the sum of

weights (determined by SLIDER) for each radius, irrespective of the nature of the

feature. We can observe significant similarity of weights for the three metrics that use

the weights (weighted Manhattan, Euclidean, and L3). Furthermore, we can note that the

total weights for radii 3 Å and 5 Å are the highest, and comparable to each other, and the

total weights for radius 6 Å is significantly lower. The 3D spherical patterns are

expected to cover amino acids of various shapes and sizes, which justifies the choice of

feature values at different radii. A 3 Å radius sphere centered on a C� atom is expected

to contain significant information about the side chain; but this information may not be

adequate to recognize the side chain, especially for large amino acids that may not be

totally encapsulated in the 3 Å sphere. But at 6 Å, we face the problem of having noise

due to density of neighboring residues or long-range contacts, and hence we expect their

relevance to be lower; this trend is captured by our weight optimization algorithm.

 Table 7.4. Feature weights at different radii

Sum of weights for three Minkowski metrics

Radius in Å

(1 Å = 10-10m) Manhattan Euclidean L3

3 .36 .35 .32

4 .21 .23 .15

5 .34 .35 .43

6 .09 .07 .10

Sum of all feature weights determined by SLIDER at four different radii. There are 19 features
for each radius.

103

We now look at the various features individually, and discuss the significance of the

observed results:

• Mean density: it is irrelevant at small radii (3 and 4 Å), but relevant at large radii (5

and 6 Å). This seems intuitive. The average densities at a small radius would tend to

be the same for all amino acids – they become distinguishable only with larger radius.

• Standard deviation in density: it is irrelevant for almost all radii (it has a very small

weight at 3 Å only). This is also expected; there seems to be little compelling

argument for the density value to have different variances for different residues,

especially when the density has been scaled.

• Skewness: The observations are the same as for the standard deviation i.e. irrelevant

at almost all radii. The same explanation probably holds too.

• Kurtosis: This feature has a small weight at three different radii. This is somewhat

surprising, especially given the observation about standard deviation and skewness.

The kurtosis is a measure of “peakedness”. The peakedness is expected to be large at

larger radii (and this is actually observed) – it is arguably capturing some differences

among residues, or it maybe a case of data overfitting.

• Moments of inertia: In general, the magnitudes of the three moments of inertia are

largely found irrelevant by SLIDER, especially the secondary moment. Nonetheless

the ratios of the different pairs of moments of inertia are found relevant. Recall that

the primary moment of inertia is along the path with the highest distribution of

density – the other two moments of inertia are orthogonal to the primary moment

(and to each other). The primary moment would probably capture some information

about long residues (like arginine and leucine). But the magnitude of moments

along the two other directions are not expected to contain much information, since

they are orthogonal to the primary moment. This is consistent with the empirical

results. But, why are the ratios generally found relevant? The ratio arguably capture

how stretched out it is in one particular direction. For example, like arginine,

histidine also stretches along one direction, but the latter also has high density along

104

other directions (due to its ring). Thus the primary moment may not distinguish them

apart, whereas the ratio of moments will.

• The distance from the center of a region to its center of mass: as expected, this is a

highly relevant feature (large weights), except at a radius of 6 Å. This feature tries to

capture how symmetric or balanced the region is, and this is expected to vary

significantly across amino acids. But at 6 Å, noise from neighboring features is

expected to really distort this feature value.

• Features based on “spokes”: by and large, these features are found to be highly

relevant, especially the sum of spoke angles and spoke triangle area (the latter two

are relevant for all radii and have relatively large weights). This is not surprising,

since this feature set is the only one that tries to capture information based on the

typical shape of amino acids (three spokes emanating from the C�). Three spokes are

calculated along arbitrary directions of high density – this is probably why these

features are more relevant compared to the moments of inertia, which are computed

at strictly orthogonal directions.

105

CHAPTER VIII

CONCLUSION

8.1. Feature Weighting and SLIDER

In this work, we discuss the importance of feature selection and weighting in machine

learning and pattern recognition. We describe the SLIDER algorithm, and show that the

feature weights it determines lead to an improvement in weighted distance metrics, like

Euclidean or Manhattan. This in turn results in an increase in the number of true matches

occurring in the top ranked cases retrieved from a large database. Thus, the probability

of retrieving a match from the database is increased.

We propose a two-phase strategy for efficient case retrieval, where we approximate an

objective, expensive similarity metric with a fast, feature-based similarity measure, and

use the latter as a filter of probably good matches, based on k-nearest neighbor learning.

With this approach, case-based reasoning systems can afford large databases as well as

improve on time performance.

SLIDER is a filter method that avoids searching a large space of possible weight

vectors. Instead, the evaluation is performed at weight values that matter i.e. at specific

“crossover” weights, where there is a change in accuracy of ranking of matches relative

to mismatches. Furthermore, locating these weight values can be done efficiently, since

it involves solving linear equations applicable to many metrics (like the Euclidean

distance). The benefits of restricting the number of weights searched and used for

nearest neighbor classification are emphasized in (Kohavi et al., 1997); they also argue

that there are probably no benefits in using weights beyond two possible values (0 and 1).

Nonetheless, SILDER does manage to compute finer weight values that improve case

matching and retrieval.

SLIDER was used to optimize weights for three different Minkowski distance metrics,

and proved to be successful in improving pattern matching and retrieval for each of the

three metrics, in the context of the case-based reasoning and nearest neighbor strategies

to efficiently retrieve matches. The weights determined by SLIDER were largely similar

106

for the various metrics. Nonetheless, the slight differences were significant in capturing

the sensitivity of relevance to the distance metric being used. We argue that the

relevance of features in describing a pattern is not absolute; it depends on how the

features are used to determine similarity, especially since similarity itself is often a fuzzy

concept, with multiple ways of determining it.

We also present a theoretical framework based on probability to justify the heuristic

SLIDER used to evaluate weights. We argued that by using a training set to minimize

the mean rank of true matches relative to mismatches, we are causing a separation

between the distribution of Euclidean distances for matches and the distribution of

Euclidean distances for mismatches. This separation is a measure of how well the

distance metric is able to distinguish matches from mismatches. We analytically showed

that if the mean rank of matches is decreased as a consequence of the weight update by

SLIDER, this implies a separation between the Euclidean distance distributions for

matches and mismatches, and hence a higher probability of retrieving a true match. This

provides a theoretical justification to SLIDER’s strategy of minimizing ranking of

matches by adjusting weights through a search of a space of candidate weight vectors.

Our analysis also sheds light on the statistical relationship between objective (numerical)

evaluations of a set of instances and the ranking of the instances based on the evaluations.

This is potentially useful in many other applications, such as ranking of web pages,

document/image retrieval, proteomics, and other applications that involve large and rich

databases.

We also discuss the significant contribution of SLIDER in making case retrieval more

efficient and effective in the TEXTAL system (for automated electron density map

interpretation in protein crystallography). We made an empirical comparison between

SLIDER and other feature selection and weighting algorithms, including a method based

on linear programming that is closely related to SLIDER.

The feature weighting and the related case matching and retrieval methods that we

propose have been motivated by the exigencies of the electron density map interpretation

problem. Nonetheless, the techniques employed are general and potentially useful in

107

other domains, especially those with high-dimensional and noisy data, expensive case

matching, and large databases.

8.2. Application to Protein Crystallography

 We also discuss the contribution of the methods proposed (for efficient case retrieval

and feature weighting) to the challenging problem of automated electron density map

interpretation in protein crystallography. The techniques developed have been used in

TEXTAL, a system that takes a real-space pattern recognition approach to solve electron

density maps. TEXTAL is a case-based reasoning system that exploits information on

existing density maps and their corresponding 3D structures to solve new maps.

 We relate the proposed methods to previous work on database and feature-based

approaches in structural bioinformatics. We discuss various key practical issues in

TEXTAL, which may be useful in other bioinformatics applications. What should be the

size and composition of the database? We empirically determined a “saturated” database

size, beyond which there is no marked improvement. We argue that large databases are

necessary for such complex and noisy domains, despite the fact the number of possible

rotamers is limited. This is where appropriate feature weighting is instrumental, since it

makes the database retrieval efficient.

 We also argue that the database should be made of ideal (noise-free) electron density

maps, as opposed to real maps (from experimental data). This may be counter-intuitive,

since ideal maps may not capture information generally found in real maps. But with

ideal maps, pattern recognition is found to be more effective. What is more important is

proper “feature engineering” – by scaling the maps properly (to make comparisons

meaningful) and normalizing the features appropriately, recognition of patterns becomes

much easier.

 Another issue we dealt with is the definition of a true match for side chains. How do

we define a true match? Since many amino acids are structurally similar, and there are

errors in the C� coordinates as well noise in the input map, we found it better to adopt a

more relaxed version of identity – we try to find structurally similar residues rather than

108

the “obvious” similarity metric i.e. amino acid identity. (We subsequently correct amino

acid identity using sequence alignment.)

 We show the difficulties of recognizing various residues based on identity, even with

state-of-the-art classification algorithms like support vector machines. We also look at

the relationships among various similarity metrics: amino acid identity, density

correlation, and feature-based metrics. This provides convincing arguments to our

approach, especially if the parameters are set properly – such as an appropriate k (the

number of cases to be efficiently filtered from the database).

 In recognizing density patterns in a large map, we look at local, spherical regions.

One important issue is the need to look at density regions at different radii – because of

noise, different shapes and size of residues, and the imperfections in C� predictions. The

usefulness of this approach was clear when weights were analyzed at different radii.

Also, we interpret the weights of the features determined by SLIDER based on domain

knowledge, and saw that they are quite consistent with what is expected.

8.3. Limitations and Future Work

There is considerable scope to improve and extend this work, and address its various

limitations. In particular, we plan to investigate the following:

• SLIDER can be extended to optimize more than one weight at a time, based on the

same geometric principles in higher dimensions. It can be shown that each ‹instance,

match, mismatch› 3-tuple represents a line in a two-dimensional (2D) space of two

features, with one side representing an improvement in accuracy, and the other side a

loss in accuracy. If many such 3-tuples are considered, the problem can be reduced

to finding an optimal 2D region (a convex polygon, actually) that represents

optimum pairs of weights for these two features. This will make the algorithm less

greedy. The algorithm can be further extended to even higher dimensions.

• SLIDER is currently limited to distance metrics for which crossovers weights can be

calculated by solving simple linear equations, like for Minkowski metrics. This may

not be possible for other similarity or distance measures, like those based on

109

probabilistic and statistical methods (Aksoy and Haralick, 2001; Kontkanen et al.,

1997). We plan to investigate approaches where crossover points for such metrics

can be efficiently determined (by binary search over the space of weights, for

instance).

• One aspect that necessitates closer scrutiny is the definition of match and mismatch

to assess if the updated weights improve accuracy. We use a simple strategy where

two patterns are said to match/mismatch if their density correlation in above/below a

threshold. We observed that the final set weights returned by SLIDER is sensitive to

this threshold. What would be an appropriate threshold, and how can it be

determined? Or is there a better way of assessing similarity in this context? Should

we use “perfect” matches/mismatches in our training set, or do we need to allow for

near-matches/near-mismatches as well, which may enable us capture finer

information that is required to confidently say how different two instances are?

• In this work, we assume that feature weights are globally optimum, independent of

the case. This may not be true all the time. If some features are deemed more

important than others for comparing some cases, it does not necessarily imply that

the same features will be equally important in comparing other cases (Domingos,

1997; Howe and Cardie, 1997; Greiner et al., 1997).

• More generally, we are looking into other strategies to weight features, including

methods based on Single Value Decomposition (SVD) and Principal Component

Analysis (PCA).

• The ranking-based heuristic we use to evaluate weights in SLIDER necessitates an

exhaustive search of the database to find truly similar and different cases for a

training set. This may be too expensive. Also, in some applications, the number of

positive and negative examples may be scarce. In our empirical investigation, given

a training instance, we search for only one match and a set of mismatches (say 100)

to measure the accuracy of ranking; this is only an approximation of the theoretical

version of the heuristic.

110

• The assumption that two cases can be either similar or different may, in many

domains, be an over-simplification. Similarity and difference can be a matter of

degree. In fact, we observed that optimal weights determined by SLIDER in the

protein crystallography domain vary with the definition of true similarity between

electron density patterns.

• Finally, we recognize that a global value of k has its limitations. For some cases that

have a large number of good matches, a relatively low k should catch a match with

high probability, whereas more difficult cases may require comparison with more

potential matches for effective retrieval. Context-sensitive determination of k is yet

another worthwhile future work.

111

REFERENCES

Ableson,A. and Glasgow,J.I. (1999) Crystallographic threading. Proceedings of the

Seventh International Conference on Intelligent Systems for Molecular Biology, pp.

2-9.

Adams,P.D., Gopal,K., Grosse-Kunstleve,R.W., Hung,L.W., Ioerger,T.R., McCoy,A.J.,

Moriarty,N.W., Pai,R.K., Read,R.J., Romo,T.D., Sacchettini,J.C., Sauter,N.K.,

Storoni,L.C. and Terwilliger,T.C. (2004) Recent developments in the PHENIX

software for automated crystallographic structure determination. Journal of

Synchrotron Radiation, 11, 53-55.

Adams,P.D., Grosse-Kunstleve,R.W., Hung,L.W., Ioerger,T.R., McCoy,A.J., Moriarty,

N.W., Read,R.J., Sacchettini,J.C. and Terwilliger,T.C. (2002) PHENIX: building new

software for automated crystallographic structure determination. Acta

Crystallographica, D58, 1948-1954.

Aha,D.W. (1990) A study of instance-based algorithms for supervised learning tasks:

mathematical, empirical, and psychological observations. Ph.D. Dissertation,

University of California, Irvine.

Aha,D.W. (1997) Editorial. Artificial Intelligence Review, 11(1-5), 1-6.

Aha,D.W. (1998) Feature weighting for lazy learning algorithms. In Liu,H. and

Motoda,H. (eds), Feature Extraction, Construction and Selection: A Data Mining

Perspective, Kluwer, Boston, MA.

Aksoy,S. and Haralick,R.M. (2001) Probabilistic vs. geometric similarity measures for

image retrieval. Proceedings of Conference on Computer Vision and Pattern

Recognition, pp. 112-128.

Almuallim,H. and Dietterich,T.G. (1994) Learning Boolean concepts in the presence of

many irrelevant features. Artificial Intelligence, 69, 279-305.

112

Alphey,M.S., Leonard,G.A., Gourley,D.G., Tetaud,E., Fairlamb,A.H., Hunter,W.N.

(1999) The high resolution crystal structure of recombinant Crithidia Fasciculata

Tryparedoxin-I. Journal of Biological Chemistry, 274, 25613-25622.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W., Lipman,D.J.

(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Research, 25(17), 3389-3402.

Anfinsen,C.B., Redfield,R.R., Choate,W.L., Page,J. and Carroll,W.R. (1954) Studies on

the gross structure, cross-linkages, and terminal sequences in ribonuclease. Journal of

Biological Chemistry, 207(1), 201-210.

Baker,D. and Sali,A. (2001) Protein structure prediction and structural genomics.

Science, 294, 93-96.

Baluja,S. and Pomerleau,D. (1997) Dynamic relevance: vision-based focus of attention

using artificial neural networks. Artificial Intelligence, 97, 381-395.

Bekkerman,R., El-Yaniv,R., Tishby,N. and Winter,Y. (2003) Distributional word

clusters vs. words for categorization. Journal of Machine Learning Research, 3, 1183-

1208.

Bentley,J.L. (1975) Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9), 509-517.

Berens,M., Liu,H. and Yu,Lei. (2005) Fostering biological relevance in feature selection

for microarray data. IEEE Intelligent Systems, 20(6), 71-73.

Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat, T.N., Weissig,H., Shindyalov,

I.N. and Bourne,P.E. (1992) The Protein Data Bank. Nucleic Acids Research, 28, 235-

242.

Bowie,J.U., Luthy,R. and Eisenberg,D. (1991) A method to identify protein sequences

that fold into a known three-dimensional structure. Science, 253(5016), 164-70.

Blum,A.L. and Langley,P. (1997) Selection of relevant features and examples in

machine learning. Artificial Intelligence, 97, 245-271.

113

Blum,A.L. and Rivest,R.L. (1992) Training a 3-node neural networks in NP-complete.

Neural Networks, 5, 117-127.

Branden,C.I. and Jones,T.A. (1990) Between objectivity and subjectivity. Nature, 343,

687-689.

Branting,L.K. and Aha,D.W. (1995) Stratified case-based reasoning: reusing hierarchical

problem solving episodes. Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence, pp. 384-390.

Burges,C., Shaked,T., Renshaw,E., Lazier,A., Deeds,M., Hamilton,N. and Hullender,G.

(2005) Learning to rank using gradient descent. Proceedings of the Twenty-second

International Conference on Machine Learning, pp. 89-96.

Burley,S.K., Almo,S.C., Bonanno,J.B., Capel,M., Chance,M.R., Gaasterland,T., Lin,D.,

Sali,A., Studier,W. and Swaminathian,S. (1999) Structural genomics: beyond the

human genome project, Nature Genetics, 232, 151-157.

Ceberio,M. and Kreinovich,V. (2005) Towards an optimal approach to soft constraint

problems. Proceedings of the Seventeenth World Congress Scientific Computation,

Applied Mathematics and Simulation (http://www.cs.utep.edu/vladik/2004/tr04-

32b.pdf).

Chandonia,J.M. and Brenner,S.E. (2006) The impact of structural genomics:

expectations and outcomes, Science, 311, 347-51.

Cohen,W.W., Schapire,R.E. and Singer,Y. (1997) Learning to order things. Advances in

Neural Processing Systems, 10, 451-457.

Collins,F.S., Green,E.D., Guttmacher,A.E. and Guyer,M.S. (2003) A Vision for the

Future of Genomics Research: a blueprint for the genomic era. Nature, 422, 835-847.

Cover,T.M. and Hart,P.E. (1967) Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1), 21-27.

Cowtan,K. (1998) Modified phased translation functions and their application to

molecular fragment location. Acta Crystallographica, D54, 750-756.

114

Cowtan,K. (2006) The "Buccaneer" protein model building software, CCP4 Newsletter

44.

Daelemans,W. Gillis,S. and Durieux,G. (1994) The acquisition of stress: a data-oriented

approach. Computational Linguistics, 20(3), 421-451.

Das,S. (2001) Filters, wrappers and a boosting-based hybrid for feature selection.

Proceedings of the Eighteenth International Conference on Machine Learning, pp.

74-81.

Devijver,P.A. and Kittler,J. (1982) Pattern Recognition: A Statistical Approach.

Prentice-Hall International, London, UK.

Diamond,R. (1971) A real-space refinement procedure for proteins. Acta

Crystallographica, A27, 436-452.

Diller,D.J., Redinbo,M.R., Pohl,E. and Hol,W.G.J. (1999) A database method for

automated electron density map interpretation in protein crystallography. Proteins:

Structure, Function, and Genetics, 36, 526-541.

Dimaio,F., Shavlik,J. and Phillips,G.N. (2006) A probabilistic approach to protein

backbone tracing in electron density maps. Bioinformatics, 22(14), e81-89.

Domingos,P. (1997) Context-sensitive feature selection for lazy learners. Artificial

Intelligence Review, 11, 227-253.

Duda,R.O., Hart,P.E. and Stork,D.G. (2001) Pattern Classification. John Wiley and

Sons Inc., New York, NY.

Dunbrack,R.L. (2002) Rotamer libraries in the 21st century. Structural Biology, 12(4),

431-40.

Dwork,C., Kumar,R., Naor,M. and Sivakumar,D. (2001) Rank aggregation methods for

the Web. Proceedings of the Tenth International Conference on World Wide Web, pp.

613-622.

Dy,J.G. and Brodley,C.E. (2004) Feature selection for unsupervised learning. Journal of

Machine Learning Research, 5, 845-889.

115

Eicken,C., Pennella,M.A., Chen,X., Koshlap,K.M., VanZile,M.L., Sacchettini,J.C. and

Giedroc,D.P. (2003) A metal-ligand-mediated intersubunit allosteric switch in related

SmtB/ArsR zinc sensor proteins. Journal of Molecular Biology, 333(4), 683-695.

Feigenbaum,E.A., Engelmore,R.S. and Johnson,C.K. (1977) A correlation between

crystallographic computing and artificial intelligence research. Acta

Crystallographica, A33, 13-18.

Fix,E. and Hodges,J. (1951) Discriminatory analysis, nonparametric discrimination:

consistency properties. Technical Report 4, USAF School of Aviation Medicine.

Forbus,K., Gentner,D. and Law,K. (2001) MAC/FAC: a model of similarity-based

retrieval. Cognitive Science, 19(2), 141-205.

Forman,G. (2003) An extensive empirical study of feature selection metrics for text

classification. Journal of Machine Learning Research, 3, 1289-1305.

Forman,G. (2005) Feature selection: we’ve barely scratched the surface. IEEE Intelligent

Systems, 20(6), 74-76.

Freund,Y., Iyer,R., Schapire,R.E. and Singer,Y. (2003) An efficient boosting algorithm

for combining preferences. Journal of Machine Learning Research, 4, 933-969.

Galles,D. and Pearl,J. (1997) Axioms of causal relevance. Artificial Intelligence, 97, 9-

43.

Gopal,K., McKee,E.W., Romo,T.D., Pai,R., Smith,J.N., Sacchettini,J.C. and

Ioerger,T.R. (2006a). Crystallographic protein model-building on the web.

Bioinformatics, doi: 10.1093/bioinformatics/btl584.

Gopal,K., Pai,R., Ioerger,T.R., Romo,T.D. and Sacchettini,J.C. (2003) TEXTAL:

artificial intelligence techniques for automated protein structure determination.

Proceedings of the Eighth Conference on Innovative Applications of Artificial

Intelligence, pp. 93-100.

Gopal,K., Romo,T.D., McKee,E.W., Childs,K.C., Kanbi,L., Pai,R., Smith,J.N.,

Sacchettini,J.C. and Ioerger,T.R. (2005a). TEXTAL: automated crystallographic

116

protein structure determination. Proceedings of the Innovative Applications of

Artificial Intelligence conference, pp. 1483-1490.

Gopal,K., Romo,T.D., McKee,E.W., Pai,R., Smith,J.N., Sacchettini,J.C. and

Ioerger,T.R. (2006b). TEXTAL: crystallographic protein model-building using AI and

pattern recognition. AI Magazine, 27(3), 15-24.

Gopal,K., Romo,T.D., Sacchettini,J.C. and Ioerger,T.R. (2004a) Efficient retrieval of

electron density patterns for modeling proteins by X-ray crystallography. Proceedings

of the International Conference on Machine Learning and Applications, pp. 380-387.

Gopal,K, Romo,T.D., Sacchettini,J.C. and Ioerger,T.R. (2004b) Evaluation of geometric

& probabilistic measures of similarity to retrieve electron density patterns for protein

structure determination. Proceedings of the International Conference on Artificial

Intelligence, pp. 427-432.

Gopal,K., Romo,T.D., Sacchettini,J.C. and Ioerger,T.R. (2004c). Weighting features to

recognize 3D patterns of electron density in X-ray protein crystallography.

Proceedings of the Computational Systems Bioinformatics, pp. 255-265.

Gopal,K., Romo,T.D., Sacchettini,J.C. and Ioerger,T.R. (2005b) Determining relevant

features to recognize electron density patterns in X-ray protein crystallography.

Journal of Bioinformatics & Computational Biology, 3(3), 645-676.

Greer,J. (1985) Computer skeletonization and automatic electron density map analysis.

Methods in Enzymology, 115, 206-224.

Greiner,R., Grove, A.J. and Kogan,A. (1997) Knowing what doesn’t matter: exploiting

the omission of irrelevant data. Artificial Intelligence, 97, 345-380.

Guyon,I. and Elisseeff,A. (2003) An introduction to variable and feature selection.

Journal of Machine Learning Research, 3, 1157-1182.

Hammond,K.J. (1989) Case-Based Planning: Viewing Planning as a Memory Task.

Academic Press, Boston, MA.

117

Hinton,G.E. (1989) Connectionist learning procedures. Artificial Intelligence, 40, 185-

234.

Hobohm,U., Scharf,M., Schneider,R. and Sander,C. (1992) Selection of a representative

set of structures from the Brookhaven Protein Data Bank. Protein Science, 1, 409-417.

Holton,T.R., Christopher,J.A., Ioerger,T.R. and Sacchettini,J.C. (2002) Determining

protein structure from electron density maps using pattern matching. Acta

Crystallographica, D46, 722-734.

Howe,N. and Cardie,C. (1997) Examining locally varying weights for nearest neighbor

algorithms. Proceedings of the Second International Conference on Case-Based

Reasoning, pp. 455-466.

Huang,C.C., Smith,C.V., Glickman,M.S., Jacobs,W.R Jr. and Sacchettini, J.C. (2002)

Crystal structures of mycolic acid cyclopropane synthases from mycobacterium

tuberculosis. Journal of Biological Chemistry, 277, 11559-11569.

Hyman,J.H., Chen,J., Decamilli,P. and Brunger,A.T. (2000) Epsin1 undergoes

nucleocytosolic shuttling and its ENTH domain, structurally similar to Armadillo and

HEAT repeats, interacts with the transcription factor PLZF. Journal of Cell Biology,

149, 537-545.

Ioerger,T.R. (1999) Detecting feature interactions from accuracies of random feature

subsets. Proceedings of the Sixteenth National Conference on Artificial Intelligence,

pp. 49-54.

Ioerger,T.R. (2005) Automated detection of disulfide bridges in electron density maps

using linear discriminant analysis. Journal of Applied Crystallography, 38(1), 121-

125.

Ioerger,T.R. and Sacchettini,J.C. (2002) Automatic modeling of protein backbones in

electron-density maps via prediction of Cα coordinates. Acta Crystallographica, D5,

2043-2054.

118

Ioerger,T.R. and Sacchettini,J.C. (2003) The TEXTAL system: artificial intelligence

techniques for automated protein model building. In Sweet,R.M. and Carter,C.W.

(eds), Methods in Enzymology, 374, 244-270.

Jain,A. and Zongker,D. (1997) Feature selection: evaluation, application, and small

sample performance. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(2), 153-158.

Jakulin,A. and Bratko,I. (2004) Testing the significance of attribute interactions.

Proceedings of the Twenty-first International Conference on Machine Learning, pp.

409-416.

James,M.N.G. and Sielecki,A.R. (1983) Structure and refinement of Penicillopepsin at

1.8 Angstroms resolution. Journal of Molecular Biology, 163, 299-361.

Joachims,T. (2002) Optimizing search engines using clickthrough data. Proceedings of

the Eighth ACM Conference on Knowledge Discovery and Data Mining, pp. 133-142.

John,G., Kohavi,R. and Pfleger,K. (1994) Irrelevant features and the subset selection

problem. Proceedings of the Eleventh International Conference on Machine Learning,

pp. 121-129.

Jones,K.S., Walker,S. and Robertson,S.E. (2000) A probabilistic model of information

retrieval: development and comparative experiments. Information Processing and

Management, 36, 779-840.

Jones,T.A. and Thirup,S. (1986) Using known substructures in protein model building

and crystallography. European Molecular Biology Organization (EMBO) Journal, 5,

819-822.

Jones,T.A., Zou,J.Y. and Cowtan,S.W. (1991) Improved methods for building models in

electron density maps and the location of errors in these models. Acta

Crystallographica, A47, 110-119.

Karmakar,N. (1984) A new polynomial-time algorithm for linear programming.

Combinatorica, 4, 373-395.

119

Kim,S., Woo,J., Seo,E.J., Yu,M. and Ryu,S. (2001) A 2.1 Å resolution structure of an

uncleaved alpha(1)-antitrypsin shows variability of the reactive center and other loops.

Journal of Molecular Biology, 306, 109-119.

Kira,K. and Rendell,L.A. (1992) A practical approach to feature selection. Proceedings

of the Ninth International Conference on Machine Learning, pp. 249-256.

Kleywegt,G.J. and Jones,T.A. (1997) Template convolution to enhance or detect

structural features in macromolecular electron density maps. Acta Crystallographica,

D53, 179-185.

Kittler,J. (1978) Features set search algorithms. In Chen,C.H. (ed), Pattern Recognition

and Signal Processing, pp. 41-60. Sijthoff and Noordhoff, Netherlands.

Kohavi,R. and John,G.H. (1997) Wrappers for feature subset selection. Artificial

Intelligence, 97, 273-324.

Kohavi,R., Langley,P. and Yun,Y. (1997) The utility of feature weighting in nearest-

neighbor algorithms. Lecture Notes in Computer Science, 1224, 85-92.

Kokonenko,I. (1994) Estimating attributes: analysis and extensions of RELIEF.

Proceedings of the European Conference on Machine Learning, pp. 171-182.

Kolodner,J. (1993) Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo,

CA.

Kontkanen,P., Myllymaki,P., Silander,T. and Tirri,H. (1997) A Bayesian approach for

retrieving relevant cases. In Smith,P. (ed), Artificial Intelligence Applications,

(Proceedings of EXPERSYS-97 conference), pp. 67-72.

Krogh,A., Brown,M., Mian,I.S., Sjolander,K. and Haussler,D. (1994) Hidden Markov

models in computational biology: applications to protein modeling. Journal of

Molecular Biology, 235, 1501-1531.

Langley,P. and Iba,W. (1993) Average-case analysis of a nearest neighbor algorithm.

Proceedings of the International Joint Conference on Artificial Intelligence, pp. 889-

894.

120

Leake,D.B. (1996) Case-Based Reasoning: Experiences, Lessons, and Future

Directions. MIT Press, Cambridge, MA.

Leherte,L., Glasgow,J.I., Fortier,S., Baxter,K. and Steeg,E. (1997) Analysis of three-

dimensional protein images. Journal of Artificial Intelligence Research, 7, 125-159.

Levinthal,C. (1968) Are there pathways for protein folding? Journal de Chimie Physique

et de Physico-Chimie Biologique, 65, 44.

Levitt,D.G. (2001) A new software routine that automates the fitting of protein X-ray

crystallographic electron density maps. Acta Crystallographica, D57, 1013-1019.

Littlestone,N. (1992) Learning quickly when irrelevant attributes abound: a new linear

threshold algorithm. Machine Learning, 8, 293-321.

Liu,H. (2005) Evolving feature selection. IEEE Intelligent Systems, 20(6), 59-63.

Liu,H. and Motoda,H. (eds) (1998) Feature Extraction, Construction, and Selection: A

Data Mining Perspective. Kluwer, Boston, MA.

Liu,H. and Yu,L. (2005) Toward integrating feature selection algorithms for

classification and clustering. IEEE Transactions on Knowledge and Data Engineering,

17(4), 491-502.

Lovell,S.C., Word,J.M, Richardson,J.S. and Richardson,D.C. (2000) The Penultimate

Rotamer Library, Proteins: Structure Function and Genetics 40, 389-408.

McKee,E.W., Kanbi,L.D., Childs,K.L., Grosse-Kunstleve,R.W., Adams,P.D.,

Sacchettini,J.C. and Ioerger,T.R. (2005) FINDMOL: automated identification of

macromolecules in electron-density maps. Acta Crystallographica, D61, 1514-1520.

McRee,D.E. (1999a) Practical Protein Crystallography. Academic Press, San Diego,

CA.

McRee,D.E. (1999b) XtalView/Xfit – a Versatile Program for Manipulating Atomic

Coordinates and Electron Density, Journal of Structural Biology 125, 156-165.

Mitchell,T.M. (1997) Machine Learning. McGraw-Hill, Boston, MA.

121

Mooney,S.D., Liang,M.H., DeConde,R. and Altman,R.B. (2005) Structural

characterization of proteins using residue environments. Proteins: Structure, Function

and Bioinformatics, 61(4), 741-747.

Mowbray,S.L., Helgstrand,C., Sigrell,J.A., Cameron,A.D. and Jones,T.A. (1999) Errors

and reproducibility in electron-density map interpretation. Acta Crystallographica,

D55, 1309-1319.

Murray,R.K., Gramner,D.K., Mayes,P. and Rodwell,V. (2000) Harper’s Biochemistry.

Appleton and Lange, Stanford, CA.

Nelder,J.A. and Mead,R. (1965) A simplex method for function minimization. Computer

Journal, 7, 308-313.

Oldfield,T.J. (2003) Automated tracing of electron density maps of proteins. Acta

Crystallographica, D59, 483-491.

Pai,R., Sacchettini,J.C. and Ioerger,T.R. (2006) Identifying non-crystallographic

symmetry in protein electron-density maps: a feature-based approach. Acta

Crystallographica, D62, 1012-1021.

Paredes,R. and Vidal,E. (2006) Learning weighted metrics to minimize nearest-neighbor

classification error. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(7), 1100-1110.

Pavlidis,P., Wapinski,I. and Noble,W.S. (2004) Support vector machine classification on

the web, Bioinformatics 20(4), 586-587.

Peat,T.S., Newman.J., Waldo,G.S., Berendzen,J. and Terwilliger,T.C. (1998) Structure

of translation initiation factor 5A from Pyrobaculum Aerophilum at 1.75 Å

resolution. Structure, 6, 1207-1215.

Perrakis,A., Morris,R. and Lamzin,V. (1999) Automated protein model-building

combined with iterative structure refinement. Nature Structural Biology, 6, 458-463.

Pyle,D. (1999) Data Preparation for Data Mining. Morgan Kaufmann Publishers.

122

Richardson,J.S. and Richardson,D.C. (1985) Interpretation of electron density maps.

Methods in Enzymology, 115, 189-206.

Riesbeck,C. and Schank,R. (1989) Inside Case-Based Reasoning. Lawrence Erlbaum,

Hillsdale, NJ.

Romo,T.D., Gopal,K., McKee,E.W., Kanbi,L., Pai,R., Smith,J.N., Sacchettini,J.C. and

Ioerger,T.R. (2005) TEXTAL: AI-based structural determination for X-ray protein

crystallography. IEEE Intelligent Systems, 20(6), 59-63.

Romo,T.D., Sacchettini,J.C. and Ioerger,T.R. (2006) Improving amino acid

identification, fit and C-alpha prediction using the simplex method in automated

model building. Acta Crystallohraphica D62, 1401-1406.

Rosenblatt,F. (1958) The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6), 386-408.

Rui,Y., Huang,T.S. and Chang,S. (1999) Image retrieval: current techniques, promising

directions and open issues. Visual Communication and Image Representation, 10(4),

39-62.

Russel,J.R. and Norvig,P. (1995) Artificial Intelligence: A Modern Approach. Prentice

Hall, Upper Sadle River, NJ.

Shepard,D. (1968) A two-dimensional function for irregularly spaced data. Proceedings

of the Twenty-third ACM National Conference, pp. 517-524.

Short,R. and Fukunaga,K. (1980) A new nearest neighbor distance measure.

Proceedings of the Fifth IEEE International Conference on Pattern Recognition, pp.

81-86.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. Journal of Molecular Biology, 147, 195-197.

Smyth,B. and Cunningham,P. (1996) The utility problem analyzed: a case-based

reasoning perspective. Proceedings of the Third European Workshop on Case-Based

Reasoning, pp. 392-399.

123

Stanfill,C.W. (1987) Memory-based reasoning applied to English pronunciation.

Proceedings of the American Association for Artificial Intelligence Conference, pp.

577-581.

Stanfill,C.W. and Waltz,D. (1986) Toward memory-based reasoning. Communications

of the ACM, 29, 1213-1228.

Subramanian,D., Greiner,R. and Pearl,J. (1997) The relevance of relevance. Artificial

Intelligence, 97, 1-5.

Sun,Y. and Li,J. (2006) Iterative RELIEF for feature weighting. Proceedings of the

Twenty-third International Conference on Machine Learning, pp. 913-920.

Swanson,S.M. (1994) Core tracing: depicting connections between features in electron

density. Acta Crystallographica, D50, 695-708.

Terry,A. (1983) The CRYSALIS project: hierarchical control of production systems.

Technical Report HPP-83-19, Stanford University.

Terwilliger,T.C. (2002) Automated side-chain model-building and sequence assignment

by template matching. Acta Crystallographica, D59, 45-49.

Tsigelny,I. (ed) (2002) Protein Structure Determination: Bioinformatic Approach.

International University Line, La Jolla, CA.

Valiant,L. (1984) A theory of the learnable. Communications of the ACM, 27(11), 1134-

1142.

Vapnik,V.N. (1998) Statistical Learning Theory. Adaptive and Learning Systems for

Signal Processing, Communications, and Control. Wiley, New York, NY.

Weston,J., Elisseff,A., Schoelkopft,B. and Tipping,M. (2003) Use of the zero norm with

linear models and kernel methods. Journal of Machine Learning Research, 3, 1439-

1461.

Widrow,B. and Hoff,M.E. (1960) Adaptive switching circuits. IRE WESCON

Convention Record, 96-104.

124

Yang,D., Shipman,L.W., Roessner,C.A., Scott,I.A. and Sacchettini,J.C. (2002) Structure

of the Methanococcus jannaschii mevalonate kinase, a member of the GHMP kinase

superfamily. Journal of Biological Chemistry, 277(11), 9462-9467.

Yavlinsky,A., Pickering,M.J., Heesch,D. and Ruger,S. (2004) A comparative study of

evidence combination strategies. Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing, pp. 1040-1043.

Yu,R.C., Hanson,P.I., Jahn,R. and Brunger,A.T. (1998) Structure of the ATP-dependent

oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP.

Nature Structural Biology, 5, 803-811.

Zhang,Y and Skolnick,J. (2005) The protein structure prediction problem could be

solved using the current PDB library. Proceedings of the National Academy of

Sciences, USA, 102(4), 1029-34.

125

VITA

Name: Kreshna Gopal

Address: Department of Computer Science

 Texas A&M University

 301 H.R. Bright Building

 College Station, TX 77843-3112

 USA

Email Address: kgopal@cs.tamu.edu

Education: B.Tech., Computer Science, Indian Institute of Technology,

 Kanpur, 1990

 M.S., Computer Science, Texas A&M University, 2000

 Ph.D., Computer Science, Texas A&M University, 2007

