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ABSTRACT

Micromechanics Modeling of the Multifunctional Nature of Carbon

Nanotube-Polymer Nanocomposites. (August 2007)

Gary Don Seidel, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Dimitris Lagoudas

The present work provides a micromechanics approach based on the generalized

self-consistent composite cylinders method as a non-Eshelby approach towards for

assessing the impact of carbon nanotubes on the multi-functional nature of nanocom-

posites in which they are a constituent. Emphasis is placed on the effective elastic

properties as well as electrical and thermal conductivities of nanocomposites con-

sisting of randomly oriented single walled carbon nanotubes in epoxy. The effective

elastic properties of aligned, as well as clustered and well-dispersed nanotubes in

epoxy are discussed in the context of nanotube bundles using both the generalized

self-consistent composite cylinders method as well as using computational microme-

chanics techniques. In addition, interphase regions are introduced into the composite

cylinders assemblages to account for the varying degrees of load transfer between

nanotubes and the epoxy as a result of functionalization or lack thereof. Model pre-

dictions for randomly oriented nanotubes both with and without interphase regions

are compared to measured data from the literature with emphasis placed on assessing

the bounds of the effective nanocomposite properties based on the uncertainty in the

model input parameters.

The generalized self-consistent composite cylinders model is also applied to model
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the electrical and thermal conductivity of carbon nanotube-epoxy nanocomposites.

Recent experimental observations of the electrical conductivity of carbon nanotube

polymer composites have identified extremely low percolation limits as well as a per-

ceived double percolation behavior. Explanations for the extremely low percolation

limit for the electrical conductivity of these nanocomposites have included both the

creation of conductive networks of nanotubes within the matrix and quantum effects

such as electron hopping or tunneling. Measurements of the thermal conductivity

have also shown a strong dependence on nanoscale effects. However, in contrast,

these nanoscale effects strongly limit the ability of the nanotubes to increase the

thermal conductivity of the nanocomposite due to the formation of an interfacial

thermal resistance layer between the nanotubes and the surrounding polymer. As

such, emphasis is placed here on the incorporation of nanoscale effects, such as elec-

tron hopping and interfacial thermal resistance, into the generalized self-consistent

composite cylinder micromechanics model.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Nanocomposites are composites which contain one or more phases having a length

scale on the order of nanometers (e.g., nanotubes, nanofibers, nanoclays, etc.). The

interest in nanocomposites comes from the unique properties inherent to the nanoin-

clusions employed, which allows for dramatic changes in composite properties with the

addition of just a small amount of nanoinclusions. One such nanoinclusion receiving

much attention are carbon nanotubes.

A. Carbon Nanotube-Polymer Nanocomposites

Since the discovery of carbon nanotubes (CNTs) by Iijima [1], CNTs have become a

subject of much research across a multitude of disciplines. A single-wall carbon nan-

otube (SWCNT) can be viewed as a single sheet of graphite (i.e. graphene), which

has been rolled into the shape of a tube [2]. In addition to SWCNTs, there are also

multi-wall carbon nanotubes (MWCNTs) which can similarly be viewed as multiple

graphene sheets stacked and rolled into the shape of tube (see Figure 1). CNTs have

radii on the order of nanometers and lengths on the order of micrometers resulting

in large aspect ratios beneficial to their use in composites [2, 6], especially given the

exceptional properties CNTs are believed to posses. For example, carbon nanotubes

(CNTs) are reported to have a Young’s modulus along the tube axis in the range of

300-1000 GPa, up to five times the stiffness of SiC fibers and with half the density (see

Table I which provides a comparison of CNTs with other common fiber reinforcement

materials), in addition to having a theoretically predicted elongation to break of 30-

The journal model is International Journal of Engineering Science.
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(a) SWCNT (b) MWCNT

Fig. 1. High resolution TEM images of single- and multi-walled carbon nanotubes.

1(a) A single wall carbon nanotube[3, 4]. 1(b) A multi-walled carbon nanotube

[5].

40% [7–13]. In addition, CNTs can be either metallic or semi-conducting depending

on the tubes chiral, or roll-up angle, which indicates the orientation of the hexagonal

carbon rings relative to the tube axis [2, 4, 6]1. Metallic CNTs have been observed to

conduct electrons ballistically, (with no scattering) having coherence lengths of sev-

eral microns [14] and with a current density measured [15] as high as 109 A/cm2 (the

highest of any known material). Similarly, CNT bundles have been observed to have

a measured resistivity of 1E − 3 ohm-cm at 300 K [16], resulting in a conductivity

higher than any other known fiber. Finally, looking at thermal properties, CNTs have

now been shown to have a thermal conductivity at least twice that of diamond [17]2.

1Zigzag CNTs (n,0) have a chiral angle of 0◦ and are typically semi-conducting,
armchair CNTs (n,n) have a chiral angle of 30◦ and are always metallic, chiral CNTs
(m,n) with angles between 0◦ and 30◦ provide a spectrum between semi-conducting
and conducting behavior.[4]

2For a summary of some of the reported values of carbon nanotube properties, see
Section A1 of Appendix A
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Table I. Properties of carbon nanotubes in comparison with other common fiber re-

inforcement materials.[12]

Fiber Diameter Density Tensile Strength Modulus

(µm) (g/cm3) (GPa) (GPa)

Carbon 7 1.66 2.4-3.1 120-170

S-glass 7 2.5 3.4-4.6 90

Aramid 12 1.44 2.8 70-170

Boron 100-140 2.5 3.5 400

Quartz 9 2.2 3.4 70

SiC fibers 10-20 2.3 2.8 190

SiC whiskers 0.002 2.3 6.9 -

CNTs 0.001-0.1 ∼ 1.33 Up to ∼ 50 Up to ∼ 1000
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Given their unique properties, carbon nanotubes have been proposed as nanoscale

inclusions capable of imparting multifunctionality to composites in which they are a

constituent. For example, one proposed implementation of CNTs is as structural en-

hancement of traditional carbon fiber/epoxy composite laminates, where it is believed

that the selective use of CNTs as surface treatments can improve interface strength

between the carbon fibers and epoxy, and thereby improve the fracture toughness of

the composite [18] and indicating a need for multiscale analysis [19, 20]. Another

example of particular interest, nanotubes have been introduced into non-conducting

polymers in attempts to make light-weight3 conducting polymer composites which

can serve in structural applications while performing additional functions such as

improving electromagnetic interference shielding efficiency and assisting in meeting

electro-static discharge and grounding requirements for aircraft and spacecraft[22, 23].

Applications for CNTs in engineering systems are likely to focus in the near term

on the enhancement of the mechanical, thermal and electrical properties of materi-

als currently in use. As such, a wide variety of composites containing CNTs have

been manufactured to take advantage of the reported high stiffness (∼ 1 TPa [24]),

high strength (∼ 150 GPa [25]), as well as high thermal and electrical conductivities

(∼ 2000 W/mK [26] and 1000 − 200, 000 S/cm [27], respectively) of CNTs. Peigney

et al. [28] have fabricated composites specimens of CNTs embedded in ceramic pow-

ders while Milo et al. [29] have embedded CNTs in poly(vinyl alcohol). Meltmixing

has been used by Potschke et al. [30] to introduce CNTs into a polyethylene matrix.

Such efforts have identified several key challenges in the fabrication of CNT com-

posites. Adequate dispersion of CNTs within the matrix has been a key issue given

the tendency of CNTs to form bundles due to interatomic forces (van der Waals

3The reported densities of carbon nanotubes are comparable to epoxies[12, 21],
making the increase in weight with the addition of CNTs into epoxies negligible
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Bundle of CNTs

Impurities

Fig. 2. TEM image of CNTs forming bundles. Image was taken using a JEOL 1200 EX

TEM operating at an accelerating voltage of 100kV at Texas A&M University

(by P. Thakre).

forces)[12, 31–33] (see Figure 2). Adhesion of the CNTs to the surrounding matrix

has been another key issue [34] as has manipulating the orientation of CNTs and

bundles of CNTs within the matrix [35] to form aligned CNT composites.[32, 36, 37].

Efforts to address the adhesion and dispersion issues in particular from a pro-

cessing point of view have identified chemical functionalization of carbon nanotubes

as one solution, leading to an increased importance of the interphase region between

carbon nanotubes and the surrounding matrix[33, 34, 38–41]. Differing forms of car-

bon nanotube functionalization affect both interphase thickness and how the material

properties within the interphase vary through the thickness. The interphase region

in these composites can therefore be modeled as a functionally graded material. An

example of both clustering and interphase regions as observed in TEM imaging is
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Clusters of CNTs in Polyethylene

(a)

Exposed CNT

Interphase Coating CNT

(b)

Fig. 3. TEM images depicting the presence of clustering and interphase regions

CNT-polymer composites. 3(a) demonstrates regions of clustered bundles of

CNTs. 3(b) demonstrates the presence of an interphase region coating a CNT

which has been exposed on a fracture surface. Both images are for CNTs in

polypropylene and were taken using a JEOL 1200 EX TEM operating at an

accelerating voltage of 100kV at Texas A&M University (by P. Thakre).

provided in Figure 3.

Many efforts have sought to measure the multifunctional properties of nanotube

composites, looking at mechanical (modulus, yield strength, viscosity) plus electrical

or thermal properties[30, 42–47]. For example, enhancements in elastic Young’s mod-

ulus of unfunctionalized CNTs in CNT-epoxy composites of up 20% in tension and

75% in compression have been observed for CNT weight percents of just 5% [36], with

similar increases in the effective modulus of CNT reinforced polystyrene observed to

be on the order of 40% for just 1% weight CNTs[48]. For functionalized CNTs, that

is CNTs which have been chemically altered to better interact with a given matrix,

increases in Young’s modulus of 30% and 60% have been observed at weight per-

cents of 1 and 4%, respectively [33, 49]. A brief review of the mechanical, electrical

and thermal properties of carbon nanotube composites is provided in [50] including

the interfacial bonding properties, mechanical performance, electrical percolation of
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nanotube/polymer and nanotube/ceramic composites are also reviewed.4

Experimental measurements of the electrical conductivity of polymer nanocom-

posites have shown substantial increase (seven or more orders of magnitude at 1% wt.)

in conductivity at very low volume fractions of carbon nanotubes [30, 44, 45, 51–53].

A variety of carbon nanotube-polymer nanocomposites have been produced and their

electrical conductivity measured. Some efforts have focused on adding nanotubes to

epoxies [21, 51, 53–55]. Other efforts have looked at carbon nanotubes in PMMA

[22, 42, 56], polycarbonate [30, 57, 58], polystyrene [59, 60], PmPV [61, 62], as well

as a wide variety of other polymer matrices [43–45, 52, 63–66].5

A common theme amongst much of the observed electrical conductivity data

for these nanocomposites is what a appears to be a double percolation phenomena

[21, 22, 30, 44, 45, 51, 54, 55, 59, 61, 62, 64, 66], often at values below the expected

geometric percolation limit [30, 44, 45, 51–53], with a range of typically measured

values for percolation between 0.5 and 1.5% wt. While it is difficult to identify a

unique percolation threshold (see pg. 232 of [67]), many have used models based on

networks of connected fibers or the volume exclusion method in attempts to analyti-

cally identify a contact percolation threshold [21, 55, 64]. Such estimates have placed

the percolation limit between 0.12 and 2.7% wt. Computational estimates for the

percolation limit have focused on random volume filling of sticks and Monte Carlo

random walk modeling [64, 68–70], and have identified a range between 0.74 and 3%

volume.

Some explanations for why percolation is achieved prior to what might be the

4For a summary of some of the reported values of CNT-polymer composite Young’s
moduli, see Section A2 of Appendix A

5For a summary of some of the reported values of CNT-polymer composite elec-
trical conductivities, see Section A3 of Appendix A
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geometric limit have centered on electron hopping or quantum tunneling [42, 59, 71],

with [71] indicating that, ”variations in the thickness of the polymer coatings, as

well as nanotube-nanotube separation, varies the tunnel barrier and this fluctua-

tion induced tunneling determines the intertube transport.” [59] suggest two charge

transport mechanisms, ”charge hopping in low MWCNT loadings (0.02-0.6 wt%)

and ballistic quantum conduction in high loadings (0.6-0.9 wt%).” Others have cited

molecular influences on conducting network formation [53]. 6

In contrast to electrical conductivity measurements, efforts to measure the impact

of carbon nanotubes on the thermal conductivity of polymer nanocomposites7 have

not found as significant of an increase in the nanocomposite conductivity (a factor of

three or less at 1% wt.) relative to the neat polymer [72–76].8 Some have proposed

that despite the high thermal conductivity of nanotubes, it is a nanoscale effect at the

interface between the nanotube and the polymer which governs the composite thermal

conductivity [77, 78] due to the presence of an interface thermal resistance often

referred to as the Kapitza resistance. As it is difficult to directly probe the interface

between carbon nanotubes and the polymers in which they are embedded in the lab,

some[78–80] have used molecular dynamics simulations to estimate the interfacial

thermal resistance. However, many [73, 79, 81–84] have used the effective medium

approach [85] to estimate the thermal resistance by comparison with nanocomposite

measurements. Such efforts have confirmed that the interfacial thermal resistance

6Du et al.[42] have indicated a tube-tube distance of less than 5 nm results
in nanocomposites becoming electrically conductive based on the electron hopping
mechanism.

7For a summary of some of the reported values of CNT-polymer composite thermal
conductivities, see Section A4 of Appendix A

8This is of interest because, from a continuum point of view, the equations for ther-
mal and electrical conductivity are mathematically analogous. Thus this differences
points to the difference in nanoscale mechanisms between the conductivities.
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can have a significant impact on the effective thermal conductivity of CNT-polymer

nanocomposites.

B. Nanocomposite Modeling

Modeling of composites containing CNTs has also received attention in recent years.

One clear challenge to the modeling of nanocomposites is that the nanocomposite is

a macro, continuum scale composite, but the individual phases can range from the

continuum scale down to the nanometer scale, and therefore are approaching discrete

limits. Presently, there are models which address material behavior at the various

length scales.

For example, quantum mechanics (ab initio) modeling is applied on the sub

nanometer scale to obtain electronic structure information of a CNT using the Schrödinger

equation (see for example Yakobson et al. [86]). Such simulations are in practice

computationally limited to a few hundred atoms, but can be representative of larger

structures using periodic boundary conditions. At the tens to hundreds of nanometers

scale, molecular statics (MS) or molecular dynamics (MD) simulations, which consist

of a statistical energy minimization of atomic conformations using Newtons Second

Law, can be used to model both individual CNTs (see for example Yakobson et al.

[87]) and the interactions between CNTs and the polymer matrix (see for example

references [78, 88]). MS/MD simulations are in practice computationally limited to

tens of thousands of atoms, but can also be representative of larger structures us-

ing periodic boundary conditions. At submicron scales or larger, micromechanics

modeling, which consists of traditional continuum mechanics approaches for passing

information about the influence of smaller scale inhomogeneities up to larger scales

where engineering loads are applied, are used to homogenize nanocomposites con-
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taining large numbers of CNTs distributed in the polymer matrix (see for example

[37, 89–91]). Finally, macroscale continuum modeling (e.g., finite element analysis) is

applied on millimeter and larger scales to reflect useful composite shapes and loads

for desired applications.

Much research in ab initio and MD modeling of carbon nanotubes has been

explored in terms of understanding both mechanical and electrical properties of car-

bon nanotubes [10, 92–96]. Some [88, 97] have used MD to obtain the stress-strain

behavior of CNTs embedded in a polymer matrix. Other researchers have used atom-

istic simulations of epoxy/nanotube composites in order to address nanotube pull-

out from the epoxy [98]. Recently, molecular dynamics simulations have revealed

the presence of a functionally graded interphase even in non-functionalized carbon

nanotube reinforced polymer matrix composites [99–101]. A more recent MD study

has addressed the impact of functionalization on the elastic properties of nanotubes

chemically bonded to an epoxy matrix with various grafting densities [102]. However,

such modeling efforts are computationally limited to modeling either relatively short

nanotubes or to infinitely long nanotubes (through the use of periodic boundary con-

ditions), and typically to time scales on the order of picoseconds for individual carbon

nanotubes [92, 93]. As such, carbon nanotubes, and indeed any composites in which

they are a constituent, seem natural candidates for the development of multiscale

modeling techniques (see for example [103–105]). Computational limitations make it

difficult for quantum mechanics and molecular dynamics simulations to capture in-

teractions through the polymer matrix between multiple CNTs. However, when used

in combination with micromechanics approaches, the resulting multiscale model can

become a powerful modeling tool.

Multiscale models have been applied using both atomistic simulations and mi-

cromechanics to assess the constitutive properties of various functionalized nanotube
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materials [106–111]. Liu and Chen [112] studied the mechanical response in tension of

a single CNT embedded in polymer via finite element analysis. In a series of papers,

Odegard and Gates [89] and Odegard et al. [113–116] have modeled CNT compos-

ites using the equivalent continuum method in conjunction with the Mori-Tanaka

micromechanics method to obtain the effective elastic constants for both aligned and

misaligned CNTs and found effective elastic moduli to be several times that of the ma-

trix for aligned CNTs and almost one and a half times the matrix value for misaligned

CNTs at a volume fraction of 1% CNTs with a matrix consisting of a thermoplastic

polyimide LaRC-SI.

Experimentally obtained values for effective Young’s modulus being substantially

lower, other research efforts have sought to include additional aspects of CNT com-

posites in the calculation of effective properties. For example, the effects of nanotube

waviness on the effective composite properties have been studied of polystyrene rein-

forced with carbon nanotubes by Fisher [12] and Fisher et al. [37, 117] using finite

element analysis in conjunction with the Mori-Tanaka method and found to lower the

effective modulus. Buckling of CNTs within an epoxy matrix has been considered by

Hadjiev et al. [118]. Other efforts have focused on the inclusion of less than ideal

CNT adhesion to the matrix in CNT composite modeling [100, 119–121].

Modeling of the thermal and electrical conductivity of nanocomposites has fo-

cused primarily on nanoscale effects such as thermal interface resistance and low

volume fraction percolation. Gang and Li [122] have studied the dependence of ther-

mal conductivity of single walled nanotubes on chirality and isotope impurity by

nonequilibrium molecular dynamics and found that, contrary to electronic conductiv-

ity, the thermal conductivity is insensitive to the chirality. As it is difficult to directly

probe the interface between carbon nanotubes and the polymers in which they are

embedded in the lab, some[78, 79] have used molecular dynamics simulations to esti-



12

mate the interfacial thermal resistance. However, many [73, 77, 79, 81–84, 123] have

used the effective medium approach [85] or derivatives thereof [124] to estimate the

thermal resistance by comparison with nanocomposite measurements. Others [53, 90]

have employed a Mori-Tanaka approach proposed by Hatta and Taya to model the

effective thermal conductivities of nanotubes nanocomposites both with and with-

out interfacial thermal resistance. Still others [74] have used the Nielsen model in

comparing with experimental observations of nanocomposite conductivity. A control

volume finite element method was employed by Song and Youn [72] to obtain the

effective thermal conductivity of nanocomposites.

However, as the electrical conductivity results for nanocomposites are dominated

by a percolation behavior, the majority of the nanocomposite modeling efforts have

focused on traditional percolation theory. The post-percolation increase in conduc-

tivity is often modeled by the relationship described by the equation σ = A(cf − cpf)
t

where σ is the conductivity of the composite, cf is the volume fraction of the inclusion

in the composite, cpf is the critical volume fraction (volume fraction at percolation),

and A and t are fitted constants [64, 125], assuming the source of the percolation is a

conducting network. Others [126] have attempted simple models of sticks in series to

describe the conductive network conductivity. However, there is a shortage of models

to describe the pre-percolation behavior of nanocomposites.

C. Micromechanics Models for Elastic, Electrical and Thermal Properties of Com-

posites

1. Micromechanics Techniques for Elastic Properties

As will be discussed in greater detail in Chapter II, many micromechanics approaches

center on volume averaging to determine the effective properties of composites through
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the use concentration tensors. There are a variety of approaches for determining the

stress or strain concentration tensors for use in determining the effective properties

of composite materials. One of the most widely used approaches is the Mori-Tanaka

method (see Section C Part 2 of Chapter II) [127–129], followed by the self-consistent

method [129, 130]. These approaches take advantage of the Eshelby solution [131] in

individually determining the stress and strain concentration tensor for each ellipsoidal

homogeneous inclusion in the composite, with the key difference being between the

two approaches being the selection of the embedding material in the application of

the Eshelby solution. The Mori-Tanaka method takes as the embedding material the

matrix material of the composite perturbed by an additional amount of stress/strain

to account for inclusion interactions in determining the dilute concentration tensors

from which the total concentration tensor is defined. In contrast, the self-consistent

method (see Section C Part 1 of Chapter II) [130] accounts for inclusion interactions

by taking as the embedding material the unknown effective in determining total con-

centration factors and therefore makes the solutions for the effective properties a set

of nonlinear equations.

The success of the Mori-Tanaka and self-consistent methods have lead to efforts

to extend them to include non-ellipsoidal and non-homogeneous inclusions. For ex-

ample, Benveniste et al. [132] applied the composite cylinders method in a two-step

process in the determination of dilute stress concentration tensors for use in a Mori-

Tanaka method for determining the effective thermoelastic properties of coated fiber

composites. Dasgupta and Bhandarkar [133] followed a similar approach as Ben-

veniste et al. in the determination of dilute stress concentration tensors, but instead

made use of the generalized self-consistent composite method. Finite element cal-

culations were employed by Fisher et al. [117] to calculate the Young’s modulus of

wavy fibers which was then used to determine strain concentration tensors via the
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Mori-Tanaka method. Other efforts have focused on what could be referred to as

non-Eshelby approaches towards determining stress and strain concentration tensors.

For example, Bradshaw et al. [134] have used the finite element method in a Mori-

Tanaka approach where the dilute strain concentration factor is determined directly

from finite element results as opposed to through the use of the Eshelby solution.

The effects of interphase regions on the effective properties of composites have

been approached using a variety of techniques, mostly in the context of coated fiber

inclusions[91, 132, 133, 135–140]. Others have identified methods which have been

applied in determining the effective properties of composites containing fibers coated

with graded interphase regions. Achenbach and Zhu [141] applied the boundary

element method for obtaining marcomechanical behavior for transverse loading of

hexagonal array of fibers with an interphase region represented by a spring layer.

Sancaktar and Zhang [142] made use of a differential scheme for determining stresses

and strains in a single fiber composite with nonlinear viscoelastic interphase. The

method of cells was used by Gardner et al. [143] and by Low et al. [144] to determine

the effective elastic properties of coated fiber composites. A good summary of the

analytical interphase modeling approaches prior to 1993 was provided by Jayaraman

et al. [145]. More recent efforts have relied on finite element modeling [91, 146]

and even on a Cosserat shell model [147] to determine effective properties of graded

interphase fiber composites.

A number of research efforts have sought to ascertain the effects of clustering

on the effective elastic properties of composites. Many research efforts have used

tessellation techniques to identify what constitutes a clustered arrangement as well

as to delineate different amounts of clustering [148–153]. Ghosh and Moorthy [154]

and Ghosh et al. [150] used the Voronoi cell finite element method to obtain the

stress-strain response for clustered fiber reinforced composites and observed increases
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in the transverse stress as a result of clustering. Tszeng [155] studied the elastoplastic

response of clusters of spherical particles in metal matrix composites using and equiv-

alent inclusion approach and found no significant effect of clustering on the effective

modulus. Boyd and Lloyd [156] used FEA analysis to study the effects of particle

clustering on the fracture toughness in metal matrix composites. Bhattacharryya and

Lagoudas [153] derived a form of the self-consistent model for the effective properties

of clustered fiber reinforced composites based on local volume fraction distributions

and applied it to bimodal distributions where increases in transverse elastic properties

for clustered distributions were found. For aligned short fiber composites, Kataoko

and Taya [157] obtained the effect of clustering on the local stress-strain response,

but surprisingly found a decrease in the effective axial stiffness9. It should be noted

that these previous efforts were more focused on the stress-strain response as opposed

to the effective properties, and generally observed the effects of clustering at a single

global volume fraction for more traditional composite systems such as carbon fiber

reinforced and metal matrix composites.

a. The Composite Cylinder Method

Many micromechanics efforts focused on the estimation of the effective properties of

aligned fiber composites have made use of what came to be known as the Composite

Cylinders Model, or Method. The Composite Cylinders Model was originally pro-

posed by Hashin and Rosen [158] in an effort to determine bounds on and expressions

for the effective elastic properties of aligned, circular fiber reinforced materials. The

model made use of the direct strain energy equivalency between the effective material

response and the response of a composite cylinder assemblage consisting of concentric

9This is a surprising result as it is generally expected and observed that the axial
stiffness tends to follow the rule of mixtures and therefore is unaffected by clustering



16

circular cylinders of fiber and matrix which was taken as representative of aligned

fibers randomly dispersed in the matrix. Five sets of both traction and displacement

boundary conditions were applied to the composite cylinder assemblage in order to

determine a set of five independent elastic constants for the effective material: the

longitudinal Young’s modulus, the longitudinal stiffness, the plane strain bulk modu-

lus, the longitudinal shear and the transverse shear. In all but one case, the transverse

shear, the application of the boundary conditions resulted in coincident bounds and

as such, an expression for the effective property.

In an effort to determine coincident bounds, and therefore, an expression for

the shear modulus of spherical particles in a matrix, Christensen and Lo [159] pro-

posed a generalized self-consistent approach. In this approach, a composite sphere

assemblage consisting of the spherical inclusion and the matrix was embedded in a

third phase, the material properties of which were taken to be those of the effective

material, and which could be taken to extend to infinity. The Eshelby strain energy

equivalency between the assemblage and effective material is then invoked which, as a

result of the third phase being the effective material, leads to an expression in which

the interaction energy for the assemblage must be zero. The bounds determined for

the shear modulus of the generalized self-consistent composite sphere were observed

to be coincident, and, given the relative similarity between the solutions of the two

problems, Christensen and Lo were able to use the same approach to develop an ex-

pression for the transverse shear modulus of a generalized self-consistent composite

cylinder assemblage. In a much later work, Christensen [160] compares the results of

this generalized self-consistent composite cylinder approach to obtaining the effective

transverse modulus with other micromechanics approaches and notes good agreement

with the Mori-Tanaka method [127, 128] which the present authors also observed in

addition to good agreement with finite element simulations [161, 162]. While Chris-
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tensen and Lo acknowledge the differences between the generalized self-consistent

composite cylinders approach and Hashin and Rosen’s original composite cylinders

approach, others, including Hashin, sought to use both approaches in a unified effort

towards determining a set of five independent elastic constants for the effective prop-

erties of aligned fiber composites [163–165]. This resulted in a multi-layer composite

cylinders method where four of the five elastic constants are determined from the

Hashin and Rose method and the fifth from Christensen and Lo’s approach.

In an effort to determine the effective thermoelastic properties of graphitic car-

bon fibers, Hashin [163] employed the composite cylinders method [158] to determine

the axisymmetric elastic properties, the axial shear modulus, the coefficient of ther-

mal expansion, and the thermal conductivity, while using a generalized self-consistent

composite cylinder approach [160] to determine the transverse shear modulus, trans-

verse Young’s modulus, and transverse Poisson’s ratio. In a later work, Hervé and Za-

oui [165] proposed to use the generalized self-consistent composite cylinders approach

in determining all of the effective elastic constants of composite cylinder assemblages

consisting of N - concentric phases, thereby making the effective material the (N+1)th

phase. For two phase composite cylinder assemblages (i.e., N = 2), they were able to

argue that an approach like the one taken by Hashin for graphitic carbon fibers was

consistent in that the generalized self-consistent composite cylinder method would

yield identical elastic constants as the original composite cylinders method for those

properties identified to have coincident bounds.

The replacement of interphase by an interface in determining the effective ther-

moelastic properties of coated carbon fiber composites was investigated by Hashin

[140, 166] through the incorporation of jump discontinuities in traction and displace-

ment across the fiber-matrix interface in the composite cylinder assemblage.

Additional efforts have focused on the development of composite cylinders mod-
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els to capture the effects of graded interphase regions. Jayaraman and Reifsnider

[167] developed a solution for a graded interphase region having a radial power varia-

tion in Young’s modulus (constant Poisson’s ratio) in determining the thermoelastic

radial and hoop stresses of coated carbon fibers composites. Jasiuk and Kouider

[168] investigated the use of infinite series solutions in composite cylinders models for

determining the effective elastic properties of coated fibers having graded interphase

regions with radial linear variation in both Young’s modulus and Poisson’s ratio. Lutz

and Ferrari [169] also developed an infinite series solution for a graded interphase re-

gion where the variation in both Lamé constants is a truncated power function plus a

constant. In an alternative approach, the composite cylinders method has been used

by Huang and Rokhlin [170] as part of an iterative process towards modeling a graded

interphase region which they term the transfer matrix method (see also [132, 133]).

Several efforts have used the composite cylinders approach in determining the

thermo-elastic stress distributions in fiber reinforced composites. In [136, 138, 167,

171], composite cylinders approaches are applied to obtain the thermal stresses (axial

and hoop) in a fiber and matrix with and without an interphase region. Other efforts

[169, 170, 172] have focused on modeling functionally graded interphase regions in

fiber reinforced composites. Recently [161], multi-layer composite cylinders models

have been applied to CNT reinforced epoxies wherein CNTs have been treated as

continuum sheets of rolled graphene surrounded by interphase layers to simulate dif-

fering amounts of load transfer as a result of functionalization, but have lacked direct

MD coupling.

Applications of the composite cylinder method have centered around the deter-

mination of the effective thermoelastic properties of aligned coated fiber composites.

Nairn [171] employed a composite cylinders approach to determine axial and hoop

stresses in response to thermal loads for carbon fiber composites with and without an
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interphase region; work which Wagner [136, 138] later followed to estimate fiber break

lengths due to residual stresses. Pagano and Tandon [173] made use of the composite

cylinders method in a parametric study on the effects of an interphase region and

of orientation on the thermoelastic properties of coated fiber composites. Carman

et al. [164] used the composite cylinders method as part of an approach towards

designing optimal interphase thermoelastic properties. Recently [161], multi-layer

composite cylinders models have been applied to carbon nanotube reinforced epoxies

wherein carbon nanotubes have been treated as continuum sheets of rolled graphene

surrounded by interphase layers to simulate differing amounts of load transfer as a

result of functionalization.

2. Micromechanics Techniques for Thermal and Electrical Properties

Continuum micromechanics models have long been used to determine the effective

electrical conductivities of composites with well dispersed inhomogeneities. Begin-

ning with single particle [174, 175] and arrays of particles [176] embedded in a matrix

material, continuum mechanics descriptions for the effective conductivity of compos-

ites were developed, generally with the assumption that the inhomogeneity is fully

enveloped by the matrix or an effective material. Based on the assumption that

each crystal acts as if surrounded by a homogeneous medium whose properties are

those of the mixture, Landauer [174] proposed a theory for predicting the electrical

conductivity of a binary random mixture of metals having spherical grains. Kerner

[175] extended this result for coated spheres. Later work was aimed at using varia-

tional principles to establish bounds on the effective composite properties [177–180],

generally by mathematical analogy with other properties like magnetic permeability,

effective dielectric constants, or elastic properties.

Subsequent micromechanics models were driven by effective medium approaches
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[181–184] and the development of the differential scheme, the self-consistent method,

and the Mori-Tanaka method for effective conductivity (noting again that many of

these developments were for mathematically analogous properties) [183, 185–188]

whose mechanical analogs form the backbone of micromechanics approaches for ef-

fective elastic properties. Some of these methods relied on Eshelby-like approaches,

leading to equivalent inclusion methods10 for incorporating coatings or interphase

layers [53, 182, 183, 185, 187, 189–192]. Other methods have relied on computational

micromechanics in the form of finite element [193] or finite difference [194] methods

in addition to other theories (Halpin-Tsia, polarization) [72, 123] to determine the

effective conductivity. Still other methods relied on the development of composite

sphere or cylinder solutions to determine the effective conductivities coated spheres

and fibers [163, 185, 186, 195, 196], at times to model functionally graded material

regions. It is the latter which will be the focus of the modeling efforts in the present

study using the multi-layer composite cylinder method to determine the concentration

tensors.

D. Objectives and Outline of the Present Research

The present work seeks to investigate the development and application of microme-

chanics techniques for use in multiscale models for CNT-polymer composites. As a

result of the hollow nature of CNTs and the presence of interphase regions, microme-

chanics methods which make use of the Eshelby solution, like the Mori-Tanaka and

self-consistent methods, can not be used. As such, emphasis is placed on the com-

10The term equivalent inclusion method is traditionally used in describing the
equivalency between a homogeneous inhomogeneity and an inclusion with an un-
known eigenstrain. However, here it is meant that the inhomogeneous inhomogeneity
(inhomogeneity plus the interphase) is replaced by and effective inhomogeneity prior
to the application of the traditional equivalent inclusion method.
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posite cylinders model as a non-Eshelby approach in the determination of effective

CNT-polymer properties. Specifically, we seek to establish connections between gen-

eral micromechanics averaging philosophy with generalized self-consistent composite

cylinder modeling of hollow fibers coated with graded interphase regions as an ap-

proach to continuum level modeling of carbon nanotube enriched polymer composites,

and to validate these models by comparison with equivalent inclusion Mori-Tanaka

and self-consistent approaches as well as with computational micromechanics finite

element simulations. Efforts are also made to use the composite cylinders model and

computational micromechanics approaches to assess the impact of clustering, both

with and without interphase regions, on the effective nanocomposite properties. In

addition, the multifunctional nature of CNT-polymer composites are investigated us-

ing the multi-layer composite cylinders model to introduce nanoscale effects. Finally,

as part of the multiscale model, connections to lower length scale modeling efforts,

such as MD simulations, are made in the validation of CNT representations and in the

determination of interphase geometry and properties which are then used to calculate

effective nanocomposite properties for use in higher length scale models.

The multi-layer composite cylinders method is used to directly calculate the total

stress concentration tensors at finite volume fractions. This approach is provided

as a means to determining the effective elastic properties of composites containing

multiple types of coated fibers and of composites with partially aligned or randomly

oriented coated fibers through the use of general averaging methods. For CNTs and

for CNTs with interphase regions the composite cylinders solutions can be used to

obtain the components of the concentration tensors through volume averages of the

stress and strain in the composite cylinder layers. Concentration tensors for CNTs

with different functionalizations can then be obtained and averaged together to get

the effective properties for epoxies containing a mixture of CNT types. Similarly, the
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concentration tensors can then be used to introduce the effects of random orientation

by considering each orientation of CNTs as a separate phase. The effective properties

are then obtained by averaging over all possible orientations. However, with the

concentration tenors determined directly from the composite cylinders approach, the

random orientation averaging can take place without using the Mori-Tanaka method,

and thereby allows for a more direct accounting for the presence of interphase regions.

The effects of interphase regions due to functionalization and polymer entan-

glement on the effective elastic properties are also investigated using a multi-layer

composite cylinders approach. Herein the effects of interphase regions are modeled

by taking advantage of the generalize self-consistent composite cylinder method. In

the present work, the multi-layered, generalized self-consistent composite cylinders

model is used to model a functionally graded interphase region with an increasing

number of piecewise continuous subregions. The objective is to obtain the effective

elastic constants of carbon nanotube reinforced composites from the micromechanical

model, but to refine the number and properties of the subregions to approximate the

density variations observed in the molecular structure. The generalized self-consistent

composite cylinders technique is also used to model the graded interphase regions as

continuous functions which will be compared to piecewise continuous solutions. For

complicated variations in material properties, multiple layer sequences of continuous

varying regions are explored.

Efforts are also made in the present work to elucidate the effects of clustering of

carbon nanotubes within a polymer matrix on the effective elastic properties of such

composites. TEM images have shown that within a given cluster, bundles of CNTs

are often observed to have a high degree of alignment. As such, clustering of CNTs

in a polymer matrix is modeled herein in the context of aligned CNT bundles. Both

the independent and combined effects of interphase regions and clustering of high-
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stiffness hollow fiber composites representing CNTs are studied using computational

micromechanics techniques in the form of continuum finite element analysis (FEA).

Finite element results are then compared to the corresponding results obtained by

analytic micromechanics methods. In the analytic approach, a tessellation procedure

to quantify clustering and the effects of clustering on the effective properties of CNT

composites are modeled using a multi-layered composite cylinder method which is

coupled to a multi-phase Mori-Tanaka approach to obtain the effective properties

of aligned clustered fiber reinforced composites for a wide range of global volume

fractions.

In assessing the multifunctionality of CNT-polymer nanocomposites, continuum

micromechanics models are used to predict the pre-contact percolation behavior of

carbon nanotube reinforced composites, with the nanoscale effects such as electron

hopping modeled through the use of interphase zones. In the present work, a contin-

uum micromechanics method in the form of a composite cylinders model is used to

obtain the effective electrical conductivity of carbon nanotube-polymer composites,

incorporating the nanoscale effects observed in the macroscale measurements of the

effective electrical conductivity, namely premature percolation and a double percola-

tion limit, through the incorporation of multiple interphase layers. 11 The composite

cylinders method is used in determining non-dilute electric flux concentration tensors

for use in micromechanics orientation averaging in modeling the carbon nanotube-

polymer composites as a well-dispersed system of randomly oriented nanotubes.

In addition to assessing the multifunctionality of CNT-polymer composites in

terms of electrical conductivity, a micromechanics approach based on the composite

11Using different interphase layers to represent various mesoscale electrical phe-
nomena has also been applied by [197] for concentric spheres in what was termed a
multi-core model.
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cylinders model is applied as an alternate approach for assessing the impact of an

interfacial thermal resistance on the effective thermal conductivity of nanocompos-

ites. The composite cylinders assemblage is used to introduce the Kapitza layer and

additional interphase layers in a manner which enforces concentric heat flux through

each layer and accounts for the hollow interior of the nanotube. The lateral effects of

the interfacial thermal resistance are readily introduced using interphase layers. In

addition, we seek to introduce anisotropy into the carbon nanotubes by reducing the

axial conductivity of the carbon nanotube in order to account for end effects. The

degree of anisotropy is introduced in our model as an effect of the Kapitza layer by

constructing a composite bar in series solution for the effective axial conductivity of

the nanotube. In addition, the composite cylinders assemblage is used to directly

determine concentration tensors for use in incorporating the effects of random orien-

tation.

As part of the multiscale modeling effort, we seek to address phenomena oc-

curring in the bulk polymer and attributed to the presence of nanotubes and their

surrounding interphases. Evidence from MD simulations has indicated a region of

perturbed polymer extending radially outward from the CNT surface, the thickness

of which can be on the order of the CNT radius even for unfunctionalized CNTs.

This thickness can be larger than the van der Waals cut-off radius used in MD sim-

ulations, and therefore is considered a long range interaction. It is postulated that

this long range interaction can be best represented in the composite cylinders mod-

els as a separate phase between the CNT and undisturbed matrix defined as the

interphase. At present MD simulations can identify the presence of the interphase

in the form of disturbances in the density distribution in the surrounding polymer,

but cannot identify the elastic properties of this region. Molecular dynamics (MD)

simulations of unfunctionalized and functionalized CNTs embedded in a polymer ma-
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trix will be used to calibrate micromechanics modeling efforts in the determination of

appropriate interphase thicknesses and properties. Initial coupling between MD and

composite cylinders solutions has relied on a postulated correspondence between den-

sity and stiffness [99]. Unfortunately, current MD simulations cannot directly probe

the interphase region. As such, a more direct coupling between MD and the compos-

ite cylinders method is obtained here which uses the composite cylinders method in

conjunction with MD simulations to ascertain appropriate elastic constants for the

interphase region. MD simulations provide the interphase thickness based on density

variations observed in the polymer. In addition, MD simulations will provide the

effective properties for the CNT-polymer system from which the interphase proper-

ties in the composite cylinders solution are solved using the volume averaged strain

energy equivalency. These interphase properties can then be used in the subsequent

composite cylinders solutions to predict the local effective properties at volume frac-

tions which would result in atomistic simulation boxes currently too large for MD

simulations.

The remainder of this work is presented as follows. Chapter II provides a review

of the general micromechanics averaging approaches based on energy equivalency

and averaging methods. Focused is placed on the self-consistent and Mori-Tanaka

methods in order to place the generalized self-consistent composite cylinders method

employed herein into context. In addition, the general approach towards orientational

averaging is presented. Chapter III provides a detailed description of the generalized

self-consistent composite cylinders method. Chapter IV provides results for the ef-

fective elastic properties of nanocomposites as well as a description of the methods

used and results obtained from interphase and cluster modeling using both analytic

and computational micromechanics approaches. In addition, comparisons of the ef-

fective properties obtained with these micromechanics approaches with measured ex-
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perimental data are provided. Chapter V provides results for the effective electrical

conductivities of nanocomposites and provides a discussion on possible mechanisms

leading to the observed early percolation behavior in the process of comparing pre-

dicted conductivities below the contact percolation limit with measured experimental

data. Chapter VI provides results for the effective thermal conductivities of nanocom-

posites. A description of the methods for including both the lateral and end effects

of the interfacial thermal resistance is provided and discussed in the context of com-

parisons with measured experimental data for nanocomposite thermal conductivity.

Finally, Chapter VII summarizes the conclusions and discusses some future challenges

for modeling of CNT-polymer nanocomposites.
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CHAPTER II

REVIEW OF CLASSICAL MICROMECHANICS METHODS

This chapter provides a review of classical micromechanics, beginning with the iden-

tification of the relationship between the macroscale boundary value problem and the

microscale representative volume element (RVE) in terms of the governing differential

equations for elasticity and electrical and thermal conductivity and a discussion on

volume averages in determining effective properties of composites. This is followed

by descriptions of the self-consistent and Mori-Tanaka methods for elastic properties

and thermal conductivities, and a discussion on orientational averaging. The chapter

concludes with a discussion on the use energy of equivalencies as a preface to the

discussion of the generalized self-consistent composite cylinder method of the follow-

ing chapter. Throughout this and the remaining chapters of this work, the following

notation conventions will be adopted: Extensive use of the summation convention

for indicial notation will be used to clarify tensor products and order. In addition,

fourth order tensor will be denoted by capital Latin letters. Second order tensor will

be denoted with lower case Greek letters unless indicated otherwise, and vectors will

be denoted by lower case Latin letters unless indicated otherwise. For clarity, defini-

tions and derivations involving derivatives with respect to space expressed using the

summation convention will be presented assuming a Cartesian coordinate system.
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A. Identification of RVE and Governing Equations

1. RVE and Governing Differential Equations for Linear Elasticity

Much of the philosophy in micromechanics approaches1 is centered around determin-

ing effective properties for composites containing microstructure for use in macroscale

simulations of composite response to engineering loads. Effective properties are typ-

ically obtained by establishing an equivalency between the microscale RVE of the

composite and a representation of that RVE as an effective homogeneous medium as

shown schematically in Figure 4. For composites consisting of linear elastic materials,

the governing differential equations for the macroscale and for the microscale RVE

consist of the linearized elasticity equations2. It can be shown through the theory of

multiple scale expansion (see for example the work of Jansson [202]) that, for linear

materials and an asymptotic expansion of the displacement of order δ2, where δ � 1

is the scaling factor between the macro and microscales such that xi = Xi/δ, that

the macroscale and microscale can be related to one another through the definition

of the effective stiffness tensor3, Leff
ijkl. As such, the static equilibrium equations at

the macroscale can be expressed as

σ̄ji, j + fi = 0 (2.1)

1Many texts on micromechanics provide the following equations. In particular,
Mechanics of Composite Materials by Richard M. Christensen [198] and Fundamentals
of Micromechanics of Solids by Qu and Cherkaoui [199] are provided as a references.

2Many texts on continuum mechanics and elasticity provide the following equa-
tions. In particular, The Linearized Theory of Elasticity by William S. Slaughter
[200] and Introduction to Continuum Mechanics by Lai, Rubin and Krempl [201] are
provided as references.

3In micromechanics literature, it is common to use Lijkl for stiffness instead of Cijkl
which is commonly used in many texts on elasticity. As this chapter will be referencing
the classical micromechanics literature, we will use the so-called Hill notation [203]
and use Lijkl for stiffness.



29

Fig. 4. General schematic representing the relationship between the macroscale bound-

ary value problem and its corresponding microscale RVE from which effective

elastic properties are determined. The microscale RVE is noted to be subjected

to homogeneous displacements or tractions in terms of the macroscale average

strain or stress which is depicted for a general composite microstructure having

an assortment of irregularly shaped inhomogeneities.



30

where σ̄ij is the macroscale Cauchy stress, fi is the body force, and σ̄ij, j denotes the

divergence of the stress tensor in terms of the Xi coordinate system. The boundary

conditions at the macroscale can be either specified tractions, t̄i = σ̄jinj = t̂i (where ni

is the unit outward normal of the macroscale boundary), or specified displacements,

ūi = ûi, or a nonintersecting combination of the two. The macroscale kinematic

relations are expressed in terms of the linearized strain-displacement equations given

by

ε̄ij =
1

2
(ūi, j + ūj, i) (2.2)

where ε̄ij is the infinitesimal strain tensor on the macroscale, ūi is the displacement

vector of a macroscale material point, and ūi, j denotes the gradient of the displace-

ment vector in terms of the macroscale Xi coordinate system. The macroscale con-

stitutive relation can be identified as

σ̄ij = Leff
ijklε̄kl (2.3)

where the effective stiffness is obtained from the microscale RVE and is therefore a

function of the microscale xi coordinate system. It can further be shown that Eqn. 2.3

can alternatively be expressed as

〈σij〉 = Leff
ijkl〈εkl〉 (2.4)

where 〈σij〉 and 〈εij〉 denote the volume averages of the stress and strain, respectively,

over the microscale RVE, i.e.

〈•〉 =
1

V

∫
V

• dV (2.5)

where V is the volume of the RVE in the xi coordinate system.
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For the microscale RVE, the static equilibrium equations are expressed as

σij, j = 0 (2.6)

where σij is the microscale Cauchy stress and σij, j denotes the divergence of the

stress tensor in terms of the xi coordinate system.4 It is noted that the body force

is not included in Eqn. 2.6 as it can be observed from the theory of multiple scale

expansion that the body force need not be considered in the microscale equilibrium

equations. The microscale kinematic relations are expressed in terms of the linearized

strain-displacement equations given by

εij =
1

2
(ui, j + uj, i) (2.7)

where εij is the infinitesimal strain tensor on the microscale, ui is the displacement

vector of a material point, and ui, j denotes the gradient of the displacement vector

in terms of the microscale xi coordinate system.

Assuming that all of the materials in the composite are linear elastic, the Cauchy

stress is related to the infinitesimal strain tensor on the microscale through the con-

stitutive relations given by

σij = Lijklεkl (2.8)

where Lijkl is the fourth order stiffness tensor which varies in xi depending on the

microstructure of the composite. The inverse of the stiffness tensor is defined to be

the compliance tensor, Mijkl, so that Eqn. 2.8 can alternatively be expressed as

εij = Mijklσkl (2.9)

4It is noted that in the absence of body moments, the conservation of angular
momentum indicates that the Cauchy stress is symmetric, i.e. σij = σji.
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It is well known that, in general, a fourth order tensor has 81 independent components.

However, since the infinitesimal strain tensor is symmetric, the number of independent

components of the stiffness tensor is reduced to 54. Further, if the stress tensor is

also symmetric, the number of independent components is reduced to 36. Finally, for

linear elastic materials5, the number of independent components of the stiffness tensor

is reduced to 21. Additional assumptions regarding material symmetry can further

reduce the number of independent components of the stiffness tensor. Of particular

interest to the present work are orthotropic (9 independent components), transversely

isotropic (5 independent components), and isotropic (2 independent components)

material symmetries6. For example, the stiffness tensor for an orthotropic material

can be expressed in engineering notation as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1111 L1122 L1133 0 0 0

L1122 L2222 L2233 0 0 0

L1133 L2233 L3333 0 0 0

0 0 0 L2323 0 0

0 0 0 0 L1313 0

0 0 0 0 0 L1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

5The more general requirement is that the material be hyperelastic, i.e. that
the strain energy density, w(εij), which is given by w(εij) ≡ ∫ εij

0
σij dεij, is path

independent in strain space.
6Orthotropic materials have three orthogonal planes of material symmetry, trans-

versely isotropic material are symmetric with respect to an arbitrary rotation about
the axis of material symmetry, and isotropic materials are symmetric with respect to
all orthogonal transformations
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or inverted and expressed in terms of the components of the compliance tensor as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E11
− ν21

E22
− ν31

E33
0 0 0

− ν12

E11

1

E22

− ν32

E33

0 0 0

− ν13

E11

− ν23

E22

1

E33

0 0 0

0 0 0
1

µ23
0 0

0 0 0 0
1

µ13
0

0 0 0 0 0
1

µ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

where the E’s, ν’s, and µ’s denote the Young’s moduli, Poisson’s ratios, and shear

moduli, respectively, and where material symmetries indicate that
ν21

E22

=
ν12

E11

,
ν31

E33

=
ν13

E11

,

and
ν32

E33
=
ν23

E22
.

In light of the constitutive equations, the equilibrium equations for the microscale

RVE can be expressed as

(Lijklεkl), j = Lijkl, j εkl + Lijkl εkl, j = 0 (2.12)

where for homogeneous materials, Lijkl, j is identically zero7 so that through the

strain-displacement relations, the equilibrium equations become

1

2
[Lijkl uk, lj + Lijkl ul, kj] = 0 (2.13)

which for isotropic materials reduces to the familiar Lamé-Navier equations (for no

inertial and no body forces), i.e.

(λ+ µ)uk, ki + µui, jj = 0 (2.14)

7In Chapters III and IV applications involving functionally graded materials, i.e.
materials where Lijkl, j �= 0, will be discussed. For these functionally graded materials,
solutions of the equilibrium equations will be dependent on the functional form of the
material property gradation.
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where µ and λ are the Lamé constants.

On the boundary of the microscale RVE, it can be shown from the theory of mul-

tiple scale expansion that the traction or displacement conditions8 are homogeneous

and consistent with the stress or strain at the macroscale, i.e.

ti = σjinj = σ̄jinj (2.15a)

ui = ε̄ijxj (2.15b)

where ni is the unit outward normal on the RVE surface. It can further be shown

that, for linear materials and expansion of order δ2, the multiple scale expansion is

synonymous with equating the strain energy of the RVE with that of the homogeneous

effective material.

For example, the strain energy density of the RVE is given by

w =
1

2
σijεij (2.16)

so that the volume averaged strain energy in the RVE is defined as

WRVE =
1

2
〈σijεij〉 (2.17)

which by the Hill-Mandel theorem (see for example [199]) can be expressed as

WRVE =
1

2
〈σij〉〈εij〉 (2.18)

Assuming the RVE is subject to the applied homogeneous displacement of Egn. 2.15b,

8The theory of multiple scale expansion as presented by Jansson [202] discusses the
boundary conditions on the microscale RVE in terms of periodic boundary conditions.
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it can be shown by use of the divergence theorem9 that

WRVE =
1

2
〈σij〉ε̄ij (2.19)

Similarly, the volume averaged strain energy of the effective homogeneous material is

defined as

W eff =
1

2
〈σeff

ij ε
eff
ij 〉 =

1

2
〈σeff

ij 〉〈εeff
ij 〉 (2.20)

where σeff
ij and εeff

ij are the stress and strain in the effective homogeneous material

having stiffness Leff
ijkl and assumed applied displacements also given by Eqn. 2.15b, so

that

W eff =
1

2
Leff
ijklε̄klε̄ij (2.21)

Equating the volume averaged strain energy of the RVE with that of its effective

homogeneous material10, i.e.,

WRVE = W eff (2.22)

it is noted that

〈σij〉 = Leff
ijklε̄kl = Leff

ijkl〈εkl〉 (2.23)

which is equivalent to Eqn. 2.4.

Finally, it is noted that, while the constituents of the microscale RVE may have

a variety of material symmetries, the resulting effective properties of the composite

will depend both on the material symmetries of the constituents and on the their

arrangement in the microscale RVE. For example, a composite with aligned fibers

which have either isotropic or transversely isotropic material symmetry will have

effective properties which are transversely isotropic. In contrast, if those same fibers

9The divergence theorem is also known as the Gauss theorem.
10The equivalency of strain energy is rooted in minimum energy principles and is

related to the equivalency of internal energy. See for example [198].



36

Fig. 5. General schematic representing the relationship between the macroscale bound-

ary value problem and its corresponding microscale RVE from which effective

electrical conductivity is determined. The microscale RVE is noted to be sub-

jected to homogeneous potentials or electric flux in terms of the macroscale

average electric field or electric flux which is depicted for a general composite

microstructure having an assortment of irregularly shaped inhomogeneities.

are randomly oriented, the effective properties will be isotropic. These two cases

are noted as they are relevant to CNT-polymer nanocomposites and as such, will be

discussed in greater detail in the subsequent chapters.

2. RVE and Governing Differential Equations for Electrical Conductivity

As was the case with the effective elastic properties, the effective electrical conduc-

tivity is typically obtained by establishing an equivalency between the microscale

RVE of the composite and a representation of that RVE as an effective homogeneous

medium as shown schematically in Figure 5. The governing differential equations for
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the macroscale and for the microscale RVE are obtained from the theory of electro-

magnetism of continuous media11. It can analogously be shown through the theory

of multiple scale expansion that, for linear materials and an asymptotic expansion

of the potential of order δ2, that the macroscale and microscale can be related to

one another through the definition of the effective electrical conductivity tensor, σ̌eff
ij ,

where the inverted chevron is used to distinguish the electrical conductivity tensor

from the Cauchy stress. As such, the steady state conservation of charge equation at

the macroscale can be expressed as

J̄i, i = 0 (2.24)

where J̄i is the macroscale electric flux vector12 and J̄i, i denotes the divergence of the

electric flux vector in terms of the Xi coordinate system13. The boundary conditions

at the macroscale can be either specified electric flux, J̄ini = Ĵini where ni is the

unit outward normal of the boundary, or specified potential, φ̄ = φ̂, or a noninter-

secting combination of the two. The macroscale electric field vector, Ēi, is taken as

irrotational14, i.e.

Ēj, ieijk = 0 (2.25)

where eijk is the permutation symbol with the left hand side of Eqn. 2.25 denoting

the curl of the electric field in terms of the macroscale Xi coordinate system. As

11Many texts on electromagnetism of continuous media provide the following equa-
tions. In particular, Electromagnetism of Continuous Media by Fabrizio and Morro
[204] is provided as a reference. (see also [205])

12Ji is also referred to as the current density vector where the current, i, is the
charge per unit area per unit time and is related to the current density vector by
in̂j

= Jjn̂j where n̂j is the unit outward normal of the surface through which the
current is flowing.

13It is noted that the forced current density Jfi is assumed to be zero.
14This corresponds to the local form of Faraday’s law in steady state.
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such, it is implied that the macroscale electric field can be described in terms of the

gradient (with respect to the macroscale coordinate system) of a scalar potential, φ̄,

by

Ēi = −φ̄, i (2.26)

The macroscale constitutive relation describing the electric flux in terms of the electric

field is identified by Ohm’s law as

J̄i = σ̌eff
ij Ēj (2.27)

where the effective electrical conductivity is obtained from the microscale RVE and

is therefore a function of the xi coordinate system. It can further be shown that

Eqn. 2.27 can alternatively be expressed as

〈Ji〉 = σ̌eff
ij 〈Ej〉 (2.28)

where 〈Ji〉 and 〈Ei〉 denote the volume averages of the electric flux and field, respec-

tively, over the microscale RVE.

For the microscale RVE, the steady state conservation of charge for a continuum

is expressed as

Ji, i = 0 (2.29)

where Ji is the microscale electric flux vector and Ji, i denotes the divergence of electric

flux in terms of the xi coordinate system. The microscale electric field vector, Ei, is

also taken as irrotational, i.e.

Ej, ieijk = 0 (2.30)

with the left hand side of Eqn. 2.30 denoting the curl of the electric field with respect

to the microscale xi coordinate system, with the electric field described in terms of
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the gradient of a scalar potential, φ by

Ei = −φ, i (2.31)

Assuming that all of the materials in the composite are governed by Ohm’s law,

the microscale constitutive relation is expressed as

Ji = σ̌ijEj (2.32)

where σ̌ij is the second order electrical conductivity tensor which varies in xi depend-

ing on the microstructure of the composite. The inverse of electrical conductivity is

defined to be the electrical resistivity tensor, ρ̌ij , so that Eqn. 2.32 can alternatively

be expressed as

Ei = ρ̌ijJj (2.33)

As the electrical conductivity and resistivity are second order tensors, there are at

most 9 independent tensor components. The number of independent components can

be reduced by considering material symmetries. Again, of particular interest to the

present work are orthotropic (3 independent components), transversely isotropic (2

independent components), and isotropic (1 independent component) material sym-

metries. For example, the electrical conductivity tensor for an orthotropic material

can be expressed in engineering notation as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J1

J2

J3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣
σ̌11 0 0

0 σ̌22 0

0 0 σ̌33

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E1

E2

E3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.34)

Thus, substituting the constitutive relation (Eqn. 2.32) and definition of the

electric field (Eqn. 2.31) into Eqn. 2.29, the conservation of charge equation for the
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microscale RVE can be written as

(σ̌ijEj), i = σ̌ijφ, ij + φ, i σ̌ji, j = 0 (2.35)

which for homogeneous materials reduces to

σ̌ij φ, ij = 0 (2.36)

so that for isotropic materials the potential is obtained from the solution of Laplace’s

equation. On the boundary of the microscale RVE, it can be shown from the theory

of multiple scale expansion that the electric flux or electric potential conditions are

homogeneous and consistent with the electric flux or electric field at the macroscale,

i.e.

Jini = J̄ini (2.37a)

φ = φ̄xj (2.37b)

where ni is the unit outward normal to the microscale RVE boundary. It can further

be shown that, for linear materials and expansion of order δ2, the multiple scale

expansion is synonymous with equating a scalar function, analogous to the strain

energy in elasticity, of the RVE to that of the homogeneous effective material, i.e.

WRVE = W eff (2.38)

where

WRVE = 〈w〉 =
1

2
〈JiEi〉 =

1

2
〈Ji〉〈Ei〉 (2.39a)

W eff = 〈weff〉 =
1

2
〈Jeff

i Eeff
i 〉 =

1

2
〈Jeff

i 〉〈Eeff
i 〉 (2.39b)

where Jeff
i and Eeff

i are the electric flux and field, respectively, in the effective ho-

mogeneous material subject to boundary conditions as in Eqn. 2.37. For example,
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assuming the RVE and effective homogeneous material are subject to the homoge-

neous potential in Eqn. 2.37b, then Eqn. 2.38 reduces to

〈Ji〉 = σ̌eff
ij Ēj = σ̌eff

ij 〈Ej〉 (2.40)

which is equivalent to Eqn. 2.28.

3. RVE and Governing Differential Equations for Thermal Conductivity

As was the case with the effective elastic properties and electrical conductivity, the

effective thermal conductivity is typically obtained by establishing an equivalency

between the microscale RVE of the composite and a representation of that RVE as

an effective homogeneous medium as shown schematically in Figure 6. The governing

differential equations for the macroscale and for the microscale RVE are obtained

from general continuum theory for heat transfer in solids 15 in the form of the steady

state heat conduction equation16. It can analogously be shown through the theory of

multiple scale expansion that, for linear materials and an asymptotic of order δ2, that

the macroscale and microscale can be related to one another through the definition

of the effective thermal conductivity tensor, keff
ij . As such, the steady state heat

conduction equation at the macroscale can be expressed as

q̄i, i = 0 (2.41)

15Many texts on continuum theory and heat transfer in solids provide the following
equations. In particular, Mechanics of Composite Materials by Richard M. Chris-
tensen [198] and the work by Hashin [178] are provided as references.

16The local form of the conservation of energy (i.e., the first law of thermodynamics)
can be written as ρdU

dt
= σijdij + ρ r − qi, i, where ρ is the density, U is the internal

energy per unit mass, or the specific internal energy, σij is the stress tensor, dij is the
rate of deformation tensor, r is the heat source/sink per unit mass, and qi is the heat
flux vector. Under the assumptions of steady state conditions, no thermo-mechanical
coupling, and no heat sources/sinks, the conservation of energy reduces to qi, i = 0
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Fig. 6. General schematic representing the relationship between the macroscale bound-

ary value problem and its corresponding microscale RVE from which effective

thermal conductivity is determined. The microscale RVE is noted to be sub-

jected to homogeneous temperature or heat flux in terms of the macroscale

average heat intensity or heat flux which is depicted for a general composite

microstructure having an assortment of irregularly shaped inhomogeneities.
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where q̄i is the macroscale flux vector and q̄i, i denotes the divergence of the heat

flux vector in terms of the Xi coordinate system. The boundary conditions at the

macroscale can be either specified heat flux, q̄ini = q̂ini where ni is the unit outward

normal of the boundary, or specified temperature, T̄ = T̂ , or a nonintersecting com-

bination of the two. The macroscale heat intensity vector, H̄i, is defined in terms of

the gradient (with respect to the macroscale coordinate system) of the temperature,

T̄ , by

H̄i = −T̄, i (2.42)

so that the heat intensity is also irrotational. The macroscale constitutive relation

describing the heat flux in terms of the heat intensity is identified by Fourier’s law as

q̄i = keff
ij H̄j (2.43)

where the effective thermal conductivity is obtained from the microscale RVE and

is therefore a function of the xi coordinate system. It can further be shown that

Eqn. 2.43 can alternatively be expressed as

〈qi〉 = keff
ij 〈Hj〉 (2.44)

where 〈qi〉 and 〈Hi〉 denote the volume averages of the heat flux and heat intensity,

respectively, over the microscale RVE.

For the microscale RVE, the steady state heat conduction equation is expressed

as

qi, i = 0 (2.45)

where qi is the microscale heat flux vector and qi, i denotes the divergence of the heat

flux in terms of the xi coordinate system. The microscale heat intensity vector, Hi, is

defined in terms of the gradient (with respect to the microscale xi coordinate system)
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of the temperature, T , by

Hi = −T, i (2.46)

Assuming that all of the materials in the composite are governed by Fourier’s

law, the microscale constitutive relation is expressed as

qi = kijHj (2.47)

where kij is the second order thermal conductivity tensor which varies in xi depending

on the microstructure of the composite. The inverse of the thermal conductivity is

defined to be the thermal resistivity tensor, ξij, so that Eqn. 2.47 can alternatively

be expressed as

Hi = ξijqj (2.48)

As with the electrical conductivity and resistivity tensors, the thermal conductivity

and resistivity are second order tensors, which can have orthotropic, transversely

isotropic, and isotropic material symmetries which are of interest to the present study.

Thus, similar to Eqn. 2.34, the thermal conductivity tensor for an orthotropic material

can be expressed in engineering notation as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q1

q2

q3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣
k11 0 0

0 k22 0

0 0 k33

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H1

H2

H3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.49)

Thus, substituting the Fourier’s law (Eqn. 2.47) and the definition of the heat

intensity (Eqn. 2.46) into Eqn. 2.45, the steady state heat conduction can be written

as

(kijHj), i = kijT, ij + T, i kji, j = 0 (2.50)
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which for homogeneous materials reduces to

kijT, ij = 0 (2.51)

so that for isotropic material the temperature is obtained from the solution of Laplace’s

equation. On the boundary of the microscale RVE, it can be shown from the theory

of multiple scale expansion that the heat flux or heat intensity conditions are homo-

geneous and consistent with the heat flux or thermal intensity at the macroscale, i.e.

qini = q̄ini (2.52a)

T = T̄ xj (2.52b)

where ni is the unit outward normal to the microscale RVE boundary. It can further

be shown that, for linear materials and expansion of order δ2, the multiple scale

expansion is synonymous with equating a scalar function, analogous to the strain

energy in elasticity, of the RVE to that of the homogeneous effective material, i.e.

WRVE = W eff (2.53)

where

WRVE = 〈w〉 =
1

2
〈qiHi〉 =

1

2
〈qi〉〈Hi〉 (2.54a)

W eff = 〈weff〉 =
1

2
〈qeff
i H

eff
i 〉 =

1

2
〈qeff
i 〉〈Heff

i 〉 (2.54b)

where qeff
i and Heff

i are the heat flux and heat intensity, respectively, in the effective

homogeneous material subject to boundary conditions as in Eqn. 2.52. For example,

assuming the RVE and effective homogeneous material are subject to the homoge-

neous potential in Eqn. 2.52b, then Eqn. 2.53 reduces to

〈qi〉 = keff
ij H̄j = keff

ij 〈Hj〉 (2.55)
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which is equivalent to Eqn. 2.44.

Finally, from Eqns. 2.29, 2.31, 2.32, 2.36, 2.37, and 2.38 describing the microscale

electrical conductivity and from Eqns. 2.45, 2.46, 2.47, 2.51, 2.52, and 2.53 describing

the microscale thermal conductivity, it is noted that the sets of equations are mathe-

matically analogous. Hence, in some of the derivations which follow, only the thermal

conductivity equations will be derived with the understanding that the subsequent

derivations will be analogously applicable to the electrical conductivity. However,

it is noted that the physical mechanisms of thermal and electrical conduction are

observably different at the nanoscale17, and thus may have, in addition to different

conductivities, important nanoscale effects which become significant for nanoscale

inhomogeneities.

B. General Averaging Methods for Effective Properties

It has been noted in Section A of this chapter that the effective properties of the

composite can be expressed in terms of volume averages over the microscale RVE, i.e.

for elastic stiffness and compliance

〈σij〉 = Leff
ijkl〈εkl〉 (2.56a)

〈εij〉 = M eff
ijkl〈σkl〉 (2.56b)

and for thermal conductivity and resistivity

〈qi〉 = keff
ij 〈Hj〉 (2.57a)

〈Hi〉 = ξeff
ij 〈qj〉 (2.57b)

17For example the scattering behaviors of phonons and electrons can be different.
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It is further noted that, for composites containing materials with linear constitutive

response18, the effective properties are independent of the macroscale boundary condi-

tions and geometry, i.e. the effective properties are not dependent on the variation of

the macroscale stresses or displacements. As such, the focus in determining effective

properties can be placed solely on the microscale RVE.

Within the microscale RVE, subsets of volume, VJ of the total RVE volume,

V , corresponding to the separate phases identified in the RVE are used to define a

volume fraction for that phase as

cJ ≡ VJ
V

(2.58)

such that for N phases

1 =

N∑
J=1

cJ (2.59)

An explicit definition for what constitutes a phase within the RVE will be provided

shortly. For the present discussion, the simplest assumption is made wherein each

inhomogeneity in the RVE and the matrix in which the inhomogeneities are embedded

are all considered to be separate phases. Thus, the volume averages of the stress and

strain and the heat flux and heat intensity in the RVE can be expressed in terms of

the volume averages of these quantities in each phase by

〈σij〉 =
1

V

[
N∑
J=1

VJ
VJ

∫
VJ

σJij dV

]
(2.60a)

〈εij〉 =
1

V

[
N∑
J=1

VJ
VJ

∫
VJ

εJij dV

]
(2.60b)

〈qi〉 =
1

V

[
N∑
J=1

VJ
VJ

∫
VJ

qJi dV

]
(2.60c)

18It is also noted that it is assumed that there is no damage evolution at the
microscale.
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〈Hi〉 =
1

V

[
N∑
J=1

VJ
VJ

∫
VJ

HJ
i dV

]
(2.60d)

which can be written as

〈σij〉 =

N∑
J=1

cJ〈σJij〉 (2.61a)

〈εij〉 =

N∑
J=1

cJ〈εJij〉 (2.61b)

〈qi〉 =
N∑
J=1

cJ〈qJi 〉 (2.61c)

〈Hi〉 =
N∑
J=1

cJ〈HJ
i 〉 (2.61d)

where the superscript J denotes value of the quantity within the J th phase. Applying

the constitutive relations in Eqns. 2.8 and 2.9 and in 2.47 and 2.48, the volume

averages of these quantities in the RVE given in Eqn. 2.61 can be written as

〈σij〉 =
N∑
J=1

cJ〈LJijklεJkl〉 (2.62a)

〈εij〉 =

N∑
J=1

cJ〈MJ
ijklσ

J
kl〉 (2.62b)

〈qij〉 =

N∑
J=1

cJ〈kJijHJ
j 〉 (2.62c)

〈Hi〉 =

N∑
J=1

cJ〈ξJijqJj 〉 (2.62d)

Assuming each phase is homogeneous, these volume averaged can further be written

as

〈σij〉 =
N∑
J=1

cJL
J
ijkl〈εJkl〉 (2.63a)

〈εij〉 =
N∑
J=1

cJM
J
ijkl〈σJij〉 (2.63b)
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〈qi〉 =
N∑
J=1

cJk
J
ij〈HJ

j 〉 (2.63c)

〈Hi〉 =
N∑
J=1

cJξ
J
ij〈qJj 〉 (2.63d)

The concentration tensor is now defined as the tensor that transforms the average

quantity (stress, strain, heat flux, and heat intensity) into a phase averaged quantity,

i.e.

〈σJij〉 = BJ
ijkl〈σkl〉 (2.64a)

〈εJij〉 = AJijkl〈εij〉 (2.64b)

〈qJi 〉 = BJ
ij〈qj〉 (2.64c)

〈Hi〉 = AJij〈Hj〉 (2.64d)

where in indicial notation it is clear that the concentration tensors in the context of

elasticity are fourth order tensors where as in the context of heat conduction, they

are second order tensors. It is also of interest to note that from Eqn. 2.64 and the

definition of the volume average quantities in Eqn. 2.61 one can, for example, write

〈εij〉 =

N∑
J=1

cJA
J
ijkl 〈εkl〉 (2.65)

so that the following useful identities, known as the consistency conditions, are ob-

tained as

Iijkl =
N∑
J=1

cJA
J
ijkl (2.66a)

Iijkl =
N∑
J=1

cJB
J
ijkl (2.66b)

Iij =
N∑
J=1

cJA
J
ij (2.66c)
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Iij =
N∑
J=1

cJB
J
ij (2.66d)

where Iijkl and Iij are the fourth and second order identity tensors, respectively.

Substituting the definitions of the concentration tensors in Eqns. 2.64 into Eqns. 2.63,

one can obtain

〈σij〉 =
N∑
J=1

cJL
J
ijklA

J
klmn〈εmn〉 (2.67a)

〈εij〉 =
N∑
J=1

cJM
J
ijklB

J
klmn〈σmn〉 (2.67b)

〈qi〉 =

N∑
J=1

cJk
J
ijA

J
jm〈Hm〉 (2.67c)

〈Hi〉 =

N∑
J=1

cJξ
J
ijB

J
jm〈qm〉 (2.67d)

Therefore, from the definitions of the effective properties in Eqns. 2.56 and 2.57, it is

observed from Eqn. 2.67 that the effective properties can be obtained as

Leff
ijmn =

N∑
J=1

cJL
J
ijklA

J
klmn (2.68a)

M eff
ijmn =

N∑
J=1

cJM
J
ijklB

J
klmn (2.68b)

keff
im =

N∑
J=1

cJk
J
ijA

J
jm (2.68c)

ξeff
im =

N∑
J=1

cJξ
J
ijB

J
jm (2.68d)

In light of the consistency conditions in Eqn. 2.66, one can choose to rewrite

Eqns. 2.68 without using one of the concentration tensors. Assuming one wants to

discriminate against the matrix phase (phase N), one can rewrite the consistency
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conditions as

cNA
N
ijkl = Iijkl −

N−1∑
J=1

cJA
J
ijkl (2.69a)

cNB
N
ijkl = Iijkl −

N−1∑
J=1

cJB
J
ijkl (2.69b)

cNA
N
ij = Iij −

N−1∑
J=1

cJA
J
ij (2.69c)

cNB
N
ij = Iij −

N−1∑
J=1

cJB
J
ij (2.69d)

Substituting Eqns. 2.69 into Eqns. 2.68, e.g.

Leff
ijmn =

cN
cN
LNijkl

(
Iklmn −

N−1∑
J=1

cJA
J
klmn

)
+

N−1∑
J=1

cJL
J
ijklA

J
klmn (2.70)

the effective properties can be written as

Leff
ijmn = LNijmn +

N−1∑
J=1

cJ(L
J
ijkl − LNijkl)A

J
klmn (2.71a)

M eff
ijmn = MN

ijmn +

N−1∑
J=1

cJ(M
J
ijkl −MN

ijkl)B
J
klmn (2.71b)

keff
im = kNim +

N−1∑
J=1

cJ(k
J
ij − kNij )A

J
jm (2.71c)

ξeff
im = ξNim +

N−1∑
J=1

cJ(ξ
J
ij − ξNij )B

J
jm (2.71d)

From the effective properties as expressed in Eqns. 2.71 one can see that, for a

given RVE, inhomogeneities having the same material properties and concentration

tensors can be considered a single phase, so that their individual volumes combine

in determining the volume fraction of that phase. Whether or not a set of inho-

mogeneities in the RVE constitutes a single phase is therefore influenced by factors

such as the shapes of the inhomogeneities, relative geometric orientation of the in-
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homogeneities within the RVE, and orientation of the material symmetry within the

inhomogeneities, among others. For example, for an RVE consisting of well-dispersed

spheres with the same isotropic material properties (though perhaps of differing radii),

the spheres would constitute a single phase. If however, these spheres had the same

non-isotropic material property, then each distinct orientation of the material sym-

metry relative to the RVE coordinate system would constitute a separate phase. As

another example, for an RVE consisting of well-dispersed self-similar ellipsoids with

isotropic material properties, the ellipsoids can be considered a single phase if the

ellipsoids are all aligned, or a separate phase for each orientation if the ellipsoids have

different orientations relative to the RVE coordinate system. In the first example,

both the material properties and concentration tensors are noted to differ between

the two cases. In the second example, only the concentration tensor differs between

the two cases. As the material properties for all of the phases are given, the emphasis

is then on the determination of the concentration tensor for each phase.

In order to sufficiently represent all of the salient features of the microstructure,

an RVE may contain a large number inhomogeneities. In some cases, a solution to the

microscale RVE boundary value problem may be obtainable using periodic boundary

conditions. In such cases, the effective properties are able to be determined through

direct implementation of the multiple scale expansion theory, typically in a finite ele-

ment model, and there is no need to determine concentration tensors. In other cases,

for example when an RVE becomes too computationally intensive, it is common prac-

tice to take advantage of the grouping of inhomogeneities into phases and use either

closed form solutions or approximate solutions (some of which may also involve fi-

nite element modeling) to approximate the concentration tensors for each phase for

use in Eqn. 2.71. These approximations consider individual inhomogeneities (or even

in small collections of inhomogeneities as in bundles or clusters) in determining the
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concentration tensor(s) for a given phase, where the focus of the approximation is on

how to account for the interactions of the individual inhomogeneities with all other

inhomogeneities within the RVE. Three such approximations are the self-consistent

method, the Mori-Tanaka method, an the generalized self-consistent method shown

schematically in Figure 7 as applied towards determining the effective elastic proper-

ties.

In the self-consistent method [130, 206], the J th inhomogeneity is embedded

in an infinite medium19 having the same material properties as the effective prop-

erties that are sought for the microscale RVE, e.g. Leff
ijkl, and subject to far field

homogeneous displacements or tractions equivalent to those identified for the mi-

croscale RVE. As the concentration tensor used to calculate the effective properties

will therefore be a function of those same effective properties, Eqns. 2.71 becomes

nonlinear in the self-consistent approximation. Interactions are therefore taken into

account in the self-consistent method in the solution of the nonlinear equations as a

result of the consistency conditions (Eqn. 2.66). In the Mori-Tanaka approximation

[127, 128, 207], the J th inhomogeneity is embedded in an infinite medium having the

same material properties as the matrix, e.g. LNijkl. In this case, the far field homo-

geneous displacements or tractions are taken as equivalent to those identified for the

microscale RVE plus a perturbation (denoted by the tilde in Fig. 7(b)) which accounts

for interactions in the application of the consistency conditions. In the generalized

self-consistent [159, 178, 186], the J th inhomogeneity is embedded in a small amount

of matrix material20, and this ensemble is then embedded in the effective medium.

19Approaches using closed form solutions often consider the inhomogeneity as em-
bedded in an infinite medium. Computational approaches use finite sized compu-
tational domains with various criteria to identify how large is large enough to be
effectively infinite.

20The question naturally arises as to how much matrix is needed in constructing
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(a) Self-Consistent Approximation

(b) Mori-Tanaka Approximation

(c) Generalized Self-Consistent Approximation

Fig. 7. Approximations applied in determining phase concentration tensors by consid-

ering inhomogeneities individually in an infinite medium.
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Thus, the far field displacements or tractions applied are equivalent to those applied

in the self-consistent approximation.

Each of these three approximations can be carried out using closed form or

approximate computational techniques. For complicated irregular shapes or distribu-

tions of inhomogeneities where detailed interactions are important such as in clusters

or bundles, computational approaches may be preferable.21 However, some shapes

have convenient closed form solutions (e.g. homogeneous ellipsoidal shapes or het-

erogeneous shapes of special geometries like spheres and circular cylinders in regards

to coated inhomogeneities) which can be taken advantage of in determining concen-

tration tensors. For ellipsoidal inhomogeneities, the self-consistent and Mori-Tanaka

approaches are readily applied through the use of Eshelby’s equivalence principle22

[131] making use of the Eshelby solution [131] for an ellipsoidal inclusion in an infinite

matrix.

C. Closed Form Methods for Concentration Tensor Approximation

1. The Self-Consistent Method

The following equations provide a summary of the closed form approach to approx-

imating the concentration tensors using the self-consistent method for determining

both the effective elastic properties and effective conductivities. The summary follows

the original derivation provided by Hill [130].

the generalized self-consistent model. This will be discussed in greater detail in the
subsequent sections.

21It is noted that from a computational stand point, the Mori-Tanaka provides a
more convenient implementation as compared to the self-consistent and generalized
self-consistent approaches which are inherently nonlinear.

22This is sometimes referred to as the Eshelby equivalent inclusion method.
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a. The Self-Consistent Method for Elastic Properties

To calculate the strain concentration tensor (or the stress concentration tensor) for

homogeneous ellipsoidal inhomogeneities in a linear elastic matrix, one can take ad-

vantage of Eshelby’s equivalence principle and the Eshelby solution by individually

embedding each inhomogeneity into the effective medium subject to far field displace-

ments or tractions consistent with those applied to the boundary of the microscale

RVE, which are reflective of the average macroscale strain/strain (see Fig. 8).

Consider the J th inhomogeneity embedded in an infinite body whose material

properties are those of the unknown effective material (as shown in Figure 8), where

the applied homogeneous displacement at infinity is reflective of the homogeneous

displacement field applied to the boundary of the microscale RVE, i.e. the uniform

strain in the applied displacement is εAij = ε̄ij where it is recalled that ε̄ij = 〈εij〉.
From the equivalence principle, the stress in the J th inhomogeneity is related

to the stress in an inclusion within the embedding material which is subject to an

unknown eigenstrain, and is therefore given as

σJij = LJijkl(ε
C
kl + εAkl) = Leff

ijkl(ε
C
kl + εAkl − εTkl) (2.72)

where the strain in the inhomogeneity is εJkl = εCkl + εAkl. Solving Eqn. 2.72 for the

unknown eigenstrain for the J th inhomogeneity, εTkl, one obtains

LJijklε
J
kl = Leff

ijklε
J
kl − Leff

ijklε
T
kl (2.73)

so that

Leff
ijklε

T
kl = (Leff

ijkl − LJijkl)ε
J
kl (2.74)

and thus one obtains the eigenstrain as

εTij = M eff
ijkl(L

eff
klmn − LJklmn)ε

J
mn (2.75)
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Fig. 8. Self-Consistent Approximation for Elastic Properties: the inhomogeneity is em-

bedded in an infinite body whose material properties are those of the unknown

effective material with far field homogeneous displacement applied consistent

with the average strain in the RVE.
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Since the strain in the inhomogeneity can be expressed as

εJkl = εCkl + ε̄kl (2.76)

and using the Eshelby solution for homogeneous ellipsoids23, i.e. εCij = Sijklε
T
kl, the

strain in the inhomogeneity becomes

εJij = Sijklε
T
kl + ε̄ij (2.77)

so that upon substitution of Eqn. 2.75 into Eqn. 2.77 one obtains

εJij = SijklM
eff
klmn(L

eff
mnpq − LJmnpq)ε

J
pq + ε̄ij (2.78)

which leads to

[Iijpq + SijklM
eff
klmn(L

J
mnpq − Leff

mnpq)]ε
J
pq = ε̄ij (2.79)

Thus one may write the strain in the inhomogeneity in terms of the average strain in

the RVE as

εJpq = [Iijpq + SijklM
eff
klmn(L

J
mnpq − Leff

mnpq)]
−1ε̄ij (2.80)

One can define a tensor SCT Jijkl relating the strain in the J th inhomogeneity to

the uniform strain in the far field applied displacement, i.e. εAij which in this case is

the average strain in the RVE, such that

εJpq = SCT Jpqij ε̄ij (2.81)

Therefore, from Eqn. 2.80, one can identify the tensor SCT Jpqij as being given by

SCT Jpqij = [Iijpq + SijklM
eff
klmn(L

J
mnpq − Leff

mnpq)]
−1 (2.82)

23Now the strain in the inhomogeneity becomes uniform. Also it is noted that the
Eshelby tensor, Sijkl, depends on the shape of the inclusion and the material properties
of the material in which the inclusion is embedded, here the effective material.
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Recalling the definition of the strain concentration tensor from Eqn. 2.64b, and noting

that the strain in the ellipsoidal inhomogeneity is uniform, the concentration tensor

is therefore identified in the self-consistent method from Eqn. 2.81 as

SCAJpqij = SCT Jpqij (2.83)

The stress concentration tensor for the self-consistent method is obtained by

the application of constitutive relations to Eqn. 2.81 so that the stress in the J th

inhomogeneity is given by

σJij = LJijklε
J
kl = LJijkl

SCT Jklmnε̄mn (2.84)

However, from the definition of the effective compliance in Eqn. 2.56b, one can write

ε̄mn = M eff
mnpqσ̄pq (2.85)

so that the stress in the J th inhomogeneity becomes

σJij = LJijkl
SCT JklmnM

eff
mnpqσ̄pq (2.86)

One can define a tensor SCP J
ijkl relating the stress in the J th inhomogeneity to the

uniform stress in the far field applied traction, i.e. σAij which in this case is the average

stress in the RVE, such that

σJij = SCP J
ijpqσ̄pq (2.87)

so therefore from Eqn. 2.86 one obtains

SCP J
ijpq = LJijkl

SCT JklmnM
eff
mnpq (2.88)

Recalling the definition of the stress concentration tensor from Eqn. 2.64b, and noting

that the stress in the ellipsoidal inhomogeneity is uniform, the concentration tensor
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is therefore identified in the self-consistent method from Eqn. 2.87 as

SCBJ
ijpq = SCP J

ijpq (2.89)

It is noted that self-similar ellipsoidal inhomogeneities, i.e. ellipsoidal inhomo-

geneities with the same material properties, with proportional geometry, and with

the same geometrical and material symmetry axes, will have the same concentration

tensor.

b. The Self-Consistent Method for Thermal Conductivities

To calculate the heat intensity concentration tensor (or the heat flux concentration

tensor) for homogeneous ellipsoidal inhomogeneities in a matrix material with linear

constitutive behavior, one can apply the thermal equivalent to Eshelby’s equivalence

principle by individually embedding each inhomogeneity into the effective medium

subject to far field temperature or heat flux consistent with those applied to the

boundary of the microscale RVE, which are reflective of the average macroscale heat

flux/intensity (see Fig. 9).

Consider the J th inhomogeneity embedded in an infinite body whose material

properties are those of the unknown effective material (as shown in Figure 9), where

the applied homogeneous temperature at infinity is reflective of the homogeneous tem-

perature applied to the boundary of the microscale RVE boundary, i.e. the uniform

intensity in the applied temperature is HA
i = H̄i where it is recalled that H̄i = 〈Hi〉.

Further, it is noted that, in an analogy with the total and elastic strains, the to-

tal intensity is decomposed into two parts, the intensity from the thermal gradient

governed by Fourier’s law and the intensity which results from an ”eigen thermal

gradient”[178], i.e. HTotal
i = HFourier

i +HT
i where HT

i is the ”eigen thermal gradient”.
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Fig. 9. Self-Consistent Approximation for Thermal Properties: the inhomogeneity is

embedded in an infinite body whose material properties are those of the un-

known effective material with far field homogeneous temperature applied con-

sistent with the average heat intensity in the RVE.
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From the equivalence principle, the heat flux in the J th inhomogeneity is related

to the heat flux in an inclusion within the embedding material which is subject to an

unknown eigen thermal gradient, and is therefore given as

qJi = kJij(H
C
j +HA

j ) = keff
ij (HC

j +HA
j −HT

j ) (2.90)

where the thermal gradient in the inhomogeneity isHJ
j = HC

j +HA
j . Solving Eqn. 2.90

for the unknown eigen thermal gradient for the J th inhomogeneity, HT
j , one obtains

kJijH
J
j = keff

ij H
J
j − keff

ij H
T
j (2.91)

so that

keff
ij H

T
j = (keff

ij − kJij)H
J
j (2.92)

and thus one obtains the eigen thermal gradient as

HT
i = ξeff

ij (keff
jk − kJjk)H

J
k (2.93)

Since the thermal gradient in the inhomogeneity can be written as

HJ
k = HC

k + H̄k (2.94)

and using the thermal equivalent to the Eshelby solution24, i.e. HC
i = SijH

T
j , the

thermal gradient in the inhomogeneity becomes

HJ
i = SijH

T
j + H̄i (2.95)

so that upon substitution of the eigen thermal gradient from Eqn. 2.93 into Eqn. 2.95

24From the Eshelby solution it is observed that the thermal gradient in the ellip-
soidal inhomogeneity is uniform. It is also noted that the Eshelby tensor, Sij , depends
on the shape of the inclusion and the material properties of the material in which the
inclusion is embedded, here the effective material.
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one obtains

HJ
i = Sijξ

eff
jk (keff

kl − kJkl)H
J
l + H̄i (2.96)

which leads to

[Iil + Sijξ
eff
jk (kJkl − keff

kl )]H
J
l = H̄i (2.97)

Thus, one may write the thermal gradient in the inhomogeneity in terms of the average

thermal gradient in the RVE as

HJ
l = [Iil + Sijξ

eff
jk (kJkl − keff

kl )]
−1H̄i (2.98)

One can define a tensor SCT Jij relating the intensity in the J th inhomogeneity to

the uniform intensity in the far field applied temperature, i.e. HA
i which in this case

is the average intensity of the composite, such that

HJ
l = SCT Jli H̄i (2.99)

Therefore from Eqn. 2.98, one can identify the tensor SCT Jli as being given by

SCT Jli = [Iil + Sijξ
eff
jk (kJkl − keff

kl )]
−1 (2.100)

Recalling the definition of the intensity concentration tensor in Eqn. 2.64d, and noting

that the heat intensity in the ellipsoidal inhomogeneity is uniform, the concentration

tensor is therefore identified in the self-consistent method from Eqn. 2.99 as

SCAJli = SCT Jli (2.101)

The flux concentration tensor for the self-consistent method is obtained by the

application of the constitutive relations to Eqn. 2.99 so that the heat flux in the J th

inhomogeneity is given by

qJi = kJijH
J
j = kJij

SCT JjkH̄k (2.102)
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However, from the definition of the effective resistivity in Eqn. 2.57b, one can write

H̄k = ξeff
kl q̄l (2.103)

so that substituting Eqn. 2.103 into Eqn. 2.102 the heat flux in the J th inhomogeneity

becomes

qJi = kJij
SCT Jjkξ

eff
kl q̄l (2.104)

One can define a tensor SCP J
ij relating the heat flux in the J th inhomogeneity to the

uniform heat flux in the far field applied heat flux, i.e. qAi which in this case is the

average heat flux in the RVE, such that

qJi = SCP J
ij q̄j (2.105)

so therefore from Eqn. 2.104 one obtains

SCP J
il = kJij

SCT Jjkξ
eff
kl (2.106)

Recalling the definition of the flux concentration tensor from Eqn. 2.64c, and noting

that the heat flux in the ellipsoidal inhomogeneity is uniform, the concentration tensor

is therefore identified in the self-consistent method from Eqn. 2.105 as

SCBJ
il = SCP J

il (2.107)

2. The Mori-Tanaka Method

The following equations provide a summary of the analytic approach to approximating

the concentration tensors using the Mori-Tanaka method for determining both the

effective elastic properties and effective conductivities. The summary follows the

original derivation provided by Mori and Tanaka[127] and the subsequent derivation

by Benveniste[128].
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a. The Mori-Tanaka Method for Mechanical Properties

To calculate the strain concentration tensor (or the stress concentration tensor) for

homogeneous ellipsoidal inhomogeneities in a linear elastic matrix, one can take ad-

vantage of Eshelby’s equivalence principle and the Eshelby solution by individually

embedding each inhomogeneity into the matrix material subject to far field displace-

ments or tractions consistent with those applied to the boundary of the microscale

RVE, which are reflective of the average macroscale stress/strain, plus some pertur-

bation which accounts for interactions (see Fig. 10).

Consider the J th inhomogeneity embedded in an infinite body whose material

properties are those of the matrix material (as shown in Figure 10), where the applied

homogeneous displacement at infinity is reflective of the homogeneous displacement

field applied to the boundary of the microscale RVE plus an unknown perturbation

which accounts for interactions amongst the inhomogeneities, i.e. the uniform strain

in the applied displacement is εAij = ε̄ij + ε̃ij where it is recalled that ε̄ij = 〈εij〉 and

noted that the perturbation strain is defined as ε̃ij ≡ 1
VN

∫
VN
εTotal
ij − ε̄ij dV .

From the equivalence principle, the stress in the J th inhomogeneity is related

to the stress in an inclusion within the embedding material which is subject to an

unknown eigenstrain, and is therefore given as

σJij = LJijkl(ε
C
kl + εAkl) = LNijkl(ε

C
kl + εAkl − εTkl) (2.108)

where the strain in the inhomogeneity is εJkl = εCkl + εAkl. Solving Eqn. 2.108 for the

unknown eigenstrain for the J th inhomogeneity, εTkl, one obtains

LJijklε
J
kl = LNijklε

J
kl − LNijklε

T
kl (2.109)
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Fig. 10. Mori-Tanaka Approximation for Elastic Properties: the inhomogeneity is em-

bedded in an infinite body whose material properties are those of the matrix

material with far field homogeneous displacement applied which is consistent

with the average strain in the RVE plus a perturbation.
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so that

LNijklε
T
kl = (LNijkl − LJijkl)ε

J
kl (2.110)

thus one obtains the eigenstrain as

εTij = MN
ijkl(L

N
klmn − LJklmn)ε

J
mn (2.111)

Since the strain in the inhomogeneity can be expressed as

εJkl = εCkl + ε̄kl + ε̃kl (2.112)

and using the Eshelby solution for homogeneous ellipsoids25, i.e. εCij = Sijklε
T
kl, the

strain in the inhomogeneity becomes

εJij = Sijklε
T
kl + ε̄ij + ε̃ij (2.113)

so that upon substitution of Eqn. 2.111 into Eqn. 2.113 one obtains

εJij = SijklM
N
klmn(L

N
mnpq − LJmnpq)ε

J
pq + ε̄ij + ε̃ij (2.114)

which leads to

[Iijpq + SijklM
N
klmn(L

J
mnpq − LNmnpq)]ε

J
pq = (ε̄ij + ε̃ij) (2.115)

Thus one may write the strain in the inhomogeneity in terms of the of the uniform

strain in the applied far field displacement as

εJpq = [Iijpq + SijklM
N
klmn(L

J
mnpq − LNmnpq)]

−1(ε̄ij + ε̃ij) (2.116)

One can define a tensor, MTT Jijkl, relating the strain in the J th inhomogeneity

25Now the strain in the inhomogeneity becomes uniform. Also it is noted that the
Eshelby tensor, Sijkl, depends on the shape of the inclusion and the material properties
of the material in which the inclusion is embedded, here the matrix material.
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to the uniform strain in the far field applied displacement, i.e. εAij which in this case

is the average strain in the RVE plus a perturbation, such that

εJpq = MTT Jpqijε
A
ij = MTT Jpqij(ε̄ij + ε̃ij) (2.117)

Therefore, from Eqn. 2.116, one can identify the tensor MTT Jpqij as being given by26

MTT Jpqij = [Iijpq + SijklM
N
klmn(L

J
mnpq − LNmnpq)]

−1 (2.118)

Though the strain in the ellipsoidal inhomogeneity in the Mori-Tanaka method is

again noted to be uniform, in comparing Eqn. 2.117 with the definition of the strain

concentration tensor in Eqn. 2.64b it is observed that, unlike the self-consistent

method, MTT Jpqij is not equivalent to the strain concentration tensor, i.e. MTT Jpqij �=
MTAJpqij.

In order to identify the relationship between MTT Jpqij and the strain concentration

tensor, it is necessary to identify the uniform matrix perturbation strain in terms

of the average strain in the RVE. Recalling that ε̄ij = 〈εij〉, and that the strain

in the matrix is taken as the average strain in the RVE plus a perturbation, i.e.

〈εNij 〉 = ε̄ij + ε̃ij, Eqn. 2.61b can be written as

〈εij〉 = ε̄ij = cN (ε̄ij + ε̃ij) +
N−1∑
J=1

cJ
MTT Jijpq(ε̄pq + ε̃pq) (2.119)

which can be simplified as

ε̄ij =

[
cNIijkl +

N−1∑
J=1

cJ
MTT Jijkl

]
(ε̄kl + ε̃kl) (2.120)

Solving Eqn. 2.120 for the perturbation strain, which is equivalent to enforcing the

26Note that applying Eqn. 2.118 to the matrix phase, we observe that MTTNijkl is
identity by definition in the Mori-Tanaka method.
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consistency condition, one obtains

ε̃kl =

⎧⎨
⎩
[
cNIijkl +

N−1∑
J=1

cJ
MTT Jijkl

]−1

− Iklij

⎫⎬
⎭ ε̄ij (2.121)

Substitution of Eqn. 2.121 into Eqn. 2.117 allows one to express the average strain in

the J th inhomogeneity in terms of the average strain in the RVE as

εJij = MTT Jijkl

[
cNImnkl +

N−1∑
J=1

cJ
MTT Jmnkl

]−1

ε̄mn (2.122)

Therefore from the definition of the strain concentration tensor in Eqn. 2.64b, one

observes that the concentration tensor is identified in the Mori-Tanaka method from

Eqn. 2.122 as27

MTAJijmn = MTT Jijkl

[
cNImnkl +

N−1∑
J=1

cJ
MTT Jmnkl

]−1

(2.123)

The stress concentration tensor for the Mori-Tanaka method is obtained by ap-

plication of constitutive relations to Eqn. 2.117 so that the stress in the J th inhomo-

geneity is given by

σJij = LJijklε
J
kl = LJijkl

MTT Jklmn(ε̄mn + ε̃mn) (2.124)

However, noting that (ε̄mn + ε̃mn) denotes strain in the matrix, with the substitution

of the constitutive relation for the compliance of the matrix into Eqn. 2.124 one can

write the stress in the J th inhomogeneity as

σJij = LJijkl
MTT JklmnM

N
mnpq(σ̄pq + σ̃pq) (2.125)

One can define a tensor, MTP J
ijkl, relating the stress in the J th inhomogeneity to

27Note that applying Eqn. 2.123 to the matrix phase, we observe that MTANijkl is
identity by definition in the Mori-Tanaka method.
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the uniform stress in the far field applied traction, i.e. σAij which in this case is the

average stress in the RVE plus a perturbation, such that

σJij = MTP J
ijklσ

A
kl = MTP J

ijkl(σ̄kl + σ̃kl) (2.126)

so therefore from Eqn. 2.125 one observes that

MTP J
ijpq = LJijkl

MTT JklmnM
N
mnpq (2.127)

In comparing Eqn. 2.126 with the definition of the stress concentration tensor in

Eqn. 2.64a it is again observed that MTP J
ijkl is not equivalent to the stress concen-

tration tensor, i.e. MTP J
ijkl �= MTBJ

ijkl. Again, in order to identify the relationship

between MTP J
ijkl and the stress concentration tensor, it is necessary to identify the

uniform matrix perturbation stress in terms of the average stress in the RVE. Recall-

ing that σ̄ij = 〈σij〉, and that the stress in the matrix is taken as the average stress

in the RVE plus a perturbation, i.e. 〈σNij 〉 = σ̄ij + σ̃ij, Eqn. 2.61a can be written as

〈σij〉 = σ̄ij = cN(σ̄ij + σ̃ij) +

N−1∑
J=1

cJ
MTP J

ijpq(σ̄pq + σ̃pq) (2.128)

which can be simplified as

σ̄ij =

[
cNIijkl +

N−1∑
J=1

cJ
MTP J

ijkl

]
(σ̄kl + σ̃kl) (2.129)

Solving Eqn. 2.129 for the perturbation stress, which is equivalent to enforcing the

consistency condition, one obtains

σ̃kl =

⎧⎨
⎩
[
cNIijkl +

N−1∑
J=1

cJ
MTP J

ijkl

]−1

− Iklij

⎫⎬
⎭ σ̄ij (2.130)

Substitution of Eqn. 2.130 into Eqn. 2.126 allows one to express the average stress in
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the J th inhomogeneity in terms of the average stress in the RVE as

σJij = MTP J
ijkl

[
cNImnkl +

N−1∑
J=1

cJ
MTP J

mnkl

]−1

σ̄mn (2.131)

Therefore from the definition of the stress concentration tensor in Eqn. 2.64a, one

observes that the concentration tensor is identified in the Mori-Tanaka method from

Eqn. 2.131 as28

MTBJ
ijmn = MTP J

ijkl

[
cNImnkl +

N−1∑
J=1

cJ
MTP J

mnkl

]−1

(2.132)

b. The Mori-Tanaka Method for Thermal Conductivities

To calculate the heat intensity concentration tensor (or the heat flux concentration

tensor) for homogeneous ellipsoidal inhomogeneities in a matrix, one can apply the

thermal equivalent to Eshelby’s equivalence principle by individually embedding each

inhomogeneity into the matrix material subject to far field temperature or heat flux

consistent with those applied to the boundary of the microscale RVE, which are

reflective of the average macroscale heat flux/intensity, plus some perturbation which

accounts for interactions (see Fig. 11).

Consider the J th inhomogeneity embedded in an infinite body whose material

properties are those of the matrix material (as shown in Figure 11), where the ap-

plied homogeneous temperature at infinity is reflective the homogeneous temperature

applied at the boundary of the microscale RVE plus an unknown perturbation which

accounts for interactions amongst the inhomogeneities, i.e. the uniform intensity in

the applied temperature isHA
i = H̄i+H̃i where it is recalled that H̄i = 〈Hi〉 and noted

that the perturbation intensity is defined as H̃i ≡ 1
VN

∫
VN
HTotal
i − H̄i dV . Further, it

28Note that applying Eqn. 2.132 to the matrix phase, one observes that MTBN
ijkl is

identity by definition in the Mori-Tanaka method.
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Fig. 11. Mori-Tanaka Approximation for Thermal Properties: the inhomogeneity is

embedded in an infinite body whose material properties are those of the matrix

material with far field homogeneous temperature applied which is consistent

with the average heat intensity in the RVE plus a perturbation.
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is noted again that the total intensity can be decomposed into two parts consisting of

the intensity from the thermal gradient governed by Fourier’s law and the intensity

which results from the eigen thermal gradient.

From the equivalence principle, the heat flux in the J th inhomogeneity is realted

to the heat flux in an inclusion within the embedding material which is subject to an

unknown eigen thermal gradient, and is therefore given as

qJi = kJij(H
C
j +HA

j ) = kNij (H
C
j +HA

j −HT
j ) (2.133)

where the thermal gradient in the inhomogeneity is HJ
j = HC

j + HA
j . Solving

Eqn. 2.133 for the unknown eigen thermal gradient for the J th inhomogeneity, HT
j ,

one obtains

kJijH
J
j = kNijH

J
j − kNijH

T
j (2.134)

so that

kNijH
T
j = (kNij − kJij)H

J
j (2.135)

and thus one obtains the eigen thermal gradient as

HT
i = ξNij (k

N
jk − kJjk)H

J
k (2.136)

Since the thermal gradient in the inhomogeneity can be written as

HJ
k = HC

k + H̄k + H̃k (2.137)

and using the thermal equivalent to the Eshelby solution29, i.e. HC
i = SijH

T
j , the

29From the Eshelby solution it is observed that the thermal gradient in the ellip-
soidal inhomogeneity is uniform. It is also noted that the Eshelby tensor, Sij , depends
on the shape of the inclusion and the material properties of the material in which the
inclusion is embedded, here the matrix material.
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thermal gradient in the inhomogeneity becomes

HJ
i = SijH

T
j + H̄i + H̃i (2.138)

so that upon substitution of the eigen thermal gradient from Eqn. 2.136 into Eqn. 2.138

one obtains

HJ
i = Sijξ

N
jk(k

N
kl − kJkl)H

J
l + H̄i + H̃i (2.139)

which leads to

[Iil + Sijξ
N
jk(k

J
kl − kNkl)]H

J
l = (H̄i + H̃i) (2.140)

Thus, one may write the thermal gradient in the inhomogeneity in terms of the

uniform intensity in the applied far field temperature as

HJ
l = [Iil + Sijξ

N
jk(k

J
kl − kNkl)]

−1(H̄i + H̃i) (2.141)

One can define a tensor, MTT Jij , relating the thermal gradient in the J th inho-

mogeneity to the uniform thermal gradient in the applied far field temperature, i.e.

HA
i which in this case the average thermal gradient in the RVE plus a perturbation,

such that

HJ
l = MTT JliH

A
i = MTT Jli (H̄i + H̃i) (2.142)

Therefore from Eqn. 2.141, one can identify the tensor MTT Jli as being given by

MTT Jli = [Iil + Sijξ
N
jk(k

J
kl − kNkl)]

−1 (2.143)

Though the intensity in the ellipsoidal inhomogeneity in the Mori-Tanaka method

is again noted to be uniform, in comparing Eqn. 2.142 with the definition of the

intensity concentration tensor in Eqn. 2.64d it is observed that, unlike the self-

consistent method, MTT Jij is not equivalent to the intensity concentration tensor,

i.e. MTT Jij �= MTAJij .
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In order to identify the relationship between MTT Jij and the intensity concentra-

tion tensor, it is necessary to identify the uniform matrix perturbation intensity in

terms of the average intensity in the RVE. Recalling that H̄i = 〈Hi〉, and that the in-

tensity in the matrix is taken as the average intensity in the RVE plus a perturbation,

i.e. 〈HN
i 〉 = H̄i + H̃i, Eqn. 2.61d can be written as

〈Hi〉 = H̄i = cN(H̄i + H̃i) +

N−1∑
J=1

cJ
MTT Jij(H̄j + H̃j) (2.144)

which can be simplified as

H̄i =

[
cNIij +

N−1∑
J=1

cJ
MTT Jij

]
(H̄j + H̃j) (2.145)

Solving Eqn. 2.145 for the perturbation intensity, which is equivalent to enforcing the

consistency condition, one obtains

H̃j =

⎧⎨
⎩
[
cNIij +

N−1∑
J=1

cJ
MTT Jij

]−1

− Iji

⎫⎬
⎭ H̄i (2.146)

Substitution of Eqn. 2.146 into Eqn. 2.142 allows one to express the average intensity

in the J th inhomogeneity in terms of the average intensity in the RVE as

HJ
i = MTT Jij

[
cNIkj +

N−1∑
J=1

cJ
MTT Jkj

]−1

H̄k (2.147)

Therefore from the definition of the intensity concentration tensor in Eqn. 2.64d, one

observes that the concentration tensor is identified in the Mori-Tanaka method from

Eqn. 2.147 as30

MTAJij = MTT Jij

[
cNIkj +

N−1∑
J=1

cJ
MTT Jkj

]−1

(2.148)

The flux concentration tensor for the Mori-Tanaka method is obtained by appli-

30Note that applying Eqn. 2.148 to the matrix phase, we observe that MTANij is
identity by definition in the Mori-Tanaka method.
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cation of constitutive relations to Eqn. 2.142 so that the flux in the J th inhomogeneity

is given by

qJi = kJijH
J
j = kJij

MTT Jjk(H̄k + H̃k) (2.149)

However, noting that (H̄k+H̃k) denotes intensity in the matrix, with the substitution

of the constitutive relation for the resistivity of the matrix into Eqn. 2.149 one can

write the flux in the J th inhomogeneity as

qJi = kJij
MTT Jklξ

N
lm(q̄m + q̃m) (2.150)

One can define a tensor, MTP J
ij , relating the flux in the J th inhomogeneity to the

uniform flux in the far field applied flux, i.e. qAi which in this case is the average flux

in the RVE plus a perturbation, such that

qJi = MTP J
ijq

A
j = MTP J

ij(q̄j + q̃j) (2.151)

so therefore from Eqn. 2.150 one observes that

MTP J
il = kJij

MTT Jjkξ
N
kl (2.152)

In comparing Eqn. 2.151 with the definition of the stress concentration tensor in

Eqn. 2.64c it is again observed that MTP J
ij is not equivalent to the flux concentration

tensor, i.e. MTP J
ij �= MTBJ

ij . Again, in order to identify the relationship between

MTP J
ij and the flux concentration tensor, it is necessary to identify the uniform matrix

perturbation flux in terms of the average flux in the RVE. Recalling that q̄i = 〈qi〉, and

that the flux in the matrix is taken as the average flux in the RVE plus a perturbation,

i.e. 〈qNi 〉 = q̄i + q̃i, Eqn. 2.61c can be written as

〈qi〉 = q̄i = cN(q̄i + q̃i) +
N−1∑
J=1

cJ
MTP J

ij(q̄j + q̃j) (2.153)
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which can be simplified as

q̄i =

[
cNIij +

N−1∑
J=1

cJ
MTP J

ij

]
(q̄j + q̃j) (2.154)

Solving Eqn. 2.154 for the perturbation flux, which is equivalent to enforcing the

consistency condition, one obtains

q̃j =

⎧⎨
⎩
[
cNIij +

N−1∑
J=1

cJ
MTP J

ij

]−1

− Iji

⎫⎬
⎭ q̄i (2.155)

Substitution of Eqn. 2.155 into Eqn. 2.151 allows one to express the average flux in

the J th inhomogeneity in terms of the average flux in the RVE as

qJi = MTP J
ij

[
cNIkj +

N−1∑
J=1

cJ
MTP J

kj

]−1

q̄k (2.156)

Therefore from the definition of the flux concentration tensor in Eqn. 2.64c, one

observes that the concentration tensor is identified in the Mori-Tanaka method from

Eqn. 2.156 as31

MTBJ
ik = MTP J

ij

[
cNIkj +

N−1∑
J=1

cJ
MTP J

kj

]−1

(2.157)

3. The Generalized Self-Consistent Method: Using Composite Spheres or

Composite Cylinders

Both the self-consistent and Mori-Tanaka closed form approaches to approximating

concentration tensors provided in the previous sections made use of the Eshelby so-

lution in determining the field variables in the inhomogeneity, and thus are intended

for homogeneous ellipsoidal inhomogeneities. However, the generalized self-consistent

method, by imposing a matrix shell around the inhomogeneity in approximating the

31Note that applying Eqn. 2.157 to the matrix phase, one observes that MTBN
ij is

identity by definition in the Mori-Tanaka method.
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concentration tensor, precludes the direct use of the Eshelby solution as the inhomo-

geneity and the matrix shell combined constitute an inhomogeneous inhomogeneity32

within infinite effective material (see Figure 7(c)). Instead, in order to calculate

the strain concentration tensor (or the stress concentration tensor) for homogeneous

spheres or cylinders using the generalized self-consistent method, one can make use

of closed form solutions for composite spheres or composite cylinders by individually

embedding each inhomogeneity into the effective medium subject to far field displace-

ments or tractions consistent with those applied to the boundary of the microscale

RVE, which are reflective of the average macroscale strain/strain (see Fig. 12). The

details of determining the concentration tensor from the generalized self-consistent

composite cylinder solution will be given in Section E of Chapter III. Here it is simply

noted that, from the composite spheres and composite cylinders solutions, the stress

or strain states in the matrix shell and inhomogeneity can be determined, allowing for

direct volume averaging in the determination of the components of the concentration

tensor.

However, one question which immediately arises from the approximations in

Figure 12 is how much matrix to associate with the inhomogeneity in constructing

the composite sphere or cylinder assemblage. This amounts to identifying the volume

fraction of the inhomogeneity within the matrix shell used in the generalized self-

32In general, should one wish to consider inhomogeneous inhomogeneities such as
hollow and/or coated inhomogeneities, a different approach will be needed. One ap-
proach, referred to as the transfer matrix method [132, 133], has been applied wherein
auxiliary problems such as a composite sphere or composite cylinder solution are em-
ployed in a two-step process to estimate the applied stress in the Mori-Tanaka method,
and then to apply this stress to the composite cylinders assemblage in calculating the
effective properties. Another two step approach [161] uses the composite cylinders
method to first estimate the effective properties of the inhomogeneous inhomogeneity,
and then applies the Mori-Tanaka as described above on this effective cylinder.
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(a) Generalized Self-Consistent Composite Sphere Approxima-
tion

(b) Generalized Self-Consistent Composite Cylinder Approxi-
mation

Fig. 12. Generalized Self-Consistent Approximation: a composite sphere or composite

cylinder assemblage consisting of the inhomogeneity embedded in the matrix

and then the ensemble embedded in an infinite body whose material properties

are those of the effective material with far field homogeneous displacement (or

traction) applied which is consistent with the average strain (or stress) in the

RVE.
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consistent approximation, fJ , as

fJ =
VJ

V ∗
N + VJ

(2.158)

where V ∗
N is the volume of the matrix shell in the generalized self-consistent ap-

proximation and is not necessarily equal to the total volume of the matrix in the

microscale RVE, VN . As such, it is observed that as fJ → 1, the inhomogeneity is di-

rectly embedded in the effective material which is exactly the self-consistent method.

As fJ → 0, the inhomogeneity is embedded in a matrix shell of infinite thickness re-

turning the dilute approximation. Miloh and Benveniste [186] suggest taking fJ = cJ

where cJ is the volume fraction of the inhomogeneity in the microscale RVE. This

works well for the single type of inhomogeneity, but for multiple inhomogeneities, a

counter argument can be constructed based on the consistency condition where each

inhomogeneity is embedded in a matrix shell such that fJ = 1 − cN =
∑N−1

J=1 cJ .

For example, consider a composite consisting aligned, well-dispersed fibers all

with the same material properties embedded in a matrix material at a volume fraction

of fibers of 0.2 and therefore a matrix volume fraction of 0.8. Applying the generalized

self-consistent method to such a composite would naturally make use of a matrix shell

with a volume fraction of 0.8, i.e. f1 = c1 = 0.2, where it is noted that a tessellation

of the perfect hexagonal array representing such a dispersion would return a local

volume fraction of fiber in each Voronoi polygon of 0.2.

Next consider the case where one quarter of the fibers from the previous case

now have a different set of material properties. As such, the fiber volume fractions are

0.15 and 0.05, but the matrix volume fraction remains 0.8. If one were to apply the

fiber volume fractions in constructing the generalized self-consistent approximation,

i.e. taking f1 = c1 = 0.15 and f2 = c2 = 0.05, then each approximation would have

a different volume fraction of matrix shell, i.e. 0.85 and 0.95, respectively. However,
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the tessellation of such a dispersion would still yield local fiber volume fractions in

each Voronoi polygon of 0.2 as the dispersion geometry has not changed. Further,

if we consider the limit where the fiber properties approach one another, i.e. in the

limit as we return to the previous case, we would observe an inconsistency in that

some fibers were assigned more matrix than others, thereby changing the influence

of those fibers on the effective properties calculated where clearly they should have

equal influence.

If instead, we take a cue from the tessellation and impose consistency, that is to

say, if we take f1 = f2 = 1−0.15−0.05 = 0.8, then we see that whether all fibers have

the same properties or not, the amount of matrix shell provided is consistent with the

dispersion of the fibers. This approach to assigning fJ will be adopted throughout

the remainder of this work.

D. Orientational Averaging Methods

In order to consider composites containing inhomogeneities at distinct orientations (be

they inhomogeneities with the same shape and properties or not), it is convenient to

consider each orientation of a given inhomogeneity as a separate phase in a multiphase

averaging approach. One such approach discussed in Christensen [198] for random

orientations of single inhomogeneity types is to first obtain the effective properties

as if the inhomogeneities were aligned. These effective properties then undergo the

appropriate coordinate transformation from the aligned coordinate system to the

global system and are then average over all possible orientations. This approach,

which will be referred to as the rule of mixtures approach to orientational averaging,

does not, however, account for the differences in interactions between inhomogeneities

when they are aligned versus when they are oriented.
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Fig. 13. Schematic representation a microscale RVE consisting of an inhomogeneity

with a random distribution of orientations between the local inhomogene-

ity coordinate systems and that of the microscale RVE, and of the use of

self-consistent method in determining the effective composite properties.

In an alternative approach [89, 208, 209], the interactions between the different

orientations of the inhomogeneity are accounted for by determining the concentra-

tion tensor in the local inhomogeneity coordinate system, applying the appropriate

coordinate transformation from the local inhomogeneity coordinate system to the

microscale RVE coordinate system, and then properly imposing the consistency con-

dition amongst concentration tensors obtained for the various orientations.

For example, consider a microscale RVE consisting of M orientations of a given

inhomogeneity, as shown in Figure 13, so that including the matrix material, the total

number of phases in the microscale RVE is N = M + 1.33 Each orientation can be

33For a more illustrative example, see Appendix B.
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defined by the angles ϕJ , ψJ which relate the local inhomogeneity orientation to the

microscale RVE coordinate system by a change of basis which is determined from a

series of single axis rotations, i.e. JQij = JQψ
ik

JQϕ
kj such that in engineering notation

[
JQ
]

=

⎡
⎢⎢⎢⎢⎣

cos(ϕ) 0 − sin(ϕ)

sin(ψ) sin(ϕ) cos(ψ) sin(ψ) cos(ϕ)

cos(ψ) sin(ϕ) − sin(ψ) cos(ψ) cos(ϕ)

⎤
⎥⎥⎥⎥⎦ (2.159)

The effective stiffness, for example, of the microscale RVE can therefore be obtained

from Eqn. 2.71a. In order to denote the orientations associated with each phase the

effective stiffness is written as

Leff
ijkl = LNijkl +

M∑
J=1

cJ(ϕJ , ψJ)(L
J
ijmn(ϕJ , ψJ) − LNijmn)A

J
mnkl(ϕJ , ψJ) (2.160)

where cJ(ϕJ , ψJ) is the volume fraction of a given orientation and where

LJijmn(ϕJ , ψJ) = JQip
JQjqL̃pqrs

JQmr
JQns (2.161a)

AJijmn(ϕJ , ψJ) = JQip
JQjqÃpqrs

JQmr
JQns (2.161b)

cJ(ϕ, ψ) = wJ c̄ (2.161c)

where the tilde denotes quantities expressed in the local inhomogeneity coordinate

system and where wJ is the weight factor for the fraction of inhomogeneities with a

given (ϕJ , ψJ) and c̄ is the total volume fraction of the inhomogeneity irrespective of

orientation. It is also noted that L̃pqrs and Ãpqrs have been expressed without a super-

script J in order to emphasize that the only difference between the inhomogeneities

in all of the phases is the orientation. As such, if one were to use the self-consistent

method to approximate the concentration tensor, then one need only calculate Ãpqrs

once using Eqn. 2.83.
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It is noted that as M → ∞, a continuous distribution of orientations over a unit

sphere, ρ(ϕ, ψ), can be obtained, and as such, one may write

Leff
ijkl = LNijkl+

∫ 2π

0

∫ π
0
ρ(ϕ, ψ)c̄[Lijmn(ϕ, ψ) − LNijmn]Amnkl(ϕ, ψ) sin(ϕ) dϕ dψ∫ 2π

0

∫ π
0
ρ(ϕ, ψ) sin(ϕ) dϕ dψ

(2.162)

where the lack of the subscript J on the angles denotes the continuous distribution

of orientations as opposed to a discrete number of them. It is further noted that

for a random distribution of orientations, each (ϕ, ψ) is equally likely and therefore

ρ(ϕ, ψ) = ρ0 and

Leff
ijkl = LNijkl +

c̄

4π

∫ 2π

0

∫ π

0

[Lijmn(ϕ, ψ) − LNijmn]Amnkl(ϕ, ψ) sin(ϕ) dϕ dψ (2.163a)

M eff
ijkl = MN

ijkl +
c̄

4π

∫ 2π

0

∫ π

0

[Mijmn(ϕ, ψ)−MN
ijmn]Bmnkl(ϕ, ψ) sin(ϕ) dϕ dψ (2.163b)

keff
ij = kNij +

c̄

4π

∫ 2π

0

∫ π

0

[kim(ϕ, ψ) − kNim]Amj(ϕ, ψ) sin(ϕ) dϕ dψ (2.163c)

ξeff
ij = ξNij +

c̄

4π

∫ 2π

0

∫ π

0

[ξim(ϕ, ψ) − ξNim]Bmj(ϕ, ψ) sin(ϕ) dϕ dψ (2.163d)

resulting in effective properties for the composite which are isotropic [153, 209, 210].

It should be noted that when using the self-consistent and generalized self-

consistent concentration tensor approximations, the consistency condition is auto-

matically satisfied. However, when using the Mori-Tanaka approximation, one must

use caution as the Mori-Tanaka consistency condition must be applied in the mi-

croscale RVE coordinate system. See Appendix C for more details.

E. Application of Interaction Energy for Effective Properties

As was previously noted, the theory of multiple scale expansion and the notion of en-

ergy equivalency between the microscale RVE and an effective homogeneous material,

i.e. as in Eqn. 2.22, can be synonymous. It is further noted that, in some cases, for
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Fig. 14. Schematic representation of the energy equivalency between the microscale

RVE and its effective material representation and identification of a single

inhomogeneity approximation for calculating the RVE energy.

example in microscale RVEs consisting of a single type of inhomogeneity, the energy

of the RVE be calculated using an approximation of the RVE as shown schematically

in Figure 14. In such cases it is often convenient in the calculation of the volume

averaged strain energy from the approximation of the microscale RVE to decompose

the RVE energy, WRVE, in terms of what is referred to as the interaction energy

(see for example [198]) between the inhomogeneity and its surroundings, W int, and

the strain energy of the surrounding material in the approximation, measured in the

absence of the inhomogeneity, W 0 (referred to as the homogeneous matrix energy),

i.e.

WRVE = W int +W 0 (2.164)
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where the strain energy of the surrounding material using the definition in Eqn. 2.5

is given by

W 0 =
1

2
〈σ0

ijε
0
ij〉 (2.165)

This decomposition is shown schematically for three approximations to the RVE en-

ergy, the dilute, the self-consistent and the generalized self-consistent approximations,

in Figure 15. Thus, in what is referred to as the Eshelby formula34, Eqn. 2.164 can

be substituted into Eqn. 2.22 which can then be written as

W eff = W 0 +W int (2.166)

It can be shown35 that the interaction energy can be defined in terms of the surface

tractions and displacements on the inhomogeneity and the tractions and displace-

ments on an imaginary inhomogeneity boundary in the homogeneous surrounding

material problem as

W int =
1

V

∫
Si

(
tiu

0
i − t0iui

)
dS (2.167)

where Si is the surface of the inhomogeneity and where it should be noted that the

expression given in Eqn. 2.167 is for applied average displacement, ūi, on the boundary

S. An analogous expression for the interaction energy for applied average traction,

t̄i, on S is given by the negative of this equation.

It is noted from Figure 15, that in the dilute approach (Figure 15(a)), the in-

homogeneity is embedded in the matrix so that the matrix constitutive properties

are used for determining the homogeneous matrix strain energy and the interaction

energy from Eqns. 2.165 and 2.167, respectively. In the self-consistent approximation

in Figure 15(b), the inhomogeneity is instead embedded in the effective material so

34See for example [198].
35See for example [198].
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(a) Dilute Approach

(b) Self-Consistent Approach

(c) Generalized Self-Consistent Approach

Fig. 15. Schematic representations of the decomposition of the strain energy into the

interaction energy and the homogeneous matrix energy as applied in the di-

lute, self-consistent, and generalized self-consistent approximations.
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that σ0
ij = σeff

ij and u0
i = ueff

i , and therefore W 0 = W eff and t0i = teffi on Si. As such,

the Eshelby formula for the self-consistent method reduces to

W int =
1

V

∫
Si

(
tiu

eff
i − teffi ui

)
dS = 0 (2.168)

so that for the self-consistent method, the effective properties can be determined

directly from the interaction energy using Eqn. 2.168. Similar to the self-consistent

approximation, it is noted that the Eshelby formula in the generalized self-consistent

approximation also reduces to Eqn. 2.168. The difference, however, is that the surface,

Si is no longer that of the inhomogeneity, but is instead the surface of a volume of

matrix enveloping the inhomogeneity as shown in Figure 15(c), and thereby retains the

load transfer between the matrix and the inclusion in the calculation of the interaction

energy.

Finally, it is noted that many of the concepts presented in this chapter will be

applied and/or discussed in great detail in the context of the generalized self-consistent

composite cylinder method in Chapter III.
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CHAPTER III

THE GENERALIZED SELF-CONSISTENT COMPOSITE CYLINDER METHOD

As the nanocomposite modeling approaches applied herein are centered on the gener-

alized self-consistent composite cylinder method, a detailed description of the method

is provided in this chapter. Originally developed for microscale RVEs of a single type

of perhaps coated, high aspect ratio circular cylinder fibers, the method is extended

here to account for multiple fiber types and orientations through the calculation

of concentration tensor components. The chapter begins with a description of the

multi-layered composite cylinders method for elastic properties which is followed by

the multi-layered generalized self-consistent method for elastic properties. This is fol-

lowed with a discussion of the development of graded interphase solutions for use in

the generalized self-consistent method. The derivation of the multi-layered generalized

self-consistent composite cylinders method for thermal and electrical conductivity is

then provided, followed by a detailed description of how to obtain concentration ten-

sors using the generalized self-consistent composite cylinders method and how these

concentration tensors are used in orientational averaging. Finally the chapter closes

with a few parametric studies and a brief description of how the generalized self-

consistent model will be used applied in determining the effective elastic properties

and conductivities of CNT-epoxy nanocomposites.

A. The Multi-Layered Composite Cylinders Method for Elastic Properties

In the discussion of the multi-layered and generalized self-consistent composite cylin-

ders methods which follows, use of both energy equivalency and direct averaging

methods will be in the determination of effective microscale RVE properties will be

discussed. Each of these methods has their advantages and disadvantages and will be
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(a) Multi-Layer Composite Cylinder
Assemblage for Coated Hollow Fiber

(b) Homogeneous Effective Material

Fig. 16. General schematic representing the energy equivalency between a N-layer com-

posite cylinder assemblage (16(a)) and its effective material representation

(16(b)). It should also be noted that the tube axis is along the one-, or

z-direction. The inner radius of the fiber is denoted as r0, and the outer

radius of the matrix is denoted as rN , with r1 denoting the fiber outer radius.

explored in the determination of the effective elastic properties of randomly oriented,

graded interphase coated fiber composites as continuum level representations of car-

bon nanotube-polymer nanocomposites. What follows is a summary of the multi-layer

composite cylinder method approach to modeling graded interphase regions similar to

those provided by Jayaraman and Reifsnider [167] and by Jasiuk and Kouider [168].

As an example of the composite cylinder model, consider the composite cylin-

der assemblage shown in Figure 16(a) and the analogous homogeneous solid in Fig-

ure 16(b). Displacement fields which satisfy the equilibrium equations are assumed
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for each layer of the composite cylinder assemblage and for the homogeneous solid.1

The strains in each layer are determined from the displacement fields using the strain-

displacement relations, with the layer stresses determined from the appropriate con-

stitutive relation for each layer. The same is done for the homogeneous solid where

the constitutive relations consist of the unknown effective properties of the composite.

Sets of homogeneous boundary conditions consistent with the number of independent

effective material properties are independently applied along with the appropriate

interface matching conditions between the composite cylinder assemblage layers. For

the effective elastic properties of the composite cylinder assemblage, five sets of bound-

ary conditions are needed as the effective material response is transversely isotropic.

In determining the effective elastic properties of aligned fiber composites using the

composite cylinders method, the volume averaged strain energies of the composite

cylinder assemblage, W , and of the effective homogeneous cylinder, W (eff), are ob-

tained from the volume average of the strain energy, and are set equal to one another.

The set of elasticity problems typically include assumed displacement fields con-

sistent with determining 1) the in-plane bulk modulus (κeff
23 ), 2) the axial Young’s

modulus (Eeff
1 ), 3) the axial stiffness component (Ceff

1111)
2, 4) the axial shear modulus

(µeff
12 ), and 5) the in-plane shear modulus (µeff

23). A summary of the elasticity solutions

for the boundary value problems identified in Figure 17 is provided here, followed by

a discussion of methods for determining the effective properties from the elasticity

solutions. It is noted that the assumed displacement fields applied in each of the

1Here it is assumed that each layer is a compatible phase in the reference con-
figuration with no residual stresses or transformation strains and subject to small
deformations so that continuity of tractions and displacements can applied across the
layer boundaries.

2In order to be consistent with the notation of Hashin [158], Ceff
1111 is used in place

of Leff
1111.
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(a) In-plane Bulk Modulus, κeff
23 (b) Axial Young’s Modulus, Eeff

1

(c) Axial Stiffness Component, Ceff
1111 (d) Axial Shear Modulus, µeff

12

(e) In-plane Shear Modulus, µeff
23 (f) A Transverse Extension Test

Fig. 17. Boundary value problems solved in the composite cylinder method.



93

boundary value problems are solutions to the equilibrium equations in cylindrical

coordinates, i.e.

∂σrr
∂ r

+
1

r

∂σrθ
∂ θ

+
∂σrz
∂ z

+
1

r
(σrr − σθθ) = 0

∂σrθ
∂ r

+
1

r

∂σθθ
∂ θ

+
∂σθz
∂ z

+
2

r
σrθ = 0

∂σrz
∂ r

+
1

r

∂σθz
∂ θ

+
∂σzz
∂ z

+
1

r
σrz = 0

(3.1)

where in obtaining these equations in terms of the displacement components it is

noted for the present discussion that each phase of the composite cylinder assemblage

is homogeneous.

1. Composite Cylinder Method for In-plane Bulk Modulus

a. Displacement, Strain, and Stress Fields

The in-plane, or plane strain bulk modulus, κeff
23 , is determined through the application

of the displacement field expressed in cylindrical coordinates in Eqn. 3.2 to each phase

of the composite cylinder assemblage shown in Figure 16(a):

uir = Di
1r +Di

2

1

r

uiθ = 0 for ri−1 ≤ r ≤ ri

uiz = 0

(3.2)

where Di
1 and Di

2 are constants and i ranges from one to N where it is noted that

rN is dependent upon the desired volume fraction. It should also be noted that the

displacement field satisfies equilibrium for isotropic and transversely isotropic layers

so that the displacements in the homogeneous effective cylinder3 of Figure 16(b) are

3See Sections D1 and D2 of Appendix D for the derivation of the displacement
fields for homogeneous layers.
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given by:

ueff
r = Deff

1 r +Deff
2

1

r

ueff
θ = 0 for 0 ≤ r ≤ rN

ueff
z = 0

(3.3)

These displacements are used to calculate first the strains and then the stresses. The

non-zero strains in each layer of the composite cylinder assemblage are therefore given

by:

εirr = Di
1 −Di

2

1

r2

εiθθ = Di
1 +Di

2

1

r2

(3.4)

with the non-zero stresses for isotropic phases given by:

σirr = 2Di
1(µi + λi) − 2µiD

i
2

1

r2

σiθθ = 2Di
1(µi + λi) + 2µiD

i
2

1

r2

σizz = 2λiD
i
1

(3.5)

where µi and λi are the Lamé constants for the ith isotropic phase. The boundary

conditions consistent with an in-plane, or plane strain bulk test are applied to the

composite cylinder assemblage as shown in Figure 17(a) and are given by (assuming

hollow fiber):

σ1
rr|r=r0 = 0 (3.6a)

uNr |r=rN = ε0rN (3.6b)

where Eqn. 3.6a corresponds to a traction free internal surface of the hollow cylinder

and Eqn. 3.6b represents an applied displacement at the outer boundary consistent

with ε0 as the average radial strain in a homogeneous cylinder. In addition, the



95

continuity of displacement and traction conditions across internal phase boundaries

given by:

ujr|r=rj = uj+1
r |r=rj (3.7a)

σjrr|r=rj = σj+1
rr |r=rj (3.7b)

where j ranges from one to N−1, the constants Di
1 and Di

2 are obtained for all phases

of the composite cylinder assemblage. Note that for solid fibers, Equation 3.6a is

replaced by the condition that D1
2 = 0 (e.g., Deff

2 = 0 for the homogeneous effective

material) which imposes the condition that the displacement field be bounded at

the origin of solid fibers. Thus, the 2N unknown constants (Di
1’s and Di

2’s) are

determined from the 2N boundary and matching condition equations. Solutions for

the constants for N = 2 and N = 3 for the in-plane bulk modulus and for the other

effective composite properties are provided in Appendix E.

b. Methods for Determining the Effective In-plane Bulk Modulus

With the displacements, strains and stresses for each case identified, the effective

properties of the composite cylinder assemblage can be determined. Four methods

for determining the effective properties are provided, each having advantages and

disadvantages. The methods are based on the general micromechanics philosophies

discussed in Chatper II. In the first method, the average stress and strain of the

composite cylinder assemblage are used along with the definition of the effective

property being determined (as in Eqn. 2.56). In the second method, the direct energy

equivalency as in Eqn. 2.22 is applied using the average stress and strain of the

composite cylinder assemblage and of the homogeneous effective material (Figures 4

and 16). The third and fourth methods presented make use of the interaction energy

methods (Eqn. 2.164) described in Eqns. 2.167 and 2.168, respectively. Application
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of each of these four methods is explicitly demonstrated in the determination of the

in-plane bulk modulus, with the results for other properties briefly summarized.

• Method 1: Using Volume Averages and the Definition of the Engineering Prop-

erty

The in-plane bulk modulus, κeff
23 , is obtained by definition as:

κeff
23 =

〈σcomp
22 〉

2〈εcomp
22 〉 (3.8)

where the average stress and strain in Eqn. 3.8 are taken over the entire composite

cylinder assemblage which includes the hollow region shown in Figure 16. As the

internal surface is taken as traction-free in each of the composite cylinders assemblage,

the stress in the hollow region can be taken as zero. However, the strain in the hollow

region is nonzero and can be taken to be homogeneous and consistent with the strain

at the internal surface (i.e., at r0). This complication can be avoided, however, if

the volume averages are instead expressed in terms of external surface tractions and

displacements4 by:

κeff
23 =

σNrr|r=rN
2 (uNr |r=rN/rN)

(3.9)

For an isotropic matrix, the in-plane bulk modulus is then obtained in terms of the

constants DN
j as:

κeff
23 =

(µN + λN)r2
ND

N
1 − µND

N
2

r2
ND

N
1 +DN

2

(3.10)

From Eqn. 3.10, it is observed that the in-plane bulk modulus can be determined in

terms of only two of the 2N displacement constants, and therefore encourages the

use of techniques such as Cramer’s rule to avoid solving potentially large algebraic

systems of equations.

4See Appendix F.
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• Method 2: Direct Strain Energy Equivalency

In the application of the direct strain energy equivalency of Eqn. 2.22 between the

composite cylinder assemblage and the homogeneous effective material of Figure 16,

the strain energy of the effective homogeneous material for the boundary conditions

applied for the in-plane bulk test can be expressed as:

W eff = 4κeff
23ε

2
0 (3.11)

The volume averaged strain energy for the composite cylinder assemblage as given

by Eqn. 2.17, can be expressed as separate volume integrals over each layer in the

composite cylinder assemblage as:

WRVE =
1

V

(
N∑
i=1

∫ L/2

−L/2

∫ ri

ri−1

∫ 2π

0

σiijε
i
ijr dθ dr dz

)
(3.12)

where V is the total volume of the composite cylinder assemblage which includes the

hollow region shown in Figure 16. However, it should be noted that the traction-free

conditions on the internal surface of the composite cylinder assemblage means that

the strain energy of the of hollow region is zero, and therefore does not appear in the

summation in Eqn. 3.12. The effective in-plane bulk modulus is then obtained by

solving Eqn. 2.22 for κeff
23 and results in the following form in terms of the constants

Di
j :

κeff
23 =

1

χ0

N∑
i=1

(
χi1(D

i
1)

2 + χi2(D
i
2)

2
)

(3.13)
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where the χ are constants which depend on layer geometries and layer elastic con-

stants. For example, for N = 2 and isotropic layers, the χ are given by:

χ0 = r2
0r

2
1r

4
2ε

2
0

χ1
1 = r2

0r
2
1r

2
2(r

2
1 − r2

0)(µ1 + λ1)

χ1
2 = r2

2(r
2
1 − r2

0)µ1

χ2
1 = r2

0r
2
1r

2
2(r

2
2 − r2

1)(µ2 + λ2)

χ2
2 = r2

0(r
2
2 − r2

1)µ2

(3.14)

In this case, all of the constants in the displacement field must be determined in

obtaining the effective in-plane bulk modulus.

• Method 3: Strain Energy Equivalency via Interaction Energy

In this method, the volume averaged strain energy is given in terms of the inter-

action energy defined on an internal surface of the composite cylinder assemblage and

in terms of the volume averaged strain energy of the homogeneous matrix as shown

in Figure 15(a). The strain energy of the composite is therefore given by Eqn. 2.164,

where W 0 is the volume averaged strain energy of a homogeneous cylinder with ma-

terial properties of the N th layer and W int is the interaction energy between the N−1

inner layers and the N th layer. The strain energy of the composite is then taken to

be equivalent to the strain energy of the effective material (Eqn. 2.22), and as such,

this method involves two volume integrals over homogeneous cylinders and a surface

integral in the composite cylinder assemblage, and therefore avoids integrating over

each layer in the total volume.
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The homogeneous matrix cylinder is assumed to have the same functional form

of displacement field as the composite cylinder assemblage, i.e.,

u0
r = D0

1r +D0
2

1

r

u0
θ = 0 for 0 ≤ r ≤ rN

u0
z = 0

(3.15)

and is subjected to the same external boundary condition provided in Eqn. 3.6b, with

Eqn. 3.6a replaced by the condition that the displacement be bounded at the origin

(i.e., D0
2 = 0). As such, it should be noted that D0

j �= DN
j , despite having the same

material properties as the boundary conditions for the homogeneous cylinder and the

N th layer of the composite cylinder assemblage are different. From the displacement

field, the strains and stresses of the homogeneous matrix cylinder are obtained and

used to determine the homogeneous matrix volume averaged strain energy given by:

W 0 =
1

V

(∫ L/2

−L/2

∫ rN

0

∫ 2π

0

σ0
ijε

0
ijr dθ dr dz

)
(3.16)

which for an isotropic matrix (i.e., N th layer) reduces to W 0 = 4ε2
0(µN + λN).

The interaction energy as defined in Eqn. 2.167, is taken over the surface Si, taken

to be the interface between the N th and (N − 1)th layer of the composite cylinder

assemblage, and is an internal surface in the homogeneous matrix cylinder located

where that phase boundary would have been. As such, the interaction energy can

alternatively be expressed as:

W int =
1

V

∫ L/2

−L/2

∫ 2π

0

[(σNrru
0
r + σNrθu

0
θ + σNrzu

0
z)

− (σ0
rru

N
r + σ0

rθu
N
θ + σ0

rzu
N
z )]r=rN−1

rN−1 dθ dz

(3.17)
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where it is noted that as a result of the imposition of continuity of tractions and

displacements across phase boundaries in the composite cylinder assemblage, the N th

layer stresses and displacements of the composite cylinder assemblage have been used

in place of the (N − 1)th stresses and displacements in Eqn. 3.17.

For composite cylinder assemblages with isotropic N and N − 1 layers, the in-

plane bulk modulus is determined from solving Eqn. 2.164 and is given by:

κeff
23 =

1

ε0r2
N

[r2
N−1(µN−1 + λN−1 − µN − λN)DN−1

1

− (µN−1 + µN + λN)DN−1
2 + ε0r

2
N(µN + λN)]

(3.18)

so that again, Cramer’s Rule can again be used to solve for the two needed constants

(DN−1
1 and DN−1

2 ) as opposed to having to determine all of the 2N total constants

in order to obtain explicit solutions for the in-plane bulk modulus.

• Method 4: Strain Energy Equivalency via Self-Consistent Interaction Energy

The fourth composite cylinder approach to determining the effective in-plane bulk

modulus can be thought of as being similar to a generalized self-consistent approach.

In this method, the homogeneous cylinder is taken to be the effective cylinder so that

the generalized self-consistent equations provided in Eqns. 2.167 and and 2.168 are

applied. However, this method is approximate in that it assumes that the interaction

energy between the composite cylinder assemblage of Figure 16 and the effective

cylinder is equal to zero on the composite cylinder assemblage surface at r = rN .

That is:

W int =

∫ L/2

−L/2

∫ 2π

0

[(σNrru
eff
r + σNrθu

eff
θ + σNrzu

eff
z )

− (σeff
rr u

N
r + σeff

rθ u
N
θ + σeff

rz u
N
z )]r=rNrN dθ dz = 0

(3.19)
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Table II. Summary of the resulting effective in-plane bulk modulus results for each of

the four methods applied indicating the minimum number of displacement

constants needing to be determined. Displacement constants for N = 2 and

N = 3 composite cylinder assemblages can be found in Appendix E

.

Method No. Disp. Eqn. In-plane Bulk Modulus

Constants

Method 1 2 3.10 κeff
23 =

(µN +λN )r2ND
N
1 −µND

N
2

r2ND
N
1 +DN

2

Method 2 2N 3.13 κeff
23 = 1

χ0

∑N
i=1 (χi1(D

i
1)

2 + χi2(D
i
2)

2)

Method 3 2 3.18 κeff
23 = 1

ε0r2N
[r2
N−1(µN−1 + λN−1 − µN − λN)DN−1

1

−(µN−1 + µN + λN)DN−1
2 + ε0r

2
N(µN + λN)]

Method 4 2 3.10 κeff
23 =

(µN +λN )r2ND
N
1 −µND

N
2

r2ND
N
1 +DN

2

Eqn. 3.19 is then solved for κeff
23 , which for isotropic N th layers produces an identical

result to Eqn. 3.10, and therefore requires the solution of only two of the 2N dis-

placement constants, DN
1 and DN

2 , which, because of the approximation of using the

composite cylinder assemblage, do not contain effective material properties as they

would have had the generalized self-consistent composite cylinder been used. Rea-

sons why this is in fact a good approximation will be made clear in the subsequent

discussion of the generalized self-consistent composite cylinders method. It is also of

interest to point out that although the functional forms of the effective in-plane bulk

modulus from each of the four methods may vary (see Table II), the numeric results

obtained are in excellent agreement. The same is found to be true for the applicable

methods in the remaining properties to be discussed.
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2. Composite Cylinder Method for Axial Young’s Modulus and Stiffness

Component

a. Displacement, Strain, and Stress Fields

The displacement field applied to each phase of the composite cylinder assemblage to

determine the axial Young’s modulus (Eeff
1 ) is:

uir = Di
1r +Di

2

1

r

uiθ = 0 for ri−1 ≤ r ≤ ri

uiz = ε0z

(3.20)

The nonzero strains and stresses are therefore obtained as:

εirr = Di
1 −Di

2

1

r2

εiθθ = Di
1 +Di

2

1

r2

εizz = ε0

(3.21)

and (again assuming isotropic phases):

σirr = 2Di
1(µi + λi) − 2µiD

i
2

1

r2
+ λiε0

σiθθ = 2Di
1(µi + λi) + 2µiD

i
2

1

r2
+ λiε0

σizz = 2λiD
i
1 + (2µi + λi)ε0

(3.22)

respectively. The boundary conditions consistent with a uniaxial extension test (Fig-

ure 17(b)) are applied to the composite cylinder assemblage as (assuming hollow

fiber):

σ1
rr|r=r0 = 0 (3.23a)

σNrr|r=rN = 0 (3.23b)
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The boundary condition in Eqn. 3.23a again corresponds to a zero-traction internal

surface. The boundary condition in Eqn. 3.23b corresponds to a traction free external

surface which allows for the Poisson’s effect to take place. As the cylinder is under

plane strain conditions, the axial extension corresponding the average axial strain in

a homogeneous body is applied in z-component of the assumed displacement field of

Eqn. 3.20. The matching conditions of continuity of tractions and displacements are

identical to those identified in Eqn. 3.7 for determining the in-plane bulk modulus,

thus allowing for the determination of the 2N unknown constants (Di
1’s and Di

2’s)

from the 2N boundary and matching condition equations. The solutions for the

displacement constants for N = 2 and N = 3 are provided in Appendix E.

The displacement field applied to each phase of the composite cylinder assem-

blage to determine the axial stiffness component (Ceff
1111) is identical to that used

to determine the axial Young’s modulus (Eqn. 3.20), and therefore, so too are the

nonzero strain and stress components (Eqns. 3.21 and 3.22, respectively). In addition,

the matching conditions across each phase boundary are also identical to those used

for both the in-plane bulk modulus and axial Young’s modulus (Eqn. 3.7). However,

the boundary conditions applied are different (Figure 17(c)) and given by:

σ1
rr|r=r0 = 0 (3.24a)

uNr |r=rN = 0 (3.24b)

Eqn. 3.24a again corresponds to a traction-free internal surface, however, Eqn. 3.24b

now corresponds to constraining the external surface of the composite cylinder as-

semblage and therefore disallowing the Poisson’s effect. resulting in a set of 2N

displacement constants different from the displacement constants determined in both

the in-plane bulk and axial Young’s modulus boundary value problems. The solutions
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for the displacement constants for N = 2 and N = 3 are provided in Appendix E.

b. Methods for Determining Effective Axial Young’s Modulus and Axial Stiffness

Component

In the determination of the axial Young’s modulus (Eeff
1 ) and stiffness component

(Ceff
1111), only two of the four methods applied in determining the effective in-plane

bulk modulus are applicable as a result of the exclusion of fiber end effects by using

an infinitely long fiber assumption. Those two methods are methods one and two,

the volume averaged property definition and direct energy equivalency approaches,

respectively.

Using displacement field of Eqn. 3.20 and the definition of the axial Young’s

modulus, Eeff
1 is obtained from the volume averages stress and strain of the composite

cylinder assemblage by:

Eeff
1 =

〈σ11〉
〈ε11〉 (3.25)

where the volume averaged stress, 〈σzz〉, is given by:

〈σzz〉 =
2πL

πLr2
2

[
2∑
i=1

∫ ri

ri−1

σ(i)
zz r dr

]
(3.26)

where L is the arbitrary length of the composite cylinder assemblage and where it is

noted that there is zero stress in the hollow region of the fiber. The volume averaged

strain is similarly calculated as:

〈εzz〉 =
2πL

πLr2
2

[
ε0
r2
0

2
+

2∑
i=1

∫ ri

ri−1

ε(i)
zz r dr

]
(3.27)

where the additional term before the sum acknowledges the non-zero strains in the

hollow of the fiber so that 〈εzz〉 = ε0 is maintained. It can be shown that for isotropic
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layers, the effective axial Young’s modulus can be expressed as5:

Eeff
1 =

∑N
i=1[(2µi + λi)ε0 + 2λiD

i
1](r

2
i − r2

i−1)

ε0r2
N

(3.28)

Note that because the same displacement field is used for both the axial Young’s

modulus and stiffness component (i.e., Eqn. 3.20), and because of the similar defini-

tion of these two properties, i.e., Ceff
11111 = 〈σ11〉/〈ε11〉, the axial stiffness component

obtained by definition has the same form as Eqn. 3.28, the only difference being in

the values of the Di
1 as a result of the differences in the boundary conditions applied

in Eqns. 3.23 and 3.24.

The application of the direct strain energy equivalency of Eqn. 2.22 between the

composite cylinder assemblage and the homogeneous effective material of Figure 16

(method two), proceeds with the strain energy of the effective homogeneous material

expressed as:

W eff = Eeff
1 ε2

0 (3.29)

The volume averaged strain energy for the composite cylinder assemblage as given

by Eqn. 2.17, can be expressed as separate volume integrals over each layer in the

composite cylinder assemblage as in Eqn. 3.12 so that effective axial Young’s modulus

is obtained as:

Eeff
1 =

1

ε2
0r

2
N

N∑
i=1

[(4(µi + λi)(D
i
1)

2 + 4λiD
i
1

+
4µi
r2
i r

2
i−1

(Di
2)

2 + ε2
0(2µi + λi))(r

2
i − r2

i−1)]

(3.30)

Again, the effective axial stiffness component obtained from the direct strain energy

equivalency has the same form as Eqn. 3.30 with different values for the displacement

field constants Di
1 and Di

2.

5See Appendix F
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3. Composite Cylinder Method for Axial Shear Modulus

a. Displacement, Stress and Strain Fields

The axial shear modulus, µeff
12 , is determined through the application of the following

displacement field expressed in cylindrical coordinates to each phase of the composite

cylinder assemblage

uir = 0

uiθ = 0 for ri−1 ≤ r ≤ ri

uiz =

(
Di

1r +Di
2

1

r

)
cos(θ)

(3.31)

The nonzero strains and stresses are therefore obtained as:

εirz =
1

2

(
Di

1 −Di
2

1

r2

)
cos(θ)

εiθz = −1

2

(
Di

1 +Di
2

1

r2

)
sin(θ)

(3.32)

and (again assuming isotropic phases):

σirz = µi

(
Di

1 −Di
2

1

r2

)
cos(θ)

σiθz = −µi
(
Di

1 +Di
2

1

r2

)
sin(θ)

(3.33)

respectively. The boundary conditions consistent with an axial shear test (Fig-

ure 17(d)) are applied to the composite cylinder assemblage as (assuming hollow

fiber):

µ1
∂u1

z

∂r
|r=r0 = 0 (3.34a)

uNz |r=rN = 2ε0rN cos(θ) (3.34b)

Eqn. 3.34a imposes that the internal surface be traction-free. The displacement im-

posed on the external surface in Eqn. 3.34b is consistent with the application of simple
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shear. The matching conditions of continuity of tractions and displacements are again

applied, but are different in form from those in the previous cases. They are given

by:

ujz|r=rj = uj+1
z |r=rj (3.35a)

µj
∂ujz
∂r

|r=rj = µj+1
∂uj+1

z

∂r
|r=rj (3.35b)

where as before, j ranges from one to N − 1, and again resulting in 2N equations to

be solved for the 2N unknown constants in the displacement fields. The solutions for

the displacement constants for N = 2 and N = 3 are provided in Appendix E.

b. Methods for Determining the Effective Axial Shear Modulus

Like the effective in-plane bulk modulus, the axial shear modulus (µeff
12 ) can be deter-

mined from each of the four methods presented. In the first method, the definition

of the effective axial shear modulus in terms of average shear stress and strain can

be alternatively expressed in a statement of equivalent surface tractions between the

composite cylinder assemblage and the effective homogeneous cylinder6, i.e.,

µN
∂uNz
∂r

|r=rN = µeff
12

∂ueff
z

∂r
|r=rN (3.36)

which for an isotropic N th layer can be expressed in terms of the displacement con-

stants as:

µeff
12 =

µN

(
DN

1 −DN
2

1
r2N

)
2ε0

(3.37)

so that, as was the case for the in-plane bulk modulus, only two of 2N compos-

ite cylinder displacement field constants need be determined in order to obtain the

effective axial shear modulus.

6See Appendix F



108

Applying the direct energy equivalency between the composite cylinder assem-

blage and the effective material (Eqn. 2.22), volume averaged strain energy of the

effective material from Eqn. 2.20 is observed to be given by:

W eff = 4µeff
12ε

2
0 (3.38)

so that when equated to the volume averaged strain energy of the composite cylinder

assemblage from Eqn. 3.12, the effective axial shear modulus is obtained in terms of

the displacement field constants (assuming isotropic layers) as:

µeff
12 =

1

4ε2
0r

2
N

N∑
i=1

[
µi

((
r2
i − r2

i−1

)
(Di

1)
2 +

(
1

r2
i−1

− 1

r2
i

)
(Di

2)
2

)]
(3.39)

Similar applications of the interaction energy approaches of methods three and four

result in expressions for the effective axial shear modulus of

µeff
12 = µN − 1

2ε0r
2
N

(
r2
N−1(µN − µN−1)D

N−1
1 + (µN + µN−1)D

N−1
2

)
(3.40)

and

µeff
12 =

µN(DN
1 r

2
N −DN

2 )

DN
1 r

2
N +DN

2

(3.41)

respectively, where it is noted that unlike the effective in-plane bulk modulus results,

methods one and four for the axial shear modulus result in different expressions,

though the numerical applications of both equations are again in excellent agreement.
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4. Composite Cylinder Method for In-plane Shear Modulus

a. Displacement, Strain, and Stress Fields

The displacement field applied to the composite cylinders assemblage in order to

determine the effective in-plane shear modulus is given by (for isotropic layers)7:

uir =

[
Di

1r +Di
2r

3

(
λi

3µi + 2λi

)
−Di

3

1

r3
+Di

4

1

r

(
2µi + λi

µi

)]
sin(2θ)

uiθ =

[
Di

1r +Di
2r

3 +Di
3

1

r3
+Di

4

1

r

]
cos(2θ)

uiz = 0 for ri−1 ≤ r ≤ ri

(3.42)

The nonzero strains and stresses in the first N layers are obtained as:

εirr =

[
Di

1 + 3

(
λi

3µi + 2λi

)
Di

2r
2

]
sin(2θ)

+

[
3Di

3

1

r4
−
(

2µi + λi
µi

)
Di

4

1

r2

]
sin(2θ)

εiθθ =

[
−Di

1 +

(
λi

3µi + 2λi
− 2

)
Di

2r
2

]
sin(2θ)

+

[
−3Di

3

1

r4
+

(
2µi + λi

µi
− 2

)
Di

4

1

r2

]
sin(2θ)

εirθ =

[
Di

1 +

(
λi

3µi + 2λi
+ 1

)
Di

2r
2

]
cos(2θ)

+

[
−3Di

3

1

r4
+

(
2µi + λi

µi

)
Di

4

1

r2

]
cos(2θ)

(3.43)

7The following displacement field is derived from the method of plane harmon-
ics which Hashin[158] simplified from Love’s[211] representation See Section D3 of
Appendix D for a summary of the derivation.
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and

σirr = 2µi

{[
Di

1 + 3

(
λi

3µi + 2λi

)
Di

2r
2

]
sin(2θ)

}

+ 2µi

{[
3Di

3

1

r4
−
(

2µi + λi
µi

)
Di

4

1

r2

]
sin(2θ)

}

+ λi

{[(
4λi

3µi + 2λi
− 2

)
Di

2r
2 − 2Di

4

1

r2

]
sin(2θ)

}

σiθθ = 2µi

{[
−Di

1 +

(
λi

3µi + 2λi
− 2

)
Di

2r
2

]
sin(2θ)

}

+ 2µi

{[
−3Di

3

1

r4
+

(
2µi + λi

µi
− 2

)
Di

4

1

r2

]
sin(2θ)

}

+ λi

{[(
4λi

3µi + 2λi
− 2

)
Di

2r
2 − 2Di

4

1

r2

]
sin(2θ)

}

σizz = λi

{[(
4λi

3µi + 2λi
− 2

)
Di

2r
2 − 2Di

4

1

r2

]
sin(2θ)

}

σirθ = 2µi

[
Di

1 +

(
λi

3µi + 2λi
+ 1

)
Di

2r
2

]
cos(2θ)

+ 2µi

[
−3Di

3

1

r4
+

(
2µi + λi

µi

)
Di

4

1

r2

]
cos(2θ)

(3.44)

The boundary conditions applied in order to determine the in-plane shear modulus

(Figure 17(e)) are:

σ1
rr|r=r0 = 0 (3.45a)

σ1
rθ|r=r0 = 0 (3.45b)

uNr |r=rN =
1

2
ε0rN sin 2θ (3.45c)

uNθ |r=rN =
1

2
ε0rN cos 2θ (3.45d)

Eqns. 3.45a and 3.45b correspond to the zero traction condition on the internal surface

of assemblage. Taken together, Eqns. 3.45c and 3.45d correspond to the application

of pure shear in the plane of symmetry. The matching conditions of continuity of
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tractions and displacements provide four additional equations and are given by:

ujr|r=rj = uj+1
r |r=rj (3.46a)

ujθ|r=rj = uj+1
θ |r=rj (3.46b)

σjrr|r=rj = σj+1
rr |r=rj (3.46c)

σjrθ|r=rj = σj+1
rθ |r=rj (3.46d)

where j ranges from one to N − 1 (as N is the outermost layer). This leads to a

system of 4N unknown constants determined from the 4N equations.

b. Methods for Determining the In-plane Shear Modulus

Any of the three energy methods for determining the effective properties can be used

to try and determine the effective in-plane shear modulus. However, as observed

by Hashin and Rosen [158] , such efforts would identify the upper bound on the ef-

fective in-plane shear modulus, with applied traction boundary conditions replacing

Eqns. 3.45c and 3.45d resulting in a lower bound (the previous properties, i.e. κeff
23 ,

Eeff
1 , Ceff

1111, and µeff
12 , produce coincident bounds for applied displacements and trac-

tions). As such, the determination of the effective in-plane shear modulus can not be

achieved via the composite cylinders method, therefore the effective in-plane shear

modulus is instead obtained using the generalized self-consistent composite cylinders

method.

5. Composite Cylinder Method for Additional Effective Properties

a. Axial Poisson’s Ratio

The axial Poisson’s ratio, νeff
12 , can also be obtained from the composite cylinders

method from a couple of different approaches. The first, and most direct approach, is
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to use the definition of the axial Poisson’s ratio in the application of the axial Young’s

modulus test (Eqns. 3.20 through 3.23), where the axial Poisson’s ratio is defined as:

νeff
12 = −〈ε22〉

〈ε11〉 (3.47)

which corresponds to

ν12 =
−〈εrr〉
〈εzz〉 (3.48)

and which can alternatively be expressed in terms of the boundary quantities8 as:

νeff
12 = −u

N
r |r=rN/rN

ε0

(3.49)

so that regardless of whether the N th layer is isotropic or not, the effective axial

Poisson’s ratio can be determined from:

νeff
12 = − 1

ε0

(
DN

1 +DN
2

1

r2
N

)
(3.50)

This approach allows two independent effective composite properties to be determined

from a single test, and can be used to determine a fifth independent effective property

for the effective composite in place the determination of axial stiffness component.

It is of interest, however, to point out that the effective axial Poisson’s ratio can

not be obtained from an energy equivalency approach directly. The energy equiva-

lency methods as applied to the axial Young’s modulus displacement field have al-

ready been shown to yield one effective property, the axial Young’s modulus as given

in Eqn. 3.30. As such, if an energy equivalency approach is desired, the effective axial

Poisson’s ratio is then obtained as a dependent property from:

νeff
12 =

√
Ceff

1111 − Eeff
1

4κeff
23

(3.51)

8See Appendix F
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which can be shown to yield the same result as Eqn. 3.50.

b. Transverse Young’s Modulus and Poisson’s Ratio

Other dependent effective composite properties obtained from the composite cylinders

method include the in-plane Young’s modulus, Eeff
2 , obtained as:

Eeff
22 =

4µeff
23κ

eff
23

κeff
23 + µeff

23 + 4(νeff
12 )2µeff

23κ
eff
23/E

eff
11

(3.52)

and the in-plane Poisson’s ratio, νeff
23 , obtained as:

νeff
23 =

κeff
23 − µeff

23 − 4(νeff
12 )2µeff

23κ
eff
23/E

eff
11

κeff
23 + µeff

23 + 4(νeff
12 )2µeff

23κ
eff
23/E

eff
11

(3.53)

However, as both properties depend on the effective in-plane shear modulus, the

composite cylinders method again provides bounds on these properties. As such, the

effective in-plane Young’s modulus and Poisson’s ratio are instead determined using

the generalized self-consistent composite cylinders method.

c. Transverse Extension Test

The transverse extension test is an additional boundary value problem used in de-

termining the stress concentration tensor components. It is based on the composite

cylinder assemblage of Figure 16 and has a displacement field applied in each of the

N layers given by (for isotropic layers):

uir =

[
Di

1 r +Di
2 r

3 +Di
3

1

r3
+Di

4

1

r

]
cos(2 θ) +Di

5 r +Di
6

1

r
(3.54a)

uiθ =

[
−Di

1 r −Di
2 r

3

(
(3µi + 2 λi)

λi

)
+Di

3

1

r3
−Di

4

1

r

(
µi

(2µi + λi)

)]
sin(2 θ)

(3.54b)

uiz = 0 (3.54c)
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for ri−1 ≤ r ≤ ri. It is noted that this displacement field is similar to a combi-

nation of the displacement fields used to in determining the in-plane bulk modulus

(Eqn. 3.2) and the in-plane shear modulus (Eqn. 3.42), with the noted difference being

the switching of the trigonometric functions relative to the in-plane shear modulus

displacement field. From the displacement field in Eqn. 3.54, the nonzero strains and

stresses are obtained as:

εirr =
1

r4

[(
Di

1 r
4 + 3Di

2 r
6 − 3Di

3 −Di
4 r

2
)
cos(2 θ) +Di

5 r
4 −Di

6 r
2
]

(3.55a)

εiθθ = −
(

1

r4 λi (2µi + λi)

)
{[Di

1 r
4 (2 λi µi + λi

2) +Di
2 r

6 (12µi
2 + 12µi λi + 3 λi

2)

−Di
3 (6 λ1 µ1 + 3 λ1

2) − λ1
2 Di

4 r
2]cos(2 θ) − (2 λi µi + λi

2)(Di
5 r

4 +Di
6 r

2)}
(3.55b)

εirθ = − 1

r4 λi (2µi + λi)
[(2 r4 λi µi + r4 λ2

i )D
i
1 + (9 r6 µi λi + 3 r6 λ2

i + 6 r6 µ2
i )D

i
2

+ (3 λ2
i + 6 λi µi)D

i
3 + (λi r

2 µi + λ2
i r

2)Di
4]

(3.55c)

and

σirr =
2

r4 (2µi + λi)
{[(2 r4 µ2

i + r4 λi µi)D
i
1 − (3 λi µi + 6µ2

i )D
i
3

− (2 r2 µ2
i + 2 λi r

2 µi)D
i
4] cos(2 θ) + (2 r4 µ2

i + 3 r4 λi µi + r4 λ2
i )D

i
5

− (2 r2 µ2
i + λi r

2 µi)D
i
6}

(3.56a)

σiθθ =
2

λi r4
{[−r4 λi µiD

i
1 − (6 r6 µ2

i + 6 r6 µi λi)D
i
2 + 3µi λiD

i
3] cos(2 θ)

+ (r4 λ2
i + r4 λi µi)D

i
5 + r2 λi µiD

i
6}

(3.56b)

σizz =
2

r2 (2µi + λi)
{[−(3 r4 λi µi + 6 r4 µ2

i )D
i
2 − λi µiD

i
4] cos(2 θ)

+ (2 λi r
2 µi + λ2

i r
2)Di

5}
(3.56c)
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σirθ = − 2µi
r4 λi (2µi + λi)

[(2 r4 λi µi + r4 λ2
i )D

i
1 + (9 r6 µi λi + 3 r6 λ2

i + 6 r6 µ2
i )D

i
2

+ (3 λ2
i + 6 λi µi)D

i
3 + (µi λi r

2 + r2 λ2
i )D

i
4] sin(2 θ)

(3.56d)

The boundary conditions applied in order in the transverse extension test (Fig-

ure 17(f)) are:

σ1
rr|r=r0 = 0 (3.57a)

σ1
rθ|r=r0 = 0 (3.57b)

uNr |r=rN =
rNε0

2
(1 + cos(2 θ)) (3.57c)

uNθ |r=rN = −rNε0

2
sin(2 θ) (3.57d)

Eqns. 3.57a and 3.57b correspond to the internal surface of the assemblage being

traction-free. Eqns. 3.57c and 3.57d combined correspond to a homogeneous x2

normal strain. The matching conditions of continuity of tractions and displacements

involve four additional equations and are given by:

ujr|r=rj = uj+1
r |r=rj (3.58a)

ujθ|r=rj = uj+1
θ |r=rj (3.58b)

σjrr|r=rj = σj+1
rr |r=rj (3.58c)

σjrθ|r=rj = σj+1
rθ |r=rj (3.58d)

where j ranges from one to (N − 1). Application of the boundary and matching

conditions results in 6N equations to solve for the 6N unknowns. The solutions for

the displacement constants for N = 2 are provided in Appendix E.
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B. The Multi-Layered Generalized Self-Consistent Composite Cylinders Method for

Elastic Properties

As an alternative to the bounds predicted for the in-plane shear modulus using the

composite cylinders method, the approach taken for determining the effective in-plane

shear modulus (µeff
23 ) involves the use of the generalized self-consistent composite cylin-

der of Christensen and Lo[159]. Here the entire composite cylinder assemblage in

Figure 16(a) is is embedded in a (N + 1)th layer whose material properties are the

same as the material properties of the effective solid homogeneous material of Fig-

ure 16(b). This generalized self-consistent composite cylinder assemblage is shown in

Figure 18. The effective in-plane shear modulus of the composite cylinder assemblage

is determined through the use of the energy equivalence between the generalized self-

consistent composite cylinder assemblage and a homogeneous solid effective cylinder.

1. Generalized Self-Consistent Composite Cylinder Method for In-plane Shear

Modulus

a. Displacement, Strain and Stress Fields

The displacement field applied in the first N layers, i.e. i ≤ N , of the generalized self-

consistent composite cylinder assemblage in order to determine the effective in-plane

shear modulus is given by Eqn. 3.42 (assuming isotropic layers). For the transversely

isotropic effective material in the (N + 1)th layer, the displacement field is given by:

uN+1
r = −

(
rN+1

4µeff
23

)[
2r

rN+1
+DN+1

3

r3
N+1

r3
+ (ηeff + 1)DN+1

4

rN+1

r

]
sin(2θ)

uN+1
θ =

(
rN+1

4µeff
23

)[
− 2r

rN+1
+DN+1

3

r3
N+1

r3
− (ηeff − 1)DN+1

4

rN+1

r

]
cos(2θ)

uN+1
z = 0 for rN ≤ r ≤ rN+1

(3.59)
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Fig. 18. General schematic of a N-layer generalized self-consistent composite cylinder

assemblage. Here the composite cylinder assemblage of Figure 16(a) is seen to

be enveloped by an additional layer (the (N + 1)th layer) which can be taken

as extending to infinity and to have the effective constitutive properties of the

composite.
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where it should be noted that ηeff = 3 − 4νeff
23 and that νeff

23 and µeff
23 are the effective

in-plane Poisson’s ratio and shear modulus of the composite cylinder assemblage. The

nonzero strains and stresses in the first N layers are again the same as those identified

for the composite cylinder assemblage in Eqns. 3.43 and 3.44, respectively. For the

(N + 1)th layer, the strains and stresses are obtained as:

εN+1
rr = −

[
rN+1

4µeff
23

2

rN+1
− 3DN+1

3

r3
N+1

r4
− (ηeff + 1

)
DN+1

4

rN+1

r2

]
sin(2θ)

εN+1
θθ = −

[
−rN+1

4µeff
23

2

rN+1
+ 3DN+1

3

r3
N+1

r4
+
(−ηeff + 3

)
DN+1

4

rN+1

r2

]
sin(2θ)

εN+1
rθ = −

[
rN+1

4µeff
23

2

rN+1
− 3DN+1

3

r3
N+1

r4
+
(
ηeff + 1

)
DN+1

4

rN+1

r2

]
cos(2θ)

(3.60)

and

σN+1
rr =

(
κeff

23 + µeff
23

)
εN+1
rr +

(
κeff

23 − µeff
23

)
εN+1
θθ

σN+1
θθ =

(
κeff

23 − µeff
23

)
εN+1
rr +

(
κeff

23 + µeff
23

)
εN+1
θθ

σN+1
zz =

(
2κeff

23ν
eff
12

) (
εN+1
rr + εN+1

θθ

)
σN+1
rθ = 2µeff

23ε
N+1
rθ

(3.61)

where νeff
12 is the effective axial Poisson’s ratio of the composite. The boundary and

matching conditions applied in order to determine the in-plane shear modulus are sim-

ilar to those provided for the composite cylinder assemblage in Eqns. 3.45 and 3.46;

the only notable differences being that the displacement field for the generalized self-

consistent composite cylinder in Eqn. 3.59 has already had the external boundary

conditions applied to the (N + 1)th layer (as noted by lack of DN+1
1 and DN+1

2 in

Eqn 3.59), and that j ranges from one to N (as N + 1 is the outermost layer). As

observed from Eqn. 3.46, the effective properties contained in the (N + 1)th layer

displacement field in Eqn. 3.59 results in all of the 4N + 2 unknown constants deter-

mined from the 4N+2 equations containing the effective properties of the composite.
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The displacement constants for the N = 2 case are given in Appendix E where it

is observed that there is a lengthy amount of algebra associated even with this the

simplest of cases.

b. Method for Determining the Transverse Shear Modulus

Unlike the previous properties discussed, the in-plane shear modulus is obtained from

the generalized self-consistent composite cylinder assemblage of Figure 18 using the

generalized self-consistent method outlined in Eqns. 2.167 and 2.168. The internal

surface, Si, is taken to be between the N th and (N + 1)th layers of the generalized

self consistent composite cylinder assemblage so that the interaction energy equation

resulting from the strain energy equivalency (Eqn. 2.168) can be expressed as:

∫ 2π

0

[
σN+1
rr ueff

r + σN+1
rθ ueff

θ − (σeff
rr u

N+1
r + σeff

rθ u
N+1
θ

)]
r=rN

dθ = 0 (3.62)

where, by continuity of displacement and traction conditions of Eqns. 3.46c and 3.46d,

the N th stresses and displacements of the generalized self-consistent composite cylin-

der assemblage have been replaced by the (N+1)th, and where the displacement field

for the effective homogeneous material is given by:

ueff
r =

(
rN+1

4µeff
23

)(
2

rN+1

r

)
sin (2θ)

ueff
θ =

(−rN+1

4µeff
23

)(
− 2

rN+1
r

)
cos (2θ) for 0 ≤ r ≤ rN+1

ueff
z = 0

(3.63)

where it is noted that there are no displacement constants in Eqn. 3.63 like there are

in Eqn. 3.59 for the (N +1)th layer as a result of the constraint that the displacement

field in the effective homogeneous material be bounded at the origin. This emphasizes

the point that despite having the same constitutive properties, displacement fields of
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the (N +1)th layer and of the effective homogeneous material are different as was the

case in the application of method three for the in-plane bulk modulus for the N th

layer and the homogeneous matrix material.

Substituting the displacements and stresses into Eqn. 3.62 leads to the condition

that (N + 1)th displacement field constant DN+1
4 (Eqn. 3.59) should be identically

zero. As a result of solving the system of the boundary and matching conditions

for the generalized self-consistent composite cylinder assembalge, DN+1
4 is in terms

of all of the geometric and constitutive parameters of the generalized self-consistent

composite cylinder assemblage (i.e., the ri, the µi and λi, and the effective properties

µeff
23 ). Thus, µeff

23 is then obtained by setting:

DN+1
4 = 0 (3.64)

and solving for µeff
23 . It should be noted that the algebra involved in obtaining DN+1

4 ,

and indeed the other displacement field constants in the generalized self-consistent

composite cylinders assemblage for in-plane shear conditions, in terms of the unknown

effective properties is quite intensive (see Appendix E and as such, Cramer’s rule is

recommended in order to solve only for the needed expression of DN+1
4 .

It is also of interest to point out that the displacement field for the (N+1)th layer

of the generalized self-consistent composite cylinder assemblage provided in Eqn. 3.59

does not initially satisfy equilibrium. However, when DN+1
4 is observed to be zero in

order to satisfy the interaction energy being zero (Eqn. 3.64), the equilibrium equation

for the (N + 1)th is satisfied as well. For comparison purposes, the displacement field
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for the (N + 1)th layer which does satisfy equilibrium a priori is given by

uN+1
r =

(
ε0r −DN+1

3 r−3 +

(
µeff

23 + κeff
23

)
µeff

23

DN+1
4 r−1

)
sin (2θ)

uN+1
θ =

(
ε0r +DN+1

3 r−3 +DN+1
4 r−1

)
cos (2θ)

uN+1
z = 0 for rN ≤ r ≤ rN+1

(3.65)

As an alternative approach, one could use the displacement field in Eqn. 3.65 in place

of the displacement field in Eqn. 3.59 for the (N + 1)th layer of the generalized self-

consistent composite cylinder assemblage. However, the approach to obtaining the

effective properties would be different, perhaps using the direct energy equivalency

as opposed to the interaction energy, and may therefore require the solution of all of

the displacement constants.

Finally, it is noted that the in-plane shear modulus obtained from Eqn. 3.64 is the

same for both displacement and traction boundary conditions (noting the different

form of Eqn. 3.62 for traction boundary conditions). As such, one could obtain the

effective elastic properties of the fiber reinforced composites using a combination of

the composite cylinders and generalized self-consistent composite cylinder methods,

and many have [165, 166, 168].

2. Generalized Self-Consistent Composite Cylinder Method for In-plane Bulk

Modulus, Axial Young’s Modulus, Axial Stiffness Component, and Axial Shear

Modulus

As described above, the composite cylinders method consists of a combination of

the use of the composite cylinder assemblage of Figure 16 and the generalized self-

consistent composite cylinder assemblage of Figure 18 in determining the effective

composite properties; an observation particularly poignant for the dependent prop-
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erties provided in Eqns. 3.52 and 3.53. However in addition to the effective in-plane

shear modulus, µeff
23 , the generalized self-consistent composite cylinder assemblage can

in fact be used in a unified approach to determine the other independent effective com-

posite properties, i.e., the in-plane bulk modulus (κeff
23 ), the axial Young’s modulus

(Eeff
1 ), the axial stiffness component (Ceff

1111), and the axial shear modulus (µeff
12).

In fact, the functional form for the displacement field in the composite cylinders

method for each of these properties is the same for (N+1)th layer (withDi
j replaced by

DN+1
j ), with the external boundary conditions shifted to the (N+1)th layer surface at

rN+1 and the matching conditions between the N th and the (N +1)th layers enforced.

In these cases, the preferred methods for determining the effective properties are the

energy equivalency approaches (Methods 2 and 3), as the boundary for the (N +1)th

layer can be taken to be at infinity.

For example, application of the general energy equivalency (W eff = WRVE) for

the axial Young’s modulus (for N isotropic layers) results in

Eeff
1 ε2

0 =
1

r2
N+1

N∑
i=1

[
(r2
i − r2

i−1)
(
4(µi + λi)(D

i
1)

2 + 4ε0λiD
i
1 + (2µi + λi)ε

2
0

)]

+
1

r2
N+1

N∑
i=1

[
(r2
i − r2

i−1)

r2
i r

2
i−1

(
4µi(D

i
2)

2
)]

+
4µeff

23(r
2
N+1 − r2

N)

r4
N+1r

2
N

(DN+1
2 )2

+
r2
N+1 − r2

N

r2
N+1

[4κeff
23 (DN+1

1 )2 + 8κeff
23ν

eff
12 ε0D

N+1
1 + (Eeff

1 + 4κeff
23 (νeff

12 )2)ε2
0]

(3.66)

where it is noted from Eqn. 3.66 that not only are some of the properties coupled (Eeff
1

depending on κeff
23 and νeff

12 ), but they are also nonlinear. Recall, that as discussed in the

determination of the in-plane shear modulus, the generalized self-consistent approach

results in the displacement constants in each layer of the generalized self-consistent

composite cylinder assemblage being functions of the effective properties (i.e., the

Di
j depend on κeff

23 ), and in Eqn. 3.66, these displacement constants are squared and
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in some cases are directly multiplying the effective properties. As such, an iterative

technique is applied in the simultaneous solution of the effective composite properties

in the unified generalized self-consistent composite cylinders method.

It is of interest to note, however, that this simultaneous iterative solution leads

to effective properties which are in very good agreement with the effective composite

properties obtained from the composite cylinder method as previously discussed (i.e.,

Eeff
1 obtained from the simultaneous iterative solution of Eqn. 3.66 agrees with the

results of Eqns. 3.28 and 3.30 to within 0.001% difference). This should in fact be

the case as the results for the bounds on all but the effective in-plane shear modulus

obtained from the composite cylinders solutions by Hashin and Rosen [158] were co-

incident. As such, from this point on when referring to the generalized self-consistent

composite cylinder method, it will be understood that for the axial Young’s modulus

and stiffness component, the in-plane bulk modulus, and the axial shear modulus, the

composite cylinders solution is used while for the in-plane shear modulus, the gen-

eralized self-consistent composite cylinder solution is used. It is also noted that it is

this good agreement between the composite cylinders and generalized self-consistent

composite cylinders approaches which makes the approximate method provided in

Method 4 a good approximation.

C. Generalized Self-Consistent Composite Cylinders Method with Continuous Graded

Interphase Regions

Further attempts at more accurately representing the interphase region could take

the form of a continuous gradation in properties. The solution for such a region

necessitates the identification of a solution for the displacement field in the graded

interphase region as the equilibrium equations contain additional terms as compared



124

to the piecewise constant interphases. Exact solutions for the displacement field, if

attainable depend on the functional form of the graded interphase properties. Once

the displacement field satisfying the equilibrium equation is obtained, the remainder of

the composite cylinder approach remains unchanged, i.e., the volume averaged strain

energy of the composite cylinder assemblage is equated to that of the homogeneous

solid. As such, here we provide only the needed displacement fields for use in the

generalized self-consistent composite cylinders method. A summary of the derivation

of the displacement field similar to the one provided by Jayaraman and Reifsnider

[167] is provided for the in-plane bulk modulus.

First, we note in general, that, if the displacement field and material proper-

ties in a continuum are spatially varying, that the strain-displacement relations and

constitutive relations of Eqns. 2.7 and 2.8, respectively remain unchanged. However,

assuming that there are no body forces or inertial effects, recall that the equilibrium

equation in Eqn. 2.6 can be expressed as

Cijkl,j εkl + Cijkl εkl,j = 0 (3.67)

where for non-functionally graded materials, Cijkl,j is identically zero so that for

isotropic materials, and by using the strain-displacement relations, Eqn. 3.67 reduces

to the familiar Lamé-Navier equations. For functionally graded materials, Eqn. 3.67

indicates that displacement field solutions will be dependent on the functional form

of the material property gradation.

For example, consider the case where the displacement field in cylindrical coor-

dinates has only a nonzero radial component which is assumed to be a function of

r only, i.e. ur = Ur(r), as in the in-plane bulk test of Eqn. 3.2. The nonzero strain
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components are therefore given by

εrr =
∂ ur
∂ r

=
dUr
d r

εθθ =
1

r

∂ uθ
∂ θ

+
ur
r

=
1

r
Ur

(3.68)

where Ur is the unknown radial displacement component function. The nonzero

stresses for an isotropic material symmetry are therefore given by

σrr = (2µ+ λ)
dUr
d r

+ λ
1

r
Ur

σθθ = (2µ+ λ)
1

r
Ur + λ

dUr
d r

σzz = λ

(
dUr
d r

+
1

r
Ur

) (3.69)

where, though appearing identical to the equations used in determining the functional

form of the stress field in Eqn. 3.5, the difference is that in Eqn. 3.69, µ and λ are

not constant. In fact, if µ and λ are taken to be functions of r, then the equilibrium

equations in cylindrical coordinates, i.e. Eqn. 3.1, reduce to

(
2
dµ

d r
+
dλ

d r

)
dUr
d r

+
dλ

d r

1

r
Ur + (2µ+ λ)

[
d2Ur
d r2

+
1

r

dUr
d r

− 1

r2
Ur

]
= 0 (3.70)

Further, if the Young’s modulus is taken to be a function of r and the Poisson’s ratio

a constant, the derivatives of the Lamé constants can be expressed as

dµ

d r
=

1

2(1 + ν)

dE

d r
(3.71a)

dλ

d r
=

ν

(1 + ν)(1 − 2ν)

dE

d r
(3.71b)

so that the nontrivial equilibrium equation becomes

dE

d r

dUr
d r

+
ν

1 − ν

dE

d r

1

r
Ur + E

d2Ur
dr2

+
E

r

dUr
d r

− E

r2
Ur = 0 (3.72)

It should be noted that E(r) is considered to be a known functional variation of
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the Young’s modulus so that the only unknown in Eqn. 3.72 is Ur(r). Assuming

that the functional form of E(r) can be represented by a polynomial series, i.e., that

E(r) =
n∑

p=m

ξp r
p, we obtain from Eqn. 3.72 the following differential equation for Ur:

d2Ur
d r2

+

⎛
⎜⎜⎜⎜⎝

n∑
p=m

(p+ 1) ξp r
(p−1)

n∑
p=m

ξp r
p

⎞
⎟⎟⎟⎟⎠

dUr
d r

+

⎛
⎜⎜⎜⎜⎝

n∑
p=m

(
p ν

1 − ν
− 1

)
ξp r

(p−2)

n∑
p=m

ξp r
p

⎞
⎟⎟⎟⎟⎠ Ur = 0 (3.73)

where the ξp are constants and where m and n are real numbers. For reasons which

will be discussed below, attempts at obtaining analytic solutions for Ur(r) for m �= n

were unsuccessful. However, for m = n, i.e., for E(r) equal to any monomial, the

differential equation in Eqn. 3.73 reduces to:

d2Ur
d r2

+ (n+ 1)
1

r

dUr
d r

+

(
n ν

1 − ν
− 1

)
1

r2
Ur = 0 (3.74)

which has an exact solution given by:

Ur(r) = c1 r

⎛
⎝1

2

(
n− n ν + γ

ν − 1

)⎞
⎠

+ c2 r

⎛
⎝1

2

(
n− n ν − γ

ν − 1

)⎞
⎠

(3.75)

where c1 and c2 are integration constants to be determined by the boundary and/or

matching conditions and where

γ =

√
(ν − 1)[ν(n + 2)2 − (n2 + 4)] (3.76)

Note that for Poisson’s ratios between −1 and 0.5 that γ is real, with γ = 0 only when

ν = 0.5 and n = 2. Note also that for n = 0 the radial displacement function provided

in Eqn 3.2 for the in-plane bulk test is obtained, i.e., ur(r) = c1 r + c2 r
−1. In fact, it

is the substitution of this radial displacement summed with the radial displacement

of Eqn. 3.75 for n �= 0 into Eqn. 3.73 which produces a residual and indicates the
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Fig. 19. General schematic of a three layer composite cylinder assemblage where the

interphase region (layer two) consists of a functionally graded material.

need for approximate or series solutions[167–169] for such variations of E(r). The

same is true for the sum of any two values for n.

For example, in determining the effective in-plane bulk modulus for a three layer

composite cylinder assemblage like the one shown in Figure 19, i.e., N = 3, Eqn. 3.2

is used to define the displacement field in layers one and three, with the displacement

field for layer 2 given by Eqn. 3.75 with u2
θ = u2

z = 0 assuming for layer two that

E2(r) = ξn r
n and ν2 is a constant. As such, the nonzero strains and stresses in layers

one and three are given by Eqns. 3.4 and 3.5, respectively. For the graded interphase
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layer, the nonzero strains and stresses are given by:

ε2
rr = c1�1r

�1−1 + c2�2r
�2−1

ε2
θθ = c1r

�1−1 + c2r
�2−1

(3.77)

and

σ2
rr =

ξn r
n

(1 + ν2)(1 − 2ν2)

[
c1r

�1−1 ((1 − ν2)�1 + ν2) + c2r
�2−1 ((1 − ν2)�2 + ν2)

]
σ2
θθ =

ξn r
n

(1 + ν2)(1 − 2ν2)

[
c1r

�1−1 ((1 − ν2) + ν2�1) + c2r
�2−1 ((1 − ν2) + ν2�2)

]
σ2
zz =

ν2 ξn r
n

(1 + ν2)(1 − 2ν2)

[
c1r

�1−1 (�1 + 1) + c2r
�2−1 (�2 + 1)

]
(3.78)

respectively, where �1 and �2 are given by:

�1 =
1

2

(
n− n ν2 + γ2

ν2 − 1

)

�2 =
1

2

(
n− n ν2 − γ2

ν2 − 1

) (3.79)

where n is any real number and where γ2 is given by Eqn. 3.76 with ν replaced by ν2.

The displacement field constants, D1
1, D

1
2, c1, c2, D

3
1, and D3

2 are determined from

the same set of boundary and matching conditions provided in Eqns. 3.6 and 3.7,

respectively, and are provided in Section E3 of Appendix E. The effective in-plane

bulk modulus is then determined by any one of the four methods provided in Eqns. 3.8,

3.12, 3.17, and 3.19, where it should be noted that the functional forms of Eqns. 3.10,

3.13, and 3.18 where the effective in-plane bulk modulus is provided in terms of the

displacement field constants must be suitably adjusted to account for the influence

of the graded interphase. The equilibrium equations for the remaining independent

effective properties result in displacement fields provided in Appendix G
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D. The Multi-Layered Generalized Self-Consistent Composite Cylinders Method for

Conductivities

From the electrical and thermal equilibrium equations, Eqns. 2.36 and 2.51, respec-

tively, and assuming homogeneous orthotropic materials, in cylindrical coordinates

we may write

σ̌rr
∂2φ

∂r2
+ σ̌θθ

(
1

r2

∂2φ

∂θ2
+

1

r

∂φ

∂r

)
+ σ̌zz

∂2φ

∂z2
= 0 (3.80a)

krr
∂2φ

∂r2
+ kθθ

(
1

r2

∂2φ

∂θ2
+

1

r

∂φ

∂r

)
+ kzz

∂2φ

∂z2
= 0 (3.80b)

As these equations are of the same form, we will continue the discussion using the

electrical equations. Therefore, if one further assumes that the material is transversely

isotropic (σ̌rr = σ̌θθ = σ̌T and σ̌zz = σ̌A) and considers the cases of conduction in

the axial direction (φ = φ(z)) and transverse conduction (φ = φ(x) ⇒ φ = φ(r, θ)),

Eqn. 3.80a reduces to

σ̌A
∂2φ

∂z2
= 0 (3.81)

and, assuming the potential is separable, i.e. φ(r, θ) = Γ(r)Υ(θ),

σ̌T
∂2Γ

∂r2
Υ + σ̌T

(
1

r2

∂2Υ

∂θ2
Γ +

1

r

∂Γ

∂r
Υ

)
= 0 (3.82)

respectively. Eqns. 3.81 and 3.82 have solutions

φ = Az +B (3.83)

and

φ =

(
Ar +

1

r
B

)
cos(θ) (3.84)

respectively, where A and B are constants to be determined from boundary and/or

interface conditions. These solutions will be applicable in both homogeneous cylinders

and in each phase of the composite cylinders assemblages.
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1. Generalized Self-Consistent Composite Cylinders Method for Axial Conductivity

As with the elastic properties, the composite cylinder method establishes an energy

equivalency between an effective homogeneous material and a composite cylinder

assemblage consisting of N concentric circular cylinders, as was shown schematically

in Figure 16

In order to determine the effective axial conductivity, the homogeneous cylinder

(Figure 16(b)) is taken to have the potential

φ(eff) = D
(eff)
1 z +D

(eff)
2 (3.85)

and is subject to the boundary conditions

φ(eff)(z = −L
2

) = φ0 (3.86a)

φ(eff)(z =
L

2
) = φ0 + ∆φ (3.86b)

resulting in

D
(eff)
1 =

∆φ

L
(3.87a)

D
(eff)
2 = φ0 +

∆φ

2
(3.87b)

Thus the nonzero electric field component in the effective homogeneous material is

determined to be

E(eff)
z = −∆φ

L
(3.88)

so that the nonzero flux component is then given by

J (eff)
z = −σ̌A∆φ

L
(3.89)

and finally the energy density as defined in Eqn. 2.39a is used to obtain the total
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volume averaged energy of the effective homogeneous cylinder as

W (eff) = 〈w(eff)〉 =
σ̌A
2

(
∆φ

L

)2

(3.90)

The composite cylinder assemblage is used to determine the effective axial con-

ductivity consists of N concentric cylinders or phases (Figure 16(a)), each of which

is assumed to have isotropic material symmetry and has a potential of the form

φ(i) = D
(i)
1 z +D

(i)
2 for ri−1 ≤ r ≤ ri (3.91)

where i ranges from one to N , and where r0 �= 0 denotes a hollow fiber. Thus the

nonzero electric field component in each phase is determined to be

E(i)
z = −D(i)

1 (3.92)

so that the nonzero flux component is then given by

J (i)
z = −σ̌(i)D

(i)
1 (3.93)

and finally the energy density of each phase is identified as

w(i) =
1

2
σ(i)

(
D

(i)
1

)2

(3.94)

is used to obtain the total volume averaged energy of the composite cylinder assem-

blage as

W (comp) =
1

V

(
N∑
i=1

∫
Vi

w(i)dV

)
=

1

2r2
N

N∑
i=1

σ̌(i)
(
D

(i)
1

)2

(r2
i − r2

i−1) (3.95)

The composite cylinder assemblage is subjected to the same boundary conditions as

provided in Eqn. 3.86, and, since there is no radial flux component, the interface con-

ditions are automatically satisfied so that the phase constants can be easily expressed
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as

D
(i)
1 =

∆φ

L
(3.96a)

D
(i)
2 = φ0 +

∆φ

2
(3.96b)

Thus, the energy equivalency between the effective homogeneous cylinder and the

composite cylinder assemblage yields that the effective axial conductivity of the com-

posite is given by

σ̌A =

N∑
i=1

σ̌(i) (r
2
i − r2

i−1)

r2
N

(3.97)

which is the rule of mixtures.

2. Generalized Self-Consistent Composite Cylinders Method for Transverse

Conductivity

In order to determine the effective transverse conductivity, the homogeneous cylinder

is taken to have the potential

φ(eff) =

(
D

(eff)
1 r +

1

r
D

(eff)
2

)
cos(θ) (3.98)

However, as the potential must be bounded at the origin, D
(eff)
2 must be identically

zero so that the homogeneous cylinder is subject to the lone boundary condition of

φ(eff)(r = rN , θ) = E0rn cos(θ) (3.99)

resulting in

D
(eff)
1 = E0 (3.100a)

D
(eff)
2 = 0 (3.100b)
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Thus the nonzero electric field components in the effective homogeneous material are

determined to be

E(eff)
r = −E0 cos(θ) (3.101a)

E
(eff)
θ = E0 sin(θ) (3.101b)

so that the nonzero flux components are then given by

J (eff)
r = −σ̌TE0 cos(θ) (3.102a)

J
(eff)
θ = σ̌TE0 sin(θ) (3.102b)

and finally the total energy is obtained as

W (eff) = 〈w(eff)〉 =
σ̌T
2
E2

0 (3.103)

The composite cylinder assemblage used to determine the effective transverse

conductivity consists of N concentric cylinders or phases, each of which is assumed

to have isotropic material symmetry and has a potential of the form

φ(i) =

(
D

(i)
1 r +

1

r
D

(i)
2

)
cos(θ) for ri−1 ≤ r ≤ ri (3.104)

where i ranges from one to N , and where r0 �= 0 denotes a hollow fiber. Thus the

nonzero electric field components in each phase are determined to be

E(i)
r = −

(
D

(i)
1 − 1

r2
D

(i)
2

)
cos(θ) (3.105a)

E
(i)
θ =

(
D

(i)
1 +

1

r2
D

(i)
2

)
sin(θ) (3.105b)

so that the nonzero flux components are then given by

J (i)
r = −σ̌(i)

(
D

(i)
1 − 1

r2
D

(i)
2

)
cos(θ) (3.106a)
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J
(i)
θ = σ̌(i)

(
D

(i)
1 +

1

r2
D

(i)
2

)
sin(θ) (3.106b)

and finally the energy density in each phase is identified as

w(i) =
σ̌(i)

2

((
D

(i)
1 − 1

r2
D

(i)
2

)2

cos2(θ) +

(
D

(i)
1 +

1

r2
D

(i)
2

)2

sin2(θ)

)
(3.107)

which is used to obtain the total volume averaged energy of the composite cylinder

assemblage as

W (comp) =
1

2r2
N

N∑
i=1

σ̌(i)

[(
D

(i)
1

)2

(r2
i − r2

i−1) −
(
D

(i)
2

)2
(

1

r2
i

− 1

r2
i−1

)]
(3.108)

Thus, applying the energy equivalency of Eqn. 2.22, the effective transverse conduc-

tivity is then given by

σ̌T =
1

r2
NE

2
0

N∑
i=1

σ̌(i)

[(
D

(i)
1

)2

(r2
i − r2

i−1) −
(
D

(i)
2

)2
(

1

r2
i

− 1

r2
i−1

)]
(3.109)

In order to determine the constants D
(i)
1 and D

(i)
2 in Eqn. 3.109, the boundary

conditions are applied as

φ(N)(r = rn, θ) = E0rN cos(θ) (3.110a)

J (1)
r (r = r0, θ) = 0 (3.110b)

where Eqn. 3.110a corresponds to an electric field transverse to the composite cylinder

assemblage axis in the x2 direction, and Eqn. 3.110b corresponds to a no flux through

the hollow condition. In addition, the interface conditions representative of continuity

of potential and flux are applied as

φ(j)(r = rj, θ) = φ(j+1)(r = rj, θ) (3.111a)

J (j)
r (r = rj, θ) = J (j+1)

r (r = rj , θ) (3.111b)
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where j ranges from one to N − 1. The resulting system of algebraic equations is

solved to yield the final expression for the transverse conductivity from Eqn. 3.109.

Upon closer inspection of the potential, fields, and fluxes for the transverse con-

ductivities, Eqns. 3.104, 3.105 and 3.106, respectively, as well as of the boundary and

matching conditions of Eqns. 3.110 and 3.111, it is observed that transverse conduc-

tivity is mathematically analogous to the axial shear modulus (Eqns. 3.31, 3.32, 3.33,

3.34 and 3.35) as originally observed by Hashin [179], where the potential corresponds

to the displacement, the field to the strain, and the flux to the stress. Further, it can

be shown that this analogy remains applicable when considering graded interphase

regions, i.e. solutions to Eqn. 2.35, so that the effective conductivities of graded inter-

phase regions need not be presented here again. Thus, for both the axial conductivity

and the transverse conductivity, the application of both field and flux boundary con-

ditions results in coincident bounds and therefore, the application of the composite

cylinder and the generalized self-consistent composite cylinder methods yield identical

results.

E. Concentration Tensor Approximation Using the Generalized Self-Consistent Com-

posite Cylinder Method

1. Stress Concentration Tensor Approximation

As with determining the effective properties via th multi-layer generalized self-consistent

composite cylinders method, the procedure for determining the concentration tensor

requires the solution of five elasticity boundary value problems leading to a system

of equations to determine the stress concentration tensor components. This system

of equations comes from the definition of the stress concentration tensor provided in



136

Fig. 20. Schematic identifying Composite Cylinder Assemblage and the Total Assem-

blage used in determining the components of the concentration tensor from

the generalized self-consistent method.

Eqn. 2.64a and expressed here as

〈σCCA
ij 〉 = Bijkl〈σTotal

kl 〉 (3.112)

where 〈σTotal
kl 〉 refers to the volume average of the stress over the entire assemblage

(i.e, over all N layers) and 〈σCCA
ij 〉 refers to the volume average of the stress over

just the fiber and interphase layers of the composite cylinder assemblage (i.e., over all

layers up through the (N−1)th) as shown schematically in Figure 20. Here it is noted

that because the multi-phase effective compliance in Eqn. 2.68b is most conveniently

applied in Cartesian coordinates, the stresses averaged in Eqn. 3.112 are the composite
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cylinder assemblage stress components expressed in Cartesian coordinates, i.e.,

σi11 = σizz

σi22 = σirr cos2(θ) − 2σirθ cos(θ) sin(θ) + σiθθ sin2(θ)

σi33 = σirr cos2(θ) + 2σirθ cos(θ) sin(θ) + σiθθ sin2(θ)

σi23 = σirr cos(θ) sin(θ) + σirθ(cos2(θ) − sin2(θ)) − σiθθ cos(θ) sin(θ)

σi13 = σirz sin(θ) + σiθz cos(θ)

σi12 = σirz cos(θ) − σiθz sin(θ)

(3.113)

Eqn. 3.112 can therefore be expressed in indicial notation as

〈σCCA
ij 〉 = Bijkl〈σTotal

kl 〉 (3.114)

or in engineering notation

〈σCCA
I 〉 = BIJ〈σTotal

J 〉 (3.115)

where I and J range from one to six, and where the subscripts of Eqn. 3.114 are

related to those of Eqn. 3.115 as 11 ⇒ 1, 22 ⇒ 2, 33 ⇒ 3, 23 ⇒ 4, 13 ⇒ 5, and

12 ⇒ 6. Thus the volume averaged stresses of Eqn. 3.115 can expressed as9

〈σCCA
I 〉 =

1

πr2
N−1L

N−1∑
i=1

∫ L/2

−L/2

∫ 2π

0

∫ ri

ri−1

σiIr dr dθ dz (3.116)

and

〈σTotal
J 〉 =

1

πr2
NL

N∑
i=1

∫ L/2

−L/2

∫ 2π

0

∫ ri

ri−1

σiJr dr dθ dz (3.117)

It is of interest to note that the volume averages of Eqns. 3.116 and 3.117 are over the

entire subvolume and volume, respectively, including the hollow region of the com-

9While we have chosen to use Cartesian components of the stress tensor, those
components are still expressed in terms of r, θ, and z so that the integration over the
composite cylinder can be more conveniently carried out.
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posite cylinder assemblage. However, because the internal surface of the composite

cylinder assemblage is traction free, the stress in the hollow region is taken to be

zero and hence, there is no integral term from zero to r0. In determining the strain

concentration tensor, however, the displacement at the boundary should be used to

extend an appropriate strain field into the hollow region as in some cases the strain

should be taken to be non-zero (e.g., the εzz component of strain is non-zero in the

hollow region for the axial Young’s modulus displacement field).

From each displacement field applied in the multi-layer composite cylinders

method, the stresses in each layer are calculated and averaged resulting in a set

of six equations containing components of the stress concentration tensor to be deter-

mined. The combination of these sets of equations results in a total of 36 equations

to solve for the 36 components (BIJ) of the stress concentration tensor. However, due

to the symmetry conditions, i.e., as the effective material is expected to transversely

isotropic, it can be shown that 〈σCCA
5 〉 = 〈σCCA

6 〉 and 〈σTotal
5 〉 = 〈σTotal

6 〉, the number

of equations and unknowns can be reduced to 30 equations and 30 unknowns.

The six equations obtained from the displacement field applied in the in-plane

bulk modulus test (Eqn. 3.2) contain 18 of the unknown stress concentration tensor

components and can be expressed as

〈σCCA
1 〉 = B11〈σTotal

1 〉 +B12〈σTotal
2 〉 +B13〈σTotal

3 〉

〈σCCA
2 〉 = B21〈σTotal

1 〉 +B22〈σTotal
2 〉 +B23〈σTotal

3 〉

〈σCCA
3 〉 = B31〈σTotal

1 〉 +B32〈σTotal
2 〉 +B33〈σTotal

3 〉

0 = B41〈σTotal
1 〉 +B42〈σTotal

2 〉 +B43〈σTotal
3 〉

0 = B51〈σTotal
1 〉 +B52〈σTotal

2 〉 +B53〈σTotal
3 〉

0 = B61〈σTotal
1 〉 +B62〈σTotal

2 〉 +B63〈σTotal
3 〉

(3.118)
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where it should be noted that BIJ is not necessarily equal to BJI . The displacement

field applied in determining the axial Young’s modulus and the axial stiffness com-

ponent (Eqn. 3.20) produce 12 additional equations of the same form as Eqn. 3.118,

the differences being in the values of the volume averaged stresses as a result of the

different boundary conditions applied. This would seem to constitute a solvable sub-

set of 18 equations and 18 unknowns, however, the sets of equations produced by

the in-plane bulk modulus test (κ23) and the axial stiffness component (C11) are not

linearly independent, and therefore an additional composite cylinder boundary value

problem, the transverse extension test as described in Section A, is needed. The trans-

verse extension test results in six equations of the same form as given in Eqn. 3.118

and therefore provides a third set of equations to solve the 18 equation, 18 unknown

subset of the stress concentration tensor component system. For example, in order to

determine the B11, B12, and B13 stress concentration tensor components, the volume

averaged stresses from the axial Young’s modulus, the in-plane bulk modulus, and

the transverse extension tests constitute a subset of equations given by

Axial Young’s Modulus: 〈σCCA
1 〉 = B11〈σTotal

1 〉 +B12〈σTotal
2 〉 +B13〈σTotal

3 〉

In-plane Bulk Modulus: 〈σCCA
1 〉 = B11〈σTotal

1 〉 +B12〈σTotal
2 〉 +B13〈σTotal

3 〉

Transverse Extension: 〈σCCA
1 〉 = B11〈σTotal

1 〉 +B12〈σTotal
2 〉 +B13〈σTotal

3 〉

(3.119)

Five similar subsets are obtained from Eqn. 3.118 in order to obtain the B2J , B3J ,

B4J , B5J and B6J for J from one to three.

From the displacement field applied in the axial shear modulus test (Eqn. 3.31)

the six equations obtained contain 6 additional unknown stress concentration tensor
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components and can be expressed as

0 = B16〈σTotal
6 〉

0 = B26〈σTotal
6 〉

0 = B36〈σTotal
6 〉

0 = B46〈σTotal
6 〉

0 = B56〈σTotal
6 〉

〈σCCA
6 〉 = B66〈σTotal

6 〉

(3.120)

where it is again noted that the fifth column of the stress concentration tensor matrix

is analogous to the sixth by material and geometric symmetry considerations such

that B55 = B66 and BI5 = 0.

The final column of components of the matrix representation of the stress con-

centration tensor is obtained from the solving of the displacement fields in Eqns. 3.42

and 3.59 and results in equations of the form

0 = B14〈σTotal
4 〉

0 = B24〈σTotal
4 〉

0 = B34〈σTotal
4 〉

〈σCCA
4 〉 = B44〈σTotal

4 〉

0 = B54〈σTotal
4 〉

0 = B64〈σTotal
4 〉

(3.121)

where it is noted that the composite cylinder assemblage used in determining the

volume averaged stresses is the generalized self-consistent composite cylinder assem-

blage. However, the volume averages used in determining the stress concentration
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tensor remain unchanged and are therefore taken over (N − 1)th and N th layers as

indicated in Eqns. 3.116 and 3.117, respectively. As such, the (N + 1)th layer is not

included in the volume averages. However, the presence of the (N + 1)th layer does

enter into the stress concentration tensor component solution through the matching

conditions between N th and (N + 1)th layers.

As a precursor to using the stress concentration tensor for the composite cylinder

assemblage in determining the effective properties of composites, a comparison be-

tween the non-zero components of the stress concentration tensor for a no interphase

case as obtained by the composite cylinders method and by using the values provided

in a Mori-Tanaka approach is provided in Table III. Here we note that there is good

agreement between the composite cylinders and Mori-Tanaka approaches out to four

significant figures for most stress concentration tensor components, with only minor

discrepancies between stress concentration tensor components which are more directly

associated with the transverse direction. These results are consistent with observa-

tions made for similar composites where the composite cylinders and Mori-Tanaka

results where shown to nearly coincide, with deviations most notable in the trans-

verse properties [161]. With only minor differences in the stress concentration tensor

components, the use of the generalized self-consistent composite cylinders method to

determine stress concentration tensors is validated for use in coated and/or hollow

fiber composites.

2. Flux Concentration Tensor Approximation

As with determining the effective conductivities via th multi-layer composite cylinders

method, the procedure for determining the concentration tensor requires the solution

of two boundary value problems leading to a system of equations to determine the flux

concentration tensor components. This system of equations comes from the definition
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Table III. Comparison of non zero stress concentration tensor components at 5% vol-

ume fraction for a composite cylinder assemblage with no interphase regions

as obtained by the generalized self-consistent composite cylinders method

and by using a Mori-Tanaka approach.

Stress Concentration

Tensor Component Composite Cylinders Mori-Tanaka

B11 19.75 19.75

B12 = B13 -7.044 -7.044

B22 = B33 1.473 1.423

B21 = B31 -2.106E-03 -2.106E-03

B23 = B32 -2.472E-01 -1.967E-01

B44 1.623 1.620

B55 = B66 1.903 1.903
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of the flux concentration tensor provided in Eqn. 2.64c and expressed here as

〈JCCA〉 = B〈JTotal〉 (3.122)

where 〈JTotal〉 refers to the volume average of the flux over the entire assemblage (i.e,

over all N layers) and 〈JCCA〉 refers to the volume average of the flux over just the

fiber and interphase layer(s) of the composite cylinder assemblage (i.e., over all layers

up through the (N − 1)th). Here it is noted that because the multi-phase effective

resistivity in Eqn. 2.68d is most conveniently applied in Cartesian coordinates, the

fluxes averaged in Eqn. 3.122 are the composite cylinder assemblage flux components

expressed in Cartesian coordinates, i.e.,

J
(i)
1 = J (i)

z

J
(i)
2 = J (i)

r cos(θ) − J
(i)
θ sin(θ)

J
(i)
3 = J (i)

r sin(θ) + J
(i)
θ cos(θ)

(3.123)

Eqn. 3.122 can therefore be expressed in indicial notation as

〈JCCA
i 〉 = Bij〈JTotal

j 〉 (3.124)

Thus the volume averaged stresses of Eqn. 3.124 can expressed as10

〈JCCA
i 〉 =

1

πr2
N−1L

N−1∑
j=1

∫ L/2

−L/2

∫ 2π

0

∫ rj

rj−1

J
(j)
i r dr dθ dz (3.125)

and

〈JTotal
i 〉 =

1

πr2
NL

N∑
j=1

∫ L/2

−L/2

∫ 2π

0

∫ rj

rj−1

J
(j)
i r dr dθ dz (3.126)

10While we have chosen to use Cartesian components of the flux vector, those
components are still expressed in terms of r, θ, and z so that the integration over the
composite cylinder can be more conveniently carried out.
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It is of interest to note that the volume averages of Eqns. 3.125 and 3.126 are over the

entire subvolume and volume, respectively, including the hollow region of the com-

posite cylinder assemblage. However, because the internal surface of the composite

cylinder assemblage has a no flux condition imposed, the flux in the hollow region is

taken to be zero and hence, there is no integral term from zero to r0
11.

From each potential field applied in the multi-layer composite cylinders method,

the fluxes in each layer are calculated and averaged resulting in a set of three equations

containing the components of the stress concentration tensor to be determined. The

combination of these sets of equations results in a total of 9 equations to solve for the

9 components (Bij) of the flux concentration tensor. However, due to the symmetry

conditions, i.e., as the effective material is expected to transversely isotropic, it can

be shown that 〈JCCA
2 〉 = 〈JCCA

3 〉 and 〈JTotal
2 〉 = 〈JTotal

3 〉, the number of equations and

unknowns can be reduced to 6 equations and 6 unknowns.

The three equations obtained from the potential applied in the axial conductivity

test (Eqn. 3.91) contain three of the unknown flux concentration tensor components

and can be expressed as

〈JCCA
1 〉 = B11〈JTotal

1 〉

0 = B21〈JTotal
1 〉

0 = B31〈JTotal
1 〉

(3.127)

From the potential applied in the transverse conductivity test (Eqn. 3.104) the

three equations obtained contain three additional unknown flux concentration tensor

11In determining the field concentration tensor, the potential at the boundary
should be used to extend an appropriate field into the hollow region as in some
cases the field should be taken to be non-zero (e.g., the Ez component of strain is
non-zero in the hollow region for the axial conductivity potential field).



145

components and can be expressed as

0 = B12〈JTotal
2 〉

〈JCCA
2 〉 = B22〈JTotal

2 〉

0 = B32〈JTotal
2 〉

(3.128)

where it is again noted that the second column of the flux concentration tensor matrix

is analogous to the third by material and geometric symmetry considerations such

that B33 = B22, B13 = B12, and B23 = B32.

Again, it is noted that by the mathematical analogy between the electrical and

thermal conductivity equilibrium equations, that the concentration tensors obtained

here for the electric flux are equally applicable to the heat flux.

3. Application of Generalized Self-Consistent Composite Cylinders Concentration

Tensor Towards Obtaining Effective Properties

Having the stress (or flux) concentration tensor is the key to allowing one to determine

the effective compliance of composites containing multiple types of coated fibers and

of composites containing partially aligned or randomly oriented coated fibers via the

general averaging. However, it is important to note, as illustrated in Eqn. 3.129a (or

Eqn. 3.129b), that even for a single type of aligned coated fiber (Figure 21) , it is

also necessary to identify the compliance (or resistivity) of the inner portion of the

composite cylinder assemblage consisting of the fiber and any interphase regions, i.e.

MCCA
ijkl (or ρ̌CCA

ij ) so that cf is the volume fraction of the inner portion of the composite

cylinder assemblage as a whole, i.e. cf = r2
N−1/r

2
N .

Mijkl = MN
ijkl + cf(M

CCA
ijmn −MN

ijmn)Bmnkl (3.129a)

ρ̌eff
ij = ρ̌Nij + cf(ρ̌

CCA
ik − ρ̌Nik)Bkj (3.129b)
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Fig. 21. Schematic representation of using the generalized self-consistent composite

cylinders method for determining concentration tensors in a non-Eshelby ap-

proach for a composite containing a single type of coated, hollow, aligned

inhomogeneities.
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One way of obtaining MCCA
ijkl is to calculate the effective properties of the compos-

ite cylinder assemblage using any of the methods provided in Section A at a volume

fraction referred to as the critical volume fraction. If the volume fraction of the

first layer within a composite cylinder assemblage like the one shown in Figure 16

is given by vf = r2
1/r

2
out where rout is the outer radius of the assemblage, then as

this volume fraction increases, the outer radius contracts.12 When rout = rN−1, then

vf = v̂f = r2
1/r

2
N−1 and there is essentially no matrix material remaining so that

the effective properties obtained correspond to just the first layer plus the interphase

regions and can therefore be taken as the effective properties of the (N − 1)th com-

posite cylinder assemblage denoted by MCCA
ijkl in Eqn. 3.129a. This compliance can

be expressed in engineering notation as

[
MCCA

IJ

]−1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Eeff
1 + 4(νeff

12 )2κeff
23 ) (2κeff

23ν
eff
12 ) (2κeff

23ν
eff
12 ) 0 0 0

(2κeff
23ν

eff
12 ) (µeff

23 + κeff
23 ) (−µeff

23 + κeff
23 ) 0 0 0

(2κeff
23ν

eff
12 ) (−µeff

23 + κeff
23 ) (µeff

23 + κeff
23 ) 0 0 0

0 0 0 2µeff
23 0 0

0 0 0 0 2µeff
12 0

0 0 0 0 0 2µeff
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.130)

where the effective properties are obtained at the critical volume fraction, i.e. κeff
23 =

κeff
23 |vf =v̂f

. It should be noted that, as should be expected, using Eqn. 3.129a to de-

termine the effective properties of aligned composite cylinder assemblages of single

type yields identical effective properties as those obtained directly from the general-

ized self-consistent composite cylinder method. One can then use Bijkl and MCCA
ijkl in

Eqn. 3.129a (or use Bij and ρ̌CCA
ij in Eqn. 3.129b) to study a range of volume fractions

12If there are no interphase regions, then cf = vf .
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Fig. 22. Schematic representation of using the generalized self-consistent composite

cylinders method for determining concentration tensors in a non-Eshelby ap-

proach for a composite containing a single type of coated, hollow, randomly

oriented inhomogeneities.

of aligned coated fibers of a single type, or using Eqn. 2.68b (or Eqn. 2.68d) to de-

termine the effective properties with multiple types of fibers(different inhomogeneity,

different interphase(s), some hollow some not, etc.) or other inclusion geometries to

determine the effective properties of multi-phase composites.

Further, for composites containing randomly oriented coated and/or hollow fiber

composites (Figure 22) , one can apply the methods developed in Section D of Chap-

ter II and using Bijkl and MCCA
ijkl in Eqn. 2.163b (or use Bij and ρ̌CCA

ij ) to obtain the

effective properties, i.e.

M eff
ijkl = MN

ijkl +
cf
4π

∫ 2π

0

∫ π

0

{(MCCA
ijmn(ϕ, ψ) −MN

ijmn)Bmnkl(ϕ, ψ)} sin(ϕ)dϕ dψ

(3.131a)
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ρ̌eff
ij = ρ̌Nij +

cf
4π

∫ 2π

0

∫ π

0

{(ρ̌CCA
ik (ϕ, ψ) − ρ̌Nik)Bkj(ϕ, ψ)} sin(ϕ)dϕ dψ (3.131b)

where it is noted that c̄ = cf .

Finally, it is noted that the effective stiffness (or conductivity) is then obtained

by taking the inverse of the compliance, i.e. Leff
ijkl = (M eff

klij)
−1 (or σ̌eff

ij = (ρ̌eff
ji )

−1).

In the following chapters the generalized self-consistent composite cylinders method

will be employed in a variety of approaches towards determining the effective elas-

tic properties and electrical and thermal conductivities of carbon nanotube-polymer

nanocomposites. In much of this work, the carbon nanotubes are modeled as high

aspect ratio, straight, randomly oriented composite cylinder assemblages as shown

schematically in Figure 22. In general, the composite cylinder assemblages will consist

of the carbon nanotube surrounded by interphase layer(s), embedded in the matrix,

and finally surrounded by the effective medium. As such, the following chapters will

refer back to this chapter and to Chapter II as needed.
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CHAPTER IV

EFFECTIVE ELASTIC PROPERTIES OF NANOCOMPOSITES

In the present work, Mori-Tanaka, self-consistent, and the generalized self-consistent

composite cylinders analytic micromechanics approaches in addition to finite element

based computation micromechanics approaches are employed in modeling the effec-

tive elastic properties of CNT reinforced composites such as the one seen in Figures 3

and 23. The effects of interphase regions as observed in Figure 3(b), such as can

result due to functionalization and polymer wrapping, on the effective elastic proper-

ties are also investigated using a multi-layer composite cylinders and computational

micromechanics approaches. In the largest scale image in Figure 23, clusters of CNTs

can be seen dispersed throughout a polymer matrix. Subsequent images at smaller

scales show that within each cluster, bundles of CNTs having diameters on the order

of 50 nm are observed to have a high degree of alignment. As such, clustering of CNTs

in a polymer matrix is modeled herein in the context of aligned CNT bundles using

a tessellation procedure to quantify clustering and both analytic and computational

micromechanics approaches to assess the impact of clustering.

In order to model CNT composites several assumptions are made. The first

simplification made is to assume that the carbon nanotubes are perfectly bonded

to the matrix (or interphase). By this it is meant that there can be no discontinu-

ities in displacement field when crossing the boundary between polymer and carbon

nanotubes. This assumption is implicit to all micromechanics techniques which have

not been appropriated modified so as to relax this assumption (e.g. composite cylin-

ders, generalized self-consistent, and Mori-Tanaka). A second simplification is that

of assuming that all carbon nanotubes are without any curvature (i.e. that they are

straight nanotubes). Next, it is assumed for the time being that the nanotubes within
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Fig. 23. TEM images depicting clustering and alignment of CNT bundles in a polymer

matrix. The images were taken using a JEOL 1200 EX TEM operating at an

accelerating voltage of 100kV at Texas A&M University by P. Thakre. Here

the polymer matrix was polypropylene.

the composite are well aligned. At present, full scale alignment is difficult to obtain

for actual composites throughout the entire sample. However, using Figures 3(a)

and 23 as motivation, one can consider this assumption akin to analyzing a single

cluster of bundles within the composite. Finally, it is assumed that the CNTs con-

tain no defects or residual catalyst, and that the CNTs are sufficiently long (having

aspect ratios on the order of 1000) so as to ignore end effects. It is also noted that all

materials, matrix, CNTs, and any interphase region(s), are assumed to be isotropic

linear elastic, and subject to small deformations.

For modeling purposes, the composite in Figures 3 and 23 has been idealized

as shown in Figure 24(a) to a composite containing randomly oriented aligned clus-

tered bundles of straight high aspect ratio CNTs. Effective elastic properties can

be derived by first determining the effective properties of the clustered bundles as

represented by the representative volume element (RVE) shown in Figure 24(b). In

Figure 24(b), individual CNTs within the bundle can be seen with varying types and
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(a) Cluster Scale (b) Bundle Scale (c) CNT Scale

Fig. 24. Schematic representation of assumed simplifications for CNT-polymer com-

posite modeling. 24(a) TEM and schematic of randomly clusters of bundles

of CNTs. 24(b) TEM and schematic of an aligned bundle with M distinct

CNT-interphase arrangements (here M=4 as two CNTs are identical). 24(c)

TEM and schematic of a CNT with an interphase region (i.e. N=3 for the in

the generalized self-consistent composite cylinder method).
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number of interphase regions. The effective properties and concentration tensors of

each individual CNT surrounded by its interphase regions can be determined using

a multi-layer generalized self-consistent composite cylinders approach as discussed in

Chapter III for arrangements like the one shown in Figure 24(c). Each unique ef-

fective CNT arrangement constitutes a separate phase to be used in a multi-phase

averaging approach (see Chapter II) applied to the clustered bundle of Figure 24(b).

Finally, effective elastic properties for the composite as whole can be obtained again

from a multi-phase micromechanics approach where each orientation of every distinct

effective bundle constitutes a separate phase (see Section D of Chapter II).

The remainder of this chapter proceeds as follows. First, the composite cylin-

ders method is used to estimate effective CNT properties. Next, the Mori-Tanaka,

self-consistent, and generalized self-consistent composite cylinder methods are used

to obtain effective elastic properties for aligned, well-dispersed CNTs. Results for

the effective elastic properties of aligned, well-dispersed CNTs with interphase re-

gions obtained using both the generalized self-consistent composite cylinders method

and computational micromechanics follows. This in turn is followed by analytic and

computational micromechanics approaches towards estimating the effective elastic

properties of aligned, clustered CNTs both with and without interphase regions. Fi-

nally, the effective elastic properties obtained using the micromechanics approaches

described herein are compared to measured data from the literature for randomly

oriented CNT-polymer nanocomposites.
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(a) Composite Cylinder Assemblage
for Carbon Nanotubes

(b) Effective Carbon Nanotube

Fig. 25. Schematic representation of the application of an N = 1 generalized

self-consistent composite cylinders method in determining effective carbon

nanotube properties.

A. Use of the Generalized Self-Consistent Method to Estimate Carbon Nanotube

Properties

In order to be able to properly compare results for CNT-polymer nanocomposites

from the generalized self-consistent composite cylinder model with results from Mori-

Tanaka and self-consistent approaches, it is necessary to obtain an effective nanotube,

i.e. a solid cylinder with transversely isotropic effective properties, for which an

Eshelby tensor can be defined. This is accomplished through the application of the

generalized self-consistent composite cylinders method for a N = 1 composite cylinder

assemblage as shown schematically in Figure 25. With the number of layers set

equal to one, the effective properties obtained correspond to the hollow CNT with no
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surrounding interphases or matrix1.

In implementing the generalized self-consistent composite cylinders method to-

wards determining effective nanotube properties, several assumptions have to be

made. The first set of such assumptions pertain to the specific geometry of the

nanotube, and the second set, to the elastic properties of the tube. The geometric

information needed in order to apply the generalized self-consistent composite cylin-

der method consists of the inner and outer radii of the CNT, thereby introducing the

thickness of the CNT as a length scale in the formulation. Using electron microscopy,

the outer radius of single and multi-walled carbon nanotubes can be discerned, with

some [6] reporting typical values for single wall carbon nanotubes between 0.5 and

20 nm. In order to put this radius range into perspective, the standard notation

for CNT identification (see for example the summary provided by Terrones [4]) pro-

vided in Figure 26 is used to calculate the radii of both zigzag and armchair CNTs

provided in Table IV. Taking the bonding distance between carbon atoms as 0.144

nm, it is observed that a zigzag nanotube with radius between 0.5 and 20 nm can

have between 13 and 500 carbon atoms around it’s circumference while for armchair

nanotubes, this range of radii would correspond to between 16 and 600 carbon atoms

around the circumference.

While the outer radius is somewhat discernible using electron microscopy, es-

timates of the thickness of a single-walled carbon nanotube are a subject of much

debate. As shown in Figures 27 and 28, values for CNT thicknesses2 applied in es-

1Results for the N = 1 composite cylinder assemblage representing the CNT are
analogous to the results that would be obtained for a graphene sheet with cylindrical
voids. Computational micromechanics techniques discussed in Section B will demon-
strate that the effective properties obtained for CNTs via the this method can be used
to as reasonable input properties for the Mori-Tanaka and self-consistent methods.

2See Appendix A for the tabularized data used in constructing Figures 27 and 28
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Table IV. Comparison of zigzag and armchair CNT radii.

Zigzag radius (n,0) Armchair (n,n)

n circumference (nm) radius (nm) circumference (nm) radius (nm)

5 1.247 0.198 2.160 0.344

10 2.494 0.397 4.320 0.688

11 2.744 0.437 4.752 0.756

12 2.993 0.476 5.184 0.825

13 3.242 0.516 5.616 0.894

15 3.741 0.595 6.480 1.031

20 4.988 0.794 8.640 1.375

21 5.238 0.834 9.072 1.444

22 5.487 0.873 9.504 1.513

25 6.235 0.992 10.800 1.719

30 7.482 1.191 12.960 2.063

50 12.471 1.985 21.600 3.438

100 24.942 3.970 43.200 6.875

200 49.883 7.939 86.400 13.751

300 74.825 11.909 129.600 20.626

500 124.708 19.848 216.000 34.377
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Fig. 26. Diagram for identification of CNT type as armchair, zigzag, or chiral.[4]

timating CNT (Axial) Young’s modulus from both modeling results and measured

data have ranged between 0.06 and 0.95 nm [92, 97, 212, 213]. However, as the radius

of carbon atom is noted to be 0.17nm, and as the interlayer spacing of graphite and

multi-walled carbon nanotubes is often observed to be 0.34 nm (i.e. the carbon atom

diameter), many have opted to employ 0.34 nm for the single wall carbon nanotube

thickness. In order to proceed with calculation of the effective properties of a single

wall carbon nanotube using the generalized self-consistent composite cylinder model,

geometric data indicated by Ruoff et al.[9, 214–216] was employed; namely, an outer

radius of 0.85 nm and a thickness of 0.34 nm. Thus the volume fraction of the hollow

region of the nanotube is given by ch = r2
hollow/r

2
cnt, where rhollow is the inner radius

of the CNT and rcnt the outer, and is determined to have a value of ch = 0.36.

In addition to identifying aspects of the geometry of the nanotube, it is necessary

to also identify the material properties of the nanotube. Here it is presumed that the

interior of the nanotube is ideally hollow in that it has zero stiffness. The nanotube

itself is presumed to have isotropic properties corresponding to those of graphite in
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Fig. 27. Estimated Young’s modulus of carbon nanotubes as a function of CNT thick-

ness. The data presented here indicates a generally accepted value for CNT

thickness of 0.34 nm. Data points are take from the following sources in the

literature: Data Set 1 [97], Data Set 2 [97], Data Set 3 [213], Data Set 4 [213],

Data Set 5 [212], Data Set 6 [92], Data Set 7 [25]. It is noted that the values

provided for Data Set 7 are for multi-walled carbon nanotubes, and that no

thickness was provided. They are placed at 1 simply demonstrate some of the

values of Young’s modulus obtained for MWCNTs in comparison to SWCNTs.

Also provided in the figure are the results for the axial Young’s modulus of

the effective nanotube for two different CNT thicknesses (GSC-CC for CNT),

both with CNT radii of 0.85 nm.
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Fig. 28. Subset of the values of the estimated Young’s modulus of carbon nanotubes as

a function of CNT thickness. This subset of the values provided in Figure 27

denotes both the generally accepted CNT thickness and the value for the

in-plane Young’s modulus of graphite, both of which are used as CNT input

parameters in the present study.
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the plane of a graphene sheet, i.e. a Young’s of 1100 GPa and Poisson’s ratio of

0.14 [2, 217]. This assumption is reasonable given the relative similarity between

graphene sheets and nanotubes, however, it should be noted that material proper-

ties for nanotubes obtained from a wide variety of lower length scale calculations

ranging from quantum mechanics to molecular dynamics or from measured data, a

sampling of which is provided in Figures 27 and 28, could readily be substituted in

place of graphene. Large variance in the values obtained from both simulations and

measurements shown in Figures 27 and 28 lead to the selection of the value applied.

The resulting axial Young’s modulus, E1, of the effective nanotube using these

identified parameters for the CNT in generalized self-consistent composite cylinder

method (Eqn. 3.28) are also provided in Figures 27 and 28 and are shown to be

within the acceptable range of CNT values. Similarly, in-plane bulk modulus, κ23,

the axial shear modulus, µ12, the in-plane shear modulus, µ23, and the axial Poisson’s

ratio, ν12, are obtained from Eqns. 3.10, 3.37, 3.64, and 3.50, respectively, all with

N = 1. The resulting effective nanotube properties are provided in Table V, where

the transverse Young’s modulus, E2 obtained from Eqn. 3.52, is also provided. The

effective CNT properties for a nanotube having half of the desired thickness are also

provided in Table V to illustrate the significant influence of the choice of thickness.

In order to further illustrate the influence of the two significant geometric param-

eters on the effective CNT properties, two parametric studies are provided (Figures 29

and 30). In the first, the radius of the CNT, rcnt, is increased while the thickness

remains constant at 0.34 nm.3 This corresponds to sweeping through different values

3The input elastic constants corresponding to graphite also remain constant as
the material properties of the annulus of the nanotube are not changing. This is
reasonable given the assumption of an undisturbed graphene lattice. It is also in
agreement with the observations of Lu [217] who observed nearly identical properties
for the annulus of the nanotube for CNTs with the same thickness (0.34 nm) but
varying radii using a lattice dynamics model.
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Table V. Values for the elastic properties of effective CNTs as obtained using the

generalized self-consistent composite cylinder method. In both cases, the

radius of the CNT is taken to be 0.85 nm, and the properties of the nanotube

are taken to be those of graphene sheets (E = 1100 GPa and ν = 0.14).

Thicknesses provided correspond to the interlayer spacing of graphene sheets

in graphite and half of that value.

Effective Thickness Thickness

Property 0.34 nm 0.17 nm

E1 (GPa) 704 396

E2 (GPa) 396 47.5

µ12 (GPa) 227 106

µ23 (GPa) 106 13.1

κ23 (GPa) 286 128

ν12 0.14 0.14
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of the CNT identifiers, n, as provided in Table IV. The resulting effective CNT axial

and transverse Young’s moduli are provided in Figure 29. There it is observed that

from an initially nearly equal axial and transverse Young’s moduli for what would be

a (5,5) armchair nanotube, both moduli decrease rapidly, but at different rates. For

example, for the values corresponding to a (15,15) armchair nanotube, the transverse

Young’s modulus is less than half (37%) the value of the axial Young’s modulus, and

for a (30,30) armchair nanotube, is less than a tenth (7%) of the axial Young’s mod-

ulus value. This is while the axial Young’s modulus has decreased by 55% and 30%,

respectively, relative to the (5,5) armchair nanotube value. Also noted in Figure 29

are the values for the effective CNT axial and transverse Young’s moduli identified in

order to consistently compare modeling results for nanocomposites in the subsequent

sections.

In the second illustrative example, the CNT radius is increased by increments of

0.34 nm while the radius of the hollow interior, rhollow is held fixed at 0.51 nm. This is

representative of the estimation of effective CNT axial and transverse Young’s moduli

for multi-walled carbon nanotubes, with each increment of 0.34 nm corresponding to

an additional wall. The results for the effective CNT properties are provided in

Figure 30 where it is observed that as the number of walls is increased, the effective

CNT axial and transverse Young’s moduli approach one another, nearly converging at

17 walls with a Young’s modulus nearly equal to that of the input graphite modulus for

the nanotube annulus, which is also within the range of values for MWCNT Young’s

modulus provided in Data Set 7 [25].4 Here it is cautioned that while results for the

axial Young’s modulus provided in Figure 30 are reliable, the results for the transverse

4In reference [25], the outer radius of the MWCNTs was provided, but not the
number of walls or the inner radius. As such, the Young’s modulus data was placed
in Figure 30 at 17 walls using an assumed inner radius of 0.51 nm.
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Fig. 29. Observation on the influence of CNT radius on effective CNT axial and trans-

verse Young’s moduli estimated using the generalized self-consistent compos-

ite cylinders method. It is noted that the CNT outer radius, rcnt, is varied

while holding the thickness of 0.34 nm constant (therefore the inner radius,

rhollow is not constant).
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Fig. 30. Observation on the influence of CNT thickness on effective CNT axial and

transverse Young’s moduli estimated using the generalized self-consistent com-

posite cylinders method. The effective CNT axial and transverse Young’s

moduli for CNTs are provided as a function of the number of walls for a

MWCNTs. Here the CNT inner radius is held constant while additional lay-

ers of the thickness of 0.34 nm are added (therefore the outer radius is not

constant). For comparison purposes, Data Set 7 [25] is included as the data

is for multi-walled carbon nanotubes.
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Young’s modulus provided do not take into consideration any interlayer discontinuity

in traction or displacement which may effect the estimated value. Finally, it is noted

that both illustrative examples in Figures 29 and 30 correspond to varying the volume

fraction of the hollow region in the nanotube, ch. However, the physical reasons for

these different volume fractions drives the preceding discussion and the resulting

conclusions which can be made in comparing subsequent nanocomposite modeling

results with measured data.

B. Effective Elastic Properties of Aligned CNT Composites

The effective elastic properties of CNT-epoxy nanocomposites with aligned, well-

dispersed CNTs are obtained using the generalized self-consistent composite cylinder

model, and compared with results from the proper application of the Mori-Tanaka

and self-consistent models as shown schematically in Figure 31. Here a hollow,

N = 2 composite cylinder assemblage consisting of a single wall carbon nanotube

and the matrix material is used to obtain the effective axial Young’s modulus, Eeff
1

(Eqn. 3.28), in-plane bulk modulus, κeff
23 (Eqn. 3.10), the axial shear modulus, µeff

12

(Eqn. 3.37), the in-plane shear modulus, µeff
23 (Eqn. 3.64), and the axial Poisson’s

ratio, νeff
12 (Eqn. 3.50), of the nanocomposite, with the transverse Young’s modulus,

Eeff
2 obtained from Eqn. 3.52. The nanotube geometric and material parameters re-

main the same as previously identified, i.e., an inner radius of r0 = 0.51 nm, an outer

radius of r1 = 0.85 nm, with a Young’s modulus and Poisson’s ratio for the nanotube

annulus of E = 1100 GPa and ν = 0.14. The matrix material properties are chosen

to reflect the elastic properties of epoxy (in this case EPON 862 E = 3.07 GPa and

ν = 0.3)5 at room temperature (well below Tg).

5Measured values for Young’s modulus of epoxies can vary between 2.03-3.91 GPa
[33, 36, 49, 218–220]. However, relative to the nanotube Young’s modulus, this
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(a) Generalized Self-Consistent Composite Cylinder Model

(b) Mori-Tanaka and Self-Consistent Models

Fig. 31. Schematic representation of the application of the generalized self-consistent

composite cylinders, the Mori-Tanaka, and the self-consistent models for

aligned, well-dispersed CNT nanocomposites. 31(a) depicts the N = 2 com-

posite cylinder assemblage applied. 31(b) depicts the use of the effective CNT

properties in applying the Mori-Tanaka and self-consistent approximations.
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For the Mori-Tanaka and self-consistent models, the effective nanocomposite

properties are obtained from Eqn. 2.71a (also for N = 2) where the strain con-

centration tensors are approximated using Eqns. 2.123 and 2.83, respectively, where

the Eshelby tensor corresponds to an infinitely long circular cylinder embedded in

an isotropic and transversely isotropic material, respectively (see for example pgs.

80 and 141 of reference [221]). In both cases, the effective CNT properties provided

in Table V are used to construct the stiffness tensor for the inhomogeneity (L1) for

use in determining the effective nanocomposite stiffness (Leff) by using the elastic

constant relationships for transversely isotropic materials, i.e. L1
1111 = E1 + 4ν2

12κ23,

L1
1122 = 2κ23ν12, L

1
2222 = µ23 + κ23, L

1
2233 = −µ23 + κ23, and L1

1212 = µ12 [198],

and it is noted that the CNT volume fraction within the matrix is identified for the

composite cylinder assemblage and the Mori-Tanaka and self-consistent methods as

vf = c1 = r2
1/r

2
2.

Figure 32 provides a comparison of the results obtained for nanocomposites with

aligned, well-dispersed CNTs using the generalized self-consistent composite cylinders

(CC) method with results from both the Mori-Tanaka (CC/MT) and self-consistent

(CC/SC) methods. Figure 32(a) demonstrates, as expected, that all three methods

return the rule of mixtures for the effective axial Young’s modulus, Eeff
1 . However,

for the remaining effective composite properties, the CC and CC/MT provide similar

results whereas the CC/SC shows large differences relative to the other two methods,

particularly at volume fractions greater then 60% as shown in Figure 32(b) for Eeff
2 .

Moreover, this difference becomes more pronounced with increasing CNT volume

fraction as the CC and CC/MT approaches demonstrate a higher degree of matrix

dominance than does the CC/SC. It is noted that by matrix dominance it is meant

variance makes little difference. The value selected was near the middle of this range
and was taken from [36].
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(a) Eeff
1 (b) Eeff

2

(c) µeff
12 (d) µeff

23

(e) κeff
23 (f) νeff

12

Fig. 32. Effective properties for nanocomposites consisting of aligned, well-dispersed

CNTs in epoxy using the generalized self-consistent composite cylinders,

Mori-Tanaka, and self-consistent methods. For convenience the three meth-

ods are labeled CC, CC/SC, and CC/MT, respectively, where the CC in the

self-consistent and Mori-Tanaka methods serves as a reminder that these re-

sults were obtained using effective CNTs as input.
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that the effective properties obtained are much closer to the matrix properties at high

volume fractions and therefore well below a weighted average of the input properties

such as the rule of mixtures. The effective µeff
12 , µeff

23 , and κeff
23 elastic moduli display

similar matrix dominated behavior as observed for Eeff
2 . The degree of matrix dom-

inance is attributed [161] to the large differences between the matrix and nanotube

properties. As a simple explanation, it is noted that in determining the axial Young’s

modulus, the plane strain assumptions associated with the high aspect ratio of the

nanotube result in the extensional load being applied to both the matrix and the nan-

otube. However, in determining transverse properties like the in-plane bulk modulus,

the applied displacements must be transmitted through the compliant matrix before

reaching the much stiffer nanotube so that most of the strain observed would occur

in the matrix.

It is also noted that the effective properties reported in Figure 32 are for the

full range of volume fractions in order to demonstrate that all three methods return

the matrix properties at zero volume fraction, and the effective CNT properties at a

volume fraction of one. However, there is a limit on the highest attainable volume

fraction as all of the nanotubes in the composite are assumed to be of the same

size, i.e. the maximum packing volume fraction for identically sized aligned fibers

which is 0.90. Further, it is noted that the current attainable volume fractions for

CNT-epoxy nanocomposites are less than 0.10.6 However, at these volume fractions

6Higher volume fraction comparisons with experimental data are not presently
possible as currently it is difficult to make epoxy composites with volume fractions
of CNTs much higher than 10% due to the large increase in viscosity of the liquid
polymer with the introduction of CNTs. This point is emphasized if one considers the
ideal case of having well-dispersed and well-aligned CNTs in a matrix material. At
1% volume fraction, CNTs would have an average center-to-center separation of 17nm
while at 10% volume fraction, the center-to-center separation would be 5.4nm (based
on tessellation and polygon to sphere conversion of the regular hexagonal array of
CNTs). For the cross-linked thermoset epoxy matrix used in the present study, such
a small spacing may be the source of the large viscosity increases, as for noncross-
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all three methods yield nearly identical results, with increases in the axial Young’s

modulus of 2300% and a more modest value in the transverse Young’s modulus of 30%

relative to the matrix at a volume fraction of 0.10. It is also of interest to note that

good agreement between the Mori-Tanaka and generalized self-consistent methods at

nearly all volume fractions is consistent with the 5% volume fraction comparison of

stress concentration tensor components provided in Table III, where it is noted that

the comparison is in fact for effective CNTs.

Effective properties for nanocomposites consisting of aligned, well-dispersed CNTs

in an epoxy matrix obtained from the generalized self-consistent composite cylinders

method are also compared with computational micromechanics results obtained from

finite element analysis (FEA). The FEA results were obtained using the actual hol-

low CNT geometry with the isotropic properties of graphene, as previously discussed,

with CNTs arranged in a regular hexagonal array, shown in Figure 33, which is sub-

ject to periodic boundary conditions on all six sides. The regular hexagonal array is

known to produce effective properties which are transversely isotropic, as expected to

be the case for random distributions of fibers in the transverse plane [141, 222]. The

large representative volume element (RVE) chosen for the numerical examples is not

the smallest for a perfect hexagonal array, but was chosen so as to be consistent with

the clustering studies presented herein. In addition, the same arrangement but with

using solid transversely isotropic cylinders with effective CNT properties as provided

in Table V in what could be termed a CC/FEA method was studied. Further details

concerning the finite element simulation are provided in Appendix H.

Finite element results for the effective elastic properties of hollow and effective

fiber FEA representations for the well-dispersed case are provided in Figure 34. Also

linked systems, such as polystyrene, CNT volume fractions of up to 50% have been
obtained [47], though mechanical properties were not the focus.
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(a) FEA RVE using isotropic linear
elastic CNTs

(b) FEA RVE using transversely
isotropic linear elastic effective CNTs

Fig. 33. FEA RVE’s used to generate effective composite properties.

included in the figures are the effective properties obtained using the generalized self-

consistent composite cylinders method (which by Figure 32 also implies comparison

with CC/MT results) where it is noted that the in-plane Poisson’s ratio, νeff
23 , is

obtained from Eqn. 3.53.7

As shown in Figure 34(a), the effective axial modulus, Eeff
1 , for both finite ele-

ment representations and for the composite cylinders solution compare very favorably

throughout the complete range of volume fractions. As is expected to be the case

for fibrous composites, the effective elastic axial modulus is well approximated by a

linear function of volume fraction between the fiber and matrix stiffnesses (i.e., rule of

7It is noted that certain effective properties are obtained directly using either
the analytic or computational micromechanics approach, but calculated for the other
approach. For example, the transverse Young’s modulus, Eeff

2 , is a property which is
directly obtained from the six tests in the finite element approach, but is calculated
from the other five properties in the generalized self-consistent composite cylinders
approach. Conversely, the in-plane bulk modulus, κeff

23 , can be directly obtained in
the composite cylinders approach, but is calculated from the other five engineering
properties in the finite element approach.



172

(a) Eeff
1 (b) Eeff

2

(c) νeff
12 (d) νeff

23

(e) µeff
12 (f) µeff

23

Fig. 34. Effective properties for nanocomposites consisting of aligned, well-dispersed

CNTs in epoxy using the generalized self-consistent composite cylinders and

finite element computational micromechanics methods.
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mixtures). Figure 34(b) provides the effective transverse modulus, Eeff
2 , where again

good agreement between both of the finite element representations and the compos-

ite cylinders solution is observed for fiber volume fractions less than 60%. At fiber

volume fractions greater than 60%, increasing differences (though slight as compared

to differences with the CC/SC results in Figure 32) in effective Eeff
2 are seen, with

the effective fiber FEA representation demonstrating the largest effective stiffness fol-

lowed by the hollow fiber FEA representation and then the generalized self-consistent

composite cylinder solution. The difference in effective transverse modulus between

the effective fiber FEA representation and the composite cylinder solution is noted

to be of the order of 15% at a fiber volume fraction of 80%.

Similar trends are observed in the Poisson’s ratios. That is, for the effective axial

Poisson’s ratio, νeff
12 shown in Figure 34(c), all solutions compare favorably throughout

the complete range of volume fractions. However, for the in-plane Poisson’s ratio,

νeff
23 , observable differences between the results from the two computational and the

analytic solution methods again begin around 60% fiber volume fraction as shown

Figure 34(d). Of particular note in Figure 34(d) is the more pronounced difference

between the hollow and effective fiber FEA representations at high volume fractions.

Here the effective fiber FEA representation does not adequately account for the zero-

stiffness hollow region of the fiber which has increasing influence in the transverse

properties at high fiber volume fractions.

Whereas the effective moduli and Poisson’s ratios displayed dissimilar trends

compared to one another (i.e., Eeff
1 vs. Eeff

2 and νeff
12 vs. νeff

23 ), the effective shear

moduli, µeff
12 and µeff

23 , results shown in Figures 34(e) and 34(f), respectively, are quite

similar. Both shear moduli show initially good agreement between all three solution

approaches up to 60% fiber volume fraction, and both show differences in effective

shear moduli at larger fiber volume fractions. In fact, both effective shear moduli
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plots demonstrate a similar increase in effective property with increasing fiber vol-

ume fraction as that observed for the effective transverse modulus in Figure 34(b),

where the increase in effective property is relatively small initially before increasing

rapidly after 60% fiber volume fraction. As such, compared to the effective axial

Young’s modulus and Poisson’s ratio, which show an almost rule of mixtures change

in effective property with increasing fiber volume fraction, the axial shear modulus,

µeff
12 , is observed to be much more sensitive to the compliant nature of the matrix

material. Though the shear moduli show similar trends, the effective µeff
12 results are

larger in value and show less difference between solution methods at high fiber volume

fractions than do the effective µeff
23 results due to the reinforcing effect of the fibers

being aligned in the 1-direction.

Reasons for the differences in the effective elastic properties observed in Figure 34

can best be understood by examining the associated stress distributions. Stress dis-

tribution contour plots for the well-dispersed, effective CNT finite element represen-

tation results are provided in Figure 35 for fiber volume fractions of 20% and 70%

(cf = 0.2 and 0.7). In both cases, the applied average strain, εij , is 1%, and the

stress distributions have been plotted with a single contrast value used for each el-

ement, consistent with the under-integrated, mean quadrature 8-node brick element

employed.

In Figure 35(a), stress contours of axial stress, σ11, as a result of applied average

axial strain, ε11, indicate that the effective fibers carry the majority of the load

at all volume fractions. In fact, the stress level in the effective fibers and in the

matrix remain constant at all volume fractions so that as the fiber volume fraction

is increased, the average stress in the composite is proportionally increased resulting

in the good agreement with the rule of mixtures response previously noted for the

axial Young’s modulus, Eeff
1 . In contrast, Figures 35(b) and 35(c), which provide the
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cf = 0.2 cf = 0.7

(a)

cf = 0.2 cf = 0.7

(b)

cf = 0.2 cf = 0.7

(c)

Fig. 35. Effective CNT FEA stress distribution contour plots for volume fractions of

20 and 70%. The contour plots are obtained at applied average strains of

1%. Note that the x2-direction is positive to the right and the x3-direction

is positive towards the top (x1 is out of the page). 35(a) Normal stress σ11

due to applied normal strain ε11 using a 0-7.5 GPa scale for each cf ; 35(b)

Normal stress σ22 due to applied normal strain ε22 using scales of 0-80 and

0-240 MPa for cf = 0.2 and 0.7, respectively; 35(c) Shear stress σ23 due to

applied shear strain γ23 using scales of 0-30 and 0-100 MPa for cf = 0.2 and

0.7, respectively.
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stress contours associated with the determination of the transverse Young’s modulus,

Eeff
2 , and the in-plane shear modulus, µeff

23 , respectively, show an increasing amount

of effective fiber interaction with increasing fiber volume fraction, as indicated by the

increased stress state in both the fibers and the matrix at 70% volume fraction. It is

this increase in the local stress state in and around the effective fiber which results

in an increase in the average stress state, and which is also believed to explain the

difference between the finite element and composite cylinders solutions for effective

elastic properties at high volume fractions.

It can also be noted in Figures 35(b) and 35(c) that, at high volume fractions, the

stress in the fiber is not only augmented, but becomes increasingly non-uniform. This

has important consequences for previous modeling efforts wherein effective CNT rep-

resentations have been used in conjunction with the Mori-Tanaka and self-consistent

methods (i.e. the CC/MT and CC/SC results). Unlike the composite cylinders ap-

proach, the Mori-Tanaka and self-consistent micromechanics methods make use of the

Eshelby tensor [131], therefore are assuming a uniform stress state in the fibers. Thus,

at high fiber volume fractions, use of the Mori-Tanaka or self-consistent techniques

for CNT reinforced composites may be increasingly less accurate approaches.

Finally, it is noted that the stresses induced in the hollow CNT FEA represen-

tation, although not shown, are much higher than those for the effective CNT FEA

representation. This is to be expected due to the higher stiffness of the hollow fiber

and its corresponding smaller volume of load-carrying material. This increased stress

in the hollow fiber also results in an increase in the stress state in the surrounding

matrix material. However these increases in the stress state are not sufficiently high

so as to counteract the contribution of the zero-stress regions of the hollow fibers such

that the average stress in the hollow CNT FEA representation is in fact lower than the

average stress in the effective CNT FEA representation. Thus, the difference in effec-
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tive properties observed between the hollow and effective CNT FEA representations

at high fiber volume fractions is confirmed to be a result of the effective CNT FEA

representation’s inability to accurately account for the hollow region. However, for

physically obtainable CNT-epoxy composite volume fractions which are less than 10%

and certainly much less than 60%, either hollow or effective fiber FEA representations

can be used.

C. Effective Elastic Properties of Aligned CNT Composites with Interphase Regions

The presence of interphase regions in CNT-polymer nanocomposites, such as shown

in Figure 24(c), has been suggested by many to play a significant role in the effec-

tive properties of nanocomposites. In unfunctionalized CNT nanocomposites, this

interphase region is thought to be the result of having perturbed matrix due to nan-

otube interaction with the polymer chains of the matrix (polymer chains are noted

to entangle with carbon nanotubes to some degree producing a relatively large region

[compared to the radius of the nanotube] wherein the polymer mobility has been

reduced thereby increasing it’s stiffness)[12, 223]. In functionalized CNT nanocom-

posites, the size of the interphase region and its effect on the matrix can vary greatly

depending on the type of functionalization, some being intended to improve dispersion

and others to improve adhesion. For CNTs and for CNTs with interphase regions it is

believed that the generalized self-consistent composite cylinders method can be used

to obtain the components of the concentration tensors.8 Concentration tensors for

CNTs with different functionalizations can then be obtained and averaged together

to get the effective properties for epoxies containing a mixture of CNT types. Here

8Here it is assumed that the interphase is a compatible phase in the reference
configuration with no residual stresses or transformation strains and subject to small
deformations so that continuity of tractions and displacements can applied across the
CNT-interphase and interphase-matrix boundaries.
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however, for illustrative purposes, we consider a nanocomposite having aligned CNTs

with a single type of interphase region, the properties of which are chosen to reflect

varying degrees of interaction between CNTs and the polymer matrix as a result of

the differing types of functionalization or lack thereof.

While experimental and computational evidence has been obtained for the ex-

istence of an interphase region between CNTs and polymer matrices [38, 224], the

exact size and material properties of such interphase regions are still an active area

of discussion in the research community [119, 224]. As such, interphase regions of

various sizes and stiffnesses are used in a parametric study in the present discussion.

However, in each case, the interphase regions around the individual CNTs of the re-

spective RVEs are taken to be of the same size and stiffness so that the composite

consists of identical high-stiffness CNTs with identical interphase regions embedded

in the matrix, as shown schematically in Figure 21, so that N is equal to three in the

application of the generalized self-consistent composite cylinders method in determin-

ing the effective elastic properties of the nanocomposite (Eqns. 3.10, 3.28, 3.37, 3.50,

3.52, and 3.64).

It is also noted that the inclusion of an interphase region constitutes the intro-

duction of a length parameter, in addition to those length parameter introduced by

having hollow CNTs, which for nanocomposites is quite significant as the CNT ra-

dius and interphase thickness can be of the same order of magnitude. Motivated by

the chemistry of the functionalization process [33, 49], the interphase thickness, once

identified, is taken as not varying with changes in CNT radius9 Thus, for a given CNT

9By having the thickness fixed for a given functionalization and independent of
CNT radius, it is noted that the influence of the interphase on CNTs with a large
radius will be smaller than the influence of the same interphase region on CNTs with
smaller radii. Thus, the constant thickness of the interphase region produces effective
elastic properties which do not necessarily scale with fiber (CNT) geometry.
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radius, as CNT volume fraction is increased for a given RVE, so too is the interphase

volume fraction.

The constant thickness of the interphase with increasing volume fraction has ad-

ditional consequences for the generalized self-consistent composites cylinders method

in the form of a critical CNT volume fraction, v∗f , for which the generalized self-

consistent composites cylinders method undergoes a transition. The critical CNT

volume fraction is determined as a result of the maximum packing fraction based

on the interphase outer radius (i.e., where the interphase regions of adjacent CNTs

come into contact), and can be substantially lower than the maximum CNT volume

fraction of vf = 0.90. Below the critical volume fraction, i.e. vf < v∗f , the compos-

ite cylinders assemblage consists of three layers, the CNT, the interphase, and the

matrix as shown in Figure 36(a). Here the outer radius of the composite cylinder

assemblage, rout, is equivalent to the outer radius of the matrix phase, rN , and is

determined by the volume fraction by r = r1/
√
vf , where r1 is the CNT outer radius.

As the volume fraction is increased, the amount of matrix material is reduced up to

volume fraction identified as the critical volume fraction, v∗f defined as v∗f = r2
1/r

2
2. At

this volume fraction, the matrix has been consumed such that the outer radius of the

composite cylinder, rout is now equal to the outer radius of the interphase region, r2,

as shown in Figure 36(b). At volume fractions larger than the critical volume frac-

tion, Figure 36(c), the outer radius is now less than the outer radius of the interphase

region. This is equivalent to saying that the matrix material has been replaced by

the interphase resulting in a N = 2 composite cylinder assemblage consisting of the

CNT and the interphase.10

10Strictly speaking for same sized fibers with a given interphase thickness, like
for example in finite element calculations, there remains a small amount of matrix
between the points of contact of the interphase regions of adjacent fibers. As the
volume fraction is increased, this small amount of matrix is consumed until there is no
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(a) N = 3 Composite Cylin-
der Assemblage Below Criti-
cal Volume Fraction

(b) N = 3/N = 2 Compos-
ite Cylinder Assemblage at
Critical Volume Fraction

(c) N = 2 Compos-
ite Cylinder Assemblage
Above Critical Volume
Fraction

Fig. 36. Schematic representation of the transition from an N = 3 to an N = 2

composite cylinder assemblage at the critical volume fraction. Figure 36(a)

N = 3 Composite cylinder assemblage below the critical volume fraction, i.e.

vf < v∗f , so that rout = rN = r1/
√
vf . Figure 36(b) N = 3/N = 2 Composite

cylinder assemblage at the critical volume fraction, i.e. vf = v∗f , so that

rout = rN = r2 = r1/
√
v∗f . Figure 36(c) N = 2 Composite cylinder assemblage

above the critical volume fraction, i.e. vf > v∗f , so that r2 > rout = r1/
√
vf .
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Parametric studies using the generalized self-consistent composite cylinder method

on the effects of having interphases with elastic modulus ranging from one tenth that

of the matrix to ten times the matrix modulus, and with thicknesses from half of a

CNT radius to four times a CNT radius are provided in Figure 37. Here only the

nanocomposite effective transverse Young’s modulus, Eeff
2 , results are provided as the

impact of the interphase regions on the axial Young’s modulus and Poisson’s ratio,

Eeff
1 and νeff

12 were found to be negligible, and the results for shear moduli and the

in-plane bulk modulus, µeff
12 , µeff

23 , and κeff
23 were observed to yield identical trends as

shown for Eeff
2 . Also it is noted that thin interphase regions are taken to be indicative

of shorter range perturbations in the matrix perhaps due to a lack of functionalization

or the use of functional groups which are short or not well entangled into to the host

polymer while thick interphase regions reflect just the opposite, i.e. functional groups

which entangle well into the host polymer, perhaps even bonding to the polymer at

multiple sites. Likewise, compliant interphase regions are taken to represent less than

perfect adhesion of the CNT or the interphase region to the surrounding matrix, per-

haps a result of functionalization intended for dispersion, while interphase regions

with stiffnesses greater than polymer stiffness denote functionalizations which have a

strong interaction with the polymer perhaps the result of functional groups intended

to improve adhesion.

Noticeable in Figures 37(a), 37(b), and 37(c) is a sharp change in the effective

properties at directly attributed to the transition between the N = 3 composite

cylinder assemblage to the N = 2 assemblage at the critical volume fractions of 0.04,

matrix remaining. From geometric considerations, this occurs at rout = 2r2(1−
√

3/3)
and therefore corresponds to a volume fraction of vf = 1.3995 v∗f . For the generalized
self-consistent composite cylinder assemblage, the approximation considers a single
fiber and its matrix as embedded in the effective medium which accounts for this
residual matrix material.
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(a) Interphase thickness of Four CNT radii, r2 =
(1 + 4)r1.

(b) Interphase thickness of Two CNT radii, r2 =
(1 + 2)r1.

(c) Interphase thickness of Half of the CNT radius,
r2 = (1 + 0.5)r1.

Fig. 37. Parametric study on the effects of interphase thickness and stiffness on the

effective transverse Young’s modulus of nanocomposites consisting of aligned,

well-dispersed, interphase coated CNTs using the generalized self-consistent

composite cylinders method. Identified on the plots are the critical volume

fractions where there N = 3 composite cylinder assemblage transitions to a

N = 2 assemblage.
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0.11, and 0.44, respectively. It is observed that large interphase thicknesses corre-

spond to effective property transitions at small volume fraction, 4% volume fraction

for an interphase whose thickness is four times the radius of the CNT, as shown in

Figure 37(a). In contrast, small interphase thicknesses cause effective property tran-

sitions at larger volume fraction, 44% for a thickness of half of a CNT radius, as seen

in Figure 37(c). Also observed, while a nearly three orders of magnitude difference

between the matrix and CNTs exists, an interphase stiffness of only five times that of

the matrix is enough to significantly improve the nanocomposite’s effective properties.

Similarly, an interphase whose stiffness is only half that of the matrix can significantly

degrade the nanocomposite’s effective properties. It is noted that the N = 2 above

the critical volume fraction are similar to the N = 2 results in Figure 32(b) in that

the nanocomposite transverse Young’s modulus is matrix dominated, but by the new

matrix material which is the interphase.

The results of the parametric study of the effects of interphase regions of various

stiffnesses on the effective transverse Young’s modulus, Eeff
2 , for the case of well-

dispersed fibers are also shown in Figure 38 for a range of volume fractions corre-

sponding to the current processing abilities for nanocomposites and for an interphase

thickness of 1.7 nm (i.e., equal to twice the fiber outer radius selected based on Fig-

ure 23) using both computational micromechanics and the generalized self-consistent

composite cylinder method. Interphase stiffnesses of 1/2, 1, 5, and 10 times the stiff-

ness of the matrix (i.e., E = 1.5, 3, 15, and 30 GPa with ν = 0.3) are used and the

effective transverse modulus is obtained for volume fractions up to the limit volume

fraction for the composite cylinders solution (i.e., a volume fraction of 11%). As pre-

sented in Figure 38, both the finite element simulations and the composite cylinders

solution are in excellent agreement and indicate large differences in effective modulus

relative to the no-interphase case. In fact, to obtain an equivalent value for the effec-
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Fig. 38. Comparison between FEA and generalized self-consistent composite cylinder

results in observing the effects of interphase stiffness on the transverse Young’s

modulus of nanocomposite containing aligned, well-dispersed CNTs. Results

using three different interphase stiffnesses (1.5, 15, and 30 GPa) are shown

along with the previous results with no interphase region. Results are for an

interphase thickness of 1.7 nm, or twice the fiber radius, making the limit

volume fraction for the composite cylinders solution to be 11%. Solid lines

denote generalized self-consistent composite cylinder method results with cir-

cles denoting the results of finite element simulations. The inset of the FEA

mesh corresponds to a volume fraction of vf = 0.08.
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tive transverse modulus as calculated for the 30 GPa interphase at 9% CNT volume

fraction, a CNT volume fraction of 60% in the no-interphase case would be required.

At that same volume fraction, the 1.5 GPa interphase results in a 44% decrease in

the effective transverse modulus. Thus, it is observed that the effective properties

associated with the transverse directions can be greatly impacted by the presence

of an interphase region at volume fractions corresponding to current processing abil-

ities, particularly if that interphase region is a compliant interphase and therefore

representative of poor load transfer from the matrix to the CNT.

D. Effective Elastic Properties of Aligned CNT Composites with Clustering

It has been observed that, due to van der Waals forces, CNTs have a tendency to

bundle or cluster together making it quite difficult to produce well dispersed CNT re-

inforced composites [12, 32], see for example Figure 23. As such, it may be necessary

to incorporate the effects of clustering in the prediction of effective elastic properties.

Here, the focus is on a cluster of aligned CNTs forming a bundle as shown in the

RVE in Figure 24(b). In an analytic micromechanics approach towards capturing

the effects of clustering within a bundle of CNTs, a Dirichlet tessellation is used to

quantify the degree of clustering by assigning to each CNT in the bundle a local

volume fraction. This local volume fraction is used to identify the amount of matrix

used in a given generalized self-consistent composite cylinder model used to deter-

mine the stress concentration tensor for a given local volume fraction. These stress

concentration tensors are used along with the effective CNT properties in a multi-

phase averaging method (Eqn. 2.71b) to determine the effective elastic properties of

clustered bundles of CNTs. Given the good agreement observed between the stress

concentration tensors determined for CNTs using both the generalized self-consistent
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Fig. 39. Schematic diagram of how clustering is incorporated into calculating effective

composite properties.

composite cylinder method and the Mori-Tanaka method (see Table III), this method

is equivalent to determining the effective local effective CNT+matrix properties and

applying a multi-phase Mori-Tanaka approach as shown schematically in Figure 39.

As it is more expedient, analytic micromechanics results for the effects of clustering

on the effective properties of CNT composites provided here are obtained using this

combined generalized self-consistent composite cylinder, Mori-Tanaka method.

Many research efforts have used tessellation techniques to identify what consti-

tutes a clustered arrangement as well as to delineate different amounts of clustering

[148–153]. The Dirichlet tessellation procedure used herein to obtain the local volume

fractions is a well established geometric technique for obtaining the minimum area

polygons encompassing a given set of seed points, which for the present work denotes

the set of CNT centers [148]. The procedure involves the connecting of seed points

to all other seed points by a straight line, the perpendicular bisectors of which are
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Fig. 40. Voronoi tessellation procedure diagram.

constructed and used to identify the polygonal boundaries11, as shown schematically

in Figure 40. Thus, regions in the composite where CNT center density is quite high

(clustered regions) will produce small polygons and regions where the CNT center

density is low will produce larger polygons as shown in Figure 41. Note that apply-

ing the tessellation routine for the hexagonal arrangement of CNTs which represents

well dispersed CNT composites would produce identically sized polygons whose local

volume fraction would be identically equal to the global volume fraction. This cor-

responds to having a distribution of local volume fractions represented by the Dirac

function and is indicative of the arrangement not being clustered. In contrast, if there

are significant numbers of both small and large polygons, then a bimodal distribu-

11The step-by-step method can be described as follows: 1) seed point coordinate
locations are established (A and B in Figure 40), 2) seed points are connected to all
other seed points by a straight line (solid line AB in Figure 40), 3) the perpendicular
bisectors of the seed connecting lines are constructed (dashed line A’B’ in Figure 40),
4) the collection of perpendicular bisector lines surrounding a seed point are selected
(dashed lines surrounding A in Figure 40).
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Fig. 41. Schematic demonstrating how Voronoi polygons obtained from the Dirichlet

tessellation are used to identify local volume fractions and composite cylinder

assemblages.

tion in polygon size will occur indicating the existence of bimodal clustering in the

composite.

It is also noted that the inclusion of clustering constitutes the introduction of

additional length parameters, in addition to those length parameters introduced by

having hollow CNTs and/or interphase regions. However, as with the hollow region

effects, the clustering effects scale with inhomogeneity size, i.e. whether microns or

nanometers are the dimensions of interest, the proportional effects of the hollow region

and clustering remain the same. In contrast, the length parameters introduced as a

result of having interphase regions, as noted above, are based on specific nanoscale

interactions and hence do not scale with the dimensions of interest, i.e. the inter-

phase thickness remains on the order of nanometers whether the inhomogeneity has

dimensions of nanometers or microns.

For clustered arrangements of aligned CNTs one can readily identify three dis-

tinct volume fractions. The first is the global volume fraction, cglobal, as expressed

in Eqn. (4.1) where NCNT is the number of CNTs, ACNT is the area of a CNT based
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solely on its outer radius (all having the same outer radius), and ARVE is the total area

of the bundle RVE.12 This is the volume fraction of the total CNT volume (including

the hollow regions) in the matrix relative to the total volume of the bundle RVE.

Second is the volume fraction of each CNT within its associated matrix expressed

in Eqn. (4.2) and referred to as the local volume fraction, clocal. It is the volume

fraction directly obtained from the tessellation results with Ai referring to the area of

the polygon used to define the amount of associated matrix with the ith CNT. This

volume fraction corresponds to the volume fraction of the CNT within the composite

cylinder assemblage, i.e. vf . The third volume fraction is used to denote the overall

volume fraction of the of a given local volume fraction, and as such, is referred to as

the global-local volume fraction, cglobal/local as given by Eqn. (4.3), where nJ is the

number of times a given local volume fraction occurs as a result of the tessellation, i.e.

the number of polygons with same area, AJ . The global-local volume fractions are

the volume fractions used in the multi-phase averaging method with the cglobal/local

values equal to the cJ values in Eqn. 2.71b for each distinct local volume fraction up

to P distinct local volume fractions so that J in Eqn. 2.71b ranges from 1 to P + 1.

cglobal =

(
NCNTACNT

ARVE

)
(4.1)

clocal =

(
ACNT

Ai

)
(4.2)

cglobal/local =

(
nJAJ
ARVE

)
(4.3)

It should be noted that under the current assumptions, all of the CNTs are the same

size and as such, polygons of the same area (but perhaps different shapes) will produce

identical local volume fractions. However, if this were not the case, then CNTs of

12The volume fraction is given in terms of area as the length along the CNT axis
is the same for the entire bundle RVE.
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different sizes could produce the same local volume fractions with different polygon

sizes.

In order to construct the composite cylinder assemblage for each local volume

fraction, each polygonal area is calculated and set equal to the area of a circle of

unknown radius. The radius of the circle is then determined, and the circle is set to

be concentric with the CNT which it encompasses. Thus, the local volume fraction

is obtained as the ratio of the squares of the radius of the CNT to that of the circle

encompassing the fiber, thereby maintaining the volume fraction of the CNT within

the polygon. This process is depicted graphically in Figure 41.

This technique has been applied to several test cases involving a range from

thirteen to twenty-five identical CNTs in the absence of interphase effects embedded

in the polymer matrix. Here the CNTs were arranged within the matrix in such

manner so as to introduce clustering. As would be expected, it was observed that the

clustered nanocomposite’s axial Young’s modulus was unaffected by clustering, and as

such, only the transverse Young’s modulus results are provided (recall that the other

effective properties follow the same trend as Eeff
2 and thus are not reported). Figure 42

provides the tessellation results for the distributions of local volume fractions of five

test cases13 at 10% global volume fraction of CNTs. The four CNT arrangements

are shown as insets in Figure 42. Also shown in the figure is the distribution of local

volume fraction obtained from the regular hexagonal array where it is noted that

indeed all CNTs have the same local volume fraction which is also equal to the global

volume fraction. Case B is identified as the most clustered mesh having a distribution

in local volume fraction which is bimodal and widely separated as one set of local

13There are many different possible arrangements of fibers in an RVE that can be
used to represent clustering, of which those chosen for the present work are only a
small subset.
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(a) Well-Dispersed Case (b) Case A: 0.064% Increase

(c) Case B: 0.106% Increase (d) Case C: 0.027% Increase

(e) Case D: 0.050% Increase (f) Case E: 0.059% Increase

Fig. 42. Distribution in local volume fraction of well-dispersed and clustered arrange-

ment of aligned CNTs at 10% global volume fraction. Insets denote the CNT

arrangements studied. Percent differences relative to the well-dispersed CNT

distribution value of Eeff
2 are also provided.
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volume fractions is significantly lower than the other set. Case A is also observed to

be a significantly clustered arrangement, although less so than Case B. Cases C, D,

and E are also observed to differ greatly from the well-dispersed case, though it is

difficult to identify which of these three is the more clustered arrangement.

Also noted in Figure 42 are the percent differences in transverse Young’s moduli

of each clustered arrangement relative to the well-dispersed case. Consistent with the

observation that Case B is the most clustered arrangement, the transverse Young’s

modulus for Case B is noted to have the largest percent difference. However, the

value is a paltry 0.106%. Case A, identified as the second most clustered arrange-

ment also yields the second largest percent difference with a value of 0.064%. The

remaining cases in order of decreasing percent differences are Case E, D, and C with

values of 0.059, 0.050, and 0.027%, respectively, which also corresponds to the order

of decreasing average local volume fraction of the distribution and standard deviation.

Thus, the effect of clustering on the effective transverse Young’s modulus observed

via analytic micromechanics does seem consistent with the distribution of local vol-

ume fractions, but the impact is too small to draw any conclusions from. As such,

computational micromechanics techniques are applied to identical arrangements of

CNTs.

For the clustered arrangements of CNTs, the computational representative vol-

ume elements, like the one denoted by the dashed lines in Figure 43(b), contain several

dispersed effective CNTs, some of which are in closer proximity than others. Also

shown in Figure 43 are interphase regions surrounding the fibers which are assumed

to be of uniform size and stiffness and are perfectly bonded to both the CNTs and

the matrix. As was the done for the well-dispersed case, the equilibrium equations

are numerically solved using FEA, subject to periodic boundary conditions for the

clustered arrangements (See Appendix H). Additional clustered arrangements stud-
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(a) Well-Dispersed CNTs (b) Clustered CNTs

Fig. 43. Schematic of effective CNT-interphase-polymer matrix FEA representations.

43(a) The well-dispersed case (perfect hexagonal array). 43(b) A clustered

case (Case C). Both schematics are plotted using the same geometrical scale

and both correspond to 10% volume fraction of effective CNTs and 10% vol-

ume fraction of interphase regions. Dashed lines denote the computational

representative volume elements for each case.

ied are identified in Figures 42(b), 42(c), 42(e) and 42(f), all consisting of deviations

from the perfect hexagonal array (Figure 43(a)).14 As was previously noted for the

well-dispersed case (identified as PH in the subsequent results), the results reported

in the present work are for clustered arrangements having fiber and interphase volume

fractions of 10%, with the interphase regions having stiffnesses of either 0.1, 1, or 10

times that of the matrix, with the 1X cases being indicative of clustered arrangements

with no interphase regions.

Computational micromechanics results of the effective nanocomposite transverse

14It should also be noted that any deviation from the perfect hexagonal arrange-
ment could result in effective properties which are not transversely isotropic. As such,
it is necessary to perform all six numerical simulations previously discussed to deter-
mine the complete set of effective orthotropic engineering elastic constants. Due in
large part to the periodic boundary conditions applied, the effective properties of the
clustered arrangements studied herein remain very nearly transversely isotropic.
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Young’s modulus for well-dispersed and clustered cases both with and without inter-

phase regions is provided in Figure 44. The column identified as PH (i.e., for the

perfect hexagonal arrangement) in Figure 44 summarizes the results of an additional

computational micromechanics comparison of the effects of interphase regions on the

effective transverse Young’s modulus for the well-dispersed case at a specific CNT

volume fraction of 10%. From Figure 44, direct comparison of the stiff and compli-

ant interphases relative to the no-interphase case can be readily discerned. In this

case, the effect of the 0.1X interphase is to lower the effective transverse modulus by

34% relative to the well-dispersed, no-interphase case, whereas the effect of the 10X

interphase increases the effective transverse modulus by 15%.

The effects of clustering without the effects of an interphase region on the effec-

tive transverse modulus can be assessed by comparing the 1X well-dispersed result

in the PH column with the 1X results in columns A through E in Figure 44. Such a

comparison demonstrates that there is hardly any difference in the effective transverse

modulus relative to the well-dispersed solution for the clustered arrangements consid-

ered. Case B, which is identified as the most clustered arrangement as measured by

the distribution of local volume fractions obtained via Dirichlet tessellation, shows a

slightly larger increase in effective transverse modulus relative to the well-dispersed

case than do the other clustering cases. However, all demonstrate small increases in

effective transverse modulus on the order of 3% or less. While this value is small, it

is nearly 30 times the percent difference observed using the analytic micromechanics

approach to clustering.

The increase in effective transverse modulus as a result of the clustering ef-

fect observed in the 1X cases of Figure 44 can be explained by examining Fig-

ures 45(a) and 45(b), which provide the σ22 stress distribution contour plots for

the well-dispersed and clustered Case C 1X interphase cases at 10% effective CNT
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Fig. 44. Summary of the computational micromechanics results for the independent

and combined effects of clustering and interphase regions on the effective

transverse Young’s modulus of nanocomposites. Both the CNT and interphase

volume fractions are set at 10% for all cases with interphase stiffnesses 0.1,

1.0 (i.e., no interphase), and 10.0 times that of the matrix. The results in

the column denoted PH correspond to well-dispersed CNTs, and those in the

columns A-E to clustered CNT arrangements, as pictured by the schematics

above the result columns.
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(a) Well-Dispersed (b) Clustered Case C, No Interphase

(c) Clustered Case C, Compliant Inter-
phase

(d) Clustered Case C, Stiff Interphase

Fig. 45. Stress distribution contour plots of the resulting normal stress σ22 from an

applied average strain ε22 of 1% for 10% effective CNT and interphase volume

fractions and for various interphase stiffnesses. 45(a) 1X PH well-dispersed

arrangement (0-80 MPa scale); 45(b) 1X Case C clustered arrangement (0-80

MPa scale); 45(c) 0.1X Case C clustered arrangement (0-80 MPa scale); 45(d)

10X Case C clustered arrangement (0-130 MPa scale).
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volume fraction for an applied average transverse strain, ε22, of 1%. The effective

CNTs in the cluster of fibers in the upper left corner of Figure 45(b) demonstrate

an increased stress state in the effective CNTs and surrounding matrix relative to

the effective CNTs in the well-dispersed case as a result of the interactions between

effective fibers in close proximity. However, this localized increase in the stress state

results in a peak stress value of 78 MPa, only 10 MPa larger than the peak stress

in the well-dispersed 1X case, and hence, only a marginal increase in the effective

transverse modulus. It is also believed that it is this localized stress which the ana-

lytic micromechanics clustering approach does not accurately capture as the method

is based strictly on the local volume fraction, and therefore, does not retain nearest

neighbor proximity information in converting Vornoi polygons to composite cylinder

assemblages as shown in Figure 41.

The combined effects of including clustering and interphase regions on the effec-

tive nanocomposite transverse Young’s modulus, Eeff
2 , are also presented in Figure 44,

denoted by the 10X and 0.1X labels. From Figure 44, it is observed that the combined

effects of clustering and interphase regions differ overall depending on the interphase

stiffness. For the 0.1X well-dispersed (PH) and clustered cases (A-E), a uniform de-

crease in the effective transverse Young’s modulus of approximately 33-36% relative

to the 1X well-dispersed case is observed. This indicates that the nanocomposite is

interphase dominated in that, regardless of the degree of clustering, it is the compliant

interphase regions which are the main contributor to the reduction in effective trans-

verse Young’s modulus. For the 10X well-dispersed and clustered cases, the increase

in transverse Young’s modulus ranges from 15% for the well-dispersed case up to 25%

for the most clustered case, Case B. Thus, for the 10X cases, there is a measurable

interaction between clustering and interphase effects which causes larger increases in

the effective transverse Young’s modulus than either effect independently.
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Reasons for the different trends in the effective transverse modulus results ob-

served between the 0.1X and 10X clustered arrangements can again be better under-

stood by examining the σ22 stress contour plots provided in Figures45(c) and 45(d) for

the 0.1X and 10X Case C cases, respectively. In Figure 45(c), the compliant nature

of the interphase results in almost no stress being transferred to the effective CNT,

which explains why clustering has relatively little effect on the effective transverse

Young’s modulus for the compliant interphase cases. Figure 45(d), however, shows

that the stiff interphase leads to large increases in stress in the effective CNTs and

in the matrix as compared to both the well-dispersed and clustered, no-interphase

cases. These elevated stresses, which are especially large for effective CNTs in close

proximity, in turn lead to significant increases in the effective transverse modulus.

These strong interactions among clustered effective CNTs produce a peak stress in

the 10X clustered case shown which is 60% larger than the peak stress in the 1X clus-

tered case, resulting in the noted coupling between interphase and clustering effects

(note the different scale bar for Figure 45(d)). This again points to the large impact

that the interphase regions can have on the effective properties associated with the

transverse direction in representing various degrees of load transfer.

A summary of the effects of clustering and interphase regions on the other ef-

fective engineering moduli is provided in Table VI, where it is observed that the

effective axial modulus is not affected by the clustering in the transverse plane. The

“Average Effect” column in Table VI provides the nominal magnitude of the inter-

phase effect for the studied well-dispersed and clustered arrangements and with the

“Variation with Clustering” column stating how much variation with clustering ar-

rangement there is for each property (Eeff
1 , Eeff

2 , νeff
12 , νeff

23 , µeff
12 , and µeff

23 ). For example,

for the 0.1X interphase stiffness, the effect of including the interphase region on µeff
12

is large (approximately a 34% decrease), but nearly the same magnitude for all CNT
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Table VI. Summary of the combined and independent effects of clustering and inter-

phase regions on the effective engineering properties for composites with

10% CNT and 10% interphase region volume fractions. The average effect

is the is the average percent difference of the studied cases PH, A, B, C,

D, and E relative to the 1X PH case (i.e., the well-dispersed, no-interphase

case). The effect variation with clustering is the difference between the

highest and lowest percentage changes also relative to the 1X PH case.

Property 0.1X interphase 1X (no interphase) 10X interphase

Average Variation w/ Variation w/ Average Variation w/

Effect Clustering Clustering Effect Clustering

(%) (%) (%) (%) (%)

Eeff
1 -0.48 0.10 0.10 3.75 0.10

Eeff
2 -34.36 2.24 2.33 19.49 10.35

νeff
12 3.74 0.79 0.96 -0.53 1.87

νeff
23 -6.42 5.06 3.17 -7.01 11.63

µeff
12 -34.35 1.97 1.96 19.95 7.78

µeff
23 -36.20 2.95 2.24 14.20 8.38
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arrangements (less than 2% variation). Consistent with the observations made for

the effective transverse modulus, it is observed in general that for the compliant

interphase regions, there is less variation in the effective engineering properties with

clustering than for the stiff interphase regions with clustering. As a result of the more

significant influence of interphase regions, the focus of subsequent modeling efforts

will be on accurate representation of the interphase regions in nanocomposites.

E. Effective Elastic Properties of Composites with Randomly Oriented CNTs and

Comparison with Measured Data

As alignment of the CNTs within nanocomposites remains a processing challenge, the

effects of random orientation of CNTs and interphase coated CNTs within the epoxy

matrix are considered. By considering each orientation of a CNT as a separate phase,

aligned with its own local coordinate system, the expression of the stiffness tensor

and concentration tensor are obtained in the local coordinate system as described

in Section E of Chapter III and then rotated to the global coordinate system. The

effective properties are then obtained by averaging over all possible orientations, i.e.,

phases, as in Eqn. 2.163b and are observed to be isotropic, despite the transverse

isotropy of the CNTs. However, with the concentration tensors determined in a

non-Eshelby approach directly from the composite cylinders solutions, the random

orientation averaging can take place without using the Mori-Tanaka method, and

thereby allow for a more direct accounting for the presence of interphase regions.

To demonstrate the impact of random orientation, the effective properties of

nanocomposites with randomly oriented non-clustered CNTs, such as in Figure 24(a)

but where CNTs are not clustered into bundles, are compared to aligned non-clustered

results (see Figure 22). To isolate the effects of random orientation, identical CNTs
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with no interphase regions were considered. The effective nanocomposite Young’s

modulus obtained from the randomly orientation equation is provided in Figure 46,

as are the effective axial and transverse Young’s moduli for aligned CNT nanocom-

posites. As can be seen in Figure 46(a), without fiber alignment, one can not as

readily take advantage of the high modulus of the CNTs, even at what would by

processing standards be very large volume fractions. Figure 46(b) indicates that, at

volume fractions currently able to be processed, the Young’s modulus of nanocom-

posites with randomly oriented CNTs at a volume fraction of 10% is 290% larger

than the transverse Young’s modulus. In contrast, the axial Young’s modulus at that

same volume fraction is 375% larger than the randomly oriented CNT value.

Thus, it would appear that the two of the most important considerations in

nanocomposite modeling would be to capture the effects of random orientation of the

CNTs and to capture the effects of interphase regions. As such, Figure 47 provides

the effective Young’s modulus of nanocomposites containing randomly oriented, in-

terphase coated CNTs as predicted using the generalized self-consistent composite

cylinder method in comparison to the values of for the Young’s modulus obtained

from characterizations efforts published in the literature for both pristine and func-

tionalized CNT-epoxy nanocomposites.15 Modeling results are provided for seven

sets of input parameters. These input parameter sets are identified in Tables VII and

VIII, and are intended to reflect the uncertainty in the range of input parameters and

therefore to provide reasonably bounds for modeling results. The input parameter

set identified as the Base Case corresponds to the previously identified values for CNT

elastic properties, radius and thickness assumed in all of the modeling results provided

15Some data from the literature as well as the modeling results were converted from
the reported volume fraction to weight fraction (and then percent) using 1.8g/cm3 for
the density of CNTs and 1.175g/cm3 for the density of epoxy as identified in reference
[21].
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(a) Large Range of Volume Fractions

(b) Current Fabrication Volume Fractions

Fig. 46. Comparison of the effective Young’s moduli of nanocomposites containing

randomly oriented CNTs with nanocomposites containing aligned CNTs using

the generalized self-consistent composite cylinder method.
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Fig. 47. Comparison of experimental data for epoxy nanocomposites from the liter-

ature with model predictions for randomly oriented carbon nanotubes with

and without interphase regions. Comparisons are made between the base case

which consists of non-interphase coated CNTs and three upper and lower

bounds based on uncertainty in the input parameters. Details for the in-

put parameters for the seven modeling cases are provided in Tables VII and

VIII. Data from the literature comes from the following sources (in order as

listed in legend): [219], [219], [225, 226], [220], [220], [33], [49], [36], [36], and

[51] (Repeated entries denote slight differences in measurement or processing

approaches.).
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Table VII. Input parameters used in establishing upper bounds on generalized

self-consistent composite cylinders modeling results of nanocomposites con-

taining randomly oriented CNTs with and without interphase regions for

use in comparison with measured data from the literature. E, ν, and t are

the Young’s moduli, Poisson’s ratio and thickness, respectively.

Base Case Upper 1 Upper 2 Upper 3

ECNT (GPa) 1100 1100 1800 1800

νCNT 0.14 0.14 0.14 0.14

tCNT (nm) 0.34 0.34 0.34 Solid

EInt (GPa) N/A ECNT → EN ECNT → EN ECNT → EN

νInt N/A 0.34 0.34 0.34

tInt (nm) N/A 2.95 2.95 2.95

EN (GPa) 2.026 2.026 2.026 2.026

νN 0.34 0.34 0.34 0.34
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Table VIII. Input parameters used in establishing lower bounds on generalized

self-consistent composite cylinders modeling results of nanocomposites

containing randomly oriented CNTs with and without interphase regions

for use in comparison with measured data from the literature. E, ν, and

t are the Young’s moduli, Poisson’s ratio and thickness, respectively.

Base Case Lower 1 Lower 2 Lower 3

ECNT (GPa) 1100 1100 475 475

νCNT 0.14 0.14 0.14 0.14

tCNT (nm) 0.34 0.34 0.34 2x0.077

EInt (GPa) N/A 0.1EN 0.1EN 0.1EN

νInt N/A 0.34 0.34 0.34

tInt (nm) N/A 2.95 2.95 2.95

EN (GPa) 2.026 2.026 2.026 2.026

νN 0.34 0.34 0.34 0.34
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in this chapter. The Upper 1 and Lower 1 input parameters correspond to uncertainty

in the interphase stiffness assuming an interphase thickness of three and half CNT

radii. For the upper bound, the interphase is taken to have a continuous, power law

gradation in properties from the CNT stiffness at the CNT-interphase interface down

to the epoxy stiffness at the interphase-matrix interface (i.e., E(r) = 555E9 r−4.20).

For the lower bound, the interphase was taken to have a constant stiffness of one

tenth of the matrix stiffness. The Upper 2 and Lower 2 correspond to uncertainty

in the CNT stiffness. These input parameter sets use the same interphase properties

as the previous set, with the only difference being that the CNT stiffness is taken

to be 1800 GPa (based on thermal vibration measurement from reference [97]) for

the upper bound and 475 GPa (based on modified Cauchy-Born rule modeling from

reference [92]) for the lower bound. Finally, the Upper 3 and Lower 3 parameter sets

correspond to further uncertainty in the CNT thickness. Retaining the input param-

eters from the previous case for the interphase properties and the CNT stiffness, the

CNT in the upper bound case is considered to be solid while the CNT in the lower

bound case is taken to have a thickness corresponding to diameter of a carbon atom

[227].

As a result of the variance in neat epoxy input data, the results are presented in

Figure 47 as normalized by their respective neat epoxy values. In looking at the Base

Case of randomly oriented CNTs with no interphase regions, it is observed that the

model results over predict the Young’s modulus for all but one data set (the set from

reference [51] for MWCNTs), consistent with the observation of poor load transfer

in CNT-epoxy nanocomposites. In fact, aside from this data set, it is observed that

measured data from the literature can be grouped into two categories, functionalized

CNT results and results for pristine and ultrasonicated CNTs. The functionalized

CNT nanocomposite results show an average increases in Young’s modulus relative
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to the epoxy matrix of 29, 54, and 83%, at 1, 3, and 5 weight percent, respectively,

while the pristine/ultrasonicated CNT nanocomposite results show smaller increases

of 2.5, 7, and 18% at those same weight percents.16 While the Base Case results over

predict both groupings of data, the model predictions are closer to the functionalized

CNT nanocomposite results with estimated increases relative to the matrix Young’s

modulus of 38, 120, and 200%, at weight percents of 1, 3, and 5%, respectively. This

seems to indicate that the functionalization does appear to be improving load transfer,

but that it is not yet equivalent to a perfect bonding assumption.

In comparing the first set of bounds corresponding to the variance in interphase

stiffness with the same measured data in Figure 47, it is observed that the lower

bound model results corresponding to a compliant interphase correlates well with

the functionalized CNT nanocomposite grouping of measured data with increases in

Young’s modulus relative to the matrix Young’s modulus of 6.7, 66, and 120% at

weight percents of 1, 3, and 5%. However, it should be noted that this does not

necessarily indicate that the input parameters used in obtaining the model values for

this lower bound are in fact the actual values of the interphase properties as further

measurements or multiscale modeling efforts will are needed to better identify this

information. What this does indicate is that a compliant interphase is capable of rep-

resenting the effects of functionalization on the Young’s modulus of nanocomposites,

and that functionalization, while improving load transfer, has yet to achieve a load

transfer consistent with the perfect bonding assumptions of most micromechanics

models. Interestingly, the upper bound, corresponding to a gradation in properties

16It is noted that these are substantial improvements relative to a compliant
Young’s modulus. However, compared to the axial Young’s modulus values that
could be obtained with the presumed CNT Young’s modulus of 1100 GPa (i.e., 225,
680, and 1240% increases at 1, 3, and 5% weight), these improvements are relatively
small.
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from the CNT value down to the matrix value, captures well the 1% weight data

point from reference [51] for MWCNTs, though it is not yet clear why in general this

data set behaves so differently from the others provided in the figure.

Also of note in Figure 47, the second set of bounds, corresponding to uncertainty

in the CNT stiffness, yields a good correlation between the lower bound and the

pristine/ultrasonicated CNT nanocomposite grouping of the measured data, with the

measured data lying just above the lower bound results. For the lower bound, percent

differences in Young’s moduli relative to the matrix value of -4, 0.1, and 12% at 1, 3,

and 5% weight, respectively, were obtained in comparison with the 2.5, 7, and 18%

differences obtained for the pristine/ultrasonicated grouping of data. This seems to

indicate that, perhaps due to the presence of defects due to processing or perhaps due

to the ultrasonication, the CNT stiffness may not be as high as is often reported. In

addition, it is noted that the lower bound results retained the interphase properties

from the previous case, which seems to also indicate that may be prudent to include

interphase regions to account for van der Waals interaction even in unfunctionalized

CNT nanocomposites.

Finally, it is noted that all of the measured data in the literature falls between

the third set of bounds which correspond to perceived maximum and minimum values

in CNT thickness and stiffness and interphase thickness. However the range of values

covered by this swath is quite large, spanning from -13 to 200% difference relative

to the matrix Young’s modulus at 1% weight and growing from -24 to 570% and -28

to 975% difference at 3 and 5% weight, respectively. Such large ranges in potential

nanocomposite elastic properties point to the need for further model refinements, per-

haps through multiscale modeling efforts , and to the need for improved experimental

techniques capable of probing for nanoscale properties.
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CHAPTER V

EFFECTIVE ELECTRICAL CONDUCTIVITY OF NANOCOMPOSITES

Measured values of the electrical conductivity of carbon nanotube-epoxy nanocom-

posites have identified two unique features. The first feature is that the percolation

limit is often observed to occur prior to the limits estimated by contact percolation

theories [21, 54, 55], as well as at volume fractions much lower than some of the

measured percolation volume fractions obtained from attempts to make conducting

polymers using micron sized graphite particles or polymer blends with doped conduct-

ing polymers [228, 229].1 The second feature is that the percolation limit identified

is often preceded by an additional percolation-like effect. Both of these features are

illustrated in the experimentally measured results taken from the literature provided

in Figure 48.2 The four data sets provided in Figure 48 correspond to measured values

reported by Sandler et al. [54] for ultrasonicated multi-walled carbon nanotubes in

epoxy, by Gojny et al. [53] for single-walled carbon nanotubes dispersed in the epoxy

matrix by a three-roll mill (mini-calander), by Allaoui et al. [51] for multi-walled

carbon nanotubes dispersed in a methanol solution and homogenized into the epoxy

matrix, and by Martin et al. [21] for multi-walled nanotubes dispersed into the epoxy

by high shear mixing.

1Nakamura et al. [228]produced graphite filled elastomers using graphite flakes,
needles and spherical micron-sized particles. They measured a percolation volume
fraction 0.2 for the needle and spheres and percolation volume fraction of 0.06 for the
graphite flakes which had a surface area approximately 40 times that of the needles
and spheres. Yang et al. [229] identified a percolation weight percent of 3.2% for
polyacrylonitrile (PAN) with dispersed 20-50 nm sized particles of the conducting
polymer polyaniline (PANI) doped with dodecylbenzene sulfonic acid (DBSA).

2Most of the data was provided in percent weight and converted to volume fraction
(vf) from weight fraction wf by vf = −wfρ2/(−ρ − 1 + wfρ1 − wfρ2) where ρ1 is
the density of carbon nanotubes (taken as 1.8 g/cm3 [21]) and ρ2 then density of the
epoxy (taken as 1.175 g/cm3 [21]).
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(a)

(b)

Fig. 48. Survey of experimentally measured values of carbon nanotube-epoxy

nanocomposite electrical conductivity from the literature demonstrating two

subcritical percolation limit behavior. Data Set 1 corresponds to reference

[54], Data Set 2 to reference [53], Data Set 3 to reference [21], and Data Set

4 to reference [51]. All of the data provided is normalized by their respective

matrix conductivities. Figure 48(a) displays the full range of the data taken

from the literature while Figure 48(b) provides a subset of that range in order

to better observe the two subcritical percolation limits for Data Sets 1, 2 and

3.
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From Figure 48(a), it is observed that all of the data sets provided achieve

percolation below the lower value of the range of geometric (contact) percolation

limits provided via computational approaches of a volume fraction of 0.007, and from

Figure 48(b), it is observed that three of the data sets reach a final percolation at

volume fractions below even the lower end of the analytic estimates of a volume

fraction for forming a percolated network of 0.0008. Of particular note, Data Set 1

shows an initial percolation limit at a volume fraction of 0.0002 with an increase in

conductivity of nearly six orders of magnitude, followed by a brief plateau, and finally,

a second percolation behavior at a volume fraction of 0.00075 with an additional three

orders of magnitude increase.

Nine order of magnitude increase in conductivity may not be surprising to some

as it is only a fraction of the 13 or more orders of magnitude separating the electrical

conductivity of metallic carbon nanotubes, estimated to be between 150 and 200,000

S/cm [27, 59, 230], and that of some polymers, which is measured to be on the

order of 10−12 S/cm [53]. However, assuming that, as was the case for aligned,

well-dispersed CNTs as noted in Chapter IV, the ideal dispersion would result in a

local volume fraction equivalent to a Dirac distribution, then the amount of polymer

separating CNTs at such low volume fractions would be significant. For example, a

volume fraction of 0.0002 would correspond to an ideal CNT separation of 118 nm

(∼ 110 nm if considering finite CNT lengths of 1 µm), with a volume fraction of

0.00075 corresponding to an ideal CNT separation of 60 nm (∼ 58.6 nm for finite

CNT lengths)3 These distances may seem small, however, Lesiak et al. [231] have

3For infinitely long CNTs, the separation distance is estimated from composite
cylinder assemblage volume fraction of CNT (vf = r2

CNT/r
2
N), which is then doubled

and from which twice the CNT radius (0.85 nm) is subtracted. For the finite length
estimate, the volume fraction is instead calculated from the ratio of the CNT of
length, L, embedded in a matrix of thickness, t, in both the radial direction and in
the z-direction.
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Fig. 49. Schematic representation of the application of the generalized self-consistent

composite cylinders approximation for randomly oriented, well-dispersed CNT

nanocomposites in determining effective electrical conductivity.

reported electron mean free paths in polyaniline (PANI), which is considered to be

a conducting polymer, of 0.1 to 10 nm. Thus, for non-conducting polymers, these

separation distances are large compared to the mean free path of electrons, indicating

that there may be sufficient polymer present to insulate CNTs in an ideal dispersion.

Here an attempt is made to understand the observed subcritical, double perco-

lation behavior of CNT-polymer nanocomposites using the generalized self-consistent

composite cylinders method for randomly oriented, well-dispersed4 CNTs both with

and without interphase regions (see for example Figure 49) as described in Chapter III

using Eqn. 2.163d (with ξij replaced by ρ̌ij as a result of the noted mathematical

analogy between electrical and thermal conductivity/resistivity). As was the case

4By well-dispersed it is meant that the CNTs have the ideal distribution, and
therefore are fully encompassed by the polymer matrix, i.e. there is no direct CNT-
CNT contact. As such, the model is not intended to capture contact percolation, but
instead is for non-contact percolation behavior.
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for the elastic properties reported in the previous chapter, the CNTs are assumed

to be straight and defect free with a sufficiently high aspect ratio so as to consider

the CNTs as infinitely long, again with outer radius of 0.85 nm and a thickness of

0.34 nm. While it is noted that CNTs may be either semiconducting or metallic

depending on the chiral angle5 as illustrated in Figure 26, here it is assumed that

the volume fractions of CNTs reported in the subsequent results correspond to the

metallic CNTs.6 As such, the CNT conductivity is taken from the average of the

range of metallic CNT conductivities reported by Ebbesen et al. [27] as 1000 S/cm.

Given the even larger discrepancy between the CNT and polymer properties

(i.e., 13 orders of magnitude difference in conductivities as compared to 3 orders of

magnitude for the Young’s modulus), parametric studies on the effect of CNT:matrix

conductivity ratio, CF, on the effective conductivities of nanocomposites containing

randomly oriented CNTs are provided in Figure 50. The CNT:matrix conductivity

ratio is taken from 10 (corresponding to a very conductive matrix as the CNT con-

ductivity is considered fixed at 1000 S/cm) to a value of 1014, representative of the

disparity in conductivity between non-conducting polymers and carbon nanotubes.

It is noted that beyond a ratio of 103 there is little impact of increased CNT:matrix

conductivity on the effective nanocomposite conductivity. In fact, out to volume frac-

tions as large as 0.6, the effective nanocomposite response for the CNT:matrix ratios

between 103 and 1014 is only a factor of 5 increase relative to the matrix, indicating

that initial expectations of extremely large increases at low volume fractions (e.g.,

5The elastic properties have been noted to be independent of chiral angle.
6This assumption amounts to assuming that a processing method can preferentially

produce a given chirality, or that the semiconducting CNTs are at most as conductive
the polymer in which they are embedded at voltages lower than the band gap. It was
noted by Odom et al. [232], that some had reported that laser vaporization and
arc discharge production of SWCNTs had produced predominantly metallic (10,10)
armchair CNTs, but from their results, that no one chirality dominated.
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Fig. 50. Parametric study on the effect of CNT:matrix conductivity ratio, CF, on the

effective electrical conductivity of randomly oriented composite cylinder as-

semblages. The CNT conductivity was taken as 1000 S/cm, with CNT inner

and outer radius of 0.51 and 0.85 nm, respectively. Values for effective conduc-

tivities are reported as normalized relative to the matrix conductivity. Fig-

ure 50(a) effective conductivity out to a volume fraction of 0.6. Figure 50(b)

effective conductivity out to a volume fraction of 0.1 demonstrating effect of

the CNT:matrix conductivity ratio on the initial increase in conductivity at

very low volume fractions.
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rule of mixtures estimates could be as high as 12 orders of magnitude at 1% volume

fraction) strictly due to the large conductivity of CNTs may be unrealistic.7 It is also

interesting to note that even the changes in the initial conductivity observed in Fig-

ure 50(b) are saturated when considering CNT conductivities six orders of magnitude

larger than the matrix. This indicates that the assumption of CNT conductivity of

1000 S/cm, which is nearer to the lower end of the range of reported CNT conductiv-

ities, is sufficiently large so as to represent metallic CNTs in non-conducting polymer

matrices even at low CNT volume fractions. Perhaps more importantly, this also

indicates that to obtain dramatic increases in effective nanocomposite conductivity

of nearly five orders of magnitude or more, the introduction of an interphase layer

will be necessary.

Making a similar assumption as was the case with the elastic properties that the

disturbance of the polymer structure near the CNT surface may alter the properties

of the CNT, an interphase region of perturbed polymer is assumed to envelope the

CNTs in the nanocomposite. A parametric study on the effects of this interphase’s

thickness, as measured by the interphase:CNT thickness ratio, TF = tInt/rCNT where

tInt is the interphase thickness, and on the interphase:matrix conductivity ratio, ICF,

on the effective electrical conductivity of randomly interphase coated CNTs is shown

in Figure 51. To better illustrate the effects of the interphase region, the CNT:matrix

conductivity ratio was selected as E4. Interphases thickness ratios of 1/2, 1, and 2

times the CNT radius are provided (based on the arguments provided in Chapter IV),

with interphase conductivity factors of 10, 100, and 1000 times the matrix value.

From Figure 51(a) an immediate impact of the interphase is observed with the sharp,

7Sandler et al. [55] expressed disappointment at obtaining 0.002 S/cm at a weight
fraction of 0.01: ”...the relatively low maximum conductivity observed. The value of
about 2 S/m for a loading fraction of 1 wt% of nanotubes, is orders of magnitude
lower than the expected intrinsic nanotube conductivity.”
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Fig. 51. Parametric study on the effects of interphase thickness as measured by the

interphase:CNT thickness ratio, TF = tInt/rCNT where tInt is the interphase

thickness, and on the interphase:matrix conductivity ratio, ICF, on the effec-

tive electrical conductivity of randomly oriented, N = 3 composite cylinder

assemblages. To better illustrate the effects of the interphase region, the

CNT:matrix conductivity ratio was selected as E4. Figure 51(a) Log-plot of

effective conductivity out to a volume fraction of 0.6. Figure 51(b) effect

conductivity out to a volume fraction of 0.1 demonstrating the effects of in-

terphase thickness and conductivity on the initial increase in conductivity at

very low volume fractions.
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orders of magnitude increases in the effective conductivity preceding a secondary

plateau. The effect of the interphase thickness is observed to dictate where this sharp

increase occurs, with the magnitude of the interphase conductivity controlling the

behavior after the sharp increase. The reasons for this, which are discussed in detail

in Chapter IV and shown schematically in Figure 36, are associated with the volume

fraction of the matrix in a N = 3 composite cylinder assemblage decreasing with

increasing CNT volume fraction to the point where the CNT is instead embedded in

just the interphase, i.e., a N = 2 composite cylinder assemblage.

Thus, the sharp increase in the effective conductivity in Figure 51 is seen as a

result of the increasing influence of the interphase region as the matrix is steadily

consumed with increasing CNT volume fraction. The effective conductivity asymp-

totically approaches the effective interphase-CNT value as the critical volume fraction

is approached. After the critical volume fraction is surpassed, the effective composite

response is that of the 2-phase CNT-interphase composite. As noted previously, the

effect of the interphase thickness is to shift the critical volume fraction. The thicker

the interphase region, the lower the critical volume fraction, and hence, where the

2-phase composite response is intercepted. This allows one to have some control over

the initial slope of the 3-phase conductivity as shown in Figure 51(b). Note that

the 2-phase results will exhibit the same behavior as observed in Figure 50 so that

the composite is expected to be dominated by the new matrix material, and hence,

further large increases in effective conductivity would not occur without additional

interphase regions.

Further, it allows one to assess whether or not it is reasonable to expect that an

interphase region due the perturbed structure of the polymer can reasonably account

for the large increases in CNT-polymer nanocomposites as observed in Figure 48.

First, recall that the separation distances identified in the ideal dispersion for the
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volume fractions at which percolation behavior is observed were on the order of 60 to

100 nm. While it is unclear if the polymer structure may be significantly disturbed

over such a distance in general, certainly such distances are inconsistent with inter-

phase thickness observed in Figure 3(b) where the interphase thickness is observed to

be much less than 20 nm. Second, recall that the amount of increase in conductivity

of the interphase relative to the matrix needed to explain the measured data is on

the order of 6 or more orders of magnitude. Such large changes in polymer conduc-

tivity due to structural influences may be unreasonable. Thus, while there is likely

an interphase region due to the disturbance of the polymer structure in the presence

of the interphase region as noted by Smith et al. [71], such an interphase region does

not sufficiently explain the large increases in conductivity observed in the measured

data below the contact percolation limit.

Many [42, 59, 71, 75] have instead indicated that the dominant mechanism which

might explain the observed electrical conductivity measurements of nanocomposites

is the nanoscale effect of electron hopping between nanotubes within the polymer.

This hopping of electrons can occur intra-tube or from one nanotube to another, and

is dependent on separation distance between the tubes (or parts of the same tube)

and the material in between them.

While there appears to be some consensus that electron hopping governs CNT-

polymer nanocomposite conductivity, how the conductivity is impacted remains a

point of debate. Some [59, 75] have indicated that the electron hopping mechanism is

a source of resistance in CNT-polymer nanocomposites while others [42, 71] have in-

dicated it to be a source of increased conductivity. However, in light of Figure 50, it is

believed that the electron hopping mechanism is in fact a source of increased conduc-

tivity, allowing the formation of conductive networks prior to nanotube contact, and

that efforts to explain the hopping mechanism as a source of resistance are perhaps
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a product of expecting a rule of mixtures effective nanocomposite conductivity.

As nanoscale effects such as electron hopping are not generally included in con-

tinuum models for effective conductivity, the generalized self-consistent composite

cylinders model is employed to incorporate the electron hopping mechanism through

the incorporation of interphase layers of increased conductivity representing the in-

creased likelihood of electron hopping as the volume fraction of nanotubes is increased,

and hence, the tube-tube distance decreased. In applying this model, it is necessary

to identify both the interphase(s) conductivity and thickness. Estimates correspond-

ing to a conductivity for such an interphase region are difficult to obtain, however,

estimates of the thickness may be obtained from observations in the literature. Some

[42, 75] have estimated that for the electron hopping mechanism to be activated,

CNTs must be no more than 5 nm apart, while others [233, 234] have provided esti-

mates from 26 to 80 nm.8 As from Figure 51 it was observed that interphase thickness

governs where percolation behavior is observed, it is noted that values of 5, 26, and

80 nm correspond to critical volume fractions of 0.065, 0.0037, and 0.00044, respec-

tively, which are close to the percolation volume fractions identified for Data Set 1 in

Figure 48. As such, Data Set 1 will be used in order to identify potential values for

the interphase in a generalized self-consistent composite cylinder model for randomly

oriented CNTs in an epoxy matrix as shown in Figure 52.

In order to provide perspective, it is first noted that the results for a 2-phase gen-

eralized self-consistent composite cylinders model corresponding to randomly oriented

CNTs in the polymer matrix with no interphase region are provided in Figure 52. Here

it is observed that the resulting effective nanocomposite response was matrix domi-

nated, not even able to intercept the first data point of the data set. The reason for

8The value of 80 nm taken from reference [234], though not for CNTs, is provided
as example of electron hopping ranges in general.
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Fig. 52. Comparison of randomly oriented 2-, 3-, and 4-phase composite cylinders

models with experimentally measured values from Data Set 1 [54]. Point A

is used to calibrate 3- and 4-phase models by indicating an interphase con-

ductivity corresponding to an approximately 8 order of magnitude increase in

conductivity relative to matrix and by indicating a total interphase thickness

of 68 nm. Point B is used to further calibrate the 4-phase model by indicating

a second interphase conductivity corresponding to an approximately 10 order

of magnitude increase in conductivity relative to matrix and by indicating the

second interphase thickness of 27 nm.
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this two fold. The first reason being the assumption that the nanotubes are so well

dispersed, that at such a low volume fraction, each nanotube is completely wet by

the surrounding polymer matrix, and therefore unable to make direct contact with

one another to establish a direct connection percolation path. As was observed in the

parametric studies, this can be directly attributed to the large disparity between the

conductivities of the nanotube and the matrix, a nearly 15 order of magnitude differ-

ence. The second reason for the matrix dominant behavior is the lack of inclusion of

nanoscale effects such as the electron hopping.

The next set of results of note correspond to a 3-phase composite cylinder model

consisting of the nanotube, an interphase layer, and the matrix. The interphase layer

is introduced into the composite cylinder assemblage with a conductivity which is

augmented relative to the matrix conductivity in order to reflect the increased like-

lihood of electrons hopping from one nanotube to the next as they are brought into

closer proximity with increasing volume fraction. The thickness of the interphase

layer is determined by the location of the jump in the data set at a volume fraction

of approximately 0.00015 (just prior to Point A), which is then the critical volume

fraction for the 3-phase model, corresponding to a CNT separation of 137 nm. The

second parameter, the interphase conductivity, is determined by the value of the first

data point after the jump (Point A) so that once the matrix is consumed, the re-

maining 2-phase model will fit the first data point. As seen in Figure 52, the 3-phase

portion of the model captures well the initial percolation behavior and reduces to a

2-phase model at the desired volume fraction. However, the 2-phase portion of this

model subsequently only captures well the first data point of the second percolation

behavior (.i.e., the data point which was used to calibrate the conductivity of the in-

terphase), and the second data point thereafter. The remaining three data points are

not well modeled with this 3-phase model, indicating the need for yet another inter-
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phase layer to capture the secondary percolation event. Though a direct correlation

is not herein made, one could view the combination of the two interphase regions in

a 4-phase model as a means for modeling the increase probability of electron hopping

as nanotubes are brought into increasingly closer proximity. 9

The 4-phase generalized self-consistent composite cylinder model, consisting of

the nanotube, two distinct interphase layers, and the matrix, is observed in Figure 52

to provide a much more accurate correlation to Data Set 1. In the 4-phase model, the

total interphase thickness is now defined by the initial jump in the data set at a volume

fraction of 0.00015 (just prior to Point A), corresponding to the 137 nm of separation

between CNTs. The interphase layer closest to the nanotube, which will have the

larger conductivity of the two interphase regions as determined by the second percola-

tion event conductivity, has a thickness determined by the second percolation volume

fraction in the data at a volume fraction of 0.0009 (at Point B corresponding to a

CNT separation of 55 nm), thus constraining the two interphase thickness parameters

and leading to two critical volume fractions. The second interphase layer retains the

conductivity of the lone interphase layer from the 3-phase composite cylinder model.

Thus, in comparing the 3- and 4-phase composite cylinder model configurations, it

is as if the additional interphase is obtained by taking the portion of the 3-phase

composite cylinder model closest to the nanotube and augmenting its conductivity.

The resulting 4-phase model thus retains the ability to capture the effective conduc-

tivity prior to the initial percolation limit (as a saturation effect was observed in the

parametric studies), then transitions after the first critical volume fraction to a 3-

phase portion of the model consisting of the nanotube and the two interphase layers,

9If one were to obtain a continuous curve for the probability of electron hopping
with respect to nanotube separation, this curve could be fit with an increasing number
of interphase regions or use a graded interphase region.
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Table IX. Geometry and electrical conductivities applied in the 2-, 3- and 4-phase

composite cylinder models. All geometry data provided in nm and con-

ductivities in S/cm. The radius of the carbon nanotube is taken to be

rcnt = 0.85 nm with a thickness of 0.34 nm in which the conductivity is

taken to be σcnt = 1E3 S/cm The radius of the matrix phase (prior to being

consumed) is given by rN = rcnt/
√
cf

2-Phase 3-Phase D1 4-Phase D1 4-Phase D4

ri σi ri σi ri σi ri σi

Phase 1 rcnt σcnt rcnt σcnt rcnt σcnt rcnt σcnt

Phase 2 rN 3.3E − 12 69.1 5E − 5 28.3 5E − 3 4.9 5E − 3

Phase 3 - - rN 3.3E − 12 69.1 5E − 5 13.4 3E − 3

Phase 4 - - - - rN 3.3E − 12 rN 3E − 10

and finally transitions to a 2-phase portion after the second critical volume fraction

consisting of the nanotube and the inner most interphase layer (as depicted by the

arrows in Figure 52). The resulting 4-phase model thus captures well the measured

conductivity values in Data Set 1, capturing the secondary percolation and predicting

nanocomposite conductivities in good agreement with data points prior to Point A

and between Points A and B. The thickness and conductivity parameters used in each

of these models is provided in Table IX.

As a result of the relatively good agreement between Data Sets 1 through 3, the

4-phase composite cylinder model can be taken as a representative of all three data

sets. Data Set 4, however, demonstrates a drastically different response, perhaps due

to some unidentified processing difference. Taking the same approach as was done for

Data Set 1, a 4-phase generalized self-consistent composite cylinder model with good

correlation to Data Set 4 is shown in Figure 53, the interphase parameters of which
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Fig. 53. Comparison of randomly oriented 4-phase composite cylinders model fits with

experimentally measured values from the literature. Data Set 1 corresponds

to [54], Data Set 2 to [53], Data Set 3 to [21], and Data Set 4 to [51].

are also provided in Table IX. The two 4-phase generalized self-consistent composite

cylinders models together can be used to provide a range of values for the interphase

thicknesses and conductivities. While the initial increase in conductivities for both

4-phase models is observed to be seven orders of magnitude, the total interphase

thickness is seen to have a range 10 - 70 nm. It is not yet clear if such a range reflects

differences in processing or mechanisms, or could be correlated to do so. However,

it is of interest to note that the thickness of first interphase layer for 4-phase model

that correlates with Data Set 4 is comparable to the value identified as the requisite

distance for electron hopping in reference [42] for single walled carbon nanotubes in

PMMA. Thus, the generalized self-consistent composite cylinders model may be a

useful tool in modeling the nanoscale effects leading to percolation-like effects prior

to the onset of contact percolation.

For example, if the generalized self-consistent composite cylinder model with suf-
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ficiently accurate representations of the electron hopping mechanism using interphase

regions is established, the increase in conductivity at given volume fraction for an ideal

distribution of CNTs provided by such a model could then be used to assess how well

dispersed CNTs are in a sample measured in the lab. Nanocomposites which demon-

strate percolation behavior at volume fractions lower than predicted for the ideal

dispersion would correspond to poor dispersions of CNTs while sample with percola-

tion behaviors closer to the ideal case would correspond to better dispersions. Here

it is noted, however, that the generalized self-consistent composite cylinder model

will need to also be calibrated for the effects of differing functionalizations, bearing

in mind that some functionalizations are intended to improve dispersion while others

are intended to improve bonding, thus pointing to the competing roles of functional-

ization in meeting the demands of nanocomposites in terms of elastic and electrical

properties, both of which can be modeled using the generalized self-consistent com-

posite cylinder model.10

10It has been argued that the functionalization of nanotubes can lead to a distinct
region of altered polymer surrounding the nanotubes [53, 161]. The effect of such
interphase layers on the mechanical properties of nanotube-epoxy nanocomposites
has been examined with the composite cylinder solutions by [161] and in Chapter IV.
It is noted that the interphase layers for mechanical and electrical properties may
be of different size, number and functionality as a result of the different mechanisms
between the two properties.
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CHAPTER VI

EFFECTIVE THERMAL CONDUCTIVITY OF NANOCOMPOSITES

Measured values from the literature [72–76] for the thermal conductivity of carbon

nanotube-polymer matrix composites at different volume fractions of carbon nan-

otubes are provided in Figure 54, normalized by their respective matrix conductiv-

ities.1 Some of the measured values come from work by Song and Youn [72] for

nanocomposites consisting of single-walled carbon nanotubes in epoxy. Additional

data comes from work by Bryning et al. [73] for nanocomposites consisting DMF

treated and surfactant dispersed, respectively, HiPCO carbon nanotubes in epoxy.

For these three sets of data it is of interest to note the large differences between mea-

sured values for CNTs dispersed in the same matrix, believed to be due to differences

in processing methods. Data points taken from Winey et al. [74] are the average

of several measurements from also from Winey et al. [75] for single-walled carbon

nanotubes in PMMA. Data from the work by Xu et al. [76] is for nanocomposites

consisting of single-walled carbon nanotubes in PVDF. Also included in Figure 54 are

the often cited and modeled results from Choi et al. [235] for suspensions of CNTs

in a synthetic poly (α-olefin) oil. It is of interest to note that the data from Choi et

al. demonstrates the largest increases in thermal conductivity with increasing CNT

volume fraction.

It is also noted from Figure 54 that, despite the large disparity in thermal con-

ductivity between CNTs (250-6600 W/mK [82, 235–237]) and polymers (0.175-0.225

W/mK [73–76]), and despite the mathematical analogy between the governing differ-

1Some of the data in the literature was provided in wt. % and converted to volume
fraction by vf = wfρpoly/(ρcnt − wfρcnt + wfρpoly) where wf is the weight fraction,
ρcnt the density of carbon nanotubes (taken as 1.8 g/cm3) and ρpoly the density of the
polymer matrix (nominally assumed to be 1.175 g/cm3).
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Fig. 54. Sampling of available data in the literature for the thermal conductivity of

carbon nanotube-polymer composites normalized by the matrix conductivity.

Measured values from Choi et al. [235] are for a suspension of single-walled

carbon nanotubes in a synthetic poly (α-olefin) oil. Song and Youn [72] mea-

surements are for single-walled carbon nanotubes in epoxy. Bryning et al. [73]

measurements are for DMF treated and surfactant dispersed, respectively,

HiPCO carbon nanotubes in epoxy. Winey et al. a) [74] is the average of

several measurements from Winey et al. b) [75] for single-walled carbon nan-

otubes in PMMA. Xu et al. [76] measurements are for single-walled carbon

nanotubes in PVDF.
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ential equations for thermal and electrical conductivity, that the thermal conductivity

data does not demonstrate the percolation behavior observed in the electrical con-

ductivity data. This is a result of the difference in nanoscale effects between the

two properties. The electrical conductivity of nanocomposites was identified to be

governed by an electron hopping mechanism which acted to increase conductivity

(see Chapter V). However, for the thermal conductivity of CNT nanocomposites,

many [73, 75, 77, 79, 82, 85, 123] have identified the presence of an interface thermal

resistance, often referred to as the Kapitza resistance [238–240], as the nanoscale phe-

nomenon which governs conductivity. The Kapitza resistance is identified as being

the result of a large impedance of thermal phonons across an interface due to acoustic

mismatch between materials. It is defined in terms of a temperature difference across

an interface of area, A, and the total heat flux across the interface, Q, by

RKap =
A�T
Q

(6.1)

and is traditionally measured for solid-liquid interfaces to better control thermal ex-

change conditions, but is applicable to solid-solid interfaces.

As it is difficult to directly probe the interface between carbon nanotubes and

the polymers in which they are embedded in the lab, some [78, 79] have used molec-

ular dynamics simulations to estimate the interfacial thermal resistance. Based on

temperature decay times on the order of tens of picoseconds, such efforts have yielded

estimates for the interfacial thermal resistance on the order of 10−8 m2K/W. Us-

ing molecular dynamics estimates of the interfacial thermal resistance as a starting

point, many [73, 79, 81–84] have used effective medium approaches (EMA) [85] in

parametric studies to theoretically assess the potential impact of the interfacial ther-

mal resistance on effective nanocomposite thermal conductivity. In an alternative

approach, Chen et al. [90] introduced the interfacial thermal resistance in the form
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of a jump factor [241] in conjunction with a Mori-Tanaka approach [127, 189, 242]

for randomly oriented, well-dispersed solid isotropic nanotubes to theoretically inves-

tigate the potential impact of the interface thermal resistance.

In the present work, the generalized self-consistent composite cylinders method is

employed to predict the effective thermal conductivity (see Chapter III) of nanocom-

posites consisting of randomly oriented CNTs in a polymer matrix. As was the case

in predicting the effective elastic properties and electrical conductivities of nanocom-

posites in the previous chapters, the CNTs are taken to be straight, defect-free, and

of sufficiently high aspect ratio so as to be considered infinitely long. Further, it is

noted that unlike the electrical properties of CNTs, the thermal properties of CNTs

are not dependent on chiral angle [122] so that the volume fraction of CNTs reported

corresponds to the total volume fraction for all chiral angles. As was similarly done

for the electrical properties of CNT-polymer nanocomposites, the nanoscale effects,

which for thermal conductivity stem from the Kapitza resistance, are incorporated

into the micromechanics model through the inclusion of an interphase region, as shown

schematically in Figure 55.

Before assessing the influence of the Kapitza resistance on the effective thermal

conductivity of CNT-polymer nanocomposites, it is of interest to first note the result-

ing micromechanics predictions of the effective thermal conductivity of such nanocom-

posites under the ideal assumption of perfect heat transfer across the CNT-polymer

interface typically reflected in continuity of heat flux and temperature assumptions.

As such, generalized self-consistent composite cylinder model results for the effective

thermal conductivity of nanocomposites containing randomly oriented CNTs (i.e. an

N = 2 composite cylinder assemblage with k
(1)
11 = k

(1)
22 = k

(1)
33 = kCNT = 2000 W/mK,

r1 = 0.85 nm, and nanotube thickness of tCNT = 0.34 nm embedded in an epoxy

matrix (k
(2)
11 = k

(2)
22 = k

(2)
33 = kM = 0.16725 W/mK) are provided in Figure 56. The
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Fig. 55. Schematic representation of the application of the generalized self-consistent

composite cylinders approximation for randomly oriented, well-dispersed CNT

nanocomposites in determining effective thermal conductivity.

resulting thermal conductivities are normalized by the matrix thermal conductivity.

Also provided in the figure are the results obtained from a Maxwell-Garnett

Effective Medium Approach (MG-EMA) employed by Nan et al. [77, 82] and a

Mori-Tanaka approach [127, 189, 242] employed by Chen et al. [90], both of which

treat the CNTs as randomly oriented isotropic solid cylinders. It is noted that,

for these cases, which do not include the effects of interfacial thermal resistance,

the MG-EMA and Mori-Tanaka approaches yield identical results and predict an

effective nanocomposite thermal conductivity which is orders of magnitude larger than

the results obtained from the generalized self-consistent composite cylinder method

employed herein. Upon closer inspection of the theory behind the MG-EMA (see for

example [243], it is found that the MG-EMA and Mori-Tanaka methods are based

on the same philosophy of using single inclusions embedded in an infinite matrix

material subject to a perturbation in the thermal gradient to obtain effective thermal
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Fig. 56. Initial comparison of micromechanics modeling approaches for the effective

thermal conductivity of CNT nanocomposites with the experimental data ob-

tained by Choi et al. [235]. Comparisons are made between the Effective

Medium Approach (Maxwell-Garnett) method used by Nan et al. [77, 82],

the Mori-Tanaka method as used by Chen et al. [90] and the generalized

self-consistent composite cylinders model employed herein illustrating the dif-

ference between a rule of mixtures approach to orientational averaging (the

two former) versus accounting for interactions in the orientational averaging

(the latter). A final comparison is made to a fourth micromechancis approach

in which a composite cylinders model is used to obtain an effective nanotube

which is then averaged over all orientations using a rule of mixtures.
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conductivities through the definition of the thermal Eshelby tensors, and that both

methods account for random orientations of inclusions in exactly the same manner.

As such, it is not surprising that both methods yield identical results. The natural

question then is why are these two methods providing such different results from the

generalized self-consistent composite cylinders method employed herein.

One possible explanation for the differences in the results was thought to be the

treatment of CNTs as solid isotropic cylinders in the MG-EMA and Mori-Tanaka

methods versus the inclusion of the hollow region of the CNT in the generalized

self-consistent composite cylinder method. As such, as was similarly done for the

elastic properties, the composite cylinder method was used to identify an effective

solid cylinder having transversely isotropic properties based on the hollow cylinder

geometry used in the generalized self-consistent composite cylinder method. The ef-

fective transversely isotropic solid cylinder was then used in the Mori-Tanaka method

as applied by Chen et al. [90] to yield the curve identified as RoM Composite Cylinder

Method in Figure 56. There it is noted that accounting for the hollow nature alone

does not explain the differences observed between the MG-EMA and Mori-Tanaka

methods and the generalized self-consistent composite cylinder method.

Instead, the large differences between these methods stems from the manner in

which the effects of random orientation are accounted for. In the MG-EMA and Mori-

Tanaka methods as employed by Nan et al. [77, 82] and Chen et al. [90], respectively,

the effects of random orientation are accounted for in such a way that the concentra-

tion tensor in Eqn. 3.131b would be the identity tensor. As such, these approaches

reduce to a rule of mixtures approach towards averaging all orientations. In contrast,

the generalized self-consistent composite cylinder method employed herein accounts

for interactions between the various orientations of CNTs in a self-consistent manner

and therefore results in a concentration tensor which is not the identity tensor.
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Further, though not shown in Figure 56, it is noted that using the effective

transversely isotropic cylinder for the CNT in a Mori-Tanaka method which also

accounts for interactions in a consistent manner (as opposed to the rule of mixtures)2

yields nearly identical results to the generalized self-consistent composite cylinder

method, as was similarly observed for the elastic properties in Chapter IV. However,

it is interesting to note that for the elastic properties, both rule of mixtures approaches

and consistent approaches for accounting for the effects of random orientation yield

nearly identical results, seemingly indicating a sensitivity of orientational averaging

to tensor order.

It is also of interest to note that included in Figure 56 are the measured data for

the thermal conductivity of a suspension of CNTs in a synthetic poly (α-olefin) oil

obtained by Choi et al. [235]. This data has been used by both Nan et al. [77, 82]

and Chen et al. [90] to demonstrate that micromechanics methods over predict ex-

perimental measurements, and was previously noted in Figure 54 to demonstrate the

largest increases in thermal conductivity with increasing CNT volume fraction of all

of the measured data provided. However, from Figure 56 it is noted the generalized

self-consistent composite cylinders model results are of the same order of magnitude

as the data from Choi et al. In order to provide a clearer assessment of the ini-

tial generalized self-consistent composite cylinders model results with the measured

data, Figure 57 provides the model predictions from Figure 56 on the scale of mea-

2It is noted that the Mori-Tanaka method applied in reference [90] follows from
the work of Hatta and Taya [189]. However, differences in averaging for random
orientation between the work of Hatta and Taya and the Mori-Tanaka description
provided in Chapter II of the present work lead to different estimates for the two Mori-
Tanaka approaches. The Mori-Tanaka method for random orientation as described
in Chapter II is noted to provided nearly identical results to the generalized self-
consistent composite cylinders method as was similarly noted for the mechanical
properties. As such, the results from Hatta and Taya will be referred to as the RoM
Mori-Tanaka Model.
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Fig. 57. Sampling of available data in the literature for the thermal conductivity of car-

bon nanotube-polymer composites normalized by the matrix conductivity and

compared with MG-EMA, RoM Mori-Tanaka, and generalized self-consistent

composite cylinder micromechanics models assuming perfect heat transfer

across the CNT-matrix interface.

sured data from Figure 54. While the rule of mixtures approaches to accounting

for random orientation over predict all of of the composite data, accounting for the

interactions amongst the randomly oriented CNTs in a consistent manner as is done

in the generalized self-consistent composite cylinders method is observed to be much

closer to the measured data, but also over predicts all of the low volume fraction

measurements before undergoing a transition at a volume fraction of 0.004 where the

increase in effective thermal conductivity with increasing nanotube volume fraction

slows dramatically.

As it was believed that the source of the difference between the theoretical predic-

tions of the effective medium approach and the measured data the was the Kapitza
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resistance [77, 82], this effect was introduced into the effective medium approach

through a proportional scaling of the axial, kC11, and transverse, kC22 = kC33, conductiv-

ities of the CNTs [82]. For example, the axial conductivity of the CNTs was modified

by

kC11 =
kCNT

1 +
2aKap

L

kCNT

kM

(6.2)

where L is the CNT length and aKap is the Kapitza radius given by aKap = RKapk
M

where RKap is the Kapitza resistance. Similarly, the transverse conductivity was

modified by

kC22 =
kCNT

1 +
2aKap

d

kCNT

kM

(6.3)

where d is the diameter of the CNTs, so that the effective conductivity of the nanocom-

posite was given by

keff

kM
=

3 + cf (�x + �z)

3 − cf�x
(6.4)

where

�x =
2(kC22 − kM)

kC22 + kM
(6.5a)

�z = kC11/k
M − 1 (6.5b)

By varying the nanotube aspect ratio, initial nanotube conductivity, and the Kapitza

resistance values, EMA predictions of this type can obtain good agreement with

a given set of measured data. For example, using a Kapitza resistance of 8 ×
10−8 m2K/W, Nan et al. [82] applied EMA and varied the nanotube diameter for a

fixed aspect ratio of 2000, obtaining good agreement with the data from Choi et al.

[235] with a diameter of 15 nm (and therefore length of 30 µm). In contrast, Bryning

et al. [73] applied EMA and varied the Kapitza resistance, obtaining good agreement

with their measured data using a Kapitza resistance of 2.6 × 10−8 m2K/W and nan-
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otube diameter and length of 1.1 nm and 167 nm, respectively, or an aspect ratio

of 150. While both efforts used Kapitza resistances of the order estimated by MD

simulations, the large disparities in CNT properties needed to obtain good agreement

with the measured data coupled with the rule of mixtures approach to orientational

averaging are points of concern.

In contrast, Chen et al. [90] introduced the Kapitza resistance in the form of a

jump factor, Jij , [241] defined as

1

VCNT

∫
Γ

(TCNT − TM)ni ds ≡ JijH
0
j (6.6)

where T is the temperature and ni is the unit outer normal of the surface Γ between

the CNT and the matrix, and where

kM
∂TM

∂n
= kCNT∂T

CNT

∂n
= β(TM − TCNT) |Γ (6.7)

where β is Kapitza conductivity (β = 1/RKap). The jump factor in Eqn. 6.6 is

then multiplied by the volume fraction of the CNTs and thermal conductivity of the

matrix, averaged over all orientations, and subtracted from the Mori-Tanaka method

using the rule of mixtures approach to orientational averaging. While this method

does not rely on the scaling of the CNT conductivity or geometry, it was observed

by Chen et al. [90] that the Kapitza resistance over a wide range values had little

impact on the effective thermal conductivity of the nanocomposite as the jump factor

only accounted for the thermal resistance along the lateral surface of the nanotubes.

Instead, it was argued that the thermal transport across the tube ends played a larger

role which was demonstrated through the introduction of anisotropy in the nanotube

conductivity by taking the axial conductivity of the nanotube as different mean values

of the isotropic nanotube and matrix conductivities.

In the present work, the Kapitza resistance is introduced into the nanocomposite
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composite cylinder assemblage as a thin interphase region enveloping the nanotube.

The thickness of the interphase region is arbitrarily set to a value less than 1% the

radius of the nanotube (i.e., thickness, tKap = 0.005 rCNT so that rKap = rCNT + tKap).

The conductivity of the interphase region is taken to be isotropic (i.e., k
(2)
11 = k

(2)
22 =

k
(2)
33 = kKap), with the value of the conductivity determined from the conservation of

energy condition that

Q(CNT)|r=rCNT
=

∫ L/2

−L/2

∫ 2π

0

β(T (CNT)|r=rCNT
− T (M)|r=rKap

)rCNTdθdz = Q(M)|r=rKap

(6.8)

where the T (i) are the temperatures given by analogy from Eqn. 3.104 and where the

total heat fluxes, Q(i), are given by

Q(i)|r=ri =

∫ L/2

−L/2

∫ 2π

0

qr|r=riridθdz (6.9)

The parameter β is the inverse of the interface thermal resistance (i.e. the Kapitza

resistance) analogous to a convection constant, and is used to determine the conduc-

tivity of the thin interphase layer representing the interface thermal resistance. From

the continuity conditions in Eqn. 3.111 applied at r1 = rCNT (the CNT-Kapitza layer

interface) and r2 = rKap (the Kapitza layer-matrix interface), Eqn. 6.8 can be written

as

Q(Kap)|r=rCNT
= Q(Kap)|r=rKap

=

∫ L/2

−L/2

∫ 2π

0

β(T (Kap)|r=rCNT
− T (Kap)|r=rKap

)rCNTdθdz

(6.10)

allowing the conductivity of the interphase layer representing the interface thermal

resistance to be given by

kKap =
β
[
D

(Kap)
1 (rCNT − rKap) +D

(Kap)
2

(
1

rCNT
− 1

rKap

)]
(
D

(Kap)
1 − 1

r2CNT
D

(Kap)
2

) (6.11)
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where the constants D
(Kap)
1 and D

(Kap)
2 are determined from the application of the

boundary and continuity conditions in Eqns. 3.110 and 3.111 to the composite cylinder

assemblage. The resulting simplified expression for the Kapitza layer conductivity is

then given as

kKap =
βkCNTtCNTtKapγ1

γ2t2Kapβ + γ3tCNTkCNT
(6.12)

where

γ1 = (tCNT − 2rCNT)(2rCNT + tKap)

γ2 = 2r2
CNT − 2rCNTtCNT + t2CNT

γ3 = (2tCNT − 4rCNT)(tKap + rCNT)

(6.13)

As only of the Q(i) conditions in Eqn. 6.10 is needed to determine the conductivity

of the Kapitza layer, the other is used to evaluate the error associated with a chosen

thickness of the Kapitza layer. In the results which follow, the thickness of the

interphase region is set to a value less than 1% the radius of the nanotube, e.g.

tKap = .005 × rCNT which results in an evaluated error of one one-thousandth of a

percent.

The resulting predictions of the nanocomposite thermal conductivity for an

N = 3 (CNT-Kapitza layer-matrix) generalized self-consistent composite cylinder

model for randomly oriented CNTs in a polymer matrix are provided in Figure 58

for a range of values of the Kapitza conductivity, β. Also shown in the figure are

data from Choi eat al. [235], representative of the upper range of the CNT nanocom-

posite data, and from Winey et al. [74], representative of the average behavior for

CNT nanocomposites. It is observed that the inclusion of the Kapitza layer does

not effect the initial predicted thermal conductivities, leaving the initial slope un-

changed. Instead, the effect of the Kapitza layer is to change the rate at which the
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Fig. 58. Comparison of N = 3 (CNT-Kapitza layer-matrix) generalized self-consistent

composite cylinder model for nanocomposites with randomly oriented CNTs

including the interface thermal resistance to measured data in the literature.

Comparisons are made with data from Winey et al. [74] representing the av-

erage nanocomposite thermal conductivity and from Choi et al. [235] repre-

senting the upper range of nanocomposite thermal conductivity. Generalized

self-consistent composite cylinder model results for different values of the in-

terface thermal resistance as measured by the parameter β demonstrate the

range interface behavior from perfectly conducting, and therefore equivalent

to the N = 2 perfectly conducting interface results, to perfectly insulating.
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thermal conductivity increases with increasing CNT volume fraction following the

initial sharp increase at low volume fractions. In addition, it is observed that a β

value of 20 W/m2K is sufficiently large enough so as to represent the perfect interface

condition, with the results obtained being nearly identical to those obtained with the

N = 2 generalized self-consistent composite cylinder model. This corresponds to the

ratio of the Kapitza layer conductivity to that of the matrix having approached a

value of one, and is indicative of a perfectly conducting interface. As the value of

β decreases (i.e. as the Kapitza resistance becomes larger), the rate of increase in

conductivity with increasing CNT volume fraction of the predicted results decreases.

It is further observed that at a β value of 0.2 W/m2K, the rate of increase in conduc-

tivity with increasing CNT volume fraction is essentially zero, with further decreases

in β providing nearly identical predictions of effective thermal conductivities. This

indicates that the ratio of the Kapitza conductivity layer to that of the matrix has

approached a value near zero, indicative of being a perfectly insulating interface.

Thus, the entire range of influence for the Kapitza conductivity as modeled here es-

sentially spans three orders of magnitude and does not correct the over prediction of

measured data. It is also of interest to note that using values for the Kapitza resis-

tance reported from atomistic modeling [78, 79] efforts would result in a β value of

12× 106 W/m2K, which far exceeds the value of β representing a perfectly insulating

using the generalized self-consistent composite cylinder model.

However, it is recalled that it was noted by Chen et al. [90] that the jump pa-

rameter used to capture the effects of the Kapitza resistance did not have a significant

impact on the predicted effective thermal conductivities as it did not account for the

tube end transport. While the generalized self-consistent composite cylinder model

results do indicate a larger impact of the Kapitza resistance than the model used

by Chen et al. [90], end effects associated with the Kapitza resistance are also not
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Fig. 59. Schematic representation of how the Kapitza layer conductivity is used to

introduce anisotropy into the nanotube conductivity.

included, and portions of the measured data remain largely over predicted. As such,

a simple model is used to effectively account for the interface thermal resistance end

effects.

As a result of modeling the carbon nanotubes with high aspect ratio composite

cylinder assemblages, the transfer of heat from the ends of the nanotube to the poly-

mer matrix are ignored. As such, incorporating the interface thermal resistance as a

thin interphase region does not reflect the inclusion of the interface thermal resistance

at the nanotube ends. A simple model for including such effects is instead applied in

which the nanotube axial conductivity, k
(1)
11 = kCNT, is replaced by an effective value,

k
(1)
11 = k̃, determined from the simple series model shown in Figure 59. Looking at a

θ cross section of the nanotube (see Figure 59), the lengthwise ends of the nanotube

are replaced by regions with conductivity equal to that determined for the Kapitza

layer interphase, kKap, and with the same thickness, t = tKap. Applying the general

solution for the axial heat flow potential (Eqn. 3.83) for each phase in this column
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we obtain

T (2a) = D
(2a)
1 z +D

(2a)
2 for − L

2
≤ z ≤ −L

2
+ t (6.14a)

T (1) = D
(1)
1 z +D

(1)
2 for − L

2
+ t ≤ z ≤ L

2
− t (6.14b)

T (2b) = D
(2b)
1 z +D

(2b)
2 for

L

2
− t ≤ z ≤ L

2
(6.14c)

where t is the thickness of the interface thermal resistance interphase layer and L is

the length of the nanotube. The constants D
(i)
1 and D

(i)
2 are determined from the

boundary and matching conditions given by

T (2a)|z=−L
2

= T̂1 (6.15a)

T (2b)|z= L
2

= T̂2 (6.15b)

T (2a)|z=−L
2

+t = T (1)|z=−L
2

+t (6.15c)
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2
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z |z=−L
2
+t (6.15d)

T (2b)|z= L
2
−t = T (1)|z= L

2
−t (6.15e)

q(2b)
z |z= L

2
−t = q(1)

z |z= L
2
−t (6.15f)

The cross section is then taken as equivalent to a homogeneous cross section with

axial conductivity k̃ and with axial heat flow potential given by

T (∗) = D
(∗)
1 z +D

(∗)
2 for − L

2
≤ z ≤ L

2
(6.16)

where the constantsD
(∗)
1 andD

(∗)
2 are determined through application of the boundary

conditions identical to those applied in Eqns. 6.15a and 6.15b. Equating the thermal

energies, an expression for the effective axial conductivity of the nanotube as

k̃ =
2kKap(D

(2a)
1 )2t+ kCNT(D

(1)
1 )2(L− 2t)

(D
(∗)
1 )2L

(6.17)
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where kKap is the conductivity of the interface thermal resistance interphase layer

determined from Eqn. 6.11 and kCNT is the original nanotube conductivity. Substi-

tuting the values for the constants into Eqn. 6.17, the expression for the effective

axial conductivity of the nanotube can be expressed as

k̃ =
kCNTkKapL

kCNT2t+ kKap(L− 2t)
(6.18)

It is of interest to note from Eqn. 6.18 that as the Kapitza layer thickness goes to

zero, that k̃ returns the nanotube conductivity. Further, as kKap goes to zero, k̃

goes to zero indicative of the Kapitza layer being a perfect insulator. Finally, if kKap

goes to infinity, then k̃ = kCNT L

L− 2t
which means that for small thicknesses, k̃

approaches kCNT returning the perfect interface assumption. It is finally noted that

though the axial conductivity of the nanotube is reduced to account for the end of

effects associated with the interfacial thermal resistance (k
(1)
11 = k̃), the transverse

conductivity of the nanotubes remains unchanged, i.e., k
(1)
22 = k

(1)
33 = kCNT, as the

effects of the interfacial thermal resistance in the transverse direction are accounted

for by the interphase conductivity of the Kapitza layer, kKap.

A reexamination of the effects of the effects of the interfacial thermal resistance

using the N = 3 (CNT-Kapitza layer-matrix) generalized self-consistent composite

cylinder model, this time including the end effects associated with the Kapitza layer,

are provided in Figure 60 for a range of β values, with the corresponding values for

the interface thermal resistance interphase conductivity and effective nanotube axial

conductivity provided in Table X. It is again observed that a β value of 20 W/m2K

is sufficiently large enough so as to represent the perfect interface condition, with the

results for this case being nearly identical to those of the N = 2 composite cylinder

model, so that again using the values for the Kapitza conductivity reported from MD

simulations would constitute a perfect interface. This is again because the value of
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Fig. 60. Comparison of N = 3 (CNT-Kapitza layer-matrix) generalized self-consistent

composite cylinder model including interface thermal resistance end effects to

measured data in the literature. Comparisons are made with data from Winey

et al. [74] representing the average nanocomposite thermal conductivity and

from Choi et al. [235] representing the upper range of nanocomposite thermal

conductivity. Generalized self-consistent composite cylinder model results for

different values of the interface thermal resistance as measured by the param-

eter β demonstrate the range interface behavior from perfectly conducting,

and therefore equivalent to the N = 2 results, to nearly insulating.
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Table X. Values for β and the corresponding interface thermal resistance interphase

conductivity, kKap given by Eqn. 6.11, and effective nanotube axial con-

ductivity, k̃ given by Eqn. 6.18, for the N = 3 generalized self-consistent

composite cylinder model for both lateral and end effects of interface ther-

mal resistance. Note that transverse conductivity of the nanotube remains

unchanged, i.e., k
(1)
22 = k

(1)
33 = kCNT.

β W/m2K kKap W/mK k̃ W/mK

β = 20 9.97 10−2 1665

β = 0.2 9.97 10−4 94.97

β = 0.05 2.49 10−4 24.62

β = 0.02 9.97 10−5 9.92

β = 0.002 9.97 10−6 0.996

the Kapitza layer conductivity, kKap given in Table X, is nearly equal to the matrix

value of 0.16725 W/mK, and further, the effective axial conductivity of the nanotube,

k̃ in Table X is nearly equal to the CNT value of kCNT = 2000 W/mK. However,

with decreasing β it is observed that the inclusion of the interface end effects changes

the predicted effective thermal conductivity throughout the entire range of volume

fractions, removing the initial sharp increase in conductivity at low volume fractions.

In fact, a β value of 0.2W/m2K is no longer observed as the saturation limit; this

occurs at much lower β values. For example, at a β value of 0.002 W/m2K, where

kKap is orders of magnitude below the matrix value while k̃ is on the order of the

matrix conductivity, the results begin to reflect the effective conductivity of a porous

media. As such, further reductions in β lead to the opposite type of matrix dominance

associated with porosity where the matrix is far more conductive than the other

constituents. Thus, it is noted that the combined effects the lateral and end effects
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of the interfacial thermal resistance can have a significant impact on nanocomposite

thermal conductivity.3

It is further noted that a β value of 0.2 W/m2K is observed to capture well the

initial portion of the data from Choi et al. [235] while a β value of 0.05 W/m2K is

observed to capture well the initial portion of the data from Winey et al. [74]. As

the two data sets correspond to different matrix materials, it is reasonable to expect

that the interface thermal resistance may be different, reflecting the varying degree of

phonon scattering at the nanotube-matrix interface. However, neither β value models

well the full range of measured data with increasing nanotube volume fraction. This

may be due to changes in polymer morphology due to the interaction of the polymer

chains with nanotube leading to differences in the polymer conductivity adjacent to

the nanotube surface.4 Such effects are considered in the present model through the

inclusion of matrix interphase regions.

TEM images have previously been used in Chapter IV to justify the inclusion of a

matrix interphase region in the micromechanics modeling of CNT-polymer nanocom-

posites elastic properties. Variations in polymer density distributions surrounding

3It was observed in Figure 58 that the effects of an isotropic interphase layer rep-
resenting the interfacial thermal resistance were unable to reduce the effective con-
ductivity below the results provided for β = 0.2 W/m2K. However, it is observed in
Figure 60 that the introduction of anisotropy into the nanotube conductivity through
the reduction of the axial conductivity can achieve values below the results provided
for β = 0.2 W/m2K. One may therefore ask is it possible for the anisotropy to reside
in Kapitza layer and achieve the same effect. The answer is no as in Figure 58 it is
the very large axial conductivity of the nanotube as compared to the matrix which
constrains the lower bound of the effective thermal conductivity. While anisotropy in
the Kapitza layer could be introduced, the Kapitza layer conductivity for a β value
of 0.2 W/m2K is already well below the matrix conductivity. As the effective axial
conductivity of the composite cylinder assemblage is governed by a rule of mixtures,
further reductions in the β parameter for a given thickness will not cause significant
reductions in axial conductivity of the composite cylinder assemblage.

4It has been noted that the increases in polymer molecular weight and crosslink
density lead to increases in polymer conductivity and other properties [244]



247

Fig. 61. Illustration of the use of molecular dynamics simulations in discerning the

presence of graded interphase regions. The density distribution surrounding a

CNT in a polyethylene matrix [99] is used to provide insight into the thickness

and material properties of the polymer in the vicinity of the CNT.

CNTs in MD simulations like the one shown in Figure 61 have similarly been used

to justify the presence of a matrix interphase region [99]. There it is observed that

density drops sharply from the CNT carbon atoms to below the bulk polymer den-

sity to a value of nearly zero, seemingly indicating a small gap between the CNT

surface and the polymer reflective of the van der Waals interactions. Over the course

of approximately one CNT radius, the density distribution in the polymer sharply

increases to a value greater than the bulk density, before subsequently decreasing

and equilibrating to the bulk density of the polymer (in this example, polyethylene).

Here it is believed that the initial gap between the CNT and the polymer lends some

credence to the presence of the interfacial thermal resistance, while the subsequent

large fluctuations in the polymer density give rise to corresponding large fluctuations
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in the polymer conductivity.

The introduction of a matrix interphase layer in the generalized self-consistent

composite cylinders micromechanics model consists of the inclusion of an additional

layer in the composite cylinder assemblage, and therefore introduces two additional

parameters, the matrix interphase conductivity (kint) and thickness (tint). The re-

sulting total composite cylinder assemblage is therefore an N = 4 assemblage con-

sisting of CNT (with k
(1)
22 = k

(1)
33 = kCNT = 2000 W/mK and k

(1)
11 = k̃ given by

Eqn. 6.18), the Kapitza interphase layer (with k
(2)
11 = k

(2)
22 = k

(2)
33 = kKap given by

Eqn. 6.11), the matrix interphase layer (k
(3)
11 = k

(3)
22 = k

(3)
33 = kint), and the matrix

(k
(4)
11 = k

(4)
22 = k

(4)
33 = kM = 0.16725 W/mK). It is important to note that like the ma-

trix, the matrix interphase layers are not included in the end effects associated with

the interface thermal resistance as a result of the high aspect ratio of the composite

cylinder assemblage.

The thickness of the matrix interphase layer can be estimated from TEM images

or taken from the density distributions resulting from MD simulations. A parametric

study on the effect of the matrix interphase region thickness for a given Kaptiza con-

ductivity and matrix interphase conductivity is provided in Figure 62. For a Kapitza

conductivity of β = 0.02 W/m2K and matrix interphase to matrix conductivity ratio

(kint/kM) of three, the thickness of the matrix interphase layer is varied from zero (i.e.,

from the N = 3 model), to the value of 1 nm observed in the MD density distribution,

to the value of 1.75 nm observed in TEM images, and finally to a value twice that. It

is noted that the resulting nanocomposite conductivity is quite sensitive to the matrix

interphase thickness. It is also noted from the figure that the effective nanocomposite

conductivity resulting from the thickness of 1.75 nm represents a broad range of the

measured data from Winey et al. [74]. As such, this value of thickness is used in a

second parametric study on influence of the matrix interphase layer conductivity.



249

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.02 0.04 0.06 0.08 0.1

Volume Fraction of Carbon Nanotubes

N
o

rm
al

iz
ed

 C
o

n
d

u
ct

iv
it

y

Choi et al.: SWCNT
Suspension in Oil

Winey et al. a): SWCNT in
PMMA

N=2 Composite Cylinder Model

N=3 CCM W/End Beta = 0.02

N=4 CCM W/End Beta = 0.02
k3/k4 = 3.0 tmat = 1.00

N=4 CCM W/End Beta = 0.02
k3/k4 = 3.0 tmat = 1.75

N=4 CCM W/End Beta = 0.02
k3/k4 = 3.0 tmat = 3.50

tint = 0 nm

tint = 1 nm

tint = 1.75 nmtint = 3.5 nm

Fig. 62. Parametric study on matrix interphase thickness of N = 4 composite cylin-

der model for the lateral and end effects of the interface thermal resistance

having a given matrix interphase conductivity of 3 times the matrix value

(kint/kM = 3) and a Kapitza conductivity of β = 0.02 W/m2K. Also included

are the measured data from Choi et al. [235] and Winey et al. [74].
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Fig. 63. Parametric study on matrix interphase conductivity ofN = 4 composite cylin-

der model for the lateral and end effects of the interface thermal resistance

having a given matrix interphase thickness of 1.75 nm and a Kapitza conduc-

tivity of β = 0.02 W/m2K. Also included are the measured data from Choi

et al. [235], Winey et al. [74], and Bryning et al. [73].

Retaining a Kapitza conductivity value of β = 0.02 W/m2K and a matrix in-

terphase thickness of 1.75 nm, Figure 63 provides a parametric study on the matrix

interphase layer conductivity. The matrix interphase layer to matrix conductivity

ratio (kint/kM) is varied from one (i.e., from the N = 3 model) to eight. From the

figure, it is observed that the matrix interphase layer conductivity can also have sig-

nificant influence on the predicted nanocomposite conductivity. In fact, it is noted

that a ratio of kint/kM = 4 represents well the measured data of Winey et al. [74]

while a ratio of kint/kM = 1.5 is noted to represent well the measured data from

Bryning et al. [73]. Again, as these measured data are for different matrix materials

(PMMA and epoxy, respectively) it is not unreasonable to have different values for

the matrix interphase layer conductivity.
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Fig. 64. Comparison of N = 4 (CNT-Kapitza layer-matrix interphase-matrix) gener-

alized self-consistent composite cylinder model including interfacial thermal

resistance end effects to measured data. Comparisons are made with data

from Winey et al. [74] representing the average nanocomposite thermal con-

ductivity and Choi et al. [235] representing the upper range of nanocomposite

thermal conductivity. Generalized self-consistent composite cylinder model

results are provided for different values of the interface thermal resistance (β)

and of the matrix interphase conductivity (k
(3)
11 = k

(3)
22 = k

(3)
33 ).

However, this does not necessarily mean that these values for the Kapitza con-

ductivity and matrix interphase thickness and conductivity correspond to the ac-

tual values of these quantities. As shown in Figure 64, for different values of the

Kapitza conductivity, differences in matrix interphase conductivity (or in thickness)

can also demonstrate relatively good agreement with the measured data. Figure 64

provides a parametric study of the combined effects of the Kapitza resistance and a

matrix interphase layer on the effective composite thermal conductivity for β values

of 0.02 W/m2K and 0.002 W/m2K and matrix interphase conductivities of 1.5 and
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2.5 times the matrix conductivity (the thickness of the matrix interphase layer is set

to correspond to the volume fraction at which the large increase in conductivity is

observed between volume fractions of 0.033-0.046, or roughly 4 CNT radii). It is

noted that as the volume fraction of the carbon nanotubes is increased to the critical

volume fraction of 0.035, the N = 4 composite cylinder model transitions to an N = 3

composite cylinder model as the undisturbed matrix material is ”consumed”.

From Figure 64 it is again observed that the low volume fraction portion of the

data can be well matched by a given combination of β and kint, in this case, the best fit

to the initial slope was obtained by β = 0.02 W/m2K and kint/kM = 1.5. However this

case did not capture the subsequent rapid increase in thermal conductivity observed

in the measured data. Higher values of kint/kM were better able to capture the rapid

increase conductivity, but were again overestimating the initial portion of the data.

This indicates that there is not a unique combination of β, tint, and kint/kM which

captures well the observed behavior of the measured data. In fact, if one were to

consider the matrix interphase region to be a graded material region, getting more

conductive with increasing proximity to the nanotube, then one could represent such

a graded behavior using a collection of matrix interphase layers, for example, with

conductivities based on molecular dynamics simulations density distributions [79, 99]

as illustrated in Figure 61.

For example, the data of Winey et al. [74] can also be well represented using an

N = 5 (CNT-Kapitza layer-first matrix interphase-second matrix interphase-matrix)

generalized self-consistent composite cylinder model with the end effects of the ther-

mal resistance layer included, the results of which are provided in Figure 65. The best

representation was obtained with a β value of 2 10−6 W/m2K, a matrix interphase

region with kint1/kM = 2.55 and critical volume fraction of 0.05, and a second matrix

interphase region with kint2/kM = 1.10 and critical volume fraction of 0.025. It is
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Fig. 65. Results for an N = 5 generalized self consistent composite cylinder model

consisting of a CNT, a Kapitza resistance layer with end effects, and two

matrix interphase layers with decreasing conductivity with increasing distance

from the nanotube representing a graded interphase in comparison with data

from the literature. The parameters for the composite cylinder model are

selected to best represent the data of Winey et al. [74]. Also shown is the

data from Choi et al. [235].
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noted that further reductions in β would result in only minor changes in the pre-

dicted thermal conductivity as β is essentially saturated. This means that the CNTs

are practically completely insulated, both along the lateral surfaces and at the ends,

and that the matrix interphase regions thus play a critical role in obtaining good

agreement with the measured data. In fact, from the results provided here, one could

consider that, as a result of the governing nanoscale effect, the role of CNTs in terms

of the effective thermal conductivity of nanocomposites not to be linked to the high

conductivity of the CNTs, but rather to be a source of disturbance to the polymer

structure, and therefore, to the polymer conductivity. This is in sharp contrast to the

role of CNTs in terms of electrical conductivity where the governing nanoscale effects

associated with the CNTs lead to orders of magnitude increases in conductivity.

While improving nanoscale simulations is beyond the scope of this work, it has

been noted herein that MD simulations used to calculate values for the Kapitza re-

sistance [78, 79] have obtained values well above the saturation limit for a perfectly

conducting interface identified for the present micromechanics model. It is noted

that these MD estimates rely on the calculation of a characteristic decay time in

temperature transferred from the nanotube to the matrix, τ , which in these simu-

lations is on the order of picoseconds and results in a Kapitza resistance on order

of 10−8 m2K/W. Such values would correspond Kapitza conductivities on the order

10 MW/m2K which are again noted to be well above the 20 MW/m2K value which

in the present model corresponds to an interface which is essentially perfectly con-

ducting. In fact, it is further noted that for a value of the Kapitza conductivity of

0.02 MW/m2K, which in the present model was shown to have significant impact on

the nanocomposite conductivity, would correspond to a decay time of 0.028 s. To

even detect such a large decay time at present would require a substantial amount

of computation time for MD simulations. Thus it is not clear if MD simulations
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are presently able to give accurate estimates for the Kapitza resistance/conductivity.

However, it is confirmed from the present work that without the inclusion of an in-

terface thermal resistance, micromechanics predictions of the thermal conductivity of

CNT-polymer nanocomposites will largely over predict the measured values for these

nanocomposites.

Thus, while it is observed that the micromechanics model described herein can be

used to help qualitatively understand the potential impact of nanoscale features such

as interface thermal resistance layers and graded interphase regions, it is recognized

that further nanoscale simulations are needed to make more quantitative assessments

and to provide such micromechanics models with the necessary input for predict-

ing nanocomposite properties by narrowing the range of interface thermal resistance

values.
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CHAPTER VII

CONCLUSIONS AND IDENTIFICATION OF FUTURE CHALLENGES

The present work has provided a micromechanics approach based on the general-

ized self-consistent composite cylinders method for assessing the impact of carbon

nanotubes on the multi-functional nature of nanocomposites in which they are a

constituent. Emphasis has been place on the effective elastic properties as well as

electrical and thermal conductivities of nanocomposites consisting of randomly ori-

ented single walled carbon nanotubes in epoxy. In order to place the generalized

self-consistent composite cylinders method into perspective, a review of the classical

micromechanics methods, including the Mori-Tanaka and self-consistent approaches,

and of the generalized self-consistent composite cylinder method has been provided.

Further, the generalized self-consistent composite cylinders method has been utilized

in the determination of concentration tensors, thereby emphasizing the generalized

self-consistent composite cylinders method as a non-Eshelby approach, and allowing

the generalized self-consistent composite cylinders method to be applied to systems

containing multiple inclusion types and orientations.

The generalized self-consistent composite cylinders method is subsequently em-

ployed in assessing the effective elastic properties of nanocomposites. The method is

first applied in the determination of effective nanotube properties for use in classical

micromechanics approaches. The effects of two nanotube parameters often discussed

in the literature, the stiffness and the thickness, on the effective nanotube properties

are placed into context with measured values in the literature. A nanotube stiffness of

1100 GPa and thickness of 0.34 nm, both representative with graphite, are observed

to provide a reasonable result for use in nanocomposite modeling.

The effective elastic properties of aligned, fully encapsulated, as well as clustered
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and well-dispersed nanotubes in epoxy are then discussed in the context of nanotube

bundles in nanocomposites using both classical micromechanics and the generalized

self-consistent composite cylinders method as well as using computational microme-

chanics techniques. Here it is observed that the Mori-Tanaka, self-consistent, general-

ized self-consistent composite cylinders and the computational micromechanics tech-

niques yield nearly identical results for all elastic properties at currently achievable

nanotube volume fractions. The Mori-Tanaka, generalized self-consistent composite

cylinders method and the computational micromechanics techniques are observed to

agree even at very large volume fractions. The Young’s modulus along the nanotube

axis is observed to obey a rule of mixtures approximation, while the remaining prop-

erties are observed to be dominated by the matrix material such that at 10% volume

fraction, Young’s modulus in the axial direction is 2300% larger than the matrix value

while in the transverse direction, it is only 30% larger than the matrix.

The effects of both stiff and compliant interphase regions on the elastic proper-

ties of aligned nanotube bundles using both the generalized self-consistent compos-

ite cylinder method and computational micromechanics techniques are observed to

strongly influence the properties transverse to the nanotube axis, 15% increase and

30% decrease for interphases that were ten times and one tenth, respectively, the

matrix value, while the axial Young’s modulus retains a rule of mixtures approxima-

tion. The effects of clustering of nanotubes within these bundles was also investigated

using computational micromechanics. It was observed that the effects of clustering

on the elastic properties of the bundles was to increase the transverse modulus on

the order of 2%, slightly less than effects of curvature observed by Fisher et al. [37]

to cause a reduction in modulus on the order 5% relative to straight fibers. Further,

it was noted that the combined effects of clustering for nanotubes with compliant

interphase regions yielded nearly identical results as the well-dispersed compliant in-
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terphase cases. In contrast, the combined effects of clustering and stiff interphase

regions yielded increases in the transverse properties of up to 25%, more than either

effect independently. However, as load transfer in nanocomposites constitutes a sig-

nificant issue, it is expected that interphase regions would most likely be compliant.

Thus, the effects of interphase regions are deemed more significant than the effects of

dispersion in terms of elastic properties.

As such, the effects of well-dispersed, randomly oriented nanotubes both with and

without interphase regions are compared to measured data from the literature. Here

it is found that the initial estimation of the nanocomposite Young’s modulus obtained

from the generalized self-consistent composite cylinder generally over estimates the

measured values by nearly 30% at 1% wt. This seemingly confirms that there is

less than perfect load transfer between the nanotubes and the epoxy which would be

reflected in compliant interphase regions. However, it is also noted that there is a wide

range of uncertainty in the input parameters, in particular, the interphase stiffness,

the nanotube Young’s modulus, and the nanotube thickness; the interphase thickness

being more discernible from TEM imaging. Efforts at assessing the bounds of the

effective nanocomposite properties based on this uncertainty in the input properties

indicated that measured data for functionalized nanotubes fell very near the lower

bound obtained from the uncertainty in the interphase stiffness. Further, it was

observed that measured data for unfunctionalized nanotubes in epoxy were contained

within the next lower bound associated with the uncertainty in the nanotube stiffness.

Thus it is observed that the generalized self-consistent composite cylinder model can

reflect well the measured data in the literature, however, there is identified a need

for obtaining a better estimate of the nanotube and interphase stiffnesses either from

lower length scale simulations or from improved nanoscale measurement techniques.

The generalized self-consistent composite cylinders model has also been applied
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to model the electrical conductivity of carbon nanotube-epoxy nanocomposites. Here

it was noted that for well-dispersed, randomly oriented nanotubes in epoxy, that the

effective conductivity predicted by the generalized self-consistent composite cylinder

model was strongly matrix dominated, not showing any signs of percolation. How-

ever, the measured data from the literature demonstrated percolation behavior at

extremely low volume fractions which some attributed to the formation of nanotube

networks. However, at such low volume fractions the formation of such networks

would likely be an indication of poor dispersion. Others have instead argued that

the conductivity of nanotube-epoxy nanocomposites is governed by nanoscale effects

such as electron hopping. As such, an electron hopping mechanism was introduced

into the generalized self-consistent composite cylinder model in the form of a graded

interphase region. Using such a model, the method has been able to capture the dou-

ble percolation limit phenomena observed prior to the onset of contact percolation

believed to be due to the electron hopping mechanism. As this model assumes the

nanotubes are well-dispersed and fully enveloped in the polymer, it can be consid-

ered an estimate for the conductivity of nanocomposites with an ideal dispersion of

nanotubes, and thereby used to help identify good dispersions versus poorer ones.

Further, it is noted that while clustering had little impact on the elastic properties,

its effects on the effective electrical conductivity of nanocomposites may be significant

as the interphase regions are largely more conductive than the matrix and therefore

subject to interphase-clustering coupling, even prior to contact percolation, therefore

indicating that functionalization for dispersion purposes may have competing roles

in terms of mechanical and electrical properties. However, it is noted that before

such an assessment could be put into practice, it is again necessary either from lower

length scale simulations or from improved nanoscale measurement techniques to quan-

tify better both the inherent conductivity of the nanotubes as well as the range and
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conductivity associated with the hopping mechanism.

Despite the mathematical analogy between thermal and electrical conductivity,

the nanoscale mechanisms governing the nanotube-epoxy nanocomposites are vastly

different. In terms of thermal conductivity, the nanoscale effect takes the form of

an interfacial thermal resistance. As such, a generalized self-consistent composite

cylinder model for carbon nanotube-polymer nanocomposites was developed to in-

clude both the lateral and end effects of an interface thermal resistance layer on the

effective thermal conductivity of nanocomposites. It was observed that the inclusion

of just the lateral effects of the interface thermal resistance layer was insufficient for

the micromechanics model to be able explain the measured values of nanocomposite

thermal conductivity. Including the end effects of the interface thermal resistance

layer allowed the micromechanics to better capture the low volume fraction effective

thermal conductivities measured for nanocomposites, but not the subsequent increase

in thermal conductivity with increasing nanotube volume fraction. Using observed

variations in the density from molecular dynamics simulations as motivation, it was

observed that a more accurate micromechanics model was obtained through the in-

clusion of a graded matrix interphase layer in conjunction with the interface thermal

resistance lateral and end effects. The resulting model indicated that the interfa-

cial thermal resistance essentially nullified the perceived benefits of the large thermal

conductivity of carbon nanotubes. In fact, from the results provided here, one could

consider that, as a result of the governing nanoscale effect, the role of CNTs in terms

of the effective thermal conductivity of nanocomposites not to be linked to the high

conductivity of the CNTs, but rather to be a source of disturbance to the polymer

structure, and therefore, to the polymer conductivity. This is in sharp contrast to the

role of CNTs in terms of electrical conductivity where the governing nanoscale effects

associated with the CNTs lead to orders of magnitude increases in conductivity. How-
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ever, while it is observed that the micromechanics model described herein can be used

to help qualitatively understand the potential impact of nanoscale features such as

interface thermal resistance layers and graded interphase regions, it is recognized that

further nanoscale simulations are needed to make more quantitative assessments in

providing the necessary input for predicting nanocomposite properties by narrowing

the range of interface thermal resistance values and nanotube conductivity.

Thus, in conclusion, based on the analysis in the present work, the key influence

on the effective elastic stiffness and electrical and thermal conductivities of carbon

nanotube-polymer nanocomposites is the presence of interphase regions, be they the

result of nanoscale effects at the nanotube-polymer interface, due to changes in poly-

mer structure near nanotubes, or due to nanotube functionalization.
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APPENDIX A

SUMMARY OF AVAILABLE DATA ON CARBON NANOTUBES AND CNT

NANOCOMPOSITES IN THE LITERATURE

A1. Carbon Nanotube Young’s Modulus and Thickness

Tables summarizing the values from the literature for CNT Young’s modulus and the

corresponding thicknesses used in obtaining the value provided.

Reference [97]

CNT Thickness (nm) Young’s Modulus (GPa)

0.06 5500 SWCNT MD T-B

0.34 970 SWCNT Emp. Force Const

0.34 1200 SWCNT Tight Binding

0.34 800 SWCNT Ab Initio

0.95 950 MWCNT Ab Initio

Reference [97]

CNT Thickness (nm) Young’s Modulus (GPa)

0.34 1800 MWCNT Thermal Vib

0.34 1280 MWCNT Restoring Bending

0.34 1700 SWCNT Thermal Vib

0.34 1000 SWCNT Deflection Force
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Reference [212]

CNT Radius Young’s Modulus (Gpa) Calculated Poisson’s Ratio

0.85 625 0.275

Reference [213]

CNT Thickness Young’s Modulus (Gpa) From

0.066 5500 MD

0.074 5100 Tight Binding

0.075 4700 Local Density

0.089 3859 Ab Initio

0.075 4840 Continuum Shell

0.34 1010 Stiffness Mechanics

0.34 974 MD

0.34 1240 Tight Binding

0.34 1238 MD

0.066 5296 FE Truss (8,8)

0.074 4721 FE Truss (8,8)

0.075 4634 FE Truss (8,8)

0.089 3921 FE Truss (8,8)

0.075 4639 FE Truss (8,8)

0.34 1028 FE Truss (8,8)

0.34 1028 FE Truss (8,8)

0.34 1028 FE Truss (8,8)

0.34 1028 FE Truss (8,8)
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Reference [92]

CNT Thickness Young’s Modulus From

0.335 475 Modified Cauch-Born

0.335 705 Modified Cauch-Born

Reference [25]

CNT Thickness MWNT Young’s Modulus Exp from

- 810 AFM-2 ends clamped

- 1280 AMF-1 end clamped

- 1260 TEM-Thermal Vib

- 910 TEM-Direct Tension

A2. Carbon Nanotube-Polymer Composite Young’s Modulus

Tables summarizing the values from the literature for CNT-polymer composite Young’s

moduli and the corresponding weight percent or volume fraction in obtaining the value

provided.

Reference [218]: SWNT in EPON 862 cured W; Sonicated

wt % Storage Modulus (Gpa) Normalized by Matrix

0 2.498 1

1 2.782 1.113691
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Reference [36]: MWNT in Shell EPON 828

triethylene tetraamine hardener;Ultrasonicated

Tension Normalized Compression Normalized

wt % Modulus (GPa) Modulus (GPa)

0 3.1 1 3.63 1

5 3.71 1.196774 4.5 1.239669

Reference [49]: SWCNTs in Epoxy; Functionalized w/

dicarboxylic acid acyl peroxide treatment

wt % Young’s Modulus (GPa) Normalized

0 2.026 1

1 2.123 1.047878

1 2.65 1.307996

4 3.4 1.678184

Reference [219]: Laser Ablation SWCNTs in EPON 862 w/ W; Sonicated

from nanoindentation

Young’s Normalized Young’s Normalized

wt % Modulus (GPa) Modulus (GPa)

0 3.91 1 3.91 1

1 4.03 1.030691 3.99 1.02046

3 4.2 1.074169 4.2 1.074169

5 4.58 1.171355 4.51 1.153453
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Reference [33]: HiPCO SWCNTs in EPON 862 w/ W; Acid treated

and Flourinated to Functionalize F-SWNT-COOH

wt % Tensile Testing E (GPa) Normalized

0 2.026 1

1 2.123 1.047878

1 2.632 1.299112

Reference [220]: Arc discharge SWCNTs in Epoxy

Functionalized and termed f-SWNTs

Nanoindentation Normalized Storage Normalized

wt % Modulus (GPa) Modulus (GPa)

0 3.7 1 4 1

1 4.5 1.216216 5.5 1.375

3 5.9 1.594595 6 1.5

5 7 1.891892 7.1 1.775

Reference [245]: (PMMA)-functionalized multiwalled carbon nanotubes

Tensile Modulus (GPa) Normalized

vol. frac. from films

0 0.71 1

0.0015 1.349 1.9

0.00019 0.925 1.302817

0.00038 1.02 1.43662

0.00075 1.27 1.788732

0.003 0.77 1.084507

0.006 1.05 1.478873
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Reference [63]: SWNTs in isotropic pitch fibers

wt % Fiber Tensile Modulus (GPa) Normalized

0 34 1

1 41 1.205882

5 77 2.264706

Reference [246]: MWNTs in PVA

vol. frac. Young’s Modulus (GPa) Normalized

0 7 1

0.00001 8.4 1.2

0.00002 9.1 1.3

0.00004 9.8 1.4

0.00006 12.6 1.8

Reference [246]: MWNTs in PVK

vol. frac. Young’s Modulus (GPa) Normalized

0 2 1

0.000095 2.3 1.15

0.00015 3.1 1.55

0.00021 2.6 1.3

0.00028 3.7 1.85

0.00034 2.7 1.35

0.00048 5.5 2.75
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Reference [51]: MWNTs in Epoxy

wt % Tensile Test Young’s Modulus (GPa) Normalized

0 0.118 1

1 0.236 2

4 0.465 3.940678

Reference [247]: MWNTs in Polystyrene Thin Films

wt % vol. frac. Young’s Modulus (GPa) Normalized

0 0 1.53 1

1 0.487 2.1 1.372549

2 0.98 2.73 1.784314

5 2.49 3.4 2.222222

Reference [248]: SWCNTs in Isotropic pitch fibers

wt % Fiber Young’s Modulus (GPa) Normalized

0 34 1

1 41 1.205882

5 78 2.294118

Reference [248]: SWCNTs in PMMA fibers

wt % Young’s Modulus (GPa) Normalized

0 3.1 1

1 3.3 1.064516

5 5 1.612903

8 6 1.935484
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Reference [248]: SWCNTs in Polypropylene

wt % Young’s Modulus (GPa) Normalized

0 6.3 1

0.5 9.3 1.47619

1 9.8 1.555556

Reference [43]: MWNTs in Polyurethane

wt % Young’s Modulus (GPa) Normalized

0 0.013 1

1 0.015 1.153846

5 0.04 3.076923

10 0.0625 4.807692

17 0.095 7.307692

20 0.164 12.61538

Reference [52]: MWNTs in Polyamide-6

wt % Young’s Modulus (GPa) Normalized

0 2.59 1

1 2.98 1.150579

2 3.31 1.277992

4 3.49 1.34749

5 3.34 1.289575

6 3.76 1.451737

8 3.96 1.528958

10 4.13 1.594595

12 4.18 1.6139
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Reference [249]: SWNTs in Poly(propylene fumarate) (PPF);

Functionalized with phenethylalcohol

wt % Compressive Modulus (GPa) Normalized

0 0.318 1

0.05 0.468 1.471698

0.05 0.546 1.716981

0.05 0.554 1.742138

Reference [250]: SWNTs in PVA/PVP/SDS

Tensile Normalized Normalized

wt % Modulus (GPa) by PVA by PVA/PVP/SDS

0 1.9 1 -

0 2.5 x 1

5 4 2.105263 1.6

A3. Carbon Nanotube-Polymer Composite Electrical Conductivity

Tables summarizing the values from the literature for CNT-polymer composite electri-

cal conductivity and the corresponding weight fraction or volume fraction in obtaining

the value provided.

Reference [53] : SWNT in epoxy

wt. frac. Elec. Cond. S/cm

0 9.00E-11

0.0005 2.00E-05

0.001 2.00E-04

0.003 2.00E-03

0.005 0.01
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Reference [61] : nanotubes in PmPV

wt. frac. Elec. Cond. S/cm

0 4.00E-12

0.05 3.00E-11

0.1 7.00E-08

0.15 1.00E-06

0.35 2.00E-05

Reference [63]: SWNT in Pitch

wt. frac. Elec. Cond. S/cm

0 117.6471

0.01 400

0.05 476.1905
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Reference [56]: SWNT in PMMA (film direction)

wt. frac. Elec. Cond. S/cm

0 1.00E-12

0.005 1.50E-08

0.01 3.00E-06

0.015 2.00E-05

0.02 1.00E-04

0.025 6.00E-04

0.03 7.00E-04

0.035 8.00E-04

0.04 9.00E-04

0.045 1.00E-03

0.05 1.00E-03

0.055 1.00E-03

0.06 1.00E-03

0.065 1.00E-03

0.07 1.00E-03

0.08 1.00E-03

0.09 1.00E-03

0.1 1.00E-03
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Reference [56]: SWNT in PMMA (perpendicular to film)

wt. frac. Elec. Cond. S/cm

0 1.00E-12

0.005 1.00E-11

0.01 1.00E-10

0.015 1.00E-09

0.02 3.00E-09

0.025 7.00E-09

0.03 2.00E-08

0.035 3.00E-08

0.04 5.00E-08

0.045 8.00E-08

0.05 9.00E-08

0.055 1.00E-07

0.06 1.50E-07

0.065 2.00E-07

0.07 3.00E-07

0.08 6.00E-07

0.09 9.00E-07

0.1 1.00E-06
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Reference [30]: MWNT in Polycarbonate (150 rpm 5 min)

wt. frac. Elec. Cond. S/cm

0 2E-15

0.005 5E-13

0.01 5.56E-13

0.015 0.000345

0.02 0.000588

0.03 0.02

0.04 0.090909

0.05 0.105263

0.15 0.111111

Reference [30]: MWNT in Polycarbonate (Haake)

wt. frac. Elec. Cond. S/cm

0 2.5E-14

0.005 5E-14

0.01 1.02E-13

0.02 0.000588

0.05 0.02

0.15 0.166667
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Reference [30]: MWNT in Polycarbonate (50 rpm 15 min)

wt. frac. Elec. Cond. S/cm

0.01 1.25E-10

0.015 0.005

0.02 0.007692

0.03 0.018868

0.05 0.102041

Reference [30]: MWNT in Polycarbonate (150 rpm 15 min)

wt. frac. Elec. Cond. S/cm

0.01 1.67E-06

0.015 5.26E-07

0.02 0.007143

Reference [30]: MWNT in Polycarbonate (50 rpm 5 min)

wt. frac. Elec. Cond. S/cm

0.02 0.000118

Reference [51]: MWNT in epoxy

wt. frac. Elec. Cond. S/cm

0 3.00E-10

0.005 3.80E-10

0.01 2.00E-04

0.04 3.80E-03
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Reference [64]: SWNT in Polyimide

vol. frac. Elec. Cond. S/cm

0 6.00E-18

0.00025 3.00E-17

0.001 1.50E-08

0.002 5.00E-08

0.005 1.30E-07

0.01 1.60E-07

Reference [22]: MWNT in PMMA w/FE

wt. frac. Elec. Cond. S/cm

1.00E-03 1.10E-09

2.00E-03 1.00E-06

4.00E-03 1.50E-03

6.00E-03 9.00E-03

3.00E-02 2.50E-01

5.00E-02 8.00E-01

8.00E-02 2.00E+00

1.00E-01 4.00E+00

1.25E-01 6.00E+00

2.00E-01 1.00E+01

3.00E-01 2.00E+01

4.00E-01 2.50E+01
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Reference [22]: MWNT in PMMA w/Co

wt. frac. Elec. Cond. S/cm

5.00E-03 6.00E-04

1.00E-02 1.40E-03

2.00E-02 7.00E-02

1.00E-01 1.40E+00

2.00E-01 2.00E+00

Reference [42]: SWNT in PMMA

wt. frac. Elec. Cond. S/cm

0.0039 2.00E-11

0.005 7.00E-09

0.01 1.00E-06

0.02 1.00E-05

Reference [62]: Nanotube powder in PMPV

wt. frac. Elec. Cond. S/cm

0 4.00E-12

0.005 6.00E-12

0.027 6.90E-12

0.063 1.00E-11

0.077 3.00E-08

0.088 5.00E-06

0.109 1.00E-01

0.15 2.00E-01

0.16 8.00E-01

0.358 4.00E+00
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Reference [54]: MWNT in epoxy

vol. frac. Elec. Cond. S/cm

0.00015 5.00E-11

0.00022 7.80E-05

0.00034 7.00E-05

0.00059 2.00E-04

0.00071 2.40E-04

0.00089 4.90E-03

Reference [57]: MWNT in PC

wt. frac. Elec. Cond. S/cm

0 1.80E-16

0.005 2.00E-16

0.01 4.00E-16

0.015 6.00E-06

0.02 3.00E-04

0.03 6.00E-03

0.04 9.00E-03

0.05 1.50E-02
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Reference [58]: MWNT in PC

wt. frac. Elec. Cond. S/cm

0.01 7.00E-11

0.01125 1.50E-06

0.0125 3.00E-05

0.0135 6.00E-05

0.0175 1.00E-03

0.02 3.00E-03

0.0225 7.00E-03

0.025 1.30E-02

0.03 5.00E-02

Reference [52]: MWNT in PA

wt. frac. Elec. Cond. S/cm

0 1E-15

0.02 1E-13

0.03 2E-12

0.04 5E-11

0.05 1.56E-09

0.06 7.14E-08

0.08 4.17E-05

0.1 0.000588

0.12 0.035714
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Reference [43]: MWNT in PU

vol. frac. Elec. Cond. S/cm

0.01 2.80E-05

0.01125 6.00E-05

0.0125 3.90E-03

0.025 1.00E-01

0.04 5.20E-01

0.068 1.10E+00

0.085 4.00E+00

0.108 5.00E+00

0.125 8.50E+00

0.142 1.80E+01

0.16 2.00E+01

Reference [45]: MWNT in PET

vol. frac. Elec. Cond. S/cm

0 7.00E-17

0.005 9.00E-16

0.01 1.00E-08

0.02 1.00E-05

0.048 8.00E-05

0.09 3.00E-04
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Reference [59]: MWNT in PS

wt. frac. Elec. Cond. S/cm

0 1.00E-16

0.0005 6.00E-08

0.00185 1.00E-06

0.0025 1.00E-06

0.005 1.00E-06

0.006 1.00E-06

0.007 4.00E+01

0.008 4.00E+01

0.009 4.00E+01

Reference [21]: MWNT in epoxy

wt. frac. Elec. Cond. S/cm

0 1.00E-11

0.00001 1.10E-11

0.000025 3.00E-10

0.00005 1.60E-05

0.0001 3.00E-05
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Reference [55] Aligned MWNTs in Epoxy

wt. frac. Elec. Cond. S/cm

0.00001 1.00E-11

0.000024 3E-10

0.00005 0.000016

0.0001 0.00003

0.0005 0.0005

0.001 0.0004

0.01 0.02

Reference [55]: Entangled MWNTs in Epoxy

wt. frac. Elec. Cond. S/cm

0.0001 2.5E-11

0.0004 0.000088

0.00059 0.000089

0.0008 0.000089

0.001 0.00021

0.0012 0.0003

0.0016 0.005



316

Reference [60]: SWNT in PS

wt. % Elec. Cond. S/cm

0 9.50E-17

0.125 1.00E-06

0.25 6.50E-05

0.5 8.00E-04

1 1.40E-03

3 5.00E-03

5 1.00E-02

7 3.00E-02

10 1.20E-01

Reference [65] Purified unfunctionalized and functionalized SWNT/nylon 6,6

wt % conductivity

0 9E-12

2 0.00002 Purified SWNT Nylon 6,6

5.1 0.003 Purified SWNT Nylon 6,6

2 0.000007 SWNT-NaDDBS Nylon 6,6

2 0.000001 SWNT-COOH Nylon 6,6

2 4E-09 SWNT-f12 Nylon 6,6

1.55 5E-12 SWNT -f18 Nylon 6,6

4.75 1.6E-10 SWNT -f18 Nylon 6,6

A4. Carbon Nanotube-Polymer Composite Thermal Conductivity

Tables summarizing the values from the literature for CNT-polymer composite ther-

mal conductivity and the corresponding weight fraction or volume fraction in obtain-
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ing the value provided.

Reference [72]: SWNT in epoxy axial direction homog model CNT 100

vol. frac. Conductivity W/mK Normalized

0.0005 0.15 1.229508

0.0028 0.38 3.114754

0.0058 0.6 4.918033

Reference [72]: SWNT in epoxy parallel direction homog model CNT 100

vol. frac. Conductivity W/mK Normalized

0.0005 0.1211 0.992623

0.0028 0.1216 0.996721

0.0058 0.1224 1.003279

Reference [72]: SWNT in epoxy exp data

vol. frac. Conductivity W/mK Normalized

0.0028 0.205 1.22571

0.0058 0.24 1.434978



318

Reference [76]: SWNT in PVDF

vol. frac. Conductivity W/mK Normalized

0 0.223 1

0.05 0.278 1.246637

0.1 0.314 1.408072

0.19 0.366 1.641256

0.29 0.453 2.03139

0.39 0.479 2.147982

0.49 0.537 2.408072

Reference [53]: DWCNT in Epoxy

vol. frac. Conductivity W/mK Normalized

0 0.2421 1

0.0012 0.2445 1.009913

0.0036 0.2501 1.033044

0.00601 0.2521 1.041305

Reference [251]: SWNT in Epoxy (assumed 0.2421 for epoxy)

wt. frac. Conductivity W/mK Normalized

0 0.2421 1

0.002 0.406728 1.68

0.005 0.384939 1.59

0.01 0.544725 2.25
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Reference [73]: DMF Hipco SWNT in Epoxy

vol. frac. Conductivity W/mK Normalized

0 0.198 1

0.000059 0.199 1.005051

0.00029 0.205 1.035354

0.0007 0.21 1.060606

0.0016 0.215 1.085859

0.0021 0.218 1.10101

0.0051 0.251 1.267677

Reference [73]: Surfactant Hipco SWNT in Epoxy

vol. frac. Conductivity W/mK Normalized

0 0.198 1

0.0051 0.21 1.060606

0.03 0.218 1.10101

0.05 0.27 1.363636

0.1 0.325 1.641414

Reference [233]: at 300K for random SWNT in Epoxy

wt. frac. Conductivity W/mK Normalized

0 2.25 1

0.03 5.9 2.622222

Reference [233]: at 300K for aligned SWNT in Epoxy

wt. frac. Conductivity W/mK Normalized

0 2.25 1

0.03 6.45 2.866667
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Reference [75]: SWNT in PMMA

Lower Range Upper Range Lower Upper

wt. frac. Conductivity W/mK Conductivity W/mK Normalized Normalized

0 0.18 0.19 1 1

0.02 0.185 0.25 1.027778 1.315789

0.03 0.21 0.275 1.166667 1.447368

0.05 0.245 0.27 1.361111 1.421053

0.07 0.395 0.46 2.194444 2.421053

Reference [74]: SWNT in PMMA avg val

wt. frac. Conductivity W/mK Normalized

0 0.175 1

0.02 0.218 1.245714

0.03 0.25 1.428571

0.05 0.255 1.457143

0.07 0.435 2.485714

0.1 0.45 2.571429
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Reference [235]: SWNT in olefin oil suspension

vol. frac. Conductivity W/mK Normalized

0 0.1448 1

0.0004 0.147696 1.02

0.0015 0.165072 1.14

0.002 0.17376 1.2

0.004 0.20996 1.45

0.006 0.233128 1.61

0.008 0.302632 2.09

0.01 0.373584 2.58

Reference [252]: SWNT in silicone elastomer

wt. frac. Conductivity W/mK Normalized

0 1.1 1

0.0075 1.25 1.136364

0.0225 1.41 1.281818

0.038 1.8 1.636364

Reference [253]: MWNT in epoxy well dispersed

wt. frac. Conductivity W/mK Normalized

0 0.121 1

0.005 0.209 1.727273

0.01 0.234 1.933884

0.015 0.256 2.115702
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Reference [253]: MWNT in epoxy poorly dispersed

wt. frac. Conductivity W/mK Normalized

0 0.121 1

0.005 0.131 1.082645

0.01 0.161 1.330579

0.015 0.19 1.570248

Reference [254]: MWNT in S160 aligned in film

wt. frac. Conductivity W/mK Normalized

0 0.56 1

0.00125 0.86 1.535714

0.003 1.21 2.160714

Reference [254]: MWNT in S160 dispersed in film

wt. frac. Conductivity W/mK Normalized

0 0.56 1

0.003 0.59 1.053571

0.01 0.635 1.133929

0.03 0.71 1.267857

Reference [255]: SWNT in PVAc Latex film

wt. frac. Conductivity W/mK Normalized

0 0.21118 1

0.009 0.20822 0.985984

0.015 0.2204 1.043659

0.02 0.22937 1.086135

0.025 0.23293 1.102993

0.03 0.22685 1.074202
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Reference [256]: Surfactant Treated CNTs in decene (DE) suspension

vol. frac. Conductivity W/mK Normalized

0 0.14 1

0.0025 0.7 5

0.005 1.33 9.5

0.0075 2.1 15

0.01 2.87 20.5

0.0125 3.64 26

0.015 4.69 33.5
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APPENDIX B

ILLUSTRATIVE EXAMPLE FOR ORIENTATIONAL AVERAGING

As an illustrative example of orientational averaging, consider taking a composite

of identical inhomogeneities (assume ellipsoidal shapes for the time being to facilitate

discussion) as shown in Figure 66. Defining the effective elastic properties via volume

averages as indicated in Eqn. 2.56a. Using phase constitutive relations one may write

(assuming homogeneous phases as in Eqn. 2.63a)

〈σij〉 = c1L
1
ijkl〈ε1

kl〉 + c2L
2
ijkl〈ε2

kl〉 (B.1)

which by definition of the strain concentration tensor, can be written as in Eqn. 2.67a

so that effective stiffness is given by

Leff
ijmn = c1L

1
ijklA

1
klmn + c2L

2
ijklA

2
klmn (B.2)

or by applying the concentration tensor consistency condition, i.e. Eqn. 2.69a, we

can write

〈σij〉 = {L2
ijmn + c1(L

1
ijkl − L2

ijkl)A
1
klmn}〈εmn〉 (B.3)

so that the effective stiffness can be written as

Leff
ijmn = L2

ijmn + c1(L
1
ijkl − L2

ijkl)A
1
klmn (B.4)

Now suppose that half of the aligned inhomogeneities instead have one orientation

defined by the angles ϕ1, ψ1 and the other half have another orientation defined by the

angles ϕ2, ψ2 as shown in Figure 67 These local inhomogeneity orientations are related

to the microscale RVE coordinate system by a change of basis which is determined

from a series of rotations as Qij = Q2
ikQ

1
kj where Q1

ij and Q2
ij are related to single axis
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Fig. 66. Identical inhomogeneities aligned in the matrix and a self-consistent approx-

imation.

Fig. 67. Identical inhomogeneities at two different orientations in the matrix in the

RVE coordinate system and self-consistent approximations of each orientation

in the local inhomogeneity coordinate system.
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Fig. 68. Single axis rotations defining changes of basis Q1 and Q2.

rotations as shown in Figure 68. Thus Qij is expressed in engineering notation by1

[
Q2
] [
Q1
]

=

⎡
⎢⎢⎢⎢⎣

sin(ϕ) 0 cos(ϕ)

0 1 0

− cos(ϕ) 0 sin(ϕ)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

⎤
⎥⎥⎥⎥⎦ (B.5)

so that

[Q] =

⎡
⎢⎢⎢⎢⎣

cos(ψ) sin(ϕ) sin(ψ) sin(ϕ) cos(ϕ)

− sin(ψ) cos(ψ) 0

− cos(ψ) cos(ϕ) − sin(ψ) cos(ϕ) sin(ϕ)

⎤
⎥⎥⎥⎥⎦ (B.6)

Because the inhomogeneity phase is now treated as two separate phases, Eqn. B.1

can be written as

〈σ̂ij〉 =

3∑
J=1

cJ L̂
J
ijkl〈ε̂Jkl〉 (B.7)

where the matrix volume fraction is c3 = 1− c̄, the volume fraction of inhomogeneities

with orientation (ϕ1, ψ1) is c1 = 1
2
c̄, and the volume fraction of inhomogeneities with

orientation (ϕ2, ψ2) is c2 = 1
2
c̄, with c̄ denoting the total inhomogeneity volume frac-

1It is noted that only two angles are needed here because we have assumed that
the axis of material symmetry is aligned with the major axis of the ellipsoid. If it
were not, then we would need the third angle as well, as rotating about the major
axis would cause differences.
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tion irrespective of orientation. The ·̂ denotes quantities expressed in the microscale

RVE coordinate system, i.e. (assuming the matrix phase is isotropic)

L̂1
ijkl = 1Qim

1QjnL
1
mnpq

1Qkp
1Qlq (B.8a)

L̂2
ijkl = 2Qim

2QjnL
2
mnpq

2Qkp
2Qlq (B.8b)

L̂3
ijkl = L3

ijkl (B.8c)

where 1Qij = Qij(ϕ1, ψ1) and 2Qij = Qij(ϕ2, ψ2).

Defining the strain concentration tensor in the microscale RVE system as 〈ε̂Jij〉 =

ÂJijkl〈ε̂ij〉, then Eqn. B.7 can be written as

〈σ̂ij〉 =

3∑
J=1

cJ L̂
J
ijklÂ

J
klmn〈ε̂mn〉 (B.9)

so that the effective stiffness in the microscale RVE coordinate system is given by

L̂eff
ijmn =

3∑
J=1

cJ L̂
J
ijklÂ

J
klmn (B.10)

Applying the consistency condition in the global system, i.e. c3Â
3
ijkl = Iijkl −∑2

J=1 cJÂ
J
ijkl, one can write

〈σ̂ij〉 =

{
L̂3
ijmn +

2∑
J=1

cJ(L̂
J
ijkl − L̂3

ijkl)Â
J
klmn

}
〈ε̂mn〉 (B.11)

so that the effective stiffness in the microscale RVE coordinate system is given by

L̂eff
ijmn = L̂3

ijmn +

2∑
J=1

cJ(L̂
J
ijkl − L̂3

ijkl)Â
J
klmn (B.12)

So therefore, in the global coordinate system, Eqns. B.7 and B.11 are analogous to

Eqns. B.1 and B.3.

However, when approximating the concentration tensor, it is easier to work in

the local coordinate system, especially if all inhomogeneities are the same, except for
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their different orientations, as you can then solve one concentration tensor and rotate

as necessary. So if AJijkl is the approximated strain concentration tensor in the local

coordinate system (.i.e. for single inhomogeneity problem) obtained from

〈εJij〉 = AJijkl〈εkl〉 (B.13)

then the fourth order coordinate transformation of the concentration tensor in the

local inhomogeneity coordinate system to that of the microscale RVE is given as

ÂJijkl =
JQim

JQjnA
1
mnpq

JQkp
JQlq (B.14)

where it is emphasized that A1
mnpq is used as both inhomogeneities in the present

example have the same concentration tensor in their local inhomogeneity coordi-

nate systems, though those local systems have different orientations relative to the

microscale RVE coordinate system so that the transformation is JQij . Thus the

effective stiffness can be obtained from Eqn. B.12 as:

L̂eff
ijkl = L̂3

ijkl+

2∑
J=1

cJ(
JQip

JQjqL
1
pqrs

JQmr
JQns − L̂0

ijmn)
JQmt

JQnvA
1
tvab

JQka
JQlb

(B.15)

where c1 =
c̄

2
and c2 =

c̄

2
.2 From similar approaches the effective compliance, con-

ductivity and resistivity can also be obtained.

2Here it was assumed that half of the inhomogeneities were at ϕ1, ψ1 and half
at ϕ2, ψ2, but one could have assumed a different distribution, for example c1 = c̄

4

and c2 = 3c̄
4
. However, this would not change Eqn. B.15 as it is simply a different

distribution of c̄.
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Assuming now that there are M orientations (i.e. so that the number of phases

is N = M + 1), then Eqn. B.15 can be written as

L̂eff
ijkl = L̂Nijkl +

M∑
J=1

cJ(ϕ, ψ)(L̃Jijmn(ϕ, ψ) − L̂Nijmn)Ã
J
mnkl(ϕ, ψ) (B.16)

where

L̃Jijmn(ϕ, ψ) = JQip
JQjqL

1
pqrs

JQmr
JQns (B.17a)

ÃJijmn(ϕ, ψ) = JQip
JQjqA

1
pqrs

JQmr
JQns (B.17b)

cJ(ϕ, ψ) = wJ c̄ (B.17c)

and where wJ is the weight factor for the fraction of inhomogeneities with a given

(ϕ, ψ).

Assuming further that as M → ∞, that a continuous distribution of orientations

over a unit sphere, ρ(ϕ, ψ), is obtained, such that one may write

L̂eff
ijkl = L̂Nijkl +

∫ 2π

0

∫ π
0
ρ(ϕ, ψ)c̄[L̃ijmn(ϕ, ψ) − L̂Nijmn]Ãmnkl(ϕ, ψ) sin(ϕ) dϕ dψ∫ 2π

0

∫ π
0
ρ(ϕ, ψ) sin(ϕ) dϕ dψ

(B.18)

Therefore, for a random orientation, each (ϕ, ψ) is equally likely therefore ρ(ϕ, ψ) = ρ0

and

L̂eff
ijkl = L̂Nijkl +

c̄

4π

∫ 2π

0

∫ π

0

[L̃ijmn(ϕ, ψ) − L̂Nijmn]Ãmnkl(ϕ, ψ) sin(ϕ) dϕ dψ (B.19a)

M̂ eff
ijkl = M̂N

ijkl +
c̄

4π

∫ 2π

0

∫ π

0

[M̃ijmn(ϕ, ψ) − M̂N
ijmn]B̃mnkl(ϕ, ψ) sin(ϕ) dϕ dψ (B.19b)

k̂eff
ij = k̂Nij +

c̄

4π

∫ 2π

0

∫ π

0

[k̃im(ϕ, ψ) − k̂Nim]Ãmj(ϕ, ψ) sin(ϕ) dϕ dψ (B.19c)

ξ̂eff
ij = ξ̂Nij +

c̄

4π

∫ 2π

0

∫ π

0

[ξ̃im(ϕ, ψ) − ξ̂Nim]B̃mj(ϕ, ψ) sin(ϕ) dϕ dψ (B.19d)

resulting in effective properties for the composite which are isotropic [153, 209, 210].
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It should be noted that the use of Eqn. B.14 can be directly applied when using

the self-consistent and generalized self-consistent concentration tensor approxima-

tions. However, when using the Mori-Tanaka approximation, one must use caution as

the Mori-Tanaka consistency condition must be applied in the global coordinate sys-

tem. Therefore one actually obtains global concentration tensor in the Mori-Tanaka

approach and can use the inverse of Eqn. B.14 to find the local concentration tensor

consistent with the use of Eqn. B.14 and the subsequent derivation. See Appendix C

for more details.
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APPENDIX C

CONSISTENCY CONDITIONS FOR ORIENTATIONAL AVERAGING

C1. Self-Consistent Consistency Condition and Random Orientation

Considering the self-consistent approximation for the concentration tensor as shown

in Figure 69. Therefore in the local system, the Eshelby equivalence principle yields

the heat flux in the inhomogeneity as

q́Ji = ḱJij(H́
C
j + H́A

j ) = ḱeff
ij (H́C

j + H́A
j − H́T

j ) (C.1)

where if keff
ij is anisotropic, it is noted that ḱeff

ij �= keff
ij .

Therefore one can write

H́T
i = ξ́eff

ij (ḱeff
jk − ḱJjk)H́

J
k (C.2)

but

H́J
i = H́C

i + ´̄Hi = ŚijH́
T
j + ´̄Hi (C.3)

therefore

H́J
j = [Iij + Śikξ́

eff
kl (ḱ

J
lj − ḱeff

lj )]−1 ´̄Hi (C.4)

so that

SCT́ji
J

= [Iij + Śikξ́
eff
kl (ḱ

J
lj − ḱeff

lj )]−1 (C.5)

Expressing Eqn. C.5 in the global system to identify the concentration tensor

HJ
i = JQijH́

J
j = JQij

SC T́ Jjk
´̄Hk (C.6)
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Fig. 69. Schematic of local orientations of the self-consistent approximation for con-

centration tensor to check consistency condition. Where the microscale RVE

and local inhomogeneity coordinate systems are related by vi = JQij v́j so

that for the equivalent inclusion problem, H́A
i = ´̄Hi where ´̄Hi = JQT

ijH̄j and

H̄i = 〈Hi〉.
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therefore since ´̄Hi = JQT
ijH̄j

HJ
i = JQijH́

J
j = JQij

SC T́ Jjk
JQT

klH̄l (C.7)

and noting that intensity in the inhomogeneity is uniform, the concentration tensor

is identified as

SCAJij = JQik
SC T́ Jkl

JQT
lj (C.8)

and therefore satisfies the consistency condition as expressed in Eqn. 2.161b. This

will also hold for the generalized self consistent approximation.

C2. Mori-Tanaka Consistency Condition and Random Orientation

Considering the Mori-Tanaka approximation for the concentration tensor as shown in

Figure 70 Therefore in the local system, the Eshelby equivalence principle yields the

heat flux in the inhomogeneity as

q́Ji = ḱJij(H́
C
j + H́A

j ) = ḱNij (H́
C
j + H́A

i − H́T
i ) (C.9)

where if kNij is isotropic it is noted that ḱNij = kNij .

Therefore one can write

H́T
i = ξ́Nij (ḱ

N
jk − ḱJjk)H́

J
k (C.10)

but

H́J
i = H́C

i + ´̄Hi +
´̃Hi = ŚijH́

T
j + ´̄Hi +

´̃Hi (C.11)

therefore

H́J
j = [Iij + Śikξ́

N
kl (ḱ

J
kj − ḱNkj)]

−1( ´̄Hi +
´̃Hi) (C.12)

so that

MT T́ Jji = [Iij + Śikξ́
N
kl (ḱ

J
kj − ḱNkj)]

−1 (C.13)
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Fig. 70. Schematic of local orientations of the Mori-Tanaka approximation for concen-

tration tensor to check consistency condition. Where the microscale RVE and

local inhomogeneity coordinate systems are related by vi = JQij v́j so that

for the equivalent inclusion problem, H́A
i = ´̄Hi +

´̃Hi where ´̄Hi = JQT
ijH̄j and

H̄i = 〈Hi〉 and where ´̃Hi = JQT
ijH̃j and H̃i = 1

VN

∫
VN
HTot
i − H̄i dV .
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The consistency condition is applied over all inhomogeneities and therefore should

be applied in the global coordinate system, i.e.

〈Hi〉 = cN〈HN
i 〉 +

N−1∑
J=1

cJ〈HJ
i 〉 (C.14)

but the average intensity in the matrix is noted to be

〈HN
i 〉 = H̄i + H̃i (C.15)

In the inhomogeneity one may write

HJ
i = JQijH́

J
j = JQij

MT T́ Jjk(
´̄Hk + ´̃Hk) (C.16)

so therefore

HJ
i = JQijH́

J
j = JQij

MT T́ Jjk
JQT

kl(H̄l + H̃l) (C.17)

Noting that the intensity in the inhomogeneity is uniform, one can therefore write

〈Hi〉 = H̄i =

[
cNIij +

N−1∑
J=1

cJ
JQik

MT T́ Jkl
JQT

lj

]
(H̄j + H̃j) (C.18)

and finally the perturbation in the matrix is given by

H̃j =

⎧⎨
⎩
[
cNIij +

N−1∑
J=1

cJ
JQik

MT T́ Jkl
JQT

lj

]−1

− Iji

⎫⎬
⎭ H̄i (C.19)

so that in the inhomogeneity one observes

HJ
i = JQij

MT T́ Jjk
JQT

klH̄l+

JQij
MT T́ Jjk

JQT
kl

⎧⎨
⎩
[
cNIml +

N−1∑
K=1

cK
KQmn

MT T́Knp
KQT

pl

]−1

− Iim

⎫⎬
⎭ H̄m

(C.20)
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and again noting that the intensity in the inhomogeneity is uniform

HJ
i = JQij

MT T́ Jjk
JQT

kl

[
cNIml +

N∑
K=1

cK
KQmn

MT T́Knp
KQT

pl

]−1

Hm (C.21)

so that the concentration tensor is identified as

MTAJim = JQij
MT T́ Jjk

JQT
kl

[
cNIml +

N∑
K=1

cK
KQmn

MT T́Knp
KQT

pl

]−1

(C.22)

Therefore in order to satisfy the consistency condition, one can not directly rotate

the concentration tensor from local to global coordinates as expressed in Eqn. 2.161b

the Mori-Tanaka approximation.
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APPENDIX D

DERIVATION OF DISPLACEMENT FIELDS FOR COMPOSITE CYLINDERS

METHOD

D1. Multi-Layer Composite Cylinder: In Plane Bulk Modulus Isotropic Phase Dis-

placement

Assume the following displacement field in each phase:

ur = Ur (r) (D.1)

uθ = uz = 0 (D.2)

Sub into the strain-displacement relations:

εrr =
∂ur
∂r

=
dUr
dr

(D.3)

εθθ =
1

r

∂uθ
∂θ

+
ur
r

=
Ur
r

(D.4)

εzz =
∂uz
∂z

= 0 (D.5)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)
= 0 (D.6)

εrz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
= 0 (D.7)

εθz =
1

2

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
= 0 (D.8)

Sub into the constitutive relations:

σrr = (2µ+ λ) εrr + λ (εθθ + εzz) = (2µ+ λ)
dUr
dr

+ λ
Ur
r

(D.9)

σθθ = (2µ+ λ) εθθ + λ (εrr + εzz) = (2µ+ λ)
Ur
r

+ λ
dUr
dr

(D.10)
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σzz = (2µ+ λ) εzz + λ (εrr + εθθ) = λ
dUr
dr

+ λ
Ur
r

(D.11)

σrθ = 2µεrθ = 0 (D.12)

σrz = 2µεrz = 0 (D.13)

σθz = 2µεθz = 0 (D.14)

Sub into the equilibrium equations: r-direction

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = 0 (D.15)

d2Ur
dr2

+
1

r

dUr
dr

− 1

r2
Ur = 0 (D.16)

which has solution

Ur = Ar +
B

r
(D.17)

In the theta-direction:

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ = 0 (D.18)

therefore

0 = 0 (D.19)

In the z-direction:

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz = 0 (D.20)

therefore

0 = 0 (D.21)



339

D2. Multi-Layer Composite Cylinder: In Plane Bulk Modulus Effective Cylinder

Displacement

Assume the following displacement field in each phase:

ur = Ur (r) (D.22)

uθ = uz = 0 (D.23)

Sub into the strain-displacement relations:

εrr =
∂ur
∂r

=
dUr
dr

(D.24)

εθθ =
1

r

∂uθ
∂θ

+
ur
r

=
Ur
r

(D.25)

εzz =
∂uz
∂z

= 0 (D.26)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)
= 0 (D.27)

εrz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
= 0 (D.28)

εθz =
1

2

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
= 0 (D.29)

Sub into the constitutive relations:

σrr = Crrrrεrr + Crrθθεθθ + Crrzzεzz = Crrrr
dUr
dr

+ Crrθθ
Ur
r

(D.30)

σθθ = Crrθθεrr + Cθθθθεθθ + Cθθzzεzz = Crrθθ
dUr
dr

+ Cθθθθ
Ur
r

(D.31)

σzz = Crrzzεrr + Cθθzzεθθ + Czzzzεzz = Crrzz
dUr
dr

+ Cθθzz
Ur
r

(D.32)

σrθ = Crθrθεrθ = 0 (D.33)

σrz = Crzrzεrz = 0 (D.34)

σθz = Cθzθzεθz = 0 (D.35)
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Sub into the equilibrium equations: r-direction

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = 0 (D.36)

Crrrr
d2Ur
dr2

+
1

r
(Crrθθ + Crrrr − Crrθθ)

dUr
dr

− 1

r2
(Crrθθ − Crrθθ + Cθθθθ)Ur = 0 (D.37)

Crrrr
d2Ur
dr2

+ Crrrr
1

r

dUr
dr

− Cθθθθ
1

r2
Ur = 0 (D.38)

d2Ur
dr2

+
1

r

dUr
dr

− 1

r2
Ur = 0 (D.39)

Therefore,

Ur = Ar +
B

r
(D.40)

D3. Multi-Layer GSC-CC: Transverse Shear Modulus Isotropic Phase Displacement

Assume3 the following displacement field in each phase from 1 to N:

uir = Bi
1U

1
r +Bi

2U
2
r +Bi

3U
3
r +Bi

4U
4
r (D.41)

uiθ = Bi
1U

1
θ +Bi

2U
2
θ +Bi

3U
3
θ +Bi

4U
4
θ (D.42)

uiz = 0 (D.43)

where

U1
r =

∂φ1

∂r
(D.44)

U2
r = r2∂φ1

∂r
+ αi1φ1r (D.45)

U3
r =

∂φ2

∂r
(D.46)

U4
r = r2∂φ2

∂r
+ αi2φ2r (D.47)

3This can be derived in a similar manner to the previous displacement fields in
assuming a functional from for the displacement and identifying general solutions to
the equilibrium equations. This representation is derived from the method of plane
harmonics which Hashin [158] simplified from Love’s [211] representation.



341

and

U1
θ =

1

r

∂φ1

∂θ
(D.48)

U2
θ = r21

r

∂φ1

∂θ
(D.49)

U3
θ =

1

r

∂φ2

∂θ
(D.50)

U4
θ = r21

r

∂φ2

∂θ
(D.51)

and where

φ1 = x2x3 = r2 cos (θ) sin (θ) (D.52)

φ2 =
x2x3

r4
= r−2 cos (θ) sin (θ) (D.53)

αi1 =
−2 (3 − 4νi)

(3 − 2νi)
(D.54)

αi2 =
2 (3 − 4νi)

(3 − 2νi)
(D.55)

which after substitution gives

uir =

(
Bi

1r +

(
λi

3µi + 2λi

)
Bi

2r
3 − Bi

3r
−3 +

(
2µi + λi

µi

)
Bi

4r
−1

)
sin (2θ) (D.56)

uiθ =
(
Bi

1r +Bi
2r

3 +Bi
3r

−3 +Bi
4r

−1
)
cos (2θ) (D.57)

uiz = 0 (D.58)

The displacement field for the effective homogeneous solid material, is given by:

u(∗)
r =

(
r3

4G23

)(
2

r3
r

)
sin (2θ)

u
(∗)
θ =

( −r3
4G23

)(
− 2

r3
r

)
cos (2θ) for 0 ≤ r ≤ r3

u(∗)
z = 0

(D.59)

where the boundary conditions have been applied, and the condition that the dis-
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placement remained bounded has been enforced.
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APPENDIX E

SOLUTIONS FOR DISPLACEMENT FIELD CONSTANTS FOR N = 2 AND

N = 3 NON-GRADED LAYERS AND GRADED LAYERS

The following displacement constants correspond to hollow composite cylinder

assemblages.

E1. Solutions for N = 2 Isotropic Homogeneous Layers

Solutions for the displacement field constants for a composite cylinder assemblage

(Figure 16) of N = 2 isotropic, non-graded layers are provided for the displace-

ment fields associated with the determination of the in-plane bulk modulus, the axial

Young’s modulus, the axial stiffness component, and the axial shear modulus. These

solutions are developed by starting with the application of the innermost boundary

and matching conditions and proceeding outward to the N th layer boundary condi-

tion. As such, the constants are provided from the ith to the first layer as each (i+1)th

layer set of constants is expressed in terms of the N th constants.

1. In-plane Bulk Modulus N = 2 Constants

The solution of Eqns 3.6 and 3.7 for N = 2 isotropic layers results in the displacement

field constants of Eqn. 3.2 being given by:

D2
2 =

ε0[
1

r2
2

− 1

r2
1

(
α1α2 + µ2

α1α2 − (µ2 + λ2)

)] (E.1a)

D2
1 =

( −(α1α2 + µ2)

r2
1[α1α2 − (µ2 + λ2)]

)
D2

2 (E.1b)
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D1
2 =

α1

µ1

(
D2

1 +
1

r2
1

D2
2

)
(E.1c)

D1
1 =

(
µ1

r2
0(µ1 + λ1)

)
D1

2 (E.1d)

where µi and λi are the ith layer Lamé constants and where α1 and α2 are given by:

α1 =
µ1[(

µ1

µ1 + λ1

)
1

r2
0

+
1

r2
1

] (E.2a)

α2 =

(
1

r2
0

− 1

r2
1

)
(E.2b)

2. Axial Young’s Modulus N = 2 Constants

The solution of Eqns 3.23 and 3.7 forN = 2 isotropic layers results in the displacement

field constants of Eqn. 3.20 being given by:

D2
2 =

β3

α6

ε0 (E.3a)

D2
1 =

β2

α4
ε0 +

α5

α4

1

r2
1

D2
2 (E.3b)

D1
2 = α2

(
β1ε0 +D2

1 +
1

r2
1

D2
2

)
(E.3c)

D1
1 = α1

1

r2
0

D1
2 − β1ε0 (E.3d)

where the αi are given by:

α1 =
µ1

µ1 + λ1

(E.4a)

α2 =
1(

α1
1

r2
0

+
1

r2
1

) (E.4b)

α3 = 2 (µ1 + λ1)α1
1

r2
0

− 2µ1
1

r2
1

(E.4c)

α4 = α2α3 − 2(µ2 + λ2) (E.4d)
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α5 = −α2α3 − 2µ2 (E.4e)

α6 = 2(µ2 + λ2)
α5

α4

1

r2
1

− 2µ2
1

r2
2

(E.4f)

and where the βi are given by:

β1 =
λ1

2(µ1 + λ1)
(E.5a)

β2 = λ2 − λ1 + β1[2(µ2 + λ2) − α2] (E.5b)

β3 = −λ2 − 2(µ2 + λ2)
β2

α4

(E.5c)

3. Axial Stiffness Component N = 2 Constants

The solution of Eqns 3.24 and 3.7 forN = 2 isotropic layers results in the displacement

field constants of Eqn. 3.20 being given by:

D2
2 =

−β2

α4

(
α5

α4

1

r2
1

+
1

r2
2

)ε0 (E.6a)

D2
1 =

β2

α4

ε0 +
α5

α4

1

r2
1

D2
2 (E.6b)

D1
2 = α2

(
β1ε0 +D2

1 +
1

r2
1

D2
2

)
(E.6c)

D1
1 = α1

1

r2
0

D1
2 − β1ε0 (E.6d)

where the αi are given by:

α1 =
µ1

µ1 + λ1
(E.7a)

α2 =
1(

α1
1

r2
0

+
1

r2
1

) (E.7b)

α3 = 2 (µ1 + λ1)α1
1

r2
0

− 2µ1
1

r2
1

(E.7c)

α4 = α2α3 − 2(µ2 + λ2) (E.7d)
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α5 = −α2α3 − 2µ2 (E.7e)

and where the βi are given by:

β1 =
λ1

2(µ1 + λ1)
(E.8a)

β2 = λ2 − λ1 + β1[2(µ2 + λ2) − α2] (E.8b)

where it is noted that, due to the similarities between the axial Young’s modulus

and stiffness components, the only difference in the displacement constants visible

in Eqn. E.6 as compared to Eqn. E.3 is the expression for D2
2 (i.e., only Eqn. E.6a

differs from Eqn. E.3a) . However, the remaining Di
j in Eqn. E.6 depend on D2

2 and

thus, the Di
j of the axial stiffness component test are in fact quite different from those

obtained for the axial Young’s modulus test.

4. Axial Shear Modulus N = 2 Constants

The solution of Eqns 3.34 and 3.35 for N = 2 isotropic layers results in the displace-

ment field constants of Eqn. 3.31 being given by:

D2
2 =

2ε0(
α4

α3

1

r2
1

+
1

r2
2

) (E.9a)

D2
1 =

α4

α3

1

r2
1

D2
2 (E.9b)

D1
2 =

1

α1

(
D2

1 +
1

r2
1

D2
2

)
(E.9c)

D1
1 =

1

r2
0

D1
2 (E.9d)

where the αi are given by:

α1 =

(
1

r2
0

+
1

r2
1

)
(E.10a)
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α2 =

(
1

r2
0

− 1

r2
1

)
(E.10b)

α3 =

(
α2

α1
− µ2

µ1

)
(E.10c)

α4 =

(
−α2

α1
− µ2

µ1

)
(E.10d)

5. In-plane Shear Modulus N = 2 Constants

For determining the effective in-plane shear modulus, only one displacement field

constant solution was needed (i.e., DN+1
4 or D3

4 for N = 2). However, in order to

determine the components of the concentration tensor associated with the in-plane

shear modulus, all of the displacement constants are needed. As such, the solution

of Eqns 3.45 and 3.46 for N = 2 isotropic layers results in the displacement field

constants of Eqns. 3.42 and 3.59. However, the expressions are too lengthy to present

in detail here.

6. Transverse Extension N = 2 Constants

Here, as with the in-plane shear modulus, the expressions for the displacement field

constants are too lengthy to present in detail, but are obtained from Eqns. 3.57

and 3.58.

E2. Solutions for N = 3 Isotropic Homogeneous Layers

As a result of the solution of the boundary and matching conditions proceeding from

the innermost surface of the composite to the outermost, the equations used to de-

termine the first three displacement field constants for N = 2 (i.e., D1
1, D

1
2, and D2

1)

remain the same for N = 3 and as such, so do the functional forms of the these dis-

placement field constants. However, because these displacement constants ultimately
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are dependent on the remaining constants (i.e., D2
2, D

3
1, and D3

2), the final values

determined for the displacement constants for the N = 3 composite cylinder assem-

blage are quite different from those determined for N = 2. The N = 3 displacement

constants for each test are summarized below.

1. In-plane Bulk Modulus N = 3 Constants

The solution of Eqns 3.6 and 3.7 for N = 3 isotropic layers results in the displacement

field constants of Eqn. 3.2 being given by:

D3
2 =

ε0(
α6

1

r2
2

+
1

r2
3

) (E.11a)

D3
1 = α6

1

r2
2

D3
2 (E.11b)

D2
2 =

D3
1 +

1

r2
2

D3
2(

α3
1

r2
1

+
1

r2
2

) (E.11c)

where D1
2, D

2
1, and D1

1 are given by Eqns. E.1b, E.1c, and E.1d, respectively, and

where the αi are given by:

α3 = − α1α2 + µ2

α1α2 − (µ2 + λ2)
(E.12a)

α4 =

(
α3(µ2 + λ2)

1

r2
1

− µ2
1

r2
2

)
(E.12b)

α5 =

(
α3

1

r2
1

+
1

r2
2

)
(E.12c)

α6 = −

(
α4

α5
+ µ3

)
[
α4

α5
− (µ3 + λ3)

] (E.12d)

where α1 and α2 are given by Eqns. E.2a and E.2b, respectively.
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2. Axial Young’s Modulus N = 3 Constants

The solution of Eqns 3.23 and 3.7 forN = 3 isotropic layers results in the displacement

field constants of Eqn. 3.20 being given by:

D3
2 =

β4

α10
ε0 (E.13a)

D3
1 =

α9

α8

1

r2
2

D3
2 + β3ε0 (E.13b)

D2
2 = α6

(
D3

1 +D3
2

1

r2
2

− β2

α4
ε0

)
(E.13c)

where D1
2, D

2
1, and D1

1 are given by Eqns. E.3b, E.3c, and E.3d, respectively, and

where the αi are given by:

α6 =
1(

α5

α4

1

r2
1

+
1

r2
2

) (E.14a)

α7 = 2(µ2 + λ2)
α5

α4

1

r2
1

− 2µ2
1

r2
2

(E.14b)

α8 = α6α7 − 2(µ3 + λ3) (E.14c)

α9 = −α6α7 − 2µ3 (E.14d)

α10 = 2(µ3 + λ3)
α9

α8

1

r2
2

− 2µ3
1

r2
3

(E.14e)

with α1 through α5 of the same form as provided in Eqn. E.4 and where it should be

noted that α6 in Eqn. E.14a is different from α6 in Eqn. E.4f. The βi are given by:

β3 = λ3 − λ2 +
β2

α4
(α6α7 − 2(µ2 + λ2)) (E.15a)

β4 = −λ3 − 2(µ3 + λ3)β3 (E.15b)

with β1 and β2 of the same form as provided in Eqn. E.5 and where it should be noted

that β3 in Eqn. E.15a is different from β3 in Eqn. E.5c.
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3. Axial Stiffness Component N = 3 Constants

The solution of Eqns 3.24 and 3.7 forN = 3 isotropic layers results in the displacement

field constants of Eqn. 3.20 being again identical in functional form to those obtained

for the axial Young’s modulus for N = 3 provided in Eqns. E.3 and E.13 for D1
1, D

1
2,

and D2
1 and for D2

2 and D3
1, respectively. The only term with a difference in functional

form between the axial Young’s modulus and axial stiffness component is D3
2 which

for the axial stiffness component is instead given by:

D3
2 = − β3(

α9

α8

1

r2
2

+
1

r2
3

)ε0 (E.16)

The αi and βi used for the axial stiffness component are therefore of identical func-

tional form as those provided for the axial Young’s modulus in Eqns E.4 and E.14 for

α’s one through five and six through nine, respectively, and in Eqns. E.5 and E.15 for

β’s one and two and three, respectively. Note that for the axial stiffness component,

it was not necessary to define an α10 or β4.

4. Axial Shear Modulus N = 3 Constants

The solution of Eqns 3.34 and 3.35 for N = 3 isotropic layers results in the displace-

ment field constants of Eqn. 3.31 being given by:

D3
2 =

2ε0(
α8

α7

1

r2
2

+
1

r2
3

) (E.17a)

D3
1 =

α8

α7

1

r2
2

D3
2 (E.17b)

D2
2 =

1

α5

(
D3

1 +
1

r2
2

D3
2

)
(E.17c)
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where D1
2, D

2
1, and D1

1 are given by Eqns. E.9b, E.9c, and E.9d, respectively, and

where the αi are given by:

α5 =

(
α4

α3

1

r2
1

+
1

r2
2

)
(E.18a)

α6 =

(
α4

α3

1

r2
1

− 1

r2
2

)
(E.18b)

α7 =

(
α6

α5
− µ3

µ2

)
(E.18c)

α8 =

(
−α6

α5

− µ3

µ2

)
(E.18d)

with α1 through α4 of the same form as provided in Eqn. E.10

E3. Solutions for N = 3 Layers: Homogeneous-Graded-Homogeneous

1. In-plane Bulk Modulus N = 3 Constants

Solutions for the displacement field constants for a composite cylinder assemblage

(Figure 19) with N = 3 where the interphase region has a gradation in material

properties as given by E2(r) = ξn r
n are provided for the displacement fields associated

with the determination of the in-plane bulk modulus. These solutions are developed

by starting with the application of the innermost boundary and matching conditions

and proceeding outward to the N th layer boundary condition. As such, the constants

are provided from the ith to the first layer as each (i + 1)th layer set of constants is

expressed in terms of the N th constants. The solution of Eqns 3.6 and 3.7 for N = 3

with a graded interphase layer results in the displacement field constants of Eqns. 3.2

and 3.75 (with γ = γ2 and ν = ν2) being given by:

D3
2 =

ε0 r3
2 α8

α7 r32 + α8
(E.19a)

D3
1 =

α7D
3
2

α8

(E.19b)
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c2 =
α5 (D3

1 r2
2 +D3

2)

α6
(E.19c)

c1 =
α4 c2
α5

(E.19d)

D1
2 =

α1 c1
α3

+
α2 c2
α3

(E.19e)

D1
1 =

µ1D
1
2

r02 (µ1 + λ1)
(E.19f)

where the αi are given by:

α1 = r0
2 r1 (r1

�1 µ1 + r1
�1 λ1) (E.20a)

α2 = r0
2 r1 (r1

�2 µ1 + r1
�2 λ1) (E.20b)

α3 = µ1 r1
2 + r0

2 µ1 + r0
2 λ1 (E.20c)

α4 = 4α2 µ1 r1
2 ν2

2 + ξn r1
n ν2 r0

2 α3 r1 r1
�2 + ξn r1

n r0
2 α3 r1 r1

�2 �2

− ξn r1
n r0

2 α3 r1 r1
�2 �2 ν2 + 2 r0

2 α2 µ1 − 2 r0
2 α2 µ1 ν2 − 4 r0

2 α2 µ1 ν2
2

− 2α2 µ1 r1
2 + 2α2 µ1 r1

2 ν2

(E.20d)

α5 = 2α1 µ1 r1
2 − ξn r1

n ν2 r0
2 α3 r1 r1

�1 − ξn r1
n r0

2 α3 r1 r1
�1 �1

+ ξn r1
n r0

2 α3 r1 r1
�1 �1 ν2 − 2 r0

2 α1 µ1 + 2 r0
2 α1 µ1 ν2 + 4 r0

2 α1 µ1 ν2
2

− 2α1 µ1 r1
2 ν2 − 4α1 µ1 r1

2 ν2
2

(E.20e)

α6 = r2 (α4 r2
�1 + r2

�2 α5) (E.20f)

α7 = −2µ3 α6 ν2 + 2µ3 α6 − ξn r2
n r2 α5 r2

�2 �2 ν2 + ξn r2
n r2 α4 r2

�1 �1

− 4µ3 α6 ν2
2 + ξn r2

n ν2 r2 α4 r2
�1 − ξn r2

n r2 α4 r2
�1 �1 ν2

+ ξn r2
n r2 α5 r2

�2 �2 + ξn r2
n ν2 r2 α5 r2

�2

(E.20g)
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α8 = r2
2(ξn r2

n r2 α5 r2
�2 �2 ν2 − ξn r2

n r2 α4 r2
�1 �1 + 2 λ3 α6

− ξn r2
n ν2 r2 α5 r2

�2 − ξn r2
n ν2 r2 α4 r2

�1 + 2µ3 α6

+ ξn r2
n r2 α4 r2

�1 �1 ν2 − ξn r2
n r2 α5 r2

�2 �2 − 4 λ3 α6 ν2
2 − 2 λ3 α6 ν2

− 2µ3 α6 ν2 − 4µ3 α6 ν2
2)

(E.20h)



354

APPENDIX F

MULTI-LAYER COMPOSITE CYLINDER:

VOLUME/SURFACE EQUIVALENCIES

F1. In-plane Bulk Modulus

• Prove:

κeff
23 =

〈σrr〉
2 〈εrr〉

=
σNrr
∣∣
r=rN

2
(
uNr |r=rN

/
rN

) (F.1)

• Proof:

The average stress is identified as:

〈σij〉 =
1

V

∫
V

σijdV =
1

V

∫
V

σikxj,kdV (F.2)

〈σij〉 =
1

V

∫
V

(
−σik,kxj + (σikxj),k

)
dV =

1

V

∫
V

(σikxj),k dV (F.3)

〈σij〉 =
1

V

∫
S

σikxjnkdS =
1

V

∫
S

tixjdS (F.4)

Therefore in cylindrical coordinates,

〈σrr〉 =
1

V

∫
S

trrdS =
1

V

∫
S

σrrr
2dθdz (F.5)

〈σrr〉 =
1

V

∫
S

σrr|r=rN r2
Ndθdz =

1

V
σrr

∣∣∣∣
r=rN

r2
N

∫
S

dθdz (F.6)

〈σrr〉 =
2πL

V
σrr|r=rN r2

N (F.7)
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The average strain is identified as:

〈εij〉 =
1

V

∫
V

εijdV =
1

V

∫
V

1

2
(ui,j + uj,i) dV =

1

V

1

2

⎡
⎣∫
V

ui,jdV +

∫
V

uj,idV

⎤
⎦ (F.8)

〈εij〉 =
1

V

1

2

⎡
⎣∫
S

uinjdS +

∫
S

ujnidS

⎤
⎦ (F.9)

Therefore in cylindrical coordinates,

〈εrr〉 =
1

V

1

2

⎡
⎣∫
S

urnrdS +

∫
S

urnrdS

⎤
⎦ =

1

V

∫
S

urnrdS =
1

V

∫
S

urrdθdz (F.10)

〈εrr〉 =
1

V

∫
S

uNr
∣∣
r=rN

rNdθdz =
1

V
uNr
∣∣
r=rN

rN

∫
S

dθdz =
2πL

V
uNr
∣∣
r=rN

rN (F.11)

Therefore

κeff
23 =

〈σrr〉
2 〈εrr〉

=

2πL
V

σNrr
∣∣
r=rN

r2
N

2
(

2πL
V

uNr |r=rN rN
) =

σNrr
∣∣
r=rN

2
(
uNr |r=rN

/
rN

) (F.12)

Since the original volume integrals are equivalent to the energy, so too then are

these surface respresentations.

F2. Axial Young’s Modulus

• Prove:

Eeff
11 =

〈σ11〉
〈ε11〉

=
〈σzz〉
ε0

(F.13)

• Proof:

The average strain is identified as:

〈εzz〉 =
1

V

∫
V

εzzdV =
1

V

⎛
⎝ε0πr

2
0L+

N∑
i=1

∫
Vi

εizzdV

⎞
⎠ (F.14)
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〈εzz〉 =
1

V

(
ε0πr

2
0L+ ε02πL

N∑
i=1

∫ ri

ri−1

rdr

)

=
2πL

πr2
NL

(
ε0r

2
0

2
+ ε0

N∑
i=1

r2
i − r2

i−1

2

) (F.15)

Therefore

〈εzz〉 =
2

r2
N

(
ε0r

2
0

2
+
ε0 (r2

N − r2
0)

2

)
= ε0 (F.16)

The average stress in the axial direction is:

〈σzz〉 =
1

V

∫
V

σzzdV =
1

V

N∑
i=1

∫
Vi

σizzdV (F.17)

〈σzz〉 =
1

V

(
2πL

N∑
i=1

∫ ri

ri−1

σizzrdr

)
=

2πL

πr2
NL

N∑
i=1

∫ ri

ri−1

σizzrdr

=
2

r2
N

N∑
i=1

∫ ri

ri−1

σizzrdr

(F.18)

Therefore,

Eeff
11 =

〈σ11〉
〈ε11〉

=
〈σzz〉
〈εzz〉

=
2

ε0r
2
N

N∑
i=1

∫ ri

ri−1

σizzrdr (F.19)

where it is noted that, as a result of the traction-free internal surface boundary

condition, the stress in the void is zero and therefore does not enter the sum above.

F3. Axial Shear Modulus

• Prove:

〈
σij
〉 〈
εij
〉

=
〈
σeff
ij

〉 〈
εeff
ij

〉
(F.20)

can be expressed as

µN
∂uNz
∂r

∣∣∣∣
r=rN

= µeff
12

∂ueff
z

∂r

∣∣∣∣
r=rN

(F.21)

• Proof:
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From the Hill-Mandel theorem.

〈
σijεij

〉
=
〈
σeff
ij ε

eff
ij

〉
(F.22)

1

V

∫
V

σijεijdV =
1

V

∫
V

σeff
ij ε

eff
ij dV (F.23)

1

V

∫
S

tiuidS =
1

V

∫
S

teffi u
eff
i dS (F.24)

So for the assumed axial displacement we have:

1

V

∫
S

σNrzu
N
z rdθdz =

1

V

∫
S

σeff
rz u

eff
z rdθdz (F.25)

1

V

∫
S

µN
∂uNz
∂r

uNz rdθdz =
1

V

∫
S

µeff
rz

∂ueff
z

∂r
ueff
z rdθdz (F.26)

1

V

∫
S

µN

(
BN

1 − BN
2

r2

)
cos (θ)

(
BN

1 +
BN

2

r

)
cos (θ) rdθdz

=
1

V

∫
S

µeff
rz

(
Beff

1 − Beff
2

r2

)
cos (θ)

(
Beff

1 +
Beff

2

r

)
cos (θ) rdθdz

(F.27)

1

V
µN

(
BN

1 − BN
2

r2
N

)(
BN

1 +
BN

2

rN

)
rN

∫
S

cos2 (θ) dθdz

=
1

V
µeff
rz

(
Beff

1 − Beff
2

r2
N

)(
Beff

1 +
Beff

2

rN

)
rN

∫
S
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where ∫
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so that
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therefore,
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F4. Axial Poisson’s Ratio

• Prove:

νeff
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= −〈εrr〉
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• Proof:

The average strain is identified as:
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The average strain in the radial direction is:

〈εrr〉 =
1

V

1

2

⎡
⎣∫
S

urnrdS +

∫
S

urnrdS

⎤
⎦ =

1

V

∫
S

urnrdS =
1

V

∫
S

urrdθdz (F.37)
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The average strain in the axial direction is:

〈εzz〉 =
1

V

∫
V

εzzdV =
1
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∫
V
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V

V
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Therefore,

νeff
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APPENDIX G

ADDITIONAL DISPLACEMENT FIELDS FOR CONTINUOUS GRADED

INTERPHASE REGIONS

The displacement fields satisfying the equilibrium equations for continuous graded

interphase regions having a power-law gradation in Young’s modulus and constant

Poisson’s ratio are provided herein for the axial Young’s modulus, axial shear modu-

lus, and axial Poisson’s ratio, with displacement field for the in-plane bulk modulus

previously given in Eqn. 3.75. The derivations of these displacement fields follow the

same procedure as for the in-plane bulk modulus where the functional dependence

of the displacement field and the desired material property gradation are substituted

into the equilibrium equations, and the form of the displacement field obtained. The

derivations can be found in work by Jaisuk and Kouider [168, 257].

The displacement field satisfying equilibrium for the axial Young’s modulus

boundary conditions is in fact similar to that provided in Eqn. 3.75 and is given

by

uir = c1 r
(n−nν+�) + c2 r

(n−nν−�) − νε0r

uiθ = 0

uiz = 0

(G.1)

where

� =

√
(ν − 1)[ν(n+ 2)2 − (n2 + 4)]

2(ν − 1)
(G.2)
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The displacement field satisfying equilibrium for the simple axial shear boundary

conditions is given by

uir = 0

uiθ = 0

uiz =
(
c1 r

(−n+
√
n2+4)/2 + c2 r

(−n−√
n2+4)/2

)
cos(θ)

(G.3)

The displacement field employed for determining the transverse shear modulus

is assumed to be of the form

uir = (c1r
y1 + c2r

y2 + c3r
y3 + c4r

y4) sin(2θ)

uiθ = (ρ1c1r
y1 + ρ2c2r

y2 + ρ3c3r
y3 + ρ4c4r

y4) cos(2θ)

uiz = 0

(G.4)

where the yj and ρj are yet be determined exponents and factors, respectively. The

displacement field in Eqn. G.4 is substituted into the equilibrium equations. Both

the r- and θ-direction equilibrium equation are non-trivial. As the cj are constants

determined from the boundary and matching conditions, the resulting equilibrium

equations are satisfied by the cofactors of the cj being zero. This results in two

equations for each cj which are then solved for the ρj and yj. If the resulting ρj and

yj are real, they are substituted into the displacement field provided in Eqn. G.4,

and the effective transverse shear modulus determined through the generalized self-

consistent composite cylinder method.

If, however, the resulting ρj and yj are imaginary, the displacement field in the

graded interphase region for determining the effective transverse shear modulus is
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taken from [257] and is given by

uir = (c1 cos(β1 ln(r))rα1 − c2 sin(β2 ln(r))rα2

+ c3 cos(β3 ln(r))rα3 − c4 sin(β4 ln(r))rα4) sin(2θ)

uiθ = {c1[φ1 cos(β1 ln(r)) − ψ1 sin(β1 ln(r))]rα1

− c2[φ2 sin(β2 ln(r)) + ψ2 cos(β2 ln(r))]rα2

+ c3[φ3 cos(β3 ln(r)) − ψ3 sin(β3 ln(r))]rα3

− c4[φ4 sin(β4 ln(r)) + ψ4 cos(β4 ln(r))]rα4} cos(2θ)

uiz = 0

(G.5)

where the αj and βj are the real and imaginary parts, respectively, of the exponent

yj, i.e.

yj = αj + βjI (G.6)

and where

φj = (a1ja2j + b1jb2j)/(a2
2
j + b22

j)

ψj = (b1ja2j − a1jb2j)/(a2
2
j + b22

j )

(G.7)

with

a1j = −C − αj(B + A(αj − 1)) + Aβ2
j

a2j = E + αjD

b1j = −(βj(B + A(αj − 1)) + αjβjA)

b2j = βj ∗D

(G.8)
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and with

A = 1 − ν

B = (n+ 1)(1 − ν)

C = ((n+ 5)ν − 3)

D = −1

E = −2(n+ 2)ν + 3;

(G.9)
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APPENDIX H

COMPUTATIONAL MICROMECHANICS FORMULATION

The finite element cases are run with ADAGIO [258], Sandia National Laborato-

ries’ finite element software for linear and nonlinear quasi-static analysis of structures.

A summary of the equations solved in ADAGIO is provided in reference [162]. Here,

examples of the meshes and boundary conditions employed in the computational

micromechanics approach implemented in ADAGIO are provided.

Sample meshes of the well-dispersed RVE for both the hollow and effective fiber

CNT representations are shown in Figure 71. These meshes are three-dimensional

with a single element used in the Z-direction, which is sufficient as no gradients in

the Z-direction result when the periodic boundary conditions are applied. ADA-

GIO offers a range of elements, but here the computations are performed using the

under-integrated, mean quadrature 8-node brick element. The hourglass modes are

controlled via a fictitious hourglass force scheme similar to that described in [259]

and [260]. It is noted that, new meshes are generated for each fiber volume fraction

for which the effective elastic properties are determined. As the fiber dimensions are

considered to be fixed, changes in fiber volume fraction result in changes in the size

of the RVE.

In order to facilitate the discussion of the applied periodic boundary conditions,

the six faces will be referred to as +X/−X, +Y /−Y , and +Z/−Z which are per-

pendicular to the X-, Y -, and Z-axes, respectively. Also, a numbering scheme will be

used for the principal material directions such that 1 refers to the fiber axis direction

(Z-axis) and 2 and 3 correspond to the X- and Y -axes, respectively, or the trans-

verse axes. A total of six numerical simulations are used to determine the effective
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(a) Hollow Fiber Representation

�

�

X, 2

Y, 3

Z, 1
�

(b) Effective Fiber Representation

Fig. 71. Original and deformed FEA meshes. Meshes are for aligned, well-dispersed

hollow fiber (3554 nodes/1648 elements) and effective fiber (4496 nodes/2154

elements) representations at 50% volume fraction. The deformed meshes are

for the case of applied shear, γ23, of 1%, with 20X displacement magnification

demonstrating that straight edges are not required to remain straight for the

applied periodic boundary conditions.
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composite properties at a given fiber volume fraction for both the well-dispersed and

clustered fiber arrangements. Each simulation corresponds to the application of an

average strain state with a single non-zero component. These six simulations are nec-

essary to determine the complete set of engineering elastic constants of an orthotropic

material, i.e., the three Young’s moduli (E11, E22, and E33), the three Poisson’s ra-

tios (ν12, ν23, and ν31) and the three shear moduli (G12, G23, and G31), from which

all other effective moduli can be calculated. The resulting sets of volume averaged

stress components for a an applied average strain are then determined from the FEA

solution, allowing the components of the corresponding column of the effective stiff-

ness matrix to be obtained by dividing the average stress components by the applied

average strain. Once the effective stiffness is computed, it is inverted to obtain the

effective compliance from which the corresponding engineering effective elastic con-

stants are determined. It should be noted that in the well-dispersed case, where

the effective elastic properties are transversely isotropic, only three simulations are

needed to obtain the five independent engineering properties. The additional three

tests become consistency checks for the well-dispersed cases.

The periodic boundary conditions can be expressed in terms of the displacement

components on face pairs. For example, taking the origin of the mesh coordinate

system to be at the RVE centroid, the periodic conditions for the +X/−X face pair

can be expressed as:

u(LoX/2, Y, Z) = u(−LoX/2, Y, Z)

v(LoX/2, Y, Z) = v(−LoX/2, Y, Z)

w(LoX/2, Y, Z) = w(−LoX/2, Y, Z)

(H.1)
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where u, v, and w are the components of the displacement in the X, Y , and Z

directions, respectively, and where the undeformed mesh has an original length along

the X-axis of LoX . Similarly, on the +Y /−Y and +Z/−Z face pairs, the periodic

conditions are expressed as:

u(X,LoY /2, Z) = u(X,−LoY /2, Z)

v(X,LoY /2, Z) = v(X,−LoY /2, Z)

w(X,LoY /2, Z) = w(X,−LoY /2, Z)

(H.2)

and

u(X, Y, LoZ/2) = u(X, Y,−LoZ/2)

v(X, Y, LoZ/2) = v(X, Y,−LoZ/2)

w(X, Y, LoZ/2) = w(X, Y,−LoZ/2)

(H.3)

respectively, and where the undeformed mesh has original lengths of LoY , and LoZ along

the Y and Z coordinate axes. In order to perform one of the required six numerical

simulations, the desired non-zero average strain component is introduced into the

periodic conditions in the form of a relative displacement. For example, in order to

determine the first column of the stiffness tensor, the only non-zero average strain,

ε̄11, is applied by the addition of a relative displacement between +Z and −Z in the

w component of Eqn. H.3, i.e.,

w(X, Y, LoZ/2) = w(X, Y,−LoZ/2) + εoLoZ (H.4)

where the relative displacement is given by wrel = εoLoZ , where εo is the applied strain.

For this case, the remaining displacement components in Eqn. H.3 are unaltered, and

the same is true of all of the displacement components in Eqns. H.1 and H.2. The
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other columns of the stiffness tensor are determined in much the same way, with the

only difference being to which face and to which displacement component a relative

displacement is applied. The specifics of the periodic boundary conditions (PBCs)

used in each simulation to apply the desired component of average strain (ε̄ij) are

listed in Table XI, where the corresponding relative displacements are denoted by

urel, vrel, and wrel. Note that most nodes belong to a single PBC pair (+Z/−Z),

while some belong to two PBC pairs (+Z/−Z with either +X/−X or +Y /−Y ) and

the eight corner nodes belong to all three PBC pairs. Also note that the inner surface

of the fiber in the hollow fiber FEA representation of the CNTs is taken to be stress

free. Finally, note that initially straight edges need not remain straight under the

applied periodic boundary conditions as is also shown in Figure 71.
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Table XI. Details of applied periodic boundary conditions in FEA analysis. The

non-zero relative displacements necessary to achieve the desired average

strain over the RVE are given. All unlisted relative displacements are spec-

ified to be zero. In all numerical simulations for a given RVE, a single

applied strain level of εo is used and LoX , LoY , and LoZ refer to undeformed

RVE lengths in the X-, Y -, and Z-directions, respectively, and urel, vrel,

and wrel are the corresponding relative displacements.

Average +X/−X +Y /−Y +Z/−Z
Simulation Applied Strain PBC PBC PBC

1. Z-Direction ε̄11 = ε̄zz = εo – – wrel = εo LoZ
Extension

2. X-Direction ε̄22 = ε̄xx = εo urel = εo LoX – –

Extension

3. Y -Direction ε̄33 = ε̄yy = εo – vrel = εo LoY –

Extension

4. ZX Shear 2ε̄12 = 2ε̄zx = εo wrel = εo LoX – –

5. XY Shear 2ε̄23 = 2ε̄xy = εo – urel = εo LoY –

6. Y Z Shear 2ε̄31 = 2ε̄yz = εo – wrel = εoLoY –
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