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ABSTRACT 
 

 
Investigation of the Photocatalytic Lithographic Deposition of Metals in Sealed  

 
Microfluidic Devices on TiO2 Surfaces.  

 
 (December 2005) 

 
Edward Thomas Castellana, B.S., State University of New York College at Fredonia 

 
Chair of Advisory Committee:  Dr. Paul S. Cremer 

 
 
 
 The research presented within this dissertation explores the photocatalytic 

deposition of metal carried out within sealed microfluidic channels.  Micro scale 

patterning of metals inside sealed microchannels is investigated as well as nanoscale 

control over the surface morphology of the nanoparticles making up the patterns.  This is 

achieved by controlling solution conditions during deposition.  Finally, the nanoparticle 

patterns are used in fabricating a sensor device, which demonstrates the ability to 

address multiple patches within a sealed channel with different surface chemistries. 

 Also presented here is the construction of the first epifluorescence/total internal 

reflection macroscope.  Its ability to carry out high numerical aperture imaging of large 

arrays of solid supported phospholipid bilayers is explored.  For this, three experiments 

are carried out.  First, imaging of a 63 element array where every other box contains a 

different bilayer is preformed, demonstrating the ability to address large scale arrays by 

hand.  Next, a protein binding experiment is preformed using two different arrays of 

increasing ligand density on the same chip.  Finally, a two-dimensional array of mixed 
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fluorescent dyes contained within solid supported lipid bilayers is imaged illustrating the 

ability of the instrument to acquire fluorescent resonance energy transfer data.  

 Additionally, the design and fabrication of an improved array chip and 

addressing method is presented.  Using this new array chip and addressing method in 

conjunction with the epifluorescence/total internal reflection macroscope should provide 

an efficient platform for high throughput screening of important biological processes 

which occur at the surfaces of cell membranes. 
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CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

1.1  Phospholipid Bilayers 
 

Phospholipid monolayers and bilayers closely resemble cell membranes in some 

key respects.  These systems maintain the fluidity of their associated ligands and can be 

an excellent environment for presenting membrane proteins.  This allows for the 

investigation of biological processes that occur at the cellular level, providing 

information about ligand-receptor interactions,1-4 viral attack,5,6 and cellular signaling 

events.7-9   

In the 1960’s Mueller et al. developed the first system for the investigation of the 

electrical properties of a planar phospholipid membrane.10,11  The system consisted of a 

black lipid membrane painted over a 1 mm hole between two solution chambers.  

Twenty years later Tamm and McConnell developed solid supported phospholipid 

bilayers.12  In 1997 Boxer et al. pioneered the partitioning of supported phospholipid 

bilayers into lithographically patterned corrals.13  This led to the development of 

individually addressed arrays of solid supported phospholipid bilayers by Cremer and 

Yang14 and sensor arrays for the study of cell adhesion by Groves, et al.15 

 
 
 
__________________________ 
This dissertation follows the style and format of the Journal of the American Chemical 
Society. 
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Cell surface mimicking phospholipid membranes have also been combined with 

microfluidic systems for the development of powerful sensor applications.  Examples 

include on-chip immunoassays for investigating the kinetics and thermodynamics of 

antibody binding to antigens presented on phospholipid bilayers contained within the 

microchannels,3,4 as well as bilayer coated microchannels which were used to present 

immobilized enzymes for rapid determination of enzyme kinetics.16  The utility of 

laminar flow within microchannels has also been used to facilitate the patterning of lipid 

bilayer arrays within microfluidic systems.17,18 

In certain instances black lipid membranes and vesicles have an advantage over 

solid supported phospholipid bilayers.  For example, they avoid direct contact with an 

underlying substrate that can potentially be problematic for the presentation of 

transmembrane proteins.  They also allow solution phase access to both sides of the 

membrane.  However, they are less stable than supported membranes, harder to 

manipulate chemically, and are far less accessible to surface specific detection 

techniques.  Therefore, it would be desirable to develop methods to appropriately embed 

transmembrane proteins into supported bilayers.  To this end, Spinke et al. laid the 

foundation for polymer supported phospholipid bilayers on planar solid substrates.19  It 

was found that thin polymer films could couple bilayers with a larger variety of 

materials such as metal films, oxides, and semiconductor electrodes.  Adding a polymer 

layer between an underlying substrate and the phospholipid bilayer can be achieved by 

the use of either a cushioning polymer film20-24 or the direct tethering of the membrane 

to a lipid presenting polymer or peptide layer.25-30  Other effective surface modification 
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strategies include self-assembled monolayers (SAMs)31,32 and the use of adsorbed or 

bound proteins as a cushioning layer.33-38  To this day, however, there is not yet a 

completely satisfactory supported membrane system for the presentation of 

transmembrane proteins with both large extracellular and intracellular peripheral 

domains. 

 

Supported Lipid Membranes 

There are a variety of phospholipid membrane systems, supports, and detection 

schemes that can accommodate a host of applications.  When making a choice of 

membrane platform, it is necessary to consider the analyte of interest.  For example, 

simple bilayers supported on glass substrates are often sufficient for presenting small 

ligands for the study of multivalent interactions with extracellular proteins.  On the other 

hand, if one wishes to incorporate transmembrane proteins or pore-forming toxins into 

the bilayer, it may be necessary to use a polymer-cushioned bilayer or a black lipid 

membrane to prevent protein denaturation on the underlying substrate.  Almost equally 

important is the detection scheme.  A conducting substrate is required if the sensor 

design calls for a direct electrical measurement.  In this case the bilayer can be supported 

on an indium-tin-oxide (ITO) electrode or even a gold electrode if an appropriately 

hydrophilic alkanethiol monolayer is employed.  A good review of phospholipid 

membranes on solid surfaces is reference.39 
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Black Lipid Membranes 

 The black lipid membrane derives its name from its appearance by optical 

microscopy.  When Mueller et al. observed the formation of the first black lipid 

membranes10,11 from extracted brain lipids, they noted interference bands giving rise to 

color in the membrane.  This interference effect disappeared during the thinning of the 

painted lipid mass and is thought to indicate the formation of a single bilayer membrane.  

For an excellent resource on black lipid membranes see reference.40 

 Several methods of producing black lipid membranes exist.  All involve the 

formation of a membrane over a small aperture usually less then 1 mm in diameter.  The 

hole is formed in a hydrophobic material such as polyethylene or Teflon and is usually 

part of a wall separating two compartments that can be filled with aqueous solution, each 

containing a reference electrode.  Two of the most popular methods of BLM formation 

involve the painting of the lipid solution over the aperture10 and the formation of a 

folded bilayer.41  The result of either method is a bilayer suspended over the aperture 

with an aqueous compartment on each side of it. 

 The painting of a black lipid membrane is carried out with a small artist paint 

brush.  Typically a 1-2% phospholipid solution in an organic solvent, such as n-decane 

or squalene, is painted across the hole under an aqueous solution.  The deposited lipid 

mass thins as it spreads, forming the black lipid membrane.  This methodology has 

remained basically unchanged over the decades.10  The formation of folded lipid bilayers 

requires a cell with two compartments separated by a small aperture and the solution 

levels in each compartment must be controlled independently.  Both compartments are 
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filled with the desired aqueous solution and a monolayer of phospholipid material is 

spread on top of one of the compartments.  The solution level in the compartment 

containing the lipid monolayer is slowly lowered below the aperture and raised again.  

This deposits a monolayer on each pass to form the completed bilayer membrane.41 

 Since their advent, black lipid membranes have been used to investigate various 

biophysical membrane facilitated processes.  One of the most important is the formation 

of ion channels in phospholipid bilayers by peptides,42 proteins,43,44 antibiotics,45 and 

other pore forming biomolecules.  Of particular interest for creating nanodevices is the 

insertion of single protein pores for use as stochastic sensors.   This has been 

accomplished by Gu et al. through the use of genetically modified α-haemolysin.46  

Naturally occurring α-haemolysin, which is composed of seven identical subunits, is an 

exotoxin produced by Staphylococcus aureus bacteria.47  Through the use of genetic 

modification, an α-haemolysin mutant was created which can non-covalently capture a 

cyclodextrin molecule within its pore.  A current change at fixed voltage is measured 

when the cyclodextrin inserts into the channel due to a restriction of the pore cross-

section.  The current is further attenuated by the binding of a guest molecule in the 

cyclodextrin binding pocket.  The binding and unbinding of small organic molecules 

within the cyclodextrin/α-haemolysin pore can ultimately be measured at the single 

molecule level via this process.46   

This same methodology has been applied to the stochastic sensing of divalent 

metal cations48 and cell signaling molecules.49  Polyhistidine motifs are known to 

strongly interact with divalent cations and are often employed in the purification of 
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recombinant proteins.  Pores designed to stochastically detect divalent metal cations 

were genetically engineered to present a short peptide sequence of four histidines inside 

the α-haemolysin pore.50    A similar approach was used in the detection of cell signaling 

molecules.  Pores were engineered with a ring of 14 arginine residues on their inside 

surface.  It was shown that the phosphate groups on inositol 1,4,5-trisphosphate, a 

second messenger, interact with the ring of arginines, effectively blocking the pore.49   

Current measurements across a modified α-haemolysin pore show that the 

frequency of binding events relates to the concentration of the analyte. The amplitude of 

the current change together with the duration of time an analyte spends in the channel 

allows for specific identification of a given species.51  Since only one molecule can fit 

into the channel at a time, analyte identification can be preformed for individual 

blocking events.  This means that the same pore can be used in a sequential fashion to 

detect a variety of analytes. 

As noted above, black lipid membranes are suspended in solution and there are 

no unwanted interferences of the membrane with an underlying support.  The absence of 

such a support also means that transmembrane proteins suspended within the 

phospholipid bilayer remain fully mobile and active.  However, this also limits the 

lifetime of the bilayer due to poor stability of the membrane.  The methods of detection 

that can be employed with black lipid membranes are also typically limited.  Usually 

electrical conduction and simple light microscopy are used; however, more recently 

investigators have begun to utilize more sophisticated optical techniques.40   
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Solid Supported Lipid Bilayers 

Phospholipid bilayers supported by solid substrates are more robust and stable 

than black lipid membranes.  Solid supports also open the door for the use of surface 

specific analytical techniques not available for black lipid membranes.  In solid 

supported systems membrane fluidity is maintained by a thin 10-20 Å layer of trapped 

water between the substrate and the bilayer.12,52  A schematic diagram of a supported 

lipid bilayer is shown in Figure 1.1. 

The varieties of substrates capable of supporting phospholipid bilayers are 

somewhat limited.  In order to support a high quality membrane (i.e. little or no defects 

and high lipid mobility) the surface should be hydrophilic, smooth, and clean.  The best 

substrates for supporting phospholipid bilayers are fussed silica,12,53 borosilicate 

glass,12,54 mica,55,56 and oxidized silicon.12  Bilayers can also be formed on polished 

single crystals of TiO2, SrTiO2,57 and thin films of SiO2 on LiNbO3 crystals.58  Thin 

films can be used as solid supports as observed with TiO2,59-61 indium tin oxide,62,63 

gold,64,65 silver,66 and platinum.67  

There are three general methods for the formation of supported phospholipid 

bilayers on planar supports for sensor applications.  The traditional method involves the 

transfer of a lower leaflet of lipids from an air-water interface by the Langmuir-Blodgett 

technique.  This is followed by the transfer of an upper leaflet by the Langmuir-Schaefer 

procedure, which involves horizontally dipping the substrate to create the second layer.12  

A second method of supported bilayer formation is the adsorption and fusion of vesicles 

from an aqueous suspension to the substrate surface.68,69  Also, a combination of the two
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Figure 1.1.  Schematic diagram of a solid supported phospholipid bilayer.  The 

membrane is separated from the substrate by a 10-20 Å lubricating water layer. 
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methods can be employed by first transferring a monolayer via the Langmuir-Blodgett 

technique followed by vesicle fusion to form the upper layer.70  Each method has its 

particular advantages and disadvantages. 

The transfer of amphiphilic molecules from the air-water interface to a solid 

substrate dates back to the 1920’s.71 An excellent review of this topic is found in 

reference.72  Tamm and McConnell were the first to apply this technology to form 

supported phospholipid bilayers by sequential monolayer transfer onto quartz, glass, and 

oxidized silicon substrates.12  This method is excellent for the formation of asymmetric 

bilayers;61 however, it is difficult or impossible to incorporate transmembrane proteins 

into the membrane with this technique because prior to transfer portions of the proteins 

within the monolayer are exposed to air and can become irreversibly denatured.70 

The adsorption and fusion of small unilaminar vesicles (SUVs) is one of the 

easiest and most versatile means for forming solid supported phospholipid bilayers.   

SUVs can be prepared by a multitude of methods.  The simplest involves the extrusion 

of multilaminar vesicles through porous polycarbonate membranes at high pressure.73-76  

Another method is the sonication and ultracentrifugation of aqueous lipid suspensions.77  

The incorporation of transmembrane proteins into SUVs requires a gentler process such 

as detergent removal via dialysis.78,79  Factors effecting the adsorption and fusion of 

SUVs to solid supports include: the vesicle composition, size, surface charge, surface 

roughness, surface cleanliness, solution pH, ionic strength, and osmotic pressure of the 

vesicles.59,80  The process begins with the adsorption of vesicles from the bulk solution 

onto the substrate.  In the early stages, SUVs adsorb and fuse with one another.  Once a 
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critical size is reached, the vesicles will begin to rupture and fuse to the substrate 

forming planar supported bilayers.80  The adsorption process can be accelerated by the 

presence of divalent cations such Ca2+ and Mg2+.61  Fusion of SUVs to the substrate can 

also be enhanced by heating,63 creating an osmotic gradients across the vesicle 

membrane,59 and by the addition of fusigenic agents such as polyethylene glycol.36  

A combination of Langmuir-Blodgett monolayer transfer and vesicle fusion can 

also be used to form supported phospholipid bilayers.70  This method involves the fusion 

of SUVs to a predeposited monolayer of phospholipid.  It is also useful for the formation 

of asymmetric bilayers and for the incorporation of transmembrane proteins into solid 

supported bilayers.70 

It is well established that phospholipid membranes are held in place above a solid 

oxide support by a combination of van der Waals, electrostatic, hydration and steric 

forces.54  In an egg phosphatidylcholine (egg-PC) bilayer supported on a glass substrate, 

the underlying water layer effectively lubricates the lipids, which allows them to freely 

move with a diffusion constant of approximately 4 µm2/s.81  Furthermore, it has been 

observed that negatively charged vesicles do not easily fuse to glass substrates at basic 

pH values and low ionic strengths.54  This demonstrates the delicate balance of forces 

involved in bilayer fusion and spreading. 

The main advantage in using solid supports is clearly an increase in robustness 

and stability of the phospholipid bilayer membrane.  Almost equally important is the 

ability to probe interactions that occur at the membrane surface with powerful analytical 

techniques that are surface specific.  While solid supported phospholipid bilayers are 
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somewhat limited in terms of their substrate compatibility, their major disadvantage is 

that the supported membrane is not truly decoupled from the underlying substrate.  

Indeed, the system may not prevent transmembrane proteins from interacting 

unfavorably with the underlying substrate.  Such interactions with the surface can cause 

proteins in the membrane to become immobile and hinder their function. 

 

SAM/monolayer Systems 

The use of self-assembly for the modification of electrode surfaces has been the 

topic of several reviews.82-84  This includes the use alkanethiols to form self-assembled 

monolayers (SAMs) on gold and other widely used electrode surfaces such as silver and 

mercury.  Methyl-terminated alkanethiols on gold provide a well-defined hydrophobic 

surface to facilitate the formation of a hybrid bilayer membrane for use as a cell 

membrane mimic.1,31,85  In its simplest form, the hybrid bilayer membrane consists of a 

metal supported alkanethiol SAM and a monolayer of phospholipid as illustrated in 

Figure 1.2.86   

There are a plethora of alkanethiols which will self-assemble on a gold surface 

either as a pure substance or in mixtures.  Octadecanethiol is a typical choice for hybrid 

bilayer formation due to its ability to form tightly packed well-ordered monolayers.  The 

SAM layer can be formed by incubating a clean gold substrate with a 1 mM alkanethiol 

solution in ethanol for a minimum of 12 hours.86  Another formation method involves 

Langmuir-Blodgett transfer.87  Two general methods exist for applying the phospholipid 

leaflet to the SAM covered surface: vesicle fusion and lipid transfer from an air-water 
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Figure 1.2.  Schematic illustration of a hybrid bilayer.  A single phospholipid monolayer 

rides on an alkanethiol SAM. 
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interface by the Langmuir-Schaefer method.88  Vesicles in aqueous buffer have been 

shown to spontaneously fuse to the hydrophobic surface of supported lipid monolayers70 

and alkanethiol SAMs.31  The process of vesicle fusion to such surfaces has been 

investigated by surface plasmon resonance,89 cyclic voltammetry, and impedance 

spectroscopy.90  Alternatively, a phospholipid monolayer can be transferred from the air-

water interface to the hydrophobic surface of an alkanethiol SAM.91  This method 

requires a horizontal transfer from a stable phospholipid monolayer supported in a 

Langmuir trough at the air/water interface.   

The fusion of ghost cells to alkanethiol SAMs also produces a hybrid bilayer 

membrane.85,87,89  Ghost cell fusion offers the ability to reconstitute some of the contents 

of a cell membrane onto a sensor platform.  Such a procedure may eventually represent 

an efficient means of presenting biomimetic surfaces containing natural mixtures of 

proteins, lipids, and receptors, as well as cellular membranes from genetically modified 

cells.  It is not clear, however, how transmembrane proteins interact with such surfaces 

since these species cannot intercalate beyond the alkanethiol SAM.   

The physical properties of the membrane can be altered through the use of 

different alkanethiols, lipids, and membrane additives such as sterols and proteins.   For 

example, increasing the chain length of the alkanethiol or phospholipid results in a 

thicker membrane, thus decreasing it’s capacitance.31,92  Altering the composition of the 

vesicles used to form the lipid layer can also change the properties of hybrid membranes.  

Incorporation of ligand presenting phospholipids into bilayer membranes is useful for 

investigations of binding kinetics and multivalent interactions.  In this respect, hybrid 
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bilayer formation from the fusion of phospholipid vesicles containing ligand presenting 

phospholipids has been shown to be effective.1,93 

 The underlying SAM layer must be only slightly modified to accommodate 

membrane active peptides and transmembrane proteins with small or nonexistent 

peripheral domains facing the electrode.  This can be accomplished through the 

introduction of ethylene oxide spacer units at the base of the alkanethiol.94  Examples of 

proteins that can be investigated in this manner include α-hemolysin and melittin.  These 

proteins alter the electrical properties of membranes,94 but barely protrude beyond the 

membrane on the distal side.  This has allowed neutron reflectometry investigations95 to 

be carried out to determine the orientation of melittin within this lipophilic system.  

Melittin has also been investigated by cyclic voltammetry in this manner.31,92 

 There are several advantages to choosing hybrid phospholipid platforms for 

sensor applications.  Foremost is the coupling of the cell surface mimicking 

phospholipid monolayer directly to a metallic surface.  This allows for non-labeled 

analyte detection by such means as direct electrical measurements, surface plasmon 

resonance, and quartz crystal microbalance detection.  Hybrid phospholipid membranes 

are often more robust than their solid supported counterparts due to the strong interaction 

between the alkanethiol SAM layer and the underlying substrate.  When formed at an 

air-water interface, they can be dried and rehydrated while retaining at least some of 

their original physical and chemical properties.91 

While the rigidity and close packing of the underlying alkanethiol SAM layer 

provides many advantages, it also presents several limitations.  An alkanethiol SAM 
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layer is more crystalline in structure94 than a normal leaflet of a phospholipid bilayer.  

This results in a less fluid membrane environment.  Insertion of proteins is also effected 

by the packing density of the underlying SAM layer,94 which can inhibit proper 

functioning.  Of course, transmembrane proteins with both large extracellular and 

intracellular domains cannot be inserted in a hybrid bilayer. 

 

Polymer Cushioned Lipid Bilayers 

 While solid supported phospholipid bilayers and hybrid bilayers are excellent 

sensor platforms for the investigation of cellular processes that occur at the 

membrane/solution interface or within the membrane itself, they have difficulty 

mimicking a natural fluid environment for many transmembrane proteins, especially 

those presenting large peripheral domains.96  The 10-20 Å water layer that resides 

between a phospholipid bilayer and a solid support provides lubrication and maintains 

sufficient mobility for the lipid molecules;12,52 however, the underlying water does not 

protect peripheral portions of transmembrane proteins from immobilization or 

denaturation if they come in contact with the substrate.  Figure 1.3 illustrates the 

protection of a transmembrane protein by a lipopolymer support.97  The desire to mimic 

complex fluid biological systems has been the driving force for the development of 

polymer supported phospholipid bilayers.96 

The addition of a polymer layer effectively decouples the membrane from the 

surface and still allows for investigation by such surface specific techniques as neutron 

reflectivity, surface plasmon resonance, total internal reflection fluorescence 



 16

 

 

 

 

 

 

Figure 1.3.  Comparing solid to polymer supports for phospholipid bilayers.  On the 

right, periphery domains of transmembrane proteins can become immobilized and 

denatured on a solid support.  On the left, a polymer cushion shields the protein from the 

substrate and maintains its mobility within the bilayer. 
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microscopy, fluorescence interference-contrast microscopy, and attenuated total 

reflectance Fourier transform infrared spectroscopy.  In principle these systems should 

always prevent nonspecific adsorption of transmembrane proteins that have been 

reconstituted into a phospholipid membrane.  Another potential advantage of the 

polymer support is the ability to avoid nonspecific adsorption from solution that can 

occur at defect sites in solid supported bilayers lacking polymer cushions.  Large 

numbers of such defect sites contribute to poor sensitivity and low signal-to-noise ratios 

especially in electrical detection schemes where electron or ion transport to and from the 

substrate is monitored.60  

In erythrocyte cells, the cellular membrane is supported by the cytoskeleton, a 

protein matrix, which supports the lipid membrane and gives the cell shape.  A well 

designed polymer cushion should behave much like a cytoskeleton.  The design of 

systems for the support of phospholipid bilayers requires careful consideration of the 

balancing of surface forces.20  In physisorbed systems, too much or too little interaction 

between the phospholipid bilayer and the polymer support will result in an unstable 

system.  This may be overcome by covalent attachment of the polymer layer to the 

substrate.  It is also useful to use anchor lipids or alkyl side chains capable of inserting 

into the phospholipid bilayer, effectively tethering it to the underlying polymer layer.  In 

general, it is desirable for the polymer support to be soft, hydrophilic, not highly 

charged, and not extensively cross-linked.20 

There are several types of polymer cushions that have been explored for 

supporting phospholipid bilayers.  These include dextran,23 cellulose,98 chitosan,24 
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polyelectrolytes,21,99-101 and lipopolymer tethers.19,22,25,26,29,30,97  Two classes of polymer, 

polyelectrolytes and lipopolymers, are emerging as the most popular choices for cushion 

material.  Polyelectrolyte cushions represent a highly versatile support for phospholipid 

bilayer membranes.  They can be adsorbed to a variety of substrates by means of layer-

by-layer deposition, providing a great deal of control over the resulting film thickness.  

Polyethylenimine (PEI) has been used to support phospholipid bilayers on mica102 and 

quartz.96,99  On metallic substrates such as gold, polyelectrolytes can be adsorbed to 

charged SAMs.  Mercaptoundecanoic acid on gold is capable of adsorbing alternating 

layers of polydiallyldimethylammonium chloride (PDDA) and polystyrene sulfonate 

sodium salt (PSS) for use as a polymer cushion.21,100 

Polyelectrolyte cushions rely on electrostatic interactions to balance the 

necessary forces required to hold the system together.  Here, alternating charges are the 

key.  Electrostatic attraction between the substrate and polymer cushion binds the 

polymer layer to the substrate.  In turn, van der Waals, hydrogen bonding, as well as 

electrostatic interactions bond the lipid layer to the polymer.  When a polyelectrolyte 

layer is deposited onto a substrate, charge on the surface builds up repelling excess 

material away from the surface.  Under appropriate conditions this results in highly 

uniform films with a linear relationship between thickness and the number of adsorbed 

layers.103  This is of course advantageous for assembly of supported bilayers.  On the 

other hand, the necessity of electrostatic charges to keep polyelectrolyte cushions in 

place presents certain limitations.  Too much charge can adversely affect the function 

and mobility of membrane constituents and alter interactions between proteins and the 
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supporting cushion.  The strength of the attractive forces is also directly affected by the 

solution environment; namely ionic strength and pH.  This can be problematic, as 

important biological processes occur in different solution environments.   

Lipopolymers are another class of highly effective polymer cushions.  They 

consist of a soft hydrophilic polymer layer presenting lipid like molecules at their 

surface which can insert into a phospholipid membrane and tether it to the polymer 

spacer.  Tethering has the advantage of being much less affected by solution conditions 

such as pH and ionic strength.  However, a large degree of tethering can interfere with 

the mobility of the individual components within the supported membrane.27 

Often lipopolymers are also covalently bonded to the substrate.  This provides 

additional support for the membrane system.  Attachment of a lipopolymer to a substrate 

has been carried out via photoreactive coupling,22,23,27 sulfur-metal bond formation 

,26,28,29 epoxy group linkage,23 or silane bonding.97  Some common polymer backbones 

used in the synthesis of lipopolymers are, acrylamide,19,26,29 ethyloxazoline,22,27 and 

ethyleneglycol .97  It is important that the polymer cushion have the ability to swell in an 

aqueous environment and have minimal disruptive interactions with the bilayer and 

reconstituted membrane components.20  The degree to which a polymer cushion swells 

in an aqueous humid environment is a good indication of its ability to be employed as a 

support.  It has also been observed that the quality of the supported membrane can be 

affected by the degree of swelling of the polymer layer prior to bilayer deposition.96  

Swelling is typically monitored in a home-built humidity chamber and can easily be 

detected with ellipsometry 23 or surface plasmon resonance spectroscopy.22 
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Lipopolymers can be synthesized prior to adsorption onto a substrate or built up 

on a support by polymer grafting techniques.  The lipid tethers are typically attached 

during polymer synthesis or by reacting specific lipids within a Langmuir-Blodgett 

transferred monolayer with active sites on the polymer.25  Lipids presenting a 

succinimide headgroup are a convenient means for attaching tethers to amino groups 

presented by a polymer support.   

 Bilayer formation on polymer cushions can occur by means of vesicle fusion or 

the Langmuir-Blodgett/Langmuir-Schaffer transfer method.  Langmuir-Blodgett transfer 

of mixed monolayers of phospholipids and lipopolymers from an air/water interface has 

been shown to provide excellent control over the density of the lipopolymer cushion 

layer.27,97  It has also been observed that protein containing vesicles fusing to these 

deposited monolayers can result in highly oriented transmembrane proteins in the 

supported bilayer.104  If the transmembrane protein has peripheral domains that are only 

presented on only one side of the cellular membrane, such domains sometimes prefer to 

orient into the bulk solution.   

 Another advantage of using lipopolymers is the ability to form air stable 

supported lipid bilayers.105  Through vesicle fusion of phospholipid vesicles containing 

small amounts (less than 5 mole percent) poly(ethylene glycol) conjugated lipids it is 

possible to form a polymer cushioned bilayer.  This bilayer has the added advantage of 

an added layer of lipopolymer in the upper leaflet of the bilayer, which has been shown 

to protect the phospholipid bilayer upon exposure to air and re-hydration.  It is also 

noted that the presence of this polymer layer still allows for the binding of proteins to 
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ligands presented at the surface of the bilayer but inhibits the interaction of micron sized 

particles with the membrane.105 

It should be noted that some polymer supports have been shown to exhibit less 

than desirable effects on the supported membrane.  An imbalance in the stabilization 

forces or a large number of tethering molecules can decrease the mobility of the 

supported phospholipid bilayer and alter the phase transition temperature.  In some 

cases, a polymer supported phospholipid membrane is less stable than one formed 

directly on a solid support and can even possess a larger number of defects.20 

 

1.2.  Titanium Dioxide 

 Titanium dioxide (TiO2) is a widely used material in everyday society.  It is 

found in products ranging from paint and crayons to food coloring, cosmetics and 

sunscreens.  Its photocatalytic ability allows it to be utilized in self cleaning products 

such as tiles, windows, and lamp coverings.  It can be utilized to purify water for 

drinking and environmental cleanup and air in buildings and for food storage 

applications.  Its self sterilizing capabilities make it a useful coating for hospital facilities 

and equipment.  An interesting property of TiO2 is its ability to exhibit 

superhydrophilicity.  This is achieved in mixed films with the proper ratio of by of TiO2 

to SiO2. 
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Production of TiO2 

 Several methods exist for the production of photoactive TiO2.  The main 

techniques are through the chloride method106, sol-gel processing,107-109 and chemical 

vapor deposition (CVD).110  The sol gel process is the most common method and  can be 

used to produce both particulate and thin film TiO2 through the hydrolysis of a titanium 

metal alkoxide.  The alkoxide is typically dissolved in an alcohol solvent and mixed with 

water, which hydrolyzes the alkoxide to produce the TiO2 sol.  This sol can be coated 

onto substrates and gelated to form photoactive TiO2 thin films. 

 The most common method of producing TiO2 crystallites is through the thermal 

decomposition of TiCl3 vapor, which is known as the chloride method.  This is done by 

reacting titanium minerals with Cl2 gas at high temperatures.106  This is the method used 

to produce commercially available Degussa P-25, a widely used, photoactive TiO2 

nanocrystalline powder. 

 A simple room temperature, atmospheric pressure CVD was developed in our 

laboratory for investigating the water structure at the TiO2 water interface.110  This 

process can be used to generate photoactive TiO2 thin films if deposition times of 30-120 

min. are used.  The processes involves the vapor deposition of the metal oxide precursor 

titanium isopropoxide onto silica substrates.  Immediately following vapor deposition, 

the substrates are calcinated at elevated temperatures.  In this study the process was 

expanded to be used on Pyrex wafers.  Here, to insure photoactivity, acid treatment of 

the wafers is necessary not only to activate the surface but to remove sodium ions from 

the surface layers of the Pyrex.111  



 23

Photocatalysis 

 TiO2 is a semiconductor with a bandgap of approximately 3eV.  This means that 

photoexcitation occurs when photoactive TiO2 is illuminated with light of a wavelength 

less than 400 nm.  This process generates electron hole pairs within the semiconductor 

which can be used for oxidation and reduction reactions.  The photocatalytic activity of 

TiO2 is dependent upon the electron hole recombination lifetime and the surface area.112  

The higher the surface area, the greater the number of surface active sites and the slower 

the recombination time, the higher the probability a photogenerated electron or hole will 

react with an adsorbed molecule instead of with each other.  Besides increasing surface 

area and crystallinity, the photoactivity can be increased through the addition to metal to 

the surface of the particles or thin films.  This increase has been observed for a variety of 

metals such as gold,113-116 and silver.113,117-119 Metal loading has shown to enhance 

photocatalytic activity for such uses as organic synthesis,116,119-121 water purification,122-

125 and antimicrobial properties.126-128 

 

1.3.  Microfluidics and Micromachining 

 Microfluidic technology involves the handling of fluids within devices consisting 

of channels on the size scale of 10-100 microns.  The small size of the channels allows 

the user to work with sample volumes on the order of nanoliters to picoliters.  This 

becomes advantageous when one is investigating processes involving expensive analytes 

such as proteins, peptides, etc.  The field of microfluidics has played a pivotal role in the 

development of Lab-on-a-Chip and micro-total analytical systems.  Such systems find 
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uses in; genomics and proteomics,129-131 on-chip polymerase chain reactions,132-136 

clinical analysis,137-141, high throughput screening,142 ligand-receptor binding,3,4 enzyme 

catalysis,16,143,144 studying physical chemistry of proteins,3,145-147 environmental 

testing,148 medicine,149 and single molecule detection.150,151 

 Perhaps one of the most important factors in the rise in popularity of 

microfluidics research is its ability to be rapidly prototyped.152  By using soft lithography 

techniques it is possible to relatively inexpensively carry out microfluidic research and 

device design in non-cleanroom environments.  This enables research in the field to be 

carried out by a much broader class of scientists.  Some of the important 

micromachining concepts, which are used to develop microfluidic systems and array 

based platforms are discussed in the next few sections.   

 

Photolithography and Soft Lithography 

 Photolithography is the process of transferring desired patterns from a mask onto 

a thin photoactive polymer layer (photoresist) on the surface of a substrate.  The basic 

processes of photolithography are; substrate cleaning, photoresist application spinning, 

soft baking, ultraviolet (UV) exposure, developing, and sometimes hard baking.  A wide 

variety of commercially available photoresists exist allowing for a wide range of 

thickness for both positive and negative resists.  Thickness is easily controlled by 

choosing a photoresist with the appropriate viscosity and spin coating it at the proper 

speed.   
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Negative resists work through UV assisted reactions which increase the degree of 

polymerization and cross linking within the polymer layer.  The areas which are exposed 

to UV radiation are much more resistant to the developing solutions and remain in place 

when unexposed regions are removed exposing the underlying substrate.   

Positive photoresist is the opposite of negative.  The polymers in the areas of the 

photoresist which are exposed to UV radiation are broken down.  This makes the film 

more susceptible to chemical attack by the developing solution leaving behind only 

those regions of the resist film which were masked during UV exposure. 

Once the pattern is transferred to the surface one can then transfer the pattern into 

the substrate through a variety of dry or wet etching techniques.  Also, a lift of method 

can be used to deposit materials, such as metals, to exposed regions of the underlying 

substrate through a process know as lift off.  After the material of choice is deposited, 

the photoresist is removed along with the deposited material on top of it.  This leaves 

behind only the material deposited on the exposed regions.  Alternately, the patterned 

photoresist can be used as a master template for soft lithography.  An illustration of the 

photolithographic process is shown in figure 1.4. 

Soft lithography is a micromachining technique which encompasses two main 

techniques; micromolding152-155 and microcontact printing.156-160  Micromolding involves 

the transfer of a pattern, i.e. patterned photoresist, to a soft material such as 

poly(dimethylsiloxane) (PDMS).  Micromolded PDMS is an excellent choice for the 

fabrication of microchannels because it is inexpensive, optically transparent material 
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Figure 1.4.  Schematic of the lithographic process. 
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which is easily bonded to glass through the use of an oxygen plasma.161  It can be used 

with both pressure and electrokinetic driven flow systems.  It is however limited to 

aqueous solutions and only a few organic solvents.162  A schematic of the soft 

lithography process for forming microfluidic channels is shown in figure 1.5. 

      

Wet Etching 

 Wet chemical etching allows for controlled etch rates and a high degree of 

selectivity.  The etching process proceeds by transport of etchant to the exposed surface, 

reaction between the etchant and the surface, and transport of the reaction products away 

from the surface.  Typically the wet etch process is rate limited by the surface reaction.  

This allows for a high degree of control in etch rate by simply controlling the 

temperature and composition of the etch bath.   

The process of wet etching is generally broken down into two categories, 

isotropic and anisotropic.  Isotropic etching removes material from the surface equally in 

all directions and can be carried out on any material.  Isotropic etching of silicon is 

usually carried out with a mixture of hydrofluoric and nitric acids at elevated 

temperatures where isotropic etching of glass is typically carried out using a buffered  

hydrofluoric acid solution.  Anisotropic etching requires both a material of crystalline 

structure and an etching solution which has different etch rates from different crystal 

planes within the substrate.  In the case of crystalline silicon, wet etching of the silicon 

<100> plane is much greater then the <111> plane when etched with a potassium 

hydroxide solution.  This makes it possible to etch deep into a silicon substrate with a 
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Figure 1.5.  Schematic of microfluidic device fabrication using soft lithography.
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 relatively high aspect ratio to that of an isotropically etched feature.  When etching a 

silicon wafer with a 40 % KOH solution at 85° C the etch rate is 1.4 microns/min and 

the ratio of the etch rates for <100>:<111> is approximately 400:1.163  An illustration of 

anisotropic and isotropic etching is shown in figure 1.6. 

 

Reactive Ion Etching 

 Reactive ion etching (RIE) is a dry etching process that is carried out in a radio 

frequency (RF) plasma.  It involves the ionization of a reactive gas such as CF4 or SF6.  

In the presence of the RF plasma, the reactive gas is broken down into radical species 

some of which become ionized.  These highly reactive ions can then be accelerated 

towards the surface of a substrate by an applied electric field.  Products formed from the 

gas reacting with the surface are either volatized by the low pressure environment or 

removed from the surface due to ion bombardment.  As this process proceeds, exposed 

areas on the surface are etched.  The process is typically isotropic in nature; however, the 

bottoms of the etched features usually etch faster then the walls due to the higher 

frequency of reactive gas ions contacting the surface.  In general reactive ion etching is 

an excellent method to pattern a hard masking material such as silicon nitride or silicon 

dioxide.  For RIE of hard mask layers, photoresist can be used to mask the hard mask 

layer.   A schematic of the RIE chamber is shown in figure 1.7. 
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Figure 1.6.  Anisotropic and isotropic etching.  
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Figure 1.7.  A schematic of the RIE process.  A gas such as CF4 is broken down in the 

plasma generating reactive ions.  These ions are then accelerated towards the surface by 

an electrical potential between the upper and lower electrodes. 
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Anodic Bonding 

The process of anodic bonding is used to join together glass and silicon 

substrates at elevated temperatures under high electrical potentials.164  Both surfaces 

need to be extremely clean, free of contaminate particles and the areas where bonding is 

desired must be highly polished.  It requires a sodium containing glass which has a 

similar thermal expansion to that of silicon.  An excellent material for this is Pyrex 7740, 

which was specifically designed to have good thermal expansion match to that of silicon.  

The elevated temperature allows the sodium in the glass to become more mobile and 

drift towards the cathode under high bias.  The depletion of sodium ions in the glass at 

the interface makes the surface of the glass highly reactive with the silicon surface 

forming a strong chemical bond between the two substrates.  In experiments discussed 

later a homemade anodic bonding setup was used.  It consisted of a digital hotplate, 

ceramic insulator, aluminum electrode, brass electrode, and a high voltage power supply.  

A schematic of the setup is shown in figure 1.8. 
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Figure 1.8.  Schematic of the anodic bonding setup. 
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CHAPTER II 

 

EXPERIMENTAL 

 

2.1  Array Chip Fabrication 

The array chip used in chapter IV was fabricated using standard 

photolithographic techniques. The process begins with the cleaning of 1 in. square 

microscope cover slips by boiling them in a 10% 7X detergent solution for 20 min.   The 

slides are removed from the solution while still warm and rinsed with three alternating 

cycles of ethanol and purified water (18 MΩ/cm2, NANOpure Ultrapure Water System, 

Barnstead, Dubuque, IA).  The slides are then dried under a stream of nitrogen gas and 

annealed at 450°C for 5 hrs.  Next, the cover slips were coated with 1000 Å of chrome 

by metal evaporation (BOC Edwards Auto 306 Metal Evaporation Chamber, 

Wilmington, MA).  Approximately 6 µm of photoresist is spun onto the chrome coated 

slides using a homemade resist spinner consisting of an AC motor and a variable 

transformer.  The freshly spun on photoresist was baked at 90°C for 45 min in a toaster 

oven (Black & Decker).  A photomask for the array chip was designed in CorelDraw and 

reduced onto 35 mm film as a negative.3  The negative was affixed to a microscope slide 

with double sided tape to produce the finished photomask.  The photoresist is then 

exposed to UV radiation from a Quintel Q400MA mask aligner (San Jose, CA).  UV 

illumination through the photomask destroys the photoresist, which, after developing, 
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Figure 2.1.  Array chip fabrication process. 
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leaves a 10 x 10 array of 0.6 mm square boxes separated by 0.4 mm hydrophobic 

photoresist walls.  The exposed chrome is then removed using commercial chrome 

etchant, yielding an array of hydrophilic glass plates with hydrophobic photoresist walls.  

A schematic of the process is shown in figure 2.1. 

 

2.2.  Spatial Addressing 

Microcapillary tips used to address vesicle solutions onto the array chips were 

prepared according to Yang et al.14  1.5 mm O.D. capillary tubes (World Precision 

Instruments, Sarasota, FL) were pulled in a micropipette puller (Sutter P-97, Sutter 

Instrument, Novato, CA) to an outer diameter of less than 10 µm using the following 

settings, temperature = 365° C, velocity = 125 microns/sec, and time = 200 sec.  These 

tips were then treated with 1,1,1,3,3,3-hexamethyldisilazane vapor in a 75° C oven to 

render their surface hydrophobic.  This allows for easy transfer of vesicle solution from 

the tip to the glass surface.  By attaching the pulled capillary to a 100 µL micropipette, 

the dispensing of droplets to the surface of the array chip can be controlled.  To perform 

the addressing, an array chip is placed on a cold plate as described elsewhere14 and the 

temperature of the chip is adjusted to just above the dew point in order to minimize 

evaporation of the addressed solutions.  A sample of 35 µL is drawn into the tip using 

the micropipette and pressure on the solution is adjusted until the desired size droplet is 

dispensed from the tip.  The droplet size optimization is carried out by delivering
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Figure 2.2.  Addressing of the array chip.  A pulled capillary is used to address 

individual hydrophilic glass plates with red and green vesicles.  
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droplets to a secondary array chip.  The solution is then delivered to the desired box on 

the array chip and the tip is cleaned before the next solution is addressed.  An illustration 

of the addressing process is shown in figure 2.2.  Once the array chip is fully addressed, 

the chip is submerged in purified water to remove excess vesicles.  At this stage, if it is 

desired, the array chip can be incubated with an analyte protein solution using a 

polydimethylsiloxane well and a humidity chamber.  The humidity chamber is 

constructed by inverting a small crystallization dish inside of a larger crystallization 

dish.  The array chip and PDMS incubation well are placed on top of the smaller 

crystallization dish, a small amount of water is added to the larger dish and the system is 

covered (figure 2.3).  After incubation, the solution in the PDMS well is carefully 

exchanged with PBS buffer and the chip and well are submerged in PBS buffer.  The 

well is removed from the array chip and the chip is then covered with a microscope 

cover slip to keep the SLB array hydrated during imaging.   
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Figure 2.3.  A schematic of a homemade humidity chamber.  A small crystallization 

dish is inverted inside a large crystallization dish.  Samples placed inside along with 

water allow for extended incubations with minimal evaporation.   
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CHAPTER III 

 

DIRECT WRITING OF METAL NANOPARTICLE FILMS INSIDE SEALED 

MICROFLUIDIC CHANNELS 

 

3.1.  Synopsis 

In this chapter we demonstrate the ability to pattern Ag nanoparticle films of 

arbitrary geometry inside sealed PDMS/TiO2/glass microfluidic devices. The technique 

can be employed with aqueous solutions at room temperature under mild conditions. A 6 

nm TiO2 film is first deposited onto a planar Pyrex or silica substrate, which is 

subsequently bonded to a PDMS mold. UV light is then exposed through the device to 

reduce Ag+ from an aqueous solution to create a monolayer thick film of Ag 

nanoparticles. We demonstrate that this on-chip deposition method can be exploited in a 

parallel fashion to synthesize nanoparticles of varying size by independently controlling 

the solution conditions in each microchannel in which the film is formed. The film 

morphology was checked by atomic force microscopy and the results showed that the 

size of the nanoparticles was sensitive to solution pH.  Additionally, we illustrate the 

ability to biofunctionalize these films with ligands for protein capture.  The results 

indicated that this could be done with good discrimination between specific locations 

and background.  The technique appears to be quite general and films of Pd, Cu, and Au 

could also be patterned. 
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3.2.  Introduction 

 Chemically patterned surfaces within the confines of microfluidic channels 

enhance the flexibility and utility of lab-on-a-chip platforms.3,165-167 For complex 

systems, significant attention has been focused on aligning pre-patterned substrates with 

separately molded microchannels.168-171 However, devising simple methods for 

controlling the surface chemistry inside microfluidic channels after device assembly 

could greatly enhance rapid prototyping capabilities.  In fact, precise spatial control over 

the molecules presented on the channel walls avoids the need to bring pre-patterned 

substrates into registry and allows materials to be utilized that cannot easily withstand 

harsh bonding procedures. Such issues can be critical in the design of microfluidic based 

sensors, diagnostic devices, and microreactors.  Until now, patterning inside sealed 

microfluidic devices has been quite challenging.  This is especially true if one is 

interested in deposition methods involving aqueous solutions and mild conditions.  

There have been some strategies developed for organic and biological materials,144 but 

procedures for addressing metals are particularly limited.172 

Typically, metal patterning of substrates is carried out via top down methods 

beginning with the evaporation or sputtering of metal onto a substrate. This step is 

followed by either spin coating and lithographic patterning of photoresist or 

microcontact printing of thiol polymer multilayers.173  Both procedures provide a 

protective masking layer during chemical etching of the unwanted regions of the 

deposited metal.  Such procedures work extremely well for patterning planar substrates, 

but would be extremely challenging to carry out inside enclosed polydimethylsiloxane 
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and glass microfluidic systems because of the impracticality of sputtering, stamping, or 

spin coating materials inside enclosed architectures.  Another approach has been to 

photoreduce metals from polymer solutions and films onto planar substrates.174,175  

Unfortunately, such methods would be cumbersome to employ in microchannel 

networks as the macromolecular catalysts for metal reduction would be hard to remove 

after the metal is deposited.   

Currently, the most practical strategy available for patterning metals inside sealed 

microchannels involves the use of multiphase laminar flow.172  Similar techniques have 

also been exploited for the patterning of polymers,176 inorganic crystals, proteins, and 

cells.177  These methods, however, produce architectures which are limited by the flow 

profiles generated within specific channel geometries, and often must be formed 

downstream from a channel junction.  We therefore aimed to devise a simple procedure 

that would allow metal films to be patterned inside sealed microfluidic systems from an 

aqueous solution under mild conditions with almost any design. 

TiO2 is a well known photocatalyst for water and air purification.178  UV 

illumination produces electrons and holes that can be used to oxidize and reduce a wide 

range of organic and inorganic species on its surface, including metal ions from aqueous 

solutions.  In particular, photocatalytic deposition of Ag into a sol-gel derived TiO2 

matrix and onto TiO2 particles has been shown to occur from Ag+ in aqueous 

solution.179-183  Adsorbed Ag+ ions are reduced by the photogenerated electrons and 

water undergoes oxidative decomposition by the holes.184  This process typically 

generates metal nanoparticles, where the particles vary in size and shape depending upon 
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the exact conditions employed.185 Such methods have been extended to patterning metals 

onto TiO2 nanoparticles at interfaces186 and should even be useful for patterning inside 

microfluidic channels if a thin TiO2 coating on a planar support were used instead of the 

nanoparticles. Indeed, we reasoned that this would be possible as long as the distance the 

electron/hole pair diffused from the initial site of excitation was fairly restricted.  The 

utility of the technique lies in the fact that the surface of the microchannel itself would 

now be the catalyst for metal deposition.  Such a technique is compatible with aqueous 

solutions and ambient conditions, which is ideal for microchannel surface modification.   

Our strategy for patterning Ag nanoparticle films involves the reduction of Ag+ 

from an aqueous AgNO3 solution by selectively illuminating the desired areas of the 

microchannel with UV radiation through a photomask.  After a metal film has been 

deposited, its surface can be further tailored by employing thiol chemistry.  In fact, we 

found that the serial introduction of metal patterns at specific locations, followed by 

surface derivatization easily led to the presentation of spatially addressed biosensor 

architectures (figure 3.1).  Moreover, several different metals including Pd could be 

patterned in addition to silver. 
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3.3.  Methods and Materials 

Materials   

Polished Pyrex 7740 wafers (25.4 mm2, 0.5 mm thick) were supplied by 

Precision Glass and Optics (Santa Ana, CA). Fused silica cover slips (25 mm2, 0.17 mm 

thick) were purchased from Structure Probe, Inc. (West Chester, PA). Biotin PEG 

disulfide (figure 3.2.A), and PEG propionate disulfide (figure 3.2.B) were obtained from 

BioVectra Inc (Prince Edward Island, Canada). N-(2,4-dinitrophenyl)cadaverine 

hydrochloride (DNP-cadaverine) was acquired from Axxora (San Diego, CA). 

Streptavidin Alexa Fluor 594 conjugate (Strep-A594), anti-dinitrophenyl-KLH, rabbit 

IgG fraction, and Alexa Fluor 488 conjugate (anti-DNP-A488) were supplied by 

Invitrogen (Eugene, OR). Polydimethylsiloxane (Dow Corning Sylgard Silicone 

Elastomer-184) was obtained from Krayden, Inc (El Paso, TX). Silver nitrate, palladium 

chloride, N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), 

sodium phosphate, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES buffer 

salt), and sodium chloride were purchased from Sigma-Aldrich (Saint Louis, MO).  

These materials were used as provided. 
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Figure 3.1. Schematic diagram for the deposition of a silver nanoparticle film. UV 

radiation is passed through a photomask onto the backside of a TiO2 thin film.  Ag+ ions 

adsorbed at the interface are selectively reduced by photoelectrons, which grow into 

nanoparticle films.  This process can be used in combination with thiol chemistry inside 

sealed microfluidic channels to address surface chemistries in almost any desired 

location or pattern. 
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Figure 3.2.  Structures of (A) Biotin PEG disulfide and (B) PEG propionate disulfide. 
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 TiO2 Film Preparation   

 Smooth films of TiO2 were prepared using our previously established room 

temperature and pressure chemical vapor deposition protocol.110  The film is grown via 

hydrolysis of titanium (IV) isopropoxide by OH groups on the substrate surface aided 

small amounts of water vapor.187,188  This process occurs inside the reaction chamber 

producing isopropanol and TiO2.  Briefly, Pyrex 7740 wafers or silica cover slips were 

cleaned in piranha solution (1:3 ratio of 30% H2O2 and H2SO4, note: piranha is a 

vigorous oxidant and should only be used with extreme caution) for 45 min., rinsed 

extensively with purified water (18.2 MΩ/cm2, NANOpure Ultrapure Water System, 

Barnstead, Dubuque, IA), dried with nitrogen, and baked at 500°C for 5 hrs.  The wafers 

were then soaked in concentrated H2SO4 for 6 hrs, rinsed extensively with more purified 

water, rinsed with methanol, dried with nitrogen, and exposed to titanium (IV) 

isopropoxide vapor at room temperature for 2 hrs. The surface reaction was stopped by 

rinsing with purified water and reagent grade acetone.  Finally, the slides were baked 

again at 500°C for 5 hrs to facilitate calcination of the film.  The thickness of the titania 

layer was measured to be 6 nm by ellipsometry (model L2W26D; Gaertner Scientific, 

Skokie, IL), using a 632 nm laser at 80º and assuming the index of refraction of the film 

was 2.46.189,190 
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Microfluidic Device Fabrication   

 Polydimethylsiloxane (PDMS) microfluidic devices were fabricated using 

previously published soft lithography techniques.3 The microfluidic devices consisted of 

five 300 µm wide by 8 µm deep channels.  The PDMS and TiO2/glass surfaces were 

treated with an oxygen plasma for 10-15 sec and immediately brought into contact with 

each other to create a bond.  This formed channels with PDMS walls and a TiO2 floor. 

 

Synthesis of N-(2,4-Dinitrophenyl) PEG Disulfide 

 In 100 mL of HEPES buffer (10 mM HEPES, pH 7.4), 1 equivalent of PEG 

propionate disulfide (2 mM) was reacted with 2 equivalents of DNP-cadaverine in the 

presence of 3 equivalents of EDC.  The EDC coupling reaction was allowed to proceed 

for 24 hrs at room temperature in the dark under constant agitation.  The formation of N-

(2,4-dinitrophenyl) PEG disulfide (DNP-PEG-disulfide) was confirmed by matrix 

assisted laser desorption ionization (MALDI) mass spectrometry..The structure of DNP-

PEG-disulfide is shown in figure 3.3. 
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Figure 3.3.  Structure of DNP-PEG-disulfide. 

 



 50

Direct Writing of Silver Films 

 Thin silica cover slips (0.17 mm) coated with TiO2 films were used for higher 

resolution Ag patterns and thicker (0. 5 mm) Pyrex supports were used in all other cases. 

UV patterning of Ag films was performed with a mask aligner (Quintel Q400MA, San 

Jose, CA) through a high resolution test mask (Edmund Industry Optics, Barrington, 

NJ).  The patterned Ag films were imaged using brightfield illumination on a Nikon 

Eclipse 80i fluorescence microscope with a Princeton Instruments 1024B MicroMax 

CCD camera (Trenton, NJ). The same instrument was used for fluorescence imaging. 

Individual false color images of the fluorescence from the bound strep-A594 and anti-

DNP-A488 in the sealed microchannels were combined in Adobe Photoshop 5.0. For Ag 

patterning experiments performed as a function of pH, the pH value of the silver 

solutions was adjusted with appropriate amounts of HNO3 or NaOH. AFM imaging was 

performed with a Nanoscope IIIa (Digital Instruments, Santa Barbara, CA) equipped 

with a J-type scanner and silicon cantilever tips (Mikro Masch, Wilsonville, OR).   

 

3.4.  RESULTS 

Direct Writing of Silver Films 

 In a first set of experiments, a solution of 0.1 M AgNO3 at pH 5.0 was injected 

into a series of five parallel microfluidic channels.  The channels consisted of PDMS 

walls and a TiO2 floor.  UV light (11 mW/cm2 near 365 nm) was used to selectively 

illuminate different regions of the TiO2 surface through a chrome test mask for 20 min. 

This resulted in the direct writing of silver by photocatalytic reduction inside the 
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microchannels as could be verified by brightfield imaging of the device (Figure 3.4.A).  

The chemical composition of the film was verified by XPS (Kratos Axis Ultra Imaging 

X-ray photoelectron spectrometer, Manchester, U.K). As can be seen, the film could be 

patterned with nearly any geometry desired and the feature resolution was ~10 µm. 

Next, we wished to verify that Ag nanoparticle films could be patterned with at 

least micron-scale resolution. This required the use of a thinner support beneath the TiO2 

coated surface as UV light for patterning is introduced through the back of the substrate 

(figure 3.1).  In order to minimize feature distortion due to imperfect illumination 

conditions, a 0.17 mm silica slide was used as the support. This thinner support was 

chosen because light from a less-than-perfectly collimated source will lead to 

increasingly poorer image resolution the further the mask is offset from the TiO2 film.  

The reason for employing silica rather than Pyrex stemmed from the fact that thinner 

silica substrates were more readily available from commercial sources.  The results 

showed that patterns could easily be made with resolution down to a few microns 

(Figure 3.4.B).  For example, the red arrow points to a series of 6 µm wide lines 

separated from one another by 6 µm spaces. The ultimate resolution of the mass aligner 

employed is about 2 µm. It should be noted that control experiments were performed 

with thicker silica substrates.  The results demonstrated that patterning Ag films on 

TiO2/silica behaved similarly to TiO2/Pyrex under conditions of identical substrate 

thickness. 
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Figure 3.4.  (a) Brightfield image, 4X, of silver nanoparticles patterned inside sealed 

microfluidic channels by lithographic photocatalytic deposition.  Each channel has a 

width of 300 µm.  (b) Brightfield image under a 40X objective pointing out 6 µm wide 

lines. 
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Controlling Film Morphology at the Nanoscale 

 The ability to deposit Ag films inside microfluidic channels opens the door to on-

chip studies of film morphology as a function of deposition conditions.  To demonstrate 

this, experiments were performed as a function of the pH of the AgNO3 solution. It is 

known that the pH of Ag+ solutions affects the rate of silver deposition as well as the 

initial amount of Ag+ adsorbed onto a TiO2 surface.191 This is caused in large part by the 

modulation in surface charge of the TiO2 substrate as the pH is changed. We therefore 

reasoned that particle size might vary as the deposition pH is changed over the planar 

substrate. The deposition conditions were otherwise similar to those used in figure 3.4.  

However, to enable investigation of nanoparticle size by AFM, the AgNO3 solutions 

were injected into PDMS microchannels that were only pressed against the TiO2 surface 

rather than plasma bonded with it. This allowed the PDMS mold to be pealed away from 

the substrate just prior to investigation by AFM.  The substrate was rinsed with purified 

water and blown dry with N2 gas before imaging in air. Deposition was undertaken at pH 

2, 3, 5, and 6 and AFM images of the surface under the various conditions are shown in 

figure 3.5. 

The AFM results show that the mean particle size was 65 nm at pH 2 and image 

analysis revealed that the 1σ particle size distribution was 24 nm (figure 3.5.A). Under 

these conditions the surface is positively charged, hence, limiting the rate of Ag+ 

adsorption.   This should lead to sparse nucleation sites and larger particles.  As the pH is 

raised, the coverage becomes higher for fixed deposition time (20 min) and the mean 
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Figure 3.5.  Tapping mode AFM images of Ag nanoparticle films deposited at (a) pH 2, 

(b) pH 3, (c) pH 5, and (d) pH 6. 
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nanoparticle size begins to decrease (figure 3.5.B & 3.5.C).  In these cases the particle 

sizes were 62 nm with 1σ = 16 nm at pH 3 and 51 nm with 1σ = 16 nm at pH 5.  Above 

the isoelectric point of the TiO2 film (pI ≅ 5.5), the size again increases as does the 

relative surface coverage (mean particle size of 75 nm with 1σ  =  26 nm at pH 6).  

These results clearly demonstrate that at least limited control over nanoparticle size and 

coverage can be obtained through modulation of the bulk solution pH. 

 

Sensor Chip 

 In order to demonstrate the versatility of this technique for sensor design and 

biofunctionalization within sealed microchannels, a simple two color fluorescence assay 

was developed wherein two separate ligands were patterned at different locations within 

a linear array of microfluidic channels.  First, a strip of silver was patterned across 3 

sealed microfluidic channels using the procedures described above.  The channels were 

rinsed with purified water, filled with a solution of 2 mg/mL biotin PEG disulfide and 10 

mg/mL PEG propionate disulfide in HEPES buffer (10mM HEPES, pH 7.4) and allowed 

to incubate overnight.  The channels were then rinsed with purified water to leave behind 

films with biotin termination.  After this, the channels were again filled with a 0.1 M 

AgNO3 solution and another strip of silver was patterned downstream from the first one.  

The channels were rinsed and incubated with a solution containing DNP-PEG disulfide 

and 10 mg/mL PEG propionate disulfide in HEPES buffer for 30 min.  Finally, the 

channels were rinsed and incubated with a 1 mg/mL solution of bovine serum albumin in 



 56

PBS buffer (10mM PBS, pH 7.2, I = 150 mM with NaCl) to block nonspecific 

adsorption of the analyte proteins.   

After rinsing all three channels with buffer, various protein solutions were 

injected into each channel: (1) 0.1 mg/mL strep-A594 in PBS buffer, (2) a mixture of 0.1 

mg/mL strep-A594 and 0.1 mg/mL of anti-DNP-A488 in PBS buffer, and (3) 0.1 mg/mL 

anti-DNP-A488 in PBS buffer. After 20 min of incubation, the channels were rinsed for 

a final time with PBS buffer and fluorescence images were obtained with both a green 

and red filter set. The combined false color image is shown in figure 3.6.  The image 

clearly demonstrates that the streptavidin (labeled red) binds almost exclusively to 

regions within the channel where the Ag nanoparticle film has been functionalized with 

biotin, while the anti-DNP antibody (labeled green) binds overwhelmingly at regions 

within the channel where the DNP was presented.   

The data in channel 2 demonstrate the binding of both proteins from the same 

solution to different locations with good selectivity, illustrating the possible multiplexing 

and combinatorial potential for this technique.  Figure 3.7 shows the normalized 

fluorescence intensity of the specifically bound proteins (blue) compared to the 

background signal from non-specific interactions in the middle of the channel (yellow) 

as well as the non-specific interactions at the sensor pad presenting the opposite ligand 

(brown).  In all cases the specific binding of analyte proteins was between one and two 

orders of magnitude greater than non-specific absorption.  

These simple experiments illustrate the ability of this method to pattern unique 

chemistries such as small molecules and proteins inside sealed microfluidic channels at 
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Figure 3.6.  Fluorescence micrograph of fluorescently labeled proteins binding to 

derivatized silver nanoparticles.  Channel 1 was injected only with streptavidin (red) and 

shows evidence of it binding almost exclusively to the biotin derivatized nanoparticles, 

while the rest of the channel remains dark. Channel 3 was injected with anti-DNP 

(green), which is observed to bind only to the DNP derivatized nanoparticles.  Channel 2 

was injected with both proteins and, hence, both binding events occurred. 
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Figure 3.7.  Bar graph of the normalized fluorescence intensity of analyte proteins 

binding specifically to their respective sensor pads (blue), analyte non-specifically 

binding in the channel (yellow) and non-specific adsorption at the opposite sensor pad 

(brown). 
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specific addresses.  In this case our post-assembly patterning method is useful for 

avoiding the exposure of patterned organic ligands to the harsh bonding conditions (i.e. 

oxygen plasma treatment) of PDMS to the TiO2 surface. 

This simple experiment illustrates the ability of this method to pattern unique 

chemistries such as small molecules and proteins inside sealed microfluidic channels at 

specific addresses.  In this case our post-assembly patterning method is useful for  

avoiding the exposure of patterned organic ligands to the harsh bonding conditions (i.e. 

oxygen plasma treatment) of PDMS to the TiO2 surface. 

 

Patterning Other Metals 

 TiO2 nanoparticles can be used for the reduction of a variety of metals.183  

Therefore, the technique developed above for patterning silver should be generally 

applicable.  Figure 6 shows the direct write patterning of Pd (Figure 3.8).  In this case, 

Pd was deposited from a solution of 0.01 M PdCl2 in 0.3 M acetic acid with a 20 min 

UV exposure onto a TiO2 surface supported by a 0.5 mm thick Pyrex substrate.  As with 

silver, the method appears to be highly robust and easily performed inside sealed 

microfluidic channels.  We have also successfully repeated this work with Cu and Au, 

although the nanoparticle sizes were somewhat larger.     
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3.5.  Discussion  

 The writing of metal nanoparticle films could be exploited for a variety of 

applications inside sealed microfluidic devices and the technique is probably capable of 

near diffraction limited resolution. In the work presented herein, the resolution was 

somewhat limited by backside illumination.  In other words, the backside contact mask 

procedure employed, in which light must transverse the thickness of the substrate, was 

the limiting factor rather than any inherent physical limit due to electron diffusion within 

the TiO2 film. Using literature values for the electron diffusion coefficient in TiO2, D = 

2.2x10-5 cm2/s,192 as well as the electron-hole recombination lifetime,  τ  = 50 ns,193 it can 

be estimated in a simple two-dimensional random walk model, L = (4Dt)1/2, that 

photogenerated electrons should diffuse only about a length, L, of 20 nm before 

recombining under the conditions we employ. The exact recombination lifetime depends 

on the intensity of the light used.194 This calculation also assumes that the films are free 

of defects and, therefore, the actual travel distance may be even shorter for real films.  

Therefore, in the case of patterning with 365 nm light, the ultimate resolution should be 

close to 200 nm if high quality projection optics were to be employed in the patterning 

procedure.   

Using the methods described herein, it should be possible to rapidly screen the 

effects of Ag+ concentration, temperature, and surfactant additives on metal nanoparticle 

size and geometry. This would be especially useful for particles deposited in pH, 

composition, and/or temperature gradients.191,195 Furthermore, it should be possible to 

employ this lab-on-a-chip format for patterning not 
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Figure 3.8. Brightfield image, 10X, pattern of Pd deposited onto TiO2. 
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 just individual metals but also for alloys, core shell structures,196,197and even gradient 

arrays of various metals. The use of microfluidics in this case offers the ability to rapidly 

optimize such deposition processes in a combinatorial manor.  It could also allow for 

these materials to be exploited for high throughput screening of catalytic properties, 

sensor development, and microreactor design. 

Functionalizing the nanoparticle films inside of microfluidic channels may offer 

new opportunities for biosensors or screening assays. The ability to address individual 

ligands atop nanoparticle films inside microfluidic devices could be combined with such 

technologies as transmission surface plasmon resonance spectroscopy198-201 or surfaced 

enhanced fluorescence.202-204  This could allow for the development of powerful lab-on-

a-chip devices with label free detection or fluorescence detection with enhanced 

sensitivity.   

Immobilizing patches of oriented enzymes inside microfluidic devices for 

enzymatic microreactors is another potential application of this technique. By binding 

enzymes linked to antibodies or streptavidin one could spatially address arrays of 

enzymes inside microfluidic devices for the development of complex enzymatic 

microreactors.  Such reactors could perform a series of chemical modifications to a 

substrate within a single channel.  This process might even be multiplexed across several 

channels utilizing a variety of enzymes for combinatorial synthesis.    
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CHAPTER IV 

 

AN EPIFLUORESCENCE/TOTAL INTERNAL REFLECTION MACROSCOPE 

FOR THE IMAGING OF LARGE ARRAYS OF SOLID SUPPORTED LIPID 

BILAYERS 

 

4.1.  Synopsis 

 Herein we present the design and construction of an epifluorescence/total internal 

reflection (EF/TIRF) macroscope for large field of view and high numerical aperture 

imaging of spatially addressed arrays of solid supported phospholipid bilayers.  This 

instrument allows dozens of individually addressed bilayers to be monitored 

simultaneously.  To demonstrate the capabilities of the EF/TIRF macroscope, three 

experiments have been performed: (i) the fabrication of an array of bilayers with all 

phospholipid membranes individually addressed at each location, (ii) a multiple protein 

recognition assay designed to show the effects of ligand density on the total amount of 

aqueous protein which can be bound at equilibrium, and (iii) a fluorescence resonance 

energy transfer assay between two different dyes confined within the same solid 

supported lipid bilayer as a function of the concentration of each dye.  These results 

clearly open the door to using individually addressed bilayers for a variety of supported 

membrane-aqueous phase analyte interactions in a high throughput fashion.  The key to 

the successful implementation of the assays was making the field of view wide enough 
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so that individual bilayers could be addressed via a convenient droplet transfer 

mechanism. 

 

4.2.  Introduction 

Fluorescence microscopy has proven to be an invaluable tool for the 

investigation of supported lipid bilayers inside microfluidic devices17,195,205-207 and on 

array-based platforms.13,14,208-213  When combined with total internal reflection (TIR) 

illumination, this technique becomes even more powerful, allowing the user to 

investigate surface specific binding events that occur between surface-associated 

membrane bound ligands and aqueous proteins containing complementary receptor 

sites.3,207,214  Imaging arrays of bilayers with fluorescence microscopy has been possible 

by shrinking the membrane patches to the micron scale.  This technique has been 

especially valuable for making one-shot equilibrium dissociation constant measurements 

in which the contents of each bilayer is identical, but the aqueous solutions above them 

contained various protein concentrations.3   

While fluorescence microscopy has the advantage of one shot imaging, it is 

limited in its field of view.  In order to employ a platform with more individually 

addressable membrane patches, one either needs to shrink the size of the patch or expand 

the field of view.  Excellent methods are now available for creating micron-scale 

patterning for lipid bilayers. 13,14,17,20,208,209,212,213,215-217    So long as each bilayer in the 

array is chemically equivalent to the others, patterning can be scaled down to the 1 

micron level or even below.  On the other hand, there are a limited number of methods 

available for making arrays with variable contents at each address in micron scale 
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patterns.  One method is to employ the laminar flow of vesicle solutions side by side 

inside a microfluidic device.17  This creates a gradient of bilayer chemistries that can be 

confined by a patterned surface.  This method is, however, limited in the number of 

unique chemical constituents that can be patterned and also spatial control over the 

patterned membrane arrays is somewhat difficult.  Another method for patterning unique 

lipid membrane chemistries relies on the use of PDMS stamping and backfilling.212  

Again this method can fabricate arrays with a few unique chemistries, but spatial 

alignment limits this number for practical rapid prototyping.  Several light directed 

methods have also been developed for the patterning of lipid bilayers.208,215,216  However, 

such techniques have not been proven for patterning of more then two component 

systems and addressing needs to be performed in a serial fashion.  

Fully controlled spatial address of lipid bilayers with unique chemistries at every 

location has been achieved by transferring picoliter and nanoliter-sized droplets of 

vesicle solutions to a hydrophilic interface patterned with hydrophobic barriers 

(microcapillary injection method);14 however, the array size has been typically limited to 

3 x 3 or 4 x 4 because of the need to pattern all the contents within a field of view that is 

compatible with imaging by fluorescence microscopy.  Smaller box sizes become 

impractical below about 50 µm because of the need to fabricate quill pen tips that would 

transfer the aqueous solution.  In fact, the method already becomes tedious to employ for 

large arrays of boxes of approximately 250 µm on each side. On the other hand, larger 

fields of view could be achieved by building an appropriate epifluorescence/total internal 

reflection macroscope.  This would allow dozens if not hundreds of unique bilayers 

chemistries to be easily patterned on a larger size scale and analyzed in a single 
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experiment.  One problem in using lower magnification objectives for large field of view 

imaging is that the numerical aperture (N.A.), or light gathering capability of a 

fluorescence imaging system, typically decreases with decreasing magnification.  In 

order for the magnification to be decreased, the working distance (distance between the 

objective and the sample) must be increased. By increasing the working distance and 

maintaining a fixed objective diameter, one unfortunately also reduces the cone angle of 

light, which can be collected by the system from a given point on the sample.  Low N.A. 

imaging therefore requires longer exposure times, which decreases the signal to noise 

ratio and increases the amount of photobleaching in the sample.  An easy way around 

this problem is to build a system with both long working distances and large diameter 

objectives.  The desire for high N.A. fluorescence imaging of large fields of view has 

been the driving force for the construction of an EF/TIRF macroscope. 

Epifluorescence macroscopes employing 1x objectives have already been 

developed for imaging animal tissues218-220 The basic design uses a tandem-lens imaging 

system much like that in X-ray video radiography and up-close photography.221  These 

instruments have seen limited employment for imaging protein arrays on chip.  To the 

best of our knowledge, however, a total internal fluorescence reflection macroscope has 

not previously been developed. 

Herein we demonstrate the ability to fabricate dozens of uniquely addressed 

phospholipid bilayers and image them in a single shot with an epifluoresence/total 

internal reflection fluorescence macroscope.  Further experiments show fluorescence 

quenching as a function of probe density as well as ligand-receptor binding assays.  

These experiments clearly demonstrate for the first time the ability to array large 
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numbers of bilayers with unique chemistries at each address and employ them in model 

membrane studies.   

 

4.3.  Methods 

Macroscope Design 

We have designed a unique low magnification, high N.A. fluorescence imaging 

system compatible with monitoring supported phospholipid bilayers.  The system is 

equipped with multiple filter sets that can be rapidly interchanged (just like in standard 

fluorescence microscopes) as well as a separate port for total internal reflection 

fluorescence microscopy experiments.  This represents the first design of a fluorescence 

macroscope with exchangeable filter sets.  This is made possible by mounting the filters 

and dichroic mirrors on mounts which ride on a system of linear bearings.  The 

movement of the mounts is easily controlled by a rack and pinion drive.  In the current 

setup, we have the ability to image red (i.e. Texas Red, Alexa-594) and green (i.e. NBD, 

Alexa-488) dyes and the existing filters can be mixed to provide fluorescence resonance 

energy transfer imaging (FRET).  The filter sets used were larger versions of the 

standard sets produced by Chroma Technologies for use in epifluorescence microscopes.  

Our red and green sets correspond to Chroma’s sets 41027 and 31001. 

Expanding from the design of Ratzlaff, tandem-lens imaging is performed in our 

experiments between two lenses where the object is placed at the focal length of the first 

lens and the image is formed at the focal length of the second lens.221  Figure 4.1 shows 

a schematic illustration of the imaging strategy with epi-illumination employed in our 

tandem-lens design.  To provide epi-illumination, the light from a 100 W high-pressure 
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mercury arc lamp was collimated by a lens (L4, f = 17 mm aspheric lens) and passed 

through an excitation filter (Chroma Technology Corp., Rockingham, VT) onto a 

holographic diffuser (Edmund Optics, Barrington, NJ).  The illuminated holographic 

diffuser was then imaged into the plane of the sample via a tandem-lens pair, L3 and L1 

(85 mm f/1.4 Nikon 35 mm SRL lens and 50 mm f/1.2 Nikon 35mm SRL lens, 

respectively) with the desired illumination wavelengths reflecting off the dichroic mirror 

(Chroma Technology Corp., Rockingham, VT) in between them.  The emitted 

fluorescence light from the sample was collected by an objective lens, L1, passed 

through a dichroic mirror and emission filter, and was then imaged onto a CCD camera 

by the imaging lens (L2, 50 mm f/1.2 Nikon 35mm SRL lens).   

The total internal reflection pathway is shown in figure 4.2.  The process of total 

internal reflection occurs when light propagating through a medium of high refractive 

index encounters an interface to a second medium of lower refractive index at an angle 

greater than the critical angle.214  At the interface, where TIR occurs, an evanescence 

wave is generated in the second medium and decays exponentially.  For supported lipid 

bilayers solid supports under an aqueous solution, the electromagnetic wave penetrates 

the glass/buffer interface to approximately a depth of 70 nm,222 exciting only the 

fluorophores near or at the surface.  TIR illumination is carried out by sliding in a 

smaller dichroic mirror and beam stop into the epi-illumination beam path immediately 

after the excitation filter.  This diverts the excitation beam down and out of the 
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Figure 4.1.  Epifluorescence illumination in the macroscope.  The collimated light from 

a mercury arc lamp is passed through the excitation filter and illuminates a holographic 

diffuser.  The illuminated holographic diffuser acts as a source for lens L3, which passes 

a collimated beam to the dichroic mirror.  It is then reflected through lens L1 and an 

image of the diffuser is formed in the plane of the sample.  
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Figure 4.2.  TIR illumination in the macroscope.  The collimated light from a mercury 

arc lamp is passed through the excitation filter and reflected off a dichroic mirror 

through lens L5.  Lens L5 forms an image of the arc on the holographic diffuser.  The 

illuminated holographic diffuser acts as source for lens L6, which passes a collimated 

beam to the aluminum mirror where it is reflected through an iris and into a dove prism.  

Total internal reflection of the excitation beam occurs at the sample buffer interface, 

generating an evanescence wave into the sample. 
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macroscope where it is focused onto a holographic diffuser by lens L5 (50 mm f/1.4 

Nikon 35 mm SRL lens).  The diffuser is placed approximately at the focal length of lens 

L6 (f = 30 mm), to produce a collimated illumination beam.  This beam is reflected off 

of an aluminum mirror and passed through an iris before entering a dove prism, where 

total internal reflection of the beam occurs, allowing for evanescence wave illumination 

of the sample.     

 Magnification in a tandem lens system is calculated by the ratio of the focal 

length of the imaging lens to the objective lens (L2/L1).  Since our system uses two 50 

mm f/1.2 lenses in tandem, it provides 1x magnification and a numerical aperture of 

approximately 0.4.  A CAD rendering of the EF/TIRF macroscope is shown in Figure 

4.3.  Data collected from arrays of SLB are corrected for vignetting by dividing the 

entire image by a standard image.  The standard image is acquired by imaging a single 

SLB with an area greater then the field of view of the macroscope (9 mm x 7 mm).  Data 

can then be collected from the corrected image by averaging the intensity from regions 

encompassing the areas of each box.   
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Figure 4.3.  EF/TIR macroscope rendering. 
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Solid Supported Lipid Bilayers 

SLBs are produced by the spontaneous fusion of small unilamellar vesicles 

(SUVs) to a hydrophilic surface such as glass.68  The production of SUVs is carried out 

by extruding multilamellar vesicles through polycarbonate filters at high pressures.73  To 

do this, lipids mixtures of the desired molar ratios were mixed in chloroform, dried 

under a stream of nitrogen, desiccated under vacuum for 2 hrs, and reconstituted in 10 

mL of pH 7.2 PBS buffer, I = 150 mM with NaCl.  The lipid solution was subjected to 

10 freeze/thaw cycles in liquid nitrogen to produce multilamellar vesicle dispersions.  

The multilamellar vesicles were then extruded 5 times through a 50 nm polycarbonate 

filter.  The average diameter of the SUVs was measured to be 82 nm by dynamic light 

scattering (90 Plus, Brookhaven Instruments Corp., Holtsville, NY). 

 

Array Chip Fabrication 

Array fabrication was carried out on chip using standard photolithographic 

techniques.  1 in2 microscope cover slips were cleaned by boiling in a 10% 7X detergent 

solution (ICN, Costa Mesa, CA), annealed at 450°C for 5 hrs, and coated with 1000 Å of 

chrome by metal evaporation (BOC Edwards Auto 306 Metal Evaporation Chamber, 

Wilmington, MA).  An approximately 6 µm thick photoresist coating was spun onto the 

chrome coated slides and baked at 90 °C for 45 min in a small oven (Black & Decker).  

The array chip photomask was designed on CorelDRAW and reduced onto 35 mm film 

as a negative.3.  UV illumination through the photomask allowed the development of the 

photoresist, which created a 10 x 10 array of 0.6 mm x 0.6 mm boxes separated by 0.4 

mm hydrophobic photoresist walls.  The exposed chrome was then removed using a 
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commercial chrome etchant, yielding an array of hydrophilic glass plates with 

hydrophobic photoresist walls.   

 
4.4. Results  
 

In a first set of experiments, we wished to demonstrate that it would be possible 

to easily scale-up the microcapillary injection method for creating addressed arrays of 

phospholipid membranes from previous 3 x 3 and 4 x 4 formats.14  For this purpose, we 

chose to address a 10 x 10 array of 0.6 mm boxes separated by 0.4 mm hydrophobic 

walls with alternating vesicle solutions (Figure 4.4).  Microcapillary tips were used to 

deliver vesicle solutions to each unique address on the array.  In order to achieve this, 

capillary tubes were pulled in a micropipette puller to an outer diameter of less than 10 

µm.  These tips were treated with 1,1,1,3,3,3-hexamethyldisilazane vapor in a 75° C 

oven to make the surface hydrophobic.  This allowed for easy transfer of vesicle solution 

from the tip to the glass surface.  By attaching the pulled capillary to a 100 µL 

micropipette, the dispensing of droplets to the surface of the array chip could easily be 

controlled.  To perform the addressing, an array chip was placed on a cold plate and the 

temperature of the chip was adjusted to just above the dew point in order to prevent 

evaporation of the addressed solutions.  A sample of 35 µL was drawn into the tip using 

the micropipette and pressure on the solution was adjusted until the desired size droplet 

was dispensed from the tip (~60 nL).  The solution was then delivered to the desired 

location on the array chip and the tip was cleaned before the next solution was 

introduced.  Once the array chip was fully addressed, the chip was submerged in purified 

water (18 MΩ/cm2, NANOpure Ultrapure Water System, Barnstead, Dubuque, IA), to
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Figure 4.4.  Combined images of the array chip addressed with red and green dye 

labeled SLBs.  Each box is 0.6 mm square separated by 0.4 mm hydrophobic walls. 
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remove excess vesicles.  The boxes were addressed with the following solutions: 1% 

Texas Red 1,2-dihexadecanoyl-sn-glycero-3- phosphoethanolamine (Texas Red-DHPE) 

in egg phosphatidylcholine (Egg-PC), and 5% 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-n-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE) in egg-PC 

vesicles to make a two color pattern.  It should be emphasized that this array of 63 boxes 

took only 20 minutes to address.  This is a significant advantage when compared to the 1 

hour needed to address a 4 x 4 array of smaller boxes.14,223  Here, we have demonstrated 

that it is feasible and practical to make large arrays with ease for massively parallel 

experiments.  Only two unique chemistries were alternated in this particular image; 

however, it should be emphasized that it is nearly as easy to employ many unique lipid 

compositions as is demonstrated below.   

 

Fluorescent Resonance Energy Transfer Imaging 

 The FRET process occurs when an acceptor fluorophore is brought within close 

proximity of a donor fluorophore.  If there is sufficient overlap in the emission spectrum 

of the donor and the absorbance spectrum of the acceptor, then non-radiative energy 

transfer can occur.  This process can accurately measure distances for interactions in the 

1-10 nm range.224  Such distances are important in cellular signaling processes where 

signaling events occur at cell-cell contact sites.  An example of this phenomenon is the 

behavior of G-protein coupled receptors whereby the an external stimulus causes 

proteins to rearrange in cellular membranes in order to facilitate a signaling processes.225 

Cell-cell adhesion and protein helix interactions can be followed in model systems using 

fluorescence resonance energy transfer (FRET). 226,227    As a demonstration of this 



 77

process, we monitored the FRET interactions between NBD-PE and Texas Red-DHPE 

in SLBs.   

Total internal reflection FRET with the EF/TIRF macroscope was carried out by 

combining the green dye excitation filter and dichroic mirror (exciting with 475-500 nm) 

with the red dye emission filter and a dichroic mirror (observing at 600-660 nm).  A 

unique advantage of our macroscope setup is the ability to easily mix and match 

excitation and emission filters (Figure 4.3).  A 6 x 6 section of the array chip was 

addressed with thirty six unique SLB chemistries and then imaged (Figure 4.5).  Along 

one axis, the mole fraction of Texas Red-DHPE in the SLBs was varied from 0 to 1.0 

mol percent and along the other, the mole fraction of NBD-PE was varied from 0 to 5.0 

mol percent.  Fluorescent images of the chip in the red, green and FRET channels are 

shown in figure 4.5 A, B, and C respectively.  3D plots of the normalized fluorescence 

intensity vs. the mole percent of each dye present in the respective membranes are 

shown under their corresponding images in figures 4.5.D (red), 4.5.E (green), and 4.5.F 

(FRET).  As the mole fraction of Texas Red-DHPE was increased, the fluorescence 

intensity observed was unaffected by the presence of the NBD-PE when the chip was 

illuminated with green light and imaged in the red (figure 4.5.D).  As both the mole 

fraction of Texas Red-DHPE and NBD-PE increased, the fluorescence intensity from the 

NBD decreased due to the FRET process upon blue excitation (figure 4.5.E).  

Conversely, as we increased the concentration of donors and acceptors we observed an 

increase in fluorescence emitted from the Texas Red when the NBD was excited.  In our 

given concentration ranges, the maximum FRET occurs in the 5% NBD, 1% Texas Red 

box.   We can calculate the efficiency (E) of the FRET process (equation 1) occurring in
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Figure 4.5.  Images and data from the FRET experiment.  Each sample box is 0.6 mm 

square.  (A) Red fluorescence image.  (B) Green fluorescence image.  (C) FRET 

fluorescence image.  (D) Plot of the normalized fluorescence intensity from the red 

image.  As the mole fraction of Texas Red-DHPE increases in the membrane the 

fluorescence intensity increase is unaffected by the presence of NBD-PE.  (E) Plot of the 

normalized fluorescence intensity from the green image.  As the mole fraction of Texas 

Red-DHPE increases in the membrane, the fluorescence intensity of NBD-PE is 

quenched by the Texas Red-DHPE.  (F) Plot of the normalized fluorescence intensity 

from the FRET image.  As the mole fraction of Texas Red-DHPE and NBD-PE 

increases in the membrane, the fluorescence intensity observed from the FRET process 

increases.

(A) (B) (C) 

(D) (E) (F) 
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this box using its average intensity, FDA, and the intensity from the 5% NBD, 0% Texas 

Red box, FD.   

Equation 1: DDA FFE /1−=  

The Förster radius (Ro) for the NBD - Texas Red pair in a lipid membrane is 7.25 nm.228  

Using the Förster radius and the efficiency we can calculate the dye spacing in the 

membrane (R) using equation 2.224 

Equation 2: 66

6

RR
RE

o

o

+
=  

From our data we calculated the spacing of the lipids in the 5% NBD, 1% Texas Red 

box to be 5.9 nm.   

 

Ligand Density Arrays 

Knowing the saturation point of proteins on the surface of lipid membranes is 

important for several reasons.  First, it allows for an approximate measurement of the 

footprint of a protein bound to a membrane.  It is also useful for quantitative 

measurements of the amount of a protein bound at the surface.  This is particularly 

useful for investigating enzyme kinetics of surface bound enzymes.16  As a 

demonstration of the ability to measure protein footprints at the membrane interface in a 

high throughput fashion, a simple binding experiment was preformed.  Vesicle solutions 

containing 10 mol% 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-n-(2,4-

dinitrophenyl) (DNP-PE) in egg-PC, 10% 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-n-(biotinyl) (biotin-PE) in Egg-PC, and pure Egg-PC were 

combined to create vesicle solutions ranging from 0-5 mole percent of the respective 
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ligands.  These solutions were mixed to the desired mole ratio and addressed onto a 

single array chip with eighteen unique chemical compositions.  After vesicle fusion, the 

array chip was rinsed with pH 7.2 PBS buffer and incubated with a 0.1 mg/mL bovine 

serum albumin (BSA) solution for 30 min.  It was rinsed again with PBS buffer and 

incubated with a solution containing 4 µM Alexa-594 labeled anti-DNP and 4 µM 

Alexa-488 labeled streptavidin for 3 hours.  The chip was imaged with the EF/TIRF 

macroscope and the separate red and green images from two different areas of the chip 

are shown in Figure 4.6.  The green image (figure 4.6.A) shows the binding of the 

Alexa-488 labeled streptavidin and the red image (figure 4.6.B) shows the binding of the 

Alexa-594 labeled anti-DNP.  Linescans across the array chip in the regions highlighted 

with a white doted line box are shown in figure 4.6.C for the green image and figure 

4.6.D for the red image.  As can be seen, the anti-DNP reaches its maximum surface 

coverage sooner then the streptavidin due to its larger size.  We note that the maximum 

surface coverage for the ligand-receptor pairs occur around 3 mole percent for 

streptavidin and around 2 mole percent for anti-DNP.  Assuming that (a) the molecular 

area of a lipid is ~0.60 nm2, (b) bivalent binding occurs, and (c) the ligands are 

distributed equally to both the upper and lower leaflet, we estimate that the footprints of 

streptavidin and anti-DNP bound on the surface to be 40 nm2 and 60 nm2 respectively.  

This is consistent with literature data from crystal structures of these proteins (34 nm2 

for streptavidin229 and 60 nm2 for anti-DNP230).  



 81

 
 
 
Figure 4.7.  Images of a single chip two protein binding assay.  Each sample box is 0.6 

mm square.  Decreasing mole fractions of the two ligands, DNP and biotin, were 

addressed from left to right.  (A) Green channel showing the binding of Alexa-488 

labeled Streptavidin.  (B) Red channel showing the binding of Alexa-594 labeled Anti-

DNP. (C) Linescan across highlighted boxes in (A).  (D) Linescan across highlighted 

boxes in (B).  

(A)

(C)

(B)

(D)

Mole % Ligand (DNP) 
5 4 3 2 1 0.5 0.25 0.1 0

Mole % Ligand (Biotin)
5 4 3 2 1 0.5 0.25 0.1 0
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 4.5. Discussion 

Total internal reflection fluorescence imaging as well as epifluorescence imaging 

is important for the investigation of lipid membrane interactions with aqueous analytes.  

A large array format allows the cholesterol content, ligand density, lipid headroup, alkyl 

chain, and membrane charge to be modulated in a single on-chip format.  

Epifluorescence allows the membrane to be imaged in the absence of bulk fluorescence.  

This should be useful in an array-based format for monitoring two-dimensional protein 

crystallization of membrane bound proteins as a function of lipid bilayer chemistry.  One 

could also monitor the interactions of several labeled species within the membrane as 

their concentrations as well as the surrounding membrane composition is altered.   

Total internal reflection techniques can be employed for monitoring ligand-

receptor binding between membrane bound ligands and aqueous proteins.  This is 

especially important with fluid lipid bilayers for multivalent ligand-receptor interactions.  

In this case the species within the membrane are free to reorganize in two-dimensions to 

optimize binding interactions.  Such binding events are prevalent in biological processes 

such as bacterial and viral attacks, human immune response, and signal transduction.231  

One could even monitor the stimulation of T-cells over a lipid bilayer array with various 

concentrations of GPI-linked signaling moieties at each address.  By varying the 

concentration of ligand, this assay would enable the rapid determination of the minimum 

concentration for cell signaling.   

FRET imaging of large membrane arrays will be useful for investigating 

processes that occur in cellular membranes where changes in small distances can be 

observed.  This is beneficial for exploring such phenomena as lipid raft formation, 
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protein-protein interactions, and protein folding.  Again, all these process can be studied 

in an array-based assay by varying a wide variety of membrane constituents. 

The number of samples we are currently able to address is limited by the hand 

addressing techniques being utilized.  If combined with existing robotic addressing 

technologies,210 the high throughput capabilities of the EF/TIRF macroscope could 

greatly be enhanced.  More samples per chip would not only allow the rapid collection 

of larger quantities of data but also larger numbers of duplicate samples, increasing the 

quality of the data.  
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CHAPTER V 

 

AN IMPROVED ARRAY CHIP AND ADDRESSING TECHNIQUE 

 

 

5.1.  Synopsis 

 Within this chapter is presented the design and fabrication of a new silicon/glass 

array chip and addressing apparatus.  It was found that using this equiptment greatly 

increases the yield of successfully addressed chips.  It was also determined that the new 

chip in conjunction with the new addressing apparatus greatly decreases the amount of 

time required to address an entire array. 

 

5.2.  Introduction 

 One of the major limitations of carrying out large scale experiments as outlined 

in the previous chapter is the array chip itself.  The addressing of such a system without 

the aid of robotic printing and environmental temperature and humidity control is 

extremely challenging.  Its shallow walls, approximately 6 microns deep with a 0.6 mm 

square base, has a volume of only 2 nL.  This means that any droplet large enough to 

span the surface must also protrude above the box exposing a large surface area of the 

droplet to the open air environment.  Even though the droplets are addressed onto an 

array chip which is under temperature control, a sudden change in the room environment 
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can cause the drops to either swell into one another or evaporate, both of which render 

the array unusable.   

The method of addressing from a modified micropipette/pulled capillary has 

limitations also.  Because the method involves the use of air pressure to dispense the 

droplets and air is a compressible fluid, the delivered droplet volume is hard to control.  

Often times this leads to either over filling or under filling of a given well.  While under 

filling presents a minimal problem, overfilling a well while addressing the array chip 

typically results in the solution spilling over into several adjacent wells and ruins the 

entire chip.  Also, the apparatus design did not allow for rapid changing of tips which 

meant that the tip needs to be cleaned between each solution being addressed wasting 

large amounts of time. 

Finally, it would be of great advantage if the array chip could be reused.  This 

would save on time spent fabricating chips and make up for the fact that it requires many 

array chips to produce one good sample due to the low yields that the addressing process 

provides.  The current materials used in fabricating the array chip, namely photoresist, 

chrome, and glass do not allow for the array chip to be cleaned and reused. 

The desire to fabricate an array chip with deeper wells in order to increase the 

well volume and overcome overfilling problems required a change in materials.  The 

floor of the wells needs to remain glass in order to allow for the formation of supported 

lipid bilayers as well as TIR illumination.  This left few materials of choice which could 

be fabricated in a small enough pattern and sealed to the glass to provide the desired 

wells.  One such material is crystalline silicon.  Crystalline silicon, as used in the 
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semiconductor industry, is widely available, has well established procedures for bulk 

micromachining, and is easily bonded to silica or Pyrex substrates.164  In the following 

text we present a new array chip fabricated in silicon and glass and a novel means to 

rapidly hand dispense precise amounts of solution to its wells. 

 

5.3.  Methods and Materials 

Materials 

Silicon <100>, P-type, double-side polished,100 mm diameter, 375 micron thick, 

wafers, coated with 100 nm of CVD silicon nitride were supplied by Montco Silicon 

Technologies Inc. (Spring City, PA).  Polished Pyrex 7740 wafers, 1 in. square were 

purchased from Precision Glass and Optics (Santa Ana, CA).  Microposit S1813 positive 

photoresist and Microposit developer were obtained from Rohm and Haas Electronic 

Materials (Marlborough, MA).  Potassium hydroxide, 200 proof ethanol, phosphoric 

acid, 30 % peroxide, hydrochloric acid, hydrofluoric acid, ammonium hydroxide, 

sodium phosphate, and sodium chloride were used as received from Sigma-Aldrich 

(Saint Louis, MO).  Purified water was obtained with a resistance of 18 MΩ/cm2, 

(NANOpure Ultrapure Water System, Barnstead, Dubuque, IA).  Teflon flangeless 

ferrules (P-200N), 1/4”-28 female slip-type luer adapter (P-628), and 1/4”-28 short 

Teflon flangeless nuts (P-218X) were purchased from Upchurch Scientific (Oak Harbor, 

WA).  10 µL LX gastight syringe and repeating dispenser were acquired from Hamilton 

(Reno, NV).  Capillary tubes, 1.5 mm O.D. were supplied by World Precision 

Instruments (Sarasota, FL).  Texas Red 1,2-dihexadecanoyl-sn-glycero-3- 
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phosphoethanolamine (Texas Red-DHPE) was purchased from Invitrogen (Carlsbad, 

CA).  Egg phosphatidylcholine (Egg-PC) and 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-n-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE) were acquired 

from Avanti Polar Lipids (Alabaster, AL).   

 

Silicon/Glass Chip Fabrication 

The array chip photomask was designed on CorelDraw and reduced into a 35 mm 

film as a negative.3.  The photomask consisted of an 8 x 6 array of 0.9 mm square boxes 

separated by 0.2 mm spacings.  Several negatives were taped to a 5 in. square piece of 

window glass with double-side tape(Acme Glass Co., College Station, TX) and the 

spaces between negatives was filled in with black electrical tape.  This produced a large 

photomask enabling 9 devices to be fabricated out of one wafer.  Approximately 6 µm of 

Microposit photoresist is spun onto the silicon wafer and baked at 90 °C for 45 min in a 

toaster oven (Black & Decker).  The photomask was aligned with the crystal planes in a 

way such that the sides of the boxes would be parallel to the flats on the silicon wafer.  

This insures that the walls of the wells to be etched into the silicon will be parallel to the 

<110> plane in the wafer.  The photoresist was exposed to UV light from a Quintel 

Q400MA mask aligner (San Jose, CA) for 1 min.  Next the photoresist was developed in 

Microposit developer until the underlying silicon nitride layer was exposed in the 

patterned areas.   The wafer was then dipped in a 10% solution of hydrofluoric acid for 

30 sec. and rinsed with copious amounts of purified water (CAUTION:  HF is extremely 

dangerous and should be handled with the utmost care and respect.  When working with 
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HF a face shield, lab coat, and gloves should be worn at all times.).  Immediately 

following this step the wafer was etched in a March Plasma Systems Model CS-1701 

reactive ion etcher (Concord, CA) for 500 seconds at a power of 150 W with of a flow 

rate of 5 cm3/s of tetrafluoromethane.  Next the wafer is again dipped in a 10 % solution 

of hydrofluoric acid for 2 min. to ensure the removal of the small SiO2 layer which 

resides below the silicon nitride layer and rinsed with copious amounts of purified water.  

The photoresist was then stripped from the wafer using acetone.  Next the wafer was 

placed in a homemade wet etching station consisting of a 2 L reaction kettle (Fisher 

Scientific, Houston, TX), a condenser and a Teflon wafer dipper (Entegris, Chaska, 

MN).  Figure 5.1 is a photograph of the assembled homemade wet etching station. The 

wafer was allowed to reflux in the etching bath, 1.5 L of 40 % KOH solution at 85° C 

(600 g KOH, 300 mL ethanol, 1200 mL purified water), until the wells were completely 

etched through the wafer (approximately 4.5 hrs.).  After extensive rinsing with copious 

amounts of purified water, the wafer was scribed and broken into 9 individual silicon 

chips.  These chips were placed in a ceramic boat and boiled in concentrated phosphoric 

acid for 2 hrs. completely removing the silicon nitride layer.  After extensive rinsing, the 

chips along with 9 Pyrex wafers were cleaned using the RCA cleaning method.232  In 

short, the chips were placed in an 80° C bath of 5:1:1 ratios of water, 30 % peroxide, and 

ammonium hydroxide for 10 min., followed by extensive rinsing.  Next the silicon chips 

are placed in a 10 % solution of hydrofluoric acid for 2 min. and rinsed again.  Then 

both the silicon chips and the Pyrex wafers were placed in an 80° C bath of 
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Figure 5.1.  Photograph of the assembled homemade wet etching station built from a 2 L 

reaction kettle, condenser, and a Teflon wafer dipper.   
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Figure 5.2.  Photograph of a completed 1 in. square silicon/glass array chip.  A quarter 

is shown next to the chip for size perspective.   



 91

6:1:1 ratios of water, 30 % peroxide, and hydrochloric acid for 10 min.  After rinsing 

with purified water and drying under a stream of nitrogen gas, the silicon chips and the 

Pyrex wafers were anodically bonded together to form the array chip.164  The anodic 

bonding conditions were 1000 V, 1mA, 375° C for 3 min.  Figure 5.2 shows a completed 

silicon/glass array chip.   

 

Rapid Addressing Apparatus  

 Tips were prepared by pulling the 1.5 mm O.D. capillary tubes as described in 

the previous chapter.  The tips were cut to a length of 35 mm and assembled with a slip-

type luer adapter, ferrule, and flangeless nut as illustrated in figure 5.3.  The 10 µL 

syringe was outfitted with the repeat dispenser.  This setup allows for push button 

delivery of 1/50th of the maximum volume of the syringe providing us with the ability to 

reproducibly dispense 200 nL from a 10 µL syringe.  Figure 5.4 shows the assembled 

addressing apparatus. 

 

Preparation of Vesicle Solutions 

The production of small unilaminar vesicles (SUV) is carried out by means of 

extruding multilamellar vesicles through polycarbonate filters at high pressures.73  To do 

this, lipids mixtures 2 % Texas Red-DHPE in Egg-PC and 5 % NBD-PE in Egg-PC are 

dried under vacuum for 2 hrs and reconstituted in 10 mL of pH 7.2 PBS buffer, I = 150 

mM with NaCl.  The lipid solutions are then subjected to 10 freeze/thaw cycles in liquid 

nitrogen to produce multilamellar vesicle dispersions.  The multilamellar vesicle
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Figure 5.3.  Cutaway exploded view of rapid change tip assembly.
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Figure 5.4.  Photograph of the assembled addressing apparatus with luer lock tip 

assembly. 
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solutions are then extruded 5 times through a 50 nm polycarbonate filter.  The average 

diameters of the SUVs were measured to be 84 nm for Texas Red-DHPE and 82 nm for 

NBD-PE by dynamic light scattering (90 Plus, Brookhaven Instruments Corp., 

Holtsville, NY). 

 

5.4.  Results and Discussion 

 In order to test the new array chip and addressing apparatus, the addressing of 

every other well with alternating lipid vesicle solutions was undertaken.  After 

addressing the wells with the 2 % Texas Red-DHPE and the 5 % NBD-PE solutions, the 

entire chip was submerged in purified water and covered with a microscope cover slip.  

This prevents the supported bilayer array from drying and being destroyed during 

imaging.  Figure 5.5 shows both the green and red false color images of the array taken 

by the EPI/TIR macroscope.  It is noted that the number of trials to complete the array 

was only 4.  This is approximately a 10 fold reduction in the number of trials needed to 

complete the combined array using the previous method.  Not only does the new chip 

and addressing process drastically increase the yield of successful addressing attempts, 

they also drastically reduce the time to address each chip.  This is mostly accomplished 

by the combination of the deeper wells with the dispensing accuracy of the new 

addressing apparatus.  In fact, the loss of a partially addressed chip due to the overfilling 

of wells has almost been completely eliminated.  Another benefit is the ability to rapidly 

change tips during addressing.  By having an individual tip for each sample, the cleaning 

step between droplet deliveries is eliminated.  This savings in time greatly adds up as the 
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Figure 5.5.  Red and green false color images of the silicon/glass array chip addressed 

with alternating solutions of 2 % Texas Red-DHPE (red image) and 5 % NBD-PE (green 

image).  The boxes are ~ 250 microns. 



 96

number of different samples being addressed is increased.  In the previous method of 

addressing, the amount of time spent cleaning the tip and preparing it to deliver the 

correct size droplet was far greater then the time spent actually delivering droplets to the 

chip.  It was estimated that for a chip with 16 different samples, the amount of time 

required to complete addressing an entire chip is reduced to 1/5 the time it takes to 

address using the old methods.   

 Unfortunately the goal of a reusable array chip has not been realized.  It was 

found that repeated use of the array chips results in poor quality SLB arrays.  A false 

color image of a 2 x 2 section of a reused array chip addressed with 5 % NBD-PE is 

shown in figure 5.6.  This problem is most likely occurring due to the glass surface being 

damaged during addressing with the glass tip.  Current studies are underway to find a 

replacement tip material which will not damage the array chip.   

 

5.5.  Conclusions 

 Here we have presented a means in which to fabricate a new array chip out of 

silicon and glass and a novel addressing method using a repeat dispenser, syringe and a 

rapid change tip system.  Both of these have greatly increased the yield of successfully 

addressed arrays and greatly decreased the arraying time.  Due to the large amount of 

time spent on fabricating the array chips, either mass production of the chips or a 

reusable chip will need to be developed in order to make this a viable platform for use in 

conjunction with the EPI/TIR macroscope.  
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Figure 5.6.  False color image of a 2x2 section of a poor quality SLB array resulting 

from multiple uses of an array chip.  The boxes are ~250 microns.  
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CHAPTER VI 
 
 
 

SUMMARY AND CONCLUSIONS 

 
 

 In this dissertation a novel method of depositing metallic nanoparticle films 

inside sealed microfluidic devices is presented along with the development and 

construction of an epifluorescence/total internal reflection macroscope.  In conjunction 

with the EPI/TIR macroscope, an array-based system was also developed for producing 

large scale arrays of solid supported phospholipid bilayers.  

The patterning of metal nanoparticle films inside sealed microfluidic devices 

should indubitably enhance the rapid prototyping capabilities of soft lithography.  It 

provides the ability to rapidly design and test a variety of microfluidic devices with 

different surface chemistries from a single microfluidic system.  This can be achieved 

through the patterning of different geometries of metal nanoparticle films on the micron 

scale through the use of photomasks and controlling the surface morphology of the metal 

nanoparticle films on the nanoscale by controlling the solution conditions. 

 Here we presented a means to pattern any desired geometry inside of sealed 

microchannels with TiO2 floors.  The process is carried out through the deposition of 

metal ions in aqueous solution onto the TiO2 surface through photoreduction.  Due to the 

backside illumination method employed in this process, this technique is currently 

limited to the patterning of 6 micron features.  This minimum resolution could be 

reduced through the use of a high precision projection lithography system. 
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 Control over the nanoscale morphology of the films was demonstrated by 

controlling the solution pH during the deposition of the metal nanoparticle films.  It was 

observed that the densest films with the smallest particles formed at a pH of 5 and the 

density of the films decreased while the size of the particles increased as the pH was 

lowered.  Also, as the pH was increased the particle size increased and the film retained 

a high density.  This is explained by a change in surface charge of the TiO2 film.  At 

lower pH’s, the surface is more positively charged which means that there are less sites 

for metal ion adsorption which decreases the density of the films. 

 The utility of these nanoparticle films to present different surface chemistries 

within the channels was demonstrated.  This was achieved by fabricating a sensor device 

inside sealed microchannels consisting of two patches of metal nanoparticles addressed 

with different PEG thiol monolayers.  The monolayers presented a different ligand at 

each nanoparticle patch allowing for the capture of different proteins from solution at 

each location.   

 The ability to perform high numerical aperture, large area imaging allows for the 

combination of high throughput screening with the advantage of one-shot imaging. 

Combining this with large arrays of solid supported bilayers allows for the investigation 

of important cellular processes, which occur in cellular membranes.  Examples of such 

systems are cellular signaling, viral attack and entry, and ligand-receptor binding events.   

 The EPI/TIRF macroscope presented within this thesis has been shown to be 

useful in imaging large arrays of solid supported phospholipid bilayers.  Arrays of 

phospholipid bilayers with varying amounts of membrane components were imaged.  It 
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has been useful for imaging protein binding experiments where two different ligand 

arrays of varying ligand concentration were presented on the same chip.  The EPI/TIR 

macroscope has also proven to be useful for fluorescence resonance energy transfer 

studies by imaging a two component, two-dimensional dye concretion array.   

Finally an improved array chip and addressing method was presented to increase 

the efficiency of the bilayer array making process.  While the new chip is not recyclable, 

if mass-produced with the proper facilities, it will make an excellent platform for use 

with the EPI/TIRF macroscope. 
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