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ABSTRACT 

 

Privacy-Preserving Data Mining. (December 2006) 

Nan Zhang, B.S., Beijing University 

 Co-Chairs of Advisory Committee: Dr. Wei Zhao 
  Dr. Jianer Chen 
 
 

In the research of privacy-preserving data mining, we address issues related to extracting 

knowledge from large amounts of data without violating the privacy of the data owners.  

In this study, we first introduce an integrated baseline architecture, design principles, and 

implementation techniques for privacy-preserving data mining systems.  We then discuss 

the key components of privacy-preserving data mining systems which include three 

protocols: data collection, inference control, and information sharing.  We present and 

compare strategies for realizing these protocols.  Theoretical analysis and experimental 

evaluation show that our protocols can generate accurate data mining models while 

protecting the privacy of the data being mined. 
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CHAPTER I  

INTRODUCTION 

Data mining is the process of extracting knowledge from large amounts of data [29].  It 

has been widely and successfully used for more than ten years in various domains, such 

as marketing, weather forecasting, medical diagnostics, anti-terror measures, etc.  

Nonetheless, the challenge remains to conduct data mining over private data (e.g., health 

information) without violating the privacy of data owners (e.g., patients). 

Privacy protection has become a necessary requirement in many data mining 

applications due to emerging privacy legislation and regulations, such as the U.S. Health 

Insurance Portability and Accountability Act (HIPAA) [30] and the European Union's 

Privacy Directive [21].  This dissertation seeks to design and compare strategies for 

protecting privacy in data mining. 

I.1 Baseline Architecture 

Data mining is usually carried out in multiple steps.  First, the data being mined are 

collected from their sources, which we refer to as data providers.  In many systems, data 

providers are physically distributed, forming the bottom tier of the baseline architecture 

of data mining systems, as shown in Figure 1.  Data providers are the data owners, and 

are expected to submit their (private) data to the data warehouse server, which forms the 

middle tier of the architecture.  For example, in an online survey system, the survey 

respondents are the data providers who submit their data to the survey analyzer, which 

holds the data warehouse server. 

                                                

This dissertation follows the style of IEEE Transactions on Knowledge and Data Engineering. 



  2  

 

In the data warehouse server, data collected from the data providers are stored in well-

disciplined physical structures (e.g., multi-dimensional data cube), and are aggregated 

and pre-computed in various forms (e.g., sum, max, min).  For example, in an online 

survey system, an aggregated data point may be the mean age of all survey respondents.  

The objective of data warehouse server is to support online analytical processing 

(OLAP) on the data, and to facilitate data mining [29]. 

The actual data mining tasks are performed by the data mining servers, which form the 

top tier of the baseline architecture.  When performing data mining tasks, the data 

mining servers are likely to use the aggregated data, which are pre-computed by the data 

warehouse server, rather than the rough data, which are directly collected from the data 

providers, in order to hasten the data mining process. 

Note that the data mining servers may not have the right to access all data stored in the 

data warehouse.  For example, in a hospital where all patients’ information is stored in 

Fig. 1. Baseline Architecture. 
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the data warehouse, the accounting department of the hospital (as a data mining server) 

is allowed to access patients’ financial data, but is prohibited from accessing patients' 

medical records per HIPAA requirements [30]. 

Besides constructing data mining models on its local data warehouse server, a data 

mining server may also share information with data mining servers from other systems 

(i.e., with other data warehouses), in order to construct data mining models spanning 

multiple data warehouses.  Since each data mining server holds the local data mining 

model of its own system, in the information sharing process, each data mining server is 

likely to share its local data mining model, rather than the raw data stored in the data 

warehouse, to build globally valid data mining models across multiple systems.  For 

example, several retail companies may share their local data mining models on customer 

records in order to build a global data mining model on consumer behavior.  Note that 

the local data mining models can be private and need to be protected, especially when 

these models are not valid globally. 

I.2 Design Principle 

In order to introduce the design principle of privacy-preserving data mining systems, we 

need to define the term "privacy".  Privacy has been a central issue from a sociological 

standpoint [60].  In the context of information privacy, information is considered to be 

private if its owner has the right to choose whether or not, to what extent, and for what 

purpose, to disclose the information to others [48].  In the literature on privacy-

preserving data mining, it is commonly (explicitly or tacitly) assumed that a data owner 

generally chooses not to disclose its private data unless the disclosure is necessary for 
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the purpose of data mining.  Based on this assumption, we can state the design principle 

of privacy-preserving data mining systems as follows. 

Minimum Necessary Rule: Disclosed private information (from one entity to 

others) in a data mining system should be limited to the minimum necessary for 

data mining. 

Note that the “minimum” here is a qualitative measure rather than a quantitative one.  

Since the quantitative measure of privacy disclosure varies between different systems 

and/or different data owners, we use the term “minimum” in the design principle to state 

that all private information unnecessary (or less necessary, as determined by the 

sensitivity of data and the accuracy requirements of data mining results) for data mining 

should not be disclosed in a privacy-preserving data mining system. 

Due to the minimum necessary rule, the privacy disclosure in data mining systems 

should be allowed on a "need-to-know" (i.e., necessary-for-data mining) basis.  The 

minimum necessary rule has been defined and mandated by privacy legislation and 

regulations.  In particular, it is considered to be the key regulation of HIPAA privacy 

rules [30]. 

I.3 Basic Strategy 

Based on the system architecture and design principle, we now introduce the basic 

design strategies for privacy-preserving data mining systems.  Apparently, in a data 

mining system, privacy disclosure can occur when private data are transmitted from one 

entity to another.  Thus, a commonly used privacy protection measure is to enforce 

privacy-preserving communication protocols between different entities, such that each 
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entity may follow the protocol and thereby prevent private information disclosure during 

data communication.   

Specifically, three kinds of protocols are needed: 

• Data Collection Protocol, which protects privacy during data transmission 

from the data providers to the data warehouse server; 

• Inference Control Protocol, which manages the privacy protection between the 

data warehouse server and data mining servers; 

• Information Sharing Protocol, which controls the information shared between 

different data mining servers (of different systems). 

Based on the minimum necessary rule, a common goal of these protocols is to transmit 

from one entity to another the minimum amount of private information necessary to 

construct accurate data mining models.  In reality, one may have to make a tradeoff 

between privacy protection and accuracy of constructed data mining models. 

Note that although these three protocols have unique characteristics and can be used in 

different scenarios, not all systems require all three protocols to protect private 

information.  We will analyze which systems require different combination of the three 

protocols while studying the integration of these protocols. 

I.4 Dissertation Organization 

The rest of this dissertation is organized as follows.  In the second chapter, we briefly 

review the related work in privacy-preserving data mining.  Then, we address the design 

of the three protocols.  We propose a new scheme on data collection protocol in Chapter 

III.  We introduce a cardinality-based inference control protocol in Chapter IV.  In 
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Chapter V, we present the adversary models and design strategies of information sharing 

protocols.  We address the effective integration of these three protocols in Chapter VI, 

and conclude with final remarks in Chapter VII. 
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CHAPTER II 

RELATED WORK 

There has been a growing amount of research in the area of privacy-preserving data 

mining.  In this chapter, we briefly review related work on data collection protocol, 

inference control protocol, and information sharing protocol, respectively.  Before that, 

we remark that the readers should not mistake our review in this chapter as an indicator 

that practical privacy-preserving data mining systems have been well developed and 

widely used.  In fact, although there is ongoing work on the development of real privacy-

preserving data mining systems [34], most work reviewed in this chapter presents 

proposals for privacy-preserving algorithms, rather than solutions to real system-

building problems. 

II.1 Data Collection Protocol 

There are three kinds of approaches that have been proposed for data collection protocol: 

data exchange approach [12], noise insertion approach [1], [4], [6], [17], [19], [24], [47], 

and cryptographic approach [62]. 

When the data exchange approach is used, each data provider exchanges its data with 

another data provider before transmitting the data to the data warehouse server.  As such, 

the data warehouse server does not know the real owners of the collected data.  

Nonetheless, the data collected by the data warehouse server are still able to support 

construction of data mining models. 

The data exchange approach divulges the private information of one data provider to 

(at least) another data provider.  Thus, this approach can only be used in systems where 
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every data provider is trustworthy.  That is, no data provider has the intent to 

compromise the private information of another data provider.  Note that in many 

practical systems (e.g., online survey), the data providers are untrustworthy (i.e., one 

data provider may intend to compromise the private data of another data provider).  

Apparently, the data exchange approach cannot protect the private information of data 

providers from being compromised (by other data providers) in these systems. 

When the noise insertion approach is used, the data providers (independently) insert 

noise into their data, and transmit the perturbed data to the data warehouse server [1], 

[4], [6], [17], [19], [24], [47].  Noise can be inserted in two ways: 

• by directly adding random noise to the original data values (e.g., change age 

from 23 to 30, change location from Texas to California), and 

• by generalizing data values based on the corresponding domain hierarchy (e.g., 

generalize age from 23 to range 21-25, generalize location from Texas to USA). 

The first method is also referred to as perturbation-based method in [56].  It can be 

applied to arbitrary data.  The second method is referred to as aggregation-based method 

in [56].  This method can only be applied to data with a domain hierarchy known by the 

data warehouse server.  Nonetheless, it can be used to guarantee k-anonymity [9] (i.e., 

the perturbed value of a data record is indistinguishable from the perturbed values of at 

least k – 1 other data records). 

With the noise insertion approach, both the data providers and the data warehouse 

server know how the noise is inserted into the data (e.g., the distribution of the random 

noise, the generalization of domain hierarchy).  The effectiveness of noise insertion 
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approach is based on two assumptions: 1) due to the inserted noise, it will be difficult, if 

not impossible, for the data warehouse server to recover the original private data from 

the perturbed data, and 2) the data warehouse server can still reconstruct the original data 

distribution based on the perturbed data and the knowledge of noise insertion approach, 

thereby supporting the construction of accurate data mining models. 

Generally speaking, from a data provider’s point of view, the noise insertion approach 

is independent of data mining tasks.  Thus, the noise insertion approach can be used in 

scenarios in which there are multiple data mining tasks, or for which the data mining 

task is unknown at the time of data collection.  A problem of the noise insertion 

approach, however, is that the perturbed data may still contain a substantial amount of 

private information.  For example, researchers have found that the spectral structure of 

perturbed data can help the data warehouse server to compromise private data by 

separating noise from the original data [31], [38].  As such, the randomization approach 

cannot be used in systems where strict private protection needs to be enforced (e.g., the 

private data are either considerably sensitive or protected by privacy laws). 

The cryptographic approach assumes that each data provider has a pair of public and 

private keys, and the data warehouse server knows the sum of the public keys of all data 

providers as pre-knowledge [62].  When the cryptographic approach is used, the data 

warehouse server first sends the sum of the public keys to all data providers as a 

reference.  The data providers encrypt their data based on the reference and transmit the 

encrypted data to the data warehouse server.  Based on mathematical manipulations, the 
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data warehouse server can construct accurate data mining models based on the encrypted 

data, without knowing the values of the original data. 

Since the cryptographic approach assumes that the data warehouse server has pre-

knowledge about the sum of the public keys of all data providers, the cryptographic 

approach can only be used in closed systems where the identities of data providers are 

known by the data warehouse server before the data collection begins.  Note that many 

practical systems (e.g., online survey) are open in that the data warehouse server (e.g., 

the survey collector) cannot know the identities of, or even the number of, data providers 

(e.g., which people will respond to the survey) until the completion of data collection.  

The cryptographic approach cannot be used in such open systems.  Besides, the 

cryptographic approach requires the data providers to be trustworthy, requiring all data 

providers to properly follow the protocol and send correct inputs to the data warehouse 

server.  If one data provider deviates from the designated protocol and submits incorrect 

input, the data mining results can be entirely destroyed. 

Table 1 shows the comparison between the data exchange approach, noise insertion 

approach, and cryptographic approach.  In particular, we show which kinds of systems 

can, or cannot, be supported by each approach. 

TABLE 1 

Comparison of Related Work on Data Collection Protocol 

Support 
Malicious Data 

Providers 
Strict Privacy 

Protection 
Open System 

Undetermined 
Tasks 

Data Exchange No Yes Yes Yes 
Noise Insertion Yes No Yes Yes 
Cryptographic No Yes No No 
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II.2 Inference Control Protocol 

There are two kinds of approaches that have been proposed for inference control 

protocol, namely the query-oriented approach [57] and the data-oriented approach [5]. 

To describe the query-oriented approach, we first need to introduce a concept called 

“safe” query set.  A set of queries { Q1, Q2, …, Qn }  is safe if a data mining server 

cannot infer private information from the answers to Q1, Q2, …, Qn.  With this concept, 

the basic idea of query-oriented inference control approach can be easily described as 

follows.  Upon receiving a query from a data mining server, the data warehouse server 

will answer the query if and only if the union set of query history (i.e., the set of all the 

queries already answered) and the recently received query is safe.  Otherwise, the data 

warehouse server will reject the query. 

Query-oriented inference control has also been extensively used in statistical databases 

[15].  The major difference between these systems and privacy-preserving data mining 

systems is that privacy-preserving data mining systems usually deal with larger amounts 

of data in a timely manner (recall that OLAP means online analytical processing).  

Therefore, inference control protocols in privacy-preserving data mining systems require 

more efficiency to conduct query processing. 

Dynamically determining the safety of a query set can be time-consuming.  Therefore, 

previous work focuses on a cardinality-based method, which is a static version of the 

query-oriented approach.  With this method, a safe set of queries is determined a prior 

based on the cardinality of the data (e.g., how many data points are private).  Apparently, 

any subset of this safe query set is also safe.  At run-time, upon receiving a query, the 
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data warehouse server will answer the query if and only if the query is in the pre-

determined safe set.  Otherwise, the data warehouse server will reject the query.   

Apparently, the cardinality-based query-oriented approach is conservative and may 

unnecessarily reject a large number of queries.  Thus, it cannot be used in systems in 

which data mining servers require a high level of information availability (i.e., 

percentage of queries answered by the data warehouse server) to generate accurate data 

mining results. 

When the data-oriented approach is used, the data stored in the data warehouse server 

are perturbed, and the query answers are estimated (as accurately as possible) based on 

the perturbed data.  In certain cases (where the data collection protocol adopts the noise-

insertion approach), the data perturbation is done by the data collection protocol.  In 

other cases (where the original data need to be stored in the data warehouse server), the 

perturbation must be done at run-time when the query is processed.  In either case, the 

specific perturbation techniques are similar to those used in the noise-insertion approach 

for data collection protocol.  The effectiveness of data-oriented approach is based on two 

assumptions: 1) the perturbation is enough to prevent private information from being 

disclosed, and 2) the query answers estimated from the perturbed data can still support 

construction of accurate data mining models. 

Similar to the noise-insertion approach for data collection protocol, a problem of the 

data-oriented approach is that the perturbed data may still contain a substantial amount 

of private information.  As such, the data-oriented approach cannot be used in systems 

where private-protection guarantee is required by privacy laws. 
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Table 2 shows the comparison between cardinality-based (i.e., static) query-oriented 

approach, dynamic query-oriented approach, and data-oriented approach.  In particular, 

we show which kinds of systems can, or cannot, be supported by each approach. 

II.3 Information Sharing Protocol 

Most existing work on information sharing protocol [2], [3], [16], [18], [25], [32], [36], 

[37], [39], [41], [53], [54], [55] considers the privacy-preserving information sharing 

problem as a variation of the secure multiparty computation (SMC) problem [27], and 

use cryptographic approaches to solve the problem. 

Since it is difficult to achieve security against adversaries with unrestricted behavior in 

SMC [27], most existing information sharing protocols make restrictions on the behavior 

of adversaries.  There are two kinds of restrictions that are commonly employed: 1) 

semi-honest (i.e., honest-but-curious) restriction, which assumes that all adversaries 

properly follow the protocol, with the only exception being that the adversaries may 

record all intermediate computation and communication [2], [3], [16], [18], [32], [36], 

[37], [41], [53], [54], [55], [61], and 2) malicious restriction, which assumes that an 

adversary may deviate from the protocol, but cannot change its input [25], [39].  With 

either restriction, the basic idea of cryptographic approach is for each participating data 

TABLE 2 

Comparison of Related Work on Inference Control Protocol 

Support 
High 

Efficiency 
High Data 
Availability 

Sensitive 
Data 

Perturbed 
Data 

Cardinality-based Yes No Yes No 
Dynamic Query-Oriented No Yes Yes No 

Data-Oriented Yes Yes No Yes 
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mining server to encrypt its input (i.e., local data mining model) and exchange the 

encrypted input with each other.  Based on mathematical manipulations, the data mining 

servers can build globally valid data mining models spanning their systems without 

disclosing private information to each other. 

Since the semi-honest restriction assumes that the adversaries are incapable of 

deviating from the designated protocol, semi-honest-restriction-based information 

sharing protocols cannot be used in many practical systems where adversaries have such 

ability.  Protocols designed based on the malicious restriction face a similar challenge, as 

these protocols cannot be used in systems where adversaries revise their own data to 

compromise the privacy of other parties.  Besides, most existing protocols with the 

malicious restriction are computationally expensive, partially due to the fact that most of 

such protocols use sophisticated cryptosystems with high computational overhead (e.g., 

Paillier’s cryptosystem [44] used in [39]). 

Table 3 shows the comparison between existing work with semi-honest restriction and 

malicious restriction.  In particular, we show which kinds of systems can, or cannot, be 

supported by each approach. 

TABLE 3 

Comparison of Related Work on Information Sharing Protocol 

Support 
High 

Efficiency 
Adversaries that Deviate 

from the protocol 
Adversaries that 

Change Input 
Semi-honest Restriction Yes No No 
Malicious Restriction No Yes No 
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CHAPTER III 

DATA COLLECTION PROTOCOL* 

In this chapter, we address issues related to the design, analysis and implementation of 

data collection protocol, which protects privacy during the transmission of private data 

from the data providers to the data warehouse server.  This chapter is organized as 

follows.  We first present an overview on the data collection protocol, which introduces 

the design principle, reviews previous studies, and shows our contribution in this 

chapter.  Then, we examine a common approach for data collection protocol called the 

randomization approach, and analyze its problems.  In order to solve these problems, we 

introduce a new scheme for data collection protocol.  The implementation of our scheme 

on privacy-preserving association rule mining and data classification (both are typical 

data mining problems extensively used in practice [29]) are presented, respectively.  We 

evaluate the performance of our scheme both theoretically and experimentally, and 

discuss issues related to the implementation of our scheme in practical systems. 

III.1 Overview 

We first show the design principle of data collection protocol.  Recall that in a privacy-

preserving data mining system, the data providers and the data warehouse server share 

the objective of constructing accurate data mining models.  Besides, the data providers 

have their own objective of protecting their private information.  Thus, the design of data 

                                                

* Part of the data reported in this chapter is reprinted with permission from “A New Scheme on Privacy-
Preserving Data Classification” by Nan Zhang, Shengquan Wang, and Wei Zhao, 2005.  Proceedings of 
the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Pages 374-383.  
Copyright 2005 by ACM Press. 
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collection protocol aims to follow the minimum necessary rule by limiting the 

information obtained by the data warehouse server to the minimum amount necessary 

for the intended purpose of building accurate data mining models. 

Previous studies recognize the fact that part of the private information is unnecessary 

for the construction of data mining models.  It is shown that the data distribution, not the 

individual data values, is often sufficient for building accurate data mining models [4].  

Based on this fact, the randomization approach is proposed for the data providers to add 

random noise to their private data before transmitting such data to the data warehouse 

server.  The distribution of the random noise is known by both the data providers and the 

data warehouse server.  Thereby, the data providers protect their privacy by hiding the 

real values of their data, while the data warehouse server can still construct accurate data 

mining models because it can recover the original data distribution from the randomized 

data based on the distribution of the random noise. 

Most existing work on data collection protocol tacitly assumes that randomization is 

the only effective approach to protecting privacy while maintaining the accuracy of 

constructed data mining models1.  As we will illustrate further in the latter part of this 

chapter, there are several problems with the randomization approach: 

• Researchers have recently identified privacy breaches as one of the major 

problems with the randomization approach [38].  It is shown that the spectral 

                                                

1 There are a few exceptions, though.  For example, a cryptographic approach has been proposed to strictly 
protect the private data [15].  Nonetheless, this approach has implementation problems that prevent it from 
being used in many practical situations.  With this approach, a malfunctioning data provider can destroy 
the entire data mining results.  Besides, the identities and number of data providers must be known by the 
data warehouse server before data collection begins.  This is impossible in many real systems like online 
survey. 
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structure of the randomized data can help a malicious data warehouse server to 

recover the original data from their randomized values.  Since the original data 

values cannot be recovered solely from the constructed data mining models, there 

must be a substantial amount of private information that is unnecessary for data 

mining but is divulged to the data warehouse server.  This contradicts the 

minimum necessary rule and increases the risk of privacy leakage. 

• Another major problem with the randomization approach is that it requires all 

data providers to accept the same level of privacy disclosure.  Due to the results 

of recent surveys [14], [33], [35], [59], different people tend to have different 

levels of privacy concern in regards to their personal information.  As such, when 

the randomization approach is used, the (potentially accurate) data from privacy 

unconcerned data providers may be wasted while privacy fundamentalists may 

be unwilling to disclose their data. 

In this chapter, we develop a new scheme on data collection protocol based on 

algebraic techniques.  In our scheme, the data providers do not perturb their data by only 

using randomly generated noise.  Instead, the data warehouse server transmits 

perturbation guidance to data providers as references to the perturbation of their data.  

The perturbation guidance indicates which part (e.g., items, attributes) of the private data 

is the minimum necessary to build accurate data mining models.  After validating the 

perturbation guidance, the data providers perturb their data accordingly.  Our scheme 

adheres to the minimum necessary rule by transmitting only the minimum necessary 
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information to the data warehouse server.  We will demonstrate that our new scheme has 

the following important features, which distinguish it from previous approaches. 

• Our scheme can help build more accurate data mining models while disclosing 

less private information.  In particular, we derive theoretical bounds on the 

accuracy of data mining models constructed by our scheme.  Such bounds can be 

used to predict system accuracy in reality. 

• Our scheme allows each data provider to play a role in determining the tradeoff 

between accuracy and privacy.  Specifically, we allow each data provider to 

choose a different level of privacy disclosure.  As such, our system can satisfy 

the privacy requirements of a wide range of data providers, from hard-core 

privacy fundamentalists to people marginally concerned about their privacy. 

• Our scheme is flexible and easy to implement.  For a given data mining task 

(e.g., classification), our scheme is transparent to the concrete data mining 

algorithm used (e.g., decision tree, naïve Bayesian, etc).  The reason is that in our 

scheme, the (perturbed) data collected by the data warehouse server can be 

directly used as inputs to the data mining algorithms.  Thus, our scheme can be 

readily integrated with existing systems as a middleware.  Furthermore, as we 

will show in the latter part of this chapter, our scheme is efficient in terms of 

computational cost, space complexity, and communication overhead.  This 

makes our scheme scalable to very large number of data providers. 
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III.2 Randomization Approach and Its Problems 

We now briefly review the randomization approach, which has been a popular choice in 

previous studies.  We will analyze the problems associated with the randomization 

approach, and explain reasons behind the problems, which motivate us to propose a new 

scheme on data collection protocol. 

III.2.1 Randomization Approach 

When the randomization approach is used, the data collection process consists of two 

steps.  The first step is for the data providers to randomize their data and transmit the 

randomized data to the data warehouse server.  As in many real systems (e.g., online 

survey systems) where each data provider comes at a different time, we consider this 

step to be iteratively carried out by a group of independent threads2.  In each thread, a 

data provider applies the predetermined randomization operator on its data, and 

transmits the randomized data to the data warehouse server.  The randomization operator 

is known by both the data providers and the data warehouse server. 

Various randomization operators have been proposed for different kinds of data.  

Examples include the additive-noise operator [4] and the random response operator [19], 

which are shown as R(·) in (3.1) and (3.2), respectively, 

 ( ) .R t t r= +  (3.1) 

 
, if .

( )
, if .

t r
R t

t r

θ
θ

<⎧
= ⎨ ≥⎩

 (3.2) 

                                                

2 Nonetheless, without loss of generality, we assume that such threads can be executed in a serializable 
manner. 
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where t is the private data tuple, r is the random noise, and θ is a predetermined 

parameter.  In (3.2), t must be a binary data tuple and t  is the logical NOT of t.  There 

are also more complex randomization operators such as the cut-and-paste operator [24].  

Most existing randomization operators satisfy the following two conditions. 

• The only inputs to the randomization operator are 1) the private data, and 2) a 

random number generator. 

• All data providers must use the same randomization operator with the same 

parameters.  The operator and the parameters are known by both the data 

providers and the data warehouse server. 

As the result of this step, the data warehouse server receives all randomized data from 

the data providers. 

In the second step, the data warehouse server estimates the original distribution of the 

data by employing a distribution reconstruction algorithm.  Several distribution 

reconstruction algorithms have been proposed in correspondence to different 

randomization operators [1], [4], [19], [24], [47].  The basic idea of most algorithms is to 

use Bayesian analysis to estimate the original data distribution based on the 

randomization operator and the randomized data.  For example, the expectation 

maximization (EM) algorithm [1] generates a reconstructed distribution that converges 

to the maximum likelihood estimate of the original distribution. 

Note that in the second step, a malicious data warehouse server may compromise 

private information of the data providers by using a private data recovery algorithm on 

the randomized data supplied by the data providers.  This algorithm aims to recover the 
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original values of the private data by separating noise from the randomized data.  Several 

private data recovery algorithms have been proposed and discussed [1], [38].  For 

example, the spectral reconstruction algorithm recovers the original data values by 

exploiting the spectral structure of the perturbed data [38]. 

Figure 2 depicts the system architecture with randomization approach.  The private 

data recovery component exists in the system only if the data warehouse server is 

malicious.  Note that the data transmission in the system is relayed one-way: from the 

data providers to the data warehouse server.  There is no communication from the data 

warehouse server to the data providers, or between different data providers. 

 

Fig. 2. Randomization Approach. 
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III.2.2 Problems of the Randomization Approach 

While the randomization approach is intuitive and easy to implement, it also has several 

problems.  The most serious one is privacy breach.  A private data recovery algorithm 

proposed in [38] can accurately recover the original data from the randomized data.  The 

basic idea of the algorithm can be stated as follows.  There is usually strong correlation 

between different attributes (or items) of the original data.  The relationship between 

different attributes (or items) is well preserved after randomization.  Nonetheless, the 

noise added to each attribute is independent.  Given this fact, the algorithm uses a 

filtering method to exploit the spectral structure of the perturbed data, and thereby 

separates noise from the perturbed data. 

Another problem with the randomization approach is that it cannot satisfy the 

heterogeneous privacy requirements of data providers, which have been highlighted by 

multiple survey results.  For example, survey results on the U.S. public’s attitudes 

toward privacy protection [59] indicate that different people tend to have different levels 

of privacy concern in regard to their personal information: There are 37% privacy 

fundamentalists, who are extremely concerned about their privacy, 52% privacy 

pragmatists, who believe there should be a tradeoff between privacy and public interest, 

and 11% who are generally unconcerned about their privacy.  Similar results have been 

reported by surveys conducted in U.K. [33], Germany [33], and Japan [35].  Such 

divergence on privacy concern can also be observed from the wide coverage of public 

debates between privacy and freedom of expression [43]. 
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Randomization approach treats all data providers in the same manner and does not 

address the varying privacy concerns of the data providers.  In many cases, a privacy 

fundamentalist may not be willing to send out its data while the (potentially accurate) 

data from privacy unconcerned people are wasted. 

Randomization approach also suffers from efficiency problem, as it places a heavy 

load (i.e., distribution reconstruction) on the data warehouse server at the critical time 

path of the data mining process.  The distribution reconstruction is at the critical time 

path because it must take place after all data have been collected, and before these data 

can be used for data mining.  It has been shown that the computational cost of 

constructing data mining models on randomized data can be “orders of magnitudes more 

than” that of constructing data mining models on the original data [7]. 

III.2.3 Reasons behind the Problems of Randomization Approach 

We believe that below are the reasons behind the problems of randomization approach. 

• The cause of privacy breach problem is that the randomization approach is 

attribute-invariant.  That is, every attribute (or item), no matter how useful for 

data mining, is equally perturbed in the randomization process.  Apparently, 

there may be a substantial amount of private information unnecessary (or less 

necessary) for data mining but is divulged to the data warehouse server.  Since all 

attributes are equally perturbed, the relationship between different attributes of 

the original data is well preserved after the randomization.  Thus, the spectral 

structure of the original data is also well preserved after the randomization.  

Consequently, the spectral structure of the perturbed data can be used to recover 
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the original data values.  This problem can be solved by allowing the data 

providers to submit only those attributes that are most necessary for data mining.  

Nonetheless, this solution is infeasible with the randomization approach because 

the communication flows one-way: from the data providers to the data warehouse 

server.  As such, a data provider cannot learn which attributes are more important 

for data mining, and therefore has no choice but to perturb its data in an attribute-

invariant manner. 

• The reason why the randomization approach cannot satisfy different privacy 

requirements of data providers is because the randomization approach is user-

invariant.  That is, all data providers share the same randomization operator, and 

thus must accept the same (expected) level of privacy disclosure.  This problem 

can be solved by allowing each data provider to negotiate its own level of 

privacy disclosure with the data warehouse server.  However, this solution is 

infeasible with the randomization approach because, again, there is no 

communication from the data warehouse server to the data providers.  As such, a 

data provider cannot receive any user-specific guidance on the perturbation of its 

data, and has no choice but to perturb its data in a user-invariant manner. 

• An important reason behind the efficiency problem is that the distribution 

reconstruction algorithm is not incremental.  Recall that data collection is 

considered to be an iterative process as each data provider submits its data at a 

different time.  If the distribution reconstruction algorithm could be deployed 

incrementally, the data warehouse server would be able to estimate the original 
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distribution when the data are being collected, and to update the estimated 

distribution when a new (perturbed) data tuple arrives.  As such, the distribution 

reconstruction process would no longer be at the critical time path of privacy-

preserving data mining, and thus the efficiency problem could be solved. 

III.3 Our New Scheme 

The one-way communication scheme and the non-incremental nature of distribution 

reconstruction are inherent in the design of randomization approach.  This motivates us 

to propose a new scheme on data collection protocol.  Compared with the randomization 

approach, our new scheme allows two-way communication between the data warehouse 

server and the data providers.  Besides, our scheme does not require any post-collection 

processing of the collected data (i.e., after the data are collected and before the data are 

used in data mining). 

Another possible method for two-way communication is to introduce data 

transmission between data providers.  We do not adopt this method because in many 

practical systems (e.g., online survey systems), different data providers may come at 

different time and thus may not be able to communicate with each other.  Other potential 

weaknesses of this method include: 1) it requires the trustworthiness of other data 

providers, and 2) it may place considerable computational load on the data providers, 

which have considerably lower computational power than the data warehouse server.  

III.3.1 Basic Idea 

The basic idea of our scheme is for the data providers to submit only the part of their 

private information that is most necessary for constructing accurate data mining models.  
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In order to for the data providers to know which part of the private data is necessary for 

data mining, we introduce two-way communication between the data warehouse server 

(which has a global view of received data) and the data providers. 

With our scheme, before perturbing its data, a data provider first receives perturbation 

guidance from the data warehouse server.  The perturbation guidance is computed by the 

data warehouse server based on the (perturbed) data that it has already received.  Note 

that the original data are usually high-dimensional as the data contain multiple attributes 

or items.  Generally speaking, the perturbation guidance represents a dimension-

reduction function that projects the originally high-dimensional private data into a low-

dimensional subspace such that the private information retained in the projected data is 

the most necessary for data mining. 

After validating the received perturbation guidance, the data providers perturb their 

data accordingly.  The data warehouse server can directly store the perturbed data in the 

data warehouse, and use such data to support data mining.  Thus, our scheme does not 

need any processing (e.g. distribution reconstruction) between the collection of data and 

the construction of data mining models. 
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III.3.2 System Architecture 

Figure 3 depicts the system architecture with our new scheme.  In our scheme, we 

assume that the data warehouse server may be malicious.  That is, the data warehouse 

server may do whatever it can in order to compromise the private information of the data 

providers. 

 

Fig. 3. Our New Scheme. 
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The communication protocol of our scheme is shown in Table 4.  In our scheme, there 

is an important parameter for each data provider, called the maximum acceptable privacy 

disclosure level, which is denoted by ki (i is the index of the data provider).  Roughly 

speaking, if we consider the private data tuple as a random vector, then ki is the degree of 

freedom [50] of the perturbed data tuple, which in most cases is much smaller than the 

degree of freedom of the original data tuple.  Generally speaking, ki can also be 

understood as the dimensionality of the space formed by the perturbed data tuples.  The 

larger ki is, the more contribution the perturbed data tuple will make to the construction 

of data mining models.  Nonetheless, with a larger ki, the data warehouse server will also 

TABLE 4 

Communication Protocol 
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have more information about individual private data.  Therefore, a privacy 

fundamentalist can choose a small ki to protect its privacy.  A privacy-unconcerned 

individual can choose a large ki to help build more accurate data mining models. 

Before requesting for the current perturbation guidance, a data provider first inquires 

the data warehouse server for the current system disclosure level k*, which is the 

disclosure level needed for the data warehouse server to construct accurate data mining 

models.  The perturbation guidance component of the data warehouse server computes k* 

and transmits it to the data provider.  If k* is unacceptable by the data provider (i.e., k* > 

ki), the data provider can wait for a period of time and try again.  As we will show in the 

experimental evaluation, k* decreases rapidly when the number of data tuples received 

by the data warehouse server increases.  Since the level of privacy concern varies among 

different data providers [59], the system disclosure level will be acceptable by most data 

providers in a short period of time. 

If k* is accepted by a data provider (i.e., k* ≤ ki), the data provider inquires for the 

current system perturbation guidance, denoted by *
kV .  The data warehouse server 

computes *
kV  and dispatches it to the data providers.  The perturbation guidance *

kV  is 

supposed to project the original data tuple into a k*-dimensional subspace such that the 

private information retained in the projected data is the most necessary information for 

data mining.  Note that as we will show in the latter part of the chapter, the computation 

of *
kV  is determined by specific data mining tasks. 
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Once *
kV  is received and validated, the data provider computes its perturbed data tuple 

R(ti) based on the original data tuple ti and the perturbation guidance *
kV , and then 

transmits R(ti) to the data warehouse server.  After the data warehouse server receives all 

perturbed data tuples, the data warehouse server directly stores the received data in the 

data warehouse and uses such data to support data mining. 

As we can see from Table 4, our scheme requires two rounds of message exchange to 

dispatch the perturbation guidance: one round to inquire ki and another round to 

inquire *
kV .  One may consider an alternative approach by asking each data provider to 

transmit its maximum acceptable privacy disclosure level ki to the data warehouse 

server.  If there is k* ≤ ki, the data warehouse server transmits *
kV  back to the data 

provider. This approach only requires one round of message exchange.  However, 

privacy breaches may occur when this approach is used because when k* < ki, a 

malicious data warehouse server can manipulate a disclosure level k̂  with k* < k̂  < ki, 

and then generate a perturbation guidance based on k̂ .  As such, the data warehouse 

server may compromise private data that are unnecessary for data mining. 

Compared with the randomization approach, our scheme does not have the distribution 

reconstruction component.  Instead, the collected (perturbed) data can be directly stored 

in the data warehouse and used to support data mining.  Our scheme has two key 

components, which are the perturbation guidance (PG) component of the data warehouse 

server, and the perturbation component of the data providers.  The design of the 

perturbation guidance components depends on specific data mining tasks (e.g., 
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association rule mining, data classification).  Although the design of the perturbation 

component is independent of data mining tasks, the description of it requires notions 

introduced with the perturbation guidance component.  Thus, we will introduce these 

two components for association rule mining and data classification, respectively, as 

follows. 

III.4 Design for Association Rule Mining 

We now implement our scheme to support privacy-preserving mining of association 

rules.  Recall that there are two basic components in our scheme: 1) the perturbation 

guidance component of the data warehouse server, which computes the current system 

privacy disclosure level k* and the perturbation guidance *
kV , and 2) the perturbation 

component of the data providers, which validates *
kV  and perturbs the private data.  We 

will present the implementation of these components for privacy-preserving association 

rule mining systems after introducing notions of the private dataset. 

III.4.1 Basic Notions 

Let there be m data providers in the system, each of which holds a private transaction ti (i 

∈ [1, m]).  Let I be a set of n items a1, …, an.  Each transaction ti is a set of items such 

that ti ⊆ I.  The data warehouse server has no external knowledge about the private 

information of data providers. 

We represent each transaction by an n-dimensional binary vector ti such that the j-th 

bit of the vector is 1 if and only if aj ∈ ti.  Correspondingly, we represent the set of all 
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private data tuples by an m × n matrix T = [t1; …; tm].3  Each transaction ti is represented 

by a row vector in T.  We denote the transpose of T by T ′.  We use  〈T〉ij to denote the 

element of T with indices i and j. 

Based on these notions, we briefly review the definition of association rule mining.  

More detailed description of association rule mining can be found in classic textbooks 

(e.g., [29]).  The major objective of association rule mining is to identify all frequent 

itemsets (i.e., sets of items).  An itemset B is frequent if and only if its support supp(B) is 

larger than or equal to a predetermined minimum threshold min_supp.  The support of B 

is defined as follows. 

 
#{ | }

( ) .
t T B t

B
m

∈ ⊆=supp  (3.3) 

That is, the support of B is the percentage of transactions in T that contain B as a subset. 

III.4.2 Perturbation Guidance Component 

As we are considering the case where perturbed transactions are iteratively fed to the 

data warehouse server, the data warehouse server maintains a set of all received 

transactions and updates the set when a new transaction arrives.  Let the current matrix 

of received transactions be T*.  When a new (perturbed) transaction R(ti) arrives, R(ti) is 

appended to T*.  Without loss of generality, we assume that R(ti) is the i-th transaction 

received by the data warehouse server.  As such, when the data warehouse server 

receives m* transactions, T* is an m* × n matrix [R(t1); …; R(tm*)]. 

                                                

3 In the context of private dataset, ti is a transaction.  In the context of matrix, ti is the corresponding row 
vector in T. 
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In order to compute the current system disclosure level and the perturbation guidance 

for the first data provider, we assume that before the data collection process begins, the 

data warehouse server already has m0 (m0 << m) randomly generated transactions in T*. 

Besides the matrix of received transactions T*, the data warehouse server also keeps 

track of an n × n symmetric matrix A* = T*'T*.  Note that 

 
*

*

1

( ) ( ).
m

i i
i

A R t R t
=

′=∑  (3.4) 

Thus, the update of A* (after R(tm*) is received) does not need access to any transaction 

other than the recently received R(tm*).  As such, we do not require matrix T* to remain 

in the main memory during data collection. 

We now show how to compute the current system privacy disclosure level k* and the 

perturbation guidance *
kV  based on A*.  Since A* is a symmetric matrix, we can use eigen 

decomposition to decompose A* as 

 * * * * ,A V V ′= Σ  (3.5) 

where Σ* = diag( *
1σ , ···, *

nσ ) is a diagonal matrix with diagonal elements *
1σ  ≤ ··· ≤ *

nσ , 

*
iσ  is the i-th eigenvalue of A*, and V* is an n × n unitary matrix composed of the 

eigenvectors of A* (as the column vectors).  As we will show in the theoretical analysis, 

an appropriate choice of the system privacy disclosure level k* should be the minimum 

degree of freedom of A* that maintains an accurate estimate of A = T′ T.  Based on the 

eigen decomposition of A*, we can compute k* as the minimum integer that satisfies 
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where μ is a parameter predetermined by the data warehouse server.  A data warehouse 

server that desires high accuracy of data mining results can choose a small μ to ensure an 

accurate estimation of A.  A data warehouse server that can tolerate a relatively lower 

level of accuracy can choose a large μ to help protect data providers’ privacy.  In order 

to choose a good cutoff k* to retain sufficient information about A, a textbook heuristic is 

to set μ = 15% [28]. 

Given k*, the perturbation guidance *
kV  is an n × k* matrix that is composed of the first 

k* eigenvectors of A* (i.e., the first k* column vectors of V* corresponding to the k* 

largest eigenvalues of A*).  In particular, if V* = [v1; …; vn], then *
kV  = [v1; …; vk*].  

Since V* is a unitary matrix, there is *
kV ′ *

kV  = I, where I is the k* × k* identity matrix. 

We note that due to efficiency and privacy concerns, the data warehouse server only 

updates k* and *
kV  once several data tuples are received.  The efficiency concern is the 

overhead of computing k* and *
kV .  The privacy concern is that if *

kV  is updated once 

every data tuple is received, a malicious data provider may infer the newly submitted 

(perturbed) data tuple by tracking the change of *
kV .  Although a data provider is 

comfortable transmitting the perturbed data tuple to the data warehouse server, it may be 

unwilling to divulge it to another data provider.  The justification of k* and *
kV  will be 

provided in the theoretical analysis of our scheme.  The runtime efficiency and the 

communication overhead will be discussed in the implementation issues. 
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III.4.3 Perturbation Component 

Recall that our implementation of perturbation component is independent of data mining 

tasks.  Thus, the perturbation component presented here can also be used for privacy-

preserving data classification. 

The perturbation component has two objectives: 1) to validate *
kV , and 2) to perturb 

the private data ti based on *
kV .  The perturbation component validates *

kV  by checking if 

*
kV  is an n × k* matrix that satisfies *

kV ′ *
kV  = I, where I is the k* × k* identity matrix.  If 

*
kV  is valid, the perturbation component perturbs ti in a two-step process.  Recall that ti is 

represented by an n-dimensional row vector with elements of either 0 or 1.  In the first 

step, ti is perturbed to be another n-dimensional row vector it% , such that 

 * * .
ki i kt t V V ′=%  (3.7) 

Note that the elements of it%  may be real values.  Thus, we need a second step to 

transform it%  to R(ti) such that each element in R(ti) is either 0 or 1.  In the second step, 

for all j ∈ [1, n], the data provider generates a random number rj that is chosen uniformly 

at random from [0, 1], and computes R(ti) as follows. 
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 (3.8) 

where 〈⋅〉j is the j–th element of a vector.  As we can see, the probability that 〈R(ti)〉j = 1 

is equal to 〈 it% 〉
2
j . 
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III.5 Design for Data Classification 

We now apply our scheme on privacy-preserving data classification problem. 

III.5.1 Basic Notions 

Most of the notions are similar to those proposed in association rule mining.  Thus, we 

only introduce those notions that are new or have different meanings.  Let there be m 

data providers in the system, each of which holds a private data tuple ti (1 ≤ i ≤ m) and 

its class label a0.  The private data tuple consists of n attributes a1, …, an.  The class 

label attribute is insensitive and indicates which predefined class the data tuple belongs 

to.  All other attributes are private information and need to be protected.  Without loss of 

generality, we assume that the data warehouse server knows the class label of each data 

tuple but has no external knowledge about the private information of data providers.  

The main purpose of data classification is to construct a model (i.e., classifier) to predict 

the class labels of testing data tuples based on the training dataset (i.e., data providers’ 

data), where the class label of each data tuple is given.  More detailed description of data 

classification can be found in classic textbooks (e.g., [29]). 

In this study, we assume that there are two classes C0 and C1.  The class label attribute 

has two distinct values 0 and 1, corresponding to classes C0 and C1, respectively.  We 

first consider the cases where all attributes are categorical (i.e., discrete-valued).  If the 

value of an attribute is continuous, the attribute can be discretized first.  An example of 

such discretion is provided in the experimental evaluation of our scheme.  Let the 

number of distinct values of aj be sj. Without loss of generality, let the value range of aj 
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be 0, …, sj – 1.  We denote a private data tuple ti by an (s1 + ··· + sn)-dimensional binary 

vector as follows. 

 .0,...,1,...,0,...,0,...,1,...,0
11 nn aforbitssaforbitss

it =  (3.9) 

Within the sj bits for aj, the h-th bit is 1 if and only if aj = h – 1. 

Although our scheme applies to all categorical attributes (with arbitrary sj), for the 

simplicity of discussion, we assume that all attributes a1, …, an are binary.  That is, s1 = 

··· = sn = 2.  As such, each private data tuple can be represented by a 2n-dimensional 

binary vector.  Accordingly, we denote the private training dataset by an m × 2n matrix T 

= [t1; …; tm].  Let T0 and T1 be the matrices that represent the private data tuples in class 

C0 and C1, respectively.  *
0T  and *

1T  are defined in analogy to the definition of T*.  We 

denote the number of data tuples in Ti by |Ti|.  An example of T is shown in Table 5.  As 

we can see from the example, data tuple t1 belongs to class C1 and has three attributes 

[a1, a2, a3] = [1, 0, 0]. 

TABLE 5 

Example of Matrix T 
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III.5.2 Perturbation Guidance Component 

The perturbation guidance component for privacy-preserving data classification is 

similar to that for privacy-preserving mining of association rule.  The only difference 

(besides the difference on the size of matrices) is the computation of A*.  In the 

perturbation guidance component for privacy-preserving data classification, the data 

warehouse server keeps track of two matrices *
0A  = * *

0 0T T′  and *
1A  = * *

1 1T T′ , and 

computes A* as A* = *
0A  – *

1A .  Other variables, including V*, Σ*, the current system 

privacy disclosure level k*, and the perturbation guidance *
kV , are still computed in the 

same manner based on the eigen decomposition of A*. 

III.6 Performance Analysis 

We now analyze the performance of our new scheme.  Clearly, a privacy-preserving data 

mining approach should be measured by its capability of both protecting private 

information and constructing accurate data mining models.  Thus, we measure on 1) the 

amount of privacy disclosure, and 2) the accuracy of constructed data mining models.  In 

particular, the privacy measure is independent of specific data mining tasks while the 

accuracy measure depends on these tasks.  We will derive theoretical bounds on the 

measures, in order to provide guidelines for the tradeoff between privacy and accuracy, 

and thereby help system managers set parameters in practice. 
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III.6.1 Privacy Analysis 

We first define our privacy measure.  Then, we derive an upper bound on the amount of 

privacy disclosure based on a data provider’s maximum acceptable privacy disclosure 

level. 

In our scheme, we need to guarantee that for any private data tuple (or transaction) t, 

the data warehouse server cannot deduce the value of t from the perturbed data tuple 

R(t).  In particular, since the data warehouse server can be malicious, we must consider 

the cases where the data warehouse server manipulates the system perturbation level k* 

and/or the perturbation guidance *
kV  to compromise the private information of data 

providers. 

Recall that our scheme allows each data provider to choose a different privacy 

disclosure level.  Thus, we define the privacy disclosure measure for individual data 

providers.  Formally, let the maximum acceptable disclosure level of a data provider be 

ki.  Let the private data tuple of the data provider be ti.  For any matrix *
k̂V  that can pass 

the validation test, let *ˆ( , )kR t V  be the output of R(ti) when the received perturbation 

guidance is *
k̂V .  With these notions, we define the privacy measure as follows. 

Definition 3.1.  Suppose that the data warehouse server sends an arbitrary integer k* as 

the current system disclosure level and an arbitrary matrix *
k̂V  as the perturbation 

guidance.  The degree of privacy disclosure lp(ki) is defined by the maximum percentage 

of private information disclosed by the perturbed data tuple *ˆ( , )kR t V .  That is, 
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where *ˆ( ; ( , ))kI t R t V  is the mutual information between t and *ˆ( , )kR t V , and H(⋅) denotes 

the information entropy. 

In the definition, the mutual information *ˆ( ; ( , ))kI t R t V  measures the amount of private 

information about t that remains in *ˆ( , )kR t V  [13].  The information entropy H(t) 

measures the amount of information in t [13].  As we can see, the degree of privacy 

disclosure measures the maximum percentage of private information divulged to the data 

warehouse server.   

There are two kinds of privacy measures that have been proposed in the literature: 

information theoretic measure [1], which we use in the above definition, and privacy 

breach measure [23].  We now briefly compare these types of measures and explain the 

reason why we adopt the information theoretic measure. 

As illustrated by our definition, the information theoretic measure uses mutual 

information to measure the average amount of private disclosure when the original data 

take all possible values.  The privacy breach measure, instead, measures the amount of 

privacy disclosure in the worst case.  For example, suppose that a binary attribute a has 

an extremely small (priori) probability to be 1.  Nonetheless, if a = 1, there is a 

considerably high (posterior) probability that the data warehouse server can infer a = 1 
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from the perturbed value of a.  Suppose that when a ≠ 1, the amount of privacy 

disclosure is fairly small.  The privacy breach measure considers such perturbation 

scheme as ineffective because in the worst case (when a = 1), the probability of privacy 

breach is high.  On the other hand, the information theoretic measure considers such 

perturbation scheme as effective because the overall expected amount of privacy 

disclosure is still fairly small. 

Both information theoretic measure and privacy breach measure have their applicable 

domains.  The information theoretic measure can be used in scenarios where the average 

amount of privacy disclosure is of concern.  The privacy breach measure can be used in 

scenarios where the collected data are more sensitive and thus require more rigid 

guarantee on privacy protection, even in the worst case. 

We use the information theoretic measure to measure the performance of our scheme 

because from privacy protection perspective, our scheme “discriminates against” certain 

attributes that are most necessary for data mining.  For example, as we will show in the 

experimental evaluation, our scheme discloses little information about attributes 

unnecessary for data mining, but discloses much more information about attributes 

critical for the accuracy of constructed data mining models.  If we use the privacy breach 

measure to gauge the worst-case privacy disclosure, the result will be biased due to the 

relatively high, albeit necessary, level of privacy disclosure on attributes most necessary 

for data mining. 

Based on Definition 3.1, we now derive an upper bound on the degree of privacy 

disclosure when our scheme is used. 
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Theorem 3.1.  With our scheme, we have 

 1
p ( ) ,ik

il k
mn

σ σ+ +
≤

L

 (3.12) 

where σi is the j–th eigenvalue of A = T ′ T. 

Proof:  Recall that each original data tuple (or transaction) is represented by a row 

vector in T.  Since the size of T varies by data mining tasks, without loss of generality, 

we assume that T is an m × ns matrix (m � ns).  Consider matrix T *
k̂V *

k̂V ′ , each row 

vector of which is it%  = ti
*

k̂V *
k̂V ′ .  Since *

k̂V  has to be an ns × k* matrix in order to pass the 

validation test, the rank of *
k̂V  is no more than k*.  Thus, the rank of T *

k̂V *
k̂V ′  is less than 

or equal to k*.  Due to the properties of low-rank matrix approximation [28], we have 

 *
s

* *

1
ˆ ˆ ,k k nk

F
T TV V σ σ

+
′− ≥ + +L  (3.13) 

where⎥⎪⋅⎪⎢F is the Frobenius norm of a matrix (i.e., the square root of the sum of the 

squares of all elements in the matrix).  Also note that since *
k̂V  passes the validation test, 

we have *
k̂V ′ *

k̂V  = I.  Given the computation of R(ti) based on it% , we have 

 

2 2

2

2 2( )

( ) , if 0,
Exp(( ( ) ) )

1 ( ) , if 1,i

i i i ij jj j

i ij j
R t

i i i ij jj j

t t t t
R t t

t t t t

⎧ = − =⎪− = ⎨
− > − =⎪⎩

% %

% %

 (3.14) 

where Exp(⋅) denotes the expected value.  Let TR be the matrix of perturbed data tuples.  

Each perturbed data tuple is a row vector in TR.  We have 
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Consider the transformation of an element from 〈ti〉j to 〈R(ti)〉j.  Due to our computation 

of 〈R(ti)〉 j, almost all transformations are from 1 to 0.  Thus, the number of elements in 

TR that are equal to 1 is less than *
s1 nk

σ σ
+

+ +L .  As such, for any attribute (or item) aj 

in ti, the probability that all the elements in R(ti) representing aj are 0 is greater or equal 

to than 1 – ( *
s1 nk

σ σ
+

+ +L )/mn.  Following the definition of mutual information, we 

have 

 
*
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 (3.16) 

Since k* ≤ ki, the degree of privacy disclosure satisfies 

 1
p ( ) .ik

il k
mn

σ σ+ +
≤

L

 (3.17) 

  � 

As we can see from the theorem, the less ki is, the less the upper bound will be.  Thus, 

a data provider can always control the amount of private disclosure by adjusting its 

maximum acceptable privacy disclosure level ki. 

III.6.2 Accuracy Analysis 

We first analyze the accuracy of our scheme on mining association rules.  As we 

mentioned in the design of our scheme, we focus on the task of identifying frequent 

itemsets with support larger than a predetermined threshold min_supp.  Thus, we use the 

error on the support of itemsets to measure the accuracy of our scheme. 
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Recall that I is the set of all items.  Given itemset B ⊆ I, let supp(B) and suppP(B) be 

the support of B in the original dataset and the perturbed dataset, respectively.  We 

define the accuracy measure as follows.  

Definition 3.2.  The degree of error le for association rule mining is the maximum error 

on the support of an itemset.  That is, 

 e Pmax ( ) ( ) | .
B I

l B B
⊆

= −|supp supp  (3.18) 

Generally speaking, the degree of error measures the discrepancy between the frequent 

itemsets mined from the original dataset and those mined from the perturbed dataset.  

Recall that μ is a predetermined parameter used by the data warehouse server to compute 

the current system perturbation level k*.  Also recall that A = T'T.  We now derive an 

upper bound on the degree of error as follows. 

Theorem 3.2.  With our scheme, when m is sufficiently large, we have 

 1
e

2
,l

m

μσ≤  (3.19) 

where σ1 is the largest eigenvalue of A. 

Proof:  We first prove that in the cases where |B| ≤ 2 (i.e., B contains 1 or 2 items), there 

is maxB |supp(B) – suppP(B)| ≤ 2μσ1/m.  Then, we extend our proof to the cases where |B| 

> 2. 

Before presenting our proof, we first show an intuitive explanation of matrix A.  

Consider an element of A with indices i and j, respectively, we have 

 
,

#{ |{ , } },i ji j i j
t

A t t t a a t= = ⊆∑  (3.20) 
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which is the number of original transactions that contain both ai and aj.  Note that for all 

ai and aj, there is 

 
#{ |{ , } }

({ , }) .i j
i j

t a a t
a a

m

⊆
=supp  (3.21) 

Thus, we have 

 
,

({ , }).i ji j
A m a a= ⋅supp  (3.22) 

As we can see, when |B| = 1, maxB|supp(B) – suppP(B)| is in proportion to the 

maximum error on the estimate of the diagonal elements of A.  When |B| = 2, 

maxB|supp(B) – suppP(B)| is in proportion to the maximum error on the estimate of non-

diagonal elements of A.  Let the matrix of perturbed dataset be TR.  Let the estimation of 

A derived from TR be AR (i.e., AR = R RT T′ ).  We now derive an upper bound on maxij|〈A 

– A R〉ij|. 

Recall that in the first step of the perturbation, a data provider computes * *
i i k kt t V V ′=% .  

Let T%  be the m × n matrix composed of all it%  (i.e., T%  = [ 1t% ; …; mt% ]).  In our scheme, *
kV  

contains the first k* eigenvectors of the current A*.  When m is sufficiently large, *
kV  can 

be approximated as the first k* eigenvectors of A.  In real cases, as m* increases, the first 

k* eigenvectors of A* converge to those of A fairly quickly. 

Let *
kΣ  be a k* × k* diagonal matrix with the diagonal elements be the first k* 

eigenvalues of A (i.e., *
kΣ  = diag(σ1, …, *k

σ )).  We have 
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 * * * * * * * .k k k k k k kA T T V V T TV V V V′ ′ ′ ′′= = = Σ% % %  (3.23) 

That is, A%  is the k*-truncation of A [28].  As such, A%  is the optimal rank-k* 

approximation of A in the sense that within all rank-k* matrices, A%  has the minimum 

2
A A− % .  In particular, we have 

 * 12
.

k
A A σ

+
− =%  (3.24) 

As we can see from the determination of system disclosure level k*, our scheme 

maintains a cutoff k* such that σk* + 1 ≤ μσ1.  Thus, we have 

 12
.A A μσ− ≤%  (3.25) 

Since the absolute value of each element in an matrix is no larger than the 2-norm of the 

matrix [28], we have 

 12
max .

ij
A A A A μσ− ≤ − ≤% %  (3.26) 

As we can see from the computation of R(t), for all i, j ∈ [1, n], we have 

 ( )2 2
Exp ( ) ,

ii
t R t=%  (3.27) 

and 

 ( ) ( )Exp ( ) ( ) 2 ,
i j i j i j i j

t t R t R t t t t t− ≤ − % %  (3.28) 

where Exp(⋅) denotes the expected value.  Thus, when m is sufficiently large, we have 

maxB|supp(B) – suppP(B)| ≤ 2μσ1/m for |B| ≤ 2. 
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We now extend the bound to the cases where |B| ≥ 3.  Let there be |B| = h.  Without 

loss of generality, we show that 1 P 1 1({ , , }) ({ , , }) 2 /h ha a a a mμσ− ≤K Ksupp supp .  Note 

that the 2-norm of A A− %  satisfies 

 ( )
2

2 1 2
max ,

x
A A A A x

=
− = −% %  (3.29) 

where x is an n-dimensional vector.  Let  

 

 of / items of 0

[ / , ... , / , 0, ... ,0 ].

h items h h n h

x h h h h

−

=
6447448 678

 (3.30) 

It is easy to check that 
2

x  = (1/ )h h⋅  = 1.  As we can see, 
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1 1,

1
( ) ( , ) ,

h h
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i j j i

A A x err a err a a
h = = ≠

⎛ ⎞
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⎝ ⎠
∑ ∑%  (3.31) 

where err(ai) = 
ii

A A− %  and err(ai, aj) = 
ij

A A− % .  It is easy to show that the following 

inequalities hold: 

 
11 1

( ) ,
h h h

ii i
t t ii i

t t err a
== =

− ≤∑ ∑ ∑∏ ∏ %  (3.32) 

and 

 
1 1,1 1

( , ) .
h h h h

i ji i
t t i j j ii i

t t err a a
= = ≠= =

− ≤∑ ∑ ∑ ∑∏ ∏ %  (3.33) 

From (3.31), (3.32), and (3.33), we have 
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Also note that (3.28) can be generalized as follows. 
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Similar to the proof of the cases where |B| ≤ 2, we have maxB|supp(B) – suppP(B)| ≤ 

2μσ1/m for |B| ≥ 3. � 

Note that the expected value of σ1 is in proportion to m because the expected value of 

each element in A is in proportion to m.  As we can see from the theorem, the upper 

bound on the degree of error is proportional to, and is (almost) solely controlled by, the 

parameter μ.  Thus, the data warehouse server can always control the accuracy of 

association rule mining by adjusting μ, even when the number of data providers is 

unknown before the data are actually collected (e.g., in online survey). 

We now analyze the accuracy of our scheme on constructing accurate classifiers.  

Given a testing data tuple t, the constructed classifier is used to predict a class label Ci 

that maximizes the probability of t ∈ Ci , which is 

 
( , )

( | ) .
( )

i
i

P C t
P C t

P t
=  (3.36) 

Since P(t) is constant for all classes, the objective can be reduced to finding Ci that 

maximizes P(Ci, t).  Nonetheless, since t contains n attributes, the cost of computing 

P(Ci, t) is still too expensive.  Therefore, a commonly used compromise is to compute 
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P(Ci, t) based on P(Ci, ts) , where ts is a small subset of the n attributes of t.  For 

example, in the naïve Bayesian classification algorithm, P(Ci, t) is approximated by the 

product of all P(Ci, aj), where j ∈ [1, n].  In the decision tree classification algorithm, 

P(Ci, t) is approximated by P(Ci, ts) where ts is a set of selected test attributes 

corresponding to the nodes in the decision tree. 

For any data tuple t, let ts be a sub-tuple that contains h attributes of t.  We measure the 

accuracy of our scheme by the maximum estimate error of P(C0, ts) – P(C1, ts) after 

perturbation.  Let the value of P(Ci, ts) estimated from the perturbed dataset be P% (Ci, ts).  

The estimate error of P(C0, ts) – P(C1, ts) is defined as 

 
s

e 0 s 1 s 0 s 1 s
,

( ) max | ( ( , ) ( , )) ( ( , ) ( , )) | .
t t

l h P C t P C t P C t P C t= − − −% %  (3.37) 

Based on these notions, we formally define the accuracy measure as follows. 

Definition 3.3.  The degree of error le for data classification is defined as the maximum 

value of le(h) on all sizes h.  That is, 

 e e
[1, ]

max ( ).
h n

l l h
∈

=  (3.38) 

Generally speaking, the degree of error measures the discrepancy between classifiers 

constructed from the original dataset and the perturbed dataset.  Recall that μ is a 

predetermined parameter used by the data warehouse server to compute the current 

system perturbation level k*.  Let there be A = T0′T0 – T1′T1.  We now derive an upper 

bound on the degree of error as follows. 

Theorem 3.3.  With our scheme, when m is sufficiently large, we have 
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 1
e
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,l

m

μσ≤  (3.39) 

where σ1 is the largest eigenvalue of A. 

Proof:  We first prove that in the cases where h is 1 or 2, there is le(h) ≤ 2μσ1/m.  The 

extension to the cases where h ≥ 3 can be proved in analogy to the extension (from |B| ≤ 

2 to |B| > 3) shown in the proof of Theorem 3.2. 

Similar to the proof of Theorem 3.2, we first introduce an intuitive explanation of 

matrix A.  Consider an element of A with indices 2i and 2j, respectively.  We have 

 
0 1

0 12 ,2 2 2 2 2
#{ , 1} #{ , 1},i j i ji j i j i j

t C t C

A t t t t C a a C a a
∈ ∈

= − = = = − = =∑ ∑  (3.40) 

where #{ ,      1} q i jC a a= = is the number of data tuples in Cq that satisfy ai = aj = 1.  

Note that for all ai and aj, there is 

 1 2
1 2

#{ , , }
Pr{ , , } .q i j

q i j

C a b a b
C a b a b

m

= =
= = =  (3.41) 

Thus, we have 

 
1 2

0 1 2 1 1 22 1 ,2 1
(Pr{ , , } Pr{ , , }).i j i ji b j b

A m C a b a b C a b a b
− + − +

= ⋅ = = − = =  (3.42) 

As we can see, le(1) is in proportion to the maximum error on the estimate of the 

diagonal elements of A, and le(2) is in proportion to the maximum error on the estimate 

of non-diagonal elements of A.  Let the matrix of perturbed data be TR.  Let the 



  51  

 

corresponding A derived from TR be AR.  We now derive an upper bound on maxij|〈A – 

AR〉ij|. 

Recall that in the first step of the perturbation, a data provider computes * *
i i k kt t V V ′=% .  

Let T%  be an m × 2n matrix composed of it%  (i.e., T%  = [ 1t% ; …; mt% ]).  iT%  and iA%  are defined 

correspondingly.  In our scheme, *
kV  contains the first k* eigenvectors of the current 

value of A*.  For the sake of simplicity, we consider *
kV  as the first k* eigenvectors of A.  

In real cases, the first k* eigenvectors of A* converge to those of A fairly quickly. 

Let *
kΣ  be a k* × k* diagonal matrix with diagonal elements be the first k* eigenvalues 

of A (i.e., the diagonal vector of *
kΣ  is [σ1, …, *k

σ ].  We have 

 * * * * * * *
0 0 1 1 0 0 1 1( ) .k k k k k k kA T T TT V V T T T T V V V V′ ′ ′ ′ ′′ ′= − = − = Σ% % % % %  (3.43) 

That is, A%  is the k*–truncation of A [28].  As such, A%  is the optimal rank-k* 

approximation of A in the sense that within all rank-k* matrices, A%  has the minimum 

2
A A− % .  In particular, we have 

 * 12
.

k
A A σ

+
− =%  (3.44) 

As we can see from the determination of system disclosure level k*, our scheme 

maintains a cutoff k* such that σk* + 1 ≤ μσ1.  Thus, we have 

 12
.A A μσ− ≤%  (3.45) 
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Since the absolute value of each element in an matrix is no larger than the 2-norm of the 

matrix [28], we have 

 12
max .

ij
A A A A μσ− ≤ − ≤% %  (3.46) 

As we can see from the computation of R(t), for any i, j ∈ [1, 2n], we have 

 ( )2 2
Exp ( ) ,

ii
t R t=%  (3.47) 

and 

 ( ) ( )Exp ( ) ( ) 2 ,
i j i j i j i j

t t R t R t t t t t− ≤ − % %  (3.48) 

where Exp(⋅) refers to the expected value.  When m is sufficiently large, we have le(h) ≤ 

2μσ1/m for h ≤ 2.  In analogy to the extension from |B| ≤ 2 to |B| > 3) in the proof of 

Theorem 3.2, we can prove that le(h) ≤ 2μσ1/m for all h ∈ [1, n]. � 

As we can see from the theorem, the upper bound on the degree of error is in 

proportion to parameter μ.  Thus, the data warehouse server can always control the 

accuracy of constructed classifier by adjusting μ. 

III.7 Experimental Results 

We now experimentally evaluate the performance of our scheme on real-world datasets.  

In particular, we compare the performance of our scheme with that of the randomization 

approach. 
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III.7.1 Association Rule Mining 

We first compare the performance of our scheme with that of the randomization 

approach in association rule mining.  We use a real dataset “BMS Webview 1” from 

Blue Martini Software.  The dataset contains several months’ click stream data from 

Gazelle.com, a leg-care web retailer that no longer exists.  We choose this dataset 

because it has been extensively used (e.g., in KDD Cup 2000) to test the real-world 

performance of association rule mining algorithms [64].  The dataset includes 59,602 

transactions and 497 items.  The maximum transaction size (i.e., number of items in a 

transaction) is 267.  There is no missing value in the dataset. 

In order to demonstrate the effectiveness of our scheme on mining frequent itemsets 

with different sizes, we set different minimum support thresholds (min_supp) for 

different sizes of itemsets.  In particular, we set min_supp = 3% for 1-itemsets (i.e., 

itemsets with one item), min_supp = 0.75% for 2-itemsets, and min_supp = 0.5% for 

itemsets with three or more items. 

In order to make a fair comparison between our scheme and the randomization 

approach, we measure the accuracy of mined frequent itemsets by an extensively used 

real-world accuracy measure: the number of false positives and false negatives.  False 

positives are infrequent itemsets that are misidentified as frequent.  False negatives are 

frequent itemsets that are not identified (as frequent) correctly.  We first compute the 

number of real frequent itemsets (represented by FR), the number of false positives 

(represented by FP), and the number of false negatives (represented by FN).  Then, we 

compute (FP + FN) / FR to measure the error of mined frequent itemsets. 
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To measure the level of privacy protection, we use the degree of privacy disclosure as 

defined in Definition 3.1.  Recall that our scheme has a parameter μ, which is determined 

by how accurate the data warehouse server wants the constructed data mining model to 

be.  We test the performance of our scheme when μ = 5%, 10%, 15%, and 20%, 

respectively.  The initial value of T* contains 497 transactions randomly generated such 

that an item has probability of 0.5% to be included in a transaction in T*.  The data 

warehouse server updates *
kV  when every 500 transactions are received.  The data 

warehouse server directly uses the received (perturbed) transactions as input to the 

association rule mining algorithm, which is the a priori algorithm in our experiment [29]. 
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Fig. 4. Performance Comparison in Association Rule Mining. 
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We compare the performance of our scheme with that of the randomization approach 

in Figure 4 and Figure 5.  As we can see from Figure 4, our scheme achieves a better 

tradeoff between privacy and accuracy at every configuration (from μ = 5% to μ = 20%).  

In order to demonstrate the effectiveness of our scheme on mining frequent itemsets with 

different sizes, in Figure 5, we compare the accuracy of our scheme with that of the 

randomization approach on mining frequent itemsets with 1, 2, and more than 3 items, 

respectively, while maintaining a privacy disclosure level of 20%.  As we can see, while 

both approaches perform perfectly on 1-itemsets, our scheme outperforms the 

randomization approach on 2-itemsets and itemsets with 3 or more items. 
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In Figure 6, we demonstrate the relationship between the system disclosure level and 

the number of transactions received by the data warehouse server.  As we can see from 

Figure 6, the system disclosure level k* decreases rapidly when more transactions are 

received.  In the experiment, we set μ = 10%.  Due to the results, the degree of privacy 

disclosure decreases to less than 30% when 2.5% transactions are received, and 

decreases further to less than 25% when 5.9% transactions are received. 
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Fig. 6. System Disclosure Level in Association Rule Mining. 
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In Figure 7, we show that our scheme tends to disclose only those items that are most 

necessary for data mining.  In particular, we compare the degree of privacy disclosure on 

items that have support less than 0.5% with items that have support larger than or equal 

to 0.5% when μ = 0.05, 0.10, 0.15, and 0.20, respectively.  As we can see from the 

experimental setting, items with support less than 0.5% will not appear in any frequent 

itemset, thus can be considered as “less necessary” for association rule mining.  Note 

that when the randomization approach is used, all items have the same (expected) degree 

of privacy disclosure.  As we can see from Figure 7, when our scheme is used, the 

amount of information disclosed about less necessary (i.e., infrequent) items (i.e., items 

with support less than 0.5%) is much less than information disclosed about (frequent) 

items that are most necessary for association rule mining. 
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Fig. 7. Demonstration of Minimum Necessary Rule. 
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III.7.2 Data Classification 

We first compare the performance of our scheme with that of the randomization 

approach in data classification.  Then, we present the simulation results of our scheme 

on a real dataset.  In order to make a fair comparison between the performance of our 

scheme and that of the randomization approach, we use the exact same training and 

testing datasets as in [4].  Please refer to [4] for a detailed description of the training 

dataset and the classification functions. The training dataset contains 100,000 data 

tuples. The testing dataset contains 5,000 data tuples. Each data tuple has nine attributes, 

including seven continuous attributes and two categorical ones.  Five widely-varied 

classification functions are used to measure the tradeoff between accuracy and privacy in 

different circumstances.  The randomization approach used is a combination of ByClass 

distribution reconstruction algorithm with Gaussian randomization operator [4], which 

performs the best in our experiment compared with other combinations proposed in [4] 

(i.e., combination of ByClass or Local algorithm with uniform or Gaussian distribution).  

We use the same classification algorithm, ID3 decision tree algorithm, as in [4]. 

Since our scheme assumes the dataset to contain only categorical data, we first need to 

transform continuous attributes to categorical ones.  In order to do so, we split the 

possible values of each continuous attribute into four intervals based on its 1st quartile 

(i.e., 25% percentile), median, and 3rd quartile (i.e., 75% percentile).  As such, each 

continuous attribute is transformed to a categorical attribute with 4 distinct values.  Since 

the two categorical attributes have 5 and 9 distinct values, respectively, each private data 
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tuple is represented by a 42-dimensional binary vector (Σj sj = 4 × 7 + 5 + 9 = 42) after 

the discretization process. 

To evaluate the accuracy of constructed classifiers, we use a real-world accuracy 

measure: the correction rate of testing data tuples classified by the decision trees 

constructed by our scheme and the randomization approach.  Figure 8 shows the 

comparison of correction rate while fixing the expected degree of privacy disclosure at 

25%.  In the figure, we use Fni to represent the i-th classification function.  Since our 

scheme allows different data providers to choose different levels of privacy disclosure, 

we compute the expected degree of privacy disclosure as the average value for all data 

providers.  In our scheme, the data warehouse server updates the system disclosure level 

k* and the perturbation guidance *
kV  once 100 data tuples are received.  As we can see, 

while both approaches perform perfectly on Function 1, our scheme outperforms the 

randomization approach on the other four functions. 
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Fig. 8. Performance Comparison in Data Classification. 



  60  

 

To demonstrate that our scheme is transparent to the classification algorithms, we also 

implement our scheme with the naïve Bayesian classification algorithm, and evaluate the 

performance on a real dataset.  In particular, we use the congressional voting records 

database from the UCI machine learning repository [10]. The original data source is the 

Congressional Quarterly Almanac, 98th Congress, 2nd session, 1984.  The dataset was 

donated by Jeff Schlimmer in 1987. The dataset includes 16 key votes for each member 

of the U.S. House of Representatives.  It includes 435 records with 16 attributes (all of 

which are binary) and a class label describing whether the congressman is a democrat or 

republican.  There are 61.38% democrats and 38.62% republicans in the dataset.  The 

goal of classification is to determine the party affiliation based on each member’s votes.  

There are 392 missing values in the dataset, which we substitute with values chosen 

uniformly at random from 0 and 1. 

Since each data tuple has 16 binary private attributes, each data tuple is represented by 

a 32-dimensional binary vector.  We first apply naïve Bayesian classification algorithm 

on the original dataset to build a naïve Bayesian classifier.  We then apply our scheme 

with 9 different degrees of privacy disclosure and build 9 classifiers on the perturbed 

datasets.  Then, we apply the same testing dataset to all 10 classifiers and compare their 

predictive accuracy.  The predictive accuracy of the classifier built on the original 

dataset is 90.34%.  In order to demonstrate the role of disclosure level ki in our scheme, 

we simulate our scheme when all data providers choose the same disclosure level ki = k*. 
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The predictive accuracy of classifiers built on perturbed datasets are shown in Figure 

9.  As we can see from the figure, when the degree of privacy disclosure is 9.56%, a 

naïve Bayesian classifier built on the perturbed dataset can predict the class label with 

correction rate of 85.99%.  Thus, our classification can effectively preserve privacy 

while maintaining the accuracy of constructed classifiers. 
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Fig. 9. Tradeoff between Accuracy and Privacy. 
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To demonstrate that the system disclosure level k* decreases rapidly during the 

collection of data tuples, we perform another simulation while fixing the parameter μ, 

which is used to compute k*.  Recall that generally speaking, the lower μ is, the more 

information is retained after perturbation.  For a given μ, we investigate the change of k* 

with the number of data tuples received by the data warehouse server (i.e., m*).  In most 

cases, k* becomes very small fairly soon.  For example, when μ = 15%, k* decreases to 

be 2 after 50 data tuples are received.  Figure 10 depicts the change of k* with m* when 

the degree of error is required to be very small (μ = 2.5%).  As we can see, even when 

the error is strictly bounded, k* still decreases fairly quickly when more data tuples are 

received. 

III.8 Implementation 

We present the implementation of our scheme and compare the runtime efficiency of our 

scheme with that of the randomization approach. 
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Fig. 10. System Disclosure Level in Data Classification. 
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III.8.1 System Realization 

A prototypical system for privacy-preserving data mining has been realized using our 

new scheme.  The goal of the system is to deliver an online survey solution that 

preserves the privacy of survey respondents.  The survey collector/analyzer and the 

survey respondents are modeled as the data warehouse server and the data providers, 

respectively.  The system consists of a perturbation guidance component on web servers 

and a data perturbation component on web browsers.  Both components are implemented 

as custom plug-ins that one can easily install to existing systems. 

As shown in Figure 11, the architecture of our system contains three separate layers: 

user interface layer, perturbation layer, and web layer.  The top layer, or user interface 

layer, provides interface to the data providers (i.e., clients) and the data warehouse 

server.  The middle layer, or perturbation layer, realizes our privacy-preserving scheme 

and exploits the bottom layer to transfer information.  In particular, before the 

perturbation guidance *
kV  is received by a data provider, the data perturbation 

component first encrypts the private data and caches it on the client machine.  When *
kV  

is received, the data perturbation component decrypts the cached data, perturbs it based 
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Fig. 11. System Implementation with Our Scheme. 
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on *
kV , and transmits the perturbed data to the data warehouse server.  The bottom layer, 

or web layer, consists of web servers and web browsers.  As an important feature of our 

system, the details of data perturbation on the middle layer are transparent to both the 

data providers and the data warehouse server.  Furthermore, the middle layer design on 

clients is independent of data mining tasks because the perturbation component of data 

providers does not vary for different data mining tasks. 

III.8.2 Runtime Efficiency 

We now compare the runtime efficiency of our scheme with that of the randomization 

approach.  In particular, we compare the computational cost, space complexity, and 

communication overhead of both approaches, respectively.  Without loss of generality, 

we make the comparison for privacy-preserving data classification problem.   

For the randomization approach, we use the method proposed in [4] as an example.  

As other randomization-based methods, this method requires the original data 

distribution to be reconstructed before a decision tree classifier can be built on the 

randomized data.  The distribution reconstruction process can be done by different 

algorithms.  We use the ByClass reconstruction algorithm [4] as an example because it 

offers a tradeoff between efficiency and accuracy of reconstructed distribution.  As 

stated in [4], the time complexity of the algorithm is O(mn + nv2) where m is the number 

of training data tuples, n is the number of private attributes in a data tuple, and v is the 

number of intervals on each attribute, which is assumed to be 10 ≤ v ≤ 100 in [4].  Note 

that the computation-intensive part of randomization approach occurs on the critical time 
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path, as the distribution reconstruction has to be performed after all data tuples are 

collected and before a classifier can be constructed. 

In our scheme, the perturbed data tuples are directly used to construct data mining 

models.  The only computational overhead incurred on the data warehouse server is to 

update the system disclosure level k* and the perturbation guidance *
kV .  The time 

complexity of each updating process is O(n2). As we mentioned in the design of our 

scheme, the data warehouse server may only need to update k* and *
kV  once several data 

tuples are received.  Since the number of attributes (i.e., n) is much less than the number 

of data tuples (i.e., m), the overhead of our scheme is significantly less than the overhead 

of the randomization approach.  Besides, the computational overhead of our scheme 

does not occur on the critical time path.  Instead, it occurs during the collection of data. 

In terms of space requirement, the randomization approach only needs to keep in 

memory the number of perturbed data in each interval of each attribute.  Thus, the space 

complexity of the randomization approach is O(nv).  Our scheme is space-efficient too.  

As we can see, the space needed by our scheme (to compute k* and *
kV ) is O(n2).  Since 

both n and v are smaller than m in most systems, the space requirement of either 

approach is insignificant. 

In terms of communication efficiency, the randomization approach has the minimum 

possible communication overhead of O(n) per data provider.  For our scheme, the data 

providers and the data warehouse server needs to exchange the maximum acceptable 

disclosure level and the perturbation guidance.  Nonetheless, since the disclosure level k* 

is a small number (a heuristic average value of k* is an order less than n) for most data 
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providers, the communication overhead (O(nk) per data provider) of the exchange is 

insignificant.  There may be concern on the upstream traffic (i.e., transmission of 

perturbed data) from the data providers to the data warehouse server when there are 

many distinct values for each attribute of the data tuple.  In this case, the sparse nature of 

R(ti) provides an efficient way to encode R(ti) as a list of nonzero elements.  Thereby, the 

overhead of transmitting R(ti) can be substantially reduced.  For example, when the 

perturbed data tuple has the 9th and 12th bits equal to 1 and all other bits equal to 0, the 

data provider can transmit indices 9, 12 rather than the original binary tuple.  If this 

encoding mechanism is used, the complexity of the upstream traffic is O(n). 

III.9 Summary 

In this chapter, we propose a new scheme on privacy-preserving data mining and 

implement it to solve the privacy-preserving association rule mining and the privacy-

preserving data classification problems.  Compared with previous approaches, our 

scheme introduces a two-way communication mechanism between the data warehouse 

server and the data providers with little overhead.  In particular, we let the data 

warehouse server send perturbation guidance to the data providers.  Using this 

intelligence, the data providers perturb their data in a way that the private information 

transmitted to the data warehouse server is the most necessary part for data mining.  As a 

result, our scheme offers a better tradeoff between accuracy and privacy.  Also, we avoid 

the computationally expensive distribution reconstruction process on the critical time 

path, and distribute the computational load into the data collection process. 
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CHAPTER IV 

INFERENCE CONTROL PROTOCOL* 

In order to protect the private data stored in the data warehouse server, we need to 

control the private information disclosed to the data mining servers through answers to 

online analytical processing (OLAP) queries.  Inference control protocol is designed for 

this purpose.  Inference control protocol has two objectives: 1) to prevent a data mining 

server from inferring private information that it does not have the right to access, and 2) 

to answer queries (from data mining servers) that are necessary for data mining.  In this 

chapter, we present the design of inference control protocols.  As we mentioned in 

Chapter II, inference control protocol can be either query-oriented or data-oriented.  

Query-oriented protocols either accept a query or reject it, while data-oriented protocols 

generally add noise to query answers.  In this study, we focus on query-oriented 

protocols due to the following reasons. 

• As we mentioned in Chapter II, in the systems where original (unperturbed) data 

must be stored in the data warehouse server, data-oriented approach generally 

suffers from efficiency problems.  Thus, query-oriented approach is a better 

choice for such systems. 

• In the systems where data stored in the data warehouse server can be perturbed, 

our data collection protocol proposed in Chapter III can (by itself) guarantee the 

                                                

* Part of the data reported in this chapter is reprinted with permission from “Cardinality-based Inference 
Control in OLAP Systems: An Information Theoretic Approach” by Nan Zhang, Jianer Chen, and Wei 
Zhao, 2004.  Proceedings of the ACM International Workshop on Data Warehousing and OLAP, Pages 
59-64.  Copyright 2004 by ACM Press. 
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protection of individual private data.  Recall that data collected by our data 

collection protocol can be directly used in data mining.  Thus, the inference 

control protocol is no longer needed in such systems.  We will exam the design 

of such systems more thoroughly in Chapter VI. 

IV.1 System Model 

We first introduce the system model for inference control protocol.  Recall that in the 

system, there is one data warehouse server and multiple data mining servers.  The data 

warehouse server is supposed to answer OLAP queries issued by the data mining servers 

on the data stored in the data warehouse.  The purpose is for the data mining servers to 

construct accurate data mining models based on the query answers.  The data warehouse 

server has no knowledge about the data mining tasks performed by the data mining 

servers. 

Privacy concern exists in the system, as part of the data stored in the data warehouse 

can be private, and thus should not be accessed by the data mining servers.  For each 

data mining server, there are certain data points in the data warehouse that it can access, 

and others that it cannot.  Note that even for data points that a data mining server cannot 

access, the data mining server may still send OLAP queries over the aggregate of such 

inaccessible data in order to support data mining. 

Due to the minimum necessary rule, the inference control protocol should only allow 

the data mining servers to learn the minimum private information necessary for data 

mining.  Thus, the objective of the inference control protocol is to ensure that a data 

mining server cannot infer any inaccessible data point based on the query answers and 
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the data points it can access, while allowing the data mining servers to construct accurate 

data mining models. 

IV.2 Performance Measurement 

We now define the performance measures for inference control protocol.  Due to the 

objectives of inference control protocol, the performance should be measured in terms of 

both privacy protection and support for data mining tasks (i.e., information availability 

to the data mining servers).  We define the privacy disclosure level and the information 

availability level as the measures of privacy protection and information availability, 

respectively. 

For each data point c in the data warehouse (i.e., each cell in the data cube), the 

privacy disclosure level of c is defined as the percentage of private information in c that 

is disclosed to a data mining server.  Formally speaking, the definition of privacy 

disclosure level can be stated as follows. 

Definition 4.1.  The privacy disclosure level μc on a data point c is defined as 

 
( ; )

,
( )c

I c

H c
μ Ω=  (4.1) 

where H(c) is the information entropy of c, Ω is the set of all query answers issued to a 

data mining server, and I(c; Ω) is the mutual information between c and Ω. 

Generally speaking, the entropy H(c) measures how much information is contained in 

c, and the mutual information I(c; Ω) measures how much information about c can be 

inferred from Ω.  As such, the privacy disclosure level μc measures the percentage of 

private information in c that is disclosed to a data mining server. 
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Based on the privacy disclosure level, we can define the maximum privacy disclosure 

level μ, which is pre-determined by the data warehouse server as the maximum 

acceptable level of privacy disclosure.  For all data points c in X, there is 

 .cμ μ<  (4.2) 

Recall that the data warehouse server needs to support various data mining tasks (and 

answer various queries) of the data mining servers.  Therefore, we need to measure the 

information availability level based on specific queries requested by the data mining 

servers.  Since we focus on query-oriented protocols, we measure the information 

availability level by the percentage of queries submitted by a data mining server that are 

correctly answered by the data warehouse server. 

IV.3 Protocol Design 

We first introduce some basic notions.  Then, we present a cardinality-based inference 

control protocol that supports all common OLAP operations, and can protect private data 

from being compromised by the data mining servers. 

TABLE 6 

Example of Data Cube 

Sales (× $100) Jan Feb Mar Sum 
Book 192 Known 220 SB 

Used Book Known 20 Known SU 
CD Known 30 87 SD 

Video 168 Known 96 ST 
Sum S1 S2 S3  
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IV.3.1 Based Notions 

Data stored in the data warehouse are organized in well-disciplined physical structures.  

A commonly used physical structure is data cube [29].  A 2-dimensional 4×3 data cube 

is shown in Table 6 as an example.  Suppose that the data warehouse contains an n-

dimensional d1 × d2 × ··· × dn data cube X.  Each data point in the data cube is called a 

cell of X.  Note that certain cells in the data cube are marked as “Known”.  These cells 

are the data points that can be accessed by the data mining servers.  Since the data 

mining servers can freely access these data points, and may even learn such data from 

external knowledge, we follow a conventional (and conservative) security assumption 

that the data mining servers already know these data points as pre-knowledge. 

Recall that in order to satisfy the online response time requirement, the OLAP queries 

on X are restricted to those that can be derived from the predefined cuboids of X [29].  

 

Fig. 12. Lattice of Cuboids. 
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Figure 12 shows a data cube and the lattice of cuboids of the data cube.  Each cuboid 

shows a view of the data cube at different aggregation (i.e., group by) level.  The lattice 

of these cuboids uniquely determines the schema of the data cube.  In general, an n-

dimensional data cube X has 2n cuboids.  A cuboid is k-dimensional if it is aggregated by 

k dimensions (i.e., group-by by k attributes).  The 0-dimensional cuboid represents the 

aggregate of all data points in X, while each n-dimensional cuboid is a cell of X. 

Based on the definition of cuboid, we can define an OLAP query Qi by a 2-tuple 〈Pi, 

Ci〉, where Pi is the query operation (e.g., SUM) and Ci is the cuboid covered by the 

query.  A query is k-dimensional if it covers an (n – k)-dimensional cuboid. 

Given the cuboid definition, we now define the compromiseability of a cuboid.  

Generally speaking, the compromiseability of a cuboid C measures how difficult it is for 

a data mining server to compromise private information contained in the cuboid.  The 

greater the compromiseability of C is, the more difficult it is for a data mining server to 

compromise a private cell in C. 

Definition 4.2.  Suppose that C is a k-dimensional cuboid in an n-dimensional data cube.  

The compromiseability of C, denoted by l, is defined as follows. 

• If k ≥ n – 1, the compromiseability of C is the number of private cells in C. 

• If k < n – 1, the compromiseability of C is defined as 

 min .
i

i
C

l l
∈Ω

=  (4.3) 

where li is the compromiseability of Ci, and Ω is the set of all (k + 1)-dimensional 

cuboids contained in C (i.e., connected to C in the lattice of cuboids). 
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IV.3.2 A Cardinality-based Protocol 

We now present a cardinality-based inference control protocol.  The protocol is 

cardinality-based in that it determines whether a query should be answered based on the 

number of private cells covered by the query.  Before presenting the protocol, we first 

introduce the assumptions made in the design of the protocol.  The correctness of the 

protocol is proved in the theoretical analysis part of the chapter. 

In the design of this protocol, we make the following assumptions. 

• The query operation is SUM, MIN, or MAX. 

• The maximum privacy disclosure level μ = 1.  That is, a private data point is 

considered to be compromised by a data mining server if and only if the data 

mining server can infer the precise value of the data point. 

As we can see from the first assumption, our protocol covers most of the commonly 

used operations in OLAP queries: SUM, MEAN (which can be derived from SUM), 

MAX, and MIN.  The second assumption is a simplified assumption, as the value of μ is 

less than 1 in most real system.  Nonetheless, we argue that this assumption is still 

reasonable in the design of inference control protocol due to the following reasons: 

• Query-oriented inference control protocol is inherently over-conservative.  Recall 

that as we mentioned in Chapter II, no unsafe query will be allowed by a query-

oriented protocol.  Nonetheless, queries that are indeed safe may often be 

rejected.  Thus, even if we set the maximum privacy disclosure level to be 1, in 

most cases, the data mining server still cannot infer private information from the 

query answers. 
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• Realizing a system with μ < 1 requires analysis on the values (rather than the 

schema) of data stored in the data warehouse server.  Such analysis may result in 

an efficiency problem.  Consider a 100 × 100 2-dimensional data cube.  If the 

MAX queries on a row and a column return the same value, a data mining server 

may infer that with a fairly high probability, the cross cell of the row and the 

column is the answer of the queries.  If μ < 1, such inference is very likely to be 

considered as privacy breach.  Nonetheless, in order to identify such privacy 

breach, one must analyze the values of the query answers as well as the values of 

the cells covered by the queries.  Apparently, it will result in significant overhead 

to access the values of individual data at run-time.  It remains a challenging 

problem to design an efficient inference control protocol that supports μ < 1 and 

is capable of providing sufficient information availability. 

Based on the assumptions, our inference control protocol is consisted of two steps: an 

offline pre-processing step and an online inference control step.  The offline pre-

processing step is performed before any query is received.  In this step, the data 

warehouse server computes intermediate results that will be used in the online inference 

control step.  After the completion of this step, when a query is received from a data 

mining server, the data warehouse server performs the online inference control step to 

determine whether to answer the query or to reject it.  The algorithms of these two steps 

are shown in Table 7, respectively. 
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As we can see from the two algorithms, the data warehouse server maintains two data 

structures for each cuboid C in X: the compromiseability l and the cardinality bound b.  

Recall that as defined in Definition 4.2, the compromiseability measures how difficult it 

is for a data mining server to compromise private cells in C.  The cardinality bound b is 

an upper bound on the number of known cells (i.e., non-private cells that can be 

accessed by the data mining server) in C, such that as long as the number of known cells 

TABLE 7 

A Cardinality-based Protocol 

Offline pre-processing algorithm: 
Input: an n-dimensional data cube X (n ≥ 2), a predetermined compromiseability l0. 
Output: cardinality bounds bj for all k-dimensional cuboids (k ≤ n – 2) in X. 

1. for k � n-2 down to 0 do 
2.     for every k-dimensional d1 × ··· × dk cuboid Cj in X do 
3.         compute l as the compromiseability of Cj; 
4.         l = max(l, l0); 

5.         compute bj as 1

1
( ) 1

n k n k n k

i ijb l d n k l
− − − −

=
= ∑ − − − ; 

6.     end for 
7. end for 

Online query restriction algorithm: 
Input: CQ: cuboid covered by the recently received query Q, bj computed offline. 
Output: whether the query will be answered. 
Note: the cardinality bound b of each cuboid is a global variable (i.e., change of b 
in each call will be kept in the future). 

1. Let CQ be (x1, …, xn-k, ALL, …, ALL). 
2. Compute bQ as the number of known cells aggregated in Q; 
3. Compute lQ as the compromiseability of CQ; 
4. for i � 1 to n – k – 1 do 
5.     Let C = (x1, …, xi-1, ALL, xi+1, …, xn-k, ALL, …, ALL); 
6.     Compute b as the (current) cardinality bound of C; 
7.     b = b – bQ. 
8.     if b ≤ 0 or lQ > l0 then 
9.         Reject the query; 
10.         exit; 
11.     end if 
12. end for 
13. Answer the query; 
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in C is less than or equal to b, no data point in C can be inferred from the set of all query 

answers on X.  The correctness of b will be proved in the latter portion of the chapter. 

The basic idea of our protocol can be stated as follows.  First, we make an observation 

that if a known cell has never been included in any query, then a data mining server 

cannot take advantage of the known cell and infer any private data from it.  Therefore, 

we call a cuboid safe if the number of known cells in the cuboid that have been covered 

by at least one query is less than the cardinality bound of the cuboid.  Note that the safe 

state of a cuboid depends on the query history and may change when new queries are 

answered.  Due to our definition of the cardinality bound, no privacy breach exist in a 

(currently) safe cuboid. 

Another observation is that a k-dimensional cuboid is safe if every (k + 1)-dimensional 

cuboid it contains is safe.  For example, in Figure 12, (age= 20, all, all) contains (age= 

20, salary= 50, 000, all)).  We will justify this observation in the theoretical analysis part 

of the chapter. 

Based on these two observations, we introduce an offline pre-processing algorithm to 

the materialization of cuboids [29].  During the materialization of any k-dimensional 

cuboid C, we compute the cardinality bound b for C.  When an h-dimensional query (on 

an (n – h)-dimensional cuboid CQ) is received, our protocol does the following things. 

1. Our protocol determines if the answer to h alone (i.e., without the help of query 

history) will allow a data mining server to infer private information from it4. 

                                                

4 This is tacitly checked in Step 8 of the online query restriction algorithm by asserting lQ > l0. 



  77  

 

2. If not, our protocol determines if every (n – h – 1)-dimensional cuboid that 

contains CQ is safe.  If all such cuboids are safe, then due to the above-mentioned 

first observation, all cuboids with dimensionality smaller than n – h are safe.  

Thus, the query can be safely answered.  Otherwise, the query is rejected 

As we can see, the key issue in the design of our protocol is to properly decide the 

“cardinality bound” b so that more queries can be answered without privacy disclosure.  

Given an n-dimensional data cube X, we prove that a k-dimensional cuboid C is safe if it 

satisfies 

 1

1

( ) 1,
n k

n k n k
i

i

b l d n k l
−

− − −

=
< − − −∑  (4.4) 

where d1, d2, . . . , dn–k are the dimension domains of C (i.e., C is d1 × d2 × … × dn–k), and 

l is the compromiseability of C.  This result is used in Step 5 of the offline pre-

processing algorithm.  We will prove the correctness of this statement in the theoretical 

analysis.  As we can see from (4.4), the result in [58] is actually a special case of our 

result when l = 2 and the dimensionality of the cuboid is equal to n – 2. 

IV.4 Theoretical Analysis 

We now prove the correctness of our inference control protocol.  In order to do so, we 

first formulate the inference control problem in an information-theoretic manner.  

Readers unfamiliar with information theory are referred to the literature (e.g., [13]) for 

details. 

Lemma 4.1. Given an n-dimensional data cube X, privacy breach occurs in X if and only 

if there is a private cell x0 in X with 
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 0( | AQ) 0,H x =  (4.5) 

where AQ is the set of answers to queries, and H(x0|AQ) is the conditional entropy of x0 

based on AQ. 

We now transform the conditional entropy of x0 to the conditional entropy of answers 

to queries, which is much easier to analyze. For a given cell x0 in X, we have 

 0 0 0( | AQ) 0 (AQ) (AQ | ) ( ).H x H H x H x= ⇔ − =  (4.6) 

Lemma 4.2.  Privacy breach occurs in X if and only if there exists a private cell x0 in X 

with 

 0 0(AQ) (AQ | ) ( ).H H x H x− =  (4.7) 

For all possible data cubes X with t0 known cells, Let fmax(t0) and fmin(t0) be the 

maximum and minimum entropies of answers to all queries on X, respectively.  We have 

the following theorem 

Theorem 4.3. Given an n-dimensional data cube X with t0 known cells, no privacy 

breach occurs in X if for every private cell x0, we have 

 max 0 min 0 0( ) ( 1) ( ).f t f t H x− + <  (4.8) 

Proof:  Due to Lemma 4.2, no privacy breach occurs if for every private cell x0, there is 

 0 0(AQ) (AQ | ) ( ).H H x H x− <  (4.9) 

Given x0, we can construct a new data cube X′ that is the same as X except that x0 is 

known by the data mining servers.  Let AQ′ be the set of answers to queries on X′.  Due 

to the definition of conditional entropy, we have 

 0(AQ | ) (AQ ).H x H ′=  (4.10) 



  79  

 

Due to the definition of fmax and fmin, we have 

 max 0(AQ) ( ).H f t≤  (4.11) 

 0 min 0(AQ | ) (AQ ) ( 1).H x H f t′= ≥ +  (4.12) 

In other words, no privacy breach occurs in X if for every private cell x0, we have 

 max 0 min 0 0( ) ( 1) ( ).f t f t H x− + <  (4.13) 

 � 

In order to simplify the discussion, hereafter we use H(x) to denote the minimum 

entropy of all private cells.  Due to the definition of information entropy, for any given 

query Q with operator SUM, MIN, or MAX, the entropy of answer to Q satisfies H(x) ≤ 

H(AQ) ≤ H(x) + O(log |Q|), where |Q| is the number of private cells covered by Q.  Since 

H(x) is the entropy of a private cell, we can safely assume that H(x) � log |Q|. In other 

words,  

 (AQ) ( ).H H x≈  (4.14) 

We now derive an upper bound on fmax and a lower bound on fmin as follows. 

Theorem 4.4.  There is 

 max
1

( ) 1 ( ).
n

j
j

f t d n H x
=

⎛ ⎞
≤ − +⎜ ⎟
⎝ ⎠
∑  (4.15) 

The theorem can be easily proved based on the properties of SUM, MIN, and MAX.  

In order to derive a lower bound on fmin, we have the following theorem, which 

introduces a concept called maximum compromiseable data cubes. 



  80  

 

Definition 4.3. (Maximum compromiseable Data Cube) An n-dimensional d1 × d2 × ··· × 

dn data cube X is maximum compromiseable if and only if there exists 0 < l ≤ ⎣(mini 

di)/2⎦, such that  

1. all cells with all indices less than or equal to l are private. 

2. all cells with at least two indices greater than l are private. 

3. all other cells are known by the data mining servers 

As we can see, l is the compromiseability of X.  Figure 13 shows two examples of 

maximum compromiseable data cubes.  Based on the definition of maximum 

compromiseable data cube, we have the following theorem. 

Theorem 4.5. Let X and X0 be n-dimensional d1 × d2 × ··· × dn data cubes.  Suppose that 

X0 is a maximum compromiseable data cube with compromiseability of l0 > 1.  Let the 

number of known cells in X and X0 be t(X) and t(X0), respectively.  If a data cube X 

satisfies 

1. the compromiseability of X: l = l0, 

 

Fig. 13. Maximum Compromiseable Data Cubes. 
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2. If l < min(d1, …, dn)/2, t(X) < t(X0) – 1, 

3. If l ≥ min(d1, …, dn)/2, t(X) ≤ t(X0), 

then we have 

 
1

(AQ) 1 ( ).
n

j
j

H d H x
=

⎛ ⎞
≥ −⎜ ⎟
⎝ ⎠
∑  (4.16) 

Proof: In order to simplify the discussion and help readers better understand our 

derivation, we prove this theorem on 2-dimensional data cubes. Readers may easily 

extend this proof to n-dimensional cases. 

Suppose that a d1 × d2 data cube X does not satisfy (4.16). In other words, 

 1 2(AQ) ( 1) ( ).H d d H x< + −  (4.17) 

Then, there exists a proper subset of AQ, denoted by AQ0, such that 

1. There exists a query answer in AQ0, denoted by S, which can be derived from 

other query answers in AQ0. In other words, there exists S ∈ AQ0 such that 

H(S|AQ0\S) = 0. 

2. No such query answer exists in any proper set of AQ0.  In other words, for any 

AQ0′ ⊆ AQ0, we have 

 0 0AQ , ( | AQ \ ) 0.S H S S′ ′∀ ∈ >  (4.18) 

Without loss of generality, we assume that AQ0 consists of S1, …, Sr1 and S′1, …, S′r2 

(this can be easily achieved by interchanging two rows or columns of X). A key point 

here is 

Proposition 4.6.  For all i1 > r1 and j1 < r2, ui1,j1 = 1.  For all i2 < r1 and j2 > r2, ui2,j2 = 1. 
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Proof: Suppose there exist i1 > r1 and j1 < r2 such that ui1,j1 = 0.  Then, we have mutual 

information 

 2 1, 1 0 2( ; | AQ \ ) 0.r i j rI S x S′ ′ >  (4.19) 

In other words, S′r2 cannot be derived from AQ0\S′r2.  For any other S that satisfies 

H(S|AQ0\S) = 0, we have H(S|AQ0\S, S′r2) = 0.  Nonetheless, this contradicts the 

condition that no such query answer exists in any proper set of AQ0. Thus, there does not 

exist any i1 > r1 and j1 < r2 such that ui1,j1 = 0. Similarly, we can prove that for all i2 < r1 

and j2 > r2, ui2,j2 = 1. 

Based on the definition of compromiseability, we have r1, r2 ≥ l.  Due to Definition 

4.3, if l > min (⎣d1/2⎦, ⎣d2/2⎦), we have t(X) > t(X0).  If l ≤ min (⎣d1/2⎦, ⎣d2/2⎦), we have 

 2
1 2 2 2 1 1 1 2 0( ) ( ) ( ) ( ) 2 ( ).t X r d r r d r k d d k t X≥ − + − ≥ + − =  (4.20) 

However, this contradicts our assumptions that t(X) < t(X0) – 1 when l < min(d1, …, 

dn)/2, and t(X) ≤ t(X0) when l ≥ min(d1, …, dn)/2.  Thus, we have 

 1 2(AQ) ( 1) ( ).H d d H x≥ + −  (4.21) 

 � 

Theorem 4.6. Given an n-dimensional data cube X with compromiseability l > 1, no 

private data point in X will be compromised if t(X) < ln–1 Σdj – nln – 1, where t(X) is the 

number of known cells in X. 

Proof:  We first consider the case where l < min(d1, …, dn)/2.  Note that a maximum 

compromiseable data cube X0 with compromiseability l < min(d1, …, dn)/2 satisfies t(X0) 

= ln–1 Σdj – nln.  Due to Theorem 4.5, for all data cube X with t(X) < t(X0) – 1, we have 
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 min
1

( ) 1 ( ).
n

j
j

f t d n H x
=

⎛ ⎞
≥ − +⎜ ⎟
⎝ ⎠
∑  (4.22) 

Due to (4.15), 

 max
1

( ) 1 ( ).
n

j
j

f t d n H x
=

⎛ ⎞
≤ − +⎜ ⎟
⎝ ⎠
∑  (4.23) 

Thus, for t < ln–1 Σdj – nln – 1, we have 

 max 0 min 0 0( ) ( 1) ( ).f t f t H x− + <  (4.24) 

Due to Theorem 4.3, no privacy breach occurs in X.   When l ≥ min(d1, …, dn)/2, the 

theorem can be similarly proved using Theorem 4.3 and Theorem 4.5. � 

IV.5 Summary 

In this chapter, we propose an inference control protocol based on information-theoretic 

approach.  In comparison with previous approaches, our scheme introduces an offline 

pre-processing algorithm which can be readily integrated into the materialization of 

cuboids.  Our scheme also includes an online query restriction algorithm to enhance the 

support for data mining servers while maintaining data privacy. An upper bound on the 

cardinality of cells known by the data mining servers is derived to guarantee the safety 

of a data cube. 
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CHAPTER V 

INFORMATION SHARING PROTOCOL* 

In order to protect the privacy of data from being disclosed in information sharing, we 

need to control the private information shared between different data mining servers.  

Information sharing protocol is designed for this purpose.  Information sharing protocol 

has two objectives: 1) to prevent a data mining server from compromising the private 

information of another data mining server, and 2) to allow the data mining servers to 

generate accurate information sharing results.  In this chapter, we present the design and 

analyze the performance of information sharing protocols. 

In this study, we focus on the two-party set intersection problem, in which two data 

mining servers collaborate to share the intersection of their datasets (i.e., local data 

mining models, e.g., association rules).  Intersection is one of the most important 

problems in information sharing.  Intersection protocols have been widely used as a 

primitive in many data mining applications including classification, association rule 

mining, etc.  Nevertheless, we remark that our goal in this study is not to design 

solutions for specific information sharing problems.  Rather, we are using the 

intersection problem as an example to demonstrate our methodology to deal with real-

world adversaries in information sharing of privacy-preserving data mining systems. 

                                                

* Part of the data reported in this chapter is reprinted with permission from “Distributed Privacy Preserving 
Information Sharing” by Nan Zhang and Wei Zhao, 2005.  Proceedings of the International Conference 
on Very Large Data Bases, Pages 889-900.  Copyright 2005 by ACM Press. 
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V.1 System Model 

V.1.1 Parties 

Let there be two data mining servers P0 and P1 in the system that we refer to as parties.  

In this chapter, unless otherwise indicated, we assume that P1 intends to compromise the 

privacy of P0 while P0 does not have such intent.  Thus, we call P0 as the defending 

party and P1 as the adversary.  Neither party knows if the other party is an adversary. 

Each party Pi has a private dataset Vi which contains numerous data points.  Note that 

the word “data” in this chapter has a different meaning from that in previous chapters.  

In this chapter, we use data to represent the information that needs to be shared.  In most 

cases, the data are the local data mining models, rather than the original data being 

mined (as in previous chapters). 

Since the parties are supposed to share the intersection of their datasets, we assume 

that no data value appears more than once in the same dataset.  As is commonly assumed 

in the literature, each data point in Vi is chosen independently and randomly from a 

(much larger) set V, which contains all possible values v1, …, vm.  We use pij to denote 

the probability that a data point vj in V appears in Vi.  For the simplicity of discussion, we 

assume that for all 0 ≤ i ≤ 1 and 1 ≤ j ≤ m, there is  pij = p.  Both parties know V and p.  

Nevertheless, neither party knows the size or content of the dataset of the other party. 

V.1.2 Problem Statement 

In an ideal situation, both parties should obtain V0 ∩ V1 and nothing else at the end of the 

information sharing process.  In reality, this requirement is often relaxed.  A common 

compromise is to allow each party to learn the size of the dataset of the other party after 
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information sharing [3].  As such, we say a system is secure if after information sharing, 

both parties obtain V0 ∩ V1, the size of the dataset of the other party, and nothing else.  

We define the privacy of party P0 as 

 P
0 0 0 1 0 1\ ( ) \ .V V V V V V= =I  (5.1) 

Note that when P1 (maliciously) changes its input dataset to V1′, the privacy of P0 does 

not change because we define V0
P based on the real datasets instead of the input datasets.  

For example, when P1 is a malicious adversary with no data to share (i.e., V1 = ∅, where 

∅ is the empty set), the privacy of P0 should always be V0 no matter what dataset P1 

manipulates to be its input to information sharing. 

The objective of information sharing is to let both parties know V0 ∩ V1 and protect 

V0
P from being compromised by P1. 

V.1.3 System Infrastructure 

There is an information sharing protocol jointly agreed by all parties.  We assume that 

for each party, there is a local processing module that processes the dataset of the party 

and exchanges information with (the local processing module of) the other party.  The 

information sharing protocol is implemented by the processing of and the 

communication between the local processing modules of the two parties.  Figure 14 

 

Fig. 14. System Infrastructure of Information Sharing. 
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shows an information sharing system under this framework.  As in common cases, we 

assume that the defending party will quit the protocol immediately if it can prove that the 

other party is an adversary. 

Nevertheless, in order to model the threats from real-world adversaries, we do not 

impose any obligatory behavior restriction on either party.  We say that a party changes 

its input dataset if the party manipulates a dataset as the input to its local processing 

module.  We say a party revises its local processing module if the party deviates from 

the protocol by other means. 

V.1.4 Strategies of Adversaries and Defending Parties 

In the system, each party needs to choose 

• the (possibly manipulated) input to its local processing module, and 

• the (possibly revised) local processing module. 

In addition, an adversary also needs to generate a reconstructed dataset 0V%  that contains 

all data points the adversary believes to be in V0
P. 

As such, the attacking method of an adversary is to choose a combination of 1) the 

methods of manipulating its input dataset, 2) the modification of its local processing 

module, and 3) the generation of the reconstructed dataset.  Since a defending party does 

not intend to compromise privacy, the defensive countermeasure of a defending party is 

limited to the former two methods. The attacking methods and defensive 

countermeasures will be further addressed in the latter portion of the chapter. 
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V.2 Performance Measurement 

Given the attacking method and the defensive countermeasure, we need to measure the 

accuracy of information sharing result and the amount of privacy disclosure in 

information sharing. 

V.2.1 Accuracy Measurement 

We first present the accuracy measure of the system.  Let sA and sD be the attacking 

strategy of the adversary and the defensive countermeasure of the defending party, 

respectively.  We propose an accuracy measure la(sA, sD) as follows to indicate the 

success of information sharing. 

 0 1
a A D

1, if both party obtain 
( , )

0, otherwise

V V
l s s

⎧
= ⎨
⎩

I
 (5.2) 

Readers may wonder why we do not measure la continuously based on how many data 

points in V0 ∩ V1 are successfully obtained by both parties, or how many parties 

successfully obtain V0 ∩ V1.  In other words, why do we consider partially accurate 

information sharing results as completely useless?  It is true that in certain systems, 

partially accurate results are still valuable.  We will discuss the extension of our results 

to these systems in the latter part of this chapter.  However, we argue that for most cases, 

only the completely accurate information sharing results are desired by both parties.  For 

example, consider the case where a government agency needs to intersect its list of 

(suspicious) terrorists with the passenger list of an airline company.  One unidentified 

terrorist is enough for the failure of information sharing.  In this case, partially accurate 

information sharing results are practically meaningless to the participating parties. 
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Furthermore, if partially accurate information sharing results are acceptable, the 

participating parties may use probabilistic approaches to randomize their data before 

sharing them, or share the statistical properties of their data, instead of using the 

information sharing approaches discussed in this chapter, which is generally more 

computationally expensive.  Since in our problem statement, we assume that both parties 

want the precise V0 ∩ V1, the discussion of such probabilistic approaches is out of the 

scope of our study.  Readers may refer to [51] for related work in statistical databases. 

V.2.2 Privacy Measurement 

Recall that 0V%  is the set of data points that the adversary believes to be in V0
P and uses to 

perform unauthorized intrusion against the defending party.  As such, a straightforward 

measure of privacy disclosure is the number of private data points in 0V% .  Let Exp[·] be 

the expected value of a random variable.  Since 0V%  may be randomly generated by the 

adversary, we formalize this measure as 

 
0

0 0

A D

0

( , ) Exp ,
P

P
V

V V
s s

V
α

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

%

% I
 (5.3) 

which is the expected percentage of private data points included in 0V% .  This measure is 

also referred to as recall in information retrieval [8].  Readers may raise a question of 

why we do not measure the maximum number of private data points in 0V% , but measure 

the expected number instead.  We believe that it is ineffective to measure the worst case 

situation.  The reason is as follows:  consider an attacking method which randomly 

generates 0V%  from V.  For any given system, it is always possible for the adversary to 
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generate 0V%  = V0
P.  As such, the worst case privacy disclosure is always 100% of the 

private data. 

Since the defending party may also change its input dataset, we note that there may 

also exist data points in 0V%  which are not in V0 (i.e., false positives).  As such, there is 

another measure of privacy disclosure 

 
0

0 0

A D

0

( , ) Exp .
P

V

V V
s s

V
β

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

%

% I

%
 (5.4) 

This measure is also referred to as precision in information retrieval [8].  For the same 

reason as α(sA, sD), we measure the expected value instead of the worst case situation.  

Note that β(sA, sD) is also important for measuring privacy disclosure because if only 

α(sA, sD) is used to measure the privacy disclosure, the maximum privacy disclosure 

(i.e., α(sA, sD) = 1) can occur when the adversary generates 0V%  = V. 

As we can see, the amount of private information obtained by the adversary cannot be 

determined by either α(sA, sD) or β(sA, sD) unitarily, but can be determined by the 

combination of them.  This results in a problem comparing the amount of privacy 

disclosure in two cases if one case has a larger α(sA, sD) while the other one has a larger 

β(sA, sD).  Such comparison depends on the system setting, as is shown by the following 

example. 

Suppose that the defending party always uses a countermeasure sD.  Let sA be an 

attacking method with α(sA, sD) = 100% and β(sA, sD) = 30%.  Let s′A be an attacking 

method with α(s′A, sD) = 5% and β(s′A, sD) = 100%.  We will show the comparison 
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between the amount of privacy disclosure when sA and s′A are used in two system 

settings. 

First, consider a system where the two parties are two online retailers.  The data points 

in Vi are the telephone numbers of the customers of Pi.  The adversary uses the 

compromised telephone numbers to make unauthorized advertisement to the customers.  

In this system setting, the adversary prefers sA because a wrong phone call (using v in 0V%  

but not in V0
P) costs the adversary little.  As such, sA should have a higher privacy 

disclosure measure. 

We now consider another system where the two parties are two consulting firms.  

Each data point in Vi is an unpublished profit expectation of a company.  The adversary 

uses the compromised financial data to make investment on a high-risk stock market 

against the benefit of the defending party.  The profit from a successful investment 

(using v ∈ V0
P) is huge.  Nonetheless, a failed investment (using v in 0V%  but not in V0

P) 

costs the adversary five times larger than the profit from a successful investment.  In this 

system setting, the adversary prefers s′A because if sA is used, the expected return from 

an investment is less than 0 (i.e., the adversary would rather generate 0V%  = ∅).  Thus, s′A 

should have a higher privacy disclosure measure in this system setting. 

As we can see from the above example, we need to introduce the system setting to the 

measure of privacy disclosure.  Let δ(v) be the profit obtained by the adversary from an 

unauthorized intrusion based on v (v ∈ V).  Since the adversary intends to compromise 

the privacy of P0, we have δ(v) > 0 for all v ∈ V0
P.  Note that there must be δ(v) < 0 for 
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all v ∉ V0
P because otherwise the adversary will always include such v (v ∉ V0

P, δ(v) ≥ 

0) in 0V% .  We define system setting parameter μ as 

 0

0

Exp[ ( ) | ]
.

Exp[ ( ) | ]

v v V

v v V

δμ
δ

∉=
∈

 (5.5) 

Generally speaking, μ is the ratio between the loss of an adversary from a wrong guess 

of v (v ∉ V0
P) and the gain of an adversary from a correct identification of v (v ∈ V0

P).  

Based on μ, we can derive a lower bound on β(sA, sD) to make 0V%  meaningful for the 

adversary. 

Theorem 5.1.  The profit obtained by the adversary from the unauthorized intrusion is 

no less than 0 if and only if 

 A D( , ) .
1

s s
μβ

μ
≥

+
 (5.6) 

This theorem can be easily proved using our definition of μ.  As we can see, when 

β(sA, sD) < μ / (μ + 1), the return from unauthorized intrusion using 0V%  is less than 0.  

Recall that ∅ is the empty set.  Since the adversary is rational, the adversary prefers 0V%  = 

∅ (which leads to a profit of 0) to the 0V%  generated by sA.  When 0V%  = ∅, the amount of 

privacy disclosure is 0.  As such, we define the privacy disclosure measure as follows. 

 A D A D
p A D

( , ), if ( , ) 1,
( , )

0, otherwise.

s s s s
l s s

α β μ μ≥ +⎧
= ⎨
⎩

 (5.7) 

As we can see, the smaller lp(sA, sD) is, the less private data is obtained by the adversary 

and used to perform unauthorized intrusions against the defending party. 
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We now make a few remarks on the relationship between our privacy measure and the 

security models (e.g., statistically indistinguishable) commonly used in cryptography.  

The major difference is that while the commonly used security models measure whether 

the private information is absolutely secure against privacy intrusion, we intend to use a 

continuous value to measure the privacy protection level when absolute security cannot 

be achieved.  As we will show in the latter portion of the chapter, when the adversary 

behavior is unrestricted, absolute security can only be achieved with expensive 

computational cost (for weakly malicious adversaries) or cannot be achieved at all (for 

strongly malicious adversaries).  Thus, in order to design practical solutions to defend 

against such adversaries, we need to measure the amount of privacy disclosure by a 

continuous value. 

V.3 Adversary Space 

Recall that an adversary wants to compromise the private information of the other party 

and may or may not want to accomplish the information sharing (i.e., letting both parties 

know the intersection). Specifically, we assume that the objective of the adversary is to 

maximize the following objective function5 

 A A D a A D p A D( , ) (1 ) ( , ) ( , ).u s s l s s l s sσ σ= − +  (5.8) 

where la(·) and lp(·) are defined in (5.2) and (5.7), respectively.  Note that this model 

covers a wide range of adversaries.  In the case where σ = 1, the adversary has no 

                                                

5 In (5.8), we do not consider adversaries with objective function uA(sA, sD) = 0 · la(sA, sD) + 0 · lp(sA, sD) 
(i.e., adversaries that have neither interest on accurate information sharing results nor intent to 
compromise privacy).  Since these adversaries are not threats of other parties' privacy, defending against 
them is out of the scope of this study. 
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interest in accomplishing the information sharing.  When σ = 0, the adversary has no 

intent to compromise the other party's private information, and hence becomes a 

defending party.  Generally speaking, the higher σ is, the more desire the adversary has 

to intrude privacy even at the expense of a failed information sharing.  The lower σ is, 

the more desire the adversary has to share information rather than to compromise the 

privacy of the other party.  In particular, we define two classes of adversaries based on 

the value of σ as follows. 

Definition 5.1.  An adversary is weakly malicious if and only if the adversary is not 

semi-honest and has 0 < σ < 1/2.  An adversary is strongly malicious if and only if the 

adversary is not semi-honest and has 1/2 ≤ σ ≤ 1. 

We now provide an intuitive explanation for our definition of weakly malicious 

adversaries.  Consider the case when the information sharing fails.  There is la(sA, sD) = 0.  

For a weakly malicious adversary, we have 

 A A D p A D( , ) 0 ( , ) 1 .u s s l s sσ σ σ= + ≤ < −  (5.9) 

Note that 1 − σ is the value of uA(sA, sD) when both parties keep honest (i.e., the 

parties neither revise their local processing modules nor change their input datasets).  

Recall that we assume all parties make rational decisions to maximize their objective 

functions.  Therefore, when the defending party is honest, a weakly malicious adversary 

will not intrude privacy if a successful intrusion of privacy will always result in at least 

one of the following two outcomes: 1) the adversary will be convicted as an adversary 

by the other party, or 2) at least one party cannot obtain V0 ∩ V1. 



  95  

 

With the introduction of weakly and strongly malicious adversaries, we can represent 

the population of adversaries in a two-dimensional space as is shown in Figure 15.  Note 

that when σ = 0, the adversary is reduced to a defending party. 

Given the adversary space, we consider the following two kinds of systems. 

• Systems with weakly malicious adversaries.  Adversaries in these systems are 

either semi-honest or weakly malicious. 

• Systems with strongly malicious adversaries.  Adversaries in these systems can 

be semi-honest, weakly malicious, or strongly malicious. 

V.4 Design Goals 

Before presenting our protocols, we first explain the design goals of information sharing 

protocols with different kinds of adversaries.  We will analyze the design goals on the 

tradeoff between accuracy and privacy, as well as the design goals on efficiency (i.e., 

communication overhead), when the adversaries are semi-honest, weakly malicious, and 

strongly malicious, respectively. 

 

Fig. 15. Adversary Space. 
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V.4.1 Tradeoff between Accuracy and Privacy 

We now show that absolute accuracy and security (which we will explain below) can be 

achieved when the adversaries are semi-honest or weakly malicious, but cannot be 

achieved if strongly malicious adversaries exist in the system. 

When only semi-honest or weakly malicious adversaries exist in the system, there 

exist protocols which are strictly secure without loss of accuracy of information sharing 

result. Consider a protocol in which for each pair of data points in the two input datasets 

(i.e., 〈v0, v1〉 where v0 ∈ V0 and v1 ∈ V1), the two parties call a protocol for Yao’s 

millionaire problem [63] as a subroutine to determine if the data points are equal (i.e., if 

v0 = v1).  If the data points are equal, the protocol adds the value of the data points into 

the intersection set.  If the protocol for Yao’s millionaire problem is secure against 

malicious adversaries, the intersection protocol is secure against weakly malicious 

adversaries (and thus semi-honest adversaries as well).  Basically, the reason is that if 

only the adversary successfully compromises a private data point of the defending party, 

the information sharing result obtained by the defending party will always be wrong.  As 

such, a weakly malicious adversary will choose a strategy to keep honest.  As we can see, 

the protocol satisfies the following two conditions: 

• (absolute accuracy) The optimal defensive countermeasure for the defending 

party is to keep honest.  Thus, when both parties are defending parties, the 

information sharing always succeeds. 

• (absolute security) After information sharing, the weakly malicious adversary P1 

obtains V0 ∩ V1, |V0|, and nothing else. 
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Given the presence of such protocol, the goal of a protocol designed for systems with 

semi-honest and/or weakly malicious adversaries is to protect privacy without loss of 

accuracy of information sharing result. 

For strongly malicious adversaries, such a protocol does not exist.  Consider a strongly 

malicious adversary with σ = 1.  A possible (though not necessarily optimal) attacking 

method for the adversary is not to revise its local processing module, but always to insert 

one data point v ∉ V1 into its input dataset.  Since the defending party does not know the 

exact size and content of V1, either the malicious adversary compromises v when v ∈ V0, 

or another honest party cannot obtain the correct information sharing result when it 

happens to have a dataset equal to V1 U  v.  As such, when strongly malicious adversaries 

exist in the system, tradeoff has to be made between privacy protection and accuracy of 

information sharing result.  Thus, the goal of designing protocols for systems with 

strongly malicious adversaries is not to achieve absolute accuracy and security, but to 

achieve an optimal tradeoff between privacy protection and accuracy of information 

sharing result. 

V.4.2 Efficiency 

We now derive lower bounds on the communication complexity of information sharing 

protocols that can achieve absolute accuracy and security with different kinds of 

adversaries.  Formally speaking, a protocol achieves absolute accuracy and security if 

and only if it satisfies the following the following two conditions. 
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• If both parties follow the protocol properly without changing their input datasets,  

at the end of the execution of the protocol, both parties obtain V0 ∩ V1, the 

dataset size of the other party, and nothing else, 

• For any adversary, there is lp(sA, sD) = 0, where sA is the optimal attacking 

method for the adversary. 

Theorem 5.2.  If a protocol satisfies the above two conditions simultaneously, it has a 

communication overhead of at least (|V0′| + |V1′|) log(|V|) when semi-honest adversaries 

exist in the system, and at least 2(|V0′| + |V1′|) log(|V|) when weakly malicious adversaries 

exist in the system.  No such protocol exists when strongly-malicious adversaries exist in 

the system. 

Proof:  Note that the non-existence of protocols (absolutely) secure against strongly-

malicious adversaries has been shown above.  Thus, we will prove the theorem in two 

steps.  First, we will show that a protocol for semi-honest adversaries has 

communication overhead of at least (|V0′|+|V1′|) log(|V|).  Then, we will prove that a 

protocol for weakly malicious adversaries has communication overhead of at least 

2(|V0′|+|V1′|)log(|V|). 

Let the message sent from the local processing module of Pi to that of the other party 

be ti.  Let ri be the message Pi receives from the local processing module of the other 

party.  The communication overhead of the protocol is |t0|+|t1|, where | · | is the length of 

a message.  Since both parties obtain the intersection dataset, for each party Pi there is a 

function hi (ri, Vi) = V0′ ∩ V1′. 
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Let the Kolmogorov complexity [40] of a string x be K(x).  Roughly speaking, the 

Kolmogorov complexity of a string is the minimum number of bits in which the string 

can be compressed without information loss.  Note that we can always consider a dataset 

or a message as a string.  Since |V| � |Vi|, without loss of generality, we assume that 

K(Vi′) = |V1′| log(|V|).  We first prove that when semi-honest adversaries exist in the 

system, in order to satisfy Condition 1, there must be K(ti) – K(ti|Vi′) ≥ |Vi′| log(|V|). 

Suppose that K(ti) – K(ti|Vi′) < |Vi′| log(|V|).  For a given Vj′, there must exist Vi′, Vi′′ ⊆ 

V, Vi′′ ≠ Vi′ such that ti will be the same when Pi has a dataset of Vi′ or Vi′′.  Without loss 

of generality, we assume that Vi′′ ⊄ Vi′ (otherwise we can just exchange Vi′ and Vi′′ in 

the following proof).  Consider the case when Pi has a dataset of Vi′ (i.e., Vi = Vi′).  Let ti 

= f(Vi′, ri).  Pi can always find a dataset Vi′′ which satisfies f(Vi′′, ri) = f(Vi′, ri).  That is, 

Pi can infer that for any v ∈ Vi′′ \ Vi′, v is not in the dataset of the other party.  This 

contradicts Condition 1. 

Since K(ti) – K(ti|Vi′) ≥ |Vi′| log(|V|), the length of all messages transmitted is at least 

(|V0′| + |V1′|) log(|V|).  That is, when semi-honest adversaries exist in the system, the 

communication overhead of a protocol that satisfies both conditions has communication 

overhead of at least (|V0′| + |V1′|) log(|V|). 

We now prove that when weakly malicious adversaries exist in the system, in order to 

satisfy both conditions, there must be K(ti|Vi′) ≥ |Vj′| log(|V|).  For each party Pi, let the 

other party be Pj.  We need to prove that K(rj|Vi′) = K(ti|Vi′) ≥ |Vj′| log(|V|). 
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Suppose that K(rj|Vi′) < |Vj′| log(|V|).  There must exist Vj′, Vj′′ ⊆ V, Vj′′ ≠ Vj′ such that 

for any Vi′, rj will not change when Pj substitutes its input from Vj′ to Vj′′.  Again, 

without loss of generality, we assume that Vj′′ ⊄ Vj′.  Let v ∈ Vj′′ \ Vj′.  Consider the case 

when Pj (illegally) changes its input from Vj′ to Vj′′ and Pi strictly follows the protocol.  

If v ∉ Vi′, then Pj can infer that v ∉ Vi′ from hj(rj, Vj′′).  If v ∈ Vi′, there are two 

possibilities.  One is that v ∉ hj(ri, Vi).  In this case, Pj successfully intrude privacy (by 

inferring that v ∈ Vi′) without changing the information sharing result.  The other case is 

that v ∈ hj(ri, Vi).  This case is impossible as it requires Pi to infer that v ∈ Vj′′ from a 

string with length K(ti|Vj′) (since rj is the same for Vj′ and Vj′′).  If so, when Vj′′ is the real 

dataset of Pj and v ∉ Vi′, either Pj can infer that v ∉ Vi′, or Pi can infer that v ∈ Vj′.  

Either case contradicts Condition 1.  As we can see, when Pj changes its input from Vj′ to 

Vj′′ and Pi strictly follows the protocol, Pj can always intrude privacy without changing 

the information sharing result.  This contradicts Condition 2. 

As such, we have 

 0 1( ) ( ) ( | ) ( | ) (| | | |) log(| |).i i i i i iK t K t K t V K t V V V V′ ′ ′ ′= − + ≥ +  (5.10) 

To satisfy both conditions, the worst case communication overhead of the protocol must 

be greater than or equal to 2(|V0′| + |V1′|) log(|V|). � 

V.5 Protocol Design 

We now propose protocols for systems with weakly malicious adversaries and strongly 

malicious adversaries, respectively.  We remark that our goal in this study is not to 

promote specific protocols, but to demonstrate that when the adversary behavior is 
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unrestricted, simple solutions for information sharing problems still exist if we 1) 

constrain the adversary to be weakly malicious, or 2) make a tradeoff between accuracy 

and privacy. 

V.5.1 Basic Tools 

In both protocols, we use commutative encryption functions [20], [49] E0(·) and E1(·) on 

v ∈ V that satisfy the following properties. 

• Ei is computable in polynomial time.  Given Ei, there exists a corresponding 

decryption function Di(·) = Ei
 -1(·) which is also computable in polynomial time. 

• E0 and E1 have the same value range.  Suppose that c is chosen uniformly at 

random from the value range of Ei(·).  For any v, v′ ∈ V which satisfies v ≠ v′, no 

polynomial time algorithm A with time complexity O(k) can generate output of 0 

or 1 such that 

 
1 1

Pr{ ( , ( ), , ( )) ( , ( ), , )}
2 ( )i i iA v E v v E v A v E v v c

poly k
′ ′ ′= − >  (5.11) 

where poly(·) is a polynomial function.  Using the term in cryptography, we say 

that c and Ei(v′) is computationally indistinguishable given v, Ei(v), and v′. 

• E0(E1(·)) = E1(E0(·)). 

An example of commutative encryption function is Pohlig-Hellman exponentiation 

cipher [45] 

 ( ) ( ( )) mod ,ie
iE v h v p≡  (5.12) 

with the corresponding decryption function 

 ( ) mod ,di

iD c c p=  (5.13) 
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where p is a prime number, ei and di are keys that satisfy ei · di ≡ 1 mod (p-1), and h is a 

strong-collision-resistant hash function from V to all quadratic residues modulo p. 

For a dataset Vi and encryption function Ei, we define Ei(Vi) to be the set of Ei(v | v ∈ 

Vi), which is represented by a sequence of all Ei(v | v ∈ Vi) with lexicographical order. 

Given Property 3 of Ei, we have 

 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1( ( )) ( ( )) ( ( )) ( ( )) ( ( )).E E V E E V E E V E E V E E V V= =I I I  (5.14) 

V.5.2 Protocols 

We now present our protocols designed for systems with weakly malicious adversaries 

and strongly malicious adversaries, respectively. 

Since a party may change its input dataset, to avoid confusion, we use 〈|Vi′|, Vi′〉 (in 

contrast to the original dataset Vi) to denote the input from Pi to its local processing 

module.  If a party Pi detects an inconsistency between the two inputs from the other 

party (thereby convicts the other party as an adversary6), the local processing module of 

Pi terminates execution immediately and quits the information sharing process. 

                                                

6 Note that a defending party will change neither Vi nor |Vi| (as its inputs) because by changing them, the 
defending party may not obtain the accurate information sharing result. 
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Table 8 and Table 9 show the pseudo-code for our Protocol A and Protocol B, which 

are designed for systems with weakly malicious adversaries and strongly malicious 

adversaries, respectively.  In both protocols, we use a simultaneous secret exchange 

primitive which exchanges two secret messages from two (possibly malicious) parties 

such that either both parties know the secret of the other party, or no party can know the 

secret of the other party.  This primitive has been realized by many protocols [11], [22], 

[42], [46]. 

TABLE 8 

Protocol A: for Systems with Weakly Malicious Adversaries 

1. Secretly exchange input dataset size |V0′| and |V1′|, 
2. If |V0′| > |V1′|, P0 becomes Ps and P1 becomes Pc, and vice versa.  If |V0′| = |V1′|,  P0 

and  P1 are assigned as Ps and  Pc randomly. 
3. Ps sends Ec(Vc′) to Ps, 
4. Ps sends Es(Ec(Vc′)) to Pc using the order of  Ec(Vc′), 
5. Ps sends Es(Vs′) to Pc, 
6. Pc computes Ec(Es(V0′∩V1′)).  Since Es(Ec(Vc′)) received by Pc in Step 4 is in the 

same order as Ec(Vc′) generated by Pc in Step 3, Pc can thereby finds the 
correspondingly V0′∩V1′.  Pc then sends V0′∩V1′ to Ps. 

TABLE 9 

Protocol B: for Systems with Strongly Malicious Adversaries 

1. Secretly exchange input dataset size |V0′| and |V1′|, 
2. Exchange encrypted input dataset E0(V0′) and E1(V1′), 
3. Encrypt the received message and secretly exchange E0(E1(V1′)) and E1(E0(V0′)), 
4. Each party now obtains E0(E1(V0′∩V1′)) and decrypts it. Both parties exchange 

E1(V0′∩V1′) and E0(V0′∩V1′). 
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V.6 Analysis of Protocols 

We now analyze the performance of Protocol A and Protocol B respectively in terms of 

accuracy of information sharing results, protection of private data, and efficiency. 

V.6.1 Analysis of Protocol A 

We first show that Protocol A is secure when both parties are honest or semi-honest. 

Theorem 5.3.  When Protocol A is used, if both parties are honest or semi-honest, each 

party learns V0∩V1, the size of the dataset of the other party, and nothing else after 

information sharing. 

Proof (Sketch):  Since all parties follow the protocol strictly without changing their 

input datasets, we have Vi′ = Vi. 

In the protocol, Ps receives |Vc|, Ec(Vc), and V0∩V1, Pc receives |Vs|, Es(Ec(Vc)) and 

Es(Vs).  We will prove that the view of either party in the protocol (the information it 

receives from the other party) is computationally indistinguishable from a view 

generated from its own dataset, V0∩V1 and the size of the dataset of the other party. 

Let C be a sequence of |Vc| lexicographically-ordered random variables chosen 

uniformly from the value range of Ei(·). We can construct a view 〈|Vc|, C, V0∩V1〉 based 

on |Vc| and V0∩V1.  Due to Property 2 of Ei(·), 〈|Vc|, C, V0∩V1〉 and 〈|Vc|, Ec(Vc), V0∩V1〉 

are computationally indistinguishable.  Thus, Ps learns V0∩V1, |Vc|, and nothing else after 

information sharing. 

We now construct a view to simulate the view of Pc.  Let Cs be a set of (|Vs| – |V0∩V1|) 

data points chosen uniformly from V\Vc.  Let Es′ be a commutative encryption function 

(whose key is) randomly generated such that Ec and Es′ also satisfy the three properties 
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as E0 and E1. We construct a view 〈|Vs|, Es′(Ec(Vc)), Es′((V0∩V1) ∪ Cs)〉 based on V0∩V1, 

Vc, and |Vs|. Due to Property 2, the constructed view is computationally indistinguishable 

to 〈|Vs|, Es(Ec(Vc)), Es(Vs)〉.  Thus, Pc learns V0∩V1, |Vs|, and nothing else after 

information sharing.  � 

We now analyze the cases where weakly malicious adversaries exist in the system.  

Let 0
Ds  be a defensive countermeasure which will neither change the input dataset nor 

revise the local processing module (i.e., to keep honest).  We derive an upper bound on 

the amount of privacy disclosure as follows. 

Theorem 5.4.  When the adversary is weakly malicious, let sA be the optimal attacking 

method for the adversary.  When Protocol A is used, there is la(sA, 0
Ds ) = 1 (i.e., the 

information sharing always succeeds) and lp(sA, 0
Ds ) ≤ | |p V , where p is the 

probability that a data point v ∈ V appears in Vi. 

Proof:  Since the defending party keeps honest, we have V0′ = V0.  First, we show that 

the adversary cannot compromise any private information when it becomes Ps in the 

protocol.  As we can see, Ps receives Ec(Vc′) in step 3 and V0′∩V1′ in step 6.  The 

adversary cannot compromise privacy from Ec(Vc′) due to the property of the encryption 

function Ec(·).  We note that if P1 can infer private information from V0′∩V1′ (i.e., 0
PV  ∩ 

(V0′∩V1′) ≠ ∅), the information sharing fails because P0 does not obtain the correct 

intersection.  Following the definition of weakly malicious adversary, P1 would prefer 

keeping honest.  Thus, the adversary cannot compromise any private information when it 

becomes Ps. 



  106  

 

We now show that the adversary can only compromise private information in ((V0′\V0) 

∩ V1) when it becomes Pc.  In the protocol, Pc sends out Ec(Vc′) in step 3 and V0′∩V1′ in 

step 6.  In order to compromise private information, Pc may perform either one or both 

of the following two intrusions: 1) changing its input dataset Vc, and 2) deviate from the 

protocol in step 6.  After step 6, Pc does not receive any more information.  Thus, the 

only private information Pc can obtain is ((Vc′\Vc) ∩ Vs).  Note that if Vc ⊆ Vc′, Pc can 

still compute Vc ∩ Vs = Vc ∩ (Vc′ ∩ Vs) and send this correct intersection set to Ps in step 

6. 

Since V1′ and |V1′| have to be consistent, the attacking method is to generate V1′ such 

that V1 ⊆ V1′.  We now compute lp(sA, 0
Ds ).  Note that |V1′| has to be determined before 

|V0′| is known by P1.  Thus, the optimal |V1′| must maximize the expected value of lp(sA, 

0
Ds ) on all V0.  We have 

 
0

0 1 1 0
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0
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With mathematical manipulations, we have lp(sA, 0
Ds ) ≤ | |p V . � 

The above theorem indicates that when the defending party keeps honest, our protocol 

has little privacy leakage when weakly malicious adversaries exist in the system. In 

practice, |V| can be in the order of 109 while |Vi| is in the order of 103.  In this case, the 

expected number of data points compromised by the adversary is in the order of 10-4.5 or 

less. 

Theorem 5.5.  The communication overhead of our protocol is (|V0| + |V1| + min (|V0|, 

|V0|) + |V0 ∩ V1| + k) log(|V|), where k is a constant value. 
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Compared to that of the most efficient existing protocol which is secure against semi-

honest adversaries [3], the overhead of our protocol is only klog(|V|) more, which occurs 

in the first step. 

We now compare the communication overhead of our protocol with that of the 

protocols which are both absolutely accurate and absolutely secure against weakly 

malicious adversaries.  Recall that in Theorem 5.2, we derive a lower bound of 2(|V0′| + 

|V1′|) log(|V|) on the communication complexity of such protocols.  As we can see, when 

|V0| and |V| are large, our protocol has a communication overhead substantially lower 

than these (absolutely accurate and secure) protocols (by max(|V0|, |V1|)log(|V|)) with 

little privacy disclosure introduced. 

V.6.2 Analysis of Protocol B 

We first show that Protocol B is secure when both parties are honest, semi-honest, or 

weakly malicious.  Since no protocol can achieve both absolute accuracy and absolute 

security when strongly malicious adversaries exist, we analyze the tradeoff between 

accuracy and privacy when Protocol B is used in a system with strongly malicious 

adversaries. 

Theorem 5.6.  When Protocol B is used, if both parties are honest, semi-honest, or 

weakly malicious, each party learns V0∩V1, the size of the dataset of the other party and 

nothing else after information sharing. 

Proof:  We first consider the case when both parties are honest or semi-honest.  In this 

case, since all parties follow the protocol strictly without changing their input datasets, 

we have Vi′ = Vi.  The protocol is symmetric in that each party learns exactly the same 
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information about the dataset of the other party.  Without loss of generality, we consider 

the information obtained by P1. P1 receives |V0|, E0(V0), E0(E1(V1)), and E1(V0∩V1) after 

information sharing.  In the proof of Theorem 5.3, we proved that the view of 〈|V0|, 

E0(V0), E0(E1(V1))〉 can be simulated by a view constructed from V0∩V1, V1, and |V0|.  As 

we can see, E1(V0∩V1) can also be generated from V0∩V1.  Thus, the view of P1 is 

computationally indistinguishable to a view constructed from V0∩V1, V1, and |V0|.   As 

such, when the Protocol B is used, each party learns V0∩V1, the size of the dataset of the 

other party and nothing else after information sharing. 

When weakly malicious adversaries exist in the system, an adversary Pi can only infer 

private information from the dataset it receives in step 4 (i.e., Ei(V0∩V1)).  As we can see, 

both parties obtain |E0(E1(V0∩V1))| = |V0∩V1| after step 3.  As such, if the adversary can 

infer private information from Ei(V0∩V1), it cannot obtain the correct intersection V0∩V1. 

Thus, when Protocol B is used, the system is secure against weakly malicious 

adversaries.  � 

Recall that when strongly malicious adversaries exist in the system, tradeoff has to be 

made between accuracy and privacy protection.  In order to analyze such tradeoff, we 

propose a game theoretic formulation of the information sharing system as follows. 

We model the information sharing system as a non-cooperative game [26] G(SA SD, uA, 

uD) between the two parties where SA and SD are the set of (all possible) attacking 

methods and defensive countermeasures, respectively, and uA and uD are the utility 

functions (i.e., objective functions) for the adversary and the defending party, 

respectively.  The game is non-cooperative as neither party knows whether the other 
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party is an adversary.  The utility function for the adversary is the objective function we 

defined in Chapter V.II.  In particular, for a strongly malicious adversary with σ = 1 we 

have 

 A A D p A D( , ) ( , ).u s s l s s=  (5.16) 

In order to define the utility function for the defending party, we first need to identify 

the goals of the defending party.  The defending party has two goals in information 

sharing.  One goal is to share information and obtain V0∩V1.  We assume that the 

defending party has to guarantee a success probability of 1 – ε for the information 

sharing if the other party is also a defending party.  The other goal is to prevent its 

private data in V0 from being compromised by the adversary.  As such, we define the 

utility function for the defending party as 

 a D D
D A D

p A D

if Pr{ ( , ) 0} ,
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( , ) otherwise,

l s s
u s s

l s s

ε−∞ = >⎧
= ⎨−⎩

 (5.17) 

where la(sD, sD) is the accuracy measure when both parties are defending parties. 

Our goal is to derive the Nash equilibrium [26] of the game which contains both the 

optimal attacking method and the optimal defensive countermeasure.  In order to do so, 

we need to formulate the space of all possible attacking methods and defensive 

countermeasures.  Recall that both attacking methods and defensive countermeasures 

need to determine the (possibly changed) input dataset and the (possibly revised) local 

processing module.  Besides, an attacking method also needs to generate 0V%  based on the 

information obtained in information sharing.  In the rest of our analysis, we first consider 

a simple case where neither attacking methods nor defensive countermeasures revise the 
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local processing module.  We first derive the Nash equilibrium of the game based on this 

simple case.  Then, we will prove that neither party can benefit from revising its local 

processing module.  As such, the Nash equilibrium derived for the simple case will not 

change when the parties are allowed to revise their local processing modules. 

Due to our classification of adversaries, a strongly malicious adversary has 1/2 ≤ σ ≤ 1.  

Nevertheless, we consider the worst cases where the adversary has σ = 1.  That is, the 

only goal of the adversary is to intrude the privacy of the defending party. 

Since Protocol B is secure when the adversary is semi-honest, in order to compromise 

the privacy of the other party, the adversary must change its input dataset.  Since the 

intersection set may contain data points manipulated by the defending party, the 

adversary also needs to decide if a data point in V0′ ∩ V1′ should be included in 0V% .  We 

analyze the attacking methods for determining V1′ and 0V%  respectively as follows. 

• Change input dataset.  The adversary P1 can compromise private information in 

0
PV  by changing its input dataset to V1′.  As we can see, if the defending party 

keeps honest, the adversary will obtain the private information in V0 ∩ V1′ after 

information sharing.  Due to Protocol B, |V1′| has to be determined before any 

information about V0 can be obtained.  Without loss of generality, we assume that 

|V1′| is a function of |V1|, denoted by k1(|V1|).  Due to our system assumption, the 

adversary has no previous knowledge about any data point in V0.  As such, the 

optimal method for the adversary to generate V1′ is to choose V1′ randomly from 

V\V1.  Without loss of generality, we model the attacking method on changing the 

input dataset as to determine k1(|V1|). 
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• Generate 0V%  from V0′∩V1′.  Since neither party may revise its local processing 

module, the only information that an adversary can obtain from information 

sharing is V0′∩V1′.  To benefit its own interest, the adversary has only two 

methods to generate 0V% . 

o 0V%  = V0′∩V1′. 

o 0V%  = ∅. 

That is, 0V%  either contains all data points in the intersection set, or make the 

intersection set an empty set.  This can be easily observed from the definition of 

lp(sA, sD). 

The defensive countermeasure contains the method of changing the two inputs 〈|V0′|, 

V0′〉 to the local processing module.  Due to the protocol, |V0′| has to be determined 

before any information about V1 can be obtained.  Without loss of generality, we assume 

that |V0′| is a function of |V0|, denoted by k0(|V0|).  The only information that P0 can 

obtain before choosing V0′ is the size of the input dataset of P1.  As such, we assume that 

V0′ is a function of V0 and V1′ and is represented by f(V0, |V1′|) where f(V0, |V1′|) ⊆ V and | 

f(V0, |V1′|)| = k0(|V0|).  We model the defensive countermeasure as 〈k0(|V0|), f(V0, |V1′|)〉. 

Let h = ⎣|V_0|/μ⎦ +1.  Let Vd be a dataset with the same distribution as Vi.  Recall that 

p is the probability that a data point in V appears in Vi.  We derive the Nash equilibrium 

of the game as follows. 

Theorem 5.7.  The optimal defensive countermeasure 〈k0(|V0|), f(V0, |V1′|)〉 is 
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where g(·) satisfies 
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U(V, j) is the set of j data points chosen uniformly at random from V, and NS is the 

largest integer that satisfies 
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An optimal attacking method k1(|V1|) is k1(|V1|) = NS.  The above optimal attacking 

method and defensive countermeasure form the Nash equilibrium of the game. 

Proof:  We will prove the theorem in three steps.  First, we will prove that the error rate 

does not exceed the upper bound ε.  Second, we will show that when k0(|V0|) = |V0| + h, 

we have lp = 0.  In the last step, we will prove the optimality of the strategy when k0(|V0|) 

= |V0|. 

• Error rate is controlled below ε.  We first consider the case when k0(|V0|) = |V0| + 

h.  In this case, no matter what |V1′| is, we have 

 0 0 0( , ) ( \ , ).f V V U V V h⋅ = U  (5.22) 

If P1 is a defending party, since |V| » |V0|, the error rate is 
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That is, the error rate is no more than ε.  When k0(|V0|) = |V0|, the error rate is 
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Thus, the error rate is also no more than ε. 

• When k0(|V0|) = |V0| + h, lp = 0.  When k0(|V0|) = |V0| + h, we have V0′ = V0 ∪ 

U(V\V0, h).  Recall that 0V%  is either V0′∩V1′ or an empty set.  If 0V%  = V0′∩V1′, we 

have 
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As such, we have uA < 0.  Thus, the adversary has to choose 0V%  = ∅.  That is, we 

have lp = 0. 

• When k0(|V0|) = |V0|, the attacking method and the defensive countermeasure 

form the Nash equilibrium. 

The basic idea of the proof is to show that when the defending party does not change 

its defensive countermeasure, the adversary cannot compromise any more private 

information by using a manipulated dataset with size larger than NS, which can be easily 

observed from f(V0, |V1′|).  When the adversary does not change its attacking method, the 

defending party cannot preserve more private information because otherwise the error 
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rate would be larger than ε.  As such, the state defined in the theorem is a state where no 

party can benefit by changing its attacking method or defensive countermeasure unitarily. 

The detailed proof of this step is mainly mathematical manipulations.  Thus, we omit the 

detailed proof here.  � 

V.6.3 Generalization to Complicated Methods 

We now prove that when Protocol B is used, neither the adversary nor the defending 

party can benefit by revising its local processing module. 

Theorem 5.8.  When Protocol B is used, the adversary cannot increase the expected 

value of its utility function by revising its local processing module. 

Proof:  First, the adversary will not deviate from the protocol in step 1 and 2 because by 

doing so, the adversary is actually changing its input dataset.  Recall that we assume all 

parties are rational.  As such, the adversary will not revise step 4 either.  The reason is 

that after this step, the adversary cannot obtain any more information about the dataset of 

the other party.  We now show that the adversary will not deviate from the protocol in 

step 3. 

In step 3, the adversary P1 sends E1(E0(V0′)) to the defending party P0.  P0 then uses 

E1(E0(V0′)) to compute 

 1 0 0 0 1 1 0 1 0 1( ( )) ( ( )) ( ( )),E E V E E V E E V V′ ′ ′ ′=I I  (5.27) 

which will be decrypted to E1(V0′∩V1′) and sent to P1 in step 4.  Thus, we only need to 

prove that by changing E1(E0(V0′)), the adversary cannot increase 

 1 0 1 0 1 0 1 1 0 0 0 1 1| ( ) | | ( ( )) | | ( ( )) ( ( )) | .E V V E E V V E E V E E V′ ′ ′ ′ ′ ′= =I I I  (5.28) 
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Recall that the adversary cannot change |E1(E0(V0′))| because by doing so, the 

defending party will detect an inconsistency between |E1(E0(V0′))| and |V0′| and quit the 

information sharing.  As such, we need to prove that the adversary cannot change 

E1(E0(v0 | v0 ∈ V0′)) to collide with E0(E1(v1 | v1 ∈ V0′)).  This can be inferred from 

property 2 of the commutative encryption function.  � 

Theorem 5.9.  When Protocol B is used, the defending party cannot increase the 

expected value of its utility function by revising its local processing module. 

Proof:  First, the defending party will not deviate from the protocol in step 1 and 2 

because it can change its input instead.  We remark that the defending party also will not 

revise step 3 because by doing so, it cannot obtain the information sharing result (i.e., 

V0′∩V1′).  As such, we now prove that the defending party will not deviate from the 

protocol in step 4. 

In step 4, the defending party P0 sends E1(V0′∩V1′) to the adversary P1.  P1 then 

decrypts E1(V0′∩V1′) to V0′∩V1′, which is the result of information sharing.  Since the 

defending party obtains |V1′| before step 2, we only need to prove that before step 4, the 

defending party does not know anything more than |V1′| about V1′.  If so, the defending 

party will not revise step 4.  Rather, it will change its input in step 2. 

As we can see, the defending party has received E1(V1′) and E1(E0(V0′)) since step 2.  

Thus, we need to prove that given V0′, E0(·), |V1′|, E1(V1′), and E1(E0(V0′)), there does not 

exist any polynomial time algorithm with time complexity O(k) and output v ∈ V such 

that  
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where poly(·) is a polynomial function.  This can be inferred from property 2 of the 

commutative encryption function.  � 

V.7 Numerical Results 

Numerical measurement has not been commonly used to demonstrate system security 

because all possible attacking methods cannot be exhausted in a simulation.  

Nevertheless, we propose to use numerical measurements in our case.  The reason is that 

in the theoretical analysis, we already derive the Nash equilibrium of the game, which is 

a state where neither party can benefit by unitarily changing its attacking method or 

defensive countermeasure.  The numerical results shown actually demonstrate the 

privacy disclosure in this state, and thus can be used to demonstrate the real privacy 

protection performance of systems using our protocols. 

We evaluate the system performance in terms of the maximum expected number of 

private data compromised by the adversary, which is lp(sA, sD), where sA and sD are the 

optimal attacking strategy and the optimal defensive countermeasure, respectively.  The 

error rate of information sharing when both parties are defending parties is fixed to be ε 

= 0 for systems with weakly malicious adversaries and ε = 0.1 for systems with strongly 

malicious adversaries.  With |V0| = 100, we demonstrate the relationship between the 

amount of privacy disclosure and the size of the population set (i.e., |V|). 
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For systems with weakly malicious adversaries, the maximum amount of privacy 

disclosure when Protocol A is used is shown in Figure 16.  As we can see from the 

figure, the privacy leakage of our protocol is very small when |V| is large. In particular, 

when |V| is in the order of 103, the expected number of data points compromised by the 

adversary is no larger than 1. 

 

Fig. 16. Defense Against Weakly Malicious Adversaries. 



  118  

 

For systems with strongly malicious adversaries, when Protocol B is used, the 

maximum amount of privacy disclosure is shown in Figure 17.  As we can see from the 

figure, the higher |V| or μ is, the less private data points are compromised by the 

adversary. In particular, no privacy disclosure occurs when μ ≥ 2 and |V| ≥ 1000. 

V.8 Extensions 

We now extend our results to following two cases: 

• Systems where partially accurate information sharing results are valuable to 

participating parties. 

• Systems where each party is selfish in that it considers the information sharing to 

succeed if the party itself (instead of both parties) obtains the accurate 

information sharing results. 

 

Fig. 17. Defense Against Strongly Malicious Adversaries. 
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V.8.1 Systems where Partially Accurate Results are Valuable 

In the systems where partially accurate information sharing results are still valuable to 

participating parties, we cannot use the accuracy measure proposed in the previous part 

of the chapter.  Let Vi
e be the (partially accurate) information sharing result obtained by 

party Pi.  We define an alternative accuracy measure as follows. 

 
e e

0 1 0 1
a A D {0,1}

0 1

| \ ( ) | | ( ) \ |
( , ) max 0, min 1 .

| |
i i

i

V V V V V V
l s s

V V∈

⎛ ⎞⎛ ⎞+= −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

I I

I
 (5.30) 

As we can see, la(sA, sD) measures both false positives (i.e., v ∈ Vi
e but v ∉ V0 ∩ V1) 

and false negatives (i.e., v ∉ Vi
e but v ∈ V0 ∩ V1) of Vi

e compared with V0 ∩ V1.  Note 

that we cannot simply define la(sA, sD) to be |Vi
e ∩ (V0 ∩ V1)|/|V0 ∩ V1| because by doing 

so, an optimal information sharing protocol would be to return Vi as the information 

sharing result to each party Pi, such that Vi
e ∩ (V0 ∩ V1) = Vi ∩ (V0 ∩ V1) = V0 ∩ V1. 

Based on the alternative definition, we can accordingly change the definition of 

weakly malicious adversaries as follows, in order to make all results in this chapter still 

valid. 

Definition 5.2.  An adversary is weakly malicious if and only if the adversary is not 

semi-honest and has 0 < σ <1/(|V0 ∩ V1| + 1).  An adversary is strongly malicious if and 

only if the adversary is not semi-honest and has 1/(|V0 ∩ V1| + 1) ≤ σ ≤ 1. 

It is easy to check an above-defined weakly malicious adversary will not intrude 

privacy if a successful intrusion of privacy always results in at least one of the following 

two outcomes: 1) the adversary will be convicted as an adversary by the other party, or 2) 

at least one party cannot obtain V0 ∩ V1.  Thus, all results derived in the chapter are still 
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valid given the alternative accuracy measure and the revised definition of weakly and 

strongly malicious adversaries. 

V.8.2 Systems with Selfish Parties 

We now consider systems with parties which consider the information sharing to 

succeed if a party itself (instead of both parties) obtains the accurate information sharing 

results.  In these systems, we must measure the accuracy of information sharing results 

individually for each party.  In particular, we define the accuracy for party Pi as follows. 

 0 1
a A D

1, if  obtains ,
( , )

0, otherwise.
ii P V V

l s s
⎧

= ⎨
⎩

I
 (5.31) 

Based on the new accuracy measure, the objective function of an adversary Pi can be 

defined accordingly as follows. 

 A A D a A D p A D( , ) (1 ) ( , ) ( , ).i iu s s l s s l s sσ σ= − +  (5.32) 

For such systems, there exists no protocol that can achieve absolute security when a 

non-semi-honest adversary with σ > 0 exists in the system.  Formally, we have the 

following theorem. 

Theorem 5.10.  Given the new accuracy measure, when a non-semi-honest adversary 

with σ > 0 exists in the system, there exists no protocol that can simultaneously satisfy 

the following two conditions 

1. If both parties follow the protocol properly without changing their input datasets,  

at the end of the execution of the protocol, both parties obtain V0 ∩ V1, the size of 

the dataset of the other party, and nothing else, 
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2. There is lp(sA, sD
0) = 0, where sA is the optimal attacking method for the 

adversary. 

The proof of this theorem is similar to the proof of Theorem 5.8 and Theorem 5.9.  

The basic idea is that an adversary can always insert one data point into its input dataset 

to force an honest party to choose between privacy disclosure and the risk of rejecting 

another honest party. 

Given this theorem, Protocol A, which is designed for weakly malicious adversaries, is 

no longer effective in these systems.  Nonetheless, all results derived for systems with 

semi-honest adversaries or strongly malicious adversaries, including Protocol B, are still 

valid. 

V.9 Summary 

In this chapter, we address issues related to the design of information sharing protocol.  

Most previous studies investigate the problem and propose solutions based on an 

assumption that all parties are either honest or semi-honest. This assumption 

substantially underestimates the capability of adversaries and thus does not always hold 

in practical situations.  We consider a space of more powerful adversaries which include 

not only semi-honest adversaries but also those who are weakly malicious and strongly 

malicious.  For weakly malicious adversaries, we design an efficient protocol and show 

that the protocol can preserve privacy effectively.  For strongly malicious adversaries, 

we propose a game theoretic formulation of the system and derive the Nash equilibrium 

of the game.  We evaluate the performance of defensive countermeasure in the Nash 
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equilibrium and show that with an acceptable loss of accuracy, the privacy of the 

defending entity can be effectively preserved in many systems. 

Again, we remark that in this chapter, we are not promoting specific protocols.  

Instead, we show that simple and efficient solutions can be developed to deal with 

malicious adversaries.  Specifically, we show simple solutions can be effective if we 1) 

constrain the adversary goal to be weakly malicious, or 2) allow making a tradeoff 

between accuracy and privacy. 

Many extensions to our work exist, including 1) extending the information sharing 

function from intersection to other operations, and 2) dealing with multiple parties in the 

system, including dealing with correlated attacks from multiple adversaries.  Besides, 

our results can be readily applied to various information sharing functions including 

equijoin and scalar product. 
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CHAPTER VI 

INTEGRATION OF DIFFERENT PROTOCOLS 

In this chapter, we study the integration of, and the interaction between, different 

protocols introduced in previous chapters of this dissertation.  In particular, we address 

the integration of data collection protocol and inference control protocol, and the 

integration of inference control protocol and information sharing protocol, respectively.  

We show cases where only one protocol is sufficient, and other cases in which different 

protocols must be integrated together to accommodate the requirements of the system. 

VI.1 Data Collection Protocol and Inference Control Protocol 

As we mentioned in Chapter II, the design of data collection protocol and inference 

control protocol strongly correlate with each other.  For example, when the noise 

insertion approach is used for the data collection protocol, a data-oriented inference 

control protocol can be applied on the data stored in the data warehouse server.  

Nonetheless, when our scheme on data collection protocol is used, no data-oriented 

inference control protocol is needed in the system, because the collected data can be 

directly used to support data mining.  We summarize the relationship between design 

strategies for data collection protocol and inference control protocol as follows. 

• When the original data are stored in the data warehouse server, query-oriented 

inference control protocol is a practical choice.  The reason is that data-oriented 

protocols have to add noise to the data being mined at run-time.  This may result 

in significant overhead on OLAP query processing. 
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• When the data stored in the data warehouse are randomized data, data-oriented 

inference control protocol becomes a natural choice, as the data-oriented protocol 

can be directly applied to the data warehouse without any run-time 

randomization of individual data points. 

• When the data stored in the data warehouse server are perturbed with our new 

scheme, no inference control protocol is needed in many systems.  This is 

because only the minimum private information necessary for data mining is 

included in the (perturbed) data collected by the data warehouse server.  Since 

the perturbed data can be readily used to support data mining, no inference 

control protocol is needed for systems with moderate privacy requirements.  For 

systems with high levels of privacy concern, query-oriented inference control 

protocol can be used to further guarantee that no individual data point can be 

compromised by the data mining servers. 

VI.2 Inference Control Protocol and Information Sharing Protocol 

Inference control protocol and information sharing protocol are normally transparent to 

each other, as the inference control protocol enables a data mining server to construct 

local data mining models, and the information sharing protocol enables a data mining 

server to share local data mining models and construct global data mining models 

spanning multiple systems. 

Nonetheless, there are certain cases where inference control protocol and information 

sharing protocol need to be integrated with each other.  Recall that in order for the 

information sharing protocol to work, the participating parties (i.e., data mining servers 
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from different systems) must have a specifically designed cryptographic algorithm for 

every data mining task.  In cases where such a specific algorithm is unavailable, a 

possible alternative is for each party to allow other parties (from other systems) to 

directly access its local data warehouse.  In this case, the privacy protection must be 

implemented in the inference control protocol to accommodate the requirements of 

information sharing. 

The objective of the (new) inference control protocol becomes 1) to allow local data 

mining servers to learn the minimum private information necessary for data mining, and 

2) to prevent remote data mining servers of other systems from inferring private 

information stored in the data warehouse. 

Our cardinality-based inference control protocol can be revised to realize the new 

inference control protocol.  Suppose that each data warehouse server knows the 

dimension domains (i.e., d1 × ··· × dn) of the data cubes of all other data warehouses (in 

other systems).  The basic idea of the protocol is for each data warehouse to build a 

virtual data warehouse.  The schema of the virtual data warehouse is a combination of 

the local (real) data cube and remote data cubes in the other systems.  Since the 

dimension domains of other data warehouses are known, a data warehouse server can 

still employ the cardinality-based approach to prevent individual data points from being 

compromised by either local or remote data mining servers. 

Although this revised protocol is still efficient and easy to implement, its performance 

is worse than the original protocol, and may be insufficient for systems that demand high 

accuracy level.  Indeed, since the number of known data points increases dramatically in 
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the virtual data warehouse (partially due to the fact that we have to conservatively 

assume that a data mining server from another system has full access to its data 

warehouse), the data availability level (i.e., percentage of queries answered) of the 

inference control protocol must decrease considerably.  Further study is needed in order 

to improve the performance of the integration of inference control protocol and 

information sharing protocol. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

VII.1 Summary 

In this dissertation, we address the design issues for extracting knowledge from large 

amounts of data without violating the privacy of data owners.  We first introduce an 

integrated baseline architecture, design principle, and implementation techniques for 

privacy-preserving data mining systems.  Then, we discuss the key components of 

privacy-preserving data mining systems which are: data collection protocol, inference 

control protocol, and information sharing protocol.  We present and compare strategies 

for realizing these protocols. 

VII.2 Conclusions 

We now conclude this dissertation with a discussion on open issues that need to be 

addressed in order to further improve the performance of privacy-preserving data mining 

techniques. 

• Heterogeneous Privacy Requirements:  The design of privacy-preserving data 

mining techniques depends on the specification of privacy protection levels 

required by the data owners.  Most existing studies assume (at least partially) 

homogenous privacy requirements.  That is, all data owners have the same level 

of privacy requirement on all of their data and/or all attributes.  This assumption 

simplifies the design and implementation of privacy-preserving data mining 

techniques, but cannot reflect the privacy concerns in practice.  Indeed, due to 

multiple survey results [14], [33], [35], [59], different people have diversified 
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privacy requirements on different data and/or different attributes.  The work in 

this dissertation (e.g., our scheme for data collection protocol) removes part of 

the assumption, as we allow different data providers to specify different levels of 

privacy protection on their data.  Nonetheless, we still cannot allow a data 

provider to explicitly assign different privacy protection levels on different 

attributes.  It would be challenging, but potentially beneficial, to design and 

implement new techniques that fully address the heterogeneous privacy 

requirements of data owners.  

• Integration of Different Protocols:  As we mentioned in Chapter VI, an effective 

integration of the three protocols is needed in many real systems.  Nonetheless, 

the integration of different protocols has not received enough attention from the 

research community, partially due to the fact that these three protocols are 

traditionally studied in different fields as separate problems.  This dissertation 

proposes an integrated architecture of privacy-preserving data mining systems 

that can serve as a platform for the integration of these protocols.  Further studies 

are needed to enable such integration in an effective and efficient manner. 

• Privacy-Preserving Anomaly Mining: Data mining has been extensively used to 

detect anomalies in datasets (e.g., intrusion detection based on log files).  

Nonetheless, in the research community, privacy protection in detecting 

anomalies (i.e., diamond mining) [52] has not received the same level of 

attention as privacy protection in constructing predictive models (i.e., coal 

mining).  Since anomaly detection is an important application of data mining, 
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and is significantly important to many disciplines (e.g., information security, 

biology, finance), it would be necessary and beneficial to thoroughly investigate 

issues related to the design of privacy-preserving data mining techniques for 

anomaly detection. 
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