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ABSTRACT

A Study of the Sensitivity of Topological Dynamical Systems

and the Fourier Spectrum of Chaotic Interval Maps. (August 2006)

Marco A. Roque Sol, B.S., National Autonomus University of Mexico;

M.S., National Autonomus University of Mexico

Chair of Advisory Committee: Dr. Goong Chen

We study some topological properties of dynamical systems. In particular the rela-

tionship between spatio-temporal chaotic and Li-Yorke sensitive dynamical systems

establishing that for minimal dynamical systems those properties are equivalent. In

the same direction we show that being a Li-Yorke sensitive dynamical system implies

that the system is also Li-Yorke chaotic. On the other hand we survey the possibility

of lifting some topological properties from a given dynamical system (Y, S) to an-

other (X, T ). After studying some basic facts about topological dynamical systems,

we move to the particular case of interval maps. We know that through the knowl-

edge of interval maps, f : I → I, precious information about the chaotic behavior

of general nonlinear dynamical systems can be obtained. It is also well known that

the analysis of the spectrum of time series encloses important material related to the

signal itself. In this work we look for possible connections between chaotic dynamical

systems and the behavior of its Fourier coefficients. We have found that a natural

bridge between these two concepts is given by the total variation of a function and

its connection with the topological entropy associated to the n-th iteration, fn(x), of

the map. Working in a natural way using the Sobolev spaces W p,q(I) we show how

the Fourier coefficients are related to the chaoticity of interval maps.
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CHAPTER I

INTRODUCTION

A. Topological dynamical systems

Chaotic systems have been studied for a long time by physicists and mathematicians.

Landau and Lifschitz[29] gave an explanation about the transition to turbulence for

a flow past to a solid obstacle, through the introduction of an infinite number of

degrees of freedom. Ruelle and Takens [38] showed that a similar process just in five

dimensions could lead to a more chatoic behavior. However, it is well known that

three degrees of freedom for a differential equation are necessary to obtain a chaotic

behavior as Lorenz [31], Rossler [36], Curry and Yorke [19], and Bowen [11] have

shown. Several definitions have been formulated to define chaos, starting with the

classical paper of Li and Yorke [30], where they introduced for the first time the idea

of a scrambled set, continuing with the idea introduced in the paper by Auslander

and Yorke [7], then Robert L. Devaney [20] introduced a definititon of chaos where we

can see an extra element , namely, the idea of a regularity condition given by a dense

set of periodic points. However, Robinson [35] in his book did not take into account

this issue, instead he pays more attention to the transitivity and sensitive dependence

on initial conditions, the latter first formulated by Guckenheimer [26] in his study on

maps of the interval. I would like to mention as well that, J. Banks et al [9] proved

that if a dynamical system is transitive and the set of periodic points is dense then the

system has sensitive dependence on initial conditions. Thus, it seems like the idea of

unpredictability, which is behind all of the above definitions and introduced through

the concept of sensitivity, plays a central role in defining chaos for interval maps.

The journal model is The American Mathematical Monthly.
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We would like to analyze the concept of chaos not only for interval maps but also

in a more general setting: for topological dynamical systems theory. Actually, some

people [25, 27, 42, 10] have taken this approach and produced excellent results, and it

is with this idea we start our work. This work focuses on several concepts and results

in topological dynamics. This is a huge task, so we will concentrate our attention

only on some areas of this topic. Particulary, with standard concepts, definitions, and

results related to topics such as sensitivity, topological transitivity, minimality, etc.,

and derive with some results in this area.

B. Fourier analysis

The idea to expand a function as a trigonometric series was born during the 1700s, in

connection with the study of vibrating strings and other similar physical phenomena.

However, it was not until 1808 when Fourier first wrote his celebrated memoir on

the theory of heat; Théorie Analytique de le Chaleur, which He published in

1822. In that work, he made a detailed study of trigonometric series, which he used to

solve a variety of heat conduction problems. Now, as we mentioned above, the use of

trigonometric series in the solution of differential equations problems had been around

for quite time ago, then: what was the key idea behind Fourier’s work ? It seems that

the main point was that he asserted that an arbitratry function could be expanded

in a trigonometric series whose coefficients could be computed in a particular way.

This assertion led to questions of convergence of series and integration of arbitrary

functions in connection with calculating the coefficients of the expansion, and, of

course to questions about the meaning of a function. It is known that one of the

most studied problems in scientific research deals with the processing of a time series

x1, x2, ..., which are nothing but an experimental data sequence, distributed in the
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time domain, sometimes evenly, sometimes not. Such a sequence is obtained by

successively sampling over some dynamical observables, characterizing the dynamical

system under investigation. As a result of processing this information, we expect to

understand the behavior of the dynamical system generating such a time series. In

the case we are dealing with linear systems, to obtain this information is relatively

simple. However, for nonlinear systems the situation could be much more complicated.

The behavior of the system is so rich as to warrant a profound study. One way to

achieve this goal is through the discrete Fourier analysis, where all the information

is processed and a spectrum of frequencies is obtained, allowing us to see clearly

which properties thereof are playing a fundamental role inside the system. In the

continuous case, that is, when, e.g., we are dealing with a signal given by a function

f(t) there exist many reasons for expanding it as a trigonometric sum ( for example:

a time-dependent electrical voltage ), then a decomposition of the function into a

trigonometric series gives us a description of its component frequencies. In general,

given a signal of the form sin(kt), it has period of (2π)/k. Thus, the sine wave

4sin(2t) − 35sin(5t) + 10sin(200t)

contains frequency components vibrating 2, 5, and 200 times per 2π-interval length.

Two common tasks in a signal analysis are:

Elimination of high frequency noise: this can be done expressing f as a trigonometric

series

f(t) = a0 +
∑

k

akcos(kt) + bksin(kt)
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and then set the high frequency-coefficients ( the ak and bk for large k ) equal to zero.

Second, data compression: the idea is to send a signal in a way that it requires minimal

data transmission, which can be done by expressing f as a trigonometric series, as

above, and then send only those coefficients ak, bk, that are greater ( in absolute value

) than a particular tolerance. In other words, either we have a discrete sytem or a

continuous one. Fourier analysis is a good tool to start with our study of a dynamical

system. In particular for the continuous case, the knowledge of Fourier coefficients can

give us enough information to understand and control the main components of a given

signal. Thus, we want to apply this tool to analyze and understand chaotic interval

maps, trying to find some relationship between those two concepts and particularly,

the way Fourier coefficients rule, in some way, the dynamics of the map, being able

to determine when the map is chaotic.
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CHAPTER II

SENSITIVITY OF TOPOLOGICAL DYNAMICAL SYSTEMS

A. Preliminaries

We will start our discussion with some basic concepts of what a dynamical system is

and how the dynamic is generated.

Definition 2.1. A dynamical system (X, T ) consists of a topological compact metric

space X and a surjective, continuous map T : X → X.

The first thing we have to do at this point is understand what the dynamics of

the map T will be. The idea is to introduce it through the iteration of the map.

As usual T 0 = 1X , identity map of X, and T n, n ≥ 0 is the n-fold composition

T ◦ T ◦ . . . ◦ T
︸ ︷︷ ︸

n−times

. Now, for x ∈ X we define the orbit

OT (x) = {T n(x) : n ∈ N} ⊂ X

as we are interested in asymptotic, or long term properties of the system. Keeping this

in mind, it is natural to consider the set of limit points of the orbit OT (x), denoted

by ωT (x) and given by

ωT (x) =
⋂

N≥0

⋃

n≥N

{T n(x)} ⊂ X.

Equivalently, since we are working in a metric space, we say y ∈ ωT (x) if and only if

there exists a subsequence {nk} ⊂ N such that nk → ∞ and

T nk(x) → y.



6

Since X is compact, ωT (x) 6= φ and

OT (x) = OT (x) ∪ ωT (x).

At this point we introduce the idea of a relation R on X, because as we will see later

it will play a key role throughout the paper. In general, a relation R on X is a subset

of X ×X with the property

R(x) := {y : (x, y) ∈ R}.

In this way, we have the orbit and the limit point relations given by

OT = {(x, y) : y ∈ OT (x)}

ωT = {(x, y) : y ∈ ωT (x)}.

In this context, although, ωT (x) is a closed set in X, it is not necessarily closed in

X ×X, so we define a closed relation by

ΩT :=
⋂

N≥0

⋃

n≥N

T n ⊂ X ×X.

Again, since we are working in a metric space y ∈ ωT (x) if and only if there exists

a subsequence {nk} ⊂ N and a sequence {xk} ⊂ X such that nk → ∞, xk → x,

and T nk(xk) → y. It is clear ( as X × X is compact ) that ΩT is a closed relation

containing ωT and thus containing ωT .

Once we have a map T acting on a space X, a natural question is finding invari-

ant sets under the action of T . A subset A of X is called positively invariant if

T (A) ⊂ A, negatively invariant if T−1(A) ⊂ A, and invariant if T (A) = A. If A ⊂ X

is a closed and positively invariant set, then (A, T |A) is called a subsystem of (X, T ).
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Clearly ωT (x) and ΩT (x) are positively invariant, and since X is compact, they are

in fact invariant. Now from the pointwise point of view, we say that x is a recurrent

point for T if x ∈ ωT (x). If x satisfies x ∈ ΩT (x), then x is said to be a nonwandering

point, that is, x ∈ X is a nonwandering point if for any neighborhood U of x, there

exists n 6= 0 such that

U ∩ T−n(U) 6= φ.

Fixed points and periodic points are nonwandering.

1. Transitivity

Topological transitivity is a distinctive property of dynamical systems. One of the

main reasons is its strong connection with various other topics such as Hamiltonian

mechanics, ergodic theory, theory of chaos, geometry of attractors and fractals, etc. In

some sense, transitive dynamical systems are a type of ’building blocks’ through which

more general dynamical systems are built, see for instance Smale’s decomposition

in [5] or John Banks’ paper on topologically transitive maps [8]. The idea behind

transitivity is that it represents some kind of complex global behavior of the system,

guaranteeing the indecomposability of the phase space with respect to the function

T . Roughly speaking, the idea of transitivity is to require any point in the phase

space to visit every portion of the space in course of time. Since, the motion of a

point is seldomly known completely, due to round-off errors, it is necessary to modify

our requirement. Instead, we ask that every neighborhood of every point visits every

region at some time or other. This leads to the precise definition of topological

transitivity.
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Definition 2.2. Let (X, T ) be a dynamical system, then this system is called topo-

logically transitive, or simply we say ”T is transitive”, if for every pair of open,

nonmempty subsets U, V ⊂ X there is a positive integer n such that

U ∩ T−n(V ) 6= φ.

Definition 2.3. Let A and B subsets of X, we define the hitting time set or visiting

time set ( the set of return times) by

n(A,B) := {n ≥ 0 : A ∩ T−n(B) 6= φ}.

Definition 2.4. [4] Given a subset A ⊂ X, we introduce two sets

T#A :=

∞⋂

n=0

T−n(A),

T#A :=

∞⋃

n=0

T−n(A).

The first set represents all the points such that their orbit is enterely inside A, on the

other hand the second set represents those points such that their orbit intersects the

set A.

Definition 2.5. A point x ∈ X is said to be a transitive point if ωT (x) = X.

In case (X, T ) is a topologically transitive system we write TransT for the set of

transitive points.

Often times a dynamical system (X, T ) is transitive if there is an x0 ∈ X such

that OT (x0) = X, that is, X has a dense orbit. It turns out that both of these defini-

tions of transitivity are equivalent, in a wide class of spaces, including all connected

compact metric spaces. Thus, we have the next result [39] :
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Theorem 2.6. Let X be a second category and separable topological space with no

isolated points. Then, X is transitive if and only if there is a point x0 whose orbit is

dense in X.

Another related result telling us about the nature of the set TransT is given by

[3]

Theorem 2.7. For a dynamical system (X, T ) the following conditions are equiva-

lent.

(a) T is transitive.

(b) For every pair of open, nonempty subsets U and V of X, n(U, V ) is infinite.

(c) For every open, nonempty subset U of X the open subset T#U is dense in X.

(d) For some point X ∈ X the orbit of x is dense in X.

(e) The set TransT is a dense Gδ subset of X.

2. Sensitivity

Definition 2.8. We say that a system (X, T ) has sensitive dependence on initial

conditions or more briefly, is sensitive, if ∃ ǫ > 0 such that ∀ x ∈ X and ∀ U

neighborhood of x, ∃ y ∈ U and ∃ n ∈ N with ρ(T n(x), T n(y)) > ǫ. Otherwise we

say that (X, T ) is insensitive.

When (X, T ) violates the above property, then we have that ∀ ǫ > 0 ∃ x ∈ X and

∃ U neighborhood of x such that ∀ y ∈ U and ∀ n ∈ N ρ(T n(x), T n(y)) ≤ ǫ.
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Lemma 2.9. Let a topologically transitive system (X, T ) have no isolated points and

not be sensitive. Then the above is equivalent to the following property: ∀ ǫ > 0

there exists a transitive point x0 ∈ X and a neighborhood U of x0 such that ∀ y ∈ U

and ∀ n ∈ N, ρ(T n(x0), T
n(y)) ≤ ǫ.

Proof. Let ǫ be given and let x and U violate the property of sensitiveness. By

transitivity, ∃x0 ∈ X whose orbit is dense in X. Let n0 ∈ N with T n0(x0) ∈ U , there

exists δ > 0 such that Bδ(x0) ⊂ U . Denote x1 := T n(x0) and V = Bδ(x1), then it is

clear that ∀ y ∈ V and ∀ n ∈ N ρ(T n(x1), T
n(y)) ≤ ǫ. Since X has no isolated

points, the point x1 is also a transitive one, and the proof is complete.

�

Recall that a system (X, T ) is called uniformly rigid if there exists a sequence nk ր ∞

such that the sequence T nk tends uniformly to the identity map on X.

Lemma 2.10. If (X, T ) is a topologically transitive system, insensitive and X does

not have isolated points. Then (X, T ) is uniformly rigid.

Proof. Given an ǫ > 0, by the previous lemma there is a transitive point x0 and

a neighborhood U of x0 such that ρ(T n(x0), T
n(y)) ≤ ǫ for every n ≥ n0, and every

y ∈ U . Let k now satisfy T k(x0) ∈ U , then ρ(T n+k(x0), T
n(x0)) ≤ ǫ for every n, and

since x0 is transitive, it follows that ρ(T k(z), z) ≤ ǫ for every z ∈ X. Applying this

observation to a sequence of e′is that tend to zero, then this gives a sequence of k′is

such that T ki tends uniformly to the identity.

�
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3. Minimality

Definition 2.11. A minimal set is a non-empty, closed, and (positively) invariant

set, which contains no proper non-empty closed invariant subsets. A non-empty closed

set M is minimal if and only if, for each x ∈M , the orbit closure satisfies OT (x) = M .

A point is called a minimal point or almost periodic point if it belongs to a minimal set.

We can show through Zorn’s lemma that if (X, T ) is a dynamical system then any

non-empty closed (positively) invariant subset of X contains minimal subsets. It is

clear that stationary and periodic orbits are minimal sets. From now on we call a

minimal set M nontrivial if M is infinite. Thus, minimal subsets are exactly the

members of the class of closed, nonempty invariant subsets which are minimal with

repsect to the ordering by inclusion.

4. Equicontinuity

Definition 2.12. A dynamical system (X, T ) is said to be equicontinuous if for any

ǫ > 0 there is a δ > 0 such that if x, y ∈ X with ρ(x, y) < δ then for any n ∈ N one has

ρ(T n(x), T n(y)) ≤ ǫ. By compactness, if (X, T ) is not equicontinuous there is an ǫ > 0

and a point x ∈ X such that for any δ > 0 and n ∈ N such that ρ(T n(x), T n(y)) > ǫ.

A point x ∈ X is called an equicontinuous point if for any ǫ > 0 ∃ δ > 0 such

that if y ∈ X with ρ(x, y) < δ then ∀ n ∈ N one has ρ(T n(x), T n(y)) < ǫ ; obviously

a system is equicontinuous if all its points are equicontinuity points. Another way to

introduce equicontinuity is through the following concept. A point x ∈ X is called

Liapunov stable if for every ǫ > 0 there exists δ > 0 such that ρ(x, y) < δ implies
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ρT (x, y) < ǫ, where

ρT (x, y) := sup{ρ(T n(x), T n(y)) : n ≥ 0}

This condition is tells us that the sequence of iterates {T n : n ≥ 0} is equicontinuous

at x. In this direction we can define the sets

Eqǫ(T ) :=
⋃

{U ⊂ X : U is open with diamT (U) ≤ ǫ}

Eq(T ) :=
⋂

ǫ>0

Eqǫ(T )

where diamT (A) := sup{ρT (x, y) : x, y ∈ A}. Thus, Eq(T ) represents the set of

equicontinuity points. In this way (X, T ) is equicontinuous exactly when the sequence

{T n : n ≥ 0} is uniformly equicontinuous, that is, Eq(T ) = X. If the Gδ set Eq(T )

is dense in X then the system is called almost equicontinuous . However, if for some

ǫ > 0 , Eqǫ(T ) = φ then the system has sensitive dependence upon initial conditions.

B. Chaos

During the last 30 years the study of nonlinear systems has been improved by new

computational methods, software, and hardware which has helped with the investiga-

tion of nonlinear phenomena. Indeed, numerical observations can give us important

intuition and insights in our research, ending up with propositions and theorems

which build the structure of the theory behind the system. In particular, it can help

to understand or at least visualize chaotic phenomena appearing in some nonlinear

problems. First of all, we would like to set what a chaotic system is througout this

dissertation. Yet, this is a challenging task, instead of this we just state some widely

used definitions and we will clearly indicate which one is used. First the famous

Li-Yorke paper [30] gives a definition of what a chaotic system means. The math
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community has tried to give alternative definitions of chaos or chaotic system, which

involves the main characteristics associated with that type of systems. However, we

do not yet have a universally accepted definiton of chaos. One of the most popular

definition is given by Devaney [20]. Let us discuss both of them, below.

Definition 2.13. A continuous map T on a compact metric space (X, ρ) is said

to be chaotic on an invariant set X0 in the sense of Li-Yorke provided there is an

uncountable (scrambled) set S ⊂ X0, such that:

(i) lim sup
n→∞

ρ(T n(x), T n(y)) > 0 ∀x, y, x 6= y,∈ S.

(ii) lim inf
n→∞

ρ(T n(x), T n(y)) = 0 ∀x, y,∈ S.

Definition 2.14. Let X be a metric space with metric ρ(·), and let T : X → X be

a continuous function. We say that T is chaotic on X, in the sense of Devaney, if

(i) T is topologically transitive on X.

(ii) The set of all periodic points of T is dense in x.

(iii) T has sensitive dependence on initial condition.

As Devaney has mentioned in his book [20], condition (i) means that a chaotic system

is indecomposable, i.e., the system can not be decomposed into the disjoint sum of

two subsystems. Condition (ii) implies that all systems with no periodic point are

not chaotic ( a regularity condition ), and condition (iii) says that the system is un-

predictable in the long run, that is, a small change of initial data may cause a large

deviation after many iterations. However, the above conditions are not independent.
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Banks et al. [9], proved that conditions (i) and (ii) imply condition (iii). Now, if

we analyze the second condition in the above definition we find that according to it

minimal systems can not be chaotic, since they don’t have periodic points. To leave

that door open we can follow Robinson [35] who gave a slightly different definiton of

chaotic system.

Definition 2.15. A continuous map T , on a metric space (X, ρ), is said to be

chaotic provided that

(i) T is topologically transitive, and

(ii) T has sensitive dependence on initial data.

Here, we see he is paying more attention to the transitivity and sensitive dependence

on initial conditions properties of the system than to the periodicity. Moreover, in

the case of an interval map f : I → I Vellekoop and Berglund [40] proved that to be

transitive is equivalent to be chaotic. Therefore for interval maps the most relevant

property, as a chaotic system, is transitivity.

There are other ways of quantitative measurement of the complex or chaotic na-

ture of the dynamics. There are the Liapunov exponents, various concepts of fractal

dimension including the well known box dimension and the Hausdorff dimension, and

topological entropy. For instance, if a system has positive Liapunov exponent, we

say that it is chaotic. This definition of chaos is perhaps the most computable ( in

an approximation sense ). The reader may find some relevant material in the exce-

lent classical work of Wolf et al [41] . On the other hand, the box and Hausdorff

dimensions are two important concepts in fractal geometry [21] [23], with the former

defined in a constructive way seeming to serve as a reasonable quantitavie measure of
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chaos [35]. The topological entropy introduced by Adler, Konheim and McAndrew [1]

for compact dynamical systems and later Bowen [12] [13] gave a new, but equivalent,

definition for uniformly continuous map on a metric space which is not necessarily

compact. It is known that a system is complex if it has positive topological entropy.

Just to mention one more thing in this direction, Chen et al [15] introduced another

way to understand chaos through VI(f
n), the total variation of the n− th iterates of

a function f taking into account the oscillatory behavior of the function fn. Here,

given an interval map f : I → I, they study the oscillatory behavior of fn, the n− th

iterates of the function, as n→ ∞ they have found four distinctive cases of the growth

of total variation of it. They study in detail these cases in relation to the well-known

notions of sensitive dependence on inital data, topological entropy, homoclinic orbits,

etc.

C. Li-Yorke sensitive dynamical systems

Let (X, T ) be a topological dynamical system with metric ρ, then for each x ∈ X we

define the sets of proximal , ǫ−asymptotic, and asymptotic points to x as follows:

Prox(T )(x) := {y : lim
n∈∞

infρ(T n(x), T n(y)) = 0}.

Asymǫ(T )(x) := {y : ∃ n > 0, s.t. ρ(T i(x), T i(y)) < ǫ ∀i ≥ n}.

Asym(T )(x) := ∪ǫ>0Asymǫ(T )(x).

It is clear that a point y is asymptotic to x if and only if y ∈ Asymǫ(T )(x), ∀ǫ > 0.
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Keeping these ideas in mind, we can introduce the concept of a Li-Yorke sensitive

dynamical system as in [4]

Definition 2.16. A topological dynamical system, (X, T ), is called Li-Yorke sensi-

tive if there exists an ǫ > 0 such that for all x ∈ X the set Prox(T )(x)\Asymǫ(T )(x)

is dense in X.

Another type of dynamical systems involved in this theory are the so called

mixing systems.

Definition 2.17. A topological dynamical system (Y, S) is called topologically mix-

ing if given nonempty open U, V ⊂ X there is an n0 ∈ N such that T n(U)
⋂
V 6= ∅

whenever n ≥ n0.

Definition 2.18. A topological dynamical system (X, T ) is called topologically weakly

mixing if the system (X × X, T × T ) is topologically transitive or equivalent if and

only if given nonempty subsets U, V of X there is an n > 0 such that T−n(U)
⋂
U 6= ∅

and T−n(V )
⋂
U 6= ∅.

It is clear that the following relation holds

Mixing =⇒ Weakly Mixing =⇒ Transitivity.

Using the above ideas we can characterize a sensitive dynamical system in the follow-

ing way [4]



17

Theorem 2.19. For a dynamical system (X, T ) the following conditions are equiva-

lent:

1) The system is sensitive;

2) There exists a positive ǫ such that for all x ∈ X Asymǫ(T ) is a first category set

of X ×X ;

3) There exists a positive ǫ such that for all x ∈ X Asymǫ(T )(x) is a first category

set of X ×X;

4) There exists a positive ǫ such that for every x ∈ X the set X \ Asymǫ(T )(x) is

dense in X;

5)There exists a positive ǫ such that the set of points

{(x, y) ∈ X ×X : limsupn→∞ρ(T
n(x), T n(y)) > ǫ}

is dense in X ×X.

A relationship between Li-Yorke and topologically weakly mixing systems is given

in [4]:

Theorem 2.20. If (X, T ) is a weakly mixing dynamical system, then for every

x ∈ X, the proximal cell Prox(T )(x) is dense in X.

Corollary 2.21. If a nontrivial dynamical system (X, T ) is weakly mixing then

it is Li-Yorke sensitive.

Moreover, the relation between sensitivity and Li-Yorke sensitivity is established in

the following:
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Theorem 2.22. Let (X, T ) be a dynamical system. If (X, T ) is Li-Yorke sensitive,

then it is sensitive. If (X, T ) is sensitive and for every x ∈ X the proximal cell

Prox(T )(x) is dense in X then (X, T ), is Li-Yorke sensitive.

In the case of minimal dynamical systems we have [4] the following:

Theorem 2.23

For a minimal dynamical system, the following conditions are equivalent:

1) The system is weakly mixing.

2) For every x ∈ X, the proximal cell Prox(T )(x) is dense in X.

3) For some x ∈ X, the proximal cell Prox(T )(x) is dense in X.

4)Prox(T )(x) is dense in X ×X.

Something related to the latter defintion is the concept of spatio-temporally chaotic

system, introduced in [10]

Definition 2.24. A topological dynamical system (X, T ) is called spatio-temporally

chaotic if for x ∈ X the set Prox(T )(x) \ Asym(T )(x) is dense in X.

It is clear that Li-Yorke sensitive dynamical system is also spatio-temporally chaotic.

The next result [4] gives us sufficient conditions to ensure that a sytem is temporally

chaotic.

Theorem 2.25. Assume that a dynamical system (X, T ) satisfies the following

conditions:

1) The system is infinite and transitive.

2) Every point is recurrent.

3) Every minimal point is periodic.



19

Then the system is spatio-temporally chaotic.

Now, for this part of the work we would like to establish the goals to be accom-

plished:

(Q1) Investigate for minimal systems, if the concepts of spatio-temporal chaos and

Li-Yorke sensitivity are equivalent.

(Q2) Investigate if the Li-Yorke sensitivity property of a dynamical system implies

that it is Li-Yorke chaotic.

(Q2) Let (X, T ) and (Y, S) be two dynamical systems and let h : (X, T ) → (Y, S) be

a conjugation map between them. If (Y, S) is a Li-Yorke sensitive dynamical system,

what can we say about (X, T ) ? Viceversa. What if we use an action map ?

D. Minimal dynamical systems and spatio-temporal chaos.

To answer (Q1) we start with the following result.

Lemma 2.26. Let (X, T ) be a compact dynamical system such that for all α ∈ X,

the set Prox(T )(α) is dense in X. Then the set Prox(T ) is dense in X ×X.

Proof. Let (z, w) be a point in X ×X. Given ǫ > 0, take a point ȳ such that

ρ(ȳ, z) < ǫ,

since T is onto, then ∃y ∈ X such that T (y) = ȳ. Thus we have

ρ(T (y), z) < ǫ
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for the same reason explained above ∃u ∈ X such that T (u) = w, and by continuity

of T we know that ∀ǫ > 0 ∃δ > 0 such that

if ρ(x, u) < δ, then ρ(T (x), T (u)) = ρ(T (x), w) < ǫ.

Now, by hypothesis Prox(T )(α) is dense in X for all α ∈ X, in particular so is

Prox(T )(y) for y given as above, then we can pick x ∈ Prox(T )(y) such that

ρ(x, u) < δ,

which implies

ρ(T (x), w) < ǫ,

but (x, y) ∈ Prox(T ) implies (T (x), T (y)) ∈ Prox(T ). Then given ǫ > 0 and (z, w) ∈

X ×X, we have found a point (T (x), T (y)) ∈ Prox(T ) such that

ρ(T (y), z) < ǫ,

ρ(T (x), w) < ǫ.

Therefore Prox(T) is dense in X ×X.

�

Theorem 2.27. Let (X, T ) be a minimal topological dynamical system. Then the

system is spatio-temporally chaotic if and only if is Li-Yorke sensitive.

Proof. By definition, a dynamical system (X, T ) is spatio-temporally chaotic if

∀x ∈ X the set Prox(T )(x) \ Asym(T )(x) is dense in X. Thus, if (X, T ) is Li-

Yorke sensitive then ∃ ǫ > 0 such that the set Prox(T )(x) \ Asymǫ(T )(x) is dense

in X. But, ∀ǫ > 0
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Prox(T )(x) \ Asymǫ(T )(x) ⊂ Prox(T )(x) \ Asym(T )(x).

Therefore the system is spatio-temporally chaotic.

On the other hand, if (X, T ) is spatio-temporally chaotic, then ∀x ∈ X the set

Prox(T )(x) \ Asym(T )(x) is dense in X; in particular so is Prox(T )(x). Then by

Lemma 2.25, Prox(T ) is dense in X×X. But for minimal systems the latter property

implies (X, T ) is a weakly-mixing system, and therefore Li-Yorke sensitive [4] .

�

E. Li-Yorke sensitivity implies Li-Yorke chaoticity

To solve (Q2) we have the following results:

Lemma 2.28. Let X be a compact metric topological space and let {Ak}∞k=0 be

a family of open dense subsets of X ×X. For each x ∈ X define

αk(x) := {y ∈ X : (x, y) ∈ Ak},

βk := {x ∈ X : αk(x) is a dense set}.

Then βk is dense in X.

Proof. Since X is compact metric and therefore a second countable topological space,

then we know that there exists a countable basis {Ui}∞i=1for the topology of X, and

that there exists a dense subset {zi}∞i=1 of X ( every second countable space is sepa-
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rable [24]). Now, given a point zj , consider all the possible sets Ui containing zj , and

let us denote such by {Ur,j}r∈I where I is a countable index, i.e.,

zj ∈ Ur,j∀r ∈ I.

In terms of the family {Ur,j}r∈I and the dense subset {zi}∞i=1, the set βk can be written

as

βk = {x ∈ X : αk(x) ∩ Ur,j 6= φ, ∀r ∈ I, ∀j ∈ N}

=

j∈N
⋂

r∈A

{x ∈ X : αk(x) ∩ Ur,j 6= φ}.

Now, taking the complement of βk, we obtain

(βk)
c

=

j∈N
⋃

r∈A

{x ∈ X : αk(x) ∩ Ur,j = φ}

=

j∈N
⋃

r∈A

{x ∈ X : {y ∈ X : (x, y) ∈ Ak} ∩ Ur,j = φ}

=

j∈N
⋃

r∈A

{x ∈ X : (x, y) ∈ (Ak)
c, ∀y ∈ Ur,j}

=

j∈N
⋃

r∈A

γk
r,j,

where

γk
r,j := {x ∈ X : (x, y) ∈ (Ak)

c, ∀y ∈ Ur,j}.

It follows from the fact the set {x ∈ X : ∃ y ∈ Ur,j s.t (x, y) ∈ Ak} is open that
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γk
r,j is a closed set. Thus, (βk)c is a countable union of closed sets. We claim γk

r,j is a

nowhere dense set. For if not, let Uk be a nonempty set such that

Uk ⊂ γk
r,j.

This implies

Uk × Ur,j ⊂ (Ak)
c,

a contradiction to the fact Ak is a dense open set and (Ak)
c is a nowhere dense

set. Therefore, we conclude that γk
r,j is a nowhere dense set which implies (βk)c is a

first category set and βk is a residual one.

�

Theorem 2.29. Let (X, T ) be a topological dynamical system which is Li-Yorke sen-

sitive. Then ∃ ǫ > 0 such that the set Prox(T )\Asymǫ(T ) contains an uncountable

set.

Proof. Since (X, T ) is a Li-Yorke sensitive dynamical system, ∃ ǫ > 0 such that

for all x ∈ X the set Prox(T )(x) \Asymǫ(T )(x) is dense in X. In particular we have

that ∀x ∈ X Prox(T )(x) is a dense set in X. In this way we have from Lemma 2.25

that

Prox(T ) =

∞⋂

k=1

∞⋃

n=1

(T × T )−n(Vk) =

∞⋂

k=1

Ak

is a dense set in X ×X, where

Ak :=

∞⋃

n=1

(T × T )−n(Vk),
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Vk := {(x, y) : ρ(x, y) <
1

k
}.

Thus, Prox(T ) is a Gδ set with {Ak}∞k=1 a family of dense open sets of X×X. On the

other hand, since (X, T ) is Li-Yorke sensitive, it is sensitive and therefore Asymǫ(T )

is of the first category [4]. In this way the relation

Prox(T ) \ Asymǫ(T ) =

∞⋂

k=o

Ak

is satisfied, where A0 := [Asymǫ(t)]
c, is a Gδ set in X ×X with {Ak}∞k=0 a family of

dense open sets in X × X. Now, take the sets αk(x) and βk as in Lemma 2.27 and

define β as follows

β :=
∞⋂

k=0

βk.

Then β is a Gδ dense set in X, and ∀x ∈ β the set αx defined by

αx :=
∞⋂

k=0

αk(x)

which is another Gδ dense set in X, since αk(x) is so for all x ∈ X and k = 0, 1, . . .

Moreover, ∀x ∈ β, if y ∈ αx, then y ∈ αk(x) ∀k = 0, 1, ... .

=> (x, y) ∈ Ak ∀k = 0, 1, ...

=> (x, y) ∈ Prox(T ) \ Asymǫ(T )

=> {(x, y) : x ∈ β, y ∈ αx} ⊂ Prox(T ) \ Asymǫ(T ),

therefore

αx ⊂ Prox(T )(x) \ Asymǫ(T )(x) ∀x ∈ β.
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Now, consider the family F of all nonempty subsets of β such that if G ∈ F then

G × G \ ∆X ⊂ Prox(T ) \ Asymǫ(T ), where ∆X := {(x, x) : x ∈ X}. This family is

nonempty, as for some x1 ∈ β we take x2 ∈ [Prox(T )(x1) \ Asymǫ(T )(x1)]
⋂
β such

that x2 6= x1 (this is possible since the latter set contains αx1, a Gδ dense set ). Then

{x1, x2} ∈ F . Furthermore, X is a compact metric space. Therefore there exists

{Ui}∞i=1 countable basis for the topology of X (true for any second countable space)

and inductively we can construct ( relabeling the sets Ui if necessary )

x1 ∈ U1 and x1 ∈ β,

x2 ∈ {β ⋂
[Prox(T )(x1) \ Asymǫ(T )(x1)]}

⋂
U2, x2 6= x1,

x3 ∈ {β ⋂
[
⋂2

i=1 Prox(T )(xi) \ Asymǫ(T )(xi)]}
⋂
U3, x3 6= x2 6= x1,

...

xn+1 ∈ {β⋂
[
⋂n

i=1 Prox(T )(xi) \ Asymǫ(T )(xi)]}
⋂
Un+1, xn+1 6= xn 6= xn−1 . . . 6=

x1,

such that {x1, x2, . . . , xn} ∈ F and it is a dense set.

We can introduce a partial order on F , by inclusion, i.e., for F1, F2 ∈ F

F1 < F2 <=> F1 ⊂ F2.

Then every linearly ordered L = {Fs}s∈I subset of F has an upper bound,namely,

F u :=
⋃

s∈I Fs. Thus, by Zorn’s lemma F has a maximal element F . This set satisfies

{x1, x2, . . . , xn} ⊂ F , but {x1, x2, . . . , xn} is a dense set, so we claim F has to be an

uncountable set, otherwise let F be a countable set, say F = {wi}∞i=1, then the set
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β
⋂

[
∞⋂

i=1

Prox(T )(wi) \ Asymǫ(T )(wi)]

contains a denseGδ subset, so we can pick w ∈ β
⋂

[
⋂∞

i=1 Prox(T )(wi)\Asymǫ(T )(wi)]

with w 6= wi ∀i = 1, 2, . . ..

In this way, we have (w,wi) ∈ Prox(T ) \ Asymǫ(T ) ∀i = 1, 2, . . . Let F ′ :=

F
⋃{w} ⊂ β. Then F ′ × F ′ \ ∆X ⊂ Prox(T ) \ Asymǫ(T ). But this is a contra-

diction to the fact F is the maximal element of F . This prove our claim, that is, F

is an uncountable set. Finally, F × F is an uncountable set in X ×X satisfying

F × F \ ∆X ⊂ Prox(T ) \Asymǫ(T ).

�

Corollary 2.30. Let (X, T ) be a topological dynamical system. If (X, T ) is Li-Yorke

sensitive then it is Li-Yorke Chaotic.

Proof. If the system is Li-Yorke sensitive, then by the previous theorem ∃ǫ > 0

and an uncountable set F such that

F × F \ ∆X ⊂ Prox(T ) \Asymǫ(T ).

But ∀ǫ > 0 we have

Prox(T ) \ Asymǫ(T ) ⊂ Prox(T ) \ Asym(T ).

Thus, F satisfies

F × F \ ∆X ⊂ Prox(T ) \ Asym(T ),
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and the system is Li-Yorke chaotic.

�

F. Lifting of some properties of topological dynamical systems.

For this section we start with the following basic concept.

Definition 2.31. Let (X, T ) and (Y, S) be two dynamical systems. Assume that

h : (X, T ) → (Y, S) is a map such that the diagram

T

X −→ X

h ↓ ↓ h

Y −→ Y

S

commutes. We say that h is:

• A conjugation map , if h is a homeomorphism.

• A factor map, if h is continuous and onto.

• An action map , if h is continuous.

Now, let us see how things go for the case of conjugation maps.

Theorem 2.32. Let (X, T ) and (Y, S) be two dynamical systems and let h : (X, T ) →

(Y, S) be a conjugation map between (X, T ) and (Y, S). Then (Y, S) is a topologically

transitive dynamical sytem if and only if (X, T ) is.

Proof. ⇒)(Assume (X, T ) is a topologically transitive dynamical system.)

Let M and N be any two nonempty open subsets of the space Y . Then ∃ U and V
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nonempty open subsets of X such that

h(U) = M,

h(V ) = N.

Now, from the hypothesis we know ∃ k ≥ 0 such that

T k(U) ∩ V 6= φ

for all U, V nonempty open subsets of X. But this implies:

Sk(M) ∩N = [h ◦ T ◦ h−1]k(M) ∩N

= [h ◦ T k ◦ h−1](M) ∩N

= [h ◦ T k](h−1(M)) ∩N

= [h ◦ T k](U) ∩N

= h(T k(U)) ∩N

= h(T k(U)) ∩ h(V )

= h(T k(U) ∩ V ) 6= φ (h is a homeomorphism).

(2.1)

⇐) (Assume (Y, S) is a topolgically transitive dynamical system.)

Using the same idea with H−1 the proof follows.

�

Now, let us state the following result:
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Theorem 2.33. Let h : (X, T ) → (Y, S) be a conjugation map between two minimal

dynamical systems. Then (Y, S) is a nontrivial weakly mixing dynamical system iff

(X, T ) is Li-Yorke sensitive.

Proof

⇒) Since h is a homeomorphism between (X, T ) and (Y, S), the following diagram

commutes

T

X −→ X

h ↓ ↓ h

Y −→ Y

S

i.e., h ◦ T = S ◦ h. Now, let (Y, S) be a nontrivial weakly mixing dynamical system,

i.e., (Y × Y, S × S) is a topologically transitive system. Define :

Y := Y × Y,

FS := S × S,

X := X ×X,

FT := T × T.

Thus, (Y ,FS) and (X ,FT ) are two dynamical systems. Now, let us define the function

H : X −→ Y

(x1, x2) 7−→ (h(x1), h(x2))

where h is the conjugation map between (X, T ) and (Y, S).
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Claim. H is a conjugation map between (X ,FT ) and (Y ,FS).

Proof of Claim.

1) H is continuous.

This follows from the fact that given M and N open substes of Y exits U and V open

subsets of X

H−1(M ×N) = U × V

2) H is one-to-one and onto.

Follows directly from the fact that h is a homeomorphism.

3) H−1 is continuous.

Same proof as in 1).

4) The diagram

FT

X −→ X

H ↓ ↓ H

Y −→ Y

FS

commutes.

(H ◦ FT )(x1, x2) = H(FT (x1, x2))

= H(T (x1), T (x2))

= (h(T (x1)), h(T (x2)))

= (S(h(x1)), S(h(x2)))
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= FS(h(x1), h(x2))

= (FS ◦H)(x1, x2).

�

Thus, H is a cojugation map between (Y ,FS) and (X ,FT ), but we know that (Y ,FS)

is topologically transitive, so is (from Theorem 2.32) (X ,FT ). Therefore (X, T ) is a

nontrivial weakly mixing system and from Corollary 2.21, we conclude that (X, T ) is

a Li-Yorke sensitive dynamical system.

⇐) Let (X, T ) be a Li-Yorke sensitive system then by definition ∀x ∈ X, x ∈

Prox(T )(x)\Asymǫ(T )(x), in particular since

Prox(T )(x)\Asymǫ(T )(x) ⊂ Prox(T )(x),

holds for all x ∈ X, x ∈ Prox(T )(x). Now, for minimal systems this implies (Theorem

2.23) that the system (X, T ) is weakly mixing. Then again using the action map H

between (X ,FT ) and (Y ,FS) we conclude that (Y ,FS) is a topologically transitive

dynamical system. Therefore, (Y, S) is a nontrivial weakly mixing dynamical system.

�

Theorem 2.34. Let (X, T ) and (Y, S) be two minimal dynamical systems, and let

h : (X, T ) → (Y, S) be a conjugation map. Then (Y, S) is Li-Yorke sensitive if and

only if (X, T ) is.

Proof. ⇒) Let (X, T )be a Li-Yorke sensitive system, that is,

∀x ∈ X, Prox(T )(x)\Asymǫ(T )(x)
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is dense in X. But this implies that ∀x,∈ X, Prox(T )(x) is dense in X. Now, for

minimal systems this condition is equivalent (Theorem 2.23) to saying that (X, T ) is

a weakly mixing system ((X ,FT ) is a Topologically transitive system), but since h

is a conjugation map between (X, T ) and (Y, S), there exists a conjugation map H

between (X ,FT ) and (Y ,FS) which implies that (Y ,FS) is a topologically transitive

system. Thus, (Y, S) is a weakly mixing system and therefore (Corollary 2.21) is

Li-Yorke sensitive.

⇐)

Assume (Y, S) is a Li-Yorke sensitive system, then takes the conjugation map H−1

between (Y ,FS) and (X ,FT ), and the result follows.

�
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CHAPTER III

FOURIER SPECTRUM OF CHAOTIC INTERVAL MAPS

A. Fourier series

We begin this section with some basic concepts and results.

Definition 3.1 (Integrable Functions). The space L1
loc(R) of locally integrable

functions and the space L1(R) of integrable functions on R are defined by

L1
loc(R) =

{

f : R → C : ∀a < b,

∫ b

a

|f(t)|dt <∞
}

and

L1(R) =
{

f : R → C : ||f ||L1(R) =

∫ ∞

−∞

|f(t)|dt <∞
}

.

Definition 3.2. The Fourier transform of f ∈ L1(R) is the function F defined as

F (k) =

∫ ∞

−∞

f(t)e−2πiktdt k ∈ R̂(= R).

Notation

f ↔ F f̂ = F f = F̌ .

Definition 3.3. Let f ∈ L1(R) and let f̂ = F . The Fourier transform inversion

formula is given by

f(t) =

∫

F (k)e2πitkdk.

Now, let us move on directly to the Fourier series.
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Definition 3.4. Let Ω > 0, and let f : R → C be a function. f is 2Ω-periodic with

period 2Ω if f(k+2Ω) = f(k) for all k ∈ R. If f is defined a.e., then f is 2Ω-periodic

if f(k + 2Ω) = f(k) a.e. .

Definition 3.5. Let f ∈ L1
loc(R) be 2Ω-periodic. The Fourier series of f is the

series

S(f)(λ) =
∑

c1ke
πiλk/Ω

where

∀k ∈ Z, c1k =
1

2Ω

∫ Ω

−Ω

f(λ)e−πiλk/Ωdλ.

The numbers c1k are called the Fourier Coefficients of f . If Ω > 0 and f ∈ L1
loc(R) is a

2Ω-periodic, then we write f ∈ L1(T2Ω). Mathematically speaking T2Ω = R/(2ΩZ);

which is a quotient group, is referred to as the circle group depending on Ω. The point

here is the fact that f ∈ L1(T2Ω) can be thought of as being defined on any fixed

interval I ⊂ R of length 2Ω. Thus, this periodicity, combined with the knowledge of

f on any such interval, completely determines f on R. After having introduced the

latter ideas let us see how the fourier coefficients behave as k → ∞.

Theorem 3.6 (Riemann-Lebesgue lemma). If f ∈ L1(T2Ω) and {c1k} the se-

quence of Fourier coefficients of f , then

lim
|k|→∞

c1k = 0.

Proof. Assume f ∈ C1(R), then g = f ′ ∈ L1(T2Ω) has the properties that
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∫ Ω

−Ω

g(γ)dγ = 0 and ∀k ∈ [−Ω,Ω), f(λ) =

∫ λ

−Ω

g(t)dt+ f(−Ω).

Thus, for k 6= 0 we get

c1k =
1

2Ω

∫ Ω

−Ω

f(λ)e−πiλk/Ωdλ

=
1

2Ω

[

− Ω

πik
e−πikλ/Ωf(λ)

∣
∣
∣

Ω

−Ω
+

Ω

πik

∫ Ω

−Ω

g(λ)e−πikλ/Ωdλ
]

=
1

2πik

∫ Ω

−Ω

g(λ)e−πikλ/Ωdλ

and hence

|c1k| ≤ Ω

π|k| ||g||L1(T2Ω).

Consequently, lim|k|→∞ c1k = 0.

Let f ∈ L1(T2Ω) and ǫ > 0. There is fǫ ∈ C1(R) that is 2Ω-periodic and for which

||f − fǫ||L1(T2Ω) < ǫ, then the theorem is true with fǫ and gǫ = f
′

ǫ ∈ L1(T2Ω) instead

of f and g. Then for k 6= 0 we have

|c1k| ≤ |c1k − c1k,ǫ| + |c1k,ǫ|

≤ ||f − fǫ||L1(T2Ω) +
Ω

π|k| ||gǫ||L1(T2Ω),
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where {c1k,ǫ} is the sequence of Fourier coefficients of fǫ and where we have used the

first part of the proof in the second inequality. We know that

lim
|k|→∞

ak ≤ lim
|k|→∞

bk + lim
|k|→∞

ck,

in case ak ≤ bk + ck and ak, bk, ck > 0. Consequently,

lim
|k|→∞

|c1k| ≤ lim
|k|→∞

||f − fǫ||L1(T2Ω) < ǫ.

Since the lefthand side of the equation is nonnegative and independent of ǫ, we see

that

lim
|k|→∞

|c1k| = 0.

�

Another relevant result is the following.

Theorem 3.7 (Dirichlet Theorem).

If f ∈ L1(T2Ω) and f is differentiable at λ0, then S(f)(λ0) = f(λ0) in the sense that

lim
M,N→∞

N∑

k=−M

c1ke
πikλ0/Ω = f(λ0),

where {c1k} is the sequence of Fourier coefficients of f .

Proof. Without loss of generality, assume λ0 = 0 and f(λ0) = 0. In fact if f(λ0) 6= 0,

consider the function f−f(λ0), which is also an element of L1(T2Ω), and then translate

this function to the origin. Since f(0) and f ′(0) exist, we can verify that

g(λ) =
f(λ)

(eπiλ/Ω − 1)

is bounded in some interval centered at the origin. This fact plus the integrability of



37

f on T2Ω, yields the integrability of g on T2Ω. Therefore since f(λ) = g(λ)(eπiλ/Ω−1),

we have c1k = d1
k−1 − d1

k, where {d1
k} is the sequence of Fourier coefficients of g. Thus,

the partial sum SM.N(f)(0) is the telescoping series

N∑

k=−M

(

d1
k−1 − d1

k

)

= d1
−M−1 − d1

N .

In this way, we can apply Riemann-Lebesgue Lemma to obtain

lim
M,N→∞

SM,N(f)(0) = 0.

�

B. Topological entropy

Two ideas from the previous chapter; topological entropy and total variaton of the

n− th iterates of a map f , will be used often, therefore they will be discussed more

throughly. Following Bowen [12] and Robinson [35] we have that the topological

entropy is a way to measure quantitatively speaking the chaoticity of a system. The

idea behind it is simple since we are interested in determining how many different

orbits there are for a given map. For instance, assume we have two orbits of length

n each, and suppose that your resolution to distinguish different orbits is given by

ǫ > 0 . In this way, the two orbits can be distinguished provided there is a k with

0 ≤ k ≤ n for which they are distance greater than ǫ. Let f : X → X be a continuous

map on the metric space X with metric d. Let r(n, ǫ, f) be the number of such orbits

of length n that can be distinguished. The entropy h(f, ǫ) for a given ǫ is the growth

of rate of r(n, ǫ, f) as n goes to infinity, and the topological entropy htop(f) is the

limit when ǫ→ 0. At this point a clarification is necessary.
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Definition 3.8. Let f : X → X be a continuous map on the metric space X with

metric d. A set S ⊂ Xis called (n, ǫ) − separated for f provided dn,f(x, y) > ǫ for

every pair of distinct points x, y ∈ S, x 6= y, where

dn,f(x, y) := sup
0≤j<n

d(f j(x), f j(y)).

Definition 3.9. Let f : X → X be a continuous map on the metric space X

with metric d. The entropy for a given ǫ, h(f, ǫ) is defined by

h(ǫ, f) := lim sup
n→∞

log(r(n, ǫ, f))

n
.

Therefore, if r(n, ǫ, f) = enr, then h(ǫ, f) = r, that is, h(ǫ, f) represents the exponent

of the way r(n, ǫ, f) is increasing respect to n. Finally, the concept of topological

entropy is defined as follows.

Definition 3.10. Let f : X → X be a continuous map on the metric space X

with metric d. Then define the topological entropy of f on X as

h(f) := lim
ǫ→0,ǫ>0

h(ǫ, f).

Some relevant results around this concept can be found. We can see that it is enough

to know the behavior of f in its nonwandering set Ω to make a conclusion over the

entropy of f in the whole space.
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Theorem 3.11. Let f : X → X be a continuous map on a compact metric space X.

Let Ω ⊂ X be the nonwandering set of f , then the entropy of f equals the entropy

of f restricted to its nonwandering set, h(f) = h(f |Ω).

It can be seen that if the nonwandering set consits of a finite number of periodic

orbits, then h(f) = 0. In the same direction, if we have two different dynamical

systems (X, f) and (Y, g), where we can find a conjugation between them, i.e. , a

continuous function k : X → Y that is a homeomorphism. Can we say something

about the entropy of both systems ? The answer is given by the following theorem.

Theorem 3.12. Assume f : X → X and g : Y → Y are continuous maps, where

X and Y are compact metric spaces with metrics d and d′ respectively. Assume

k : X → Y is a conjugacy map from f to g, then h(f) = h(g) .

There are various relevant results around this concept, however we will concentrate

on those related to the total variation of a function f : I → I . We start with a

definition and some propositions in this direction

Definition 3.13. Let f be a piecewise continuous function on the interval I. Let P

any partition on it. The total variation of f on I, denoted by VI(f), is defined by

VI(f) := sup
P∈P

{ n−1∑

i=0

|f(xi+1)−f(xi)| : a = x0 < x1 < . . . < xn = b, xi ∈ P, i = 1, 2, . . .
}

,

where sup is taken on all the possible partitions P of the interval I.
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The total variation of a constant function is zero and the total variation of a mono-

tonic function is the absolute value of the difference between the function values at

the end points. In general, the total variation of a function is giving us information

on how oscillatory a function is. Therefore, the question is what kind of information

we can obtain from the total variation related to its chaotic behavior. In [15] we

can find important results in this direction and just for completness we would like to

mention two of them.

Theorem 3.14. Let f ∈ C0(I, I). Suppose that f has a periodic point whose

period is not a power of 2. Then the growth rate for the total variation of fn on I is

exponential as n→ ∞ .

The converse of the above result is

Theorem 3.15. Let f ∈ C0(I, I). Suppose f is a piecewise monotone. If the

growth rate for the total variation of fn on I is exponential as n→ ∞. Then, f has

a periodic point whose period is not a power of 2 .

However, as we saw above, one way to measure the chaoticity of a system is through

the concept of topological entropy htop of a continuous map f : X → X. In particu-

lar,we have the next result [32] .
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Theorem 3.16. Let f : I → I be a piecewise monotone continuous function and let

VI(f
n) be the total variation of fn the n− th iterates of f on I. Then the topological

entropy of f is given by

htop(f) = lim
n→∞

1

n
log[VI(f

n)].

In this way, for piecewise monotone continuous interval maps, if we know the behavior

of VI(f
n), we also find the behavior of the topological entropy htop. Keep in mind

this connection, which will be used later.

C. Numerical results

We would like to start this section with the following question: Given a continuous

interval map f : I− > I, can we determine wether f is chaotic or not from its fourier

coefficients? :

ck =
1

2

∫ 1

0

f(x)e−2πkxdx, f(x) =
∞∑

−∞

ck(f)e2πkx .

In general, the answer is most likely No, since an ǫ − perturbation of a nonchaotic

map can become chaotic, and viceversa, as we can illustrate with the next example.
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Example 3.17. In the case of the symmetric triangular map
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Fig. 1. Triangular map. Nonchaotic case.
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Fig. 2. Triangular map. Chaotic case.
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The best hope one may have can only pin on information derived from the fourier

coefficient of fn where

fn = f ◦ f ◦ . . . ◦ f .

Let us look at some concrete numerical/graphical results, using the tent map

Tm,h(x) =







hmx, if 0 ≤ x < 1
m

.

hm
1−m

(x− 1), if 1
m

≤ x ≤ 1

and the quadratic map

fµ(x) = µx(1 − x)

families as models.

In the following graphs we will picture the graph of the n− th iteration of the given

function and the Fourier coefficients associated to it, as well. To this end, we use a

partition of the interval [0, 1] of 1, 000 points and calculate the integrals numerically,

using the trapezoidal rule. In all the case for the tent map we will use h = 1.
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Fig. 3. 5th iteration of the quadratic map, µ = 3.678.
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Fig. 4. Cosine Fourier coefficient for the 5th iteration of the quadratic map, µ = 3.678.
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Fig. 5. Sine Fourier coefficient for the 5th iteration of the quadratic map, µ = 3.678.
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Fig. 6. Modulus of Fourier coefficients for the 5th iteration of the quadratic map,

µ = 3.678.
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Fig. 7. 10th iteration of the quadratic map, µ = 3.678.
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Fig. 8. Cosine Fourier coefficients for the 10th iteration of the quadratic map,

µ = 3.678.
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Fig. 9. Sine Fourier coefficients for the 10th iteration of the quadratic map, µ = 3.678.
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Fig. 10. Modulus of the Fourier coefficients for the 10th iteration of the quadratic map,

µ = 3.678.
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Fig. 11. 10th iteration of the quadratic map, µ = 4.
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Fig. 12. Cosine Fourier coefficients for the 10th iteration of the quadratic map, µ = 4.
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Fig. 13. Sine Fourier coefficients for the 10th iteration of the quadratic map, µ = 4.
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Fig. 15. 5th iteration of the triangular map, m = 2.
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Fig. 16. Cosine Fourier coefficient for the 5th iteration of the triangular map, m = 2.
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Fig. 17. Sine Fourier coefficient for the 5th iteration of the triangular map, m = 2.
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Fig. 18. Modulus of the Fourier coefficients for the 5th iteration of the triangular map,

m = 2.
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Fig. 19. 10th iteration of the triangular map, m = 2.
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Fig. 20. Cosine Fourier coefficient for the 10th iteration of the triangular map, m = 2.
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Fig. 21. Sine Fourier coefficient for the 10th iteration of the triangular map, m = 2.
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Fig. 22. Modulus of the Fourier coefficients for the 10th iteration of the triangular map,

m = 2.
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Fig. 23. 5th iteration of the triangular map, m = 5/2.
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Fig. 24. Cosine Fourier coefficient for the 5th iteration of the triangular map, m = 5/2.
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Fig. 25. Sine Fourier coefficient for the 5th iteration of the triangular map, m = 5/2.
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Fig. 26. Modulus of the Fourier coefficients for the 5th iteration of the triangular map,

m = 5/2.
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Fig. 27. 10th iteration of the triangular map, m = 5/2.
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Fig. 28. Cosine Fourier coefficient for the 10th iteration of the triangular map, m = 5/2.
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Fig. 29. Sine Fourier coefficient for the 10th iteration of the triangular map, m = 5/2.
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Fig. 30. Modulus of the Fourier coefficients for the 10th iteration of the triangular map,

m = 5/2.

Note: For the case m=2, the coefficients cnk are real, so we just need to plot cnk vs k,

intead of its modulus.
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Now, in the following set of images we will plot a 3−D pictures of |cnk | as a function

of k and n for some particular values of the parameter µ and m for the quadratic and

triangular maps respectively.
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Fig. 31. |cnk | coefficient for the quadratic map, µ = 2.5.
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Fig. 32. |cnk | coefficient for the quadratic map, µ = 3.0
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Information can not be exctracted immediately without further nalysis of the previ-

ous graphs. In the first set of pictures, when we have few iterations, the contribution

to the spectrum is coming from low frequencies. However, as the number of itera-

tions increases the contribution of high frequencies comes out, but the magnitud of

the whole spectrum remains small compared to the initial situation. Consequently,

it seems that as n → ∞ we have more contribution of the high frequencies with a

reduction of the magnitud of the whole spectrum. The last block of pictures gives us

the quadratic case where we can see that when µ = 2.5 ( nonchaotic case )the graph

is completely flat and different from the case µ = 4.0 (chaotic case ) where we can

see some peaks. In the case of the triangular map when m = 2 and the height is

equal to 1/2 (nonchaotic case ), the plot is flat, but when m = 2 or m = 5/2 and

height equals 1 (chaotic case ) then the graph exhibits peaks again. In particular for

the case m = 2 and height equals 1 it seems like some of the peaks posses the same

value. As a result, we have the following conjectures:

Conjecture 1. In the nonchaotic case we have

lim
(n,k)→∞

cnk = 0.

Conjecture 2. In the chaotic case we have that there exists a subsequence cni

kj
such

that

lim
(i,j)→∞

cni

kj
6= 0.
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Conjecture 3. In the Chaotic case

sup
k∈Z

cn2
k ≤ sup

k∈Z

cn1
k n1 ≤ n2.

Now, from a heuristic argument if f is chaotic, then fn becomes more and more

oscillatory as n goes to infinity. This highly oscillatory behavior should be reflected

on the higher order harmonics of the Fourier series. The slope of f plays an important

role as well. However, it is very complicated to evaluate the Fourier coefficients:

cnk = cnk(f) =
1

2

∫ 1

0

fn(x)e−2πkxdx

for a given interval map. Most of the time, one must rely on numerical methods.

Example 3.18. The quadratic map fµ(x) = µx(1 − x), when µ = 4:

f4(x) = 4x(1 − x)

satisfies the following simple recurrence relation.

Proposition 3.19. Let f4(x) = 4x(1 − x) be the quadratic map. Then

fn+1(x) = 4fn(x)an(x), n = 1, 2, 3, ...

where {an(x)} satisfies

a0(x) = 1 − x

an(x) = (2an−1(x) − 1)2 n = 1, 2, 3, ... .
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Proof. By induction we have ( througout the proof we will write f(x) instead of

f4(x) ) that for n = 1

f 2(x) = 4f(x)(1 − f(x))

= 4[4x(1 − x)](1 − [4x(1 − x)])

= 4[4x(1 − x)](1 − 4x+ 4x2))

= 4[4x(1 − x)](1 − 2x)2

= 4[4x(1 − x)][2(1 − x) − 1]2

= 4[f(x)][2a0(x) − 1]2, a0 := 1 − x

= 4f(x)[a0(x) − 1]2.

Thus, the formula is true. Furthermore, for n = 2, 3 we obtain

f 3(x) = 4f 2[1 − f 2(x)]

but

1 − f 2(x) = 1 − 4f(x)a1(x)

= 1 − 42x(1 − x)a1(x)

= 1 − 4a1(x)[4x(1 − x)]

= 1 − 4a1(x)[1 − a1(x)]

= 1 + 4a1(x)
2 − 4a1(x)]

= [2a1(x) − 1]2,
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then

f 3(x) = 4f 2(x)[2a1 − 1]2 = 4f 2(x)a2(x).

For n = 4 we have

f 4(x) = 4f 3[1 − f 3(x)],

but

1 − f 3(x) = 1 − 4f 2(x)a2(x)

= 1 − 43x(1 − x)a1(x)a2(x)

= 1 − 4a2(x)(4a1(x)[4x(1 − x)])

= 1 − 4a2(x)(4a1(x)[1 − a1(x)])

= 1 − 4a2(x)(1 − a2(x)) 1 − a2(x) = 4a1(x)(1 − a1(x))

= 1 − 4a2(x) + 4a2(x)
2

= [2a2(x) − 1]2,

then

f 4(x) = 4f 3(x)[2a2 − 1]2 = 4f 3(x)a3(x).

Assuming that the equations

fk(x) = 4fk−1(x)ak−1(x)

ak−1(x) = [2ak−2(x) − 1]2; a0 := 1 − x,
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hold for all k = 2, 3, . . . n, show that the above equations are true for k = n+ 1.

By definition we have

fn+1(x) = 4fn(x)[1 − fn(x)],

but if fk(x), given by the above formula, is true for k = 2, 3, . . . , then

a1(x) = [2a0(x) − 1]2 = 4a0(x)
2 − 4a0(x) + 1

1 − a1(x) = 4a0(x) − 4a0(x)
2

= 4a0(x)(1 − a0(x))

= 4(1 − x)x

= f(x)

a2(x) = [2a1(x) − 1]2 = 4a1(x)
2 − 4a1(x) + 1

1 − a1(x) = 4a1(x) − 4a1(x)
2

= 4a1(x)(1 − a1(x))

a3(x) = [2a2(x) − 1]2 = 4a2(x)
2 − 4a2(x) + 1

1 − a2(x) = 4a2(x) − 4a2(x)
2

= 4a2(x)(1 − a2(x))

...

an−1(x) = [2an−2(x) − 1]2 = 4an−2(x)
2 − 4an−2(x) + 1

1 − an−2(x) = 4an−2(x) − 4an−2(x)
2

= 4an−2(x)(1 − an−2(x)).
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Thus

fn+1(x) = 4fn(x)[1 − fn(x)]

1 − fn(x) = 1 − fn(x)an−1(x)

= 1 − 4an−1(x)[4f
n−2(x)an−2(x)]

= 1 − [4an−1(x)][4an−2(x)]f
n−2(x)

...

= 1 − [4an−1(x)][4an−2(x)] . . . [4a1(x)][f(x)],

where

4a1(x)f(x) = 4a1(x)[1 − 4a1(x)] = 1 − a2(x)

(4a2(x))(4a1(x))f(x) = 4a2(x)(1 − a2(x)) = 1 − a3(x)

(4a3(x))(4a2(x))(4a1(x))f(x) = 4a3(x)(1 − a3(x)) = 1 − a4(x)

...

(4an−2(x))(4an−3(x)) . . . (4a1(x))f(x) = 4an−2(x)(1 − an−2(x)) = 1 − an−1(x).

Therefore,

1 − fn(x) = 1 − 4an−1(x)[1 − an−1(x)] = 4an−1(x)
2 = 4an−1(x) + 1 = [2an−1(x) − 1]2
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and finally

fn+1(x) = 4fn(x)an(x)

an(x) = [2an−1(x) − 1]2; a0(x) := 1 − x.

�

However, we have yet to find an explicit formula for cnk(f) for general n = 1, 2, 3, . . . ,

and k = 0,±1,±2, . . . , which can be used to find the Fourier coefficients for the

n− th iterates of the quadratic map.

A different story can be told for the case of the triangular map with m = 2 and

h = 1, where we can find explicit formulas for the n− th iteration of the map fn(x),

and the respective Fourier coefficients ak
n, bnk , but this will be the beginning of the

next section.

D. Spectral analysis and chaos

We start this section with the following result related to the triangular map.

Theorem 3.20. For the triangular map T2(x), we have the Fourier coefficients

cnk(T2) are given by:

cnk(T2) =







− 1
π2s2 if k = s2n−1 s = 1, 3, 5 . . .

0 otherwise .
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Proof. The n− th iteration of the triangular map T2(x) is given by:

T n
2 (x) =







2nx− 2(l − 1) if 2(l−1)
2n ≤ x ≤ 2l−1

2n

−2nx+ 2l if 2l−1
2n ≤ x ≤ 2l

2n

for l = 1, 2, . . . , 2n−1, and

cnk(T2) =
1

2

∫ 1

0

T n
2 (x)e−2πikxdx

=
1

2

{ 2n−1
∑

l=1

∫ 2l−1
2n

2(l−1)
2n

[2nx− 2(l − 1)]e−2πikxdx+
2n−1
∑

l=1

∫ 2l
2n

2l−1
2n

[−2nx+ 2l]e−2πkxdx
}

=
1

2

{ 2n−1
∑

l=1

∫ 2l−1
2n

2(l−1)
2n

[2nx− 2(l − 1)]e−2πikxdx
}

+

1

2

{ 2n−1
∑

l=1

∫ 2l
2n

2l−1
2n

[−2nx+ 2l]e−2πikxdx
}

= I1 + I2,

where

I1 =
1

2

{ 2n−1
∑

l=1

∫ 2l−1
2n

2(l−1)
2n

[2nx− 2(l − 1)]e−2πikxdx
}

=
1

2

{ 2n−1
∑

l=1

∫ 1
2

0

2te−2πik t+(l−1)

2n−1
dt

2n−1

}

; 2t = 2nx− 2(l − 1), dt = 2n−1dx

=
1

2

{ 2n−1
∑

l=1

1

2n−2

∫ 1
2

0

t[e−
iπkt

2n−2 e−
iπk(l−1)

2n−2 ]dt
}

;

=
1

2

{ 1

2n−2

∫ 1
2

0

te−
iπkt

2n−2

2n−1
∑

l=1

e−
iπk(l−1)

2n−2 dt
}

=
1

2

{ 1

2n−2

∫ 1
2

0

te−
iπkt

2n−2 dt
} 2n−1

∑

l=1

e−
iπk(l−1)

2n−2

=
1

2n−1

{∫ 1
2

0

te−
iπkt

2n−2 dt
} 2n−1

∑

l=1

e−
iπk(l−1)

2n−2



70

=
{ 2−2

−iπke
− iπk

2n−1 +
2n−3

π2k2
(e−

iπk

2n−1 − 1)
} 2n−1

∑

l=1

e−
iπk(l−1)

2n−2

and

I2 =
1

2

{ 2n−1
∑

l=1

∫ 2l
2n

2l−1
2n

[−2nx+ 2l]e−2πikxdx
}

=
1

2

{ 2n−1
∑

l=1

∫ 1
2

0

2te−2πik l−t

2n−1
dt

2n−1

}

; 2t = −2nx+ 2l, dt = −2n−1dx

=
1

2

{ 2n−1
∑

l=1

1

2n−2

∫ 1
2

0

t[e
iπkt

2n−2 e−
iπkl

2n−2 ]dt
}

;

=
1

2

{ 1

2n−2

∫ 1
2

0

te
iπkt

2n−2

2n−1
∑

l=1

e−
iπkl

2n−1 dt
}

;

=
1

2

{ 1

2n−2

∫ 1
2

0

te
iπkt

2n−2 dt
} 2n−1

∑

l=1

e−
iπkl

2n−2 ;

=
1

2n−1

{∫ 1
2

0

te
iπkt

2n−2 dt
} 2n−1

∑

l=1

e−
iπkl

2n−2

=
{2−2

iπk
e

iπk

2n−1 +
2n−3

π2k2
(e

iπk

2n−1 − 1)
} 2n−1

∑

l=1

e−
iπkl

2n−2 .

Finally,

cnk(T2) =
1

2

∫ 1

0

T n
2 (x)e−2πikxdx

= I1 + I2

= −2n−3

π2k2
(e

iπk

2n−2 )(1 − e−
iπk

2n−1 )2
2n−1
∑

l=1

e−
iπkl

2n−2 .

Now, if k 6= s2n−1 s = 1, 2, . . . , then

cnk(T2) =
1

2

∫ 1

0

T n
2 (x)e−2πikxdx = I1 + I2
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= −2n−3

π2k2
(e

iπk

2n−2 )(1 − e−
iπk

2n−1 )2
2n−1
∑

l=1

e−
iπkl

2n−2

= −2n−3

π2k2
(1 − e−i2πk)

{1 − e−
iπk

2n−1

1 + e−
−iπk

2n−1

}

= 0.

On the other hand, if k = s2n−1 s = 1, 3, 5, . . ., then

cnk(T2) =
1

2

∫ 1

0

T n
2 (x)e−2πikxdx = I1 + I2

= −2n−3

π2k2
(e

iπk

2n−2 )(1 − e−
iπk

2n−1 )2
2n−1
∑

l=1

e−
iπkl

2n−2

= − 1

π2s2
.

�

Now, one can quantify the oscillatory behavior of a function f through the total

variation VI(f) of the function on the interval I, which is defined as

VI(f) = The total variation of a piecewise

continuous function on an interval I.

= sup
p∈P

{ n−1∑

i=0

|f(xi+1) − f(xi)| : a = x0 < x1 < . . . < xn = b,

xi ∈ P, i = 0, 1, . . .
}

P : a finite partition of I = [a, b].
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In this context keep in mind the following. Let k = 0, 1, 2, 3, . . . , 1 ≤ p ≤ ∞.

For any distribution f ∈ D′(I), let f (k) the distributional derivative of f for k =

0, 1, 2, 3, . . ., define the Sobolev Space W p,q(I) as

W k,p(I) = {f ∈ D′(I) : ||f ||k,p = [

k∑

j=0

∫

I

|f (j)(x)|p] 1
p <∞}

(p = ∞ is interpreted in the sense of supremum a.e. ). Then we have the following

result.

Theorem 3.21. If f ∈W 1,1(I), then

VI(f) =

∫ b

a

|f ′(x)|dx I = [a, b]

Subsequently, it is necessary to introduce the next concept.

Definition 3.22. A continuous map f : I− > I is said to be piecewise monote

on I, if f has infinitely many extremal points on I.

The following are facts and notation about monotone continuous functions that must

be acknowledged prior to stating and proving the first Main Theorem 1.

1) If f is piecewise monotone on I, then [33]

lim
n→∞

1

n
lnVI(f

n) = htop (the topological entropy of f).
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Consequently, if VI(f
n) grows exponentially with respect to n, i.e.

VI(f
n) ≥ Ceαn for some C, α > 0,

then htop(f) > 0 and f is chaotic in the sense of Li-Yorke.

2) (Juang and Shieh ) [28]

Let f be piecewise monotone on I. Then the following are equivalent:

(i) f has a periodic point whose period is not a power of 2;

(ii) f has a homoclinic point;

(iii) f has positive topological entropy;

(iv) VI(f
n) grows exponentially with respect to n.

3) ( Chen, G. Y. Huang and T-W., Huang ) [15]

Let f ∈ C0(I, I). If either f has two distinct fixed points and a periodic point with

period 2, or if f has a periodic point with period 4, then

lim
n→∞

VI(f
n) = ∞ (usually polynomial growth w.r.t. n).

4) ( Chen, G. Y. Huang and T-W., Huang ) [15]

If f is a piecewise monotone on I such that

lim
n→∞

VJ(fn) = ∞

for every closed subinterval J of I, then f has sensitive dependence on initial data

on I.
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Notation

F1 : The set of all functions f ∈ C0(I, I) such that

fn has bounded total variationfor n = 1, 2, . . .

F2 : The set of all functions f ∈ C0(I, I) such that

fn has finitely many extremal points.

It is clear that F2 ⊂ F1 and F2 ⊂W 1,1(I).

Theorem 3.23 [22]. Let f be a periodic function on the interval I. If f is of

bounded total variation on I, then

|c1k(f)| ≤ 1

|kπ|VI(f), for all n ∈ Z.

Proof. Assume that f is a continuous function of bounded variation on I = [0, 2π].

Consider the k − th Fourier coefficient of f

c1k(f) =
1

2π

∫ 2π

0

f(x)e−ikxdx

=
1

2π

∫ 2π

0

f(x)d[
−e−ikx

ik
]

=
1

2π

∫ 2π

0

f(x)d[g(x)], g(x) :=
−e−ikx

ik
.

From the definition of the Riemman-Stieljes integral, the above equation implies that

for all ǫ > 0 there exists a partition P = {x0 = 0, x1, . . . , xn = 2π} such that

|c1k(f) − 1

2π

n∑

i=1

f(xi)[g(xi) − g(xi−1)]| < ǫ
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which implies

|c1k(f)| ≤ 1

2π
|

n∑

i=1

f(xi)[g(xi) − g(xi−1)]| + ǫ,

but

n∑

i=1

f(xi)[g(xi) − g(xi−1)] = f(x1)[g(x1) − g(x0)]

− f(x2)[g(x2) − g(x1)]

− f(x3)[g(x3) − g(x2)]

...

− f(xn)[g(xn) − g(xn−1)]

and since g(x0) = g(xn), then

n∑

i=1

f(xi)[g(xi) − g(xi−1)] = [f(x1) − f(x0)]g(x0)

− [f(x2) − f(x1)]g(x1)

− [f(x3) − f(x2)]g(x2)

...

− [f(xn) − f(xn−1)]g(xn−1)

= [f(x1) − f(xn)]g(x0) −
n−1∑

i=1

[f(xi+1) − f(xi)]g(xi).

Thus, we get

|c1k(f)| ≤ 1

2π
|f(x1) − f(x0)||g(x1)| +

1

2π

n−1∑

i=1

|f(xi+1) − f(xi)||g(xi)| + ǫ

≤ 1

2π
VI(f)

1

|k| +
1

2π

VI(f)

|k| + ǫ

≤ VI(f)

|πk| (ǫ→ 0)

However, if f is just a function of bounded total variation, then we can approximate
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it through {fr} a family of continuous functions of bounded total variation as

fr(x) = r

∫ x+ 1
r

x

f(t)dt = r

∫ 1
r

0

f(x+ t)dt

where

n∑

i=1

|fr(xi) − fr(xi−1)| ≤ r

∫ 1
r

0

n∑

i=1

|f(xi + t) − f(xi−1 + t)|dt

n∑

i=1

|fr(xi) − fr(xi−1)| ≤ VI(f)

VI(fr) ≤ VI(f)

|c1k(fr)| ≤ VI(fr)

πk
≤ VI(f)

πk
.

Furthermore,

|c1k(fr)| =
1

2π

∫ 2π

0

fr(x)e
−ikxdx

=
1

2π

∫ 2π

0

[r

∫ 1
r

0

f(x+ t)dt]e−ikxdx

= r

∫ 1
r

0

1

2π

∫ 2π

0

f(x+ t)e−ikxdxdt

= r

∫ 1
r

0

[
1

2π

∫ t+2π

t

f(y)e−ikydy]eiktdt y = x+ t.

= r

∫ 1
r

0

c1k(f)eiktdt

= rc1k(f)[
eikt

ik
]|

1
r

0 = rc1k(f)[
e

ik
r − 1

ik
]

= rc1k(f)e
ik
2r [
e

ik
2r − e−

ik
2r

ik
] = e

ik
2r c1k(f)

sin( k
2r

)
k
2r

.

Therefore,

lim
r→∞

|c1k(fr)| = |c1k(f)|
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and from the inequality for |c1k(fr)| we get

|c1k(f)| ≤ VI(f)

|πk| .

�

Main Theorem 1. Let f ∈ F1, and denote cnk the k − th Fourier coefficient of the

n− th iterates of f . If there exists a map φ : N ∪ {0} → N ∪ {0} satisfying

ln[φ(n)] ≥ α1 + α2n, for some α1 ∈ R, α2 > 0,

such that

cn±φ(n) ≥ δ for some δ > 0,

then

limn→∞
1

n
ln[V (fn)] > 0.

Proof. We use the following basic fact from Fourier integrals that we already proved

above, for any function g of bounded total variation on I=[0,1],

|kc1k(g)| ≤
1

π
VI(g), ∀k = 0,±1,±2, . . . .

Applying the above result to g := fn we have

|kcnk(f)| ≤ 1

π
VI(f

n), ∀k = 0,±1,±2, . . . .

Now, let |k| = φ(n) then

VI(f
n) ≥ π|φ(n)cnφ(n)|
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which implies

lim
n→∞

1

n
ln[VI(f

n)] ≥ lim
n→∞

1

n
ln[π|φ(n)cnφ(n)|] = α2 > 0.

Therefore, the proof is complete.

�

Example 3.24. For the full tent map T2(x)

cnk(T2) =







− 1
π2s2 if k = s2n−1 s = 1, 3, 5 . . .

0 otherwise

if we choose

|k| = |s|2n−1 ≡ φ(n) s = 1, 3, 5 . . .

then

lim
n→∞

1

n
ln[|φ(n)cn±φ(n)(T2)|] = lim

n→∞

1

n
ln[s2n−1 1

π2s2
]

= lim
n→∞

1

n
ln(2n−1)

= ln(2) > 0.

Showing that the Main Theorem 1 applies.

Corollary I. Let f ∈ F2 be a function satisfying the conditions of the previous

theorem. Then f has positive topological entropy, i.e.,

htop(f) = lim
n→∞

1

n
[V (fn)] > 0.

Consequently, f is chaotic in the sense of Li-Yorke.
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A somewhat generalized version of Main Theorem 1 may be given as follows.

Theorem 3.25. Let f ∈ F2. If there exists a function φ : N → N such that

(∗) lim
n→∞

1

n
ln[φ(n)

∑

k∈Z

|cnk(f)|2sin2(
kπ

2φ(n)
)] > 0,

then

(∗∗) lim
n→∞

1

n
ln[V (fn)] = α′ > 0 for some α′.

In particular, if

lim
n→∞

1

n
ln[φ(n)] ≡ α > 0 and

∑

k∈Z

|cnk(f)|2sin2(
kπ

2φ(n)
) > 0,

then (∗∗) holds.

Proof. To proof this theorem we need the following result.

lemma [22]. Suppose that g ∈ L2, then

8r
∑

k∈Z

|c1k(g)|2sin2(
kπ

2r
) ≤ Ω∞g(

π

r
)VI(g)

for any positive number r, where

Ω∞g(a) = sup
0≤δ≤a

||Tδ(g) − g||C0, (Tδg)(x) = g(x− δ)

and g is extended outside I by periodic extension.

Proof (lemma). ∀r ∈ N

h(x) := g(x+
lπ

r
) − g(x+

(l − 1)π

r
), l = 1, 2, . . . , 2r.

||h||22 :=
∑

k∈Z

|c1k(h)|2

c1k(h) =

∫

[g(x+
lπ

r
) − g(x+

(l − 1)π

r
)]e−ikxdx
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= [e−
iklπ

r − e−
ik(l−1)π

r ]c1k(g)

|c1k(h)|2 = 4sin2(
kπ

2r
)|c1k(g)|2

1

2π

∫

[g(x+
lπ

r
) − g(x+

(l − 1)π

r
)]2dx = 4

∑

k∈Z

|c1k(g)|2sin2(
kπ

2r
),

l = 1, 2, . . . , 2r.

1

2π

∫ 2r∑

l=1

[g(x+
lπ

r
) − g(x+

(l − 1)π

r
)]2dx = 8r

∑

k∈Z

|c1k(g)|2sin2(
kπ

2r
)

but

1

2π

∫ 2r∑

l=1

[g(x+
lπ

r
) − g(x+

(l − 1)π

r
)]2dx ≤ Ω∞g(

π

r
)VI(g).

�

By setting r = φ(n) and g = fn, we may argue in the same way as in the proof of

Main Theorem 1 and complete the proof.

�

Our next step is to show that given a function f ∈ W 1,2(I) there are some relations

between VI(f) and ||f ||W 1,2(I), which will allow us to state other results.

Proposition 3.26. Let f ∈ W 1,2(I). Then

VI(f
n) ≤ 2π[

∑

k∈Z

|kcnk(f)|2] 1
2 .

Proof

Let f ∈W 1,2(I) with Fourier series expansion

f(x) =
∑

k∈Z

c1k(f)ei2πkx x ∈ I = [0, 1]

then

VI(f) =

∫ 1

0

|f ′(x)|dx ≤
(∫ 1

0

dx
)1/2(

∫ 1

0

|f ′(x)|2dx
)1/2
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=
(∫ 1

0

dx
)1/2(

∫ 1

0

|2iπ
∑

k∈Z

kc1k(f)ei2πkx|2dx
)1/2

≤ 2π
(∑

k∈Z

|kc1k(f)ei2πkx|2
)1/2

= 2π
(∑

k∈Z

|kc1k(f)|2
)1/2

.

Consequently for the case of the n− th iterates fn of f it follows that

VI(f
n) ≤ 2π

(∑

k∈Z

|kcnk(f)|2
)1/2

.

�

Corollary 3.27. If f ∈ C1 and VI(f
n) grows exponentially as n→ ∞, then

∑

k∈Z

|kcnk(f)|2

grows exponentially as n→ ∞.

Now, let us see how the Fourier coefficients of f behave when it is known that f

has positive topological entropy and how f ′, the derivative of f plays an important

role in this development.

Main Theorem 2. Let f ∈ F2 ∩W 1,2(I). If f has positive topological entropy,

then

lim
n→∞

1

n
ln

[ ∑

k∈Z

|kc1k(f)|2
]

> 0.

Proof. Since f ∈ F2 and f has positive topological entropy, we have

htop(f) =
1

n
ln[VI(f

n)] ≥ α > 0 for some α

but by the preceding proposition
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2π
(∑

k∈Z

|kcnk(f)|2
)1/2

≥ VI(f
n)

lim
n→∞

1

n
ln

[

2π
(∑

k∈Z

|kcnk(f)|2
)1/2]

≥ lim
n→∞

1

n
ln[VI(f

n)] = α > 0.

�

Main Theorem 3. Let f ∈ F2 ∩W 1,∞(I) such that

|f ′|L∞(I) = γ > 0.

If

lim
n→∞

1

n
ln

[ ∑

k∈Z

|kcnk(f)|2
]

− ln[γ] > 0,

then f has positive topological entropy and consequently, f is chaotic in the sense of

Li-Yorke.

Proof. From Main Theorem 2, we have

VI(f
n) ≤ 2π

(∑

k∈Z

|kcnk(f)|2
)1/2

=
[ ∫

I

|fn′

(x)|2dx
]2

If |f ′|L∞(I) = γ, then a.e. on I, we have

fn′

(x) = f ′(f (n−1)′(x))f ′(f (n−2)′(x)) . . . f ′(f(x))f ′(x)

and

|fn′

(x)| ≤ γn a.e. on I.

We combine the above and now obtain

VI(f
n) ≤ 2π

(∑

k∈Z

|kcnk(f)|2
)1/2
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=
[ ∫

I

|fn′

(x)||fn′

(x)|dx
]1/2

≤
[ ∫

I

γn|fn′

(x)|dx
]1/2

≤ γn/2
[ ∫

I

|fn′

(x)|dx
]1/2

≤ γn/2
[

VI(f
n)

]1/2

.

Then

1

n
ln

[ ∑

k∈Z

|kcnk(f)|2
]

≤ 1

n
ln[(

1

2π
)2γnVI(f

n)
]

≤ ln(γ) +
1

n
ln[VI(f

n)
]

where, by assumption, we obtain

lim
n→∞

1

n
ln[VI(f

n)
]

≥ lim
n→∞

1

n
ln

[ ∑

k∈Z

|kcnk(f)|2
]

− ln(γ) > 0,

therefore

htop(f) > 0.

�

To ilustrate the above results consider the next examples.

Example 3.28. Consider the triangular map

Tm(x) =







mx if 0 ≤ x < 1
2

m
1−m

(x− 1) if 1
2
≤ x ≤ 1

with m = 1
1− 1

µ

and 1 < µ < 2.
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

T
m

(x
)

slope

1/(1− (1/µ)) 

µ

1 − 1/µ

 Triangular map 

Fig. 39. Nonsymmetric triangular map.

After n iterations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

T
n m

(x
)

 Triangular map 

Fig. 40. Iteration of the nonsymmetric triangular map.
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the total variation is V (T
(n)
m ) = 2n. Thus, we have

a2l−1 = an
2l−1

a2l = an
2l

a2l+1 = an
2l+1

on

(a2l−1, a2l) : f ′(x) =
1 − 0

a2l − a2l−1
=

1

a2l − a2l−1

(a2l, a2l+1) : f ′(x) =
0 − 1

a2l+1 − a2l
= − 1

a2l+1 − a2l

∫ 1

0

|T (n′)
m |2dx =

2n−1
∑

l=1

[ ∫ a2l

a2l−1

1

(a2l − a2l−1)2
dx ×

∫ a2l+1

a2l

1

(a2l+1 − a2l)2
dx

]

=

2n−1
∑

l=1

[ 1

a2l − a2l−1
+

1

a2l+1 − a2l

]

but

an
2l − an

2l−1 = λλbl(1 − λ)(n−1)−bl

an
2l+1 − an

2l = (1 − λ)λbl(1 − λ)(n−1)−bl

where

λ =
1

µ
, 1 < µ < 2.

l − 1 = cn−22
n−2 + cn−32

n−3 + . . . c12
1 + c0

the binary expansion of l − 1,

cj = 0 or 1.

bl = Number of zeroes in the binary

coefficients : {cn−2, cn−3, . . . , c1, c0}
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...
∫ 1

0

|T (n′)
m |2dx =

2n−1
∑

l=1

1

λbl+1(1 − λ)n−bl

=
n−1∑

b=0

(
n− 1

b

)
1

λb+1(1 − λ)n−b
=

[ 1

λ(1 − λ)

]n

Thus

1

n
ln

[ ∑

k∈Z

|kc1k(f)|2
]

=
1

n
ln

(∫ 1

0

|T (n′)
m |2dx

)

=
1

n
ln

[ 1

λ(1 − λ)

]n

= ln
[ 1

λ(1 − λ)

]

= ln
[

µ
1

µ− 1

]

= 2ln(µ) − ln(µ− 1)

and if

γ = |T ′|L∞(I) = max(µ,
µ

µ− 1
) =

µ

µ− 1
,

then

ln(γ) = ln(µ) − ln(µ− 1)

and

lim
n→∞

1

n
ln

[ ∑

k∈Z

|kc1k(f)|2
]

− ln(γ) = [2ln(µ) − ln(µ − 1)] − [ln(µ) − ln(µ− 1)]

= ln(µ) > 0, ∀µ : 1 < µ < 2.

�
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Example 3.29. Consider the triangular map Tq(x) with height 1
2
< q < 1 .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

T q(x
)

slope  q slope −q

height 1/2 < q < 1

 Triangular map 

Fig. 41. Triangular map with height 1
2
< q < 1 .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

T(n
)

q
(x

)

 Triangular map |slope T(n)
q

| = qn 

Fig. 42. Triangular map with —slope T n
h —= qn.
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In this case, coefficients cnk(Tq) are extremely hard to evaluate, but taking γ =

|T ′
q|L∞ = q and using the last Main Theorem we obtain.

1

n
ln

[ ∑

k∈Z

|kcnk(f)|2
]

− ln(γ) =
1

n
ln

[ ∑

k∈Z

|kcnk(f)|2
]

− ln(q)

=
1

n
ln

[ ∫ 1

0

|T (n)′(x)|2dx
]

− ln(q)

=
1

n
ln(q2n) − ln(q)

= 2ln(q) − ln(q) = ln(q) > 0.

�

Main Theorem 4. Let f, g ∈ W 1,∞(I) ∩ F2 such that f and g are topologically

conjugate

f = h ◦ g ◦ h−1

Assume that h−1 ∈ W 1,p1(I), h ∈ W 1,p2(I) for some p1, p2, 1 < p1, p2 < ∞,

satisfying either p2 >
1

(p1−1)
or p1 >

1
(p2−1)

. Let γ ≡ |f ′|L∞(I) such that

lim
n→∞

[ 1

n
ln[VI(g

n)] − p1 + p2

p1p2

ln(γ)
]

> 0.

Then

htop(f) = lim
n→∞

1

n
ln

[

VI(f
n)

]

> 0.

Consequently, f is chaotic in the sense of Li -Yorke.

Proof. We have

VI(g
(n)) =

∫

I

|gn|dx =

∫

I

|h−1
′

(fn(h(x)))||fn′

(h(x))||h′(x)|dx

≤
[ ∫

I

|h−1
′

|p1dx
] 1

p1
[ ∫

I

|fn′

(h(x))|q1|h′(x)|q1dx
] 1

q1
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(
1

q1
+

1

p1
= 1)

≤ Ch−1

[ ∫

I

|fn′

(y)|q1
p2

p2−q1 dy
]p2−q1

p2q1
[ ∫

I

|h′(x)|p2dx
] 1

p2

= ChCh−1

[ ∫

I

|fn′

(y)|
p2q1

p2−q1 dy
]p2−q1

p2q1

≤ C∗
[ ∫

I

|fn′

(y)|γn(
p2q1

p2−q1
−1)
dy

]p2−q1
p2q1

, (C∗ ≡ ChCh−1)

≤ C∗
[

VI(f
n)

] p2−q1
p2q1

γ
n(1−

p2−q1
p2q1

)
.

But

p2 − q1
p2q1

=
p1p2 − (p1 + p2)

p1p2

1 − p2 − q1
p2q1

=
p1 + p2

p1p2

and the above inequality gives

lim
n→∞

1

n
ln[VI(f

n)] ≥ p1p2

p1p2 − (p1 + p2)

[

lim
n→∞

1

n
ln[VI(g

(n))]

− ln(γ)
p1 + p2

p1p2

]

> 0.

Thus, the proof is complete.

�

Corollary IV. In the assumption of Main Theorem 4, if either p1 = ∞ or p2 = ∞

(or both), then

lim
n→∞

1

n
ln[VI(g

n)] > 0

and

lim
n→∞

1

n
ln[VI(f

n)] > 0

are equivalent.



90

Example 3.30. It is known that the quadratic map

f4(x) = 4x(1 − x)

and the triangular map T2(x) are topologically conjugate through

f4 = h ◦ T2 ◦ h−1,

where

h(x) = sin2(
πx

2
), h−1(y) =

2

π
sin−1(

√
y), x, y ∈ [0, 1].

We have

h′(x) = πsin(
πx

2
)cos(

πx

2
)

=
π

2
sin(πx) ∈ L∞(I) => p2 = ∞

(h−1)′(y) =
2

π

1√
y

1√
1 − y

=> (h−1)′ ∈ L2−δ(I) for any δ > 0,

therefore corollary IV applies. Indeed, we have

htop(f4) = htop(T2).

�

Example 3.31 (Application to PDEs). Now, we would like to show one application of

the above results to the case of chaotic vibration of the wave equation with a Van Der

Pol nonlinear boundary conditions, wich has been studied fby Chen et al [16, 17, 18].

Consider the wave equation

wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > 0
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with a nonlinear self-excitation boundary condition at the right end x = 1:

wx(1, t) = αwt(1, t) − βw3
t (1, t)

0 ≤ α ≤ 1, β > 0

and a linear boundary condition at the left end x = 0

wt(0, t) = −ηwx(0, t), η > 0, η 6= 1, t > 0.

The remaining two conditions we require are the initial conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x). x ∈ [0, 1].

Then using Riemman invariants

u =
1

2
(wx + wt)

v =
1

2
(wx − wt).

the above system becomes

∂

∂t






u(x, t)

v(x, t)




 =






1 0

0 −1






∂

∂x






u(x, t)

v(x, t)




 ,

where at the boundary x = 0 and x = 1 the reflection relations take place

v(0, t) =
1 + η

1 − η
u(0, t) ≡ G(u(0, t))

u(1, t) = F (v(1, t))

and where F (x) ≡ x+ g(x) and g(x) is the unique solution to the cubic equation

βg3(x) + (1 − α)g(x) + 2x = 0, x ∈ R.
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Solutions wx(x, t), wt(x, t) of the wave equation display chaotic vibration behavior

if G ◦ F ( or equivalently F ◦ G ) is a chaotic interval map, when α, β, η lie in a

certain region. We therefore deduce that for given α, β, η : 0 < α ≤ 1, β > 0 and

η > 0, η 6= 1, the map G ◦ F is chaotic and the initial conditions w0(·) and w1(·)

satisfy w0, w1 ∈ F2,

w0 ∈ C2([0, 1]), w1 ∈ C2([0, 1]),

and the compatibility conditions

w1(0) = −ηw′

0(0)

w
′

0(1) = αw1(1)βw3
1(1)

w
′′

0 (0) = −ηw′

1(0)

w
′

1(0) = [α− 3βw2
1(1)]w

′′

0 (1)

are satisfied. Thus, there exist A1 > 0, A2 > 0 s.t. if

|w′

0|C0(I), |w1|C0(I) ≤ A1 w
′

0 6= 0 or w1 6= 0,

then

|wx|C0(I), |wt|C0(I) ≤ A2

and

lim
n→∞

1

n
ln

[ ∫ 1

0

(

|wxx(x, n + t0)| + |wxt(x, n + t0)|
)

dx
]

> 0

lim
n→∞

1

n
ln

[ ∫ 1

0

(

|wxx(x, n + t0)|2 + |wxt(x, n + t0)|2
)

dx
]

> 0
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for any t0 > 0. Note that the previous equations have not been obtainable by any

other methods (such as the energy multiplier method ).

�

Example 3.32 (Entropy and Hausdorff Dimension). Let X be a nonempty compact

metric space and f : X → X a Lipschitz continuous map with Lipschitz constant L,

that is, ∀x, y ∈ X f satisfies

||f(x) − f(y)|| ≤ L ||x− y||.

The topological entropy h(f, Y ) of f on an arbitrary subset Y ⊂ X, given by Bowen

[11] can be constructed as follows. Let A be a finite open cover of X. For a set

B ⊂ X we write B ≺ A if B is contained in some element of A. Let nf,A(B) be the

largest nonegative integer such that fk(B) ≺ A for k = 0, 1, 2, . . . , n − 1. If B ⊀ A,

then nf,A(B) = 0, and if fk(B) ≺ A for all k, then nf,A(B) = ∞.

Now, we set

diamA(B) = exp(−nf,A(B)),

diamA(B) = exp(−nf,A(B)),

and

DA(B, λ) =
∑

B∈B

(diamA(B))λ

for a family B of subsets of X and a real number λ. Then

µA,λ(Y ) = lim inf
ǫ→0

{

DA(B, λ) : B is a cover of Y and diamA(B) < ǫ
}
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has similar properties as the classical Hausdorff measure:

µλ(Y ) = lim inf
ǫ→0

{ ∑

B∈B

(diam(B))λ : B is an open cover of Y

and diam(B) < ǫ
}

( where diam(B) = supb∈B diam(B) ), that is, there exists h(f, Y,A) such that

µA,λ(Y ) = ∞ for λ < h(f, Y,A)

µA,λ(Y ) = 0 forλ > h(f, Y,A) .

Finally we set

h(f, Y ) = sup
{

h(f, Y,A) : A is a finite open cover of Y
}

.

This number h(f, Y ) is the topological entropy of f on the set Y . If Y = X then by

proposition 1 of [11] we get

h(f,X) = htop(f),

i.e., this concept is equal to the topological entropy of f , already defined before. From

Misiurewicz [32] we have the following result.

Theorem 3.33. For any Y ⊂ X the Hausdorff dimension of Y , for Lispchitz contin-

uous map with Lipschitz constant L > 1 satisfies the inequality

Hd(Y ) ≥ h(f, Y )

ln(L)
.

Corollary 3.34. The Hausdorff dimension of X satisfies

Hd(X) ≥ h(f,X)

ln(L)
=

h(f)

ln(L)
, L > 1.
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In this way, we will consider the case of an interval map f : I → I and let L the set

defined by:

L : The set of all Lipschitz

continuous functions f : I → I, with

Lipschitz constant greater than 1.

Theorem 3.35. Let f ∈W 1,2(I) ∩ F1 ∩ L with Lipschitz constant L > 1. Let cnk be

the k − th Fourier coefficient of the n− th iterates of f . If Ω(f) represents the set of

nonwandering points of f , then

Hd(Ω(f)) ≥ 1

ln(L)
lim

n→∞
ln|kcnk |, k = ±1,±2, . . . .

Proof. Apply theorem 3.32 for X = Ω(f) which is an invariant, closed and therefore

compact set

Hd(ω(f)) ≥ h(f,Ω(f))

ln(L)
=
h(Ω(f))

ln(L)

=
h(f |Ω)

ln(L)
(Classical topological entropy)

=
h(f)

ln(L)
(true for classical topological entropy),

but we alredy know that

VI(f
n) ≥ π|kcnk |,

then

h(f) = lim
n→∞

1

n
ln[VI(f

n)] ≥ lim
n→∞

1

n
ln[|kcnk |]
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which implies

Hd(Ω(f)) ≥ 1

ln(L)
lim

n→∞

1

n
ln[|kcnk |.

�

Corollary 3.36. Let f be a function satisfying the hypotheses of theorem 3.34, and

let φ : N → N be an integer function such that grows exponentially and

lim
n→∞

|cn±φ(n)| > 0.

Then the Hausdorff dimension of the nonwandering set Ω(f) is positive, i. e. ,

Hd(Ω(f)) > 0

Proof.

lim
n→∞

1

n
ln[|kcnk | = lim

n→∞

1

n
ln[|φ(n)cn±φ(n)|]

(α1, α2 > 0) = lim
n→∞

1

n
ln[|α1e

α2ncn±φ(n)|]

= α2 + lim
n→∞

ln(α1)

n
+ lim

n→∞

ln(cn±φ(n))

n

= α2 > 0.

Therefore,

Hd(Ω(f)) ≥ 1

ln(L)
lim

n→∞

1

n
ln[|kcnk | ≥

α2

ln(L)
> 0.

�

Thus, in the case of the full tent map

T2(x) =







2x if 0 ≤ x < 1
2

−2(x− 1) if 1
2
≤ x ≤ 1
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Let γ = |f ′|L∞(I) then

|f(x) − f(y)| = |f ′(ψ)||x− y|, for some x < ψ < y

≤ γ|x− y|

=>

Hd(Ω(T )) ≥ α2

γ

but in this case

φ(n) = s2n−1, s = 1, 3, . . .

φ(n) =
s

2
2n s = 1, 3, . . .

therefore

Hd(Ω(T )) ≥ ln(2)

γ

Hd(Ω(T )) ≥ ln(2)

2
.

Now, we will move on to the application of the Sturm-hurwitz theorem to the the-

ory we are developing here. Let X be a closed subset of the interval I = [0, 1] and

f : X → X a continuous mapping. Denote J the set of all possible subintervals of I,

and for J |Y the family of all subintervals of I = [0, 1], each restricted to Y .

Definition 3.37. A cover A is called f − mono if A is finite, A ⊂ J |Y , and for

any a ∈ A the map f |a is monotone.

To the light of the above definition we can see piecewise monotone functions in a

slightly different way.
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Definition 3.38. A map f is called piecewise monotone (p.m.), if there exists an

f −mono cover of X.

Definition 3.39. Let f be a p.m. continuous mapping from an interval I into

itself. Denote

ln = min
{

CardA : A is an fn −mono cover
}

.

From [33] we have the next result.

Lemma 3.40. If f : I → I is a p.m. continuous map, then

htop(f) = lim
n→∞

1

n
ln[ln].

As we already know the Sturm-Hurwitz theorem is telling us that if g : R → R is a

continuous 2π − periodic function and dk be the k − th Fourier coefficient of g, i.e. ,

dk =

∫ 1

0

g(x)e−ikxdx, k = 0,±1,±2, . . . .

If there exists a positve integer k0 such that

dk =







0 if |k| < k0

6= 0 if |k| ≥ k0 ,

then the function g has at least 2k0 distinct zeros in the interval [0, 2π]. A new

proposition can be established by putting together the above two results.
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Main Theorem 5. Let f ∈ C0(I), I = [0, 1], be a p.m. mapping with f(0) = f(1).

If there exists a map φ : N → N satisfying

ln[φ(n)] ≥ α1 + α2n, for some α1 ∈ R, α2 > 0,

such that

cnk =







0 if |k| < φ(n)

6= 0 for some |k| ≥ φ(n) .

Then

htop(f) > 0.

Proof. For a given n ∈ N define

gn(x) = fn(
x

2π
) x ∈ [0, 2π].

Thus, gn(0) = gn(2π), so we can extend gn to the whole line R continuously with

period 2π.

Applying the Sturm-Hurwitz theorem, we have that gn(x) has at least 2φ(n) zeros

in the interval [0, 2π]. This implies that fn has at least 2φ(n) distinct zeros in [0, 1],

therefore

ln ≥ 2φ(n),

and it follows from lemma 3.39 that

htop(f) = lim
n→∞

1

n
ln[ln]

≥ lim
n→∞

1

n

[

ln[2] + ln[φ(n)]
]

≥ lim
n→∞

1

n

[

ln[2] + α1 + α2n
]

= α2 > 0.

�
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CHAPTER IV

CONCLUSIONS

We have answered the questions addressed in chapter two for topological dynamical

systems. However, there is still an open problem related to the fact of lifting prop-

erties from one dynamical system to another one in the general case of action maps

instead of conjugation maps. Some improvements could be done for the intermediate

case of a factor maps or for an almost open action map. The main point in this anal-

ysis is that the use of an action map instead of a conjugation or factor map, reduces

the possibility of pulling back convergence properties from one dynamical system to

another in a natural way through the use of an inverse function or the surjectivity of

the function.

For the second part, we are very satisfied with the work presented here. Starting

from numerical analysis we have been able to find a set of results linking, in a basic

level, two concepts of great importance in this time,namely, chaotic interval maps

and Fourier coefficients. Throughout this work there are some basic relations be-

tween Fourier coefficients and the chaotic behavior of interval maps, and we have

shown them through the main theorems stated and proved here where we have real-

ized the important role played by the total variation VI(f) of the function f , which

is a very intuitive concept but that has to be handled carefully to avoid misinterpre-

tation, and which gave us the doorway to establish the main propositions. It is also

important to remark that the numerical simulation had a great contribution to the

global analysis. In particular, the 3D graphs, which give us a clue of the possibility

of a chaotic situation. Thus, we were able to state some of the initial conjectures in

chapter three, and after all the analysis done, we see that conjecture 1:
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In the nonchaotic case we have

lim
(n,k)→∞

cnk = 0.

It is likely not true. We can argue that for the nonchaotic quadratic map

fµ(x) = µx(1 − x) with µ = 3.2 shown below (togeher with its 400 − th iteration) :

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f µ(x
)

Quadratic map. Nonchaotic case, µ =3.2

Fig. 43. Quadratic map. Nonchaotic case, µ = 3.2 .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f µ40
0 (x

)

400−th iteration of the quadratic map. Nonchaotic case, µ =3.2

Fig. 44. 400 − th iteration of the quadratic map. Nonchaotic case, µ = 3.2 .
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It has the property that, as the number of iterations increases, the function behaves

as a step function with well defined regions corresponding to the period-2 bifurcation

curves. However, at the beginning and end of the interval we have a phenomenon

which consists of high oscillatory behavior of the function, which implies Fourier co-

efficients of high frequency are presents all the time, and therefore our conjecture is

not satisfied in this case.

For the second conjecture, we were able, through the analysis of the chaotic sym-

metric tent map, to prove a theorem which gives an affirmative answer to it. Indeed,

we showed an explicit example where all the conditions are satisfied for a particular

chaotic interval map.

Finally, for the last conjecture we did not find any proposition supporting this asser-

tion or proving it is false, so more analysis is required to give a final answer to this case.

We need to mention the one difficulty in the theoretical part: the evaluation of fn,

the n − th iterates of the function f , as it was clear that only in some simple cases

we were able to find it explicitely. To avoid this problem perhaps it is necessary to

generate new techniques to give, for instance, some estimates for fn, instead of finding

it explicitely, and using those results to apply our theorems and generate new ones.

A natural way of continuation for this work is to study, the same problem but now

from the point of view of conituous Wavelet theory. Some numerical results can be

found for instance in [6], [34] where the authors analyze the bifurcation of a systems

from order to chaos in a qualitative way. Perhaps using this technique it is possible

to find new results without the necessity of finding fn.
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