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ABSTRACT 

 

Open Source Software Development and Maintenance: An  

Exploratory Analysis. (August 2006) 

 

Uzma Raja, B.Sc., University of Engineering and Technology, Lahore, Pakistan; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Marietta J. Tretter  

 

 The purpose of this research was to create measures and models for the 

evaluation of Open Source Software (OSS) projects. An exploratory analysis of the 

development and maintenance processes in OSS was conducted for this purpose. Data 

mining and text mining techniques were used to discover knowledge from transactional 

datasets maintained on OSS projects. Large and comprehensive datasets were used to 

formulate, test and validate the models.  

A new multidimensional measure of OSS project performance, called project viability 

was defined and validated. A theoretical and empirical measurement framework was used to 

evaluate the new measure. OSS project data from SourceForge.net was used to validate the 

new measure. Results indicated that project viability is a measure of the performance of OSS 

projects.  

Three models were then created for each dimension of project viability. Multiple data 

mining techniques were used to create the models. Variables identified from process, 



iv 

product, resource and end-user characteristics of the project were used. The use of new 

variables created through text mining improved the performance of the models. 

The first model was created for OSS projects in the development phase. The results 

indicated that end-user involvement could play a significant role in the development of OSS 

projects. It was also discovered that certain types of projects are more suitable for 

development in OSS communities. The second model was developed for OSS projects in 

their maintenance phase. A two-stage model for maintenance performance was selected. The 

results indicated that high project usage and usefulness could improve the maintenance 

performance of OSS projects. The third model was developed to investigate the affects of 

maintenance activities on the project internal structure. Maintenance data for Linux project 

was used to develop a new taxonomy for OSS maintenance patches. These results were then 

used to study the affects of various types of patches on the internal structure of the software. 

It was found that performing proactive maintenance on the software moderates its internal 

structure. 
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CHAPTER I 

INTRODUCTION 

  

The purpose of this chapter is to provide a background on Open Source Software 

(OSS). It also discusses the significance of studying software development and maintenance 

in OSS. It ends with presenting the scope of this dissertation. 

 

1.1   OSS BACKGROUND      

In 1970, less than one percent of the public could describe what computer software 

meant (Pressman 2004). Unlike other human inventions, software is a logical element rather 

than a physical entity. Therefore, in the early days of computers, there was no concept of 

charging money for selling software. It was an entity, packaged with the computer hardware 

and all the source code was freely available. As the use of computers became more 

pervasive, software became commercialized (Feller and Fitzgerald 2002). In order to 

preserve the commercial value of software, companies started to deliver software as a black 

box, where the user could only access the output features, but the internal structure of the 

software or the source code was hidden from the user. Protecting the source code is a tool 

commercial software development companies use to keep control over the life cycle 

 

 

 This thesis follows the style of Management Information Systems Quarterly. 
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 operations of a software system. Thus, the end user of commercial software has no visibility 

or control over the source code. If a fault occurs, it has to be reported back to the 

manufacturer or the maintenance service provider and only authorized parties can locate and 

remove faults. This also holds for upgrading the software to adapt to new requirements. For 

example, during the Y2K crisis, companies had to spend millions of dollars to have their 

systems upgraded. This type of software development is referred to as Closed Source 

Software (CSS). 

As a reaction to the mass commercialization of software, some programmers felt the 

need for upholding the concept of freedom of sharing software. In 1981, Richard Stallman 

founded the Free Software Foundation (http://www.fsf.org/fsf/fsf.html). People of similar 

interests and ideology started to develop software, which was available to users free of cost 

and with full access to the source code (MacCormack 2002). The software structure was no 

longer a black box, but was an open artifact, available to be used, upgraded, maintained or 

changed. The GNU Project was launched in 1985 to develop a complete Unix-like operating 

system, which is free software: the GNU
1
 system. Variants of the GNU operating system, 

which use the kernel Linux, are now widely used; though these systems are often referred to 

as “Linux”, these are more accurately called GNU/Linux systems (Wu and Ling 2001). 

Linux was started in 1991 as a personal project of a Finnish graduate student, Linus 

Torvaldas. He posted his code on the Internet and invited people to use it and find bugs. 

Over the period of time, Linux has grown to become one of the most popular operating 

systems being used (Godfrey and Tu 2001; Kerstetter et al. 2003). In 1976, Bill Gates in 

1
GNU is a recursive acronym for ``GNU's Not Unix''; pronounced as "guh-NEW". 
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“open letter to hobbyists” predicted that free sharing of software would prevent the writing 

of good code. However, Linux prevailed over such predictions and has become one of the 

most successful open source projects. Linux, with its interesting development phenomenon 

is currently competing well with its commercially developed counterparts. Estimates reveal 

8000 person years of effort went into the development of Linux Red Hat 7.1 (Wheeler 

2003). It would cost over 1.08 billion dollars, had it been developed commercially. 

Eric Raymond in 1990 wrote an article titled “Cathedral and the Bazar” (Feller and 

Fitzgerald 2002; Raymond 2001). In the article, he argued that the OSS development 

method was a credible competitor to CSS projects. He identified the characteristics of OSS 

development that enabled it to maintain a superior quality despite being a non-commercial 

endeavor. That paper gained much fame and attention and the OSS phenomenon became a 

topic of discussion in the research community. 

The OSS paradigm has led to the development of some very successful software by a 

community of contributors who share the source code for free (Kerstetter et al. 2003).  In 

recent years, there has been a focus on OSS projects and several streams of research have 

emerged in these areas.  However much of the work has been either focused on case studies 

of large-scale development projects (Aoki et al. 2001; German 2004; Kerstetter et al. 2003; 

Markus et al. 2000; Scacchi 2004b; Wheeler 2003). Some have looked into issues like 

participation in OSS projects (Bergquist and Ljungberg 2001; Crowston and Scozzi 2002; 

Dempsey et al. 2002; Hertel and Herrmann 2003; Hippel and Krogh 2003; Huntley 2003), 

effects of licensee choices (Lerner and Tirole 2001; Lerner and Tirole 2002; Stewart and 
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Ammeter 2006; Stewart and Gosian 2006), and organization structure of OSS communities 

(Jensen and Scacchi 2005; Koch and Schneider 2002; Krishnamurthy 2002; Krogh et al. 

2003). There is a lack of body of work that analyses the immense datasets available and 

explores them for new information within this domain.  

The empirical research in OSS has been focused on evolution of OSS projects and 

testing the laws of software evolution in the OSS domain (Capiluppi et al. 2003; Capiluppi 

et al. 2004; Capliuppi 2003; Godfrey and Tu 2001; Scacchi 2002; Scacchi 2004b). Some 

studies have been focused on analysis of fault detection in OSS projects and comparing 

them to CSS projects (Koru and Tian 2004; Paulson et al. 2004). Empirical work in OSS has 

also focused on success and failure of OSS projects (Crowston et al. 2003; Crowston et al. 

2004; Jensen et al. 2004; Krishnamurthy 2002). However, these studies used a small sample 

of projects and an abstract definition of success.  

 

1.2   SIGNIFICANCE OF OSS RESEARCH 

Open source software is typically developed by online volunteer communities of 

programmers and is available to the public for download, use, modification and upgrades 

(Feller and Fitzgerald 2002). Most OSS products are free or have a nominal charge 

associated with them. While CSS projects are struggling to meet costs, user requirements 

and schedule, OSS projects are becoming more and more popular. According to recent 

reports, 80% of the web servers use Apache, an OSS web server. Many small and medium 

scale OSS projects are also finding their way into corporate use. Organizations claim to have 
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saved millions by switching to OSS solutions. Amazon’s switch to Linux has reportedly 

saved them over 7 million dollars.  IBM has launched over 30 of its projects in the OSS 

community. According to a recent Gartner survey, by year 2010, 80% of the businesses 

would have considered using OSS projects and 25% would be using OSS projects in their 

business transactions (Cearly et al. 2005). This interest in OSS projects is not just because of 

their free availability, but also because of their high quality and ability to fulfill user 

requirements (Lerner and Tirole 2002). 

The increase in the use of OSS projects demands a deeper understanding of the OSS 

development and maintenance process. Procurement of the software is not the only cost 

associated with the use of a software system. Software systems usually have a high 

operational cost (Banker et al. 1998; Kemerer 1995). Thus, before an organization makes a 

decision to use new software, there is the need for considerable evaluation of the product. 

The maintenance costs of a software system can be very high, if frequent changes are made 

to it. If the adoption of the new system fails, there could be additional financial losses in 

terms of loss of data, loss of time, and loss of technical expertise.  

The OSS teams also need to be able to have more control over the evolution of their 

projects. Some companies like, IBM, have launched their projects in the OSS domain and 

have assigned staff to OSS development. Therefore, for OSS developers, there is a need for 

research to determine what factors would affect the long-term lifecycle outcomes of their 

projects. 
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1.3   SIGNIFICANCE OF SOFTWARE DEVELOPMENT AND MAINTENANCE 

RESEARCH 

Software development is the process that is carried out before it is launched as an 

operational system. In traditional software development, the activities during this phase 

include requirements and system specification, initial design, software coding and testing. 

There are various methodologies available for carrying out software development e.g. 

Waterfall, Spiral, Agile and Rapid Application Development etc. These methodologies 

specify issues like team formation, task assignment, milestone definition and cost and 

scheduling of the project (Pressman 2004). 

The failure rate of software development projects is very high. The 90% syndrome in 

software development projects implies that the majority of software development projects 

fail to meet the expected time and cost schedules (Abdel-Hamid 1988; Brooks 1995). This 

failure affects the over all system costs and performance. Much of software engineering 

research has been focused on identifying the causes of software project failure. The 

community has been long in search of a silver bullet that would help overcome this great 

challenge (Brooks 1995) .  

Once software code is complete and has been tested, it is ready to be operational and 

to be used by the customer. However, the nature of software is such that it undergoes change 

throughout its life. Any change made to the software product after its development has been 

completed, is called software maintenance (Pressman 2004; Zelkowitz et al. 1979). Software 
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maintenance may include activities like fault correction, improvement of performance or 

adaptation to changes in the operational environment (Pressman 2004). 

Software maintenance claims a large proportion of the lifecycle costs of a software 

system and is a large component of the Information Systems (IS) budgets of organizations. 

According to estimates, software maintenance consumes more than 80% of the lifecycle 

costs of software systems (Erlikh 2000; Moad 1990). From the point of view of 

organizational resources, IS departments spend 50-80% of their budgets on software 

maintenance (Deklava 1992; Huff 1990). Therefore, there is a considerable interest in the 

improvement and control of the process of software maintenance. Many of the problems of 

software maintenance are a result of software development and design inadequacies 

(Schneidewind 1999; Swanson and Beath 1997). Therefore while studying the operational 

maintenance of software; it is critical to have a deeper understanding of software 

development (Banker and Slaughter 1995). 

 

1.4   RESEARCH SCOPE 

The purpose of this research is to create models that explain the development and 

maintenance of OSS projects. The objective is to identify the key factors that affect the 

outcomes of OSS projects. This will help the OSS teams to better evaluate and control their 

projects. For the user and business community, it will provide quantitative evaluation of 

OSS projects, so that decisions regarding use of OSS projects could be made. It will utilize 

the immense volume of data artifacts available for OSS projects.  
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First, this study develops a new multidimensional measure of OSS project 

performance. The measure is based on research from ecology, information theory and 

engineering. It provides a tangible quantification of OSS projects that can be used to 

compare OSS projects. The measure is developed according to the measurement theory in 

software engineering and is tested for mathematical and empirical validation.  

Second, exploratory analysis of the transactional data of OSS development and 

maintenance is carried out to create three models of OSS performance evaluation. The 

availability of rich datasets enables the use of data mining techniques for model formulation. 

Prior work on software engineering has relied heavily on military data or experimental 

studies involving student subjects (Sharpe et al. 1991). There is no evidence that any of 

these studies could be generalized for the OSS domain.  

By using a dataset from a very large population of medium and small-scale OSS 

projects, this study provides unique and important insights into the key issues involved in 

OSS development. As organizations start to use OSS projects, these measures and models 

will provide an effective tool for comparison of various OSS projects. It will also benefit the 

developer community by enabling them to monitor and control the performance of their 

project. In future, the results of this research may be generalized to CSS project 

management. 
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1.5  ORGANIZATION OF THIS DISSERTATION 

This dissertation is organized into seven chapters. Chapter I discusses the 

significance of developing measures and models for OSS projects. Chapter II discusses a 

new multidimensional measure of project viability. Each dimension is defined and validated 

against a measurement framework. Chapter III discusses the steps involved in the 

exploratory research methodology used in this research. The datasets and the variables used 

for model development are also discussed in this chapter. Using these datasets and variables, 

three models for each dimension of viability are then developed. Chapter IV, V and VI 

present the results of the models for the dimensions vigor, resilience and organization 

respectively. The summary and conclusion of the research is discussed in chapter VII. 

Figure 1.1 shows the layout of the dissertation. 

 

Chapter IV
Develop
Model for

Vigor

Chapter V
Develop

Model for
Resilience

Chapter III
Exploratory

Research
Methods

Chapter VI
Model for

Organization

Chapter II
Define and

Validate new

Measures

Chapter I
Need for OSS

Measures
and Models

Chapter VII
Conclusion

 

Figure 1.1: The organization of this dissertation 
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CHAPTER II 

PROJECT VIABILITY: A MULTIDIMENSIONAL MEASURE 

 

This chapter presents the background on need for a new OSS project performance 

measure. The new measure is then defined in natural language and mathematically. The 

theoretical and empirical framework for validating the measure is then discussed.  Finally, 

the measure is validated according to the defined framework. 

2.1   BACKGROUND 

Traditionally performance of software projects has been evaluated based on 

conformance to budget, schedule and user requirements (Pressman 2004). All such measures 

hold little or no meaning for OSS projects, which are developed online by volunteer 

software programmers, without any defined user requirements or budget. Yet, there is a need 

for tangible measures that could be used to evaluate the performance of these projects. 

Development teams need such measures to control and improve the performance of their 

projects. The end users and businesses need some kind of measures to compare the OSS 

projects before making decisions regarding project adoption. Therefore, a new 

multidimensional measure of OSS project lifecycle performance was defined and validated 

in this research. This measure was used to develop performance models for use with OSS 

projects.  
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Software measurement is a very important component of developing an 

understanding of software engineering practices and processes (Fenton and Pfleeger 1991). 

According to measurement theory, measurement is the process through which numbers are 

assigned to attributes of entities in real world, so as to describe them according to clearly 

defined rules (Melton et al. 1990). Software metrics are quantitative measures that enable 

software engineers to make subjective evaluations about a project (Fenton and Pfleeger 

1991). During project development, software measures can be used to spot trends and to 

make improvements accordingly. These measures can also be used to compare various 

software products and to make informed decisions regarding use of new software (Pressman 

2004).  

The need for new measures arises, when a domain is new and not many reliable and 

tangible measures exist (Briand et al. 1996; Kitchenham et al. 1995). As mentioned earlier, 

the existing measures of project performance are not suitable for OSS projects. Therefore, a 

new multidimensional measure of OSS project performance called project viability was 

defined and validated in this research. Project viability is a measure of survivability of a 

project. Ecologists describe natural systems’ survivability in terms of their ability to grow, 

maintain structure and respond to perturbations (Costanza and Mageau 1999). OSS projects 

can be modeled as natural systems that grow, develop, get sick (have faults) and recover 

through their life cycle and die (become inactive), to be replaced by new projects. OSS 

projects develop like natural ecosystems; they evolve without requirements in the presence 

of threats
2 

to their existence. The ability of a project to overcome these threats and continue 

2
The threats can be internal programming errors, or loss of team members, or other environmental factors. 
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to grow, determines whether a project would survive or become inactive.  The quality and 

life expectancy of OSS projects depends on some critical characteristics. These 

characteristics can be used to evaluate the current performance and predict future 

performance.  

OSS project viability is defined as the ability of a project to grow and maintain its 

structure in the presence of perturbations. It was developed as a 3-dimensional measure, as 

shown in figure 2.1, with each dimension having equal weight in the overall viability. The 

project viability measure can be used to monitor the performance of a single project over its 

lifecycle or to compare multiple projects with each other.  

 

 

Figure 2.1: Three dimensions of OSS project viability 
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To create and validate a new multidimensional measure, the first step was to define 

each dimension of viability. In addition to mathematical definition, it is also important to 

have a natural language definition of a new measure (Kitchenham et al. 1995; Melton et al. 

1990). For wider application of the measure, it is imperative that the measure be 

independent of technology and the programming environment (Churcher and Shepperd 

1995). The following discussion explains each dimension and its measurement in detail for a 

project P, with viability measurements taken at time period tn; n = 0, 1, 2 ... (measured in 

days, weeks or years). 

 

2.1.1   Vigor 

Vigor refers to the ability of a project to evolve over a period of time. It is a measure 

of its growth or throughput. The vigor of a project will change through its lifecycle. During 

the development phase, vigor represents the addition of the basic functionality required for 

successful transition to the next phase of its life cycle. During the maintenance phase, vigor 

represents incremental changes incorporated to add new functionality to the project. For 

comparing different projects, the growth can only be compared as a function of time. The 

age of the projects varies and therefore the amount of functionality added can increase with 

the age. In order to make the new measure scale invariant, it is normalized over time. The 

incremental functionality can be measured by files released per unit time. The vigor of a 

project at time period nt  can be calculated as: 

V  = ∑
=

n

i

i

n

G
t 0

1
    ..........................................................   (2.1) 
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Where;  

V = Vigor at time period n; 0 ≤ V ≤ Gnorm 

Gi  =  Number of new versions released in time period i  

Gnorm = Maximum files released per unit time 
3 

The greater the number of files released per unit time, the greater will be the vigor of 

the project. The normalization with respect to time ensures that older projects do not have a 

higher value of vigor because of their age. It makes the comparison between projects of 

different age, valid.  

 

2.1.2   Resilience 

The resilience of a project is the ability of a project to respond to internal and 

external perturbations. These perturbations refer to changes in the operating environment of 

the project. For software projects, perturbations are typically described as occurrences of 

errors and bugs, which affect the operation of the system. Resilience refers to the ability of a 

project to remove the error and become operational again. Ideally, a project should be able 

to adapt to the changes in its environment quickly. The longer it takes a project to react to a 

perturbation; lower will be its performance. In corporate environment, such a time delay can 

translate into very high operational costs. Therefore, resilience is an important component of 

the project viability, especially for projects in the operational phase of their lifecycle.  

 

3
Assumption: There is finite number of file releases during the lifecycle of a project. 
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In OSS projects, the users hold no contractual obligations to the developers regarding 

commitment to the project. Therefore, if a project fails to adjust to perturbations, the end 

user might abandon that project. Poor resilience can also discourage programmers from 

contributing to that project. This can cause a reduction in the development and maintenance 

effort and eventually affect the project viability. 

 Resilience is measured in terms of response time. A shorter response time reflects 

higher degree of resilience. The resilience of project P is given by the following equation: 

R = 
n

q

j

jn

t

d
q

t ∑
=

−
1

1

    ..........................................................   (2.2) 

Where; 

R = resilience value at time period n; 0 ≤ R ≤ 1 

q = Total number of perturbations in time period tn 

dj = Time taken to react to perturbation j  

For a project with high resilience, the value reflects shorter response time to react to 

a perturbation. If on the other hand, removing an error takes a long time, then the resilience 

of the project will be low. The value of resilience is normalized for the total number of 

perturbations taking place in a project. For example, if a project has higher number of bugs 

reported, then dividing this number by total number of bugs for the project will normalize 
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4 
Consider a natural system containing species that feed on only one or two preys and are in turn preys to 

only one or two other species. This system will have high organization compared to a system with the same 

number of generalist feeders with multiple pathways of exchange between them. 

resilience value. This is done to ensure that different projects with varying number of 

perturbations over their life cycle can be compared against their resilience levels.  

2.1.3   Organization 

Organization of a natural system refers to the number and diversity of interactions 

between its components. In terms of software projects, organization is the measure of the 

diversity of the interaction between the project members and the information exchanges 

between them. A highly organized project is characterized by a high diversity of specialized 

members and their corresponding specialized interactions. Organization decreases as the 

diversity of the members and the specialization of the information exchange decreases
4
 In an 

OSS project, if there is a large group of specialist developers and maintainers who respond 

to specific problems, project organization will be higher compared to a project where there 

is equal number of general-purpose programmers.  

In order to measure organization of a project, it is required that both diversity and 

magnitude of the interactions within a project be known. Information theory offers system 

level measurement of interactions as means to measuring system organization. One such 

measurement is Average Mutual Information (AMI). AMI has been adopted in many 

disciplines e.g. biology, engineering and ecology as a comprehensive measure of 

organization (Pierce 1980; Ulanowicz 1986). AMI is a validated measure of the organization 
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of a system (Pierce 1980). AMI refers to the amount of information that is available on an 

element of a system, given the value of another element. A highly organized system has a 

high AMI.  

Consider an OSS project where users interact with N members of a project team. For 

any message originator x; 

{ } { }Nixx i ,...,2,1, ∈∈   ...................................   (2.3) 

Let )( kxP represent the probability that a message/task is originated by a member k, x = xk.  

The information content in the symbol therefore is defined as: 

)(log)
)(

1
log()( k

k

k xP
xP

xI −==    ...................................   (2.4) 

The information exchange between two entities has some interesting properties. 

First, if only one member sends the information, then the value of the information content 

vector I(xk) is 0 (Pierce 1980).  Second, the information is always positive, and finally, 

information is additive i.e. the total information in two independent members is the sum of 

the information for each: 

( ) ( ))()(log),(log),( jijiji xPxPxxPxxI −=−=  

)()()(log)(log jiji xIxIxPxP +=−−=  .............................................   (2.5) 
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 Before discussing AMI equations, another critical measure is needed. The entropy 

H(x) of an entity x, with a probability of occurrence p(x), is the measure of uncertainty about 

the information of x and is given by the equation: 

)(log)()( 2 xpxpxH
x

∑−=    .............................................   (2.6) 

The joint entropy of x and y defines the uncertainty of the message being exchanged 

between x and y, where p(xy) is the joint probably of the occurrence of the pair (x,y) 

)(log)(),(
,

2 xypxypyxH
yx

∑−=   .............................................   (2.7) 

For an information (task) exchange between team member x and y, the conditional 

entropy of x given y is: 

)(),()|( yHyxHyxH −=    .............................................   (2.8) 

Thus the conditional entropy is a measure of the average information in x given y is 

known (Pierce 1980) . In other words, if a task is completed by the member y, then H(x| y) is 

the remaining uncertainty in knowing who originated the task. The Average Mutual 

Information (AMI) is defined as the average information gained by x, when observing y: 

);(),()()()|()();( xyIyxHyHxHyxHxHyxI =−+=−=   ................   (2.9) 

In other words, the AMI is the difference in the uncertainty of x and the remaining 

uncertainty of x, after observing y. It can also be stated that AMI is the reduction in the 
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uncertainty of x, by knowing y (Pierce 1980). In terms of OSS projects, consider the tasks as 

being originated by some individuals and completed by others. Then using equations 2.3-2.9 

ji

ij

i j

ij

TT

TT

T

T
AMI

••

∑∑= 2log    ...........................................   (2.10) 

Where Tij = Task originated by i and completed by j 

•iT   = All the tasks requested by i 

jT•  = All the tasks completed by j 

T = Total tasks in the project  

 

2.2   EVALUATION OF OSS PROJECT VIABILITY MEASURES 

A formal measure captures the intangible aspects of a relationship to the 

mathematical world  (Kitchenham et al. 1995; Kitchenham et al. 2002). Project viability is a 

three-dimensional
5
 attribute of OSS project performance. Therefore, each of the three 

measures had to be defined, evaluated and validated to confirm that it would behave 

logically over the entire OSS population 
6
. Initially each measure was evaluated for proper 

  

 

 

 

5
For example, referring to one OSS project being better than the other, or regarding an OSS project as 

successful, has no formal mathematical relationship. There is a need to quantify the measures of 

performance. 

6
It is also very important to distinguish between simple attributes and multidimensional attributes. The 

simple attributes like size are scalar, while the multidimensional attributes e.g. viability are vectors. 
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logical and mathematical properties. Later OSS project data was used to evaluate the  and 

predictive validity of these measures. Logical evaluation of the measure, coupled with 

empirical validity, ensures that the new measure is robust and valid (Kitchenham et al. 

1995).  

To determine the evaluation criteria for viability, prior studies on determination of 

evaluation criteria and traditional measurement theory were consulted (Allison 1978; Barry 

et al. 2000; Chidamber and Kemerer 1994; Weyuker 1988). There has been a significant 

body of research on validation of software metrics (Schneidewind 1992). For validation of a 

new measure it is important to have a clear and intuitive natural language definition and a 

precise mathematical definition, so that the application is repeatable (Finkelstein and 

Learning 1984). There are two methods of testing the validity of a new measure: theoretical 

validation and empirical validation. Theoretical validation confirms that the measure does 

not violate any necessary properties of the elements of measurement. Empirical validation 

confirms that the measured attribute is consistent with reality
7 

(Kitchenham et al. 1995). 

 

2.2.1   Theoretical Measurement Validation 

While creating new measures, it is critical to establish theoretical validity. Prior 

research in evaluation of new software measures provides a framework for theoretical and 

logical validation of a measure. Weyukner proposed nine axioms for validation of new 

measures of software complexity (Weyuker 1988). These measures have been widely 

adopted and used for validation of a range of software. Melton  (Melton et al. 1990) 

 

7
For example, a project identified to have a high viability is actually a project that survives in OSS domain. 
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proposed a framework of validation of new measures. Kitchenham et al., summarized and 

selected the most general validation criteria for any software measure. This framework was 

adopted for theoretical validation of project viability (Kitchenham et al. 1995). The four 

properties of new measures suggested are: 

1. For an attribute to be measurable, it must allow different entities to  be 

distinguished from one another.  

2. A valid measure must obey the Representation Condition, i.e. it must 

preserve our intuitive notions about the attribute and the way in which various 

entities are distinguished. 

3.  Each unit of an attribute contributing to a valid measure is equivalent, 

4. Different entities can have the same attribute value (within the limits of 

measurement error). 

Each dimension of viability was validated according to this framework.  

 

2.2.1.1   Vigor 

 The vigor of an OSS project is defined in equation 2.1. Testing it against the above-

mentioned four properties of the framework, it is evident that: 

1. Projects are of varying sizes and have a varying pattern of file releases. The 

frequency of file release will vary from one project to another and will vary for the 
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same project during various phases of its lifecycle. As per Weyuker’s explanation, 

there would be at least two projects, for which the vigor would be different.  

2. The measure of files released per year, does obey the intuitive notion of growth and 

throughput. Files released and transitions of development phases have been used in 

other research as measures of productivity, evolution, and functionality of a project. 

Therefore, vigor conforms to this requirement. 

3. As per the mathematical definition of vigor, all units (subsequent releases) are 

treated equal. This is a standard measurement practice. 

4. The definition of vigor does allow different projects to have the same vigor. If the 

number of files released for two projects per given time are the same, then the 

measure of vigor would be the same for both projects in that time period. 

 

2.2.1.2   Resilience 

The resilience of a project is defined in equation 2.2. Testing it against the above-

mentioned four properties of the framework, it is evident that: 

1. The response time to a perturbation can vary for different projects and within the 

same project. Therefore, the formula allows different projects to vary in the value of 

resilience. 

2. The response time measured as the time taken to react to a perturbation obeys the 

intuitive notion of resilience. 
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3. By averaging and normalizing the time taken to react to each perturbation, each unit 

is treated equal. 

4. The formulation allows different projects to have different resilience. 

 

2.2.1.3   Organization 

AMI is a validated measure of system structure. The McCabe’s Cyclomatic 

complexity measure uses the same derivations to measure the internal structural complexity 

of software (McCabe 1976). Testing it against above-mentioned four properties of the 

framework, it is evident that:   

1. The organization of different projects will depend upon the magnitude and the 

diversity of the interaction, therefore projects could be distinguished based on the 

formulas discussed earlier. 

2. The measure obeys Representation Condition and follows the intuitive notion of 

structure. 

3. All interactions are aggregated with equal weight,  therefore, this condition is 

satisfied. 

4. The formulation does allow different projects to have the same AMI (within error 

limits). 
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2.2.2   Empirical Measurement Evaluation 

The empirical validation of the measure establishes external validity. Like 

theoretical evaluation, there was the need for a framework of evaluation for the empirical 

evaluation. The purpose of empirical evaluation of the measure is to ensure that its mapping 

to a value captures the understanding of the attribute (Kitchenham et al. 2002). In this case, 

the measure of viability was used as a measure of the performance of OSS projects. 

Therefore, empirical validation involved computing the viability of various OSS projects. 

This was used to corroborate whether use of the measures of viability offered discrimination 

between projects of known high or low performance. For statistical validation, the 

appropriate tests and confidence levels had to be identified. It is worth mentioning here that 

for a new measure, it is possible that it will be valid under certain criteria and not under 

others.  A correlation was considered weak if it was statistically insignificant (p > 0.05). 

Furthermore a correlation was considered weak if  |correlation| < 0.4 and was considered 

strong if  |correlation| > 0.4 (Kitchenham et al. 2002). 

There are three types of external validity: Convergent, Discriminant and Predictive 

(Trochim 1999). Convergent validity could be demonstrated by comparison between the 

new measure and some other metric that measured the same property. Unfortunately, no 

validated measure of OSS project performance exists. Therefore, it was not be possible to 

establish this type of validity for any of the dimension of viability. Discriminant validity 

required that the three dimensions of viability be independent. This was achieved by 

demonstrating that the measures are orthogonal. This ensured that the measures were three 
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separate dimensions of viability (Kitchenham et al. 1995). Analyzing the correlations 

between each measure of viability will achieved this purpose. Testing the results of viability 

for various projects and then comparing the performance evaluation of known successful or 

failed projects demonstrated the predictive validity (Barry and Slaughter 2000; Kitchenham 

et al. 1995).  

To test the application of the measure of viability empirically, a sample of 20 

projects
8
 was selected from the sourceforge.net dataset. The computation of the measure of 

organization was very complex and time consuming. The number of projects was kept small 

to facilitate the computation process. The purpose was to demonstrate the use and the 

validity of the new measure. A summary of the measures is in Table 2.1.  

 

Table 2.1: Operationalization of OSS project viability dimensions 

 

 

Dimension Measure Details 

Vigor New versions released per year  New releases are indicative of functionality 

growth of the project (Boehm 1987) 

Resilience Bugs fixed per unit time Time taken to remove a bug indicates the 

response time of the project team to handle 

changes that occur in its environment 

(Pressman 2004) 

Organization Average Mutual Information The structure of the maintenance process 

reflects the organization of the project (Pierce 

1980; Ulanowicz 1986) 

8
Considering the complexity of this analysis, number of projects was kept small. This analysis is carried out 

to demonstrate the use of new measure and to validate the dimensions. In later chapters when new models 

are created, a larger dataset is used.  
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The sample projects used for this analysis were selected randomly. The first step was 

to compute the vigor of the projects. The number of files released by each group was 

extracted. This number alone could not be used because the total number is dependent upon 

the age of the project. In order to make the measure age invariant, the number of new 

releases per year was calculated. The date of registration for each project was extracted from 

the Sourceforge.net dataset. This time was available as UNIX epoch time. The UNIX epoch 

time is the number of seconds elapsed between 1/1/1970 and the actual time of stamp.  The 

UNIX epoch time was converted to the Georgian calendar date through the transformation: 

25569
86400

____
__ +=

onregistratioftimeEpochUnix
onregistratiofDate  

The dataset used for this research was extracted from the Sourceforeg.net data 

warehouse for May 2005. Therefore, the age of the project was computed by subtracting the 

date of registration from the date of extraction of the dataset. This gave the age of the 

project.  The total number of new versions released by the project was then divided by the 

age in years to compute the new versions released per year. This variable was used as a 

measure of the vigor of the project. 

The measure that was considered next is resilience. Resilience is the ability to 

recover from a disturbance. In software project, the occurrence of errors is the most 

significant form of disturbance that can be measured from the available dataset
9
. The total 

 

 
9
It is realized here that there can be other types of major disturbances, e.g. change in the project team, 

change in the platform the project runs on, etc. However, for this analysis given the nature of the dataset, 

the most stable measure that can be computed in the time to fix bugs. 
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bugs that occur in a project were computed from the dataset. The SourceForge dataset 

contains data on all kinds of project artifacts in a single table. The steps followed were as 

follows: 

 BEGIN 

P = Total number of projects 
# Initialize index 
 
p = 1;  
# Initialize Sum_time 
 
Sum_time = 0;  
 
WHILE (p <= P) 
 
# for all projects 
DO  
{ 
   # Extract the bug repository id for each project using the group_id 
   Bug_Rep_id[p] =  Bug repository identification number for project p; 
  
 #Compute the total number of bugs for each p 
   N[p] = Total bugs for project p; 
 
For (i = 1 to N[p]) 
 { 
  # Extract the time bug was reported 

Time_open = bug report time; 
 
# Extract the time bug was closed 
Time_Close = bug closed time; 
 
# Compute bug fix time 
Fix_time = Time_Close - Time_open ; 
 
# Compute total fix time 
Sum_time = Sum_time + Fix_time; 

 } 
 
# Compute Average Time to fix bug for the project 
MTTF[p] = Sum_time / N[p]; 
 
# Go to next project 
  p = p+1; 
} 
END 
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The organization of the OSS projects was computed by AMI, which is a validated 

measure of system structure (Pierce 1980). The following steps were involved in the 

computation of AMI: 

 

BEGIN 
 
P = Total number of projects 
 
# Initialize index 
p = 1;  
 
WHILE (p <= P) 
 
# for all projects 
DO  
{ 
   # Compute total number of distinct maintainers 
   M(Kemerer and Slaughter) = number of maintainers; 
 
 
     # Compute total number of distinct reporters 
   R[p] = number of bug reporters;   
 
   # Compute total number of bugs reported 
   T[p] = Compute total number of Bugs reported;  
 
   # For each bug reporter 
   For (r = 1 to R)     
      Ti[p,r] = Compute number of bugs reported;  
   
   # For each maintainer    
   For ( m = 1 to M[p])     
      Tj[p,m] = Compute number of bugs fixed;   
   
   # For each reporter and maintainer  
   For (r = 1 to R[p]) 
      For (m = 1 to M[p]) 
         Tij[p,r,m] = Compute number of bugs reported by r, fixed by m;     
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 # Compute entropy of bug reporters ∑−=
i

ii

T

T

T

T
xH )ln()(  

 
   For (x = 1 to R[p]) 
     H[p,x] = Entropy of bug reported for each project; 
     

   # Compute entropy of bug maintainers ∑−=
j

jj

T

T

T

T
yH )ln()(  

   For (y = 1 to M[p]) 
      H[p,y] = Entropy of bug maintainer for each project; 
          

   # Compute joint entropy ∑∑−=
i j

ijij

T

T

T

T
yxH )ln(),(  

   For (x = 1 to R[p]) 
      For (y = 1 to M[p]) 
         Hxy[p,x,y] = Entropy of bugs reported by x, fixed by y;       
 
   # Compute ),()()( yxHyHxHAMI −+=  

     For (x = 1 to R[p]) 
      For (y = 1 to M[p]) 
   AMI[p] = H[p,x] + H[p,y] - H[p,x,y]; 
   
 # Go to next project 
   p = p+1; 
} 
 
END 

 

Discriminant validity was supported by lack of high correlation between unrelated 

measures. In order to establish the discriminant validity, the values for vigor, resilience and 

organization were computed for 20 projects. One project had to be rejected because the bug 

repository was not set up and the data on maintenance could not be retrieved for resilience 

computation. The results of the correlation analysis are in Table 2.2. The purpose of the 

analysis was to ensure that the measure is valid, i.e. it provides discriminatory power 

between projects of varying performance. The formulas discussed earlier were used to 

compute the values of vigor, resilience and structure. For multidimensional measures, it is 
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imperative that the measures be independent or orthogonal to each other. This means that 

each dimension measures a different attribute for the composite attribute and that there is no 

correlation between each dimension. In order to ensure this, the pair wise correlation of each 

dimension was computed. The results of the Pearson Correlation Coefficients for the three 

measures are shown in Table 2.2. 

 

 

 

Table 2.2: Pearson correlation coefficient for the three measures of viability 

Variable By Variable Correlation Sig prob Result 

Vigor Resilience 0.1197 0.6254 Reject correlation  

Organization Resilience 0.1574 0.5155 Reject Correlation 

Organization Vigor 0.4563 0.0496* Weak correlation 
 

 

 

The Pearson correlation coefficient values indicate a correlation between organization 

and vigor. Further investigation indicated that the dataset was very small and non-normal. 

For such small datasets, the nonparametric Spearman test is recommended (Neter et al. 

2004). Therefore, the Spearman Coefficient was also computed. These results are shown in 

Table 2.3. The Spearman Correlation Coefficient test confirmed that the three measures of 

viability were uncorrelated. 
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Table 2.3: Spearman correlation coefficient for the three measures of viability 

Variable By Variable Correlation Sig prob Result 

Vigor Resilience 0.31053 0.1957 Reject correlation  

Organization Resilience 0.08260 0.7367 Reject Correlation 

Organization Vigor 0.04569 0.8526 Reject Correlation 

 

 

 

The next step was to establish predictive validity. This would mean that the measure 

itself could be used to identify the high and low performing projects. As mentioned earlier, 

the sample for empirical evaluation was random; therefore, there was no prior knowledge 

about the performance of the selected projects. The three dimensions are plotted in a 3-D 

plane, as shown in Figure 2.2. 

From the plot, it can be seen that project # 14 is low in all three dimensions of 

viability. Extracting the details about this project showed that this was “Linux NFS 

development web site” project and was inactive. Similarly, project # 11348, another project 

with low values in all three dimensions was GNOME News Applet, which was a failed or 

inactive project. It can be seen that project # 84122, 23067 and 29057 have high values for 

all three measures. When the project description of these groups was extracted, it was found 

that Project # 84122 was Azures (a Bit Torrent Client), project # 23067 was myPhP (a 

database application) and project # 29057 was Compeire (an ERP/CRM solution). All three 

of these projects were among the top projects
 
 at the souceforge.net. Thus, the predictive 

validity of the measures can be confirmed. 
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Figure 2.2: Scatter plot of the viability measures for the projects used in the empirical 

analysis   
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2.3   APPLICATION OF OSS PROJECT VIABILITY MEASURES 

Using each measure of the project viability, three models are developed to evaluate 

the performance of OSS projects. A detailed analysis of each dimension is performed and 

the effects of various project variables on these dimensions are investigated. Following is a 

brief introduction to each model developed in this research. Later chapters discuss these 

models in detail. 

 

2.3.1   Model of OSS Vigor 

This model was developed to explain the factors that affect the vigor of an OSS 

project. Vigor refers to the growth or the throughput of a project. It is a very critical attribute 

for a project, especially in its development phase. Software projects transition through 

various phases before they become stable and operational. Prior research indicates that many 

OSS projects fail to grow over a period of time and sometimes become inactive 

(Krishnamurthy 2002). In order to identify the factors critical to vigor, OSS projects that 

were in their development phase
10

 were analyzed. The dataset was extracted from an online 

OSS project development community. An initial set of factors that effect development 

performance was identified from existing literature. A refined model was then formulated, 

tested and validated using OSS project datasets.  This model is discussed in more detail in 

Chapter IV. 

. 

10
The Development Phase of software projects refers to software lifecycle phase during which a project is 

created, new functionality is added, and testing is conducted. 
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2.3.2   Model of OSS Resilience 

The model was formulated to explain the dimension of resilience. Resilience is the 

ability of a project to react to the changes in its environment. These changes can be; removal 

of errors, implementation of new functionality, changes made to integrate it with the 

operational environment, etc. Ability of a project to react to changes during the maintenance 

phase
11

 is a measure of its resilience. Data from OSS projects in maintenance phase, 

developed through an online community, was used to formulate a model of project 

resilience. The model is discussed in more detail in Chapter V. 

 

2.3.3   Model of OSS Organization 

Organization is the ability of a project to maintain its form and structure in the 

presence of perturbations
12

. This is the most complex and difficult dimension to measure. In 

order to investigate the changes in internal structure over a period of time, there was a need 

for longitudinal analysis of the source code. Therefore, a single large-scale OSS project was 

used for this study. The purpose of this study was to investigate how various maintenance 

activities affect the internal structure of an OSS project. This model is discussed in more 

detail in Chapter VI. 

 

 
11

Maintenance Phase refers to the lifecycle phase of software after it has been deployed for use. A mature 

project will be in maintenance phase. 

12
Here perturbations refer to changes that occur in the environment of the project. These changes could be 

internal e.g. errors or bugs or they could be external e.g. changes in the interfacing hardware. 
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2.4   CONCLUSIONS 

In this chapter, a new measure for the performance of OSS projects was defined, 

validated and tested. A framework for validation and testing of the measure was established 

based on the prior literature and research in the area of software measurement. The measures 

were tested for mathematical, logical and empirical validation. With a measure for 

performance, businesses can make informed decision regarding adoption and use of OSS 

projects. OSS development teams can use it, to monitor and control the development and 

maintenance of their projects. In later chapters the factors, which affect the dimension of 

viability, are discussed. 
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CHAPTER III  

EXPLORATORY MODEL DEVELOPMENT METHODOLOGY 

 

In this chapter, the research design and methodology are discussed. First, the various 

characteristics of software considered in the research are discussed. It is followed by a 

discussion on the research methodology and the suitability of Data Mining for exploratory 

research. Details of the data source, data extraction and the techniques used in this research 

are also presented, along with a complete list of the initial variables identified for the 

analysis. 

3.1   FRAMEWORK 

Research in software project development and maintenance has focused on three 

types of characteristics: Process, Product and Resource. In Open Source Software (OSS), 

however another significant entity in the software lifecycle is the End User. OSS 

development is characterized by a close interaction between the end user and the 

development team (Feller and Fitzgerald 2002; Raymond 2001). Therefore, the conceptual 

framework of this research includes the following attributes: 

• Product Characteristics 

• Process characteristics 

• Resource characteristics 

• User/Client Characteristics 

Each of these characteristics is discussed in detail in the following sections. 
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3.1.1   Product Characteristics 

The product characteristics refer to the attributes of the software product. Product 

reliability, maintainability, portability and quality are examples of the product characteristics 

(Fenton and Pfleeger 1991; Pressman 2004). Affects of product characteristics on the project 

outcomes have been established in Closed Source Software (CSS) research (Albrecht and 

Gaffney 1983; Banker et al. 2003; Banker and Slaughter 1995; Eick et al. 2001; Fenton and 

Ohlsson 2000; Krishnan 1996; Lederer and Prasad 1998; Swanson and Dans 2000). In this 

research framework, various product characteristics were used to understand how these 

characteristics affect the OSS project development and maintenance performance. 

 

3.1.2   Process Characteristics 

The process characteristics deal with the development process of software. In the 

CSS domain, a Capability Maturity Model (CMM) has been proposed to measure the 

software development process. It has been established in prior research that process is 

directly related to project outcomes (Harter et al. 2000; Herbsleb et al. 1994; Swanson and 

Dans 2000). However, in OSS there is a lack of formal definition of organization and 

process. This by no means states that there is no organizational structure. In fact some 

research has identified the presence of structure and control in OSS communities (Jensen 

and Scacchi 2005; Krogh et al. 2003; Scacchi 2004a; Scacchi 2004b). In this research 

framework, process characteristics were used to study their effect on the OSS project 

development and maintenance performance. 
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3.1.3   Resource Characteristics 

Resource characteristics refer to the nature of the team and tools employed in a 

project. The higher the number of team members the greater is the human effort and 

contribution in a project (Fenton and Pfleeger 1991). Such efforts include coding, testing, 

documentation and user support tasks. Prior research has indicated that resource 

characteristics impact the software project development and maintenance (Abdel-Hamid 

1992; Barry et al. 2006; Boehm 1987). In this research framework, process characteristics 

were used to understand their effects on the OSS project development and maintenance 

performance. 

 

3.1.4   User/Client Characteristics 

User characteristics refer to the attributes of the end users of the project. The affects 

of user characteristics on project outcome have not been investigated in CSS research.  In 

CSS, a project is developed for a known user with pre-defined requirements
13

 (Brooks 1995) 

(Pressman 2004). The user does not take a direct and active part in the project development 

and maintenance. On the other hand, OSS projects are usually initiated by an individual 

programmer or group of programmers, who are trying to solve a problem that is of their own 

interest (Dempsey et al. 2002; Feller and Fitzgerald 2002). OSS projects do not have a 

predefined client or users. However, once a project is launched it is available for public use 

 

 

 

13
Defining user requirements is a challenge in CSS, since user requirements are often incomplete, wrong or 

over specified. This discussion is beyond the scope of this research.  
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through the internet. Thus, a user community may emerge which shares the interests of 

original group of project developers. Project source code is available to users, who may 

detect, identify and report bugs to the development team. Users are also free to propose 

solutions, contribute code and make function/feature requests (Feller and Fitzgerald 2002). 

Users of OSS projects can be developers themselves or a business entity that adopts OSS 

projects for its use (Feller and Fitzgerald 2002). Considering the critical role of a user in 

OSS projects, user characteristics were used to study how various user characteristics affect 

the OSS project development and maintenance performance. 

The research framework identified the critical areas that were to be explored in this 

research. Based on this framework, an exploratory research study was developed to create 

the models of OSS project performance. 

 

3.2   EXPLORATORY MODEL BUILDING METHODOLOGY 

There are two main types of research paradigms: Deductive and Inductive. In 

deductive research, the researcher establishes a theory about a particular problem. 

Hypotheses are then generated based on the theory. Data is collected, using some data 

collection methodology and the original theory is tested to be true or false. On the other 

hand, inductive research is a competing methodology, which begins with broadly stating a 

research problem. Data is collected and examined for patterns and knowledge is generated 

based on the data. In this methodology, hypothesis and theories are created based on the new 

information (Trochim 1999).  
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Exploratory studies fall under the category of inductive research. Exploratory 

research is an important mechanism of generating knowledge, when the problem under 

investigation is from a new research area and when access to detailed qualitative or 

quantitative data is available (Hoaglin et al. 1983).  Traditionally information systems 

research has been dominated by deductive research. Existing theories from various 

disciplines are used to develop hypothesis. Data is then collected through methodologies like 

a survey or a lab experiment to test the hypotheses. One of the reasons why researchers rely 

on such confirmatory research is the lack of large size data for conducting exploratory 

research. For exploratory research, large datasets are needed to examine patterns and to test 

the models. In CSS projects, access to datasets can be very difficult. Either organizations do 

not maintain detailed archives of project development activities or they do not provide 

access to such archives for strategic reasons. On the contrary, OSS community maintains 

data on a large number of project attributes, primarily because the development is online and 

detailed records of transactional data are available.  

Keeping with the philosophy of free sharing of data, OSS projects provide public 

access to these project archives. The lack of validated theories and models and the 

availability of large amount of transactional data, make OSS projects an ideal candidate for 

exploratory research. If models were to be built and tested based on existing theories in CSS 

domain, there is a chance that some critical variables might be ignored. Therefore, to create 

models that explain the performance of OSS projects, an exploratory research through data 

mining techniques was conducted. 
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The exploratory philosophy used in the discipline of data mining is not new. 

Aristotle (b 384BC) and Bacon (1561-1626) advocated the collecting of large quantities of 

data, exploring them for patterns and then hypothesizing about these patterns. Later Galileo 

(1564-1642) suggested that scientists should also test these hypotheses. This was a common 

methodology throughout the 19
th

 century (Press 2003). Later deductive or confirmatory 

research became more prevalent when the researcher collected data to support a preexisting 

theory. This research follows Galileo’s perspective that knowledge and consequently 

theories are developed from data. 

The following sections discuss various data mining techniques used for the analysis. 

The details of the data used for the study and selection of the initial variables for analysis are 

also discussed in detail. The chapter ends with a discussion on how the datasets are used in 

model formulation. This will provide a structure for the remaining chapters in which the 

analysis and results of model formulation are presented. 

 

3.2.1   The Knowledge Discovery through Data Mining Process 

 

 “Knowledge Discovery through Data Mining (KDD) is the process of using data 

mining methods to extract knowledge according to the specifications of measures and 

thresholds, using databases along with preprocessing, sub-sampling and transformations of 

the data” (Fayyad et al. 1996). Data Mining is a component of the KDD process, which 

provides the means to extract and enumerate patterns from the data.  

 



42 

 

 

Figure 3.1: The KDD process  

 

 

 

The basic steps involved in the KDD process are shown in Figure 3.1. These steps 

are: 

1. Developing an Understanding of the Application Domain: It is necessary to have 

a significant understanding of the problem domain. While conducting 

exploratory research, the first step is to develop a research problem in a way that 

useful variables can be identified from the dataset to formulate models. Data 

Mining is not data fishing; in fact, lack of a clearly defined problem with 

incomplete knowledge of the domain cannot result in useful models. A 

researcher needs to develop a clear understanding of the domain and the 
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supporting areas. This ensures that the data mining process is focused on a valid 

research problem and that relevant results are generated.    

2. Creating Target Datasets: Based on the research problem, a target dataset needs 

to be created. Variables of interest need to be identified and extracted. Too many 

irrelevant variables can end up delivering misleading results. Similarly too few 

variables can result in incomplete models.  

3. Data Cleaning and Preprocessing: This involves operations such as removal of 

outliers, deciding on strategies for missing values and identifying the sample 

population. 

4. Data Reduction and Projection: This involves processes like data transformation 

and reduction of dimensionality. For this research creation of new variables, 

using text mining falls in this category. 

5. Data Mining: This step involves using various Data Mining techniques to search 

for patterns in data and creating models. This includes supervised methods (e.g. 

Regression, Neural Networks) or unsupervised methods (e.g. Clustering). The 

choice of a technique depends upon the nature of the research question and the 

dataset. 

6. Interpretation of Results: This step involves analyzing the resulting models, 

interpreting the results based on domain knowledge, reporting the results and 

resolving conflicts with previously available knowledge. 
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In this research all the steps of the KDD process were performed, in order. The 

research framework discussed in section 3.1, was used to identify the key areas affecting the 

development and maintenance of projects. Factors that affect the performance of OSS 

projects were identified from these areas. 

The following sections provide a discussion of the data source, variable 

identification, modeling techniques and assessment methods used in this research.  

 

3.2.2   Data Source 

Two separate data sources were used to develop the exploratory models discussed in 

section 23.  The source of data for vigor and resilience models was an online OSS project 

development community, whereas the source of data for the organization model was a large-

scale OSS project. The nature of the research questions warranted the need of two separate 

data sources. Both of these data sources are discussed below. 

 

3.2.2.1   SourceForge.net Data Source 

SourceForge.net (SF) is the world's largest OSS development web site, with the 

largest repository of OSS code and applications available on the internet. Owned and 

operated by OSTG, Inc., SourceForge.net provides free services to OSS developers. Project 

developers use these services to host, develop, and maintain their projects. The 

SourceForge.net is a database driven web site, which provides historic and status statistics 

on over 100,000 projects and records of over 1 million registered users' activities. OSTG has 
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shared certain SourceForge.net data with the research community for the sole purpose of 

supporting academic and scholarly research on the OSS phenomenon. The Sourceforge.net 

data archives starting November 1999 through May 2005 were used for this research and 

was accessed through a research initiative with the University of Norte Dame (Madey 2005).  

The SF community hosts OSS projects of various kinds. Typically, the projects 

developed through this community are small and medium scale OSS projects. The number 

of projects hosted at SF has increased rapidly over the past few years. The increase in the 

number of registered projects on SF, as shown in Figure 3.2, indicates the surge in the usage 

and support of OSS projects. 
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Figure 3.2: Number of projects registered at SF over time 
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Two datasets were created from the SF projects’ data archives: Development dataset 

and Maintenance dataset. SF maintains information on the lifecycle phase of all the projects. 

This information was used to classify the projects into the two categories. The development 

dataset was created for the projects that were in the pre-production life cycle phase, while 

maintenance dataset was created for projects that were mature or in their production phase, 

considered as maintenance phase projects. This categorization is very critical in effective 

model building. The issues and the factors affecting the project outcome in these two 

categories are different. Research in OSS has used small random samples of projects without 

any consideration of project lifecycle phase. Many of these studies have failed to discover 

significant relationships, which could be a result of poor sampling of data (Krishnamurthy 

2002; Stewart 2004) . Prior research in software engineering highlights a distinction between 

development and maintenance phase issues associated to software projects. Therefore, 

random sampling of the entire dataset is not a suitable approach.  

The group identification numbers for the projects in the two categories were use 

throughout the analysis to extract variables from the SF warehouse. The SF data warehouse 

consists of over 100 tables and 1000 variables. Each table was studied in detail and the 

information available was decoded for investigating its usability in this study. Since the data 

was used from a third party, independent validation of data was performed by random 

verification of variables with the actual SF dataset. The results were also compared with 

another independent extraction of variables from the same warehouse, to verify the queries 

used for data extraction.  
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The data was imported from the SF research warehouse (hosted by the University of 

Norte Dame) to a local SQL server relational database. In order to import SourceForge data 

(available in textual format) to a local SQL server, intensive processing was required. The 

local SQL server was then connected to SAS Enterprise Miner 5.2 for data analysis. The 

required variables were   extracted from the dataset by SQL queries.  

A set of variables of interest was identified based on prior research in software 

engineering and OSS projects. The dataset contained transactional data on OSS projects 

hosted by SF from November 1999 until May 2005. The purpose of data analysis was to 

identify the key factors affecting the performance of OSS projects. Besides ensuring that the 

projects being analyzed were in comparable lifecycle phases, it was also necessary to ensure 

that projects had been available at SF for some significant time. Thus, such projects that 

were created less than a year ago (from the date of analysis) were not considered in the 

analysis. This was done to ensure that age of the project was not a confounding factor. Some 

additional transformations (as discussed below) were performed on the data to ensure the 

validity of the analysis. Extensive SQL queries were used to create the dataset and to 

generate the variables for each project. Details of each variable are also discussed in later 

sections. 

 

3.2.2.2   Linux Data Source 

In order to study the effects of maintenance activities on the internal organization of OSS 

projects, there was the need of a single project with sufficient data. The SF dataset consists 
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of thousands of small and medium scale projects. The maintenance data for these projects 

was not sufficient for this analysis. Therefore, the source code of project Linux, which is a 

large-scale OSS project, was used. 

Linux maintains a record of its parallel experimental and production versions. The 

experimental versions are more volatile than the stable versions and tend to change more 

frequently. The stable versions were suited for this analysis. Linux versions 1.0 through 

version 2.6.5 were used in this research. Longitudinal data on structural complexity (as an 

indicator of internal organization) of Linux source code was also extracted for these versions 

for the Linux kernel released over the past 10 years. An automated tool
14

 available online, 

was used to compute the McCabe’s Cyclomatic complexity. McCabe’s Cyclomatic 

complexity measures are the most widely accepted measures of software complexity (Fenton 

and Pfleeger 1991). Change in the value of McCabe’s Cyclomatic measure from one 

software version to the next was extracted from the dataset. This extracted data was then 

used to analyze the affects of various maintenance activities on project organization. 

Software maintenance activities in the Linux project are implemented thorough 

Patches
15

. Each Linux patch contains rich textual references to the changes it has 

implemented. These textual references are written by online, geographically dispersed teams 

 

 

 

 

14
RENAUD’s tool, freely available online, was used for this analysis. The tool was tested and validated 

before use. 

 

15
A patch is a piece of software code that is added to the existing software, that can add, delete or update 

the existing functionality of the software and can be used to correct, prevent or perfect any faults that may 

exist in the software code. 
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of developers and maintainers to explain significance of the code they have added or 

removed (Stamelos et al. 2002). The textual information available in software patches was 

extracted. Although there exits a classification of maintenance activities in literature, yet 

there is a dearth of any formal classification of software patches. A classification scheme for 

patches was developed based on the type of maintenance activities performed.   

 

3.2.3   Variable Identification 

To create useful models, it is critical to identify the initial set of variables that will be 

used in the Data Mining process. Selection of too few variables can result in an incomplete 

analysis and may result in excluding critical factors from the final model. On the other hand, 

inclusion of irrelevant variables can adversely affect the model building process and can 

affect the correct identification of the significant factors. The identification of the initial set 

of variables for use in the Data Mining process requires domain knowledge and a deep 

understanding of the dataset (Fayyad et al. 1996). Prior literature in software engineering 

was consulted to identify the critical measures. The OSS literature was also consulted to 

identify the unique characteristic of the OSS paradigm. This information was used to ensure 

that OSS relevant features were included in the analysis. The SF data warehouse contains 

over a thousand variables. The data dictionary of this warehouse was examined in detail to 

understand the layout of the data and to extract the correct measures from it. All variables 

were categorized as per the framework discussed earlier. A listing of the variables along 

with a brief summary and operationalization detail is given in Tables 3.1-3.5. 



 

Table 3.1: Product related variable measurement and sources identified for analysis 

Variable Summary Measure Source Symbol 

Increase in features Count feature 

request closed 

Cnt_Feat Functionality 

 

Functionality refers to the number of functions being 

offered by the software. Functionality has been used in CSS 

models. Increase in product functionality is attained 

through new releases over project lifecycle (Boehm 1987).  
New Modules Count File Release Cnt_mod 

Number of distinct 

members reporting 

the bugs 

Count Distinct 

Submitted_by 

Cnt_rep Maintainability Maintainability refers to the extent to which software is 

maintainable. Maintainable software should not be 

dependent upon a small group of people who understand it. 

In OSS the ability of users to be able to understand and 

maintain code is very critical (Samoladas et al. 2004). If an 

OSS project is not maintainable, then detecting and 

removing bugs can be a problem. 

Number of distinct 

members fixing the 

bugs 

Count Distinct 

user_id closed_by 

Cnt_fix 

Number of platforms 

supported 

Count Operating 

Systems 

Cnt_OS Portability The portability of a software project indicates the flexibility 

of project use. A software that runs on multiple platforms 

offers more flexibility to the user compared to a platform 

dependent software(IEEE-STD-1061 1993). 

Number of prog; 

languages supported. 

Count prog; 

languages 

Lang 

License Type OSS projects are launched under various licenses. The most 

common license is the OSI license. Prior research indicates 

that license choice can affect the development performance 

of OSS projects (Stewart and Ammeter 2006). 

License type OSI (Y/N) OSI 
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Table 3.1: Continued 

Variable Summary Measure Source Symbol 

Project Type SF classifies projects based on various aspects, e.g., games, 

application file transfer protocols, desktop applications, 

operating system, etc. This variable was used to check some 

types of projects are more suitable for development in OSS 

community compared to others. 

The text Description of 

the project was used to 

create categorization for 

project type, using text 

analysis 

200 word, 

textual 

description of the 

project 

Prj_Type 

Downloads Count 

downloads  

Downloads Usefulness Usefulness of a software project depends upon how 

relevant the product is to the customer. The end user 

determines the usefulness of software and makes a decision 

regarding procurement. For a free OSS product, usefulness 

is a measure of user community’s interest in that product. 

Page Views Count Page 

views 

Cnt_pgV 

Number of translations Count Number 

of translations 

Trans Product 

Compatibility 

Compatibility in OSS projects will make them more likely 

to receive code contributions from developers of other 

projects. Compatibility of OSS projects will refer to the 

diverse audience the project can attract. 

Number of platforms 

supported 

Count Operating 

Sys; 

Cnt_OS 

End user usage Bugs reported by 

end user 

Bug_User Usage When software becomes operational, the probability of 

finding the existing errors will be linked to the usage of the 

software. More software is used, the chances of finding 

existing errors increases. If the usage of software is low 

then a low number of bugs do not necessarily imply that 

there are no bugs. Thus software usage will be critical to its 

performance measurement (Delone and McLean 1992). 

Usage of the project in 

general, that results in 

fault detection 

Bugs Open Bugs_Open 

5
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Table 3.2: Process related variable measurement and sources identified for analysis  

Variable Summary Measure Source Symbol 

Project 

Management 

Use of traditional Project Management (PM) methods 

include a designated project manager and centralized task 

allocations. These activities can affect the outcomes of a 

software project. Though OSS projects are developed in a 

more informal environment, yet projects may use PM 

(Jensen and Scacchi 2005). 

Whether an OSS 

project decides to 

have a project 

manager or not.  

Use PM (Y/N) Use_PM 

Process Quality The overall quality of development and maintenance 

process can affect the performance of a project. In CSS, 

there is evidence that process quality of a project has a 

positive impact on its performance. No such analysis has 

been performed for OSS before (Banker et al. 1998). 

The response time to 

fix an error 

Mean Time to fix a 

bug (MTTR) 

MTTR 

Use of CVS Use CVS (Y/N) Use_CVS 

 

Configuration 

Management  

In CSS literature, use of Configuration Management 

(CM) techniques has been linked to better performance of 

software (Herbsleb et al. 1997; Humphrey 1989). OSS 

projects use configuration management tools during 

development and maintenance. There is extensive use of 

version control tools. The effects of CM on project 

performance will be investigated. 

Number of 

Concurrent Version 

Control Systems 

(CVS) commits 

Count CVS 

commits 

Cnt_CVS 
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Table 3.2: Continued 

Variable Summary Measure Source Symbol 

Number of forums Count Cnt_Forum 

Use of mail 

messaging 

Use Mail (Y/N) Use_Mail 

Communication 

Channel 

Availability of various methods of communication 

between the developers and the users can affect the 

performance of the project (Herbsleb and Moitra 2001). 

Use of news groups Use News Groups 

(Y/N) 

Use_News 

Requirement 

Implementation 

CSS project performance is associated to its ability to 

conform to user requirements (Pinto and Slevin 1987; 

Pinto and Slevin 1988; Schonberg 2000). In OSS, there 

are no predefined requirements, yet the end users can 

make requests for implementing new features to the 

projects. Therefore, this factor will be used in the models. 

Response time to 

feature requests 

Time to implement 

a feature 

MTIF 

Ability to detect bugs Bug repository, 

Count of bugs 

Bug_Cnt Process Quality The ability of a project to detect and remove bugs is a 

reflection of the quality of the maintenance process. 

Inability to remove 

problems that occur 

Bugs that are not 

fixed 

Bug_Open 
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Table 3.3: Resource related variable measurement and sources identified for analysis 

Variable Summary Measure Source Symbol 

Effort The size of the project team will be indicative of how much effort is 

available to the development and maintenance process. There are 

conflicting views on the size of a team. Some researchers support the 

view that a large team size will have more effort available to the 

development and maintenance process (Abdel-Hamid 1989), while 

others argue that a large team size can cause a negative effect on 

performance(Brooks 1995) .  

Number of 

registered 

developers for the 

project  

Team Size Cnt_Team 

Team 

Communication  

Conway 
16

 suggested that communication patterns of teams are 

reflected in the products they produce (Conway 1968). Effects of 

team communication on development and maintenance performance 

will be analyzed. 

Frequency of 

development team 

communication 

Messages posted 

at development 

forums 

Cnt_Posts 
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16
 "Organizations which design systems are constrained to produce system which are copies of the 

communication structures of these organizations" - Conway’s Law. 



 

Table 3.4: User related variable measurement and sources identified for analysis 

Variable Summary Measure Source Symbol 

User Type OSS projects are developed for various types of end users. Some projects 

are developed purely for a development community. Others are 

developed as end user applications that can be used by non-programmers 

too. Considering the nature of OSS development, the type of audience 

would affect the extent of end user involvement. If the end users were 

programmers, they would be able to modify the code. 

Nature of the 

end user 

Audience 

Programmer (Y/N) 

AUD (o= prog, 1 

= non-prog) 

Frequency of 

end user 

interaction 

Forum posts by 

users 

Cnt_Msg Activity Level 

of User 

OSS user can be an active member of the development and maintenance 

community. They can also contribute to the source code and participate in 

the detection and removal of bugs. Anecdotal references to active user 

community have been made in literature, but no empirical testing has 

been performed to investigate its effects on project performance (Feller 

and Fitzgerald 2002; Scacchi). This research used the activity level of the 

user in project development and maintenance performance. This variable 

has not been used in CSS models. 

Number of 

users 

interacting 

Number of distinct 

individuals posting 

messages, bugs or 

feature requests 

User_Int 

Community 

Size 

Using the argument that the active user has an impact on the project 

performance, the effects of the size of the user community will also be 

used for the model. A larger community will imply more effort going into 

the development and maintenance process. This will also test the Linus 

law, which states, “Given enough eye balls, all bugs are shallow.” 

(Raymond 2001). 

Number of 

active users 

Number of distinct 

senders of messages 

Cnt_User 
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Table 3.5: Control variable measurement and sources identified for analysis 

Variable Summary Measure Source Symbol 

Size Source Lines of Code Size Controls The size and of software projects differ and can affect its 

performance. Software engineering models typically use 

software size and age as a control measure to account for 

the affects of size on project outcomes   (Banker and 

Slaughter 1995; Barry et al. 2006; Brooks 1995). 

Age Time elapsed since the 

start of project 

Age 
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3.2.4   Data Sampling 

In exploratory research, it is very important to use different samples from the dataset  

for model building, validation and testing (Fayyad et al. 1996). If the same data is used for 

model creation and validation, the resulting model will likely be biased to the sample and 

thus not acceptable. Therefore, both the SF datasets (for development and maintenance) 

were split into training, validation and testing samples. This was done to ensure that a valid 

model is created that would be applicable to OSS projects in general.  

Initially, the training set was be used to train or build the model. Once an acceptable 

training model was built, the validation set was used to evaluate the model. A comparison 

was then made with specific diagnostics e.g. lift charts, to check how well the training 

model holds for the validation sample. At times, there were several iterations of re-training 

before a reasonable model was selected. Once a model was selected, the validation dataset 

can no longer be used to test the accuracy of this model. To create a robust model, the final 

training model was applied to the test data.  The accuracy of the model on the test data gives 

realistic estimate of the performance of the model for OSS projects in general. Figure 3.3 

describes the process of data sampling. 
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Figure 3.3: Process of data sampling used for data mining 
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3.2.5   Data Mining 

Data Mining (DM) is the search for patterns of interest in observed data. The two 

main goals of DM are Prediction and Description. There are two main types of DM 

techniques available: Supervised Learning and Unsupervised Learning. The supervised 

learning methods are used when the target (or the dependent variable) is known, e.g. 

predicting the income of a group (target variable) based on historical information about 

certain variables. The most commonly used supervised DM methods are Regression, 

Decision Trees and Neural Networks. Unsupervised learning techniques are used to identify 

patterns in data with no predefined target. An example of this technique is developing 

taxonomies based on available variables. The most common unsupervised learning 

technique is cluster analysis (Berry and Linoff 2004).  

In this research, three predictive DM techniques; Logistic Regression, Decision 

Trees and Neural Networks were used. Clustering was also performed on textual data. SAS 

Enterprise Miner 5.2 was used to perform the data mining tasks. These techniques are 

discussed below. 

 

3.2.5.1   Logistic Regression 

Logistic Regression is a predictive modeling technique that is typically used when the 

outcome variable is binary or dichotomous. There are a few differences between Linear 

Regression and Logistic Regression models and assumptions (Hosmer and Lemeshow 

2000). The first significant difference is the nature of relationship between the independent 
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and dependent variables. If Y denotes the dependent variable and x denotes the independent 

variable, then the general regression equation is: 

xxYE 10)|( ββ +=  .    ......................................................   (3.1) 

Where E(Y|x) is the conditional mean or the expected value of Y given the value of x. In this 

expression E(Y|x) can take any values between  ∞− and  ∞+ . With dichotomous dependent 

variable, the conditional mean must be greater than, equal to zero and less than, or equal to 

one. Many distribution functions have been proposed for the analysis of such a variable, 

such as Logistics Distribution Function. When used, the conditional mean of Y given x can 

be represented as )|()( xYEx =π . The Logistic Regression model may be represented as: 
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A transformation of )(xπ  called the Logit Transformation has many of the properties 

of Linear Regression (e.g. it can be continuous depending on the values of x). The Logit 

Transformation is defined as; 
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Logistic regression fits a linear model to the log of the odds of the response, the logit 

transformation. The logit transformation forces the predicted values for the fitted model to 
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be between 0 and 1, thus giving a predicted probability for the different levels of the binary 

variable. 

The general form of the Logistic Regression equation is:  
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This is the log odds of one to zero of the h
th

 subpopulation. 

The testing for the significance of coefficients is also different for logistics regression 

models. The purpose of significance testing of a variable is performed to ascertain whether 

adding that variable to the model helps explain the outcome more precisely or not. This is 

done by comparing the observed values of the outcomes, with and without the variable 

under test. If the addition of the variable in question improves the fit of the model, it is 

considered significant. The overall fit of the model is tested by goodness-of-fit tests 

(Hosmer and Lemeshow 2000). 

 

3.2.5.2   Decision Trees 

A decision tree is a structure that divides up a large collection of observations, into 

smaller sets, by applying a sequence of simple decision rules (Berry and Linoff 2004). 

Decision trees produce a set of rules that can be used to generate predictions for a new 

dataset. Decision trees are one of the most popular methods of predictive modeling for data 



62 

 

mining because they provide interpretable rules and logic statements, enabling more 

intelligent decision-making.  

A decision tree partitions data into smaller segments called terminal nodes or leaves 

which are homogeneous with respect to a target variable. Partitions are defined in terms of 

other variables called input variables, thereby defining a predictive relationship between the 

inputs and the target. This partitioning continues until the subsets cannot be partitioned any 

further using user-defined stopping criteria. By creating homogeneous groups, analysts can 

predict with greater certainty how individuals in each group will behave. Various algorithms 

are available for splitting data into decision trees. One popular method is the Chi-Squared 

Automatic Interaction (CHAID). This technique has the advantage that the independent and 

dependent variables can be nominal, ordinal or interval. The splitting criteria are based on 

variance reduction and F-test splitting for interval targets. If the target is categorical then the 

CHAID or entropy reduction
17

 can be used (Fernandez 2003). Generally, they fit linear and 

non-linear relationships. 

 

3.2.5.3   Neural Networks 

An artificial Neural Network is a network of many simple processors, each possibly 

having a small amount of local memory. Communication channels that usually carry 

numeric (as opposed to symbolic) data encoded by various means connect the units. The 

units operate only on local data and on the input they receive via the connections. Neural 

 
17

 Also known as Gini 
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 Networks are universal approximators and they can be trained for a specific application and 

used to extract patterns or detect trends. There are many available structures of the Neural 

Network. One of the popular architectures is the Multi-Layer-Perception (MLP). MLP 

consists of an input layer, a hidden layer and an output layer (Berry and Linoff 2004).   

Neural networks are useful tools for interrogating increasing volumes of data and 

learning from examples to find patterns in the data. By detecting complex nonlinear 

relationships in the data, Neural Networks can help make accurate predictions about real-

world problems. To avoid the tendency of Neural Networks to over fit the training data, 

model performance is constantly assessed against the validation data, and the final model is 

selected based on one of the several criteria that users can select (e.g., the minimal 

validation error, maximum total profit, etc).  

Neural network models have the advantage of a high predictive power because they 

can fit non-liner models. The disadvantage of this technique, especially for academic 

research, is the difficulty in interpretation of the results. The logistic regression represents a 

model in the form of an equation. The significances of the regression coefficients explain the 

phenomenon under study. 

With decision trees, the result is a sequence of English language rules that are easy to 

describe and understand. Neural network models on the contrary do not have a simple 

formulation. They provide the fit statistics and the prediction of new values. However, the 

individual variable significances and contributions to the model are not easy to interpret. 

Neural network models are recommended for use in problems where the dependent and 
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independent variables are well understood e.g. in credit scoring models. In exploratory 

research, when the factors effecting the outcome are not completely known, the use of 

Neural Network as the final model is not recommended (Berry and Linoff 2004).  

However, in this research used all three models simultaneously in the model 

formulation phase. Results from decision trees are very insightful regarding the interactions 

between the independent variables. The neural network models can be used as a base line for 

detecting complex non-linear relationships. The performance of the logistic regression 

model can be improved by decision tree and neural network results. Chapters IV and V 

discuss the details of the application of this technique. 

3.2.6   Text Analysis 

Text Mining refers to the discovery of knowledge from text data. Text Analysis has 

been widely used in sociology and communication literature. It converts text into numeric 

form that can be used in analysis. There are many types of text analysis algorithms available.  

The first step in text analysis is to identify the target dataset. It is also very critical to 

have a defined task e.g. clustering or categorizing. Once the data has been collected, all 

unique words in each document are identified. A stop list can be used to ignore the terms 

that are naïve and are not to be used in the analysis. Another approach is to create a start list. 

This is a list of the terms considered in the analysis, with all other terms ignored. Word 

stemming is then used to stem e.g. walk, walking, walked etc. are all treated the same. 

Furthermore a list of synonyms can be created, and nouns and verbs can be separated 

(Chiarini-Tremblay et al. 2005).  
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The next step is to create a Word Frequency Matrix (WFM). This term-by-term 

frequency matrix can be improved by utilizing weighing functions words. For example, 

words used more frequently have a higher weight. The words that have a high correlation to 

the outcome (target) variable may be assigned a higher weight. Depending upon the size of 

the data, this matrix can become very large. Not all the terms appear in all the documents, 

resulting in wastage of significant computing resources. In order to reduce the 

dimensionality of the WFM, Latent Semantic Indexing (LSI) is used. LSI is a technique that 

can transform a matrix into lower dimension form (Berry and Browne 2005). LSI uses 

Singular Value Decomposition (SVD) for reduction of dimensionality. The matrix is 

decomposed into Eigenvalues and Eigenvectors. This creates linearly independent 

components of the data. The smaller components can then be ignored and relationships 

between two documents can be determined by the remaining components (Berry and 

Browne 2005; Deerwester 1990).  

To reduce the initial term-by-term matrix, a weighting scheme has to be 

implemented. There are several techniques available for this purpose. Term frequency 

weighing assigns a weight to each term, based on its frequency
18

. A word that has a high 

frequency of occurrence in a document has a high weight. One drawback is that there is no 

reflection on the importance factor of document discrimination. Another method is the 

Inverse Frequency Weighting
19

 This method assigns a weight according to the frequency of  

 

 

18
Wij = Freqij,, where Freqij = number of times jth term occurs in document Di. 

 
19

Wij = log2(aij +1), where aij is the frequency with which term i appears in document j. 
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a word in a single document compared to its occurrence in the entire collection of 

documents. If a word has high frequency occurrence in a single document, but has a low 

occurrence in the collection of documents, then the weight is high. The advantage to this 

scheme is that there is a reflection of the importance factor for document discrimination. 

However, the assumption is that the terms with low frequency in the document collection are 

better discriminator than those with high frequency. For unsupervised clustering tasks (like 

the one in this research), the best method is the entropy method (Chiarini-Tremblay et al. 

2005). The formulation of this method is: 

)(1)(0.1log( iijij wentropyFreqW ++=    ..........................   (3.5) 
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Entropy in text analysis refers to the amount of information added by the text. It is 

based on the Information Theory approach from Shannon’s work. It is the amount of 

information that a word contains about the entire document, i.e. knowing one word, what is 

the probability that another word will occur. Entropy measures the amount of information in 

a random variable. It is normally measured in bits (hence the log to the base 2), but using 

any other base yields only a linear scaling of the results (Manning and Schutze 2002).  
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This research uses the entropy minimization algorithms. Primarily, text mining was 

used to create clustering of textual datasets. The purpose was to classify the documents into 

similar clusters, based on the word counts and relationships. For the model of Vigor and 

Resilience, the SF projects were categorized into project types, based on a textual 

description. Although SF provides categorization of the projects based on various attributes, 

there is no single classification of all projects. Use of text mining avoids the multiple 

classifications of the projects. It creates information from the available textual data. Each SF 

project maintains a 200-word description. This description was used to create a project type 

variable for the development phase and maintenance phase projects. Projects were split into 

clusters based on description terms. The terms in each cluster indicates the nature of these 

projects. The cluster ID was used as the Prj_Type variable for each project in the analyses. 

Later chapters discuss the results of the text mining for project type. 

For the Linux dataset, text analysis was used to create a taxonomy for the OSS 

patches. The maintenance patches for Linux releases were used as text documents. Currently 

there is no available taxonomy of software maintenance patches. Therefore, a new taxonomy 

(discussed in chapter VI) was developed for Linux patches. The affects of these patches on 

code complexity were also studied. 
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CHAPTER IV 

MODEL OF VIGOR 

 

This chapter discusses the model for OSS projects in their development phase. First, 

it presents a background of the significance of vigor in the development phase. It is followed 

by a discussion on the model building and selection process. The selected model is then 

evaluated and presented. The variables significant in the final model are explained in detail. 

 

4.1   BACKGROUND 

The development phase of software projects refers to its lifecycle phase during 

which a project is created, new functionality is added, and testing is conducted (Pressman 

2004). Successful execution of software project development has been a challenge. 

Researchers and practitioners have been in search of methods, which can help in managing 

the high failure rates of such projects. According to prior research, almost 90% of software 

development projects fail to complete within budget, on time, and according to customer 

requirements (Abdel-Hamid 1988; Boehm 1984; Boehm 1997; Pinto and Samuel. J. Mantel 

1990; Pinto and Slevin 1988). Many models have been proposed which identify the factors 

that affect CSS project development (Godfrey and Tu 2001; Jeffery 1987; MacCormack et 

al. 2004; Paulson et al. 2004). These project evaluation metrics consist of measures (e.g. 

cost, user requirements) that have no meaning in the Open Source Software (OSS) domain. 

Recent reports suggest that Fortune 500 companies are considering adoption of the OSS 
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projects in near future. Thus, there is a need for a model to evaluate OSS project 

performance during its development phase. This research has formulated such a model.   

OSS projects are developed as freeware through volunteers. They evolve as the 

development community and the functionality of the project grow (Scacchi 2002). Much of 

the empirical research in OSS domain has been focused on large-scale OSS projects of high 

quality (Godfrey and Tu 2001; MacCormack et al. 2004; Paulson et al. 2004). Ideally, 

projects would evolve over a period of time and develop into mature software, yet many 

OSS projects fail to do so (Krishnamurthy 2002). During the development phase, the most 

critical aspect is the ability of a project to grow in functionality so that it can transition 

successfully to its next lifecycle phase (Kemerer 1987).  In this research, the performance of 

an OSS project during its development phase was measured in terms of its Vigor.  

The model was built using the framework and methodology discussed earlier in 

Chapter III. The analysis and results of the model are presented in the following sections. 

 

4.2   MODEL BUILDING 

Data Mining techniques were used for model formulation, validation and testing. To 

identify the factors that affect the performance of OSS projects in their development phase, 

the SourceForge (SF) dataset was used. The variables identified earlier in Tables 3.1-3.5 

were extracted for the SF projects in their development phase.  
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There are three predictive modeling techniques of Data Mining: Logistic Regression, 

Decision Tree and Neural Networks, each with its own strengths and weaknesses. In this 

research, all three techniques were used to improve the model and its interpretation. These 

techniques were not only used to discover models that could predict outcomes, but also to 

get a better understanding of the variables that affect the OSS project performance. The best 

technique was selected based on its performance and the ease of explanation of the 

phenomenon. 

The dimension of Vigor was used as the outcome (target) variable. During the 

development phase, the biggest challenge for OSS projects is continued growth and 

transition through the development phases (Crowston et al. 2003). Vigor captures the growth 

of the project; therefore, it was selected as the outcome variable. The vigor was 

operationalized as the transition of a project from one development phase to the next. This 

data was extracted by examining the development phase for each project. Projects with 

multiple phases were separated. The dates on the change in phase were used to identify the 

projects that had evolved. At times, some projects had selected multiple phases reported at 

the same date e.g. alpha and pre alpha. This anomaly could be attributed to some internal 

definition problems. In order to remove this anomaly the highest level of development was 

selected for multiple entries on the same dates. Queries were used to detect multiple phase 

transitions. Only two projects had evolved through more than two phases while being hosted 

by the SF community. The dataset was validated using alternative queries and was cleaned 

to contain correct phase transitions.  
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Another research issue was to investigate the affects of end user involvement in the 

testing process. In the initial dataset, there were a large number of projects in the 

development phase, with no bugs ever reported.  In OSS projects reporting of bugs is a very 

critical component of project development (Capiluppi et al. 2004). Upon a deeper analysis, it 

was revealed that these projects did not have a bug repository set up. Starting an OSS project 

at SF is a very simple process. Any registered user can start a project. The SF database 

contained a large number of projects that were never intended to be real development 

projects. Some registrations were not valid and had no useful data associated to them. This is 

the reason, why a random sample taken from the warehouse cannot generate good results 

and it cannot be used for model building. Therefore, data was reduced to the projects that 

had at least one bug reported. This meant that the project had a bug repository set up and had 

a working system for bug reporting. With all of the above-mentioned updates, the resulting 

dataset for this research contained 4931 projects.  

To ensure effective model building, data cleaning is necessary. Missing data and 

outliers can cause serious errors in the models. Logistic Regression and Neural Networks 

techniques ignore the observations with missing values. In this dataset, it was also critical to 

analyze and understand the reason behind the missing values. The use of projects with at 

least one bug reported, eliminated most of the dummy projects that could have affected the 

validity of the analysis. The data was inspected again for missing values. Projects with no 

forums or no messages in the forums were also examined closely to ensure that only valid 

projects are included. 
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Figure 4.1: Text miner settings used for creating the new variable 

 

 

 

Figure 4.2: Text miner output for the project type data 
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Once a clean dataset was available, it was imported to the SAS Enterprise Miner 5.2. 

The SAS dataset was explored using the insight node. The insight node
20

 provides useful 

features like Descriptive Statistics and Collinearity Analysis. The data was explored for 

missing or incorrect values. The distributions of the variables were observed, to get a better 

understanding of the data. The dataset was then merged with the text analysis data on project 

description. 

The project description textual data was used to create a new variable called “project 

type”. The dataset of project description for all the projects in the development phase was 

used in SAS Text Miner to create the new variable. Initially, the default stop list was used on 

the dataset. The stop list contains the words that are ignored while the text analysis is 

performed. The default list contains most commonly occurring words that do not carry 

information about the text being analyzed. The initial run with the default stop list resulted 

in generating a word frequency table. For such a large amount of data, performing an initial 

run with a default stop list is beneficial
21

. A new start list was created by removing the 

words that were not considered a project description or added no usefulness to the analysis 

e.g. frequent words like where, upon or abbreviation like en, dl etc. The new list with “keep 

terms” is saved as a new start list and is used in the final analysis.  

 

 20
 Insight node is no longer available in SAS EM 5.2. The older version SAS EM 4.3 was used for using 

this node. 

21 
The product designer of Text Miner, Mania Mayes agrees with this approach, in fact recommends it for 

large datasets. 
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The Text Miner node was set to automatically cluster the terms (see Figure 4.1). The 

options were set to generate the Singular Value Decomposition (SVD) terms and to perform  

clustering based on the SVD dimension. A maximum number of 40 clusters were allowed. 

The term stemming option was set to “Yes”.  The frequency weighing method was “Log” 

and the term weighting method was “Entropy”. Expectation maximization algorithm was 

used for clustering. This algorithm is best suited in cases where the expected number of 

categories is unknown.  

The text miner node provided the resulting clusters . Terms identifying each cluster 

along with occurrence frequency and percentage among the input documents were also 

produced. Each project belonged to only one cluster. The result of the cluster analysis is 

shown in given in Table 4.1 below. 

 

 

Table 4.1: Descriptive terms of the cluster analysis results of the project type data 

Cluster  Descriptive Terms Frequency %age 

1 Source, de, open source, program, open 648 6% 

2 Mysql, base, game, file, web 2188 21% 

3 Windows, driver, OS, support, run 1405 13% 

4 Server, client, irc, protocol, write 743 7% 

5 Java, tool, application, data , language 3094 29% 

6 Support, information, design, develop, project. 2534 24% 
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Each of the clusters represents the type of a project, based on the project description. 

It can be seen from the description terms that Cluster #1 has general-purpose Open Source 

terms. Cluster #2 has terms referring to database and game programs, Cluster #3 has terms 

associated with operating systems, Cluster #4 has terms related to network communication, 

Cluster #5 refers to tool and application development while Cluster #6 has more description 

regarding project development and design.  

The cluster number associated with each project was imported to the main dataset for 

further analysis. The Cluster_ID, defines the new variable of project type (Prj_Type)
22

. This 

data was used in model formulation to strengthen the model. Once the text mining results 

were merged with the original dataset, the new data was ready to be used for model 

building. The process flow of the model building process is shown in Figure 4.3. 

The next step was to create the outcome variable and to perform the necessary 

transformations on the dataset. The transformation node was used to create the required 

transformations. The time dependent variables i.e. number of downloads and the total size of 

the files released was normalized for the project age. Since the average time to fix a single 

bug was being used, there was no need to normalize the bug fix time with age. Age is an 

important characteristic of a project and affects the performance variables. Therefore, the 

time dependent variables e.g. number of downloads and total file size were divided by the 

 

 

 

22
Each group has a Prj_TypeX, where X = Cluster_id. 
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 age of the project. This was done to ensure that the analysis is valid and there are no 

confounding affects of age of the project on the performance. The value of vigor of projects 

that evolved was set to 1 (Vigor = 1) and of those that did not evolve was set to 0 (Vigor = 

0). The resulting distribution of the target variable is shown in Figure 4.4. 

 

 

  

Figure 4.3:  Flow diagram of model building process 

 

 

 

 



77 

 

 

Figure 4.4: Description of target variables of vigor 

 

 

 

As can be seen, only 17.7 % of the total projects had a high vigor. Further analysis 

revealed that three projects that had multiple transitions during their lifecycle
23

. The status 

of the variables that would be used in the analysis was set to “Use” and others, which were 

not to be used in the analysis (i.e., the variables used for transformations), were set to “Not 

use”. 

Next, sampling node was used to create the data splits. The dataset was split into 

40% training, 30% validation and 30% test samples. The details of why and how the 

 

 

 

  

23
Data on projects that were inactive was also identified, however no considerable difference was found for 

these projects. There could be future research on projects that evolved and projects that failed, but it would 

result in a much smaller sample, therefore a greater knowledge of the process is required for this endeavor. 
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sampling was performed have been discussed in Section 3.2.4. Since the percentage of the 

observations with high vigor was very small, stratified random sampling was performed to 

ensure that each spilt is an accurate representation of the actual population.  

 

 

 

NN 

DT

LR 1

LR 2

 

Figure 4.5: Lift Charts for all techniques used for building model for vigor 

 

 
 

The partitioned datasets were used with predictive modeling techniques to cerate 

models. The initial analysis was performed using a Logistic Regression, Decision Tree and 

Neural Networks node. Stepwise Logistic Regression was used to select the variables in the 

model. Though stepwise regression is not recommended for theory testing, it is widely used 

in exploratory research. In exploratory research there is no a-priori assumptions regarding 
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the relationships between the variables, and the goal is to discover relationships (Hosmer 

and Lemeshow 2000; Menard 2002). The Neural Networks was used with three hidden 

nodes and Decision Tree was used with the default settings. The results indicated that the 

Logistic Regression model was the worst in performance. The Neural Networks was the best 

model and the Decision Tree was better than Logistic Regression. The lift charts of this 

analysis are shown in Figure 4.5. 

Neural Networks can provide a good fitting model, but the interpretation of the 

model is very hard. Neural Network results do not specify any significances or coefficients 

for the variables used.  On the other hand, a Decision Tree provides a model that can be 

easily interpreted as simple English rules. A Decision Tree is very effective in using the 

interactions, which exist between variables. The poor performance of Logistic Regression in 

the analysis indicated that there were missing variables in the Logistic Regression model.  

In this study, the Neural Networks and Decision Tree results were used to improve 

the performance of the Logistic Regression node. The results of the Neural Networks and 

Decision Tree analysis are shown in figure 4.6 and 4.7, respectively. A better fitting of the 

Neural Networks node is indicative that there may be non-linearity in the relationships. The 

Decision Tree on the other hand could be indicative of interaction terms.  
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Figure 4.6: Neural Network weight plot for the model of vigor 
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Figure 4.7: Decision Tree for the model of vigor 
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 Further study of the Decision Tree showed that there was a persistent partitioning 

based on the type of audience and the bugs reported by end users. Thus interaction terms for 

these two variables was created for the Logistic Regression input. Additional interaction 

terms involving project type were also created. The Neural Network results identified a 

potential non-linearity in the variable age. To account for this, the variable age was binned 

into three categories (low, medium and high). Low age indicated that the project was started 

recently (from the date of analysis). High value of the variable age indicated that the project 

was old or was registered in the very early days of SourceForge (SF) project. The new 

variables and terms were used again for several Logistic Regression nodes. The best node 

was selected based on the values of Akaike Information Criteria (AIC) and Lift Charts. The 

ROC Charts for all the nodes used is shown in Figure 4.8. 

The final model of the Logistic Regression provided the best fit of all three 

predictive modeling techniques and had the lowest AIC amongst the entire Logistic 

Regression models used in the analysis. 
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Figure 4.8: ROC Charts for model of vigor for DT, LR and NN techniques 

 

 

4.3   SELECTED MODEL 

The variables that were significant at 5% level were selected in the final model. The 

model was tested across the three data splits. The selected model statistics are for a sample 

of 1974 observations.  The statistical profile of the variables selected for the final model is 

shown in Tables 4.2 – 4.5.  



 

   

Table 4.2: Estimated correlation matrix of input variables for the LR model of vigor 

rameter Intercept Age low Age Med Bug_Cnt Bug_Open Cnt_Mod Msg_Cnt Bug_User Prj_Type

_1 

Prj_Type

_2 

Prj_Type

_3 

Intercept 1 -0.35886 -0.07084 0.00055 -0.05261 -0.25526 -0.07726 -0.05361 0.21212 -0.10423 -0.17011 

Age low 0.35886 1 -0.21465 0.08916 -0.03854 0.00933 0.04344 0.02005 0.03375 -0.0337 -0.01294 

Age Med 0.07084 -0.21465 1 0.01148 -0.01534 -0.00062 0.03425 0.04097 0.00716 0.0052 -0.01648 

Bug_Cnt 0.00055 0.08916 -0.01148 1 -0.74164 -0.03046 -0.09245 -0.07079 0.04318 -0.0373 -0.0061 

Bug_Open 0.05261 -0.03854 -0.01534 0.74164 1 -0.02408 -0.06935 -0.18253 -0.01935 0.02089 -0.03823 

Cnt_Mod 0.25526 0.00933 -0.00062 0.03046 -0.02408 1 0.00021 -0.00206 0.01404 0.00792 0.01944 

Msg_Cnt 0.07726 0.04344 0.03425 0.09245 -0.06935 0.00021 1 0.00995 0.03813 -0.02123 -0.06342 

Bug_User 0.05361 0.02005 0.04097 0.07079 -0.18253 -0.00206 0.00995 1 0.01944 0.01669 0.02338 

Prj_Type_1 0.21212 0.03375 0.00716 0.04318 -0.01935 0.01404 0.03813 0.01944 1 -0.26233 -0.25661 

Prj_Type_2 0.10423 -0.0337 0.0052 -0.0373 0.02089 0.00792 -0.02123 0.01669 -0.26233 1 -0.08358 

Prj_Type_3 0.17011 -0.01294 -0.01648 -0.0061 -0.03823 0.01944 -0.06342 0.02338 -0.25661 -0.08358 1 

Prj_Type_4 0.05194 -0.0145 0.02384 0.01499 -0.01694 0.10756 0.05432 -0.0349 -0.26777 -0.14892 -0.13123 

Prj_Type_5 0.14743 0.00027 -0.00957 0.00915 0.01618 -0.15214 -0.02566 -0.00532 -0.33476 -0.23613 -0.22258 

Cnt_Team 0.43373 0.22057 0.00743 0.15462 0.01874 -0.10632 -0.02132 -0.00067 -0.04654 0.03384 0.06354 

Downloads 0.07061 0.09335 0.01281 0.03217 -0.15087 -0.06174 -0.06941 -0.02163 -0.0567 0.03683 -0.00739 

use_pm 0.27776 0.1444 -0.04091 -0.0572 0.03732 -0.02809 0.00416 0.00285 0.04751 0.01814 -0.15593 

Prj_Type_1* 

use_mail 

0.12992 0.0443 -0.01621 0.01477 -0.03352 0.121 0.05697 -0.01273 0.53131 -0.11653 -0.08482 

Prj_Type_2* 

use_mail 

0.01955 -0.02469 0.00655 0.00346 -0.00582 0.01161 -0.02756 0.0103 -0.13092 0.75242 -0.08134 

Prj_Type_3* 

use_mail 

0.04862 -0.02922 0.00956 0.06662 0.04754 -0.01939 -0.05191 0.01787 -0.10901 -0.07947 0.64573 

Prj_Type_4* 

use_mail 

0.01346 -0.03788 0.03043 0.01225 -0.0148 0.04025 0.03489 0.00471 -0.12647 -0.10682 -0.07512 

Prj_Type_5* 

use_mail 

0.20614 0.00357 -0.00079 0.00303 0.0261 -0.16382 -0.01763 -0.01168 -0.2338 -0.23445 -0.21058 
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Table 4.2: Continued 

Parameter Prj_Type_4 Prj_Type_5 Cnt_Team Downloads use_pm Prj_Type_1* 

use_mail 

Prj_Type_2* 

use_mail 

Prj_Type_3* 

use_mail 

Prj_Type_4* 

use_mail 

Prj_Type_5* 

use_mail 

Intercept -0.05194 0.14743 -0.43373 -0.07061 0.27776 -0.12992 0.01955 -0.04862 -0.01346 0.20614 

Age low -0.0145 0.00027 0.22057 0.09335 0.1444 0.0443 -0.02469 -0.02922 -0.03788 0.00357 

Age Med 0.02384 -0.00957 0.00743 0.01281 -0.04091 -0.01621 0.00655 0.00956 0.03043 -0.00079 

Bug_Cnt 0.01499 -0.00915 -0.15462 0.03217 -0.0572 0.01477 0.00346 -0.06662 0.01225 -0.00303 

Bug_Open -0.01694 0.01618 0.01874 -0.15087 0.03732 -0.03352 -0.00582 0.04754 -0.0148 0.0261 

Cnt_Mod 0.10756 -0.15214 -0.10632 -0.06174 -0.02809 0.121 0.01161 -0.01939 0.04025 -0.16382 

Msg_Cnt 0.05432 -0.02566 -0.02132 -0.06941 0.00416 0.05697 -0.02756 -0.05191 0.03489 -0.01763 

Bug_User -0.0349 -0.00532 -0.00067 -0.02163 0.00285 -0.01273 0.0103 0.01787 0.00471 -0.01168 

Prj_Type_1 -0.26777 -0.33476 -0.04654 -0.0567 0.04751 0.53131 -0.13092 -0.10901 -0.12647 -0.2338 

Prj_Type_2 -0.14892 -0.23613 0.03384 0.03683 0.01814 -0.11653 0.75242 -0.07947 -0.10682 -0.23445 

Prj_Type_3 -0.13123 -0.22258 0.06354 -0.00739 -0.15593 -0.08482 -0.08134 0.64573 -0.07512 -0.21058 

Prj_Type_4 1 -0.27994 0.01953 0.00886 -0.0236 -0.1041 -0.11036 -0.08206 0.63831 -0.24232 

Prj_Type_5 -0.27994 1 -0.02126 0.01489 0.13208 -0.31379 -0.21558 -0.18368 -0.23307 0.85678 

Cnt_Team 0.01953 -0.02126 1 -0.00657 0.06458 0.04654 0.0146 0.01246 -0.05131 -0.01115 

Downloads 0.00886 0.01489 -0.00657 1 0.04803 0.03303 -0.00139 -0.02539 0.00775 -0.02098 

use_pm0 -0.0236 0.13208 0.06458 0.04803 1 0.12505 -0.03346 -0.16471 -0.01412 0.10677 

Prj_Type_1* 

use_mail 

-0.1041 -0.31379 0.04654 0.03303 0.12505 1 -0.23003 -0.22839 -0.26723 -0.39625 

Prj_Type_2* 

use_mail 

-0.11036 -0.21558 0.0146 -0.00139 -0.03346 -0.23003 1 -0.1063 -0.15399 -0.22482 

Prj_Type_3* 

use_mail 

-0.08206 -0.18368 0.01246 -0.02539 -0.16471 -0.22839 -0.1063 1 -0.13748 -0.20446 

Prj_Type_4* 

use_mail 

0.63831 -0.23307 -0.05131 0.00775 -0.01412 -0.26723 -0.15399 -0.13748 1 -0.26923 

Prj_Type_5* 

use_mail 

-0.24232 0.85678 -0.01115 -0.02098 0.10677 -0.39625 -0.22482 -0.20446 -0.26923 1 
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Table 4.3: Analysis of maximum likelihood estimate of the LR coefficients 

Parameter     DF Estimate Std 

Error 

Wald  

Chi-Sq 

Pr > 

ChiSq 

Std Est Exp(Est) 

Intercept     1 -2.4081 0.1272 358.35 < 

0.0001 

  0.09 

Age Low   1 1.1777 0.1052 125.44 < 

0.0001 

  3.247 

Age Med   1 -0.3297 0.1101 8.97 0.0027   0.719 

Bug_Count     1 20.8933 6.1339 11.6 0.0007 0.4168 999 

Bug_Open     1 -6.5052 3.1689 4.21 0.0401 -0.1484 0.001 

Cnt_mod     1 121.9 14.4809 70.81 < 

0.0001 

1.8517 999 

Msg_Cnt     1 9.0409 3.7898 5.69 0.0171 0.1309 999 

aud*Bug_User     1 0.0186 0.00753 6.09 0.0136 0.4976 1.019 

Prj_Type 1   1 0.3165 0.3355 0.89 0.3455   1.372 

Prj_Type 2   1 -0.3954 0.2284 3 0.0835   0.673 

Prj_Type 3   1 0.1276 0.2132 0.36 0.5497   1.136 

Prj_Type 4   1 0.5266 0.2593 4.12 0.0423   1.693 

Prj_Type 5   1 -0.8799 0.3204 7.54 0.006   0.415 

Cnt_Team     1 0.0573 0.0152 14.25 0.0002 0.1423 1.059 

Downloads     1 1.16E-06 4.54E-07 6.52 0.0106 0.3694 1 

use_pm     1 0.2784 0.0875 10.13 0.0015   1.321 

Prj_Type*Use_mail 1 0 1 0.8497 0.3288 6.68 0.0098   2.339 

Prj_Type*Use_mail 2 0 1 -0.3643 0.2257 2.61 0.1065   0.695 

Prj_Type*Use_mail 3 0 1 0.00637 0.2101 0 0.9758   1.006 

Prj_Type*Use_mail 4 0 1 -0.0297 0.2578 0.01 0.9082   0.971 

Prj_Type*Use_mail 5 0 1 -0.6588 0.3243 4.13 0.0422   0.517 

 



87 

 

Table 4.4: Fit statistics of the train, test and validate samples of the LR model 

Description Train Validate Test 

Akaike's Information Criterion 1335.931214 . . 

Average Squared Error 0.097372052 0.1081578 0.1015953 

Average Error Function 0.330443795 0.4166475 0.3563485 

Degrees of Freedom for Error 1957 . . 

Model Degrees of Freedom 16 . . 

Total Degrees of Freedom 1973 . . 

Divisor for ASE 3946 2958 2958 

Error Function 1303.931214 1232.4434 1054.079 

Final Prediction Error 0.098964236 . . 

Maximum Absolute Error 0.999995977 1 0.9999806 

Mean Square Error 0.098168144 0.1081578 0.1015953 

Sum of Frequencies 1973 1479 1479 

Number of Estimate Weights 16 . . 

Root Average Sum of Squares 0.312044951 0.3288735 0.3187401 

Root Final Prediction Error 0.314585817 . . 

Root Mean Squared Error 0.31331796 0.3288735 0.3187401 

Schwarz's Bayesian Criterion 1425.328182 . . 

Sum of Squared Errors 384.2301154 319.93067 300.51876 

Sum of Case Weights Times Freq 3946 2958 2958 

Misclassification Rate 0.131272174 0.1372549 0.1331981 
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Table 4.5: Odds ratio estimates of the input variables of the LR model 

 Variable Effects Estimate 

Age Low vs. medium 7.582 

Age Medium vs. high 1.679 

Bug_Cnt   999 

Bug_Open   0.001 

Cnt_Mod   999 

Msg_Cnt   999 

Aud*Bug_User   1.019 

Cnt_Team   1.059 

Downloads   1 

use_pm 0 vs. 1 1.745 

 

 

 

4.4   DATA INTEGRITY AND DIAGNOSTIC CHECKS 

A variety of specification tests recommend for Logistic Regression models were 

performed on the final model (Hosmer and Lemeshow 2000; Menard 2002). The Pearson 

Residuals and Deviance Residuals were examined for case wise effect on the fit. No 

violations were detected (Hosmer and Lemeshow 2000; Menard 2002). The highest 

condition number of the model was 1.9, which is well within the recommended cutoff limit. 

The Variance Inflation Factor (VIF), of the independent variables were well below 5, 

suggesting that multicollinearity was not affecting the estimates (Belsley et al. 1980; Neter 

et al. 2004). 
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To test the fit of the final model, the first step is to ensure that the model contains all 

required variables, entered in the correct functional form. The next step is to evaluate the 

affectivity of the model, i.e. the goodness-of-fit. This is to ensure that knowing the values of 

all the independent variables in the model allows an accurate prediction of vigor, better than 

in case of no information in the independent variables. The next step is to evaluate how well 

the group of independent variables explains the vigor. In Logistic Regression models, the 

Log Likelihood (LL) criteria are used to select model parameters. The value of -2LL of the 

model with and without the independent variables was used to check the model fit. The fit of 

the model is determined by the reduction in the value of -2LL with and without the 

covariates. The results of this test are shown in Table 4.6. The results showed that the model 

is significant at 5% significance level (p < 0.0001).  

 

 

Table 4.6: Likelihood ratio test for global null hypothesis: BETA=0 

-2 Log Likelihood 

Intercept 

Only 

Intercept & 

Covariates 

Likelihood 

Ratio Chi-

Square 

  

  

DF 

  

  

Pr > ChiSq 

1803.960 1292.126 511.834 20 < 0.0001 

 

 

The accuracy of a Logistic Regression model can be tested by the area under the 

ROC
24

 curve. As a rule, the area under the curve indicates how well the model provides 

 24
Receiver Operating Characteristics (ROC) is from the signal detection theory and it shows how the 

receiver operates the existence of signal in presence of noise. It plots the probability of detecting true signal 

(sensitivity) and the false signal (1-sensitivity) for an entire range of possible cutoff points. 
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discrimination between the high and low values of the target variable. The acceptable limits 

for the ROC curve are given in Table 4.7. 

 

 

Table 4.7: Acceptable ranges of ROC value 

IF ROC = 0.5 Model provides no discrimination 

If 0.7 ≤ ROC < 0.8 Model provides acceptable discrimination 

If 0.8 ≤ ROC < 0.9 Model provides excellent discrimination 

If ROC ≥ 0.9 Model provides outstanding discrimination 

 

 

 

 

Figure 4.9: ROC for the final LR model of vigor 

For the final model of vigor, the area under ROC curve was 0.834, which implies 

that the selected model for vigor provides excellent discrimination between the projects of 

high and low vigor. The ROC curve for the final model for the train, validate and test 

samples is shown in Figure 4.9. 
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Figures 4.10 – 4.12 show Cumulative Lifts, Lift Chart and percentage of the 

responses captured correctly. The results for all three samples of train, validate and tests are 

shown in the output. If the model had not been a good one, there would be significant 

differences between the training, validation and testing plots, indicating that the model is not 

robust. These charts showed that the all fits are acceptable for the final model selected and 

indicated a good fit that can be generalized over the population. 

 

 

 

Figure 4.10: Cumulative lift for the final LR model, train, validate and test samples 
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Figure 4.11: Lift of the final LR model, for train, validate and test samples 

 

Figure 4.12: Percentage captured responses for LR model, for train, validate and test samples 
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Another way to summarize the results of a fitted Logistic Regression is through the 

classification table. The classification table is the result of cross classifying the outcome 

variable with a dichotomous variable whose values are derived from the estimated logistic 

probabilities. The classification table of the final model is shown in Table 4.8. The 

misclassification rate for the final model is less than 13%, which indicates a good fit. 

 

 

Table 4.8: Classification table for the LR model 

Target Outcome Target % Outcome % Count Total % 

0 0 87.5956 97.9829 1603 81.2468 

1 0 12.4044 67.3591 227 11.5053 

0 1 23.0769 2.0171 33 1.6726 

1 1 76.9231 32.6409 110 5.5753 

 

 

 

The train sample was used during model building. Validation was performed on the 

validate sample and the test sample was used for model testing. The formulation of the LR 

equation is shown below. It contains all the variables and the interactions that were 

significant in the final model. 

+++++= )_()_()()()( 4321 OpenBugCntBugAgeAgeVigoritlog medlow ββββµ

+++++ )_()_()_()_()_( 98765 TeamCntTypePrjUserBugCntMsgmodCnt βββββ

)_*_()_()( 121110 mailuseTypePrjpmuseDownloads βββ ++  

The final model was selected based on the best-fit statistics (see Table 4.4).  
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4.5   DISCUSSION 

It is seen that the number of bugs (Bug_Cnt) in a project has a positive relationship 

to the probability of high Vigor. At first glance, this might appear counter intuitive. 

However, a deeper look into the OSS development process shows that the identification and 

reporting of bugs cannot be an indicator of the quality of Open Source Software. Mere 

reporting of bug indicates that the project is being used and the faults are being reported. In 

fact, the process of detecting and reporting bugs has been one of the processes of OSS that 

has been associated to its success (Raymond 2001). This claim however had never been 

empirically tested. Therefore, this research provides the empirical evidence that the process 

of software testing in OSS projects is improved by efficient discovery of bugs 

Although the number of bugs reported has a positive influence on vigor, the number-

of-bugs-open (Bug_open) has a negative influence. This indicates that whereas the reporting 

of the bugs is a contributor to vigor, the inability of the project to remove the bug leads to 

decline in vigor. Thus if in a project, bugs are being discovered, but not removed, the odds 

of project survival reduce. There can be several reasons for it, e.g., large number of bugs 

open can be because of the lack of enough effort available to remove them. High complexity 

of the code and low maintainability can also cause the number-of-bugs-open to increase. 

Therefore, number-of-bugs-open can be an indicator of the lack of quality 

Many OSS projects use message boards as means of discussion and communication. 

The count of the messages (Msg_Cnt) on project boards has a positive impact on vigor. 
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Therefore, projects with high level of communication between developers and users show 

higher vigor. 

The Count of the new modules is an indicator of the increase in functionality of a 

project. As a project develops and new functionality is added the number of new modules 

increases. Though the sample of development projects only contains projects that had been 

in OSS community of over a year, yet the increase in functionality can vary with time. 

Therefore, the functionality of the projects was normalized for time. The functionality of the 

project (Cnt_Mod) has a positive impact on vigor. Thus, a project that offers more 

functionality over time has a greater vigor. 

 Project downloads (Downloads) have a positive impact on vigor. Though downloads 

alone cannot be a measure of the project success or popularity, yet a high number of 

downloads indicates that more people are interested in the project. To account for different 

registration dates for the projects, downloads per unit time were used in the analysis.  

The final model indicated that a large team size (Cnt_Team) has a positive impact on 

vigor. This finding is very interesting in terms of OSS specific research. In OSS teams work 

online and there is very little face-to-face working within the teams. CSS research indicates 

that large team sizes sometimes can have a negative effect on the project performance. Yet 

in OSS, the analysis indicates that larger teams can improve the vigor of a project. The 

reasons can be that larger teams have more resources available for managing the projects 

and some of the large team issues encountered in CSS are not applicable in OSS. In OSS, 
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the participation to a project is voluntary. Therefore, the creation of teams takes place over 

time, depending upon the interest and expertise of the programmers. Therefore, once a team 

is formed, typical issues of conflict management and task distribution in CSS are not directly 

valid in the OSS domain.  

The number of bugs reported by the end users (Bug_User) of the project had a 

positive impact on project vigor. The end user involvement in the development and testing 

process is a unique characteristic of OSS projects. This is indicative of the end user 

involvement in the project and the usage of that software. Downloads alone do not lead to 

the use of a project. Since a download is free, there is no way to measure if the user ever 

uses the project. However, bugs reported by the end user definitely indicate that the project 

is being actively used. This also indicates that the user community is involved in the process 

and is responsible enough to report the bugs to the project team. In fact, the role of end user 

has been much glamorized in the OSS literature. 

The bug reported by end user alone was not significant in the initial runs. However, 

the decision tree results revealed a potential interaction effect with the intended audience 

(Aud). As mentioned earlier, the intended audience of the OSS projects was divided into two 

main categories; Projects developed for other programmers (e.g. plug-ins, reusable modules) 

and the projects developed for non-programmers or complete applications. When the 

interaction term for audience type and the bugs reported by end users was added 

(Aud*Bug_User), the variable was not only significant, but it also improved the 

performance of the LR node. 
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In this research, the variable "project type" (Prj_Type) was developed using text 

mining of the project description data. SourceForge (SF) provides several categorizations of 

the projects based on industry, application, etc. This categorization is selected at the time of 

registration and one project can be placed into several categories. The existing 

categorization of SF was not useful for model building. Every project had to be placed in 

only one category and there had to be a uniform criterion for this purpose. Project 

description data contained significant details, which can be used to identify a category. 

Therefore, text analysis was performed to extract useful information regarding the nature of 

the project. This information was used to place each project in a cluster indicative of the 

project type.   

 Variable (Prj_Type) had significant impact on the project vigor. This implies that 

some types of projects might be better suited for development compared to others. In the 

final model, it can be seen that projects that were in Cluster #5 have significant negative 

impact on project vigor. From the analysis of keywords, it appears that these projects are 

typically JAVA Applications and Tools. Newer projects can be categorized into the exiting 

clusters by scoring them based on the project description. Therefore, the effects of the 

project type on the project vigor can be analyzed.  

Age (Age)of the project was used as a control variable. Software engineering 

literature has used this to account for different ages of the projects or systems under 

investigation. In this research, preliminary results indicated that there was a pattern in the 

age of the project and its relationship to vigor. Binning the variable Age (computed from the 
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registration date of a project), it was found that there were three significant bins for the age 

of the projects. The projects were categorized based on their age. Recent projects had a 

higher probability of high vigor compared to older projects. This can be explained in two 

ways. The first explanation is based on literature in software evolution. Software evolution 

laws assert that as a software system ages, it declines in performance (Lehman and Ramil 

2001; Lehman and Ramil 2002). Godfrey (2001) tested these laws in the OSS domain using 

Linux data. The scope of the current research does not encompass the complex questions 

about laws of software evolution, but variation in the patterns of vigor, based on the age, is 

indicative of an interesting future research question. Another explanation, which is more 

intuitive, is that as the OSS movement has matured so has the processes and tools of project 

development and management. Therefore, projects that are more recent, use advanced 

resources and therefore have a higher chance of surviving. Given two projects of same 

performance and functionality, it might be worthwhile to use the period of evolution of the 

project to predict its future performance. 

 

4.6   CONCLUSIONS 

The model developed and presented in this chapter adds to the body of knowledge in 

OSS project development. It is the first ever, empirical investigation into the affects and 

significance of end user involvement in OSS projects. This model not only provides a 

quantitative tool to compare the performance of various OSS projects, but it also identifies 

the factors that contribute to vigor in OSS projects. The identification of the factors is very 
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important to the practitioner and research community. The development teams can better 

monitor the performance of their projects and adjust the input variables to achieve the 

desired outcome. For businesses that wish to adopt OSS projects, this model provides them 

the ability to study the potential projects and make better decisions regarding adoption. For 

research community the model provides a deeper understanding of the phenomenon of OSS 

development and a better model to predict software project outcomes. It also identifies some 

new factors that have not been used in prior research and with further work can be used in 

developing a more generalized model for software projects. This study also highlighted   the 

use of multiple predictive modeling techniques in effective modeling. Tables 4.9-4.13 

indicate the variables that were significant in the final model. 

 

 

Table 4.9: Process related variable measurement and sources 

Variable Measure Symbol In final 

Model 

Project Management Use PM (Y/N) Use_PM  

Process Quality Mean Time to fix a bug (MTTF) MTTF  

Forum use (Y/N) Use_forum  

Number of forums Cnt_forum  

Use Mail (Y/N) Use_mail  

Communication 

Channel 

Use News Groups (Y/N) Use_news  

Req. Implementation Time to implement a feature TTFT  

Use CVS (Y/N) Use_CVS  Configuration 

Management  
Count CVS commits Cnt_CVS  

Process Quality Count of bugs Bug_Cnt  

 Bugs not fixed Bug_Open  
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Table 4.10: Product related variable measurement and sources 

Variable Measure Symbol In final 

Model 

Increase in features Cnt_feat  Functionality 

 
New Modules Cnt_file  

Number of distinct members 

reporting the bugs  

Cnt_mem  Maintainability 

Number of distinct members 

fixing the bugs 
Cnt_Usr_fix  

Number of platforms supported Cnt_OSI  Portability 

Number of programming 

languages supported 

Cnt_Prg_lang  

License Type License type Lisc  

Project Type Primary categorization of the 

project.  

Pjr_type  

Downloads Downloads  Usefulness 

Page Views Pg_View  

Number of translations Cnt_tran  Product Compatibility 

Number of platforms supported Cnt_plat  

Usage Usage by end user Bug_User  

 

 

 

Table 4.11: Control variable measurement and sources 

 

Control 

Varisweables 

Measure Symbol In final 

Model 

Size Source Lines of Code Size  

Age Time elapsed since the start of 

project 

Age  
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Table 4.12: Resource related variable measurement and sources 

Variable Measure Symbol In final 

Model 

Effort Number of registered developers for the project Cnt_Team  

Team Communication  Messages posted at development forums Forum_post  

 

 

 

 

Table 4.13: User related variable measurement and sources 
 

Variable Measure Symbol In final 

Model 

User Type Audience Programmer (Y/N) AUD (o= prog, 

1 = non-prog) 
 

Forum posts by users Cnt_Msg  Activity Level of 

User 
Number of distinct individuals 

posting messages, bugs or 

feature requests User_Int  

Community Size Number of distinct senders of 

messages 

Cnt_User  
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CHAPTER V 

MODEL FOR RESILIENCE 

 
A model for the performance evaluation of OSS projects in maintenance is 

formulated and discussed in this chapter. The maintenance performance is measured as the 

resilience of a project. Data from SourceForge warehouse is used to develop the model using 

various predictive modeling techniques of Data Mining. Later the model is expanded into a 

two-stage model to explain the outcomes of OSS projects in the maintenance phase. This 

model identifies OSS maintenance phenomenon factors and their relationships. The use of 

the two-stage model explains how various outcomes affect each other and what factors can 

be controlled to improve the overall performance of a project. The results of the final selected 

model are discussed in details. 

 

5.1   BACKGROUND 

The maintenance phase of a software project refers to the lifecycle activities carried 

out once a project has been operational. Software maintenance tasks include removing and 

correcting errors, adding new functionality and making enhancements to improve its 

performance. Earlier studies have suggested that maintenance accounts for 60-90% of the 

software lifecycle (Bennett and Rajlich 2000; Erlikh 2000; Zelkowitz et al. 1979). Software 

maintenance activities consume a large portions of IT budgets and manpower (Eastwood 

1993; Lientz and Swanson 1980). A substantial portion of Information Systems and 
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Software Engineering literature is devoted to the study of software maintenance. 

Considering the high cost and manpower requirements of software maintenance, there is 

significant research on software maintenance in Closed Source Software (CSS) projects. 

Generally, CSS vendors do not allow the users to view source code or to detect 

locate or remove bugs. The vendor controls all source code level maintenance activity. On 

the other hand, Open Source Software (OSS) users have the ability to view, upgrade and 

modify source code. OSS users can detect bugs and report them to the project team, submit 

feature and support requests. Once a bug is detected, the information is provided on the 

project web page and users can recommend solutions. This creates a large maintenance 

community, which involves the end user in the bug detection and removal process (Feller 

and Fitzgerald 2002; O'Reilly 1999; Raymond 2001). The maintenance process in OSS 

projects however is not mandated as it is in the case of CSS. It is critical that the 

maintenance performance of an OSS project is predicable, especially from the standpoint of 

corporate customers, which may see the cost of software maintenance to override any 

advantage of free availability of the code. 

The two major causes of project failure during the maintenance phase are delays in 

bug removal and the inability to incorporate user requests (Pinto and Samuel. J. Mantel 

1990; Pinto and Slevin 1987; Seddon et al. 1999). In this research, this aspect of project 

performance is captured through the dimension of Resilience. In this research, measuring a 

project’s resilience to error detection and removal was used to create a model of OSS project 

maintenance phase performance.   
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5.2   MODEL BUILDING 

This research used Data Mining techniques for model formulation, validation and 

testing. To identify the factors that affect the maintenance phase performance of OSS 

projects, SourceForge (SF) dataset was used. The variables identified earlier in Tables 3.1-

3.5 were extracted for the SF projects in their development phase.  

The initial dataset was examined for dummy projects and missing values. As in the 

case of the development phase model, the projects in maintenance phase exhibited similar 

characteristic for idle projects. Such projects had never been operationalized and could not 

have been used for the analysis. Using the artifact repository, which contains data on all 

submitted artifacts, the valid projects were separated out of the entire dataset. As mentioned 

in Chapter IV, the projects that had been active on SF for at least a year (since May 2005) 

were used in the analysis. The dataset was validated against an independent data extraction 

performed by another researcher. This ensured the integrity of the data collected. 

SF maintains a detailed bug repository for all the bugs reported to the registered 

projects. Information on time taken to fix a bug was extracted using SQL queries. The Mean 

Time To Repair (MTTR) was computed according to the same procedure as discussed in 

Chapter III. A small MTTR indicates high resilience and a high maintenance performance.  

The clean dataset was imported to SAS EM 5.2. This dataset had 4965 observations. 

The data was first examined using the insight node. The distributions of the values of MTTR 
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were examined and a cutoff value of MTTR was selected based on the distribution of the 

data. The data indicated that there was a cutoff at MTTR of one day. Therefore projects with 

MTTR less than one day have a low MTTR, i.e. high resilience and vice versa. The 

distributions of the important variables are available in the Appendix B. 

The transformation node was then used to make needed transformations and to create 

new variables. Variables were normalized with respect to time, if needed, new variables 

were computed (e.g. defect density = SLOC / Bugs) and the target variable was created. The 

cutoff value as suggested from the analysis using insight node was used to create the target 

variable. Projects with MTTR higher than the cutoff were labeled as “High” and the MTTR 

was coded as 1. The projects with MTTR lower than the cutoff were labeled as “Low” and 

coded as 0. Note that High and Low values are for MTTR, which is the inverse of resilience, 

indicating that a project with a high MTTR has a low resilience. The distribution of MTTR 

is shown in Figure 5.1. It can be seen that only 9.55% of the projects had a low MTTR i.e. 

high resilience. The rest of the projects with high MTTR were categorized as low resilience 

projects. 
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Figure 5.1: Distribution of mean time to repair (MTTR) 

 

Next text mining of the project description data for projects in the maintenance phase 

was performed. There was a reason for using this categorization separately and not with the 

development phase project. While considering the SF dataset it was seen that the majority of 

the projects in the maintenance phase were launched as production projects from the start 

and were never in the OSS community for development purpose. Therefore in order to 

preserve any possible differences that may exist in the patterns of project types in the 

development and maintenance phases, two different text analyses were performed.  

The project description textual data was used to create a new variable called “project 

type”. The dataset of project description for each of the project in its development phase was 

used in SAS Text Miner to cerate the new variable. Initially the default stop list was used on 
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the dataset. The stop list contains the words that are ignored while the text analysis is 

performed. The default list contains most common occurring words that do not carry 

information regarding the text being analyzed. The initial run with the default stop list 

provided with a word frequency table. For such a large amount of data, performing an initial 

run with default stop list is beneficial. A new start list was created by removing the words 

that were not considered a project description or added no usefulness to the analysis e.g. 

frequent words like where, upon or abbreviation like en, dl etc. The new list with “keep 

terms” is saved as a new start list and a final analysis is performed based on this list.  

The Text Miner node was set to cluster the terms automatically. The option to 

generate the Singular Value Decomposition (SVD) terms and perform clustering based on 

the SVD dimension was selected. A maximum number of 40 clusters were allowed. The 

term stemming option was set to “Yes”.  The frequency weighing method was “Log” and 

the term weighting method was “Entropy”. The expectation maximization algorithm was 

used for clustering. This algorithm is best suited in cases where the expected number of 

categories is unknown.  

 The observations were classified into seven clusters. The resulting clusters and the 

descriptive terms along with percentages and frequencies are shown in Table 5.1.  
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Table 5.1: Description terms, frequency and percentage of each cluster for project type 

Cluster Percentage Freq Descriptive Terms 

1 0.150252 746 + library, c++, + class, python, + support 

2 0.035851 178 + game, + player, + play, game, + base 

3 0.091037 452 + file, into, + will, + program, + image 

4 0.082578 410 php, + easy, mysql, web, + database 

5 0.090634 450 + framework, development, + application, java, web 

6 0.338771 1682 + server, + client, + allow, + have, + tool 

7 0.210876 1047 + code, + source, + project, java, + base 

 

 

 

Unlike the development data, the maintenance data split into seven clusters. Cluster 

#1 contains terms associated to programming languages e.g. C++ and python. Cluster #2 is 

associated to games, Cluster #3 contains terms related to image programs, Cluster #4 has 

terms related to databases, Cluster #5 had terms related to JAVA and web applications, 

Cluster #6 has terms related to networking while Cluster #7 has terms related to general OSS 

projects. The segment profile of the clusters is shown in Figure 5.2.  

Once the text mining results were merged with the original dataset, the new data was 

ready to be used for model building. The process flow diagram for the model building 

process is shown in Figure 5.3. 
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Figure 5.2:  Segment profile of clusters for project type  

 

 Figure 5.3: Process flow diagram for the analysis of resilience 
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The Sampling node was used to create the data splits. The data set was split into 40% 

training, 30% validation and 30% test sample. The details of why and how the sampling was 

performed have been discussed in Chapter III. Since the percentage of the observations with 

high resilience was very small, stratified random sampling was performed to ensure that 

each spilt is an accurate representation of the actual population. Thus, the sample used in 

model building is an accurate representative sample of the actual population. 

Logistics Regression, Neural Networks and Decision Trees were all used to build the 

model. The stepwise method for variable selection was used in the Logistic Regression 

analysis. Stepwise Logistics Regression is recommended method of variable selection for 

exploratory research (Hosmer and Lemeshow 2000). It was found that Decision Trees was 

not a suitable technique for the given data. Several combinations of the number of terms in 

each leaf and splitting algorithms were used, but none gave reliable results. Therefore, the 

use of Decision Trees for the analysis was abandoned. The further comparisons and model 

building was performed using the Logistics Regression and Neural Networks. The outputs of 

the initial runs are shown in Figures 5.4 and 5.5. 

Based on the AIC, Lift and ROC Curve values, the Logistics Regression model was 

selected as the final model. The model was built using stepwise regression and possible 

interaction affects were examined.  

The model was evaluated performing diagnostic testing and Logistics Regression 

evaluation criteria.   
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Figure 5.4: Lift values for LR and NN nodes for resilience 

 

 

Regression

Neural Network

 

Figure 5.5: ROC curves for LR and NN nodes for resilience 
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5.3   DATA INTEGRITY AND DIAGNOSTIC CHECKS 

A variety of specification tests recommended for Logistic Regression models were 

performed on the final model (Hosmer and Lemeshow 2000; Menard 2002). The Pearson 

Residuals and Deviance Residuals were examined and no violations were detected (Hosmer 

and Lemeshow 2000; Menard 2002). The highest condition number of the model was 1.56, 

which is well within the recommended cutoff limit. The Variance Inflation Factor (VIF), of 

the independent variables were well below 5, suggesting that multicollinearity was not 

affecting the estimates (Belsley et al. 1980; Neter et al. 2004). 

To test the fit of the final model, the first step is to ensure that the model contains all 

required variables, entered in the correct functional form. The next step is to evaluate the 

affectivity of the model, i.e. the goodness-of-fit. This is to ensure that knowing the values of 

all the independent variables in the model allows an accurate prediction of resilience, better 

than the case of no information in the independent variables. The next step is to evaluate 

how well the group of independent variables explains the resilience. In Logistic Regression 

models, the Log Likelihood (LL) criteria are used to select model parameters. The values of 

-2LL of the model with and without the independent variables were used to check the model 

fit. The fit of the model is determined by the reduction in the value of -2LL with and without 

the covariates. The results of this test are shown in Table 5.2. The results showed that the 

model is significant at 5% significance level (p < 0.0001).  
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Table 5.2: Likelihood ratio test for global null hypothesis: BETA=0 

-2 Log Likelihood 

Intercept 

Only 

Intercept & 

Covariates 

Likelihood 

Ratio 

Chi-Square 

DF Pr> 

ChiSq 

1168.711 972.835 195.8758 4 < 0.0001 

 

 

 

The accuracy of a Logistic Regression model can be tested by the area under the 

ROC curve. As a rule, area under the curve indicates how well the model provides 

discrimination between the high and low values of the target variable. The acceptable limits 

for the ROC curve are given in Table 4.7. 

 For the final model of vigor the area under ROC curve was almost 0.8, which 

implies that the selected model for resilience provides excellent discrimination between the 

projects of high and low vigor. The ROC curve for the model is shown in Figure 5.6. 
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Figure 5.6: ROC curve for the final LR model of resilience 

 

 

 

The final form of the model can be written as : 

)_()_()()()0( 4321 mailUseUserBugDownloadsAgeRlogit ββββµ ++++==

 

Where R = 0 indicates low resilience.  

Since target = 0 means a low time to fix an error, i.e. high resilience, therefore the 

intercept values are for odds of low resilience or resilience = 0. The estimates of the 

intercepts are shown in Table 5.3.   
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Table 5.3: Analysis of maximum likelihood estimates of input variables of the LR model 

  

Parameter 

  

DF 

  

Estimate 

Standard 

Error 

Wald 

Chi-

Square 

  

Pr > 

ChiSq 

Standardized 

Estimate 

  

Exp(Est) 

Intercept 1 -7.4232 2.7707 7.18 0.0074   0.001 

Downloads 1 -0.0986 0.0273 13.01 0.0003 -0.348 0.906 

use_mail 1 0.2498 0.0953 6.87 0.0088   1.284 

Bug_User 1 -0.5531 0.0814 46.21 < 0.0001 -1.8399 0.575 

Age 1 0.000482 0.000175 7.58 0.0059 0.1305 1 

 

 

 

The bugs reported by users have a positive impact on the resilience. This means that 

projects with higher end user activity in reporting bugs have a greater probability of having 

low MTTR and high resilience. Downloads had a similar affect on the resilience of the 

project.  

The age of the project has a negative impact on the resilience. Either this affect is 

indicative of the evolution of the better maintenance practices in newer projects or the 

decline of maintainability of a project as it ages. According to the laws of software evolution 

as a software system ages, it becomes more complex and harder to maintain. The increased 

complexity can increase the difficulty in removing bugs because of complex interfaces and 

spaghetti code. The affect of age is being used as a control variable in this study. Later 

studies can be done with focus at the affect of age on the resilience over the entire lifecycle 

of single project. 
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The model also indicates that the use of mail had a negative affect on the resilience. 

At first glance, this result appears counter intuitive because use of mail messages should not 

adversely affect the maintenance process. One of the possible explanations can be that if a 

project offers mail messaging, then some users and developers might end up using the mail 

messaging system to report bugs instead of the bug repository. This could cause potential 

delays in the correct reporting of bugs and therefore delay the process of bug removal. This 

factor alone can be studied in detail, to discover the cause of this negative affect. The fit 

statistics for the final model is presented in Table 5.4. The misclassification rate for this 

model is at an acceptable 9%.  

Although the selected model provides an acceptable predictive power of project 

resilience, yet the bugs reported by users and downloads alone provide no useful tools to the 

project managers or end users to evaluate and control the project. This is because both the 

variables are outcomes themselves rather than being controllable events. Therefore, it was 

decided that further models would be created to explain the bugs reported by end users and 

the number of downloads. This approach was very useful in the light of a theory proposed 

by Delone and McLean on Information System success, which relates the success of an 

Information System to the system’s usefulness and usage. 

The number of the bugs reported by the end users indicates that the product is 

being used and understood by the end user. This also indicates that end user is spending time 

and effort in locating and reporting the errors.  According to OSS literature, the reporting of 
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a bug is an indication of an involved end user rather than the low quality of software 

(supported by the first model also). 

 

 

Table 5.4: Fit statistics for the LR model 

Fit Statistic Training Validation Test 

Akaike's Information Criterion 1062.242 . . 

Average Squared Error 0.078264 0.080251 0.075512 

Average Error Function 0.265048 0.277648 0.24949 

Degrees of Freedom for Error 1980 . . 

Model Degrees of Freedom 5 . . 

Total Degrees of Freedom 1985 . . 

Divisor for ASE 3970 2978 2982 

Error Function 1052.242 826.8363 743.9803 

Final Prediction Error 0.078659 . . 

Maximum Absolute Error 0.999662 0.99916 0.96311 

Mean Square Error 0.078462 0.080251 0.075512 

Sum of Frequencies 1985 1489 1491 

Number of Estimate Weights 5 . . 

Root Average Sum of Squares 0.279757 0.283287 0.274795 

Root Final Prediction Error 0.280463 . . 

Root Mean Squared Error 0.28011 0.283287 0.274795 

Schwarz's Bayesian Criterion 1090.209 . . 

Sum of Squared Errors 310.7083 238.9889 225.1777 

Sum of Case Weights Times Freq 3970 2978 2982 

Misclassification Rate 0.097733 0.097381 0.09725 

Total Profit for AVER_05O 194 145 145 

Average Profit for AVER_05O 0.097733 0.097381 0.09725 
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The number of downloads would be high if the OSS user community finds need for a 

certain software. Therefore a high number of downloads would imply that the project is 

considered useful by the potential user and that is the reason it is being downloaded more 

often. However, not every download results in usage. In fact the use of downloads alone as a 

measure of project performance can be very misleading. The usage and the usefulness both 

have a positive impact on the resilience i.e. a project that is more useful and is used more 

often has a high resilience (or low MTTR).  

This research was conducted to identify factors that OSS project teams can manage 

to improve the performance of their projects. However, the resulting factors in the model of 

resilience cannot be controlled directly controlled. Therefore, two additional models were 

developed to explain the usefulness and usage of OSS projects in maintenance phase. Each 

of these models is discussed in detail below. 

 

5.3.1   Model of OSS Project Usage 

The role of the end user is very important in the development and maintenance of 

OSS projects. As mentioned earlier, the bug reporting by the end user has a positive impact 

on the resilience of OSS projects. The number of bugs reported by the user is indicative of 

the usage of the project since bug detection is related to its use.  
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It is not possible to detect all the problems in the software during its development 

phase. As the software becomes operational, its users encounter bugs and errors. The 

occurrence of bugs does not necessarily imply low quality. A project with low number of 

detected bugs can have low quality because bugs may not have been discovered due to very 

low usage. The bugs reported by the end users also indicate the involvement of the user in 

its maintenance and effectiveness of a project’s bug reporting process.  

All the variables identified in section 3.2.3, were used in this analysis.  An additional 

variable was created called “defect density”. Defect density was created using the total 

number of bugs divided by the size of the project. Defect density has been typically used as 

a measure for the quality of a project. In operational software system, project quality can 

play a vital role in the usage. If the quality is low, users will abandon the use of the project.  

Three Data Mining techniques were used for the analysis; Decision Tree, Neural 

Network and Linear regression. Regression analysis was considered suitable since the target 

variable i.e. bugs reported by users, was not a binary variable. The process flow diagram for 

the model is shown in figure 5.7. 
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Figure 5.7: The process flow for the models of usage and usefulness 

 

 

The Bugs reported by end user (Bug_User), was selected as the target variable. The 

data was split into three datasets; 40% train, 30% validate and 30% testing. For the Linear 

Regression analysis, Stepwise method was used for variable selection. The model was 

allowed to use possible interactions between the independent variables. The Linear 

Regression model was selected as the final model, based on the lowest value of AIC and the 

means of the predicted values. The score ranking overlay plot for the model is shown in 

figure 5.8. The details of the Decision Tree and Neural Network are available in the 

Appendix C. 
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Figure 5.8: The score ranking overlay for the analysis of usage 
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The Linear Regression model that was selected as the final model was significant at 

the 5% level (p < 0.0001). The results are shown in Table 5.5. 

 
 

Table 5.5: Analysis of variance of the Linear Regression model for usage 
 

Source  DF Sum of Squares  Mean Square  F Value  Pr > F 

Model 7 34744838 4963548 133.06 < 0.0001 

Error 1915 71435077 37303     

Corrected Total 1922 1.06E+08       

 

 

 

The adjusted R
2
 of the model is 0.3248, which implies that the model explains 

32.48% of the total variance in the bugs reported by users. This value is acceptable for 

exploratory analysis. 

R-Square = 0.3272,  

Adj R-Sq = 0.3248 

The individual variable significances and maximum likelihood estimates of the 

parameters  in the model are shown in Tables 5.6 and 5.7. Whereas the pair wise correlations 

of the variables selected in the model are shown in Table 5.8. 
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Table 5.6: Type 3 analysis of effects of the input variables of Linear Regression model 

 

 

 

 

 

Table 5.7: Analysis of maximum likelihood estimates of the input variables of the Linear 

Regression model 

 

95% Confidence 

Limits 

 

Parameter 

 

DF 

 

Estimate 

Standard 

Error 

 

t Value 

 

Pr > |t| 

Lower Upper 

Intercept 1 51.1639 4.5667 11.2 < 0.0001 42.2132 60.1145 

Quality*Aud 1 -0.3682 0.1042 -3.53 0.0004 -0.5725 -0.1639 

Size 1 28.2055 4.1179 6.85 < 0.0001 20.1346 36.2763 

Cnt_Mod 1 14.4515 3.6731 3.93 < 0.0001 7.2524 21.6505 

Quality 1 0.4101 0.1071 3.83 0.0001 0.2002 0.62 

Cnt_msg 1 65.1593 4.5485 14.33 < 0.0001 56.2444 74.0742 

Age 1 -12.1766 4.4585 -2.73 0.0064 -20.9151 -3.438 

Cnt_Team 1 70.5376 4.92 14.34 < 0.0001 60.8945 80.1806 

Effect DF Sum of 

Squares 

F Value Pr > F 

Quality 

*Aud 

1 465554.249 12.48 0.0004 

Size 1 1750121.23 46.92 < 0.0001 

Cnt_Mod 1 577442.348 15.48 < 0.0001 

Quality 1 547127.749 14.67 0.0001 

Cnt_msg 1 7655290.22 205.22 < 0.0001 

Age 1 278234.645 7.46 0.0064 

Cnt_team 1 7667410.8 205.54 < 0.0001 
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Table 5.8: Pair wise correlation of input variables of the Linear Regression model 

Parameter Intercept AUD*Quality Size Cnt_Release Quality Forum_Post Age Cnt_Team 

Intercept 1 -0.13672 -0.01276 -0.03808 -0.25689 0.01219 0.05715 -0.00519 

AUD*Quality -0.13672 1 -0.00922 0.02707 0.64235 0.04702 0.00428 0.00508 

Size -0.01276 -0.00922 1 -0.24489 0.01522 -0.22701 0.01387 -0.15954 

Cnt_Mod -0.03808 0.02707 -0.24489 1 0.04779 0.03075 0.04879 -0.18576 

Quality -0.25689 0.64235 0.01522 0.04779 1 -0.05622 0.05857 0.02909 

Cnt_Msg 0.01219 0.04702 -0.22701 0.03075 -0.05622 1 0.0267 -0.12277 

Age -0.05715 0.00428 -0.01387 0.04879 0.05857 0.0267 1 0.13383 

Cnt_Team -0.00519 0.00508 -0.15954 -0.18576 0.02909 -0.12277 0.13383 1 

 

 

 

The model fit was accessed using the requirements for Linear Regression models. 

Various specification and diagnostics checks were performed for the estimated model. As 

mentioned earlier, the assumption for normality was not required considering that the 

sample size was large. Examination of the Besley-Kuh_Welsch diagnostic (Belsley et al. 

1980) indicated that the highest condition number for the model of 4.06 which was within 

the recommended cutoff limit of 20. The VIF for the independent variables were all below 5, 

suggesting that multicollinearity was not unduly influencing the estimators (Neter et al. 

2004). 
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The resulting model for usage of OSS projects in maintenance phase is given by: 

(Cnt_Mod)βMsg)(Cntβ(Qual)β(Size)β(Age)ββBug_UserE 543210 _)( +++++=

AUD)(Qualβ(Cnt_Team)β *76 ++  

The quality (Qual) of the code had a positive impact on the bugs reported by users. 

This means that higher quality projects will have a more involved user community. The 

usage of the project will increase if the quality is improved and vice versa. A good quality 

project would keep the users interested in using the project and would have a high level of 

user retention. On the other hand, if the project quality is low, the users can abandon the 

project. OSS projects being free and without any contractual obligations, the affect of 

quality of user contributions would be significant. The code quality also had an interaction 

affect with the end user audience (Qual *AUD). For projects that were targeted purely for 

developers, the low code quality had a negative affect on the bugs reported by end users, 

which can be explained by the nature of the end user. For projects developed primarily for 

the developer community, the end users of the project were also programmers. In such cases, 

users might find and fix a problem at their own end and never report it. A non-programming 

user however would depend upon the project team to fix problems. Therefore, a decrease in 

the bugs reported by end users in case of an interaction between quality and programming 

audience indicates the differences in the nature of the users.  

The forum activity (Cnt_Msg) represents the end user involvement in the project. 

Forums are a useful resource for online communities to participate in project activities. 

Forums are used to discuss ideas, share experiences and provide feedback. It also indicates 
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how responsive the project team and the user community are. The forum activity has a 

positive affect the usage of the project, higher the activity on the project forums, higher the 

usage of the project. 

The count of new file releases (Cnt_Mod) is a measure of the functionality of the 

project. Functionality in operational systems is added through new modules. The addition of 

new modules indicates that new features have been added to the existing system. Added 

functionality provides the end users additional incentive to use the project. Therefore, it has 

a positive impact on the usage of the project. 

The team size (Cnt_Team) indicates the amount of effort available for project 

development and maintenance. The team size has a positive impact on the usage of the 

project. In OSS communities, the participation to a project is voluntary. The motivations of a 

programmer to participate in an OSS project are beyond the scope of this research. Yet the 

results indicate that a larger team size has a positive impact on the usage of the project. 

The age (Age) and the size (Size) of the project were used as the control variables. 

This ensures that projects of different sizes and ages can be used in the same analysis (Barry 

et al. 2006).  

 

5.3.2   Model of OSS Project Downloads  

The number of downloads of a project had a positive impact on the resilience of OSS 

projects in the maintenance phase. Since downloads themselves are not a factor that could be 
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controlled, it was decided to identify the factors that affect downloads.  As discussed earlier, 

the number of downloads could be indicative of the usefulness of the project. If the end user 

finds the project useful, they will download it. In order to create a model to explain the 

factors contributing to the number of download of OSS projects in the maintenance phase, 

the same approach was used as discussed in above section.  

The target variable for this model was downloads (Downloads). Since the target 

variable is continuous, Linear Regression was suitable rather than Logistic Regression. The 

process flow diagram is shown in figure 5.7.  All the variables identified in section 3.2.3, 

were used in the analysis. Decision Tree, Neural Network and Linear Regression were used 

in the analysis.  

The data was split into 40% training, 30% validation and 30% testing samples. The 

SAS EM 5.2 program offers the option to allow interactions between terms. The final model 

was selected based on the values of AIC and fit statistics. The Linear Regression model was 

selected as the final model. The results of the score ranking overlay for the mean predication 

is shown in figure 5.9. The results of the decision tree and the Neural Network are in 

Appendix C. 
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Figure 5.9: The score ranking overlay for the analysis of usefulness 

 

 

 

The final model was the Linear Regression model. This model was significant at the 

5% level (p < 0.0001). The ANOVA results are shown in Table 5.9, while the model fit 

statistics are shown in Table 5.10. 
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Table 5.9: Analysis of variance of the Linear Regression model for usefulness 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 3 1215.82162 405.27387 656.48 < 0.0001 

Error 1982 1223.58202 0.61735   

Corrected Total 1985 2439.40364    

 
 
 
 

Table 5.10: Model fit statistics of the Linear Regression model for usefulness 

Root MSE 0.78571 R-Square 0.4984 

Dependent Mean -0.00452 Adj R-Sq 0.4977 

Coeff Var -17400   

 
 

 

 

The R
2
 of the model is 0.4984 and the adjusted R

2
adj is 0.4977. This means that the 

model explains 49.77% of the variance in the values of project downloads. This value is 

acceptable for exploratory research. The individual significances of the independent 

variables are shown in Table 5.11. 
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Table 5.11: Significances of independent variables of the Linear Regression model 

of usefulness 

 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Tolerance Variance 

Inflation 

Intercept 1 -0.00619 0.01764 -0.35 0.7257 . 0 

Cnt_Msg 1 0.56765 0.01835 30.94 < 0.0001 0.91740 1.09004 

Size 1 -0.15977 0.01639 -9.75 < 0.0001 0.57306 1.74502 

Cnt_mod 1 0.43729 0.02086 20.96 < 0.0001 0.53746 1.86062 

 

 

Table 5.12: Correlation of estimates of the input variables of the Linear Regression model 

of usefulness 

 

Variable Intercept Cnt_Msg Size Cnt_mod 

Intercept 1.0000 -0.0054 -0.0342 0.0124 

Cnt_Msg -0.0054 1.0000 0.1296 -0.2791 

Size -0.0342 0.1296 1.0000 -0.6511 

Cnt_mod 0.0124 -0.2791 -0.6511 1.0000 

 

The model fit was accessed using the requirements for Linear Regression models. 

Various specification and diagnostics checks were performed for the estimated model. The 

usual diagnostic checks of the regression residuals indicated no serious departures from the 

underlying assumptions. Examination of the Besley-Kuh_Welsch diagnostic (Belsley et al. 

1980) indicates that the highest condition number for the model is 2.29 which is within the 
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recommended cutoff limit of 20. The VIF for the independent variables were all below 5, 

suggesting that multicollinearity was not unduly influencing the estimators (Neter et al. 

2004). The resulting model for the number of downloads or the usefulness of OSS projects 

is given by the following equation. 

posts)(forumβmod)(Cntβ(Size)ββDownloadsE __)( 3210 +++=   

The coefficient of the control variable of Age (Age) was not significant in the model 

for downloads. This could be because of the fact that the variable downloads was 

normalized for Age of the project in the original dataset. Therefore any affects of the age of 

the project on the number of downloads was already adjusted in the data. The size (Size) of 

the project was used as a control variable in the model.   

The increase in functionality of the project was operationalized as the count of 

number of new modules or releases (Cnt_mod). This variable had a positive impact on the 

number of downloads. Therefore, if the functionality of the project increases, its usefulness 

(or downloads) will increase and this will have a positive impact in the end on the resilience 

of the project
.
.The forum activity (Cnt_Msg) had a positive impact on downloads. In 

projects where the user and the developer community are actively engaged in discussions, 

the project downloads increase. The use of forums in cyberspace is very critical. Forums are 

not only used to discuss project related issues, but are also a good tool for advertising the 

project. Thus projects with active forums had higher number of downloads. 
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5.4   CONCLUSIONS 

 Projects that possess high resilience will be able to remove errors and become 

operational effectively.  The fast response time implies that the errors were not very severe 

in the first place. If the errors were severe, then the ability to fix the error in small time 

implies that the code was well designed so that the maintainers were able to detect and 

remove the problem. It also indicates the effectiveness of the maintenance team. Therefore, 

the mean time to fix a bug is a very important characteristic of a project.  

A model to explain the factors that affect the resilience of an OSS project was 

developed in this chapter. A two-stage model identifying the key critical components of 

project resilience was developed. The model is shown in Figure 5.7. It is discovered that the 

role of the end user of the project is very critical in the performance of OSS projects. The 

participation of the user in the maintenance process, improves the ability of a project to react 

to errors and faults. It is also discovered that the number of downloads also improve the 

resilience of OSS projects. The usefulness and the usage of a project had direct positive 

impact on the project resilience. Since both these factors were not directly in the control of 

the development team, it was decided to identify the factors that affected the usage and 

usefulness. The resulting two new models revealed that product functionality and quality 

had a positive affect on the usage. The end users were encouraged to participate in the 

maintenance process if the project offered them a high quality code with increasing 

functionality. An active user community also improved the usage of a project.  
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Figure 5.10: Model for resilience of OSS projects 

 

 

 

The project functionality and the forum activity were also significant factors in the 

usefulness or the number of downloads of the project. If the project offered significant 

functionality and had active forums, the number of downloads increase. This could be 

attributed to the existing users continuing use of the project since they found it useful, or it 

could also imply that the other OSS users were more likely to download projects that offered 

more functionality and had active forum participation. Tables 5.13-5.18 show the variables 

used in the final model. 

Resilience 

End Characteristics 

Usage 

Activity 

Product Characteristics 

 

Process Characteristics 

Project Outcome 

Quality 

Size 

Functionality 

Activity 

Age 

Size 

Age, PM, Mail 

Resource Characteristics 

 Team Size 
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Table 5.13: Process related variable measurement and sources 

 

Variable Measure Symbol In final 

Model 

Project Management Use PM (Y/N) Use_PM  

Process Quality Mean Time to fix a bug (MTTF) MTTF  

Forum use (Y/N) Use_forum  

Number of forums Cnt_forum  

Use Mail (Y/N) Use_mail  

Communication 

Channel 

Use News Groups (Y/N) Use_news  

Req. Implementation Time to implement a feature TTFT  

Use CVS (Y/N) Use_CVS  Configuration 

Management  
Count CVS commits Cnt_CVS  

Process Quality Count of bugs Bug_Cnt  

 Bugs not fixed Bug_Open  

 

 

 

Table 5.14: Control variable measurement and sources 

 

Control 

Variables 

Measure Symbol In final 

Model 

Size Source Lines of Code Size  

Age Time elapsed since the start of 

project 

Age  
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Table 5.15: Resource related variable measurement and sources 
 

Variable Measure Symbol In final 

Model 

Effort Number of registered developers for the project Cnt_Team  

Team Communication  Messages posted at development forums Forum_post  

 

 

 

Table 5.16: Product related variable measurement and sources 
 

Variable Measure Symbol In final 

Model 

Increase in features Cnt_feat  Functionality 

 
New Modules Cnt_file  

Number of distinct members 

reporting the bugs  

Cnt_mem  Maintainability 

Number of distinct members 

fixing the bugs 
Cnt_Usr_fix  

Number of platforms supported Cnt_OSI  Portability 

Number of programming 

languages supported 

Cnt_Prg_lang  

License Type License type Lisc  

Project Type Primary categorization of the 

project.  

Pjr_type  

Downloads Downloads  Usefulness 

Page Views Pg_View  

Number of translations Cnt_tran  Product Compatibility 

Number of platforms supported Cnt_plat  

Usage Usage by end user Bug_User  
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Table 5.17: User related variable measurement and sources  

 

Variable Measure Symbol In final 

Model 

User Type Audience Programmer (Y/N) AUD (o= prog, 1 = 

non-prog) 
 

Forum posts by users Cnt_Msg  Activity Level of 

User 

Number of distinct individuals 

posting messages, bugs  

User_Int  

Community Size Number of distinct senders of 

messages 

Cnt_User  
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CHAPTER VI 

MODEL OF ORGANIZATION 

 
In this chapter, the affects of maintenance on the project organization are discussed. 

A new taxonomy for maintenance patches is developed and presented. The internal 

organization of the project is measured in terms of complexity. The affects of patch types on 

complexity are statistically analyzed. The chapter ends with s discussion of results. 

 

6.1   BACKGROUND  

Software systems are constantly changing and growing throughout their useful lives 

(Lehman and Ramil 2002). For any software system, the majority of the lifecycle cost and 

effort is expended in the detection and elimination of errors or in functionality enhancements 

during system maintenance (Lehman and Ramil 2002; Swanson and Dans 2000). Addition 

of new functionality can make the task of software maintenance more difficult. It is usually 

accompanied by new errors, making the maintenance task even more complex (Brooks 

1995) .  

Software maintenance activities vary in nature, ranging from removal of faults and 

errors to introduction of new functionality. In software engineering literature, software 

maintenance activities have been categorized as corrective, perfective, adaptive and 

preventative. Corrective maintenance refers to the correction or removal of defects. 

Adaptive maintenance refers to the modifications made to accommodate changes to external 

environment e.g. new hardware. Perfective maintenance refers to changes that extend the 
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original functionality of the software and preventative maintenance refers to the tasks that 

are carried out to prevent or facilitate the maintenance process (Pressman 2004; Swanson 

and Beath 1997).  

Prior literature suggests that software maintenance activities can cause a decline in 

the operational performance of software (Brooks 1995; Eick et al. 2001). This decline in the 

quality has been attributed to the increase in the structural complexity of the software 

associated with software maintenance. As new functionality is added, the interfaces become 

more complex. Often removal of old code and comments is overlooked which results in 

increased code complexity. The code complexity can further make maintenance tasks more 

difficult and thereby increasing the costs (because of increased effort) and the quality 

declines. The result of inefficient code and complex interfaces is that quality of the software 

declines. 

The advocates of OSS movement attribute the quality of OSS projects to a very 

active maintenance process. In OSS projects, the source code is publicly available and all 

users can be involved in the maintenance process. Raymond proposed the famous Linus 

Law that states, “Given enough eyeballs, every bug is shallow”. The OSS projects have the 

philosophy of “release often”. This means that the maintenance activities are more rigorous 

in OSS projects. As OSS projects are becoming more popular, it is necessary to investigate 

how the software is affected by being developed and maintained through the OSS 

philosophy. There has been no empirical research on how the phenomenon of frequent 

updates affects internal characteristics of the source code. Considering the impact of 
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maintenance activities on software performance, there is a need to understand these 

activities (Greiner et al. 2003). In this model, the effects of various maintenance activities on 

project Viability, primarily the dimension of Organization were analyzed. 

Software maintenance activities in an operational OSS project are implemented 

thorough Patches. OSS patches contain rich text references to the changes that are 

implemented through them. These textual references are made by online, geographically 

dispersed teams of developers and maintainers to explain the significance of the code they 

added or removed (Stamelos et al. 2002). Although there exits a classification of 

maintenance activities in the literature, there is an absence of any formal classification of 

software patches. For this research, textual information available in software patches was 

extracted, to develop a classification scheme for maintenance patches. This classification 

was based on the individual type of maintenance activities performed by each patch. 

The purpose of this research was to analyze the affects of software maintenance on 

the internal structure of the source code. Complexity is a validated measure on the structure 

of software (Fenton and Pfleeger 1991; Simon 1994). The Cyclomatic Complexity metric is 

the most widely used and accepted measure of complexity. Introduced by Thomas McCabe 

in 1976, it measures the complexity of the software program by the number of linearly 

independent paths in program modules. The measure provides a single number, which can 

be used to compare the complexity of various programs with each other. Cyclomatic 

complexity is often referred to simply as program complexity or as McCabe's complexity. 

McCabe’s Cyclomatic is language and platform independent. 
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Large amount of maintenance data over a period of time was required to explore the 

affects of maintenance on complexity. Therefore, public archives of Linux source code were 

used. The reason for selecting Linux was the availability of rich lifecycle maintenance data 

for a single project. Linux maintains a record of its parallel experimental and production 

versions. The experimental versions are more volatile than the stable versions and tend to 

change more frequently. The stable versions were suited for this analysis. Linux versions 1.0 

through version 2.6.5 were used in this research. The details of the Linux dataset were 

discussed in section 3.2.2.2. 

 

6.2   TAXONOMY DEVELOPMENT OF LINUX PATCHES 

The first challenge was to categorize the maintenance tasks. The available taxonomy 

for software maintenance had been developed at a single task level. In operational software, 

it is very rare that a single maintenance task would be performed. Typically, the vendor 

releases a new patch in which several maintenance tasks are bundled. The patch once 

applied to the existing software, implements the changes and the software is moved to the 

next version.  Frequent new patches characterize OSS. Considering prior research in 

software maintenance, the purpose of this research was to analyze if there were differences 

in the maintenance activities performed through different patches. Based on the nature of the 

tasks performed by the patch, it would then be categorized into a new taxonomy of patches. 

The taxonomy would be used to analyze the affects of various types of patches on the 

software internal characteristics.  
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As discussed in Chapter II, Linux is one of the most popular and largest OSS project. 

Some research has been conducted on the evolution of Linux source code, but no prior study 

on the Linux patches and their affects on complexity have been performed. To develop 

taxonomy of the Linux patches the data on the patches was collected. Patch is available as a 

text document and is a combination of textual description of the patch and the actual code, 

which is embedded in the text. Programmers use comments to explain the maintenance 

tasks. In prior research, the nature of the maintenance tasks has been associated to the key 

words used to explain the task. The Linux patch data is no different. Rich comments were 

available on all changes introduced in the new patch. 

The text data on all the versions starting from version 1.0 until version 2.6 were 

collected. Linux maintains parallel versions, in which all even numbered versions are stable 

production versions and all experimental versions are odd numbered. Only stable versions 

were used in this analysis. There were in all 132 patch files for stable Linux kernel from 

version 1-0-0 until version 2-6-13. Total time period of the release of the versions was 

March 9
th

, 1995 until March 12, 2005. The patches were available in compressed (.gz) 

format. They were converted to text files for this analysis. 

While performing text analysis, text is used as one of the fields in the dataset. The 

limit of the text field is 32000 characters. However, the size of Linux patches was very large 

(on average a file size was 2 MB). Therefore, direct import to a single text field for every 

version was not possible. SAS TM 5.2 is equipped with a tmfFilter. This filter allows 

creating links to file locations and accessing text only during the analysis from the stored 
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location. The URL for the stored text is then entered in the text miner settings to perform the 

analysis  (See Figure 6.1). 

Once the text node settings were complete, the next step was to identify the key 

words for the analysis. As mentioned earlier, maintenance key words have been used in past 

CSS research to categorize maintenance activities. These analyses however were on very 

small datasets. Since OSS projects are purely developed without any face-to-face 

communication between the maintenance teams, the comment density in such code is very 

rich. The maintainer had to ensure that others using the code could understand any changes 

made and that the project is maintainable. 

A preliminary list of the key words was developed using prior research in software 

maintenance. This list contained 33 key words. The text analysis of the Linux patch files 

was performed. This resulted in only two clusters. Further analysis of the patches indicated 

that the list of 33 words was not sufficient and a richer  start list was required. Therefore, a 

new run using the SAS EM default stop list was performed.  
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Figure 6.1: Text miner node selection of roles for the input variables 

 

 

 

The new run resulted in seven clusters with 20,000 descriptive terms.  Not all the 

terms in the text were related to maintenance. Many of the terms were from the actual source 

code itself. Therefore, these clusters could not be used for taxonomy development either. 

The key terms from this run were carefully analyzed and the key words that 

pertained to maintenance activities were selected. To ensure that the result was not biased an 

independent programmer with experience in software development was assigned to identify 

the maintenance related key words from the list. The lists prepared by the primary researcher 

and the secondary coder were compared and a new start list was created. This start list had 

312 terms related to software maintenance.  
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Table 6.1:  Descriptive terms, percentage and type of the clusters of maintenance patches 

 

Cluster Descriptive Terms Percentage Patch Type 

1 + error, + buffer, + problem, + 

interrupt, + set 

0.363636 Corrective  

2 + clear, + create, + 

implement, + remove, + check 

0.289256 Preventative 

3 + enable, + allow, + change, + 

disable, + add 

0.330579 Adaptive 

 

 

 

The text miner node performing clustering had been set to allow for a maximum of 

40 clusters. Yet the result was three clusters as shown in Table 6.1. From the descriptive 

terms, it can be seen that the terms in the first cluster are related to corrective maintenance. 

36% of the patches were clustered in this category. The second cluster had words related to 

preventative maintenance activities. These terms indicate that maintenance tasks were 

performed to improve the performance of the software. The third cluster has terms related to 

adaptive tasks that are performed in response to changes in the environment e.g. interface or 

hardware etc. Based on these terms three types of patches were referred as corrective 

patches, perfective patches and adaptive patches. 

The SAS TM 5.2 also allows creating concept links of the key terms from the 

analysis. The results were opened in the interactive browsing mode. Selecting a particular 

key word, the concept links of that term could be identified. This produces a map of how 

various term occurrences is related in the data set. This can allow tracing how various 

maintenance activities affect each other. As an example of concept links, the key term, 

“error” was selected. The concept links of the term are shown in Figure 6.2. The concept 



145 

  

map shows what terms have common occurrences of the term “error”. The thickness of the 

link indicates the strength of the relationship. The map gives a pictorial view of the common 

occurring errors in the patches. Next, the term “allocate” was selected and expanded for 

further mapping. This split the map to more detail and the terms associated to “allocation” 

were also mapped. This identifies the common allocation errors that occur.  

The concept maps can be used as affective tools in patch management. As mentioned 

earlier, new patches could be scored to one of the three clusters defined in this research. The 

key terms from that patch could then be used to map the potential maintenance activities that 

could be related to the new patch. In case of Linux, which is an operating system, any new 

patch is associated to extensive testing on part of organization. They have to ensure the 

integrity of new releases before they can roll out the new patch. This ensures that there 

would be no major problems associated to the new patch. The concept links could be used to 

identify the potential problem areas and therefore the maintenance teams in the 

organizations could prepare better plans for new patch roll out.  

 

 



 

   

 

Figure 6.2: Concept map of selected terms for the patch taxonomy  

1
4
6
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This taxonomy of the maintenance patches is a new addition to the area of software 

maintenance and software security. Most of the software security costs and effort is 

expended on managing the implementation of new patches. This taxonomy provides a 

categorization of the patches. The affects of each patch type could now be investigated 

individually.  Therefore, the next step in this exploratory study was to examine if there was a 

difference in the affects of the patch types on the existing nature of the software. 

 

6.3   STRUCTURAL COMPLEXITY 

As discussed previously, introduction to new code can cause an increase in the 

structural complexity of the software. As the complexity of the software increases, the 

quality declines and the effort needed to maintain that software increases  (Brooks 1995; 

Eick et al. 2001; Lehman and Ramil 2002). Maintenance tasks could be designed to reduce 

the complexity and prolong the life of software. However, there is no empirical evidence 

whether there is a difference in the affects of various maintenance activities on the 

complexity of software. The Linux source code kernel was used, to test the affects of the 

patch types on the software complexity empirically. 

The Linux Kernel source code is freely available to the public. It is available in 

compressed form and can be downloaded and uncompressed into its original directory 

structure. Reynolds’s tool is a free online tool used for measuring software complexity. This 

tool was used to compute the McCabe’s Cyclomatic for software. To ensure the reliability of 

the results, test files of known complexity were tested through the Reynaud’s tool and its 

integrity was confirmed. 
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Each version of the Linux kernel composed of several modules. McCabe’s 

complexity is a module level measure. The total complexity of a version was computed as 

the sum of the McCabe’s complexity of each module. For a version with n modules, the 

complexity is given by: 

∑
=

=
n

i

iMcbComplexity
1

 

Since the data was collected over a period of time, the time series plot of complexity 

was generated as shown in Figure 6.3 and 6.4. 

 

 

 

Index

C
o
m
p
le
x
it
y

726456484032241681

300000

250000

200000

150000

100000

50000

Time Series Plot of Complexity

 

Figure 6.3: Time series plot of the Linux source code complexity 
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Figure 6.4: Autocorrelation function of the Linux source code complexity 

 

 

 

Figure 6.4 indicates a trend in the data. Therefore, the difference in the complexity of 

two subsequent releases was taken. The variable del_complexity represents the change in 

complexity between two subsequent releases. The time series plot and the autocorrelation 

function plot of the del_complexity are shown in Figure 6.5 and 6.6 respectively. The 

differences indicated that the trend has been removed. 
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Figure 6.5: Time series plot of del_complexity 
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Figure 6.6: Autocorrelation plot of del_complexity 

 

 



151 

  

The purpose of this model was to analyze the affects of maintenance on the source 

code. Del-complexity is a reflection of change in complexity rather than the overall 

complexity; therefore, it is a better variable for the analysis.  

The variable time to next release was also computed for each version. This variable 

indicated the number of days elapsed between two patch releases. Whenever a new patch is 

released, the user has to perform testing before the patch can be implemented. Sometimes 

the delay due to testing is translated into operational costs in terms of down time. If the 

patch release is too frequent, there could be significant financial impact. Therefore, for every 

patch the time to next release (del_time) was computed. This indicated how long the 

software was operational before a new major change was introduced through the patch. 

Frequent patch release could also imply that there is a ripple affect in the errors and the code 

introduced to fix the errors is causing new errors.  

 

6.4   ANALYSIS 

The cluster_id of each patch was then merged with the data on del_complexity and 

del_time. The objective was to examine if there was a difference in the del_complexity and 

del_time for the three types of patches or not. The descriptive statistics for the data is shown 

in Table 6.2. 
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Table 6.2: Descriptive statistics of the three clusters  

del_comp del_T Level of 

Cluster_id 

N 

Mean Std Dev Mean Std Dev 

1 26 6927.1154 20985.4267 36.7692308 55.4179088 

2 28 -10222.5357 30283.4820 57.6428571 62.9586662 

3 22 7242.4545 15461.7787 19.1818182 18.6614866 

 

 

 

It can be seen that the mean of del_complexity  of the preventative                                                                                                                                                                                                                           

patches is a high negative number, whereas the means of the corrective and adaptive patches 

are both positive numbers. This suggests that the preventative patches reduce the overall 

complexity of the software and the corrective and adaptive patches increase the complexity. 

It can also be seen from the means that the del-complexity of preventative patches is higher 

than the other two types. Higher del-time means that preventative patches have a long time 

between successive releases. This could be indicative of improved quality and fewer errors 

being introduced by the patch. To check if there is a significant difference in del-complexity 

and del-time between the three types of patches, an ANOVA analysis was performed. The 

three assumptions of ANOVA are: 

� Independent observations 

� Normally distributed error terms  

� Equal error variance for each group 

The first assumption was met by the data because it was collected for separate 

versions of the Linux data.  The residual vs. the fitted values of the ANOVA were tested to 
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ensure the normality assumption. There was a random scatter about the zero reference line 

for each of the fitted values. Therefore, the normality assumption was met. 

To test for equal variance, the Levene’s Test for Homogeneity of the variance of del-

complexity and del-time was performed. The null hypothesis of the test was that the 

variances are equal. Failing to reject the null hypothesis would imply equal variance. Table 

6.3 and 6.4 show the results of the Levene’s test. 

 

 

Table 6.3: Levene’s test for del-complexity of the Linux patch clusters 

Levene's Test for Homogeneity of del_comp Variance 

ANOVA of Squared Deviations from Group Means 

Source DF Sum of Squares Mean Square F Value Pr > F 

Cluster_id 2 5.811E18 2.906E18 0.72 0.4879 

Error 73 2.927E20 4.01E18     

 

 

Table 6.4: Levene’s test for del-time of the Linux patches clusters 

Levene's Test for Homogeneity of del_T Variance 

ANOVA of Squared Deviations from Group Means 

Source DF Sum of Squares Mean Square F Value Pr > F 

Cluster_id 2 1.5764E8 78818265 2.69 0.0749 

Error 73 2.1418E9 29339769     
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The p value of the F statistic was both the cases was greater than 0.05, therefore the 

null hypothesis of equal variance was not rejected at the 5% level. The next step was to 

perform ANOVA analysis to test if the means of the three types of clusters were 

significantly different. The results of the analysis are shown in Table 6.5 and 6.6. 

 

 

 

Table 6.5: ANOVA analysis of the dependent variable del-complexity 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 5290332788 2645166394 4.73 0.0117 

Error 73 40791512489 558787842     

Corrected Total 75 46081845277       

 

 

 

Table 6.6: ANOVA Analysis of the dependent variable del-time 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 18491.3675 9245.6838 3.53 0.0344 

Error 73 191114.3167 2618.0043     

Corrected Total 75 209605.6842       
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In both the cases, the value of F-statistic was significantly greater than 1 (p value of 

F statistic was less than 0.05); therefore the null hypothesis of equal means was rejected. 

These results indicate that preventative patches can significantly reduce the complexity of 

software. The time to next patch was also significantly higher than the rest of the types of 

patches. This finding can be very critical in software development and maintenance. Regular 

preventative maintenance can control the increase in complexity. This could improve 

software quality. Preventative maintenance would also remove any redundant code and 

make the software more maintainable.  

 

6.5   CONCLUSION 

This part of the research developed a new a new taxonomy for categorizing 

maintenance patches. This is the first empirical study on how individual maintenance 

activities are clustered together in a single maintenance patch. It used the textual data of 

patches through Text Mining techniques to develop the taxonomy. Use of prior literature on 

software maintenance identified the terms for maintenance tasks. More terms were added to 

the list by visual inspection of the key words. The new list was used to categorize the Linux 

Patches. The resulting taxonomy consisted of three types of patches: Corrective, 

Preventative and Adaptive. 

Data on Linux source code complexity was extracted. This was done to examine the 

affects of various types of patches on the software internal structure. Maintaining structure is 

a challenge of software maintenance. Increase in the complexity can result in decline in 

quality. Analysis was performed to see if there was a difference in the patch types in terms 
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of change in complexity and the time to next release. The means of the patch types indicated 

that the preventative patches reduce the complexity and have a longer time to next release. 

The statistical significance of the differences was tested and it was significant. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

 

This chapter summarizes the results of this research and identifies the contribution to 

theory and practice. This is followed by the limitations of the study. The chapter ends with 

the implications for future research and conclusions. 

 

7.1   SUMMARY OF RESULTS 

 

The primary objective of this research was to examine the development and 

maintenance activities of OSS projects. A new measure for evaluating the performance of 

OSS projects was defined, validated and tested. Three models were developed to identify the 

factors that affect the development and maintenance performance of OSS projects. These 

models were developed using Data Mining techniques. The detailed results were presented 

for each model that provided a deeper insight into the OSS development and maintenance 

process. 

The measure of software viability could be used to measure the performance of a 

single project over its lifecycle, or for comparison among multiple projects. It was found 

that the three dimensions of project viability provide the predictive power for the 

performance of OSS projects. Considering the nature of OSS project development, the 

characteristic of the end user were also used in the model in order to examine the affects on 

project performance. A new variable “project type”, based on the description data was used. 

The key findings for each model are discussed in the following sections. 
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7.1.1   Model 1: Development Phase Performance 

 

This model was developed to identify the factors that affect the vigor of OSS 

projects. It was discovered that the end user plays a significant role in the development of 

the project. Projects where the end user participated in the forums and in the maintenance 

activities had a higher probability of having a high vigor. It was shown that the team size 

and the use of project management methods improve the performance of OSS projects in the 

development phase, whereas the inability to fix problems could have a negative impact on 

the project outcomes.  

It was also found that some OSS project types were better suited for development 

compared to other projects. The type of the audience for which the project had been 

developed also played a role in project development. 

Age was used as a control variable. It was seen that older projects had less chance of 

growth compared to newer projects. This could be attributed to loss of quality or age, or to 

improvement of OSS methods with time.  

 

7.1.2   Model 2: Maintenance Phase Performance 

 

The second model was developed for the resilience of OSS projects in the 

maintenance phase. A two-stage model was developed. The effects of bugs reported by end 

user (usage) and the number of downloads (usefulness) on resilience of a project was 

demonstrated. Both these variables were outcome variables; therefore, further models were 

developed to explain the factors affecting the usefulness and usage. These models identified 
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that the quality of the OSS project encourages users to be involved in that project. The team 

size and functionality affected the usefulness of the project. 

 

7.1.3   Model 3: Affects of Maintenance on Structure 

 

A new taxonomy for maintenance patches was developed for Linux patches. Three 

types of patches were defined: corrective, preventative and adaptive. The affects of these 

patch types on the internal structure of the software were examined. The preventative 

patches reduce complexity and have a longer elapsed time to the next release. Corrective and 

adaptive patches have an opposite affect. This indicates that suitable preventative 

maintenance tasks can improve the quality of a project and increase its useful life,  

 

7.2   CONTRIBUTIONS TO THEORY  

 

This research has contributed to the theory in a number of ways. It is the first 

empirical study to explore the development and maintenance of OSS projects. The study 

demonstrates the role of end user in the performance of OSS projects. It also provided the 

first empirical evidence to substantiate the argument that end user involvement improves the 

project performance. 

The study utilizes data mining techniques for model building. This is very significant 

in inductive research. The public availability of large datasets will make use of these 

techniques suitable for conducting exploratory research. Use of multiple data mining 

techniques to improve the predictive power of the resulting models was also demonstrated. 
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In addition, a new measure of OSS project performance was developed, validated 

and tested.  Academic research in OSS has lacked well-developed measures that could be 

used to evaluate OSS projects. The new measure was developed through the software 

measurement framework.  

Text analysis was used to develop new variables of project type. This provided a new 

categorization for OSS projects. Using this categorization, projects were placed in only one 

category, unlike the existing SourceForge categorization that puts a single project in 

multiple categories. The use of text analysis in taxonomy development was also verified. A 

new taxonomy for maintenance patches was developed. This was the first body of work on 

empirical analysis of maintenance patches and their categorization. 

 

7.3   CONTRIBUTIONS TO PRACTICE 

 

This research provided the practitioner community with new tangible measure that 

could be used to evaluate OSS projects. Business investments in OSS projects could make 

use of such measures to make informed decisions regarding OSS projects. This study also 

provided patch taxonomy and its impact on the internal structure of software. In businesses, 

application of new patches can be very expensive in terms of cost, effort and risks. The new 

taxonomy could be used to score new software patches, before any implementation is 

performed. Concept links could be used to identify potential modules that could be affected. 

This could help in maintenance planning. 
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The study also indicates the significance of the role of end user in the performance of 

a project. This information could be generalized to CSS where software development teams 

could benefit user involvement. The study also indicates that OSS might be a more suitable 

development platform for certain types of projects. Therefore, practitioners could decide on 

OSS or CSS usage depending upon the nature of the problems. 

For effective management of OSS projects, the development teams could use the 

results of this research to improve the performance of their projects. They could monitor 

their projects using the measures identified. They could also control the outcomes of their 

projects considering the factors that affect the outcomes. 

 

7.4   LIMITATIONS OF THE STUDY 

 

Following are the limitations of this research study. One limitation is that the dataset 

used for model building was from SF and Linux. Although the SF community is the largest 

OSS project hosting community, but is not the only community. Too many idle or inactive 

projects had to be removed from the analysis. Therefore, in future comparisons can be done 

with other communities such as Tigris.org, freshmeat.net that are more selective in project 

hosting. The data was provided to public use through a third party. Although data is released 

through the joint effort with SF, the warehouse is cleaned and maintained by University of 

Norte Dame. The study investigated the affects on cross-sectional data, therefore changes 

made to projects over a period of time, were not explained by the analysis. 
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7.5   IMPLICATIONS FOR FUTURE RESEARCH 

Several directions for future research can be derived from this exploratory study. The 

findings of the factors affecting OSS performance could be tested in the CSS domain. The 

model could also be used to test the performance of a single project over its lifecycle. 

Considering the high number of OSS projects that fail to grow and survive, it would 

be interesting to use techniques like survival analysis. This would give a deeper insight into 

how projects evolve and what accounts for their failure. A dataset of the projects that failed 

or became inactive has already been prepared. Another dataset for projects that evolved 

through multiple phases has been prepared too. These two datasets could be used to perform 

survival analysis and study the behavior of these projects as they fail or evolve. 

The activity of the forums had a positive impact on the project outcomes. One 

direction could be to study the patterns of communications amongst the teams and compare 

them to the structure of the software code. This would mean testing Conway’s Law in the 

software development domain. Preliminary expertise in the use of social network tools has 

already been developed. Some software applications that would be needed to convert the 

OSS data for use in social network has also been developed. These could be used in future to 

get a better understanding of the communication structure of OSS projects. 

The use of Text Mining to improve the predictive ability of models has been 

demonstrated in this research. Use of additional techniques e.g. Sequence analysis and 

Association analysis on the maintenance documents could provide insight into how the 

various patches are related to each other and identify the factors that trigger new corrective 

patches. 
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The new measure of software viability can be tested for performance on CSS 

projects or on OSS projects in other development communities. This would result in 

triangulation of the results of this study. A new tool can also be developed to measure the 

viability of a project. This tool would accept the basic project measures as inputs and using 

refined models from this research compute a viability score for the projects. This can be a 

very useful tool for the practitioner community. 
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Table A.1: Data set for the empirical validation of project viability 

Project_id Vigor Resilience Structure 

3 0.07182 1.123596 0.3275 

14 0.018953 0.095238 0.639032 

120 0.010495 1.315789 0.623444 

233 0.001002 0.518135 0.370997 

255 0.082788 0.724638 0 

1658 0.021783 3.333333 0.404132 

4236 0.003235 0.588235 0.309184 

6121 0.021101 0.833333 0.634511 

11348 0.03609 1.587302 0 

22307 0.059434 1.639344 0.157549 

23067 0.276489 2.941176 1.048 

29057 0.196218 2.5 0.289 

33291 0.036764 3.225806 0.620386 

37089 0.095877 5.882353 0.278701 

54086 0.021403 6.25 0 

57621 0.038067 0.485437 0.230064 

71291 0.00238 8.333333 0.305391 

84122 0.167054 4.347826 1.077942 

88344 0.080719 10 0.77561 

106696 0.088033 100 0.290028 
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Table A.2: Group Names for the Projects in Analysis 

group_id group_name 

3 Mesa3D 

14 NFS 

120 Amanda Tape Backup 

233 Gnomba 

255 Ethereal 

1658 libppd 

4236 The Insidious Big Brother DataBase 

6121 PhpWiki 

11348 GNOME News Applet 

22307 MySQL for Python 

23067 phpMyAdmin 

29057 Compiere ERP + CRM Business Solution 

33291 jTDS - SQL Server and Sybase JDBC driver 

37089 Open Media Lending Database 

54086 Video4LinuxGrab 

57621 PHPeclipse - PHP/SQL/HTML Eclipse-Plugin 

71291 ESSTP 

84122 Azureus - BitTorrent Client 

88344 open ArchitectureWare 

106696 Simple PHP Blog 
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Additional Results for the LR model of Vigor 

 

 

Table B.1: Summary of Stepwise Selection 

Step Effect DF Score Chi-Square 

Chi-Square    Pr > 

ChiSq 

1 Age 
2 126.2512 <.0001 

2 Bug_Count 
1 194.8111 <.0001 

3 File_Size_age 
1 48.8165 <.0001 

4 Cnt_Team 
1 14.7037 0.0001 

5 use_pm 
1 13.0996 0.0003 

6 Downloads 
1 11.4321 0.0007 

7 Aud* Bug_User 
1 5.8314 0.0157 

8 Msg_Cnt 
1 4.7238 0.0297 

9 Prj_Type 
5 12.9602 0.0238 

10 Bug_open 
1 3.9932 0.0457 

11 Prj_Type*use_mail 
5 11.4942 0.0424 
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Table B.2: Frequency Distribution of Input Class Variables 

Class Value 1 0 Total 

Age 01:low -749.08 184 395 579 

 02:749.08-1377.04 96 708 804 

 03:1377.04-high 57 533 590 

audience1 1 157 760 917 

 2 180 876 1056 

clstdec2 1 19 99 118 

 2 69 405 474 

 3 68 272 340 

 4 34 127 161 

 5 56 385 441 

 6 91 348 439 

osi 0 257 1284 1541 

 1 80 352 432 

use_cvs 0 42 163 205 

 1 295 1473 1768 

use_forum 0 96 347 443 

 1 241 1289 1530 

use_mail 0 58 250 308 

 1 279 1386 1665 

use_news 0 35 123 158 

 1 302 1513 1815 

use_pm 0 101 334 435 

 1 236 1302 1538 
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Table B.3: Descriptive Statistics for Continuous Variables 

Variable Vigor Mean Deviation Minimum Maximum 

      

Bug_Count 1 0.027559 0.079889 0 0.693147 

 0 0.004144 0.013196 0 0.216517 

 Total 0.008143 0.036187 0 0.693147 

Bugs_Open 1 0.032536 0.082577 0 0.693147 

 0 0.010902 0.02414 0 0.30973 

 Total 0.014597 0.041368 0 0.693147 

Bugs_Rep_User 1 0.017673 0.065842 0 0.693147 

 0 0.001905 0.009423 0 0.27368 

 Total 0.004598 0.029112 0 0.693147 

DwnLds_per_age 1 0.00637 0.039762 0.000001566 0.693147 

 0 0.000597 0.005637 0 0.158411 

 Total 0.001583 0.017334 0 0.693147 

File_size_per_age 1 0.01852 0.064017 0.000008541 0.693147 

 0 0.000988 0.004637 0 0.120045 

 Total 0.003982 0.027562 0 0.693147 

Msg_Cnt 1 0.01404 0.057237 0 0.693147 

 0 0.002305 0.011641 0 0.175149 

 Total 0.004309 0.026269 0 0.693147 

Cnt_OS 1 2.700297 2.037396 0 11 

 0 2.361858 1.709799 0 11 

 Total 2.419665 1.774069 0 11 

Cnt_Team 1 5.442136 6.793975 1 48 

 0 3.047066 3.745364 1 66 

 Total 3.456158 4.506444 1 66 

Cnt_Forum 1 2.136499 0.855168 0 7 

 0 2.097188 0.888784 0 8 

 Total 2.103903 0.883044 0 8 
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Table B.4: Type 3 Analysis of Effects 

Effect DF Wald 

Chi-Square 

Pr > ChiSq 

        

Age 2 125.8052 <.0001 

Bug_Cnt 1 11.602 0.0007 

Bug_Open 1 4.214 0.0401 

File_size_age 1 70.8149 <.0001 

Msg_Cnt 1 5.6911 0.0171 

Aud*Bug_User 1 6.0876 0.0136 

Prj_Type 5 15.3941 0.0088 

Cnt_Team 1 14.2526 0.0002 

Downloads 1 6.5237 0.0106 

use_pm 1 10.1275 0.0015 

Prj_Type*use_mail 5 11.2668 0.0463 
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Table B.5: Neural Network Weights for the Model of Vigor 

N Parameter Estimate Gradient Objective Function 

1 age1_H11 -0.15958 0.001227 

2 bftdays_H11 -0.10034 0.000909 

3 bugcnt_H11 -0.25133 -0.00093 

4 bugopen_H11 0.011565 -0.00064 

5 bugreportedbynu_H11 0.545236 -0.00092 

6 cntOS_H11 -0.27152 -0.00048 

7 countusr_H11 -1.03598 -0.00063 

8 downloads_H11 -0.34233 -0.00035 

9 filesizeperage_H11 1.191523 -0.0009 

10 formcnt_H11 -0.6407 0.000702 

11 msgcnt_H11 -0.39956 -0.00022 

12 age1_H12 0.363 0.014659 

13 bftdays_H12 0.019895 0.007423 

14 bugcnt_H12 1.192353 -0.0043 

15 bugopen_H12 -0.65737 -0.00582 

16 bugreportedbynu_H12 1.714098 -0.00281 

17 cntOS_H12 -0.08592 0.006333 

18 countusr_H12 -0.06469 -0.00996 

19 downloads_H12 2.085465 -0.00181 

20 filesizeperage_H12 4.885095 -0.00342 

21 formcnt_H12 0.102449 0.003126 

22 msgcnt_H12 0.19836 -0.00112 

23 age1_H13 -0.46009 -0.00539 

24 bftdays_H13 0.451149 0.00032 
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Table B.5: Continued 

N Parameter Estimate Gradient Objective Function 

25 bugcnt_H13 -0.13137 0.001875 

26 bugopen_H13 0.476282 0.00441 

27 bugreportedbynu_H13 0.348048 0.002213 

28 cntOS_H13 -0.78658 0.002557 

29 countusr_H13 -0.98162 0.001373 

30 downloads_H13 -0.02118 -0.00069 

31 filesizeperage_H13 -0.97195 0.00139 

32 formcnt_H13 -0.16572 0.000223 

33 msgcnt_H13 -0.20365 -0.00305 

34 osi0_H11 0.133397 -0.00107 

35 use_cvs0_H11 -0.52265 0.000124 

36 use_forum0_H11 -0.05251 0.000368 

37 use_mail0_H11 0.463156 0.001218 

38 use_news0_H11 0.646571 0.001088 

39 use_pm0_H11 -0.12975 0.000362 

40 osi0_H12 -0.07868 0.013723 

41 use_cvs0_H12 0.053672 -0.02116 

42 use_forum0_H12 0.001287 -0.02707 

43 use_mail0_H12 0.060688 -0.01141 

44 use_news0_H12 -0.10019 -0.02054 

45 use_pm0_H12 -0.02032 -0.02781 

46 osi0_H13 -0.55232 -0.00532 

47 use_cvs0_H13 -0.04961 0.006308 

48 use_forum0_H13 0.164206 0.005009 

49 use_mail0_H13 0.540126 0.0048 

50 use_news0_H13 -0.66791 0.00698 

51 use_pm0_H13 -0.51902 0.005667 

52 audience11_H11 0.182248 0.000558 

53 clstdec21_H11 -0.57774 0.000478 

54 clstdec22_H11 -1.21725 0.000761 
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Table B.5: Continued 

N Parameter Estimate Gradient Objective Function 

55 clstdec23_H11 0.554575 0.000115 

56 clstdec24_H11 0.555508 0.000135 

57 clstdec25_H11 -0.43886 -1.3E-05 

58 audience11_H12 0.113019 0.009852 

59 clstdec21_H12 0.052073 -0.00433 

60 clstdec22_H12 0.142524 0.003256 

61 clstdec23_H12 -0.25367 -0.00322 

62 clstdec24_H12 0.07382 -0.00021 

63 clstdec25_H12 -0.03134 -0.00319 

64 audience11_H13 0.83985 0.003969 

65 clstdec21_H13 0.371032 0.001081 

66 clstdec22_H13 0.56016 -0.00206 

67 clstdec23_H13 -1.07177 0.000927 

68 clstdec24_H13 -0.67624 0.001032 

69 clstdec25_H13 0.368155 0.000564 

70 BIAS_H11 -0.53743 -0.00133 

71 BIAS_H12 0.902622 0.016607 

72 BIAS_H13 0.262889 -0.00617 

73 H11_vigor31 0.552582 -0.00387 

74 H12_vigor31 3.386263 -0.00112 

75 H13_vigor31 -1.02827 0.000548 

76 BIAS_vigor31 -2.2215 0.002881 
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Figure C.1: Decision tree for the model of usage  
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Figure C.1: Decision tree for the model of usefulness 
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