

OPEN SOURCE SOFTWARE DEVELOPMENT AND MAINTENANCE: AN

EXPLORATORY ANALYSIS

A Dissertation

by

UZMA RAJA

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2006

Major Subject: Information and Operations Management

© 2006

UZMA RAJA

ALL RIGHTS RESERVED

OPEN SOURCE SOFTWARE DEVELOPMENT AND MAINTENANCE:

AN EXPLORATORY ANALYSIS

A Dissertation

by

UZMA RAJA

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Marietta J. Tretter

Committee Members, Arun Sen

 Dean W. Wichern

 Christopher J. Wolfe

Head of Department, Dean W. Wichern

August 2006

Major Subject: Information and Operations Management

iii

ABSTRACT

Open Source Software Development and Maintenance: An

Exploratory Analysis. (August 2006)

Uzma Raja, B.Sc., University of Engineering and Technology, Lahore, Pakistan;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Marietta J. Tretter

 The purpose of this research was to create measures and models for the

evaluation of Open Source Software (OSS) projects. An exploratory analysis of the

development and maintenance processes in OSS was conducted for this purpose. Data

mining and text mining techniques were used to discover knowledge from transactional

datasets maintained on OSS projects. Large and comprehensive datasets were used to

formulate, test and validate the models.

A new multidimensional measure of OSS project performance, called project viability

was defined and validated. A theoretical and empirical measurement framework was used to

evaluate the new measure. OSS project data from SourceForge.net was used to validate the

new measure. Results indicated that project viability is a measure of the performance of OSS

projects.

Three models were then created for each dimension of project viability. Multiple data

mining techniques were used to create the models. Variables identified from process,

iv

product, resource and end-user characteristics of the project were used. The use of new

variables created through text mining improved the performance of the models.

The first model was created for OSS projects in the development phase. The results

indicated that end-user involvement could play a significant role in the development of OSS

projects. It was also discovered that certain types of projects are more suitable for

development in OSS communities. The second model was developed for OSS projects in

their maintenance phase. A two-stage model for maintenance performance was selected. The

results indicated that high project usage and usefulness could improve the maintenance

performance of OSS projects. The third model was developed to investigate the affects of

maintenance activities on the project internal structure. Maintenance data for Linux project

was used to develop a new taxonomy for OSS maintenance patches. These results were then

used to study the affects of various types of patches on the internal structure of the software.

It was found that performing proactive maintenance on the software moderates its internal

structure.

v

DEDICATION

To Scheherbano and Jahanzeb

vi

ACKNOWLEDGEMENTS

All praise and thanks to Allah, the most beneficent the most merciful

I am grateful to my committee chair Dr Marietta Tretter. Her guidance, support and

encouragement made this dissertation possible. I would also like to thank my committee

members Dr Dean Wichern, Dr Arun Sen and Dr Christopher Wolfe for their guidance and

support.

This research was funded in part by a SAS software grant as part of the SAS

Fellowship Program. I would like to thank SAS for providing me with both SAS Enterprise

Miner and SAS Text Miner to complete my research. I am also thankful to Dr Evelyn Barry,

Dr Ravi Sen and Dr Krishnna Narayanan for their advice. Thanks to all my friends and

colleagues and the department faculty and staff at the INFO department for a great

experience.

I am grateful to my parents, Raja Shafaat Ullah and Kalsoom Shafaat, for their love,

support and encouragement. I am thankful to my siblings; Usman, Ayisha and Irfan Raja for

being my support network. My two children: Scheherbano and Jahanzeb, are a source of joy

and inspiration for me. This work would have been impossible without their love and

patience. Finally, I have no words to express thanks to my husband Rafay Ishfaq. I would be

lost, without his love and friendship.

vii

TABLE OF CONTENTS

Page

ABSTRACT ……………………………………………………………………. iii

DEDICATION …………………………………………………………………. v

ACKNOWLEDGEMENTS ……………………………………………………. vi

TABLE OF CONTENTS ………………………………………………………. vii

LIST OF TABLES ……………………………………………………………… x

LIST OF FIGURES …………………………………………………………….. xiii

CHAPTER

I INTRODUCTION…………………………………………………… 1

1.1 OSS Background ………………………………………………….. 1

1.2 Significance of OSS Research…………………………………….. 4

1.3 Significance of Software Development and Maintenance Research. 6

1.4 Research Scope…………………………………………………… 7

1.5 Organization of this Dissertation…………………………………. 9

II PROJECT VIABILITY: A MULTIDIMENSIONAL MEASURE…. 10

2.1 Background……………………………………………………….. 10

2.2 Evaluation of OSS Project Viability Measures…………………... 19

2.3 Application of OSS Project Viability Measures…………………. 33

2.4 Conclusions ……………………………………………………… 35

III EXPLORATORY MODEL DEVELOPMENT METHODOLOGY… 36

3.1 Framework………………………………………………………… 36

3.2 Exploratory Model Building Methodology………………………. 39

viii

CHAPTER Page

IV MODEL OF VIGOR………………………………………………... 68

4.1 Background………………………………………………………. 68

4.2 Model Building………………………………………………….. 69

4.3 Selected Model…………………………………………………… 83

4.4 Data Integrity and Diagnostic Checks…………………………… 88

4.5 Discussion………………………………………………………… 94

4.6 Conclusions……………………………………………………… 98

V MODEL FOR RESILIENCE………………………………………… 102

5.1 Background……………………………………………………….. 102

5.2 Model Building……………………………………………………. 104

5.3 Data Integrity and Diagnostic Checks……………………………. 112

5.4 Conclusions……………………………………………………….. 132

VI MODEL OF ORGANIZATION……………………………………… 137

6.1 Background……………………………………………………….. 137

6.2 Taxonomy Development of Linux Patches……………………….. 140

6.3 Structural Complexity…………………………………………….. 147

6.4 Analysis…………………………………………………………… 151

6.5 Conclusion………………………………………………………… 155

VII SUMMARY AND CONCLUSION………………………………….. 157

7.1 Summary of Results…………………………………………….... 157

7.2 Contributions to Theory…………………………………………… 159

7.3 Contributions to Practice………………………………………….. 160

7.4 Limitations of the Study…………………………………………… 161

7.5 Implications for Future Research………………………………….. 162

ix

CHAPTER Page

REFERENCES……………………………………………………………………. 164

APPENDIX A …………………………………………………………………….. 175

APPENDIX B …………………………………………………………………….. 178

APPENDIX C …………………………………………………………………….. 186

VITA ……………………………………………………………………………… 189

x

LIST OF TABLES

TABLE Page

2.1 Operationalization of OSS project viability dimensions……………………. 25

2.2 Pearson correlation coefficient for the three measures of viability…………. 30

2.3 Spearman correlation coefficient for the three measures of viability………. 31

3.1 Product related variable measurement and sources identified for analysis…. 50

3.2 Process related variable measurement and sources

 identified for analysis ………………………………………………………. 52

3.3 Resource related variable measurement and sources

identified for analysis ……………………………………………………… 54

3.4 User related variable measurement and sources identified for analysis……. 55

3.5 Control variable measurement and sources identified for analysis………… 56

4.1 Descriptive terms of the cluster analysis results of the project type data…… 74

4.2 Estimated correlation matrix of input variables for the LR

model of vigor………………………………………………………………. 84

4.3 Analysis of maximum likelihood estimate of the LR coefficients………….. 86

4.4 Fit statistics of the train, test and validate samples of the LR model ……… 87

4.5 Odds ratio estimates of the input variables of the LR model……………….. 88

4.6 Likelihood ratio test for global null hypothesis: BETA=0 …………………. 89

4.7 Acceptable ranges of ROC value……………………………………………. 90

4.8 Classification for the LR model……………………………………………… 93

4.9 Process related variable measurement and sources………………………… 99

xi

TABLE Page

4.10 Product related variable measurement and sources………………………… 100

4.11 Control variable measurement and sources………………………………... 100

4.12 Resource related variable measurement and sources……………………… 101

4.13 User related variable measurement and sources…………………………… 101

5.1 Description terms, frequency and percentage of each

cluster for project type……………………………………………... ……… 108

5.2 Likelihood ratio test for global null hypothesis: BETA=0…………………. 113

5.3 Analysis of maximum likelihood estimates of the input

variables of the LR model…………………………………………………. 115

5.4 Fit statistics for the LR model……………………………………………… 117

5.5 Analysis of variance of the Linear Regression model for usage………….... 122

5.6 Type 3 analysis of effects of the input variables of Linear

Regression model………………………………………………………….. 123

5.7 Analysis of maximum likelihood estimates of the input variables of

the Linear Regression model……………………………………………… 123

5.8 Pair wise correlation of the input variables of the Linear

Regression model…………………………………………………………. 124

5.9 Analysis of variance of the Linear Regression model for usefulness…….. 129

 5.10 Model fit statistics of the Linear Regression model for usefulness…….…. 129

 5.11 Significances of independent variables of the Linear Regression

model of usefulness………………………………………………………. 130

xii

TABLE Page

5.12 Correlation of estimates of the input variables of the Linear

Regression model of usefulness …………………………………………. 130

 5.13 Process related variable measurement and sources………………………. 134

 5.14 Control variable measurement and sources……………………………… 134

 5.15 Resource related variable measurement and sources……………………. 135

 5.16 Product related variable measurement and sources……………………… 135

 5.17 User related variable measurement and sources…………………………. 136

 6.1 Descriptive terms, percentage and type of the clusters of

maintenance patches……………………………………………………… 144

 6.2 Descriptive statistics of the three clusters………………………………… 152

 6.3 Levene’s test for del-complexity of the Linux patch clusters…………….. 153

 6.4 Levene’s test for del-time of the Linux patches clusters…………………. . 153

 6.5 ANOVA analysis of the dependent variable del-complexity ……………… 154

 6.6 ANOVA Analysis of the dependent variable del-time…………………...... 154

xiii

LIST OF FIGURES

FIGURE Page

1.1 The organization of this dissertation……………………………………….. 9

2.1 Three dimensions of OSS project viability……………………………….. 12

2.2 Scatter plot of the viability measures for the projects used

in the empirical analysis ………………………………………………….. 32

3.1 The KDD process ……………………………………………..………….. 42

3.2 Number of projects registered at SF over time……………………………. 45

3.3 Process of data sampling used for data mining……………………………. 58

4.1 Text miner settings used for creating the new variable……………………. 72

4.2 Text miner output for the project type data ………………………………. 72

4.3 Flow diagram of model building process………………………………… 76

4.4 Description of target variables of vigor…………………………………….. 77

4.5 Lift charts for all techniques used for building model for vigor…………… 78

4.6 Neural Network weight plot for the model of vigor……………………….. 80

4.7 Decision Tree for the model of vigor…………………………………….. 81

4.8 ROC Charts for model of vigor for DT, LR and NN techniques………….. 83

4.9 ROC for the final LR model of vigor………………………………………. 90

4.10 Cumulative lift for the final LR model, train, validate and test samples…… 91

4.11 Lift of the final LR model, for train, validate and test samples……………. 92

4.12 Percentage captured responses for LR model, for train, validate

and test samples…………………………………………………………….. 92

5.1 Distribution of mean time to repair (MTTR)………………………………. 106

xiv

FIGURE Page

5.2 Segment profile of clusters for project type ………………………………. 109

5.3 Process flow diagram for the analysis of resilience……………………….. 109

5.4 Lift values for LR and NN nodes for resilience………………………….. 111

5.5 ROC curves for LR and NN nodes for resilience…………………………. 111

5.6 ROC curve for the final LR model of resilience…………………………. 114

5.7 The process flow for the models of usage and usefulness ……………….. 120

5.8 The score ranking overlay for the analysis of usage……………………… 121

5.9 The score ranking overlay for the analysis of usefulness………………… 128

5.10 Model for resilience of OSS projects……………………………………… 133

6.1 Text miner node selection of roles for the input variables………………… 143

6.2 Concept map of selected terms for the patch taxonomy …………………. 146

6.3 Time series plot of the Linux source code complexity…………………… 148

6.4 Autocorrelation function of the Linux source code complexity………..... 149

6.5 Time series plot of del_complexity………………………………………. 150

6.6 Autocorrelation plot of del_complexity…………………………….......... 150

1

CHAPTER I

INTRODUCTION

The purpose of this chapter is to provide a background on Open Source Software

(OSS). It also discusses the significance of studying software development and maintenance

in OSS. It ends with presenting the scope of this dissertation.

1.1 OSS BACKGROUND

In 1970, less than one percent of the public could describe what computer software

meant (Pressman 2004). Unlike other human inventions, software is a logical element rather

than a physical entity. Therefore, in the early days of computers, there was no concept of

charging money for selling software. It was an entity, packaged with the computer hardware

and all the source code was freely available. As the use of computers became more

pervasive, software became commercialized (Feller and Fitzgerald 2002). In order to

preserve the commercial value of software, companies started to deliver software as a black

box, where the user could only access the output features, but the internal structure of the

software or the source code was hidden from the user. Protecting the source code is a tool

commercial software development companies use to keep control over the life cycle

 This thesis follows the style of Management Information Systems Quarterly.

2

 operations of a software system. Thus, the end user of commercial software has no visibility

or control over the source code. If a fault occurs, it has to be reported back to the

manufacturer or the maintenance service provider and only authorized parties can locate and

remove faults. This also holds for upgrading the software to adapt to new requirements. For

example, during the Y2K crisis, companies had to spend millions of dollars to have their

systems upgraded. This type of software development is referred to as Closed Source

Software (CSS).

As a reaction to the mass commercialization of software, some programmers felt the

need for upholding the concept of freedom of sharing software. In 1981, Richard Stallman

founded the Free Software Foundation (http://www.fsf.org/fsf/fsf.html). People of similar

interests and ideology started to develop software, which was available to users free of cost

and with full access to the source code (MacCormack 2002). The software structure was no

longer a black box, but was an open artifact, available to be used, upgraded, maintained or

changed. The GNU Project was launched in 1985 to develop a complete Unix-like operating

system, which is free software: the GNU
1
 system. Variants of the GNU operating system,

which use the kernel Linux, are now widely used; though these systems are often referred to

as “Linux”, these are more accurately called GNU/Linux systems (Wu and Ling 2001).

Linux was started in 1991 as a personal project of a Finnish graduate student, Linus

Torvaldas. He posted his code on the Internet and invited people to use it and find bugs.

Over the period of time, Linux has grown to become one of the most popular operating

systems being used (Godfrey and Tu 2001; Kerstetter et al. 2003). In 1976, Bill Gates in

1
GNU is a recursive acronym for ``GNU's Not Unix''; pronounced as "guh-NEW".

3

“open letter to hobbyists” predicted that free sharing of software would prevent the writing

of good code. However, Linux prevailed over such predictions and has become one of the

most successful open source projects. Linux, with its interesting development phenomenon

is currently competing well with its commercially developed counterparts. Estimates reveal

8000 person years of effort went into the development of Linux Red Hat 7.1 (Wheeler

2003). It would cost over 1.08 billion dollars, had it been developed commercially.

Eric Raymond in 1990 wrote an article titled “Cathedral and the Bazar” (Feller and

Fitzgerald 2002; Raymond 2001). In the article, he argued that the OSS development

method was a credible competitor to CSS projects. He identified the characteristics of OSS

development that enabled it to maintain a superior quality despite being a non-commercial

endeavor. That paper gained much fame and attention and the OSS phenomenon became a

topic of discussion in the research community.

The OSS paradigm has led to the development of some very successful software by a

community of contributors who share the source code for free (Kerstetter et al. 2003). In

recent years, there has been a focus on OSS projects and several streams of research have

emerged in these areas. However much of the work has been either focused on case studies

of large-scale development projects (Aoki et al. 2001; German 2004; Kerstetter et al. 2003;

Markus et al. 2000; Scacchi 2004b; Wheeler 2003). Some have looked into issues like

participation in OSS projects (Bergquist and Ljungberg 2001; Crowston and Scozzi 2002;

Dempsey et al. 2002; Hertel and Herrmann 2003; Hippel and Krogh 2003; Huntley 2003),

effects of licensee choices (Lerner and Tirole 2001; Lerner and Tirole 2002; Stewart and

4

Ammeter 2006; Stewart and Gosian 2006), and organization structure of OSS communities

(Jensen and Scacchi 2005; Koch and Schneider 2002; Krishnamurthy 2002; Krogh et al.

2003). There is a lack of body of work that analyses the immense datasets available and

explores them for new information within this domain.

The empirical research in OSS has been focused on evolution of OSS projects and

testing the laws of software evolution in the OSS domain (Capiluppi et al. 2003; Capiluppi

et al. 2004; Capliuppi 2003; Godfrey and Tu 2001; Scacchi 2002; Scacchi 2004b). Some

studies have been focused on analysis of fault detection in OSS projects and comparing

them to CSS projects (Koru and Tian 2004; Paulson et al. 2004). Empirical work in OSS has

also focused on success and failure of OSS projects (Crowston et al. 2003; Crowston et al.

2004; Jensen et al. 2004; Krishnamurthy 2002). However, these studies used a small sample

of projects and an abstract definition of success.

1.2 SIGNIFICANCE OF OSS RESEARCH

Open source software is typically developed by online volunteer communities of

programmers and is available to the public for download, use, modification and upgrades

(Feller and Fitzgerald 2002). Most OSS products are free or have a nominal charge

associated with them. While CSS projects are struggling to meet costs, user requirements

and schedule, OSS projects are becoming more and more popular. According to recent

reports, 80% of the web servers use Apache, an OSS web server. Many small and medium

scale OSS projects are also finding their way into corporate use. Organizations claim to have

5

saved millions by switching to OSS solutions. Amazon’s switch to Linux has reportedly

saved them over 7 million dollars. IBM has launched over 30 of its projects in the OSS

community. According to a recent Gartner survey, by year 2010, 80% of the businesses

would have considered using OSS projects and 25% would be using OSS projects in their

business transactions (Cearly et al. 2005). This interest in OSS projects is not just because of

their free availability, but also because of their high quality and ability to fulfill user

requirements (Lerner and Tirole 2002).

The increase in the use of OSS projects demands a deeper understanding of the OSS

development and maintenance process. Procurement of the software is not the only cost

associated with the use of a software system. Software systems usually have a high

operational cost (Banker et al. 1998; Kemerer 1995). Thus, before an organization makes a

decision to use new software, there is the need for considerable evaluation of the product.

The maintenance costs of a software system can be very high, if frequent changes are made

to it. If the adoption of the new system fails, there could be additional financial losses in

terms of loss of data, loss of time, and loss of technical expertise.

The OSS teams also need to be able to have more control over the evolution of their

projects. Some companies like, IBM, have launched their projects in the OSS domain and

have assigned staff to OSS development. Therefore, for OSS developers, there is a need for

research to determine what factors would affect the long-term lifecycle outcomes of their

projects.

6

1.3 SIGNIFICANCE OF SOFTWARE DEVELOPMENT AND MAINTENANCE

RESEARCH

Software development is the process that is carried out before it is launched as an

operational system. In traditional software development, the activities during this phase

include requirements and system specification, initial design, software coding and testing.

There are various methodologies available for carrying out software development e.g.

Waterfall, Spiral, Agile and Rapid Application Development etc. These methodologies

specify issues like team formation, task assignment, milestone definition and cost and

scheduling of the project (Pressman 2004).

The failure rate of software development projects is very high. The 90% syndrome in

software development projects implies that the majority of software development projects

fail to meet the expected time and cost schedules (Abdel-Hamid 1988; Brooks 1995). This

failure affects the over all system costs and performance. Much of software engineering

research has been focused on identifying the causes of software project failure. The

community has been long in search of a silver bullet that would help overcome this great

challenge (Brooks 1995) .

Once software code is complete and has been tested, it is ready to be operational and

to be used by the customer. However, the nature of software is such that it undergoes change

throughout its life. Any change made to the software product after its development has been

completed, is called software maintenance (Pressman 2004; Zelkowitz et al. 1979). Software

7

maintenance may include activities like fault correction, improvement of performance or

adaptation to changes in the operational environment (Pressman 2004).

Software maintenance claims a large proportion of the lifecycle costs of a software

system and is a large component of the Information Systems (IS) budgets of organizations.

According to estimates, software maintenance consumes more than 80% of the lifecycle

costs of software systems (Erlikh 2000; Moad 1990). From the point of view of

organizational resources, IS departments spend 50-80% of their budgets on software

maintenance (Deklava 1992; Huff 1990). Therefore, there is a considerable interest in the

improvement and control of the process of software maintenance. Many of the problems of

software maintenance are a result of software development and design inadequacies

(Schneidewind 1999; Swanson and Beath 1997). Therefore while studying the operational

maintenance of software; it is critical to have a deeper understanding of software

development (Banker and Slaughter 1995).

1.4 RESEARCH SCOPE

The purpose of this research is to create models that explain the development and

maintenance of OSS projects. The objective is to identify the key factors that affect the

outcomes of OSS projects. This will help the OSS teams to better evaluate and control their

projects. For the user and business community, it will provide quantitative evaluation of

OSS projects, so that decisions regarding use of OSS projects could be made. It will utilize

the immense volume of data artifacts available for OSS projects.

8

First, this study develops a new multidimensional measure of OSS project

performance. The measure is based on research from ecology, information theory and

engineering. It provides a tangible quantification of OSS projects that can be used to

compare OSS projects. The measure is developed according to the measurement theory in

software engineering and is tested for mathematical and empirical validation.

Second, exploratory analysis of the transactional data of OSS development and

maintenance is carried out to create three models of OSS performance evaluation. The

availability of rich datasets enables the use of data mining techniques for model formulation.

Prior work on software engineering has relied heavily on military data or experimental

studies involving student subjects (Sharpe et al. 1991). There is no evidence that any of

these studies could be generalized for the OSS domain.

By using a dataset from a very large population of medium and small-scale OSS

projects, this study provides unique and important insights into the key issues involved in

OSS development. As organizations start to use OSS projects, these measures and models

will provide an effective tool for comparison of various OSS projects. It will also benefit the

developer community by enabling them to monitor and control the performance of their

project. In future, the results of this research may be generalized to CSS project

management.

9

1.5 ORGANIZATION OF THIS DISSERTATION

This dissertation is organized into seven chapters. Chapter I discusses the

significance of developing measures and models for OSS projects. Chapter II discusses a

new multidimensional measure of project viability. Each dimension is defined and validated

against a measurement framework. Chapter III discusses the steps involved in the

exploratory research methodology used in this research. The datasets and the variables used

for model development are also discussed in this chapter. Using these datasets and variables,

three models for each dimension of viability are then developed. Chapter IV, V and VI

present the results of the models for the dimensions vigor, resilience and organization

respectively. The summary and conclusion of the research is discussed in chapter VII.

Figure 1.1 shows the layout of the dissertation.

Chapter IV
Develop
Model for

Vigor

Chapter V
Develop

Model for
Resilience

Chapter III
Exploratory

Research
Methods

Chapter VI
Model for

Organization

Chapter II
Define and

Validate new

Measures

Chapter I
Need for OSS

Measures
and Models

Chapter VII
Conclusion

Figure 1.1: The organization of this dissertation

10

CHAPTER II

PROJECT VIABILITY: A MULTIDIMENSIONAL MEASURE

This chapter presents the background on need for a new OSS project performance

measure. The new measure is then defined in natural language and mathematically. The

theoretical and empirical framework for validating the measure is then discussed. Finally,

the measure is validated according to the defined framework.

2.1 BACKGROUND

Traditionally performance of software projects has been evaluated based on

conformance to budget, schedule and user requirements (Pressman 2004). All such measures

hold little or no meaning for OSS projects, which are developed online by volunteer

software programmers, without any defined user requirements or budget. Yet, there is a need

for tangible measures that could be used to evaluate the performance of these projects.

Development teams need such measures to control and improve the performance of their

projects. The end users and businesses need some kind of measures to compare the OSS

projects before making decisions regarding project adoption. Therefore, a new

multidimensional measure of OSS project lifecycle performance was defined and validated

in this research. This measure was used to develop performance models for use with OSS

projects.

11

Software measurement is a very important component of developing an

understanding of software engineering practices and processes (Fenton and Pfleeger 1991).

According to measurement theory, measurement is the process through which numbers are

assigned to attributes of entities in real world, so as to describe them according to clearly

defined rules (Melton et al. 1990). Software metrics are quantitative measures that enable

software engineers to make subjective evaluations about a project (Fenton and Pfleeger

1991). During project development, software measures can be used to spot trends and to

make improvements accordingly. These measures can also be used to compare various

software products and to make informed decisions regarding use of new software (Pressman

2004).

The need for new measures arises, when a domain is new and not many reliable and

tangible measures exist (Briand et al. 1996; Kitchenham et al. 1995). As mentioned earlier,

the existing measures of project performance are not suitable for OSS projects. Therefore, a

new multidimensional measure of OSS project performance called project viability was

defined and validated in this research. Project viability is a measure of survivability of a

project. Ecologists describe natural systems’ survivability in terms of their ability to grow,

maintain structure and respond to perturbations (Costanza and Mageau 1999). OSS projects

can be modeled as natural systems that grow, develop, get sick (have faults) and recover

through their life cycle and die (become inactive), to be replaced by new projects. OSS

projects develop like natural ecosystems; they evolve without requirements in the presence

of threats
2

to their existence. The ability of a project to overcome these threats and continue

2
The threats can be internal programming errors, or loss of team members, or other environmental factors.

12

to grow, determines whether a project would survive or become inactive. The quality and

life expectancy of OSS projects depends on some critical characteristics. These

characteristics can be used to evaluate the current performance and predict future

performance.

OSS project viability is defined as the ability of a project to grow and maintain its

structure in the presence of perturbations. It was developed as a 3-dimensional measure, as

shown in figure 2.1, with each dimension having equal weight in the overall viability. The

project viability measure can be used to monitor the performance of a single project over its

lifecycle or to compare multiple projects with each other.

Figure 2.1: Three dimensions of OSS project viability

13

To create and validate a new multidimensional measure, the first step was to define

each dimension of viability. In addition to mathematical definition, it is also important to

have a natural language definition of a new measure (Kitchenham et al. 1995; Melton et al.

1990). For wider application of the measure, it is imperative that the measure be

independent of technology and the programming environment (Churcher and Shepperd

1995). The following discussion explains each dimension and its measurement in detail for a

project P, with viability measurements taken at time period tn; n = 0, 1, 2 ... (measured in

days, weeks or years).

2.1.1 Vigor

Vigor refers to the ability of a project to evolve over a period of time. It is a measure

of its growth or throughput. The vigor of a project will change through its lifecycle. During

the development phase, vigor represents the addition of the basic functionality required for

successful transition to the next phase of its life cycle. During the maintenance phase, vigor

represents incremental changes incorporated to add new functionality to the project. For

comparing different projects, the growth can only be compared as a function of time. The

age of the projects varies and therefore the amount of functionality added can increase with

the age. In order to make the new measure scale invariant, it is normalized over time. The

incremental functionality can be measured by files released per unit time. The vigor of a

project at time period nt can be calculated as:

V = ∑
=

n

i

i

n

G
t 0

1
 .. (2.1)

14

Where;

V = Vigor at time period n; 0 ≤ V ≤ Gnorm

Gi = Number of new versions released in time period i

Gnorm = Maximum files released per unit time
3

The greater the number of files released per unit time, the greater will be the vigor of

the project. The normalization with respect to time ensures that older projects do not have a

higher value of vigor because of their age. It makes the comparison between projects of

different age, valid.

2.1.2 Resilience

The resilience of a project is the ability of a project to respond to internal and

external perturbations. These perturbations refer to changes in the operating environment of

the project. For software projects, perturbations are typically described as occurrences of

errors and bugs, which affect the operation of the system. Resilience refers to the ability of a

project to remove the error and become operational again. Ideally, a project should be able

to adapt to the changes in its environment quickly. The longer it takes a project to react to a

perturbation; lower will be its performance. In corporate environment, such a time delay can

translate into very high operational costs. Therefore, resilience is an important component of

the project viability, especially for projects in the operational phase of their lifecycle.

3
Assumption: There is finite number of file releases during the lifecycle of a project.

15

In OSS projects, the users hold no contractual obligations to the developers regarding

commitment to the project. Therefore, if a project fails to adjust to perturbations, the end

user might abandon that project. Poor resilience can also discourage programmers from

contributing to that project. This can cause a reduction in the development and maintenance

effort and eventually affect the project viability.

 Resilience is measured in terms of response time. A shorter response time reflects

higher degree of resilience. The resilience of project P is given by the following equation:

R =
n

q

j

jn

t

d
q

t ∑
=

−
1

1

 .. (2.2)

Where;

R = resilience value at time period n; 0 ≤ R ≤ 1

q = Total number of perturbations in time period tn

dj = Time taken to react to perturbation j

For a project with high resilience, the value reflects shorter response time to react to

a perturbation. If on the other hand, removing an error takes a long time, then the resilience

of the project will be low. The value of resilience is normalized for the total number of

perturbations taking place in a project. For example, if a project has higher number of bugs

reported, then dividing this number by total number of bugs for the project will normalize

16

4
Consider a natural system containing species that feed on only one or two preys and are in turn preys to

only one or two other species. This system will have high organization compared to a system with the same

number of generalist feeders with multiple pathways of exchange between them.

resilience value. This is done to ensure that different projects with varying number of

perturbations over their life cycle can be compared against their resilience levels.

2.1.3 Organization

Organization of a natural system refers to the number and diversity of interactions

between its components. In terms of software projects, organization is the measure of the

diversity of the interaction between the project members and the information exchanges

between them. A highly organized project is characterized by a high diversity of specialized

members and their corresponding specialized interactions. Organization decreases as the

diversity of the members and the specialization of the information exchange decreases
4
 In an

OSS project, if there is a large group of specialist developers and maintainers who respond

to specific problems, project organization will be higher compared to a project where there

is equal number of general-purpose programmers.

In order to measure organization of a project, it is required that both diversity and

magnitude of the interactions within a project be known. Information theory offers system

level measurement of interactions as means to measuring system organization. One such

measurement is Average Mutual Information (AMI). AMI has been adopted in many

disciplines e.g. biology, engineering and ecology as a comprehensive measure of

organization (Pierce 1980; Ulanowicz 1986). AMI is a validated measure of the organization

17

of a system (Pierce 1980). AMI refers to the amount of information that is available on an

element of a system, given the value of another element. A highly organized system has a

high AMI.

Consider an OSS project where users interact with N members of a project team. For

any message originator x;

{ } { }Nixx i ,...,2,1, ∈∈ (2.3)

Let)(kxP represent the probability that a message/task is originated by a member k, x = xk.

The information content in the symbol therefore is defined as:

)(log)
)(

1
log()(k

k

k xP
xP

xI −== (2.4)

The information exchange between two entities has some interesting properties.

First, if only one member sends the information, then the value of the information content

vector I(xk) is 0 (Pierce 1980). Second, the information is always positive, and finally,

information is additive i.e. the total information in two independent members is the sum of

the information for each:

() ())()(log),(log),(jijiji xPxPxxPxxI −=−=

)()()(log)(log jiji xIxIxPxP +=−−= ... (2.5)

18

 Before discussing AMI equations, another critical measure is needed. The entropy

H(x) of an entity x, with a probability of occurrence p(x), is the measure of uncertainty about

the information of x and is given by the equation:

)(log)()(2 xpxpxH
x

∑−= ... (2.6)

The joint entropy of x and y defines the uncertainty of the message being exchanged

between x and y, where p(xy) is the joint probably of the occurrence of the pair (x,y)

)(log)(),(
,

2 xypxypyxH
yx

∑−= ... (2.7)

For an information (task) exchange between team member x and y, the conditional

entropy of x given y is:

)(),()|(yHyxHyxH −= ... (2.8)

Thus the conditional entropy is a measure of the average information in x given y is

known (Pierce 1980) . In other words, if a task is completed by the member y, then H(x| y) is

the remaining uncertainty in knowing who originated the task. The Average Mutual

Information (AMI) is defined as the average information gained by x, when observing y:

);(),()()()|()();(xyIyxHyHxHyxHxHyxI =−+=−= (2.9)

In other words, the AMI is the difference in the uncertainty of x and the remaining

uncertainty of x, after observing y. It can also be stated that AMI is the reduction in the

19

uncertainty of x, by knowing y (Pierce 1980). In terms of OSS projects, consider the tasks as

being originated by some individuals and completed by others. Then using equations 2.3-2.9

ji

ij

i j

ij

TT

TT

T

T
AMI

••

∑∑= 2log ... (2.10)

Where Tij = Task originated by i and completed by j

•iT = All the tasks requested by i

jT• = All the tasks completed by j

T = Total tasks in the project

2.2 EVALUATION OF OSS PROJECT VIABILITY MEASURES

A formal measure captures the intangible aspects of a relationship to the

mathematical world (Kitchenham et al. 1995; Kitchenham et al. 2002). Project viability is a

three-dimensional
5
 attribute of OSS project performance. Therefore, each of the three

measures had to be defined, evaluated and validated to confirm that it would behave

logically over the entire OSS population
6
. Initially each measure was evaluated for proper

5
For example, referring to one OSS project being better than the other, or regarding an OSS project as

successful, has no formal mathematical relationship. There is a need to quantify the measures of

performance.

6
It is also very important to distinguish between simple attributes and multidimensional attributes. The

simple attributes like size are scalar, while the multidimensional attributes e.g. viability are vectors.

20

logical and mathematical properties. Later OSS project data was used to evaluate the and

predictive validity of these measures. Logical evaluation of the measure, coupled with

empirical validity, ensures that the new measure is robust and valid (Kitchenham et al.

1995).

To determine the evaluation criteria for viability, prior studies on determination of

evaluation criteria and traditional measurement theory were consulted (Allison 1978; Barry

et al. 2000; Chidamber and Kemerer 1994; Weyuker 1988). There has been a significant

body of research on validation of software metrics (Schneidewind 1992). For validation of a

new measure it is important to have a clear and intuitive natural language definition and a

precise mathematical definition, so that the application is repeatable (Finkelstein and

Learning 1984). There are two methods of testing the validity of a new measure: theoretical

validation and empirical validation. Theoretical validation confirms that the measure does

not violate any necessary properties of the elements of measurement. Empirical validation

confirms that the measured attribute is consistent with reality
7

(Kitchenham et al. 1995).

2.2.1 Theoretical Measurement Validation

While creating new measures, it is critical to establish theoretical validity. Prior

research in evaluation of new software measures provides a framework for theoretical and

logical validation of a measure. Weyukner proposed nine axioms for validation of new

measures of software complexity (Weyuker 1988). These measures have been widely

adopted and used for validation of a range of software. Melton (Melton et al. 1990)

7
For example, a project identified to have a high viability is actually a project that survives in OSS domain.

21

proposed a framework of validation of new measures. Kitchenham et al., summarized and

selected the most general validation criteria for any software measure. This framework was

adopted for theoretical validation of project viability (Kitchenham et al. 1995). The four

properties of new measures suggested are:

1. For an attribute to be measurable, it must allow different entities to be

distinguished from one another.

2. A valid measure must obey the Representation Condition, i.e. it must

preserve our intuitive notions about the attribute and the way in which various

entities are distinguished.

3. Each unit of an attribute contributing to a valid measure is equivalent,

4. Different entities can have the same attribute value (within the limits of

measurement error).

Each dimension of viability was validated according to this framework.

2.2.1.1 Vigor

 The vigor of an OSS project is defined in equation 2.1. Testing it against the above-

mentioned four properties of the framework, it is evident that:

1. Projects are of varying sizes and have a varying pattern of file releases. The

frequency of file release will vary from one project to another and will vary for the

22

same project during various phases of its lifecycle. As per Weyuker’s explanation,

there would be at least two projects, for which the vigor would be different.

2. The measure of files released per year, does obey the intuitive notion of growth and

throughput. Files released and transitions of development phases have been used in

other research as measures of productivity, evolution, and functionality of a project.

Therefore, vigor conforms to this requirement.

3. As per the mathematical definition of vigor, all units (subsequent releases) are

treated equal. This is a standard measurement practice.

4. The definition of vigor does allow different projects to have the same vigor. If the

number of files released for two projects per given time are the same, then the

measure of vigor would be the same for both projects in that time period.

2.2.1.2 Resilience

The resilience of a project is defined in equation 2.2. Testing it against the above-

mentioned four properties of the framework, it is evident that:

1. The response time to a perturbation can vary for different projects and within the

same project. Therefore, the formula allows different projects to vary in the value of

resilience.

2. The response time measured as the time taken to react to a perturbation obeys the

intuitive notion of resilience.

23

3. By averaging and normalizing the time taken to react to each perturbation, each unit

is treated equal.

4. The formulation allows different projects to have different resilience.

2.2.1.3 Organization

AMI is a validated measure of system structure. The McCabe’s Cyclomatic

complexity measure uses the same derivations to measure the internal structural complexity

of software (McCabe 1976). Testing it against above-mentioned four properties of the

framework, it is evident that:

1. The organization of different projects will depend upon the magnitude and the

diversity of the interaction, therefore projects could be distinguished based on the

formulas discussed earlier.

2. The measure obeys Representation Condition and follows the intuitive notion of

structure.

3. All interactions are aggregated with equal weight, therefore, this condition is

satisfied.

4. The formulation does allow different projects to have the same AMI (within error

limits).

24

2.2.2 Empirical Measurement Evaluation

The empirical validation of the measure establishes external validity. Like

theoretical evaluation, there was the need for a framework of evaluation for the empirical

evaluation. The purpose of empirical evaluation of the measure is to ensure that its mapping

to a value captures the understanding of the attribute (Kitchenham et al. 2002). In this case,

the measure of viability was used as a measure of the performance of OSS projects.

Therefore, empirical validation involved computing the viability of various OSS projects.

This was used to corroborate whether use of the measures of viability offered discrimination

between projects of known high or low performance. For statistical validation, the

appropriate tests and confidence levels had to be identified. It is worth mentioning here that

for a new measure, it is possible that it will be valid under certain criteria and not under

others. A correlation was considered weak if it was statistically insignificant (p > 0.05).

Furthermore a correlation was considered weak if |correlation| < 0.4 and was considered

strong if |correlation| > 0.4 (Kitchenham et al. 2002).

There are three types of external validity: Convergent, Discriminant and Predictive

(Trochim 1999). Convergent validity could be demonstrated by comparison between the

new measure and some other metric that measured the same property. Unfortunately, no

validated measure of OSS project performance exists. Therefore, it was not be possible to

establish this type of validity for any of the dimension of viability. Discriminant validity

required that the three dimensions of viability be independent. This was achieved by

demonstrating that the measures are orthogonal. This ensured that the measures were three

25

separate dimensions of viability (Kitchenham et al. 1995). Analyzing the correlations

between each measure of viability will achieved this purpose. Testing the results of viability

for various projects and then comparing the performance evaluation of known successful or

failed projects demonstrated the predictive validity (Barry and Slaughter 2000; Kitchenham

et al. 1995).

To test the application of the measure of viability empirically, a sample of 20

projects
8
 was selected from the sourceforge.net dataset. The computation of the measure of

organization was very complex and time consuming. The number of projects was kept small

to facilitate the computation process. The purpose was to demonstrate the use and the

validity of the new measure. A summary of the measures is in Table 2.1.

Table 2.1: Operationalization of OSS project viability dimensions

Dimension Measure Details

Vigor New versions released per year New releases are indicative of functionality

growth of the project (Boehm 1987)

Resilience Bugs fixed per unit time Time taken to remove a bug indicates the

response time of the project team to handle

changes that occur in its environment

(Pressman 2004)

Organization Average Mutual Information The structure of the maintenance process

reflects the organization of the project (Pierce

1980; Ulanowicz 1986)

8
Considering the complexity of this analysis, number of projects was kept small. This analysis is carried out

to demonstrate the use of new measure and to validate the dimensions. In later chapters when new models

are created, a larger dataset is used.

26

The sample projects used for this analysis were selected randomly. The first step was

to compute the vigor of the projects. The number of files released by each group was

extracted. This number alone could not be used because the total number is dependent upon

the age of the project. In order to make the measure age invariant, the number of new

releases per year was calculated. The date of registration for each project was extracted from

the Sourceforge.net dataset. This time was available as UNIX epoch time. The UNIX epoch

time is the number of seconds elapsed between 1/1/1970 and the actual time of stamp. The

UNIX epoch time was converted to the Georgian calendar date through the transformation:

25569
86400

__ +=

onregistratioftimeEpochUnix
onregistratiofDate

The dataset used for this research was extracted from the Sourceforeg.net data

warehouse for May 2005. Therefore, the age of the project was computed by subtracting the

date of registration from the date of extraction of the dataset. This gave the age of the

project. The total number of new versions released by the project was then divided by the

age in years to compute the new versions released per year. This variable was used as a

measure of the vigor of the project.

The measure that was considered next is resilience. Resilience is the ability to

recover from a disturbance. In software project, the occurrence of errors is the most

significant form of disturbance that can be measured from the available dataset
9
. The total

9
It is realized here that there can be other types of major disturbances, e.g. change in the project team,

change in the platform the project runs on, etc. However, for this analysis given the nature of the dataset,

the most stable measure that can be computed in the time to fix bugs.

27

bugs that occur in a project were computed from the dataset. The SourceForge dataset

contains data on all kinds of project artifacts in a single table. The steps followed were as

follows:

 BEGIN

P = Total number of projects
Initialize index

p = 1;
Initialize Sum_time

Sum_time = 0;

WHILE (p <= P)

for all projects
DO
{
 # Extract the bug repository id for each project using the group_id
 Bug_Rep_id[p] = Bug repository identification number for project p;

 #Compute the total number of bugs for each p
 N[p] = Total bugs for project p;

For (i = 1 to N[p])
 {
 # Extract the time bug was reported

Time_open = bug report time;

Extract the time bug was closed
Time_Close = bug closed time;

Compute bug fix time
Fix_time = Time_Close - Time_open ;

Compute total fix time
Sum_time = Sum_time + Fix_time;

 }

Compute Average Time to fix bug for the project
MTTF[p] = Sum_time / N[p];

Go to next project
 p = p+1;
}
END

28

The organization of the OSS projects was computed by AMI, which is a validated

measure of system structure (Pierce 1980). The following steps were involved in the

computation of AMI:

BEGIN

P = Total number of projects

Initialize index
p = 1;

WHILE (p <= P)

for all projects
DO
{
 # Compute total number of distinct maintainers
 M(Kemerer and Slaughter) = number of maintainers;

 # Compute total number of distinct reporters
 R[p] = number of bug reporters;

 # Compute total number of bugs reported
 T[p] = Compute total number of Bugs reported;

 # For each bug reporter
 For (r = 1 to R)
 Ti[p,r] = Compute number of bugs reported;

 # For each maintainer
 For (m = 1 to M[p])
 Tj[p,m] = Compute number of bugs fixed;

 # For each reporter and maintainer
 For (r = 1 to R[p])
 For (m = 1 to M[p])
 Tij[p,r,m] = Compute number of bugs reported by r, fixed by m;

29

 # Compute entropy of bug reporters ∑−=
i

ii

T

T

T

T
xH)ln()(

 For (x = 1 to R[p])
 H[p,x] = Entropy of bug reported for each project;

 # Compute entropy of bug maintainers ∑−=
j

jj

T

T

T

T
yH)ln()(

 For (y = 1 to M[p])
 H[p,y] = Entropy of bug maintainer for each project;

 # Compute joint entropy ∑∑−=
i j

ijij

T

T

T

T
yxH)ln(),(

 For (x = 1 to R[p])
 For (y = 1 to M[p])
 Hxy[p,x,y] = Entropy of bugs reported by x, fixed by y;

 # Compute),()()(yxHyHxHAMI −+=

 For (x = 1 to R[p])
 For (y = 1 to M[p])
 AMI[p] = H[p,x] + H[p,y] - H[p,x,y];

 # Go to next project
 p = p+1;
}

END

Discriminant validity was supported by lack of high correlation between unrelated

measures. In order to establish the discriminant validity, the values for vigor, resilience and

organization were computed for 20 projects. One project had to be rejected because the bug

repository was not set up and the data on maintenance could not be retrieved for resilience

computation. The results of the correlation analysis are in Table 2.2. The purpose of the

analysis was to ensure that the measure is valid, i.e. it provides discriminatory power

between projects of varying performance. The formulas discussed earlier were used to

compute the values of vigor, resilience and structure. For multidimensional measures, it is

30

imperative that the measures be independent or orthogonal to each other. This means that

each dimension measures a different attribute for the composite attribute and that there is no

correlation between each dimension. In order to ensure this, the pair wise correlation of each

dimension was computed. The results of the Pearson Correlation Coefficients for the three

measures are shown in Table 2.2.

Table 2.2: Pearson correlation coefficient for the three measures of viability

Variable By Variable Correlation Sig prob Result

Vigor Resilience 0.1197 0.6254 Reject correlation

Organization Resilience 0.1574 0.5155 Reject Correlation

Organization Vigor 0.4563 0.0496* Weak correlation

The Pearson correlation coefficient values indicate a correlation between organization

and vigor. Further investigation indicated that the dataset was very small and non-normal.

For such small datasets, the nonparametric Spearman test is recommended (Neter et al.

2004). Therefore, the Spearman Coefficient was also computed. These results are shown in

Table 2.3. The Spearman Correlation Coefficient test confirmed that the three measures of

viability were uncorrelated.

31

Table 2.3: Spearman correlation coefficient for the three measures of viability

Variable By Variable Correlation Sig prob Result

Vigor Resilience 0.31053 0.1957 Reject correlation

Organization Resilience 0.08260 0.7367 Reject Correlation

Organization Vigor 0.04569 0.8526 Reject Correlation

The next step was to establish predictive validity. This would mean that the measure

itself could be used to identify the high and low performing projects. As mentioned earlier,

the sample for empirical evaluation was random; therefore, there was no prior knowledge

about the performance of the selected projects. The three dimensions are plotted in a 3-D

plane, as shown in Figure 2.2.

From the plot, it can be seen that project # 14 is low in all three dimensions of

viability. Extracting the details about this project showed that this was “Linux NFS

development web site” project and was inactive. Similarly, project # 11348, another project

with low values in all three dimensions was GNOME News Applet, which was a failed or

inactive project. It can be seen that project # 84122, 23067 and 29057 have high values for

all three measures. When the project description of these groups was extracted, it was found

that Project # 84122 was Azures (a Bit Torrent Client), project # 23067 was myPhP (a

database application) and project # 29057 was Compeire (an ERP/CRM solution). All three

of these projects were among the top projects

 at the souceforge.net. Thus, the predictive

validity of the measures can be confirmed.

32

Figure 2.2: Scatter plot of the viability measures for the projects used in the empirical

analysis

Project 14

Project 11348

Project 255

Project 88344

Project 23067

Project 84122

Project 71291

Project 29057

33

2.3 APPLICATION OF OSS PROJECT VIABILITY MEASURES

Using each measure of the project viability, three models are developed to evaluate

the performance of OSS projects. A detailed analysis of each dimension is performed and

the effects of various project variables on these dimensions are investigated. Following is a

brief introduction to each model developed in this research. Later chapters discuss these

models in detail.

2.3.1 Model of OSS Vigor

This model was developed to explain the factors that affect the vigor of an OSS

project. Vigor refers to the growth or the throughput of a project. It is a very critical attribute

for a project, especially in its development phase. Software projects transition through

various phases before they become stable and operational. Prior research indicates that many

OSS projects fail to grow over a period of time and sometimes become inactive

(Krishnamurthy 2002). In order to identify the factors critical to vigor, OSS projects that

were in their development phase
10

 were analyzed. The dataset was extracted from an online

OSS project development community. An initial set of factors that effect development

performance was identified from existing literature. A refined model was then formulated,

tested and validated using OSS project datasets. This model is discussed in more detail in

Chapter IV.

.

10
The Development Phase of software projects refers to software lifecycle phase during which a project is

created, new functionality is added, and testing is conducted.

34

2.3.2 Model of OSS Resilience

The model was formulated to explain the dimension of resilience. Resilience is the

ability of a project to react to the changes in its environment. These changes can be; removal

of errors, implementation of new functionality, changes made to integrate it with the

operational environment, etc. Ability of a project to react to changes during the maintenance

phase
11

 is a measure of its resilience. Data from OSS projects in maintenance phase,

developed through an online community, was used to formulate a model of project

resilience. The model is discussed in more detail in Chapter V.

2.3.3 Model of OSS Organization

Organization is the ability of a project to maintain its form and structure in the

presence of perturbations
12

. This is the most complex and difficult dimension to measure. In

order to investigate the changes in internal structure over a period of time, there was a need

for longitudinal analysis of the source code. Therefore, a single large-scale OSS project was

used for this study. The purpose of this study was to investigate how various maintenance

activities affect the internal structure of an OSS project. This model is discussed in more

detail in Chapter VI.

11

Maintenance Phase refers to the lifecycle phase of software after it has been deployed for use. A mature

project will be in maintenance phase.

12
Here perturbations refer to changes that occur in the environment of the project. These changes could be

internal e.g. errors or bugs or they could be external e.g. changes in the interfacing hardware.

35

2.4 CONCLUSIONS

In this chapter, a new measure for the performance of OSS projects was defined,

validated and tested. A framework for validation and testing of the measure was established

based on the prior literature and research in the area of software measurement. The measures

were tested for mathematical, logical and empirical validation. With a measure for

performance, businesses can make informed decision regarding adoption and use of OSS

projects. OSS development teams can use it, to monitor and control the development and

maintenance of their projects. In later chapters the factors, which affect the dimension of

viability, are discussed.

36

CHAPTER III

EXPLORATORY MODEL DEVELOPMENT METHODOLOGY

In this chapter, the research design and methodology are discussed. First, the various

characteristics of software considered in the research are discussed. It is followed by a

discussion on the research methodology and the suitability of Data Mining for exploratory

research. Details of the data source, data extraction and the techniques used in this research

are also presented, along with a complete list of the initial variables identified for the

analysis.

3.1 FRAMEWORK

Research in software project development and maintenance has focused on three

types of characteristics: Process, Product and Resource. In Open Source Software (OSS),

however another significant entity in the software lifecycle is the End User. OSS

development is characterized by a close interaction between the end user and the

development team (Feller and Fitzgerald 2002; Raymond 2001). Therefore, the conceptual

framework of this research includes the following attributes:

• Product Characteristics

• Process characteristics

• Resource characteristics

• User/Client Characteristics

Each of these characteristics is discussed in detail in the following sections.

37

3.1.1 Product Characteristics

The product characteristics refer to the attributes of the software product. Product

reliability, maintainability, portability and quality are examples of the product characteristics

(Fenton and Pfleeger 1991; Pressman 2004). Affects of product characteristics on the project

outcomes have been established in Closed Source Software (CSS) research (Albrecht and

Gaffney 1983; Banker et al. 2003; Banker and Slaughter 1995; Eick et al. 2001; Fenton and

Ohlsson 2000; Krishnan 1996; Lederer and Prasad 1998; Swanson and Dans 2000). In this

research framework, various product characteristics were used to understand how these

characteristics affect the OSS project development and maintenance performance.

3.1.2 Process Characteristics

The process characteristics deal with the development process of software. In the

CSS domain, a Capability Maturity Model (CMM) has been proposed to measure the

software development process. It has been established in prior research that process is

directly related to project outcomes (Harter et al. 2000; Herbsleb et al. 1994; Swanson and

Dans 2000). However, in OSS there is a lack of formal definition of organization and

process. This by no means states that there is no organizational structure. In fact some

research has identified the presence of structure and control in OSS communities (Jensen

and Scacchi 2005; Krogh et al. 2003; Scacchi 2004a; Scacchi 2004b). In this research

framework, process characteristics were used to study their effect on the OSS project

development and maintenance performance.

38

3.1.3 Resource Characteristics

Resource characteristics refer to the nature of the team and tools employed in a

project. The higher the number of team members the greater is the human effort and

contribution in a project (Fenton and Pfleeger 1991). Such efforts include coding, testing,

documentation and user support tasks. Prior research has indicated that resource

characteristics impact the software project development and maintenance (Abdel-Hamid

1992; Barry et al. 2006; Boehm 1987). In this research framework, process characteristics

were used to understand their effects on the OSS project development and maintenance

performance.

3.1.4 User/Client Characteristics

User characteristics refer to the attributes of the end users of the project. The affects

of user characteristics on project outcome have not been investigated in CSS research. In

CSS, a project is developed for a known user with pre-defined requirements
13

 (Brooks 1995)

(Pressman 2004). The user does not take a direct and active part in the project development

and maintenance. On the other hand, OSS projects are usually initiated by an individual

programmer or group of programmers, who are trying to solve a problem that is of their own

interest (Dempsey et al. 2002; Feller and Fitzgerald 2002). OSS projects do not have a

predefined client or users. However, once a project is launched it is available for public use

13
Defining user requirements is a challenge in CSS, since user requirements are often incomplete, wrong or

over specified. This discussion is beyond the scope of this research.

39

through the internet. Thus, a user community may emerge which shares the interests of

original group of project developers. Project source code is available to users, who may

detect, identify and report bugs to the development team. Users are also free to propose

solutions, contribute code and make function/feature requests (Feller and Fitzgerald 2002).

Users of OSS projects can be developers themselves or a business entity that adopts OSS

projects for its use (Feller and Fitzgerald 2002). Considering the critical role of a user in

OSS projects, user characteristics were used to study how various user characteristics affect

the OSS project development and maintenance performance.

The research framework identified the critical areas that were to be explored in this

research. Based on this framework, an exploratory research study was developed to create

the models of OSS project performance.

3.2 EXPLORATORY MODEL BUILDING METHODOLOGY

There are two main types of research paradigms: Deductive and Inductive. In

deductive research, the researcher establishes a theory about a particular problem.

Hypotheses are then generated based on the theory. Data is collected, using some data

collection methodology and the original theory is tested to be true or false. On the other

hand, inductive research is a competing methodology, which begins with broadly stating a

research problem. Data is collected and examined for patterns and knowledge is generated

based on the data. In this methodology, hypothesis and theories are created based on the new

information (Trochim 1999).

40

Exploratory studies fall under the category of inductive research. Exploratory

research is an important mechanism of generating knowledge, when the problem under

investigation is from a new research area and when access to detailed qualitative or

quantitative data is available (Hoaglin et al. 1983). Traditionally information systems

research has been dominated by deductive research. Existing theories from various

disciplines are used to develop hypothesis. Data is then collected through methodologies like

a survey or a lab experiment to test the hypotheses. One of the reasons why researchers rely

on such confirmatory research is the lack of large size data for conducting exploratory

research. For exploratory research, large datasets are needed to examine patterns and to test

the models. In CSS projects, access to datasets can be very difficult. Either organizations do

not maintain detailed archives of project development activities or they do not provide

access to such archives for strategic reasons. On the contrary, OSS community maintains

data on a large number of project attributes, primarily because the development is online and

detailed records of transactional data are available.

Keeping with the philosophy of free sharing of data, OSS projects provide public

access to these project archives. The lack of validated theories and models and the

availability of large amount of transactional data, make OSS projects an ideal candidate for

exploratory research. If models were to be built and tested based on existing theories in CSS

domain, there is a chance that some critical variables might be ignored. Therefore, to create

models that explain the performance of OSS projects, an exploratory research through data

mining techniques was conducted.

41

The exploratory philosophy used in the discipline of data mining is not new.

Aristotle (b 384BC) and Bacon (1561-1626) advocated the collecting of large quantities of

data, exploring them for patterns and then hypothesizing about these patterns. Later Galileo

(1564-1642) suggested that scientists should also test these hypotheses. This was a common

methodology throughout the 19
th

 century (Press 2003). Later deductive or confirmatory

research became more prevalent when the researcher collected data to support a preexisting

theory. This research follows Galileo’s perspective that knowledge and consequently

theories are developed from data.

The following sections discuss various data mining techniques used for the analysis.

The details of the data used for the study and selection of the initial variables for analysis are

also discussed in detail. The chapter ends with a discussion on how the datasets are used in

model formulation. This will provide a structure for the remaining chapters in which the

analysis and results of model formulation are presented.

3.2.1 The Knowledge Discovery through Data Mining Process

 “Knowledge Discovery through Data Mining (KDD) is the process of using data

mining methods to extract knowledge according to the specifications of measures and

thresholds, using databases along with preprocessing, sub-sampling and transformations of

the data” (Fayyad et al. 1996). Data Mining is a component of the KDD process, which

provides the means to extract and enumerate patterns from the data.

42

Figure 3.1: The KDD process

The basic steps involved in the KDD process are shown in Figure 3.1. These steps

are:

1. Developing an Understanding of the Application Domain: It is necessary to have

a significant understanding of the problem domain. While conducting

exploratory research, the first step is to develop a research problem in a way that

useful variables can be identified from the dataset to formulate models. Data

Mining is not data fishing; in fact, lack of a clearly defined problem with

incomplete knowledge of the domain cannot result in useful models. A

researcher needs to develop a clear understanding of the domain and the

43

supporting areas. This ensures that the data mining process is focused on a valid

research problem and that relevant results are generated.

2. Creating Target Datasets: Based on the research problem, a target dataset needs

to be created. Variables of interest need to be identified and extracted. Too many

irrelevant variables can end up delivering misleading results. Similarly too few

variables can result in incomplete models.

3. Data Cleaning and Preprocessing: This involves operations such as removal of

outliers, deciding on strategies for missing values and identifying the sample

population.

4. Data Reduction and Projection: This involves processes like data transformation

and reduction of dimensionality. For this research creation of new variables,

using text mining falls in this category.

5. Data Mining: This step involves using various Data Mining techniques to search

for patterns in data and creating models. This includes supervised methods (e.g.

Regression, Neural Networks) or unsupervised methods (e.g. Clustering). The

choice of a technique depends upon the nature of the research question and the

dataset.

6. Interpretation of Results: This step involves analyzing the resulting models,

interpreting the results based on domain knowledge, reporting the results and

resolving conflicts with previously available knowledge.

44

In this research all the steps of the KDD process were performed, in order. The

research framework discussed in section 3.1, was used to identify the key areas affecting the

development and maintenance of projects. Factors that affect the performance of OSS

projects were identified from these areas.

The following sections provide a discussion of the data source, variable

identification, modeling techniques and assessment methods used in this research.

3.2.2 Data Source

Two separate data sources were used to develop the exploratory models discussed in

section 23. The source of data for vigor and resilience models was an online OSS project

development community, whereas the source of data for the organization model was a large-

scale OSS project. The nature of the research questions warranted the need of two separate

data sources. Both of these data sources are discussed below.

3.2.2.1 SourceForge.net Data Source

SourceForge.net (SF) is the world's largest OSS development web site, with the

largest repository of OSS code and applications available on the internet. Owned and

operated by OSTG, Inc., SourceForge.net provides free services to OSS developers. Project

developers use these services to host, develop, and maintain their projects. The

SourceForge.net is a database driven web site, which provides historic and status statistics

on over 100,000 projects and records of over 1 million registered users' activities. OSTG has

45

shared certain SourceForge.net data with the research community for the sole purpose of

supporting academic and scholarly research on the OSS phenomenon. The Sourceforge.net

data archives starting November 1999 through May 2005 were used for this research and

was accessed through a research initiative with the University of Norte Dame (Madey 2005).

The SF community hosts OSS projects of various kinds. Typically, the projects

developed through this community are small and medium scale OSS projects. The number

of projects hosted at SF has increased rapidly over the past few years. The increase in the

number of registered projects on SF, as shown in Figure 3.2, indicates the surge in the usage

and support of OSS projects.

0

20000

40000

60000

80000

100000

120000

140000

160000

1999 2000 2001 2002 2003 2004 2005

Figure 3.2: Number of projects registered at SF over time

46

Two datasets were created from the SF projects’ data archives: Development dataset

and Maintenance dataset. SF maintains information on the lifecycle phase of all the projects.

This information was used to classify the projects into the two categories. The development

dataset was created for the projects that were in the pre-production life cycle phase, while

maintenance dataset was created for projects that were mature or in their production phase,

considered as maintenance phase projects. This categorization is very critical in effective

model building. The issues and the factors affecting the project outcome in these two

categories are different. Research in OSS has used small random samples of projects without

any consideration of project lifecycle phase. Many of these studies have failed to discover

significant relationships, which could be a result of poor sampling of data (Krishnamurthy

2002; Stewart 2004) . Prior research in software engineering highlights a distinction between

development and maintenance phase issues associated to software projects. Therefore,

random sampling of the entire dataset is not a suitable approach.

The group identification numbers for the projects in the two categories were use

throughout the analysis to extract variables from the SF warehouse. The SF data warehouse

consists of over 100 tables and 1000 variables. Each table was studied in detail and the

information available was decoded for investigating its usability in this study. Since the data

was used from a third party, independent validation of data was performed by random

verification of variables with the actual SF dataset. The results were also compared with

another independent extraction of variables from the same warehouse, to verify the queries

used for data extraction.

47

The data was imported from the SF research warehouse (hosted by the University of

Norte Dame) to a local SQL server relational database. In order to import SourceForge data

(available in textual format) to a local SQL server, intensive processing was required. The

local SQL server was then connected to SAS Enterprise Miner 5.2 for data analysis. The

required variables were extracted from the dataset by SQL queries.

A set of variables of interest was identified based on prior research in software

engineering and OSS projects. The dataset contained transactional data on OSS projects

hosted by SF from November 1999 until May 2005. The purpose of data analysis was to

identify the key factors affecting the performance of OSS projects. Besides ensuring that the

projects being analyzed were in comparable lifecycle phases, it was also necessary to ensure

that projects had been available at SF for some significant time. Thus, such projects that

were created less than a year ago (from the date of analysis) were not considered in the

analysis. This was done to ensure that age of the project was not a confounding factor. Some

additional transformations (as discussed below) were performed on the data to ensure the

validity of the analysis. Extensive SQL queries were used to create the dataset and to

generate the variables for each project. Details of each variable are also discussed in later

sections.

3.2.2.2 Linux Data Source

In order to study the effects of maintenance activities on the internal organization of OSS

projects, there was the need of a single project with sufficient data. The SF dataset consists

48

of thousands of small and medium scale projects. The maintenance data for these projects

was not sufficient for this analysis. Therefore, the source code of project Linux, which is a

large-scale OSS project, was used.

Linux maintains a record of its parallel experimental and production versions. The

experimental versions are more volatile than the stable versions and tend to change more

frequently. The stable versions were suited for this analysis. Linux versions 1.0 through

version 2.6.5 were used in this research. Longitudinal data on structural complexity (as an

indicator of internal organization) of Linux source code was also extracted for these versions

for the Linux kernel released over the past 10 years. An automated tool
14

 available online,

was used to compute the McCabe’s Cyclomatic complexity. McCabe’s Cyclomatic

complexity measures are the most widely accepted measures of software complexity (Fenton

and Pfleeger 1991). Change in the value of McCabe’s Cyclomatic measure from one

software version to the next was extracted from the dataset. This extracted data was then

used to analyze the affects of various maintenance activities on project organization.

Software maintenance activities in the Linux project are implemented thorough

Patches
15

. Each Linux patch contains rich textual references to the changes it has

implemented. These textual references are written by online, geographically dispersed teams

14
RENAUD’s tool, freely available online, was used for this analysis. The tool was tested and validated

before use.

15
A patch is a piece of software code that is added to the existing software, that can add, delete or update

the existing functionality of the software and can be used to correct, prevent or perfect any faults that may

exist in the software code.

49

of developers and maintainers to explain significance of the code they have added or

removed (Stamelos et al. 2002). The textual information available in software patches was

extracted. Although there exits a classification of maintenance activities in literature, yet

there is a dearth of any formal classification of software patches. A classification scheme for

patches was developed based on the type of maintenance activities performed.

3.2.3 Variable Identification

To create useful models, it is critical to identify the initial set of variables that will be

used in the Data Mining process. Selection of too few variables can result in an incomplete

analysis and may result in excluding critical factors from the final model. On the other hand,

inclusion of irrelevant variables can adversely affect the model building process and can

affect the correct identification of the significant factors. The identification of the initial set

of variables for use in the Data Mining process requires domain knowledge and a deep

understanding of the dataset (Fayyad et al. 1996). Prior literature in software engineering

was consulted to identify the critical measures. The OSS literature was also consulted to

identify the unique characteristic of the OSS paradigm. This information was used to ensure

that OSS relevant features were included in the analysis. The SF data warehouse contains

over a thousand variables. The data dictionary of this warehouse was examined in detail to

understand the layout of the data and to extract the correct measures from it. All variables

were categorized as per the framework discussed earlier. A listing of the variables along

with a brief summary and operationalization detail is given in Tables 3.1-3.5.

Table 3.1: Product related variable measurement and sources identified for analysis

Variable Summary Measure Source Symbol

Increase in features Count feature

request closed

Cnt_Feat Functionality

Functionality refers to the number of functions being

offered by the software. Functionality has been used in CSS

models. Increase in product functionality is attained

through new releases over project lifecycle (Boehm 1987).
New Modules Count File Release Cnt_mod

Number of distinct

members reporting

the bugs

Count Distinct

Submitted_by

Cnt_rep Maintainability Maintainability refers to the extent to which software is

maintainable. Maintainable software should not be

dependent upon a small group of people who understand it.

In OSS the ability of users to be able to understand and

maintain code is very critical (Samoladas et al. 2004). If an

OSS project is not maintainable, then detecting and

removing bugs can be a problem.

Number of distinct

members fixing the

bugs

Count Distinct

user_id closed_by

Cnt_fix

Number of platforms

supported

Count Operating

Systems

Cnt_OS Portability The portability of a software project indicates the flexibility

of project use. A software that runs on multiple platforms

offers more flexibility to the user compared to a platform

dependent software(IEEE-STD-1061 1993).

Number of prog;

languages supported.

Count prog;

languages

Lang

License Type OSS projects are launched under various licenses. The most

common license is the OSI license. Prior research indicates

that license choice can affect the development performance

of OSS projects (Stewart and Ammeter 2006).

License type OSI (Y/N) OSI

5
0

Table 3.1: Continued

Variable Summary Measure Source Symbol

Project Type SF classifies projects based on various aspects, e.g., games,

application file transfer protocols, desktop applications,

operating system, etc. This variable was used to check some

types of projects are more suitable for development in OSS

community compared to others.

The text Description of

the project was used to

create categorization for

project type, using text

analysis

200 word,

textual

description of the

project

Prj_Type

Downloads Count

downloads

Downloads Usefulness Usefulness of a software project depends upon how

relevant the product is to the customer. The end user

determines the usefulness of software and makes a decision

regarding procurement. For a free OSS product, usefulness

is a measure of user community’s interest in that product.

Page Views Count Page

views

Cnt_pgV

Number of translations Count Number

of translations

Trans Product

Compatibility

Compatibility in OSS projects will make them more likely

to receive code contributions from developers of other

projects. Compatibility of OSS projects will refer to the

diverse audience the project can attract.

Number of platforms

supported

Count Operating

Sys;

Cnt_OS

End user usage Bugs reported by

end user

Bug_User Usage When software becomes operational, the probability of

finding the existing errors will be linked to the usage of the

software. More software is used, the chances of finding

existing errors increases. If the usage of software is low

then a low number of bugs do not necessarily imply that

there are no bugs. Thus software usage will be critical to its

performance measurement (Delone and McLean 1992).

Usage of the project in

general, that results in

fault detection

Bugs Open Bugs_Open

5
1

Table 3.2: Process related variable measurement and sources identified for analysis

Variable Summary Measure Source Symbol

Project

Management

Use of traditional Project Management (PM) methods

include a designated project manager and centralized task

allocations. These activities can affect the outcomes of a

software project. Though OSS projects are developed in a

more informal environment, yet projects may use PM

(Jensen and Scacchi 2005).

Whether an OSS

project decides to

have a project

manager or not.

Use PM (Y/N) Use_PM

Process Quality The overall quality of development and maintenance

process can affect the performance of a project. In CSS,

there is evidence that process quality of a project has a

positive impact on its performance. No such analysis has

been performed for OSS before (Banker et al. 1998).

The response time to

fix an error

Mean Time to fix a

bug (MTTR)

MTTR

Use of CVS Use CVS (Y/N) Use_CVS

Configuration

Management

In CSS literature, use of Configuration Management

(CM) techniques has been linked to better performance of

software (Herbsleb et al. 1997; Humphrey 1989). OSS

projects use configuration management tools during

development and maintenance. There is extensive use of

version control tools. The effects of CM on project

performance will be investigated.

Number of

Concurrent Version

Control Systems

(CVS) commits

Count CVS

commits

Cnt_CVS

5
2

Table 3.2: Continued

Variable Summary Measure Source Symbol

Number of forums Count Cnt_Forum

Use of mail

messaging

Use Mail (Y/N) Use_Mail

Communication

Channel

Availability of various methods of communication

between the developers and the users can affect the

performance of the project (Herbsleb and Moitra 2001).

Use of news groups Use News Groups

(Y/N)

Use_News

Requirement

Implementation

CSS project performance is associated to its ability to

conform to user requirements (Pinto and Slevin 1987;

Pinto and Slevin 1988; Schonberg 2000). In OSS, there

are no predefined requirements, yet the end users can

make requests for implementing new features to the

projects. Therefore, this factor will be used in the models.

Response time to

feature requests

Time to implement

a feature

MTIF

Ability to detect bugs Bug repository,

Count of bugs

Bug_Cnt Process Quality The ability of a project to detect and remove bugs is a

reflection of the quality of the maintenance process.

Inability to remove

problems that occur

Bugs that are not

fixed

Bug_Open

 5
3

Table 3.3: Resource related variable measurement and sources identified for analysis

Variable Summary Measure Source Symbol

Effort The size of the project team will be indicative of how much effort is

available to the development and maintenance process. There are

conflicting views on the size of a team. Some researchers support the

view that a large team size will have more effort available to the

development and maintenance process (Abdel-Hamid 1989), while

others argue that a large team size can cause a negative effect on

performance(Brooks 1995) .

Number of

registered

developers for the

project

Team Size Cnt_Team

Team

Communication

Conway
16

 suggested that communication patterns of teams are

reflected in the products they produce (Conway 1968). Effects of

team communication on development and maintenance performance

will be analyzed.

Frequency of

development team

communication

Messages posted

at development

forums

Cnt_Posts

5
4

16
 "Organizations which design systems are constrained to produce system which are copies of the

communication structures of these organizations" - Conway’s Law.

Table 3.4: User related variable measurement and sources identified for analysis

Variable Summary Measure Source Symbol

User Type OSS projects are developed for various types of end users. Some projects

are developed purely for a development community. Others are

developed as end user applications that can be used by non-programmers

too. Considering the nature of OSS development, the type of audience

would affect the extent of end user involvement. If the end users were

programmers, they would be able to modify the code.

Nature of the

end user

Audience

Programmer (Y/N)

AUD (o= prog, 1

= non-prog)

Frequency of

end user

interaction

Forum posts by

users

Cnt_Msg Activity Level

of User

OSS user can be an active member of the development and maintenance

community. They can also contribute to the source code and participate in

the detection and removal of bugs. Anecdotal references to active user

community have been made in literature, but no empirical testing has

been performed to investigate its effects on project performance (Feller

and Fitzgerald 2002; Scacchi). This research used the activity level of the

user in project development and maintenance performance. This variable

has not been used in CSS models.

Number of

users

interacting

Number of distinct

individuals posting

messages, bugs or

feature requests

User_Int

Community

Size

Using the argument that the active user has an impact on the project

performance, the effects of the size of the user community will also be

used for the model. A larger community will imply more effort going into

the development and maintenance process. This will also test the Linus

law, which states, “Given enough eye balls, all bugs are shallow.”

(Raymond 2001).

Number of

active users

Number of distinct

senders of messages

Cnt_User

 5
5

Table 3.5: Control variable measurement and sources identified for analysis

Variable Summary Measure Source Symbol

Size Source Lines of Code Size Controls The size and of software projects differ and can affect its

performance. Software engineering models typically use

software size and age as a control measure to account for

the affects of size on project outcomes (Banker and

Slaughter 1995; Barry et al. 2006; Brooks 1995).

Age Time elapsed since the

start of project

Age

5
6

57

3.2.4 Data Sampling

In exploratory research, it is very important to use different samples from the dataset

for model building, validation and testing (Fayyad et al. 1996). If the same data is used for

model creation and validation, the resulting model will likely be biased to the sample and

thus not acceptable. Therefore, both the SF datasets (for development and maintenance)

were split into training, validation and testing samples. This was done to ensure that a valid

model is created that would be applicable to OSS projects in general.

Initially, the training set was be used to train or build the model. Once an acceptable

training model was built, the validation set was used to evaluate the model. A comparison

was then made with specific diagnostics e.g. lift charts, to check how well the training

model holds for the validation sample. At times, there were several iterations of re-training

before a reasonable model was selected. Once a model was selected, the validation dataset

can no longer be used to test the accuracy of this model. To create a robust model, the final

training model was applied to the test data. The accuracy of the model on the test data gives

realistic estimate of the performance of the model for OSS projects in general. Figure 3.3

describes the process of data sampling.

58

P a rtitio n
D a ta se t

O rig in a l

D a ta s e t

V a lid a te
S a m p le

T ra in
S a m p le

T e s t
S am p le

C re a te M o d e l

E v a lu a te M o d e l
(u s in g v a lid a te

d a ta)

M o d e l

A c c e p tab le ?

E v a lu a te M o d e l
(u s in g T e s t

D a ta)

R efin e

Y e s

N o

M o d e l

Figure 3.3: Process of data sampling used for data mining

59

3.2.5 Data Mining

Data Mining (DM) is the search for patterns of interest in observed data. The two

main goals of DM are Prediction and Description. There are two main types of DM

techniques available: Supervised Learning and Unsupervised Learning. The supervised

learning methods are used when the target (or the dependent variable) is known, e.g.

predicting the income of a group (target variable) based on historical information about

certain variables. The most commonly used supervised DM methods are Regression,

Decision Trees and Neural Networks. Unsupervised learning techniques are used to identify

patterns in data with no predefined target. An example of this technique is developing

taxonomies based on available variables. The most common unsupervised learning

technique is cluster analysis (Berry and Linoff 2004).

In this research, three predictive DM techniques; Logistic Regression, Decision

Trees and Neural Networks were used. Clustering was also performed on textual data. SAS

Enterprise Miner 5.2 was used to perform the data mining tasks. These techniques are

discussed below.

3.2.5.1 Logistic Regression

Logistic Regression is a predictive modeling technique that is typically used when the

outcome variable is binary or dichotomous. There are a few differences between Linear

Regression and Logistic Regression models and assumptions (Hosmer and Lemeshow

2000). The first significant difference is the nature of relationship between the independent

60

and dependent variables. If Y denotes the dependent variable and x denotes the independent

variable, then the general regression equation is:

xxYE 10)|(ββ += . .. (3.1)

Where E(Y|x) is the conditional mean or the expected value of Y given the value of x. In this

expression E(Y|x) can take any values between ∞− and ∞+ . With dichotomous dependent

variable, the conditional mean must be greater than, equal to zero and less than, or equal to

one. Many distribution functions have been proposed for the analysis of such a variable,

such as Logistics Distribution Function. When used, the conditional mean of Y given x can

be represented as)|()(xYEx =π . The Logistic Regression model may be represented as:

x

x

e

e
x

10

10

1
)(

ββ

ββ

π
+

+

+
= .. (3.2)

A transformation of)(xπ called the Logit Transformation has many of the properties

of Linear Regression (e.g. it can be continuous depending on the values of x). The Logit

Transformation is defined as;

x
x

x
xg 10

)(1

)(
ln)(ββ

π

π
+=









−
= …………...................................... (3.3)

Logistic regression fits a linear model to the log of the odds of the response, the logit

transformation. The logit transformation forces the predicted values for the fitted model to

61

be between 0 and 1, thus giving a predicted probability for the different levels of the binary

variable.

The general form of the Logistic Regression equation is:

()[] hk

t

k

k

h

h
xxlogit ∑

=

+=








−
=

11
log βα

π

π
π …………............................ (3.4)

This is the log odds of one to zero of the h
th

 subpopulation.

The testing for the significance of coefficients is also different for logistics regression

models. The purpose of significance testing of a variable is performed to ascertain whether

adding that variable to the model helps explain the outcome more precisely or not. This is

done by comparing the observed values of the outcomes, with and without the variable

under test. If the addition of the variable in question improves the fit of the model, it is

considered significant. The overall fit of the model is tested by goodness-of-fit tests

(Hosmer and Lemeshow 2000).

3.2.5.2 Decision Trees

A decision tree is a structure that divides up a large collection of observations, into

smaller sets, by applying a sequence of simple decision rules (Berry and Linoff 2004).

Decision trees produce a set of rules that can be used to generate predictions for a new

dataset. Decision trees are one of the most popular methods of predictive modeling for data

62

mining because they provide interpretable rules and logic statements, enabling more

intelligent decision-making.

A decision tree partitions data into smaller segments called terminal nodes or leaves

which are homogeneous with respect to a target variable. Partitions are defined in terms of

other variables called input variables, thereby defining a predictive relationship between the

inputs and the target. This partitioning continues until the subsets cannot be partitioned any

further using user-defined stopping criteria. By creating homogeneous groups, analysts can

predict with greater certainty how individuals in each group will behave. Various algorithms

are available for splitting data into decision trees. One popular method is the Chi-Squared

Automatic Interaction (CHAID). This technique has the advantage that the independent and

dependent variables can be nominal, ordinal or interval. The splitting criteria are based on

variance reduction and F-test splitting for interval targets. If the target is categorical then the

CHAID or entropy reduction
17

 can be used (Fernandez 2003). Generally, they fit linear and

non-linear relationships.

3.2.5.3 Neural Networks

An artificial Neural Network is a network of many simple processors, each possibly

having a small amount of local memory. Communication channels that usually carry

numeric (as opposed to symbolic) data encoded by various means connect the units. The

units operate only on local data and on the input they receive via the connections. Neural

17

 Also known as Gini

63

 Networks are universal approximators and they can be trained for a specific application and

used to extract patterns or detect trends. There are many available structures of the Neural

Network. One of the popular architectures is the Multi-Layer-Perception (MLP). MLP

consists of an input layer, a hidden layer and an output layer (Berry and Linoff 2004).

Neural networks are useful tools for interrogating increasing volumes of data and

learning from examples to find patterns in the data. By detecting complex nonlinear

relationships in the data, Neural Networks can help make accurate predictions about real-

world problems. To avoid the tendency of Neural Networks to over fit the training data,

model performance is constantly assessed against the validation data, and the final model is

selected based on one of the several criteria that users can select (e.g., the minimal

validation error, maximum total profit, etc).

Neural network models have the advantage of a high predictive power because they

can fit non-liner models. The disadvantage of this technique, especially for academic

research, is the difficulty in interpretation of the results. The logistic regression represents a

model in the form of an equation. The significances of the regression coefficients explain the

phenomenon under study.

With decision trees, the result is a sequence of English language rules that are easy to

describe and understand. Neural network models on the contrary do not have a simple

formulation. They provide the fit statistics and the prediction of new values. However, the

individual variable significances and contributions to the model are not easy to interpret.

Neural network models are recommended for use in problems where the dependent and

64

independent variables are well understood e.g. in credit scoring models. In exploratory

research, when the factors effecting the outcome are not completely known, the use of

Neural Network as the final model is not recommended (Berry and Linoff 2004).

However, in this research used all three models simultaneously in the model

formulation phase. Results from decision trees are very insightful regarding the interactions

between the independent variables. The neural network models can be used as a base line for

detecting complex non-linear relationships. The performance of the logistic regression

model can be improved by decision tree and neural network results. Chapters IV and V

discuss the details of the application of this technique.

3.2.6 Text Analysis

Text Mining refers to the discovery of knowledge from text data. Text Analysis has

been widely used in sociology and communication literature. It converts text into numeric

form that can be used in analysis. There are many types of text analysis algorithms available.

The first step in text analysis is to identify the target dataset. It is also very critical to

have a defined task e.g. clustering or categorizing. Once the data has been collected, all

unique words in each document are identified. A stop list can be used to ignore the terms

that are naïve and are not to be used in the analysis. Another approach is to create a start list.

This is a list of the terms considered in the analysis, with all other terms ignored. Word

stemming is then used to stem e.g. walk, walking, walked etc. are all treated the same.

Furthermore a list of synonyms can be created, and nouns and verbs can be separated

(Chiarini-Tremblay et al. 2005).

65

The next step is to create a Word Frequency Matrix (WFM). This term-by-term

frequency matrix can be improved by utilizing weighing functions words. For example,

words used more frequently have a higher weight. The words that have a high correlation to

the outcome (target) variable may be assigned a higher weight. Depending upon the size of

the data, this matrix can become very large. Not all the terms appear in all the documents,

resulting in wastage of significant computing resources. In order to reduce the

dimensionality of the WFM, Latent Semantic Indexing (LSI) is used. LSI is a technique that

can transform a matrix into lower dimension form (Berry and Browne 2005). LSI uses

Singular Value Decomposition (SVD) for reduction of dimensionality. The matrix is

decomposed into Eigenvalues and Eigenvectors. This creates linearly independent

components of the data. The smaller components can then be ignored and relationships

between two documents can be determined by the remaining components (Berry and

Browne 2005; Deerwester 1990).

To reduce the initial term-by-term matrix, a weighting scheme has to be

implemented. There are several techniques available for this purpose. Term frequency

weighing assigns a weight to each term, based on its frequency
18

. A word that has a high

frequency of occurrence in a document has a high weight. One drawback is that there is no

reflection on the importance factor of document discrimination. Another method is the

Inverse Frequency Weighting
19

 This method assigns a weight according to the frequency of

18
Wij = Freqij,, where Freqij = number of times jth term occurs in document Di.

19

Wij = log2(aij +1), where aij is the frequency with which term i appears in document j.

66

a word in a single document compared to its occurrence in the entire collection of

documents. If a word has high frequency occurrence in a single document, but has a low

occurrence in the collection of documents, then the weight is high. The advantage to this

scheme is that there is a reflection of the importance factor for document discrimination.

However, the assumption is that the terms with low frequency in the document collection are

better discriminator than those with high frequency. For unsupervised clustering tasks (like

the one in this research), the best method is the entropy method (Chiarini-Tremblay et al.

2005). The formulation of this method is:

)(1)(0.1log(iijij wentropyFreqW ++= (3.5)

Where

∑
= 

























=

N

j j

ij

j

ij

i
DocFreq

Freq

DocFreq

Freq

N
wentropy

1

log
)log(

1
)(……................ (3.6)

Entropy in text analysis refers to the amount of information added by the text. It is

based on the Information Theory approach from Shannon’s work. It is the amount of

information that a word contains about the entire document, i.e. knowing one word, what is

the probability that another word will occur. Entropy measures the amount of information in

a random variable. It is normally measured in bits (hence the log to the base 2), but using

any other base yields only a linear scaling of the results (Manning and Schutze 2002).

67

This research uses the entropy minimization algorithms. Primarily, text mining was

used to create clustering of textual datasets. The purpose was to classify the documents into

similar clusters, based on the word counts and relationships. For the model of Vigor and

Resilience, the SF projects were categorized into project types, based on a textual

description. Although SF provides categorization of the projects based on various attributes,

there is no single classification of all projects. Use of text mining avoids the multiple

classifications of the projects. It creates information from the available textual data. Each SF

project maintains a 200-word description. This description was used to create a project type

variable for the development phase and maintenance phase projects. Projects were split into

clusters based on description terms. The terms in each cluster indicates the nature of these

projects. The cluster ID was used as the Prj_Type variable for each project in the analyses.

Later chapters discuss the results of the text mining for project type.

For the Linux dataset, text analysis was used to create a taxonomy for the OSS

patches. The maintenance patches for Linux releases were used as text documents. Currently

there is no available taxonomy of software maintenance patches. Therefore, a new taxonomy

(discussed in chapter VI) was developed for Linux patches. The affects of these patches on

code complexity were also studied.

68

CHAPTER IV

MODEL OF VIGOR

This chapter discusses the model for OSS projects in their development phase. First,

it presents a background of the significance of vigor in the development phase. It is followed

by a discussion on the model building and selection process. The selected model is then

evaluated and presented. The variables significant in the final model are explained in detail.

4.1 BACKGROUND

The development phase of software projects refers to its lifecycle phase during

which a project is created, new functionality is added, and testing is conducted (Pressman

2004). Successful execution of software project development has been a challenge.

Researchers and practitioners have been in search of methods, which can help in managing

the high failure rates of such projects. According to prior research, almost 90% of software

development projects fail to complete within budget, on time, and according to customer

requirements (Abdel-Hamid 1988; Boehm 1984; Boehm 1997; Pinto and Samuel. J. Mantel

1990; Pinto and Slevin 1988). Many models have been proposed which identify the factors

that affect CSS project development (Godfrey and Tu 2001; Jeffery 1987; MacCormack et

al. 2004; Paulson et al. 2004). These project evaluation metrics consist of measures (e.g.

cost, user requirements) that have no meaning in the Open Source Software (OSS) domain.

Recent reports suggest that Fortune 500 companies are considering adoption of the OSS

69

projects in near future. Thus, there is a need for a model to evaluate OSS project

performance during its development phase. This research has formulated such a model.

OSS projects are developed as freeware through volunteers. They evolve as the

development community and the functionality of the project grow (Scacchi 2002). Much of

the empirical research in OSS domain has been focused on large-scale OSS projects of high

quality (Godfrey and Tu 2001; MacCormack et al. 2004; Paulson et al. 2004). Ideally,

projects would evolve over a period of time and develop into mature software, yet many

OSS projects fail to do so (Krishnamurthy 2002). During the development phase, the most

critical aspect is the ability of a project to grow in functionality so that it can transition

successfully to its next lifecycle phase (Kemerer 1987). In this research, the performance of

an OSS project during its development phase was measured in terms of its Vigor.

The model was built using the framework and methodology discussed earlier in

Chapter III. The analysis and results of the model are presented in the following sections.

4.2 MODEL BUILDING

Data Mining techniques were used for model formulation, validation and testing. To

identify the factors that affect the performance of OSS projects in their development phase,

the SourceForge (SF) dataset was used. The variables identified earlier in Tables 3.1-3.5

were extracted for the SF projects in their development phase.

70

There are three predictive modeling techniques of Data Mining: Logistic Regression,

Decision Tree and Neural Networks, each with its own strengths and weaknesses. In this

research, all three techniques were used to improve the model and its interpretation. These

techniques were not only used to discover models that could predict outcomes, but also to

get a better understanding of the variables that affect the OSS project performance. The best

technique was selected based on its performance and the ease of explanation of the

phenomenon.

The dimension of Vigor was used as the outcome (target) variable. During the

development phase, the biggest challenge for OSS projects is continued growth and

transition through the development phases (Crowston et al. 2003). Vigor captures the growth

of the project; therefore, it was selected as the outcome variable. The vigor was

operationalized as the transition of a project from one development phase to the next. This

data was extracted by examining the development phase for each project. Projects with

multiple phases were separated. The dates on the change in phase were used to identify the

projects that had evolved. At times, some projects had selected multiple phases reported at

the same date e.g. alpha and pre alpha. This anomaly could be attributed to some internal

definition problems. In order to remove this anomaly the highest level of development was

selected for multiple entries on the same dates. Queries were used to detect multiple phase

transitions. Only two projects had evolved through more than two phases while being hosted

by the SF community. The dataset was validated using alternative queries and was cleaned

to contain correct phase transitions.

71

Another research issue was to investigate the affects of end user involvement in the

testing process. In the initial dataset, there were a large number of projects in the

development phase, with no bugs ever reported. In OSS projects reporting of bugs is a very

critical component of project development (Capiluppi et al. 2004). Upon a deeper analysis, it

was revealed that these projects did not have a bug repository set up. Starting an OSS project

at SF is a very simple process. Any registered user can start a project. The SF database

contained a large number of projects that were never intended to be real development

projects. Some registrations were not valid and had no useful data associated to them. This is

the reason, why a random sample taken from the warehouse cannot generate good results

and it cannot be used for model building. Therefore, data was reduced to the projects that

had at least one bug reported. This meant that the project had a bug repository set up and had

a working system for bug reporting. With all of the above-mentioned updates, the resulting

dataset for this research contained 4931 projects.

To ensure effective model building, data cleaning is necessary. Missing data and

outliers can cause serious errors in the models. Logistic Regression and Neural Networks

techniques ignore the observations with missing values. In this dataset, it was also critical to

analyze and understand the reason behind the missing values. The use of projects with at

least one bug reported, eliminated most of the dummy projects that could have affected the

validity of the analysis. The data was inspected again for missing values. Projects with no

forums or no messages in the forums were also examined closely to ensure that only valid

projects are included.

72

Figure 4.1: Text miner settings used for creating the new variable

Figure 4.2: Text miner output for the project type data

73

Once a clean dataset was available, it was imported to the SAS Enterprise Miner 5.2.

The SAS dataset was explored using the insight node. The insight node
20

 provides useful

features like Descriptive Statistics and Collinearity Analysis. The data was explored for

missing or incorrect values. The distributions of the variables were observed, to get a better

understanding of the data. The dataset was then merged with the text analysis data on project

description.

The project description textual data was used to create a new variable called “project

type”. The dataset of project description for all the projects in the development phase was

used in SAS Text Miner to create the new variable. Initially, the default stop list was used on

the dataset. The stop list contains the words that are ignored while the text analysis is

performed. The default list contains most commonly occurring words that do not carry

information about the text being analyzed. The initial run with the default stop list resulted

in generating a word frequency table. For such a large amount of data, performing an initial

run with a default stop list is beneficial
21

. A new start list was created by removing the

words that were not considered a project description or added no usefulness to the analysis

e.g. frequent words like where, upon or abbreviation like en, dl etc. The new list with “keep

terms” is saved as a new start list and is used in the final analysis.

 20
 Insight node is no longer available in SAS EM 5.2. The older version SAS EM 4.3 was used for using

this node.

21
The product designer of Text Miner, Mania Mayes agrees with this approach, in fact recommends it for

large datasets.

74

The Text Miner node was set to automatically cluster the terms (see Figure 4.1). The

options were set to generate the Singular Value Decomposition (SVD) terms and to perform

clustering based on the SVD dimension. A maximum number of 40 clusters were allowed.

The term stemming option was set to “Yes”. The frequency weighing method was “Log”

and the term weighting method was “Entropy”. Expectation maximization algorithm was

used for clustering. This algorithm is best suited in cases where the expected number of

categories is unknown.

The text miner node provided the resulting clusters . Terms identifying each cluster

along with occurrence frequency and percentage among the input documents were also

produced. Each project belonged to only one cluster. The result of the cluster analysis is

shown in given in Table 4.1 below.

Table 4.1: Descriptive terms of the cluster analysis results of the project type data

Cluster Descriptive Terms Frequency %age

1 Source, de, open source, program, open 648 6%

2 Mysql, base, game, file, web 2188 21%

3 Windows, driver, OS, support, run 1405 13%

4 Server, client, irc, protocol, write 743 7%

5 Java, tool, application, data , language 3094 29%

6 Support, information, design, develop, project. 2534 24%

75

Each of the clusters represents the type of a project, based on the project description.

It can be seen from the description terms that Cluster #1 has general-purpose Open Source

terms. Cluster #2 has terms referring to database and game programs, Cluster #3 has terms

associated with operating systems, Cluster #4 has terms related to network communication,

Cluster #5 refers to tool and application development while Cluster #6 has more description

regarding project development and design.

The cluster number associated with each project was imported to the main dataset for

further analysis. The Cluster_ID, defines the new variable of project type (Prj_Type)
22

. This

data was used in model formulation to strengthen the model. Once the text mining results

were merged with the original dataset, the new data was ready to be used for model

building. The process flow of the model building process is shown in Figure 4.3.

The next step was to create the outcome variable and to perform the necessary

transformations on the dataset. The transformation node was used to create the required

transformations. The time dependent variables i.e. number of downloads and the total size of

the files released was normalized for the project age. Since the average time to fix a single

bug was being used, there was no need to normalize the bug fix time with age. Age is an

important characteristic of a project and affects the performance variables. Therefore, the

time dependent variables e.g. number of downloads and total file size were divided by the

22
Each group has a Prj_TypeX, where X = Cluster_id.

76

 age of the project. This was done to ensure that the analysis is valid and there are no

confounding affects of age of the project on the performance. The value of vigor of projects

that evolved was set to 1 (Vigor = 1) and of those that did not evolve was set to 0 (Vigor =

0). The resulting distribution of the target variable is shown in Figure 4.4.

Figure 4.3: Flow diagram of model building process

77

Figure 4.4: Description of target variables of vigor

As can be seen, only 17.7 % of the total projects had a high vigor. Further analysis

revealed that three projects that had multiple transitions during their lifecycle
23

. The status

of the variables that would be used in the analysis was set to “Use” and others, which were

not to be used in the analysis (i.e., the variables used for transformations), were set to “Not

use”.

Next, sampling node was used to create the data splits. The dataset was split into

40% training, 30% validation and 30% test samples. The details of why and how the

23
Data on projects that were inactive was also identified, however no considerable difference was found for

these projects. There could be future research on projects that evolved and projects that failed, but it would

result in a much smaller sample, therefore a greater knowledge of the process is required for this endeavor.

78

sampling was performed have been discussed in Section 3.2.4. Since the percentage of the

observations with high vigor was very small, stratified random sampling was performed to

ensure that each spilt is an accurate representation of the actual population.

NN

DT

LR 1

LR 2

Figure 4.5: Lift Charts for all techniques used for building model for vigor

The partitioned datasets were used with predictive modeling techniques to cerate

models. The initial analysis was performed using a Logistic Regression, Decision Tree and

Neural Networks node. Stepwise Logistic Regression was used to select the variables in the

model. Though stepwise regression is not recommended for theory testing, it is widely used

in exploratory research. In exploratory research there is no a-priori assumptions regarding

79

the relationships between the variables, and the goal is to discover relationships (Hosmer

and Lemeshow 2000; Menard 2002). The Neural Networks was used with three hidden

nodes and Decision Tree was used with the default settings. The results indicated that the

Logistic Regression model was the worst in performance. The Neural Networks was the best

model and the Decision Tree was better than Logistic Regression. The lift charts of this

analysis are shown in Figure 4.5.

Neural Networks can provide a good fitting model, but the interpretation of the

model is very hard. Neural Network results do not specify any significances or coefficients

for the variables used. On the other hand, a Decision Tree provides a model that can be

easily interpreted as simple English rules. A Decision Tree is very effective in using the

interactions, which exist between variables. The poor performance of Logistic Regression in

the analysis indicated that there were missing variables in the Logistic Regression model.

In this study, the Neural Networks and Decision Tree results were used to improve

the performance of the Logistic Regression node. The results of the Neural Networks and

Decision Tree analysis are shown in figure 4.6 and 4.7, respectively. A better fitting of the

Neural Networks node is indicative that there may be non-linearity in the relationships. The

Decision Tree on the other hand could be indicative of interaction terms.

80

VIGOR

Age

Aud

MTTR

Cnt_Bug

Bug_Open

User_Bug

Prj_1

Prj_2

Prj_3

Prj_4

Prj_5

Cnt_OS

Cnt_Team

Size

Downloads

Cnt_mod

Cnt_forum

Cnt_Msg

OSI

Use_CVS

Use_forum

Use_mail

Use_news

Use_PM

Figure 4.6: Neural Network weight plot for the model of vigor

User _Bug

Audience

> 0 .5< 0.5

M TTR

Cnt_Team

User_ Bug

Age

Bugs _O pen Age

Figure 4.7: Decision Tree for the model of vigor

8
1

82

 Further study of the Decision Tree showed that there was a persistent partitioning

based on the type of audience and the bugs reported by end users. Thus interaction terms for

these two variables was created for the Logistic Regression input. Additional interaction

terms involving project type were also created. The Neural Network results identified a

potential non-linearity in the variable age. To account for this, the variable age was binned

into three categories (low, medium and high). Low age indicated that the project was started

recently (from the date of analysis). High value of the variable age indicated that the project

was old or was registered in the very early days of SourceForge (SF) project. The new

variables and terms were used again for several Logistic Regression nodes. The best node

was selected based on the values of Akaike Information Criteria (AIC) and Lift Charts. The

ROC Charts for all the nodes used is shown in Figure 4.8.

The final model of the Logistic Regression provided the best fit of all three

predictive modeling techniques and had the lowest AIC amongst the entire Logistic

Regression models used in the analysis.

83

Figure 4.8: ROC Charts for model of vigor for DT, LR and NN techniques

4.3 SELECTED MODEL

The variables that were significant at 5% level were selected in the final model. The

model was tested across the three data splits. The selected model statistics are for a sample

of 1974 observations. The statistical profile of the variables selected for the final model is

shown in Tables 4.2 – 4.5.

Table 4.2: Estimated correlation matrix of input variables for the LR model of vigor

rameter Intercept Age low Age Med Bug_Cnt Bug_Open Cnt_Mod Msg_Cnt Bug_User Prj_Type

_1

Prj_Type

_2

Prj_Type

_3

Intercept 1 -0.35886 -0.07084 0.00055 -0.05261 -0.25526 -0.07726 -0.05361 0.21212 -0.10423 -0.17011

Age low 0.35886 1 -0.21465 0.08916 -0.03854 0.00933 0.04344 0.02005 0.03375 -0.0337 -0.01294

Age Med 0.07084 -0.21465 1 0.01148 -0.01534 -0.00062 0.03425 0.04097 0.00716 0.0052 -0.01648

Bug_Cnt 0.00055 0.08916 -0.01148 1 -0.74164 -0.03046 -0.09245 -0.07079 0.04318 -0.0373 -0.0061

Bug_Open 0.05261 -0.03854 -0.01534 0.74164 1 -0.02408 -0.06935 -0.18253 -0.01935 0.02089 -0.03823

Cnt_Mod 0.25526 0.00933 -0.00062 0.03046 -0.02408 1 0.00021 -0.00206 0.01404 0.00792 0.01944

Msg_Cnt 0.07726 0.04344 0.03425 0.09245 -0.06935 0.00021 1 0.00995 0.03813 -0.02123 -0.06342

Bug_User 0.05361 0.02005 0.04097 0.07079 -0.18253 -0.00206 0.00995 1 0.01944 0.01669 0.02338

Prj_Type_1 0.21212 0.03375 0.00716 0.04318 -0.01935 0.01404 0.03813 0.01944 1 -0.26233 -0.25661

Prj_Type_2 0.10423 -0.0337 0.0052 -0.0373 0.02089 0.00792 -0.02123 0.01669 -0.26233 1 -0.08358

Prj_Type_3 0.17011 -0.01294 -0.01648 -0.0061 -0.03823 0.01944 -0.06342 0.02338 -0.25661 -0.08358 1

Prj_Type_4 0.05194 -0.0145 0.02384 0.01499 -0.01694 0.10756 0.05432 -0.0349 -0.26777 -0.14892 -0.13123

Prj_Type_5 0.14743 0.00027 -0.00957 0.00915 0.01618 -0.15214 -0.02566 -0.00532 -0.33476 -0.23613 -0.22258

Cnt_Team 0.43373 0.22057 0.00743 0.15462 0.01874 -0.10632 -0.02132 -0.00067 -0.04654 0.03384 0.06354

Downloads 0.07061 0.09335 0.01281 0.03217 -0.15087 -0.06174 -0.06941 -0.02163 -0.0567 0.03683 -0.00739

use_pm 0.27776 0.1444 -0.04091 -0.0572 0.03732 -0.02809 0.00416 0.00285 0.04751 0.01814 -0.15593

Prj_Type_1*

use_mail

0.12992 0.0443 -0.01621 0.01477 -0.03352 0.121 0.05697 -0.01273 0.53131 -0.11653 -0.08482

Prj_Type_2*

use_mail

0.01955 -0.02469 0.00655 0.00346 -0.00582 0.01161 -0.02756 0.0103 -0.13092 0.75242 -0.08134

Prj_Type_3*

use_mail

0.04862 -0.02922 0.00956 0.06662 0.04754 -0.01939 -0.05191 0.01787 -0.10901 -0.07947 0.64573

Prj_Type_4*

use_mail

0.01346 -0.03788 0.03043 0.01225 -0.0148 0.04025 0.03489 0.00471 -0.12647 -0.10682 -0.07512

Prj_Type_5*

use_mail

0.20614 0.00357 -0.00079 0.00303 0.0261 -0.16382 -0.01763 -0.01168 -0.2338 -0.23445 -0.21058

8
4

Table 4.2: Continued

Parameter Prj_Type_4 Prj_Type_5 Cnt_Team Downloads use_pm Prj_Type_1*

use_mail

Prj_Type_2*

use_mail

Prj_Type_3*

use_mail

Prj_Type_4*

use_mail

Prj_Type_5*

use_mail

Intercept -0.05194 0.14743 -0.43373 -0.07061 0.27776 -0.12992 0.01955 -0.04862 -0.01346 0.20614

Age low -0.0145 0.00027 0.22057 0.09335 0.1444 0.0443 -0.02469 -0.02922 -0.03788 0.00357

Age Med 0.02384 -0.00957 0.00743 0.01281 -0.04091 -0.01621 0.00655 0.00956 0.03043 -0.00079

Bug_Cnt 0.01499 -0.00915 -0.15462 0.03217 -0.0572 0.01477 0.00346 -0.06662 0.01225 -0.00303

Bug_Open -0.01694 0.01618 0.01874 -0.15087 0.03732 -0.03352 -0.00582 0.04754 -0.0148 0.0261

Cnt_Mod 0.10756 -0.15214 -0.10632 -0.06174 -0.02809 0.121 0.01161 -0.01939 0.04025 -0.16382

Msg_Cnt 0.05432 -0.02566 -0.02132 -0.06941 0.00416 0.05697 -0.02756 -0.05191 0.03489 -0.01763

Bug_User -0.0349 -0.00532 -0.00067 -0.02163 0.00285 -0.01273 0.0103 0.01787 0.00471 -0.01168

Prj_Type_1 -0.26777 -0.33476 -0.04654 -0.0567 0.04751 0.53131 -0.13092 -0.10901 -0.12647 -0.2338

Prj_Type_2 -0.14892 -0.23613 0.03384 0.03683 0.01814 -0.11653 0.75242 -0.07947 -0.10682 -0.23445

Prj_Type_3 -0.13123 -0.22258 0.06354 -0.00739 -0.15593 -0.08482 -0.08134 0.64573 -0.07512 -0.21058

Prj_Type_4 1 -0.27994 0.01953 0.00886 -0.0236 -0.1041 -0.11036 -0.08206 0.63831 -0.24232

Prj_Type_5 -0.27994 1 -0.02126 0.01489 0.13208 -0.31379 -0.21558 -0.18368 -0.23307 0.85678

Cnt_Team 0.01953 -0.02126 1 -0.00657 0.06458 0.04654 0.0146 0.01246 -0.05131 -0.01115

Downloads 0.00886 0.01489 -0.00657 1 0.04803 0.03303 -0.00139 -0.02539 0.00775 -0.02098

use_pm0 -0.0236 0.13208 0.06458 0.04803 1 0.12505 -0.03346 -0.16471 -0.01412 0.10677

Prj_Type_1*

use_mail

-0.1041 -0.31379 0.04654 0.03303 0.12505 1 -0.23003 -0.22839 -0.26723 -0.39625

Prj_Type_2*

use_mail

-0.11036 -0.21558 0.0146 -0.00139 -0.03346 -0.23003 1 -0.1063 -0.15399 -0.22482

Prj_Type_3*

use_mail

-0.08206 -0.18368 0.01246 -0.02539 -0.16471 -0.22839 -0.1063 1 -0.13748 -0.20446

Prj_Type_4*

use_mail

0.63831 -0.23307 -0.05131 0.00775 -0.01412 -0.26723 -0.15399 -0.13748 1 -0.26923

Prj_Type_5*

use_mail

-0.24232 0.85678 -0.01115 -0.02098 0.10677 -0.39625 -0.22482 -0.20446 -0.26923 1

8
5

86

Table 4.3: Analysis of maximum likelihood estimate of the LR coefficients

Parameter DF Estimate Std

Error

Wald

Chi-Sq

Pr >

ChiSq

Std Est Exp(Est)

Intercept 1 -2.4081 0.1272 358.35 <

0.0001

 0.09

Age Low 1 1.1777 0.1052 125.44 <

0.0001

 3.247

Age Med 1 -0.3297 0.1101 8.97 0.0027 0.719

Bug_Count 1 20.8933 6.1339 11.6 0.0007 0.4168 999

Bug_Open 1 -6.5052 3.1689 4.21 0.0401 -0.1484 0.001

Cnt_mod 1 121.9 14.4809 70.81 <

0.0001

1.8517 999

Msg_Cnt 1 9.0409 3.7898 5.69 0.0171 0.1309 999

aud*Bug_User 1 0.0186 0.00753 6.09 0.0136 0.4976 1.019

Prj_Type 1 1 0.3165 0.3355 0.89 0.3455 1.372

Prj_Type 2 1 -0.3954 0.2284 3 0.0835 0.673

Prj_Type 3 1 0.1276 0.2132 0.36 0.5497 1.136

Prj_Type 4 1 0.5266 0.2593 4.12 0.0423 1.693

Prj_Type 5 1 -0.8799 0.3204 7.54 0.006 0.415

Cnt_Team 1 0.0573 0.0152 14.25 0.0002 0.1423 1.059

Downloads 1 1.16E-06 4.54E-07 6.52 0.0106 0.3694 1

use_pm 1 0.2784 0.0875 10.13 0.0015 1.321

Prj_Type*Use_mail 1 0 1 0.8497 0.3288 6.68 0.0098 2.339

Prj_Type*Use_mail 2 0 1 -0.3643 0.2257 2.61 0.1065 0.695

Prj_Type*Use_mail 3 0 1 0.00637 0.2101 0 0.9758 1.006

Prj_Type*Use_mail 4 0 1 -0.0297 0.2578 0.01 0.9082 0.971

Prj_Type*Use_mail 5 0 1 -0.6588 0.3243 4.13 0.0422 0.517

87

Table 4.4: Fit statistics of the train, test and validate samples of the LR model

Description Train Validate Test

Akaike's Information Criterion 1335.931214 . .

Average Squared Error 0.097372052 0.1081578 0.1015953

Average Error Function 0.330443795 0.4166475 0.3563485

Degrees of Freedom for Error 1957 . .

Model Degrees of Freedom 16 . .

Total Degrees of Freedom 1973 . .

Divisor for ASE 3946 2958 2958

Error Function 1303.931214 1232.4434 1054.079

Final Prediction Error 0.098964236 . .

Maximum Absolute Error 0.999995977 1 0.9999806

Mean Square Error 0.098168144 0.1081578 0.1015953

Sum of Frequencies 1973 1479 1479

Number of Estimate Weights 16 . .

Root Average Sum of Squares 0.312044951 0.3288735 0.3187401

Root Final Prediction Error 0.314585817 . .

Root Mean Squared Error 0.31331796 0.3288735 0.3187401

Schwarz's Bayesian Criterion 1425.328182 . .

Sum of Squared Errors 384.2301154 319.93067 300.51876

Sum of Case Weights Times Freq 3946 2958 2958

Misclassification Rate 0.131272174 0.1372549 0.1331981

88

Table 4.5: Odds ratio estimates of the input variables of the LR model

 Variable Effects Estimate

Age Low vs. medium 7.582

Age Medium vs. high 1.679

Bug_Cnt 999

Bug_Open 0.001

Cnt_Mod 999

Msg_Cnt 999

Aud*Bug_User 1.019

Cnt_Team 1.059

Downloads 1

use_pm 0 vs. 1 1.745

4.4 DATA INTEGRITY AND DIAGNOSTIC CHECKS

A variety of specification tests recommend for Logistic Regression models were

performed on the final model (Hosmer and Lemeshow 2000; Menard 2002). The Pearson

Residuals and Deviance Residuals were examined for case wise effect on the fit. No

violations were detected (Hosmer and Lemeshow 2000; Menard 2002). The highest

condition number of the model was 1.9, which is well within the recommended cutoff limit.

The Variance Inflation Factor (VIF), of the independent variables were well below 5,

suggesting that multicollinearity was not affecting the estimates (Belsley et al. 1980; Neter

et al. 2004).

89

To test the fit of the final model, the first step is to ensure that the model contains all

required variables, entered in the correct functional form. The next step is to evaluate the

affectivity of the model, i.e. the goodness-of-fit. This is to ensure that knowing the values of

all the independent variables in the model allows an accurate prediction of vigor, better than

in case of no information in the independent variables. The next step is to evaluate how well

the group of independent variables explains the vigor. In Logistic Regression models, the

Log Likelihood (LL) criteria are used to select model parameters. The value of -2LL of the

model with and without the independent variables was used to check the model fit. The fit of

the model is determined by the reduction in the value of -2LL with and without the

covariates. The results of this test are shown in Table 4.6. The results showed that the model

is significant at 5% significance level (p < 0.0001).

Table 4.6: Likelihood ratio test for global null hypothesis: BETA=0

-2 Log Likelihood

Intercept

Only

Intercept &

Covariates

Likelihood

Ratio Chi-

Square

DF

Pr > ChiSq

1803.960 1292.126 511.834 20 < 0.0001

The accuracy of a Logistic Regression model can be tested by the area under the

ROC
24

 curve. As a rule, the area under the curve indicates how well the model provides

 24
Receiver Operating Characteristics (ROC) is from the signal detection theory and it shows how the

receiver operates the existence of signal in presence of noise. It plots the probability of detecting true signal

(sensitivity) and the false signal (1-sensitivity) for an entire range of possible cutoff points.

90

discrimination between the high and low values of the target variable. The acceptable limits

for the ROC curve are given in Table 4.7.

Table 4.7: Acceptable ranges of ROC value

IF ROC = 0.5 Model provides no discrimination

If 0.7 ≤ ROC < 0.8 Model provides acceptable discrimination

If 0.8 ≤ ROC < 0.9 Model provides excellent discrimination

If ROC ≥ 0.9 Model provides outstanding discrimination

Figure 4.9: ROC for the final LR model of vigor

For the final model of vigor, the area under ROC curve was 0.834, which implies

that the selected model for vigor provides excellent discrimination between the projects of

high and low vigor. The ROC curve for the final model for the train, validate and test

samples is shown in Figure 4.9.

91

Figures 4.10 – 4.12 show Cumulative Lifts, Lift Chart and percentage of the

responses captured correctly. The results for all three samples of train, validate and tests are

shown in the output. If the model had not been a good one, there would be significant

differences between the training, validation and testing plots, indicating that the model is not

robust. These charts showed that the all fits are acceptable for the final model selected and

indicated a good fit that can be generalized over the population.

Figure 4.10: Cumulative lift for the final LR model, train, validate and test samples

92

Figure 4.11: Lift of the final LR model, for train, validate and test samples

Figure 4.12: Percentage captured responses for LR model, for train, validate and test samples

93

Another way to summarize the results of a fitted Logistic Regression is through the

classification table. The classification table is the result of cross classifying the outcome

variable with a dichotomous variable whose values are derived from the estimated logistic

probabilities. The classification table of the final model is shown in Table 4.8. The

misclassification rate for the final model is less than 13%, which indicates a good fit.

Table 4.8: Classification table for the LR model

Target Outcome Target % Outcome % Count Total %

0 0 87.5956 97.9829 1603 81.2468

1 0 12.4044 67.3591 227 11.5053

0 1 23.0769 2.0171 33 1.6726

1 1 76.9231 32.6409 110 5.5753

The train sample was used during model building. Validation was performed on the

validate sample and the test sample was used for model testing. The formulation of the LR

equation is shown below. It contains all the variables and the interactions that were

significant in the final model.

+++++=)_()_()()()(4321 OpenBugCntBugAgeAgeVigoritlog medlow ββββµ

+++++)_()_()_()_()_(98765 TeamCntTypePrjUserBugCntMsgmodCnt βββββ

)_*_()_()(121110 mailuseTypePrjpmuseDownloads βββ ++

The final model was selected based on the best-fit statistics (see Table 4.4).

94

4.5 DISCUSSION

It is seen that the number of bugs (Bug_Cnt) in a project has a positive relationship

to the probability of high Vigor. At first glance, this might appear counter intuitive.

However, a deeper look into the OSS development process shows that the identification and

reporting of bugs cannot be an indicator of the quality of Open Source Software. Mere

reporting of bug indicates that the project is being used and the faults are being reported. In

fact, the process of detecting and reporting bugs has been one of the processes of OSS that

has been associated to its success (Raymond 2001). This claim however had never been

empirically tested. Therefore, this research provides the empirical evidence that the process

of software testing in OSS projects is improved by efficient discovery of bugs

Although the number of bugs reported has a positive influence on vigor, the number-

of-bugs-open (Bug_open) has a negative influence. This indicates that whereas the reporting

of the bugs is a contributor to vigor, the inability of the project to remove the bug leads to

decline in vigor. Thus if in a project, bugs are being discovered, but not removed, the odds

of project survival reduce. There can be several reasons for it, e.g., large number of bugs

open can be because of the lack of enough effort available to remove them. High complexity

of the code and low maintainability can also cause the number-of-bugs-open to increase.

Therefore, number-of-bugs-open can be an indicator of the lack of quality

Many OSS projects use message boards as means of discussion and communication.

The count of the messages (Msg_Cnt) on project boards has a positive impact on vigor.

95

Therefore, projects with high level of communication between developers and users show

higher vigor.

The Count of the new modules is an indicator of the increase in functionality of a

project. As a project develops and new functionality is added the number of new modules

increases. Though the sample of development projects only contains projects that had been

in OSS community of over a year, yet the increase in functionality can vary with time.

Therefore, the functionality of the projects was normalized for time. The functionality of the

project (Cnt_Mod) has a positive impact on vigor. Thus, a project that offers more

functionality over time has a greater vigor.

 Project downloads (Downloads) have a positive impact on vigor. Though downloads

alone cannot be a measure of the project success or popularity, yet a high number of

downloads indicates that more people are interested in the project. To account for different

registration dates for the projects, downloads per unit time were used in the analysis.

The final model indicated that a large team size (Cnt_Team) has a positive impact on

vigor. This finding is very interesting in terms of OSS specific research. In OSS teams work

online and there is very little face-to-face working within the teams. CSS research indicates

that large team sizes sometimes can have a negative effect on the project performance. Yet

in OSS, the analysis indicates that larger teams can improve the vigor of a project. The

reasons can be that larger teams have more resources available for managing the projects

and some of the large team issues encountered in CSS are not applicable in OSS. In OSS,

96

the participation to a project is voluntary. Therefore, the creation of teams takes place over

time, depending upon the interest and expertise of the programmers. Therefore, once a team

is formed, typical issues of conflict management and task distribution in CSS are not directly

valid in the OSS domain.

The number of bugs reported by the end users (Bug_User) of the project had a

positive impact on project vigor. The end user involvement in the development and testing

process is a unique characteristic of OSS projects. This is indicative of the end user

involvement in the project and the usage of that software. Downloads alone do not lead to

the use of a project. Since a download is free, there is no way to measure if the user ever

uses the project. However, bugs reported by the end user definitely indicate that the project

is being actively used. This also indicates that the user community is involved in the process

and is responsible enough to report the bugs to the project team. In fact, the role of end user

has been much glamorized in the OSS literature.

The bug reported by end user alone was not significant in the initial runs. However,

the decision tree results revealed a potential interaction effect with the intended audience

(Aud). As mentioned earlier, the intended audience of the OSS projects was divided into two

main categories; Projects developed for other programmers (e.g. plug-ins, reusable modules)

and the projects developed for non-programmers or complete applications. When the

interaction term for audience type and the bugs reported by end users was added

(Aud*Bug_User), the variable was not only significant, but it also improved the

performance of the LR node.

97

In this research, the variable "project type" (Prj_Type) was developed using text

mining of the project description data. SourceForge (SF) provides several categorizations of

the projects based on industry, application, etc. This categorization is selected at the time of

registration and one project can be placed into several categories. The existing

categorization of SF was not useful for model building. Every project had to be placed in

only one category and there had to be a uniform criterion for this purpose. Project

description data contained significant details, which can be used to identify a category.

Therefore, text analysis was performed to extract useful information regarding the nature of

the project. This information was used to place each project in a cluster indicative of the

project type.

 Variable (Prj_Type) had significant impact on the project vigor. This implies that

some types of projects might be better suited for development compared to others. In the

final model, it can be seen that projects that were in Cluster #5 have significant negative

impact on project vigor. From the analysis of keywords, it appears that these projects are

typically JAVA Applications and Tools. Newer projects can be categorized into the exiting

clusters by scoring them based on the project description. Therefore, the effects of the

project type on the project vigor can be analyzed.

Age (Age)of the project was used as a control variable. Software engineering

literature has used this to account for different ages of the projects or systems under

investigation. In this research, preliminary results indicated that there was a pattern in the

age of the project and its relationship to vigor. Binning the variable Age (computed from the

98

registration date of a project), it was found that there were three significant bins for the age

of the projects. The projects were categorized based on their age. Recent projects had a

higher probability of high vigor compared to older projects. This can be explained in two

ways. The first explanation is based on literature in software evolution. Software evolution

laws assert that as a software system ages, it declines in performance (Lehman and Ramil

2001; Lehman and Ramil 2002). Godfrey (2001) tested these laws in the OSS domain using

Linux data. The scope of the current research does not encompass the complex questions

about laws of software evolution, but variation in the patterns of vigor, based on the age, is

indicative of an interesting future research question. Another explanation, which is more

intuitive, is that as the OSS movement has matured so has the processes and tools of project

development and management. Therefore, projects that are more recent, use advanced

resources and therefore have a higher chance of surviving. Given two projects of same

performance and functionality, it might be worthwhile to use the period of evolution of the

project to predict its future performance.

4.6 CONCLUSIONS

The model developed and presented in this chapter adds to the body of knowledge in

OSS project development. It is the first ever, empirical investigation into the affects and

significance of end user involvement in OSS projects. This model not only provides a

quantitative tool to compare the performance of various OSS projects, but it also identifies

the factors that contribute to vigor in OSS projects. The identification of the factors is very

99

important to the practitioner and research community. The development teams can better

monitor the performance of their projects and adjust the input variables to achieve the

desired outcome. For businesses that wish to adopt OSS projects, this model provides them

the ability to study the potential projects and make better decisions regarding adoption. For

research community the model provides a deeper understanding of the phenomenon of OSS

development and a better model to predict software project outcomes. It also identifies some

new factors that have not been used in prior research and with further work can be used in

developing a more generalized model for software projects. This study also highlighted the

use of multiple predictive modeling techniques in effective modeling. Tables 4.9-4.13

indicate the variables that were significant in the final model.

Table 4.9: Process related variable measurement and sources

Variable Measure Symbol In final

Model

Project Management Use PM (Y/N) Use_PM

Process Quality Mean Time to fix a bug (MTTF) MTTF

Forum use (Y/N) Use_forum

Number of forums Cnt_forum

Use Mail (Y/N) Use_mail

Communication

Channel

Use News Groups (Y/N) Use_news

Req. Implementation Time to implement a feature TTFT

Use CVS (Y/N) Use_CVS Configuration

Management
Count CVS commits Cnt_CVS

Process Quality Count of bugs Bug_Cnt

 Bugs not fixed Bug_Open

100

Table 4.10: Product related variable measurement and sources

Variable Measure Symbol In final

Model

Increase in features Cnt_feat Functionality

New Modules Cnt_file

Number of distinct members

reporting the bugs

Cnt_mem Maintainability

Number of distinct members

fixing the bugs
Cnt_Usr_fix

Number of platforms supported Cnt_OSI Portability

Number of programming

languages supported

Cnt_Prg_lang

License Type License type Lisc

Project Type Primary categorization of the

project.

Pjr_type

Downloads Downloads Usefulness

Page Views Pg_View

Number of translations Cnt_tran Product Compatibility

Number of platforms supported Cnt_plat

Usage Usage by end user Bug_User

Table 4.11: Control variable measurement and sources

Control

Varisweables

Measure Symbol In final

Model

Size Source Lines of Code Size

Age Time elapsed since the start of

project

Age

101

Table 4.12: Resource related variable measurement and sources

Variable Measure Symbol In final

Model

Effort Number of registered developers for the project Cnt_Team

Team Communication Messages posted at development forums Forum_post

Table 4.13: User related variable measurement and sources

Variable Measure Symbol In final

Model

User Type Audience Programmer (Y/N) AUD (o= prog,

1 = non-prog)

Forum posts by users Cnt_Msg Activity Level of

User
Number of distinct individuals

posting messages, bugs or

feature requests User_Int

Community Size Number of distinct senders of

messages

Cnt_User

102

CHAPTER V

MODEL FOR RESILIENCE

A model for the performance evaluation of OSS projects in maintenance is

formulated and discussed in this chapter. The maintenance performance is measured as the

resilience of a project. Data from SourceForge warehouse is used to develop the model using

various predictive modeling techniques of Data Mining. Later the model is expanded into a

two-stage model to explain the outcomes of OSS projects in the maintenance phase. This

model identifies OSS maintenance phenomenon factors and their relationships. The use of

the two-stage model explains how various outcomes affect each other and what factors can

be controlled to improve the overall performance of a project. The results of the final selected

model are discussed in details.

5.1 BACKGROUND

The maintenance phase of a software project refers to the lifecycle activities carried

out once a project has been operational. Software maintenance tasks include removing and

correcting errors, adding new functionality and making enhancements to improve its

performance. Earlier studies have suggested that maintenance accounts for 60-90% of the

software lifecycle (Bennett and Rajlich 2000; Erlikh 2000; Zelkowitz et al. 1979). Software

maintenance activities consume a large portions of IT budgets and manpower (Eastwood

1993; Lientz and Swanson 1980). A substantial portion of Information Systems and

103

Software Engineering literature is devoted to the study of software maintenance.

Considering the high cost and manpower requirements of software maintenance, there is

significant research on software maintenance in Closed Source Software (CSS) projects.

Generally, CSS vendors do not allow the users to view source code or to detect

locate or remove bugs. The vendor controls all source code level maintenance activity. On

the other hand, Open Source Software (OSS) users have the ability to view, upgrade and

modify source code. OSS users can detect bugs and report them to the project team, submit

feature and support requests. Once a bug is detected, the information is provided on the

project web page and users can recommend solutions. This creates a large maintenance

community, which involves the end user in the bug detection and removal process (Feller

and Fitzgerald 2002; O'Reilly 1999; Raymond 2001). The maintenance process in OSS

projects however is not mandated as it is in the case of CSS. It is critical that the

maintenance performance of an OSS project is predicable, especially from the standpoint of

corporate customers, which may see the cost of software maintenance to override any

advantage of free availability of the code.

The two major causes of project failure during the maintenance phase are delays in

bug removal and the inability to incorporate user requests (Pinto and Samuel. J. Mantel

1990; Pinto and Slevin 1987; Seddon et al. 1999). In this research, this aspect of project

performance is captured through the dimension of Resilience. In this research, measuring a

project’s resilience to error detection and removal was used to create a model of OSS project

maintenance phase performance.

104

5.2 MODEL BUILDING

This research used Data Mining techniques for model formulation, validation and

testing. To identify the factors that affect the maintenance phase performance of OSS

projects, SourceForge (SF) dataset was used. The variables identified earlier in Tables 3.1-

3.5 were extracted for the SF projects in their development phase.

The initial dataset was examined for dummy projects and missing values. As in the

case of the development phase model, the projects in maintenance phase exhibited similar

characteristic for idle projects. Such projects had never been operationalized and could not

have been used for the analysis. Using the artifact repository, which contains data on all

submitted artifacts, the valid projects were separated out of the entire dataset. As mentioned

in Chapter IV, the projects that had been active on SF for at least a year (since May 2005)

were used in the analysis. The dataset was validated against an independent data extraction

performed by another researcher. This ensured the integrity of the data collected.

SF maintains a detailed bug repository for all the bugs reported to the registered

projects. Information on time taken to fix a bug was extracted using SQL queries. The Mean

Time To Repair (MTTR) was computed according to the same procedure as discussed in

Chapter III. A small MTTR indicates high resilience and a high maintenance performance.

The clean dataset was imported to SAS EM 5.2. This dataset had 4965 observations.

The data was first examined using the insight node. The distributions of the values of MTTR

105

were examined and a cutoff value of MTTR was selected based on the distribution of the

data. The data indicated that there was a cutoff at MTTR of one day. Therefore projects with

MTTR less than one day have a low MTTR, i.e. high resilience and vice versa. The

distributions of the important variables are available in the Appendix B.

The transformation node was then used to make needed transformations and to create

new variables. Variables were normalized with respect to time, if needed, new variables

were computed (e.g. defect density = SLOC / Bugs) and the target variable was created. The

cutoff value as suggested from the analysis using insight node was used to create the target

variable. Projects with MTTR higher than the cutoff were labeled as “High” and the MTTR

was coded as 1. The projects with MTTR lower than the cutoff were labeled as “Low” and

coded as 0. Note that High and Low values are for MTTR, which is the inverse of resilience,

indicating that a project with a high MTTR has a low resilience. The distribution of MTTR

is shown in Figure 5.1. It can be seen that only 9.55% of the projects had a low MTTR i.e.

high resilience. The rest of the projects with high MTTR were categorized as low resilience

projects.

106

Figure 5.1: Distribution of mean time to repair (MTTR)

Next text mining of the project description data for projects in the maintenance phase

was performed. There was a reason for using this categorization separately and not with the

development phase project. While considering the SF dataset it was seen that the majority of

the projects in the maintenance phase were launched as production projects from the start

and were never in the OSS community for development purpose. Therefore in order to

preserve any possible differences that may exist in the patterns of project types in the

development and maintenance phases, two different text analyses were performed.

The project description textual data was used to create a new variable called “project

type”. The dataset of project description for each of the project in its development phase was

used in SAS Text Miner to cerate the new variable. Initially the default stop list was used on

107

the dataset. The stop list contains the words that are ignored while the text analysis is

performed. The default list contains most common occurring words that do not carry

information regarding the text being analyzed. The initial run with the default stop list

provided with a word frequency table. For such a large amount of data, performing an initial

run with default stop list is beneficial. A new start list was created by removing the words

that were not considered a project description or added no usefulness to the analysis e.g.

frequent words like where, upon or abbreviation like en, dl etc. The new list with “keep

terms” is saved as a new start list and a final analysis is performed based on this list.

The Text Miner node was set to cluster the terms automatically. The option to

generate the Singular Value Decomposition (SVD) terms and perform clustering based on

the SVD dimension was selected. A maximum number of 40 clusters were allowed. The

term stemming option was set to “Yes”. The frequency weighing method was “Log” and

the term weighting method was “Entropy”. The expectation maximization algorithm was

used for clustering. This algorithm is best suited in cases where the expected number of

categories is unknown.

 The observations were classified into seven clusters. The resulting clusters and the

descriptive terms along with percentages and frequencies are shown in Table 5.1.

108

Table 5.1: Description terms, frequency and percentage of each cluster for project type

Cluster Percentage Freq Descriptive Terms

1 0.150252 746 + library, c++, + class, python, + support

2 0.035851 178 + game, + player, + play, game, + base

3 0.091037 452 + file, into, + will, + program, + image

4 0.082578 410 php, + easy, mysql, web, + database

5 0.090634 450 + framework, development, + application, java, web

6 0.338771 1682 + server, + client, + allow, + have, + tool

7 0.210876 1047 + code, + source, + project, java, + base

Unlike the development data, the maintenance data split into seven clusters. Cluster

#1 contains terms associated to programming languages e.g. C++ and python. Cluster #2 is

associated to games, Cluster #3 contains terms related to image programs, Cluster #4 has

terms related to databases, Cluster #5 had terms related to JAVA and web applications,

Cluster #6 has terms related to networking while Cluster #7 has terms related to general OSS

projects. The segment profile of the clusters is shown in Figure 5.2.

Once the text mining results were merged with the original dataset, the new data was

ready to be used for model building. The process flow diagram for the model building

process is shown in Figure 5.3.

109

Figure 5.2: Segment profile of clusters for project type

 Figure 5.3: Process flow diagram for the analysis of resilience

110

The Sampling node was used to create the data splits. The data set was split into 40%

training, 30% validation and 30% test sample. The details of why and how the sampling was

performed have been discussed in Chapter III. Since the percentage of the observations with

high resilience was very small, stratified random sampling was performed to ensure that

each spilt is an accurate representation of the actual population. Thus, the sample used in

model building is an accurate representative sample of the actual population.

Logistics Regression, Neural Networks and Decision Trees were all used to build the

model. The stepwise method for variable selection was used in the Logistic Regression

analysis. Stepwise Logistics Regression is recommended method of variable selection for

exploratory research (Hosmer and Lemeshow 2000). It was found that Decision Trees was

not a suitable technique for the given data. Several combinations of the number of terms in

each leaf and splitting algorithms were used, but none gave reliable results. Therefore, the

use of Decision Trees for the analysis was abandoned. The further comparisons and model

building was performed using the Logistics Regression and Neural Networks. The outputs of

the initial runs are shown in Figures 5.4 and 5.5.

Based on the AIC, Lift and ROC Curve values, the Logistics Regression model was

selected as the final model. The model was built using stepwise regression and possible

interaction affects were examined.

The model was evaluated performing diagnostic testing and Logistics Regression

evaluation criteria.

111

Regression

Neural Network

Figure 5.4: Lift values for LR and NN nodes for resilience

Regression

Neural Network

Figure 5.5: ROC curves for LR and NN nodes for resilience

112

5.3 DATA INTEGRITY AND DIAGNOSTIC CHECKS

A variety of specification tests recommended for Logistic Regression models were

performed on the final model (Hosmer and Lemeshow 2000; Menard 2002). The Pearson

Residuals and Deviance Residuals were examined and no violations were detected (Hosmer

and Lemeshow 2000; Menard 2002). The highest condition number of the model was 1.56,

which is well within the recommended cutoff limit. The Variance Inflation Factor (VIF), of

the independent variables were well below 5, suggesting that multicollinearity was not

affecting the estimates (Belsley et al. 1980; Neter et al. 2004).

To test the fit of the final model, the first step is to ensure that the model contains all

required variables, entered in the correct functional form. The next step is to evaluate the

affectivity of the model, i.e. the goodness-of-fit. This is to ensure that knowing the values of

all the independent variables in the model allows an accurate prediction of resilience, better

than the case of no information in the independent variables. The next step is to evaluate

how well the group of independent variables explains the resilience. In Logistic Regression

models, the Log Likelihood (LL) criteria are used to select model parameters. The values of

-2LL of the model with and without the independent variables were used to check the model

fit. The fit of the model is determined by the reduction in the value of -2LL with and without

the covariates. The results of this test are shown in Table 5.2. The results showed that the

model is significant at 5% significance level (p < 0.0001).

113

Table 5.2: Likelihood ratio test for global null hypothesis: BETA=0

-2 Log Likelihood

Intercept

Only

Intercept &

Covariates

Likelihood

Ratio

Chi-Square

DF Pr>

ChiSq

1168.711 972.835 195.8758 4 < 0.0001

The accuracy of a Logistic Regression model can be tested by the area under the

ROC curve. As a rule, area under the curve indicates how well the model provides

discrimination between the high and low values of the target variable. The acceptable limits

for the ROC curve are given in Table 4.7.

 For the final model of vigor the area under ROC curve was almost 0.8, which

implies that the selected model for resilience provides excellent discrimination between the

projects of high and low vigor. The ROC curve for the model is shown in Figure 5.6.

114

Figure 5.6: ROC curve for the final LR model of resilience

The final form of the model can be written as :

)_()_()()()0(4321 mailUseUserBugDownloadsAgeRlogit ββββµ ++++==

Where R = 0 indicates low resilience.

Since target = 0 means a low time to fix an error, i.e. high resilience, therefore the

intercept values are for odds of low resilience or resilience = 0. The estimates of the

intercepts are shown in Table 5.3.

115

Table 5.3: Analysis of maximum likelihood estimates of input variables of the LR model

Parameter

DF

Estimate

Standard

Error

Wald

Chi-

Square

Pr >

ChiSq

Standardized

Estimate

Exp(Est)

Intercept 1 -7.4232 2.7707 7.18 0.0074 0.001

Downloads 1 -0.0986 0.0273 13.01 0.0003 -0.348 0.906

use_mail 1 0.2498 0.0953 6.87 0.0088 1.284

Bug_User 1 -0.5531 0.0814 46.21 < 0.0001 -1.8399 0.575

Age 1 0.000482 0.000175 7.58 0.0059 0.1305 1

The bugs reported by users have a positive impact on the resilience. This means that

projects with higher end user activity in reporting bugs have a greater probability of having

low MTTR and high resilience. Downloads had a similar affect on the resilience of the

project.

The age of the project has a negative impact on the resilience. Either this affect is

indicative of the evolution of the better maintenance practices in newer projects or the

decline of maintainability of a project as it ages. According to the laws of software evolution

as a software system ages, it becomes more complex and harder to maintain. The increased

complexity can increase the difficulty in removing bugs because of complex interfaces and

spaghetti code. The affect of age is being used as a control variable in this study. Later

studies can be done with focus at the affect of age on the resilience over the entire lifecycle

of single project.

116

The model also indicates that the use of mail had a negative affect on the resilience.

At first glance, this result appears counter intuitive because use of mail messages should not

adversely affect the maintenance process. One of the possible explanations can be that if a

project offers mail messaging, then some users and developers might end up using the mail

messaging system to report bugs instead of the bug repository. This could cause potential

delays in the correct reporting of bugs and therefore delay the process of bug removal. This

factor alone can be studied in detail, to discover the cause of this negative affect. The fit

statistics for the final model is presented in Table 5.4. The misclassification rate for this

model is at an acceptable 9%.

Although the selected model provides an acceptable predictive power of project

resilience, yet the bugs reported by users and downloads alone provide no useful tools to the

project managers or end users to evaluate and control the project. This is because both the

variables are outcomes themselves rather than being controllable events. Therefore, it was

decided that further models would be created to explain the bugs reported by end users and

the number of downloads. This approach was very useful in the light of a theory proposed

by Delone and McLean on Information System success, which relates the success of an

Information System to the system’s usefulness and usage.

The number of the bugs reported by the end users indicates that the product is

being used and understood by the end user. This also indicates that end user is spending time

and effort in locating and reporting the errors. According to OSS literature, the reporting of

117

a bug is an indication of an involved end user rather than the low quality of software

(supported by the first model also).

Table 5.4: Fit statistics for the LR model

Fit Statistic Training Validation Test

Akaike's Information Criterion 1062.242 . .

Average Squared Error 0.078264 0.080251 0.075512

Average Error Function 0.265048 0.277648 0.24949

Degrees of Freedom for Error 1980 . .

Model Degrees of Freedom 5 . .

Total Degrees of Freedom 1985 . .

Divisor for ASE 3970 2978 2982

Error Function 1052.242 826.8363 743.9803

Final Prediction Error 0.078659 . .

Maximum Absolute Error 0.999662 0.99916 0.96311

Mean Square Error 0.078462 0.080251 0.075512

Sum of Frequencies 1985 1489 1491

Number of Estimate Weights 5 . .

Root Average Sum of Squares 0.279757 0.283287 0.274795

Root Final Prediction Error 0.280463 . .

Root Mean Squared Error 0.28011 0.283287 0.274795

Schwarz's Bayesian Criterion 1090.209 . .

Sum of Squared Errors 310.7083 238.9889 225.1777

Sum of Case Weights Times Freq 3970 2978 2982

Misclassification Rate 0.097733 0.097381 0.09725

Total Profit for AVER_05O 194 145 145

Average Profit for AVER_05O 0.097733 0.097381 0.09725

118

The number of downloads would be high if the OSS user community finds need for a

certain software. Therefore a high number of downloads would imply that the project is

considered useful by the potential user and that is the reason it is being downloaded more

often. However, not every download results in usage. In fact the use of downloads alone as a

measure of project performance can be very misleading. The usage and the usefulness both

have a positive impact on the resilience i.e. a project that is more useful and is used more

often has a high resilience (or low MTTR).

This research was conducted to identify factors that OSS project teams can manage

to improve the performance of their projects. However, the resulting factors in the model of

resilience cannot be controlled directly controlled. Therefore, two additional models were

developed to explain the usefulness and usage of OSS projects in maintenance phase. Each

of these models is discussed in detail below.

5.3.1 Model of OSS Project Usage

The role of the end user is very important in the development and maintenance of

OSS projects. As mentioned earlier, the bug reporting by the end user has a positive impact

on the resilience of OSS projects. The number of bugs reported by the user is indicative of

the usage of the project since bug detection is related to its use.

119

It is not possible to detect all the problems in the software during its development

phase. As the software becomes operational, its users encounter bugs and errors. The

occurrence of bugs does not necessarily imply low quality. A project with low number of

detected bugs can have low quality because bugs may not have been discovered due to very

low usage. The bugs reported by the end users also indicate the involvement of the user in

its maintenance and effectiveness of a project’s bug reporting process.

All the variables identified in section 3.2.3, were used in this analysis. An additional

variable was created called “defect density”. Defect density was created using the total

number of bugs divided by the size of the project. Defect density has been typically used as

a measure for the quality of a project. In operational software system, project quality can

play a vital role in the usage. If the quality is low, users will abandon the use of the project.

Three Data Mining techniques were used for the analysis; Decision Tree, Neural

Network and Linear regression. Regression analysis was considered suitable since the target

variable i.e. bugs reported by users, was not a binary variable. The process flow diagram for

the model is shown in figure 5.7.

120

Figure 5.7: The process flow for the models of usage and usefulness

The Bugs reported by end user (Bug_User), was selected as the target variable. The

data was split into three datasets; 40% train, 30% validate and 30% testing. For the Linear

Regression analysis, Stepwise method was used for variable selection. The model was

allowed to use possible interactions between the independent variables. The Linear

Regression model was selected as the final model, based on the lowest value of AIC and the

means of the predicted values. The score ranking overlay plot for the model is shown in

figure 5.8. The details of the Decision Tree and Neural Network are available in the

Appendix C.

121

Reg

NN

DT

DT
Reg

NN

DT
NN

Reg

Figure 5.8: The score ranking overlay for the analysis of usage

122

The Linear Regression model that was selected as the final model was significant at

the 5% level (p < 0.0001). The results are shown in Table 5.5.

Table 5.5: Analysis of variance of the Linear Regression model for usage

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 34744838 4963548 133.06 < 0.0001

Error 1915 71435077 37303

Corrected Total 1922 1.06E+08

The adjusted R
2
 of the model is 0.3248, which implies that the model explains

32.48% of the total variance in the bugs reported by users. This value is acceptable for

exploratory analysis.

R-Square = 0.3272,

Adj R-Sq = 0.3248

The individual variable significances and maximum likelihood estimates of the

parameters in the model are shown in Tables 5.6 and 5.7. Whereas the pair wise correlations

of the variables selected in the model are shown in Table 5.8.

123

Table 5.6: Type 3 analysis of effects of the input variables of Linear Regression model

Table 5.7: Analysis of maximum likelihood estimates of the input variables of the Linear

Regression model

95% Confidence

Limits

Parameter

DF

Estimate

Standard

Error

t Value

Pr > |t|

Lower Upper

Intercept 1 51.1639 4.5667 11.2 < 0.0001 42.2132 60.1145

Quality*Aud 1 -0.3682 0.1042 -3.53 0.0004 -0.5725 -0.1639

Size 1 28.2055 4.1179 6.85 < 0.0001 20.1346 36.2763

Cnt_Mod 1 14.4515 3.6731 3.93 < 0.0001 7.2524 21.6505

Quality 1 0.4101 0.1071 3.83 0.0001 0.2002 0.62

Cnt_msg 1 65.1593 4.5485 14.33 < 0.0001 56.2444 74.0742

Age 1 -12.1766 4.4585 -2.73 0.0064 -20.9151 -3.438

Cnt_Team 1 70.5376 4.92 14.34 < 0.0001 60.8945 80.1806

Effect DF Sum of

Squares

F Value Pr > F

Quality

*Aud

1 465554.249 12.48 0.0004

Size 1 1750121.23 46.92 < 0.0001

Cnt_Mod 1 577442.348 15.48 < 0.0001

Quality 1 547127.749 14.67 0.0001

Cnt_msg 1 7655290.22 205.22 < 0.0001

Age 1 278234.645 7.46 0.0064

Cnt_team 1 7667410.8 205.54 < 0.0001

124

Table 5.8: Pair wise correlation of input variables of the Linear Regression model

Parameter Intercept AUD*Quality Size Cnt_Release Quality Forum_Post Age Cnt_Team

Intercept 1 -0.13672 -0.01276 -0.03808 -0.25689 0.01219 0.05715 -0.00519

AUD*Quality -0.13672 1 -0.00922 0.02707 0.64235 0.04702 0.00428 0.00508

Size -0.01276 -0.00922 1 -0.24489 0.01522 -0.22701 0.01387 -0.15954

Cnt_Mod -0.03808 0.02707 -0.24489 1 0.04779 0.03075 0.04879 -0.18576

Quality -0.25689 0.64235 0.01522 0.04779 1 -0.05622 0.05857 0.02909

Cnt_Msg 0.01219 0.04702 -0.22701 0.03075 -0.05622 1 0.0267 -0.12277

Age -0.05715 0.00428 -0.01387 0.04879 0.05857 0.0267 1 0.13383

Cnt_Team -0.00519 0.00508 -0.15954 -0.18576 0.02909 -0.12277 0.13383 1

The model fit was accessed using the requirements for Linear Regression models.

Various specification and diagnostics checks were performed for the estimated model. As

mentioned earlier, the assumption for normality was not required considering that the

sample size was large. Examination of the Besley-Kuh_Welsch diagnostic (Belsley et al.

1980) indicated that the highest condition number for the model of 4.06 which was within

the recommended cutoff limit of 20. The VIF for the independent variables were all below 5,

suggesting that multicollinearity was not unduly influencing the estimators (Neter et al.

2004).

125

The resulting model for usage of OSS projects in maintenance phase is given by:

(Cnt_Mod)βMsg)(Cntβ(Qual)β(Size)β(Age)ββBug_UserE 543210 _)(+++++=

AUD)(Qualβ(Cnt_Team)β *76 ++

The quality (Qual) of the code had a positive impact on the bugs reported by users.

This means that higher quality projects will have a more involved user community. The

usage of the project will increase if the quality is improved and vice versa. A good quality

project would keep the users interested in using the project and would have a high level of

user retention. On the other hand, if the project quality is low, the users can abandon the

project. OSS projects being free and without any contractual obligations, the affect of

quality of user contributions would be significant. The code quality also had an interaction

affect with the end user audience (Qual *AUD). For projects that were targeted purely for

developers, the low code quality had a negative affect on the bugs reported by end users,

which can be explained by the nature of the end user. For projects developed primarily for

the developer community, the end users of the project were also programmers. In such cases,

users might find and fix a problem at their own end and never report it. A non-programming

user however would depend upon the project team to fix problems. Therefore, a decrease in

the bugs reported by end users in case of an interaction between quality and programming

audience indicates the differences in the nature of the users.

The forum activity (Cnt_Msg) represents the end user involvement in the project.

Forums are a useful resource for online communities to participate in project activities.

Forums are used to discuss ideas, share experiences and provide feedback. It also indicates

126

how responsive the project team and the user community are. The forum activity has a

positive affect the usage of the project, higher the activity on the project forums, higher the

usage of the project.

The count of new file releases (Cnt_Mod) is a measure of the functionality of the

project. Functionality in operational systems is added through new modules. The addition of

new modules indicates that new features have been added to the existing system. Added

functionality provides the end users additional incentive to use the project. Therefore, it has

a positive impact on the usage of the project.

The team size (Cnt_Team) indicates the amount of effort available for project

development and maintenance. The team size has a positive impact on the usage of the

project. In OSS communities, the participation to a project is voluntary. The motivations of a

programmer to participate in an OSS project are beyond the scope of this research. Yet the

results indicate that a larger team size has a positive impact on the usage of the project.

The age (Age) and the size (Size) of the project were used as the control variables.

This ensures that projects of different sizes and ages can be used in the same analysis (Barry

et al. 2006).

5.3.2 Model of OSS Project Downloads

The number of downloads of a project had a positive impact on the resilience of OSS

projects in the maintenance phase. Since downloads themselves are not a factor that could be

127

controlled, it was decided to identify the factors that affect downloads. As discussed earlier,

the number of downloads could be indicative of the usefulness of the project. If the end user

finds the project useful, they will download it. In order to create a model to explain the

factors contributing to the number of download of OSS projects in the maintenance phase,

the same approach was used as discussed in above section.

The target variable for this model was downloads (Downloads). Since the target

variable is continuous, Linear Regression was suitable rather than Logistic Regression. The

process flow diagram is shown in figure 5.7. All the variables identified in section 3.2.3,

were used in the analysis. Decision Tree, Neural Network and Linear Regression were used

in the analysis.

The data was split into 40% training, 30% validation and 30% testing samples. The

SAS EM 5.2 program offers the option to allow interactions between terms. The final model

was selected based on the values of AIC and fit statistics. The Linear Regression model was

selected as the final model. The results of the score ranking overlay for the mean predication

is shown in figure 5.9. The results of the decision tree and the Neural Network are in

Appendix C.

128

Figure 5.9: The score ranking overlay for the analysis of usefulness

The final model was the Linear Regression model. This model was significant at the

5% level (p < 0.0001). The ANOVA results are shown in Table 5.9, while the model fit

statistics are shown in Table 5.10.

129

Table 5.9: Analysis of variance of the Linear Regression model for usefulness

Source DF Sum of Squares Mean Square F Value Pr > F

Model 3 1215.82162 405.27387 656.48 < 0.0001

Error 1982 1223.58202 0.61735

Corrected Total 1985 2439.40364

Table 5.10: Model fit statistics of the Linear Regression model for usefulness

Root MSE 0.78571 R-Square 0.4984

Dependent Mean -0.00452 Adj R-Sq 0.4977

Coeff Var -17400

The R
2
 of the model is 0.4984 and the adjusted R

2
adj is 0.4977. This means that the

model explains 49.77% of the variance in the values of project downloads. This value is

acceptable for exploratory research. The individual significances of the independent

variables are shown in Table 5.11.

130

Table 5.11: Significances of independent variables of the Linear Regression model

of usefulness

Variable DF Parameter

Estimate

Standard

Error

t Value Pr > |t| Tolerance Variance

Inflation

Intercept 1 -0.00619 0.01764 -0.35 0.7257 . 0

Cnt_Msg 1 0.56765 0.01835 30.94 < 0.0001 0.91740 1.09004

Size 1 -0.15977 0.01639 -9.75 < 0.0001 0.57306 1.74502

Cnt_mod 1 0.43729 0.02086 20.96 < 0.0001 0.53746 1.86062

Table 5.12: Correlation of estimates of the input variables of the Linear Regression model

of usefulness

Variable Intercept Cnt_Msg Size Cnt_mod

Intercept 1.0000 -0.0054 -0.0342 0.0124

Cnt_Msg -0.0054 1.0000 0.1296 -0.2791

Size -0.0342 0.1296 1.0000 -0.6511

Cnt_mod 0.0124 -0.2791 -0.6511 1.0000

The model fit was accessed using the requirements for Linear Regression models.

Various specification and diagnostics checks were performed for the estimated model. The

usual diagnostic checks of the regression residuals indicated no serious departures from the

underlying assumptions. Examination of the Besley-Kuh_Welsch diagnostic (Belsley et al.

1980) indicates that the highest condition number for the model is 2.29 which is within the

131

recommended cutoff limit of 20. The VIF for the independent variables were all below 5,

suggesting that multicollinearity was not unduly influencing the estimators (Neter et al.

2004). The resulting model for the number of downloads or the usefulness of OSS projects

is given by the following equation.

posts)(forumβmod)(Cntβ(Size)ββDownloadsE __)(3210 +++=

The coefficient of the control variable of Age (Age) was not significant in the model

for downloads. This could be because of the fact that the variable downloads was

normalized for Age of the project in the original dataset. Therefore any affects of the age of

the project on the number of downloads was already adjusted in the data. The size (Size) of

the project was used as a control variable in the model.

The increase in functionality of the project was operationalized as the count of

number of new modules or releases (Cnt_mod). This variable had a positive impact on the

number of downloads. Therefore, if the functionality of the project increases, its usefulness

(or downloads) will increase and this will have a positive impact in the end on the resilience

of the project
.
.The forum activity (Cnt_Msg) had a positive impact on downloads. In

projects where the user and the developer community are actively engaged in discussions,

the project downloads increase. The use of forums in cyberspace is very critical. Forums are

not only used to discuss project related issues, but are also a good tool for advertising the

project. Thus projects with active forums had higher number of downloads.

132

5.4 CONCLUSIONS

 Projects that possess high resilience will be able to remove errors and become

operational effectively. The fast response time implies that the errors were not very severe

in the first place. If the errors were severe, then the ability to fix the error in small time

implies that the code was well designed so that the maintainers were able to detect and

remove the problem. It also indicates the effectiveness of the maintenance team. Therefore,

the mean time to fix a bug is a very important characteristic of a project.

A model to explain the factors that affect the resilience of an OSS project was

developed in this chapter. A two-stage model identifying the key critical components of

project resilience was developed. The model is shown in Figure 5.7. It is discovered that the

role of the end user of the project is very critical in the performance of OSS projects. The

participation of the user in the maintenance process, improves the ability of a project to react

to errors and faults. It is also discovered that the number of downloads also improve the

resilience of OSS projects. The usefulness and the usage of a project had direct positive

impact on the project resilience. Since both these factors were not directly in the control of

the development team, it was decided to identify the factors that affected the usage and

usefulness. The resulting two new models revealed that product functionality and quality

had a positive affect on the usage. The end users were encouraged to participate in the

maintenance process if the project offered them a high quality code with increasing

functionality. An active user community also improved the usage of a project.

133

Figure 5.10: Model for resilience of OSS projects

The project functionality and the forum activity were also significant factors in the

usefulness or the number of downloads of the project. If the project offered significant

functionality and had active forums, the number of downloads increase. This could be

attributed to the existing users continuing use of the project since they found it useful, or it

could also imply that the other OSS users were more likely to download projects that offered

more functionality and had active forum participation. Tables 5.13-5.18 show the variables

used in the final model.

Resilience

End Characteristics

Usage

Activity

Product Characteristics

Process Characteristics

Project Outcome

Quality

Size

Functionality

Activity

Age

Size

Age, PM, Mail

Resource Characteristics

 Team Size

134

Table 5.13: Process related variable measurement and sources

Variable Measure Symbol In final

Model

Project Management Use PM (Y/N) Use_PM

Process Quality Mean Time to fix a bug (MTTF) MTTF

Forum use (Y/N) Use_forum

Number of forums Cnt_forum

Use Mail (Y/N) Use_mail

Communication

Channel

Use News Groups (Y/N) Use_news

Req. Implementation Time to implement a feature TTFT

Use CVS (Y/N) Use_CVS Configuration

Management
Count CVS commits Cnt_CVS

Process Quality Count of bugs Bug_Cnt

 Bugs not fixed Bug_Open

Table 5.14: Control variable measurement and sources

Control

Variables

Measure Symbol In final

Model

Size Source Lines of Code Size

Age Time elapsed since the start of

project

Age

135

Table 5.15: Resource related variable measurement and sources

Variable Measure Symbol In final

Model

Effort Number of registered developers for the project Cnt_Team

Team Communication Messages posted at development forums Forum_post

Table 5.16: Product related variable measurement and sources

Variable Measure Symbol In final

Model

Increase in features Cnt_feat Functionality

New Modules Cnt_file

Number of distinct members

reporting the bugs

Cnt_mem Maintainability

Number of distinct members

fixing the bugs
Cnt_Usr_fix

Number of platforms supported Cnt_OSI Portability

Number of programming

languages supported

Cnt_Prg_lang

License Type License type Lisc

Project Type Primary categorization of the

project.

Pjr_type

Downloads Downloads Usefulness

Page Views Pg_View

Number of translations Cnt_tran Product Compatibility

Number of platforms supported Cnt_plat

Usage Usage by end user Bug_User

136

Table 5.17: User related variable measurement and sources

Variable Measure Symbol In final

Model

User Type Audience Programmer (Y/N) AUD (o= prog, 1 =

non-prog)

Forum posts by users Cnt_Msg Activity Level of

User

Number of distinct individuals

posting messages, bugs

User_Int

Community Size Number of distinct senders of

messages

Cnt_User

137

CHAPTER VI

MODEL OF ORGANIZATION

In this chapter, the affects of maintenance on the project organization are discussed.

A new taxonomy for maintenance patches is developed and presented. The internal

organization of the project is measured in terms of complexity. The affects of patch types on

complexity are statistically analyzed. The chapter ends with s discussion of results.

6.1 BACKGROUND

Software systems are constantly changing and growing throughout their useful lives

(Lehman and Ramil 2002). For any software system, the majority of the lifecycle cost and

effort is expended in the detection and elimination of errors or in functionality enhancements

during system maintenance (Lehman and Ramil 2002; Swanson and Dans 2000). Addition

of new functionality can make the task of software maintenance more difficult. It is usually

accompanied by new errors, making the maintenance task even more complex (Brooks

1995) .

Software maintenance activities vary in nature, ranging from removal of faults and

errors to introduction of new functionality. In software engineering literature, software

maintenance activities have been categorized as corrective, perfective, adaptive and

preventative. Corrective maintenance refers to the correction or removal of defects.

Adaptive maintenance refers to the modifications made to accommodate changes to external

environment e.g. new hardware. Perfective maintenance refers to changes that extend the

138

original functionality of the software and preventative maintenance refers to the tasks that

are carried out to prevent or facilitate the maintenance process (Pressman 2004; Swanson

and Beath 1997).

Prior literature suggests that software maintenance activities can cause a decline in

the operational performance of software (Brooks 1995; Eick et al. 2001). This decline in the

quality has been attributed to the increase in the structural complexity of the software

associated with software maintenance. As new functionality is added, the interfaces become

more complex. Often removal of old code and comments is overlooked which results in

increased code complexity. The code complexity can further make maintenance tasks more

difficult and thereby increasing the costs (because of increased effort) and the quality

declines. The result of inefficient code and complex interfaces is that quality of the software

declines.

The advocates of OSS movement attribute the quality of OSS projects to a very

active maintenance process. In OSS projects, the source code is publicly available and all

users can be involved in the maintenance process. Raymond proposed the famous Linus

Law that states, “Given enough eyeballs, every bug is shallow”. The OSS projects have the

philosophy of “release often”. This means that the maintenance activities are more rigorous

in OSS projects. As OSS projects are becoming more popular, it is necessary to investigate

how the software is affected by being developed and maintained through the OSS

philosophy. There has been no empirical research on how the phenomenon of frequent

updates affects internal characteristics of the source code. Considering the impact of

139

maintenance activities on software performance, there is a need to understand these

activities (Greiner et al. 2003). In this model, the effects of various maintenance activities on

project Viability, primarily the dimension of Organization were analyzed.

Software maintenance activities in an operational OSS project are implemented

thorough Patches. OSS patches contain rich text references to the changes that are

implemented through them. These textual references are made by online, geographically

dispersed teams of developers and maintainers to explain the significance of the code they

added or removed (Stamelos et al. 2002). Although there exits a classification of

maintenance activities in the literature, there is an absence of any formal classification of

software patches. For this research, textual information available in software patches was

extracted, to develop a classification scheme for maintenance patches. This classification

was based on the individual type of maintenance activities performed by each patch.

The purpose of this research was to analyze the affects of software maintenance on

the internal structure of the source code. Complexity is a validated measure on the structure

of software (Fenton and Pfleeger 1991; Simon 1994). The Cyclomatic Complexity metric is

the most widely used and accepted measure of complexity. Introduced by Thomas McCabe

in 1976, it measures the complexity of the software program by the number of linearly

independent paths in program modules. The measure provides a single number, which can

be used to compare the complexity of various programs with each other. Cyclomatic

complexity is often referred to simply as program complexity or as McCabe's complexity.

McCabe’s Cyclomatic is language and platform independent.

140

Large amount of maintenance data over a period of time was required to explore the

affects of maintenance on complexity. Therefore, public archives of Linux source code were

used. The reason for selecting Linux was the availability of rich lifecycle maintenance data

for a single project. Linux maintains a record of its parallel experimental and production

versions. The experimental versions are more volatile than the stable versions and tend to

change more frequently. The stable versions were suited for this analysis. Linux versions 1.0

through version 2.6.5 were used in this research. The details of the Linux dataset were

discussed in section 3.2.2.2.

6.2 TAXONOMY DEVELOPMENT OF LINUX PATCHES

The first challenge was to categorize the maintenance tasks. The available taxonomy

for software maintenance had been developed at a single task level. In operational software,

it is very rare that a single maintenance task would be performed. Typically, the vendor

releases a new patch in which several maintenance tasks are bundled. The patch once

applied to the existing software, implements the changes and the software is moved to the

next version. Frequent new patches characterize OSS. Considering prior research in

software maintenance, the purpose of this research was to analyze if there were differences

in the maintenance activities performed through different patches. Based on the nature of the

tasks performed by the patch, it would then be categorized into a new taxonomy of patches.

The taxonomy would be used to analyze the affects of various types of patches on the

software internal characteristics.

141

As discussed in Chapter II, Linux is one of the most popular and largest OSS project.

Some research has been conducted on the evolution of Linux source code, but no prior study

on the Linux patches and their affects on complexity have been performed. To develop

taxonomy of the Linux patches the data on the patches was collected. Patch is available as a

text document and is a combination of textual description of the patch and the actual code,

which is embedded in the text. Programmers use comments to explain the maintenance

tasks. In prior research, the nature of the maintenance tasks has been associated to the key

words used to explain the task. The Linux patch data is no different. Rich comments were

available on all changes introduced in the new patch.

The text data on all the versions starting from version 1.0 until version 2.6 were

collected. Linux maintains parallel versions, in which all even numbered versions are stable

production versions and all experimental versions are odd numbered. Only stable versions

were used in this analysis. There were in all 132 patch files for stable Linux kernel from

version 1-0-0 until version 2-6-13. Total time period of the release of the versions was

March 9
th

, 1995 until March 12, 2005. The patches were available in compressed (.gz)

format. They were converted to text files for this analysis.

While performing text analysis, text is used as one of the fields in the dataset. The

limit of the text field is 32000 characters. However, the size of Linux patches was very large

(on average a file size was 2 MB). Therefore, direct import to a single text field for every

version was not possible. SAS TM 5.2 is equipped with a tmfFilter. This filter allows

creating links to file locations and accessing text only during the analysis from the stored

142

location. The URL for the stored text is then entered in the text miner settings to perform the

analysis (See Figure 6.1).

Once the text node settings were complete, the next step was to identify the key

words for the analysis. As mentioned earlier, maintenance key words have been used in past

CSS research to categorize maintenance activities. These analyses however were on very

small datasets. Since OSS projects are purely developed without any face-to-face

communication between the maintenance teams, the comment density in such code is very

rich. The maintainer had to ensure that others using the code could understand any changes

made and that the project is maintainable.

A preliminary list of the key words was developed using prior research in software

maintenance. This list contained 33 key words. The text analysis of the Linux patch files

was performed. This resulted in only two clusters. Further analysis of the patches indicated

that the list of 33 words was not sufficient and a richer start list was required. Therefore, a

new run using the SAS EM default stop list was performed.

143

Figure 6.1: Text miner node selection of roles for the input variables

The new run resulted in seven clusters with 20,000 descriptive terms. Not all the

terms in the text were related to maintenance. Many of the terms were from the actual source

code itself. Therefore, these clusters could not be used for taxonomy development either.

The key terms from this run were carefully analyzed and the key words that

pertained to maintenance activities were selected. To ensure that the result was not biased an

independent programmer with experience in software development was assigned to identify

the maintenance related key words from the list. The lists prepared by the primary researcher

and the secondary coder were compared and a new start list was created. This start list had

312 terms related to software maintenance.

144

Table 6.1: Descriptive terms, percentage and type of the clusters of maintenance patches

Cluster Descriptive Terms Percentage Patch Type

1 + error, + buffer, + problem, +

interrupt, + set

0.363636 Corrective

2 + clear, + create, +

implement, + remove, + check

0.289256 Preventative

3 + enable, + allow, + change, +

disable, + add

0.330579 Adaptive

The text miner node performing clustering had been set to allow for a maximum of

40 clusters. Yet the result was three clusters as shown in Table 6.1. From the descriptive

terms, it can be seen that the terms in the first cluster are related to corrective maintenance.

36% of the patches were clustered in this category. The second cluster had words related to

preventative maintenance activities. These terms indicate that maintenance tasks were

performed to improve the performance of the software. The third cluster has terms related to

adaptive tasks that are performed in response to changes in the environment e.g. interface or

hardware etc. Based on these terms three types of patches were referred as corrective

patches, perfective patches and adaptive patches.

The SAS TM 5.2 also allows creating concept links of the key terms from the

analysis. The results were opened in the interactive browsing mode. Selecting a particular

key word, the concept links of that term could be identified. This produces a map of how

various term occurrences is related in the data set. This can allow tracing how various

maintenance activities affect each other. As an example of concept links, the key term,

“error” was selected. The concept links of the term are shown in Figure 6.2. The concept

145

map shows what terms have common occurrences of the term “error”. The thickness of the

link indicates the strength of the relationship. The map gives a pictorial view of the common

occurring errors in the patches. Next, the term “allocate” was selected and expanded for

further mapping. This split the map to more detail and the terms associated to “allocation”

were also mapped. This identifies the common allocation errors that occur.

The concept maps can be used as affective tools in patch management. As mentioned

earlier, new patches could be scored to one of the three clusters defined in this research. The

key terms from that patch could then be used to map the potential maintenance activities that

could be related to the new patch. In case of Linux, which is an operating system, any new

patch is associated to extensive testing on part of organization. They have to ensure the

integrity of new releases before they can roll out the new patch. This ensures that there

would be no major problems associated to the new patch. The concept links could be used to

identify the potential problem areas and therefore the maintenance teams in the

organizations could prepare better plans for new patch roll out.

Figure 6.2: Concept map of selected terms for the patch taxonomy

1
4
6

147

This taxonomy of the maintenance patches is a new addition to the area of software

maintenance and software security. Most of the software security costs and effort is

expended on managing the implementation of new patches. This taxonomy provides a

categorization of the patches. The affects of each patch type could now be investigated

individually. Therefore, the next step in this exploratory study was to examine if there was a

difference in the affects of the patch types on the existing nature of the software.

6.3 STRUCTURAL COMPLEXITY

As discussed previously, introduction to new code can cause an increase in the

structural complexity of the software. As the complexity of the software increases, the

quality declines and the effort needed to maintain that software increases (Brooks 1995;

Eick et al. 2001; Lehman and Ramil 2002). Maintenance tasks could be designed to reduce

the complexity and prolong the life of software. However, there is no empirical evidence

whether there is a difference in the affects of various maintenance activities on the

complexity of software. The Linux source code kernel was used, to test the affects of the

patch types on the software complexity empirically.

The Linux Kernel source code is freely available to the public. It is available in

compressed form and can be downloaded and uncompressed into its original directory

structure. Reynolds’s tool is a free online tool used for measuring software complexity. This

tool was used to compute the McCabe’s Cyclomatic for software. To ensure the reliability of

the results, test files of known complexity were tested through the Reynaud’s tool and its

integrity was confirmed.

148

Each version of the Linux kernel composed of several modules. McCabe’s

complexity is a module level measure. The total complexity of a version was computed as

the sum of the McCabe’s complexity of each module. For a version with n modules, the

complexity is given by:

∑
=

=
n

i

iMcbComplexity
1

Since the data was collected over a period of time, the time series plot of complexity

was generated as shown in Figure 6.3 and 6.4.

Index

C
o
m
p
le
x
it
y

726456484032241681

300000

250000

200000

150000

100000

50000

Time Series Plot of Complexity

Figure 6.3: Time series plot of the Linux source code complexity

149

Lag

A
u
to
c
o
rr
e
la
ti
o
n

18161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Autocorrelation Function for Complexity
(with 5% significance limits for the autocorrelations)

Figure 6.4: Autocorrelation function of the Linux source code complexity

Figure 6.4 indicates a trend in the data. Therefore, the difference in the complexity of

two subsequent releases was taken. The variable del_complexity represents the change in

complexity between two subsequent releases. The time series plot and the autocorrelation

function plot of the del_complexity are shown in Figure 6.5 and 6.6 respectively. The

differences indicated that the trend has been removed.

150

Index

D
e
l_
C
o
m
p
l

726456484032241681

100000

50000

0

-50000

-100000

-150000

Time Series Plot of Del_Compl

Figure 6.5: Time series plot of del_complexity

Lag

A
u
to
c
o
rr
e
la
ti
o
n

18161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Autocorrelation Function for Del_Compl
(with 5% significance limits for the autocorrelations)

Figure 6.6: Autocorrelation plot of del_complexity

151

The purpose of this model was to analyze the affects of maintenance on the source

code. Del-complexity is a reflection of change in complexity rather than the overall

complexity; therefore, it is a better variable for the analysis.

The variable time to next release was also computed for each version. This variable

indicated the number of days elapsed between two patch releases. Whenever a new patch is

released, the user has to perform testing before the patch can be implemented. Sometimes

the delay due to testing is translated into operational costs in terms of down time. If the

patch release is too frequent, there could be significant financial impact. Therefore, for every

patch the time to next release (del_time) was computed. This indicated how long the

software was operational before a new major change was introduced through the patch.

Frequent patch release could also imply that there is a ripple affect in the errors and the code

introduced to fix the errors is causing new errors.

6.4 ANALYSIS

The cluster_id of each patch was then merged with the data on del_complexity and

del_time. The objective was to examine if there was a difference in the del_complexity and

del_time for the three types of patches or not. The descriptive statistics for the data is shown

in Table 6.2.

152

Table 6.2: Descriptive statistics of the three clusters

del_comp del_T Level of

Cluster_id

N

Mean Std Dev Mean Std Dev

1 26 6927.1154 20985.4267 36.7692308 55.4179088

2 28 -10222.5357 30283.4820 57.6428571 62.9586662

3 22 7242.4545 15461.7787 19.1818182 18.6614866

It can be seen that the mean of del_complexity of the preventative

patches is a high negative number, whereas the means of the corrective and adaptive patches

are both positive numbers. This suggests that the preventative patches reduce the overall

complexity of the software and the corrective and adaptive patches increase the complexity.

It can also be seen from the means that the del-complexity of preventative patches is higher

than the other two types. Higher del-time means that preventative patches have a long time

between successive releases. This could be indicative of improved quality and fewer errors

being introduced by the patch. To check if there is a significant difference in del-complexity

and del-time between the three types of patches, an ANOVA analysis was performed. The

three assumptions of ANOVA are:

� Independent observations

� Normally distributed error terms

� Equal error variance for each group

The first assumption was met by the data because it was collected for separate

versions of the Linux data. The residual vs. the fitted values of the ANOVA were tested to

153

ensure the normality assumption. There was a random scatter about the zero reference line

for each of the fitted values. Therefore, the normality assumption was met.

To test for equal variance, the Levene’s Test for Homogeneity of the variance of del-

complexity and del-time was performed. The null hypothesis of the test was that the

variances are equal. Failing to reject the null hypothesis would imply equal variance. Table

6.3 and 6.4 show the results of the Levene’s test.

Table 6.3: Levene’s test for del-complexity of the Linux patch clusters

Levene's Test for Homogeneity of del_comp Variance

ANOVA of Squared Deviations from Group Means

Source DF Sum of Squares Mean Square F Value Pr > F

Cluster_id 2 5.811E18 2.906E18 0.72 0.4879

Error 73 2.927E20 4.01E18

Table 6.4: Levene’s test for del-time of the Linux patches clusters

Levene's Test for Homogeneity of del_T Variance

ANOVA of Squared Deviations from Group Means

Source DF Sum of Squares Mean Square F Value Pr > F

Cluster_id 2 1.5764E8 78818265 2.69 0.0749

Error 73 2.1418E9 29339769

154

The p value of the F statistic was both the cases was greater than 0.05, therefore the

null hypothesis of equal variance was not rejected at the 5% level. The next step was to

perform ANOVA analysis to test if the means of the three types of clusters were

significantly different. The results of the analysis are shown in Table 6.5 and 6.6.

Table 6.5: ANOVA analysis of the dependent variable del-complexity

Source DF Sum of Squares Mean Square F Value Pr > F

Model 2 5290332788 2645166394 4.73 0.0117

Error 73 40791512489 558787842

Corrected Total 75 46081845277

Table 6.6: ANOVA Analysis of the dependent variable del-time

Source DF Sum of Squares Mean Square F Value Pr > F

Model 2 18491.3675 9245.6838 3.53 0.0344

Error 73 191114.3167 2618.0043

Corrected Total 75 209605.6842

155

In both the cases, the value of F-statistic was significantly greater than 1 (p value of

F statistic was less than 0.05); therefore the null hypothesis of equal means was rejected.

These results indicate that preventative patches can significantly reduce the complexity of

software. The time to next patch was also significantly higher than the rest of the types of

patches. This finding can be very critical in software development and maintenance. Regular

preventative maintenance can control the increase in complexity. This could improve

software quality. Preventative maintenance would also remove any redundant code and

make the software more maintainable.

6.5 CONCLUSION

This part of the research developed a new a new taxonomy for categorizing

maintenance patches. This is the first empirical study on how individual maintenance

activities are clustered together in a single maintenance patch. It used the textual data of

patches through Text Mining techniques to develop the taxonomy. Use of prior literature on

software maintenance identified the terms for maintenance tasks. More terms were added to

the list by visual inspection of the key words. The new list was used to categorize the Linux

Patches. The resulting taxonomy consisted of three types of patches: Corrective,

Preventative and Adaptive.

Data on Linux source code complexity was extracted. This was done to examine the

affects of various types of patches on the software internal structure. Maintaining structure is

a challenge of software maintenance. Increase in the complexity can result in decline in

quality. Analysis was performed to see if there was a difference in the patch types in terms

156

of change in complexity and the time to next release. The means of the patch types indicated

that the preventative patches reduce the complexity and have a longer time to next release.

The statistical significance of the differences was tested and it was significant.

157

CHAPTER VII

SUMMARY AND CONCLUSION

This chapter summarizes the results of this research and identifies the contribution to

theory and practice. This is followed by the limitations of the study. The chapter ends with

the implications for future research and conclusions.

7.1 SUMMARY OF RESULTS

The primary objective of this research was to examine the development and

maintenance activities of OSS projects. A new measure for evaluating the performance of

OSS projects was defined, validated and tested. Three models were developed to identify the

factors that affect the development and maintenance performance of OSS projects. These

models were developed using Data Mining techniques. The detailed results were presented

for each model that provided a deeper insight into the OSS development and maintenance

process.

The measure of software viability could be used to measure the performance of a

single project over its lifecycle, or for comparison among multiple projects. It was found

that the three dimensions of project viability provide the predictive power for the

performance of OSS projects. Considering the nature of OSS project development, the

characteristic of the end user were also used in the model in order to examine the affects on

project performance. A new variable “project type”, based on the description data was used.

The key findings for each model are discussed in the following sections.

158

7.1.1 Model 1: Development Phase Performance

This model was developed to identify the factors that affect the vigor of OSS

projects. It was discovered that the end user plays a significant role in the development of

the project. Projects where the end user participated in the forums and in the maintenance

activities had a higher probability of having a high vigor. It was shown that the team size

and the use of project management methods improve the performance of OSS projects in the

development phase, whereas the inability to fix problems could have a negative impact on

the project outcomes.

It was also found that some OSS project types were better suited for development

compared to other projects. The type of the audience for which the project had been

developed also played a role in project development.

Age was used as a control variable. It was seen that older projects had less chance of

growth compared to newer projects. This could be attributed to loss of quality or age, or to

improvement of OSS methods with time.

7.1.2 Model 2: Maintenance Phase Performance

The second model was developed for the resilience of OSS projects in the

maintenance phase. A two-stage model was developed. The effects of bugs reported by end

user (usage) and the number of downloads (usefulness) on resilience of a project was

demonstrated. Both these variables were outcome variables; therefore, further models were

developed to explain the factors affecting the usefulness and usage. These models identified

159

that the quality of the OSS project encourages users to be involved in that project. The team

size and functionality affected the usefulness of the project.

7.1.3 Model 3: Affects of Maintenance on Structure

A new taxonomy for maintenance patches was developed for Linux patches. Three

types of patches were defined: corrective, preventative and adaptive. The affects of these

patch types on the internal structure of the software were examined. The preventative

patches reduce complexity and have a longer elapsed time to the next release. Corrective and

adaptive patches have an opposite affect. This indicates that suitable preventative

maintenance tasks can improve the quality of a project and increase its useful life,

7.2 CONTRIBUTIONS TO THEORY

This research has contributed to the theory in a number of ways. It is the first

empirical study to explore the development and maintenance of OSS projects. The study

demonstrates the role of end user in the performance of OSS projects. It also provided the

first empirical evidence to substantiate the argument that end user involvement improves the

project performance.

The study utilizes data mining techniques for model building. This is very significant

in inductive research. The public availability of large datasets will make use of these

techniques suitable for conducting exploratory research. Use of multiple data mining

techniques to improve the predictive power of the resulting models was also demonstrated.

160

In addition, a new measure of OSS project performance was developed, validated

and tested. Academic research in OSS has lacked well-developed measures that could be

used to evaluate OSS projects. The new measure was developed through the software

measurement framework.

Text analysis was used to develop new variables of project type. This provided a new

categorization for OSS projects. Using this categorization, projects were placed in only one

category, unlike the existing SourceForge categorization that puts a single project in

multiple categories. The use of text analysis in taxonomy development was also verified. A

new taxonomy for maintenance patches was developed. This was the first body of work on

empirical analysis of maintenance patches and their categorization.

7.3 CONTRIBUTIONS TO PRACTICE

This research provided the practitioner community with new tangible measure that

could be used to evaluate OSS projects. Business investments in OSS projects could make

use of such measures to make informed decisions regarding OSS projects. This study also

provided patch taxonomy and its impact on the internal structure of software. In businesses,

application of new patches can be very expensive in terms of cost, effort and risks. The new

taxonomy could be used to score new software patches, before any implementation is

performed. Concept links could be used to identify potential modules that could be affected.

This could help in maintenance planning.

161

The study also indicates the significance of the role of end user in the performance of

a project. This information could be generalized to CSS where software development teams

could benefit user involvement. The study also indicates that OSS might be a more suitable

development platform for certain types of projects. Therefore, practitioners could decide on

OSS or CSS usage depending upon the nature of the problems.

For effective management of OSS projects, the development teams could use the

results of this research to improve the performance of their projects. They could monitor

their projects using the measures identified. They could also control the outcomes of their

projects considering the factors that affect the outcomes.

7.4 LIMITATIONS OF THE STUDY

Following are the limitations of this research study. One limitation is that the dataset

used for model building was from SF and Linux. Although the SF community is the largest

OSS project hosting community, but is not the only community. Too many idle or inactive

projects had to be removed from the analysis. Therefore, in future comparisons can be done

with other communities such as Tigris.org, freshmeat.net that are more selective in project

hosting. The data was provided to public use through a third party. Although data is released

through the joint effort with SF, the warehouse is cleaned and maintained by University of

Norte Dame. The study investigated the affects on cross-sectional data, therefore changes

made to projects over a period of time, were not explained by the analysis.

162

7.5 IMPLICATIONS FOR FUTURE RESEARCH

Several directions for future research can be derived from this exploratory study. The

findings of the factors affecting OSS performance could be tested in the CSS domain. The

model could also be used to test the performance of a single project over its lifecycle.

Considering the high number of OSS projects that fail to grow and survive, it would

be interesting to use techniques like survival analysis. This would give a deeper insight into

how projects evolve and what accounts for their failure. A dataset of the projects that failed

or became inactive has already been prepared. Another dataset for projects that evolved

through multiple phases has been prepared too. These two datasets could be used to perform

survival analysis and study the behavior of these projects as they fail or evolve.

The activity of the forums had a positive impact on the project outcomes. One

direction could be to study the patterns of communications amongst the teams and compare

them to the structure of the software code. This would mean testing Conway’s Law in the

software development domain. Preliminary expertise in the use of social network tools has

already been developed. Some software applications that would be needed to convert the

OSS data for use in social network has also been developed. These could be used in future to

get a better understanding of the communication structure of OSS projects.

The use of Text Mining to improve the predictive ability of models has been

demonstrated in this research. Use of additional techniques e.g. Sequence analysis and

Association analysis on the maintenance documents could provide insight into how the

various patches are related to each other and identify the factors that trigger new corrective

patches.

163

The new measure of software viability can be tested for performance on CSS

projects or on OSS projects in other development communities. This would result in

triangulation of the results of this study. A new tool can also be developed to measure the

viability of a project. This tool would accept the basic project measures as inputs and using

refined models from this research compute a viability score for the projects. This can be a

very useful tool for the practitioner community.

164

REFERENCES

Abdel-Hamid, T. "Understanding the '90% Syndrome' in Software Project Management,"

Journal of Systems and Software (8:4) 1988, pp 319-330.

Abdel-Hamid, T. "The Dynamics of Software Project Staffing: A System Dynamics Based

Simulation Approach," IEEE Transactions on Software Engineering (15:2) 1989, pp 109-

119.

Abdel-Hamid, T. "Investigating the Impacts of Managerial Turnover/Succession on

Software Project Performance," Journal of Management Information Systems (9:2) 1992, pp

127-144.

Albrecht, A.J., and Gaffney, J.E. "Software Function, Source Lines of Code, and

Development Effort Prediction," IEEE Transactions on Software Engineering (9:6) 1983, pp

639-648.

Allison, P.D. "Measures of Inequality," American Sociological Review (43) 1978, pp 865-

880.

Aoki, A., Hayashi, K., Kishida, K., and Nakakoji, K. "A Case Study of the Evolution of Jun:

An Object Oriented Open Source 3D Multimedia Library," International Conference on

Software Engineering, Toronto, Ontario, Canada, 2001, pp. 524 - 533.

Banker, R., Datar, S., and Kemerer, C. "Software Errors and Software Maintenance

Management," Information Technology and Management (3:1-2) 2003, pp 25-41.

Banker, R.D., Davis, G.B., and Slaughter, S.A. "Software Development Practices, Software

Complexity and Software Maintenance Performance," Management Science (44:4), April

1998, pp 433-450.

Banker, R.D., and Slaughter, S.A. "A Field Study of Scale Economies in Software

Maintenance," Management Science (43:12) 1995, pp 1709-1725.

Barry, E.J., Kemerer, C.F., and Slaughter, S.A. "Software Volatility: A System-Level

Measure," AIS Conference of the Americas, Long Beach, CA, 2000.

165

Barry, E.J., Kemerer, C.F., and Slaughter, S.A. "Environmental Volatility, Development

Decisions, and Software Volatility: A Longitudinal Analysis," Management Science (52:3)

2006, pp 448-464.

Barry, E.J., and Slaughter, S.A. "Measuring Software Volatility: A Multi-Dimensional

Approach"," ICIS International Conference on Information Systems, Brisbane, Australia,

2000, pp. 412-413.

Belsley, D.A., Kuh, E., and Welsch, R.E. Regression Diagnostics: Identifying Influential

Data and Sources of Collinearity John Wiley & Sons, New York, NY, 1980.

Bennett, K.H., and Rajlich, V.T. "Software Maintenance and Evolution: A Roadmap,"

International Conference on Software Engineering, ACM Press, Limerick, Ireland, 2000, pp.

75-87.

Bergquist, M., and Ljungberg, J. "The Power of Gifts: Organizing Social Relationships in

Open Source Communities," Information Systems Journal (11) 2001, pp 305-320.

Berry, M.J.A., and Linoff, G.S. Data Mining Techniques: For Marketing, Sales and

Customer Relationship Management, (2nd ed.) Wiley Publishing, Inc, Indianapolis, IN,

2004, p. 643.

Berry, M.W., and Browne, M. Understanding Search Engines : Mathematical Modeling and

Text Retrieval, (Second ed.), Philadelphia, PA, 2005.

Boehm, B. "Software Engineering Economics," IEEE Transactions on Software

Engineering (10:1) 1984, pp 4-21.

Boehm, B. "Improving Software Productivity," IEEE Computer (20:1) 1987, pp 43-57.

Boehm, B. "A Spiral Mode of Software Development and Enhancement," in: Software

Project Management: Readings and Cases, C.F. Kemerer (ed.), Irwing Book Team,

Chicago, IL, 1997, pp. 254-270.

Briand, L., Emam, K.E., and Morasca, S. "On the Application of Measurement Theory in

Software Engineering," Empirical Software Engineering (1:1) 1996, pp 61 - 88.

Brooks, F.J. The Mythical Man-Month, (Anniversary Edition ed.) Addison-Wesley,

Reading, MA, 1995.

166

Capiluppi, A., Lago, P., and Morisio, M. "Characteristics of Open Source Projects," Seventh

European Conference on Software Maintenance and Reengineering, 2003, pp. 317- 327.

Capiluppi, A., Morisio, M., and Lago, P. "Evolution of Understandability in OSS Projects,"

Proceedings of Eighth European Conference on Software Maintenance and Reengineering,

2004, pp. 58 - 66.

Capliuppi, A. "Models for Evolution of OSS Projects," International Conference on

Software Maintenance, IEEE, 2003, pp. 65-74.

Cearly, D.W., Fenn, J., and Plummer, D.C. "Gartner's Position on the Five Hottest IT Topics

and Trends in 2005," G00125868, Gartner Group.

Chiarini-Tremblay, M., Berndt, D.J., Foulis, P., and Luther, S. "Utilizing Text Mining

Techniques to Identify Fall Related Injuries," Eleventh Americas Conference on Information

Systems, Omaha, NE, 2005, pp. 1497-1504.

Chidamber, S., and Kemerer, C.F. "A Metric Suite for Object-Oriented Design," IEEE

Transactions on Software Engineering (20:6), June 1994, pp 476-493.

Churcher, N.I., and Shepperd, M.I. "Comments on 'A Metrics Suite for Object-Oriented

Design'," IEEE Transactions on Software Engineering (21:3), March 1995, pp 263-265.

Conway, M.E. "How Do Committees Invent?," Datamation (14:4), April 1968, pp 28-31.

Costanza, R., and Mageau, M. "What is a Healthy Ecosystem," Aquatic Ecology (33) 1999,

pp 105-115.

Crowston, K., Annabi, H., and Howison, J. "Defining Open Source Project Success,"

International Conference of Information Systems, Seatle, WA, 2003.

Crowston, K., Annabi, H., Howison, J., and Masango, C. "Towards a Portfolio of FLOSS

Project Success Measures. In Collaboration, Conflict and Control:," The 4th Workshop on

Open Source Software Engineering, International Conference on Software Engineering

(ICSE), Edinburgh, Scotland, 2004.

Crowston, K., and Scozzi, B. "Open Source Software Projects as Virtual Organizations,"

IEEE Proceedings Software (149:1) 2002, pp 3-17.

167

Deerwester, E.A. "Indexing by Latent Semantic Analysis," Journal of the American Society

for Information Science and Technology (41:6) 1990, pp 391-401.

Deklava, S.M. "The Influence of the Information Systems Development Approach on

Maintenance," MIS Quarterly (16:3), Sept. 1992, pp 355-372.

Delone, W.H., and McLean, E.R. "Information Systems Success: The Quest for the

Dependent Variable," Information Systems Research (3:1), 1992, pp 60-95.

Dempsey, B.J., Weiss, D., Jones, P., and Greenberg, J. "Who is an Open Source Software

Developer," Communications of the ACM (45:2) 2002, pp 67 - 72.

Eastwood, A. "Firm Fires Shots at Legacy Systems," Computing Canada (19:2) 1993, p 17.

Eick, S.G., Graves, T.L., Karr, A.K., Marron, J.S., and Mockus, A. "Does Code Decay?

Assessing the Evidence from Change Management Data," IEEE Transactions on Software

Engineering (27:1), January 2001, pp 1-12.

Erlikh, L. "Leveraging legacy system dollar for E-Business," IEEE IT Professional (2:3),

May/June 2000, pp 17-23.

Fayyad, U.M., Piatetsky-Shapiro, G., and Smyth, P. (eds.) From Data Mining to Knowledge

Discovery: An Overview. AAAI Press, Menlo Park, CA, 1996.

Feller, J., and Fitzgerald, B. Understanding Open Source Software Development Addison-

Wiley, London, 2002.

Fenton, N.E., and Ohlsson, N. "Quantitative Analysis of Faults and Failures in a Complex

Software System," IEEE Transactions on Software Engineering (26:8), August 2000, pp

797-814.

Fenton, N.E., and Pfleeger, S.L. Software Metrics: A Rigorous Approach Chapman & Hall,

New York, NY, 1991.

Fernandez, G. Data Mining Using SAS Applications CRC Press, Boca Raton, Fl, 2003, p.

367.

Finkelstein, L., and Learning, M.S. "A Review of the Fundamental Concepts of

Measurement," Measurement (2:1), Jan-Mar 1984, pp 25-34.

168

German, D.M. "Mining CVS Repositories, the softChange Experience," 1st International

Workshop on Mining Software Repositories, 2004, pp. 17--21.

Godfrey, M., and Tu, Q. "Growth, Evolution and Structural Change in Open Source

Software," IWPSE, ACM, Vienna Austria, 2001, pp. 103 - 106.

Greiner, S., Boskovic, B., Brest, J., and Zumer, V. "Security Issues in Information Systems

Based on Open Source Technologies," EUROCON 2003. Computer as a Tool. The IEEE

Region 8 , 2003, pp. 12-15.

Harter, D.E., Krishnan, M.S., and Slaughter, S.A. "Effects of Process Maturity on Quality,

Cycle Time, and Effort in Software Product Development," Management Science (46:4),

April 2000, pp 451-466.

Herbsleb, J., Carleton, A., Rozum, J., Seigel, J., and Zubrow, D. "Benefits of CMM-Based

Software Process," CMU SEI-94-TR-13, Software Engineering Institute Carnegie Mellon

Institute, Pittsburgh PA.,1994.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., and Paulk, M. "Software Quality and

the Capability Maturity Model," Communications of the ACM (40:6) 1997, pp 30-40.

Herbsleb, J.D., and Moitra, D. "Global Software Development," IEEE Software (18:2) 2001,

pp 16-20.

Hertel, G., Niedner, and Herrmann, S. "Motivation of Software Developers in Open Source

Projects: An Internet-Based Survey of Contributors to the Linux Kernel," Research Policy

(32:7) 2003, pp 1159-1177.

Hippel, E., and Krogh, G. "Open Source Software and the "Private-Collective" Innovation

Model: Issues for Organization Science," Organization Science (14:2), March-April 2003,

pp 209-223.

Hoaglin, D.C., Mosteller, F., and Tukey, J.W. Understanding Robust and Exploratory Data

Analysis John Wiley & Sons, 1983.

Hosmer, D.W., and Lemeshow, S. Applied Logistic Regression, (Second ed.) John Wiley &

Son Inc, New York, NY, 2000.

Huff, S.L. "Information Systems Maintenance You and The Computer," Business Quarterly

(55:2), September 1990, pp 30-33p.

169

Humphrey, W.S. Managing the Software Process Addison-Wesley, New York, NY,1989.

Huntley, C.L. "Organizational Learning in Open Source Software Projects: An Analysis of

Debugging Data," Engineering Management, IEEE Transactions on (50:4), Nov 2003, pp

485 - 493.

IEEE-STD-1061 "IEEE Standard for a Software Quality Metrics Methodology," Institute of

Electrical and Electronics Engineers, Inc., New York, NY, p. 88.

Jeffery, D.R. "A Software Development Productivity Model for MIS Environments,"

Journal of Systems and Software (7) 1987, pp 115-125.

Jensen, B.B., Lyngshede, S., and Sondergaard, D. "A Quality Definition for Open Source

Software," Second Workshop on Software Quality at the 26th International Conference on

Software Engineering, 2004, pp. 30-35.

Jensen, C., and Scacchi, W. "Collaboration, Leadership, Control, and Conflict Negotiation

and the Netbeans.org Open Source Software Development Community," Proceedings of the

38th Annual Hawaii International Conference on System Sciences, Hawaii, HI, 2005, p.

196b.

Kemerer, C.F. "Measurement of Development Productivity," in: Graduate School of

Industrial Administration, Carnegie Melon University, Pittsburgh PA, 1987.

Kemerer, C.F. "Software Complexity and Software Maintenance," Annals of Software

Engineering (1), September 1995, pp 1-22.

Kemerer, C.F., and Slaughter, S.A. "Determinants of Software Maintenance Profiles: An

Empirical Investigation," Journal of Software Maintenance (9) 1997, pp 235-251.

Kerstetter, J., Hamm, S., and Ante, S.E. "The Linux Uprising," in: Business Week, 2003, pp.

78-84.

Kitchenham, B.A., Pfleeger, S.L., and Fenton, N.E. "Towards a Framework for Software

Measurement Validation," IEEE Transactions on Software Engineering (21:12) 1995, pp

929-943.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,

and Rosenberg, J. "Preliminary Guidelines for Empirical Research in Software

Engineering," IEEE Transactions on Software Engineering (28:8) 2002, pp 721 - 734.

170

Koch, S., and Schneider, G. "Effort, Cooperation and Coordination in an Open Source

Software Project: GNOME," Information Systems Journal (12:1) 2002, pp 27-42.

Koru, A.G., and Tian, J. "Defect Handling in Medium and Large Open Source Projects,"

Software, IEEE (21:4) 2004, pp Pages:54 - 61.

Krishnamurthy, S. "Cave or Community? An Empirical Examination of 100 Mature Open

Source Projects," First Monday (7:6) 2002.

Krishnan, M. "Cost and Quality Considerations in Software Product Management," in:

Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA,

1996.

Krogh, G.v., Spaeth, S., and Lakhani, K.R. "Community, Joining, and Specialization in

Open Source Software Innovation: A Case Study," Research Policy (32:7) 2003, pp 1217-

1241.

Lederer, A.L., and Prasad, J. "A Causal Model for Software Cost Estimation Error," IEEE

Transactions on Software Engineering (24:2), Feb. 1998, pp 137-147.

Lehman, M.M., and Ramil, J.F. "Rules and Tools for Software Evolution Planning and

Management," Annals of Software Engineering (11) 2001, pp 15-44.

Lehman, M.M., and Ramil, J.F. "Software Evolution and Software Processes," Annals of

Software Engineering (14) 2002, pp 275-309.

Lerner, J., and Tirole, J. "The Open Source Movement: Key Research Questions," European

Economic Review (45) 2001, pp 819-826.

Lerner, J., and Tirole, J. "Some Simple Economics of Open Source," Journal of Industrial

Economics (52) 2002, pp 197-234.

Lientz, B.P., and Swanson, E.B. Software Maintenance Management Addison-Wesley,

Reading MA, 1980.

MacCormack, A. "Red Hat and the Linux Revolution," in: Harvard Business School Case,

9-600-009, 2002.

171

MacCormack, A., Rusnak, J., and Baldwin, C. "Exploring the Structure of Complex

Software Design: An Empirical Study of Open Source and Proprietary Code," in: Harvard

Business School, 2004.

Madey, G. "SourceForge.net Research Data Archive,"www.nd.edu/~OSS/Data/data.html,

2005.

Manning, C.D., and Schutze, H. Foundations of Statistical Natural Language Processing

The MIT press, London, England, 2002.

Markus, M.L., Manville, B., and Agres, C.E. "Virtual Organization Design- Lessons Learnt

from the Open Source Movement," Sloan Management Review (42:1) 2000, pp 13-26.

McCabe, T.J. "A Complexity Measure," IEEE Transactions on Software Engineering (2:4)

1976, pp 308-320.

Melton, A.C., Gustafson, D.A., Bieman, J.M., and Baker, A.L. "A Mathematical Perspective

for Software Measures Research," Software Engineering Journal (5:5), September 1990, pp

246-225.

Menard, S.W. Applied Logistic Regression Analysis Sage Publications, Thousand Oaks, CA,

2002.

Moad, J. "Maintaining the Competitive Edge," Datamation (61-62:64) 1990, p 66.

Neter, J., Wasserman, W., and Kutner, M.H. Applied Linear Regression Models., (4th ed.)

McGraw-Hill/Irwin, Boston, MA, 2004, p. 701.

O'Reilly, T. "Lessons from open source software developmet," Communications of the ACM

(42:4) 1999, pp 32-37.

Paulson, J.W., Succi, G., and Eberlein, A. "An Empirical Study of Open Source and Closed

Source Software Products," IEEE Transactions on Software Engineering (30:4) 2004.

Pierce, J.R. An Introduction to Information Theory: Symbols, Signals and Noise Dover

Publications, Inc, New York, NY, 1980.

Pinto, J.K., and Samuel. J. Mantel, J. "The Cause of Project Failure," IEEE Transactions on

Engineering Management (37:4) 1990, pp 269-276.

172

Pinto, J.K., and Slevin, D.P. "Critical Factors in Successful Project Implementation," IEEE

Transactions on Engineering Management (34) 1987, pp 22-27.

Pinto, J.K., and Slevin, D.P. "Project Success:Definitions and Measurement techniques.,"

Project Management Journal (19:3) 1988, pp 67-73.

Press, S.J. "The Role of Baysean and Frequentist Multivariate Modeling in Statistical Data,"

in: Statistical Data Mining and Knowledge Discovery, H. Bozdogen (ed.), Chapman & Hall

/CRC, New York, NY, 2003.

Pressman, R. Software Engineering: A Practitioner's Approach with Bonus Chapter on

Agile Development, (6th edition ed.) McGraw-Hill Science/Engineering/Math, New York,

NY, 2004.

Raymond, E.S. "Cathedral and the Bazaar," http://www.tuxedo.org/~esr/writings/cathedral-

bazaar/cathedral-bazaar, 2001.

Samoladas, I., Stamelos, I., Angelis, L., and Oikonomou, A. "Open Source Software

Development Should Strive for Even Greater Code Maintainability," Communications of the

ACM (47:10) 2004, pp 83-87.

Scacchi, W. "Understanding the Requirements for Developing Open Source Software

Systems," Software, IEE Proceedings (149:1) 2002, pp 24-39.

Scacchi, W. "Free and Open Source Development Practices in the Game Community,"

Software, IEEE (21:1) 2004a, pp 59-66.

Scacchi, W. "Understanding Open Source Software Evolution: Applying , Breaking, and

Rethinking the Laws of Software Evolution," in: Software Evolution, N.H. Madhavji, M.M.

Lehman and J.F.R.a.D. Perry (eds.), John Wiley and Sons Inc,, New York, 2004b.

Schneidewind, N. "Methodology for Validating Software Metrics," IEEE Transactions on

Software Engineering (17) 1992, pp 253-266.

Schneidewind, N. "Measuring and Evaluating Maintenance Process Using Reliability, Risk,

and Test Metrics," IEEE Transactions on Software Engineering (25:6) 1999, pp 769-781.

Schonberg, E. "Measuring Success," Communications of the ACM (43:8) 2000, pp 53-57.

173

Seddon, P.B., Staples, S., Patnayakuni, R., and Bowtell, M. "Dimensions of Information

Systems Success," Communications of the Association for Information Systems (2:20) 1999.

Sharpe, S., Haworth, D.A., and Hale, D. "Characteristics of Empirical Software

Maintenance Studies: 1980-1989," Journal of Software Maintenance: Research and

Practice (3:1) 1991, pp 1-15.

Simon, H.A. The Sciences of the Artificial, (2nd ed.) The MIT Press, Cambridge MA, 1994,

p. 247.

Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G.L. "Code Quality Analysis in Open

Source Software development," Information Systems Journal (12:1) 2002, pp 43-60.

Stewart, K.J. "OSS Project Success: From Internal Dynamics to External Impact,"

Proceedings of the 4th Workshop on Open Source Software Engineering, Edinburgh,

Scotland, 2004.

Stewart, K.J., and Ammeter, A.P. "Impacts of License Choice and Organizational

Sponsorship on User Interest and Development Activity in Open Source Software Projects,"

Information Systems Research (Forthcoming) 2006.

Stewart, K.J., and Gosian, S. "The Impact of Ideology on Effectiveness in Open Source

Software Development Teams," MIS Quarterly (30:2) 2006, pp 1-23.

Swanson, E.B., and Beath, C.M. "Departmentalization in Software Development and

Maintenance," in: Software Project Management: Readings and Cases, C.F. Kemerer (ed.),

Irwin Book Team, Chicago IL, 1997, pp. 539-553.

Swanson, E.B., and Dans, E. "System Life Expectancy and the Maintenance Effort:

Exploring Their Equilibration," MIS Quarterly (24:2), June 2000, pp 277-297.

Trochim, W.M.K. The Research Methods Knowledge Base, (2nd ed.) Atomic Dog

Publishing, 1999, p. 376.

Ulanowicz, R.E. Growth and Development: Ecosystem Phenomenology Springer-Verlag,

New York,NY, 1986.

Weyuker, E.J. "Evaluating Software Complexity Measures," IEEE Transactions on Software

Engineering (14:9), Sept. 1988, pp 1359-1363.

174

Wheeler, D.A. "More than a Gigabuck: Estimating GNU/Linux's size,"

http://www.dwheeler. com/sloc/redhat71-v1/redhat71sloc.html, 2003.

Wu, M.-W., and Ling, Y.-D. "Open Source Software Development : An Overview," IEEE

Computing Practices (34:6) 2001, pp 33-38.

Zelkowitz, M.V., Shaw, A.C., and Gannon, J.D. Principles of Software Engineering and

Design Prentice Hall Inc., Englewood Cliffs, NJ, 1979.

175

APPENDIX A

176

Table A.1: Data set for the empirical validation of project viability

Project_id Vigor Resilience Structure

3 0.07182 1.123596 0.3275

14 0.018953 0.095238 0.639032

120 0.010495 1.315789 0.623444

233 0.001002 0.518135 0.370997

255 0.082788 0.724638 0

1658 0.021783 3.333333 0.404132

4236 0.003235 0.588235 0.309184

6121 0.021101 0.833333 0.634511

11348 0.03609 1.587302 0

22307 0.059434 1.639344 0.157549

23067 0.276489 2.941176 1.048

29057 0.196218 2.5 0.289

33291 0.036764 3.225806 0.620386

37089 0.095877 5.882353 0.278701

54086 0.021403 6.25 0

57621 0.038067 0.485437 0.230064

71291 0.00238 8.333333 0.305391

84122 0.167054 4.347826 1.077942

88344 0.080719 10 0.77561

106696 0.088033 100 0.290028

177

Table A.2: Group Names for the Projects in Analysis

group_id group_name

3 Mesa3D

14 NFS

120 Amanda Tape Backup

233 Gnomba

255 Ethereal

1658 libppd

4236 The Insidious Big Brother DataBase

6121 PhpWiki

11348 GNOME News Applet

22307 MySQL for Python

23067 phpMyAdmin

29057 Compiere ERP + CRM Business Solution

33291 jTDS - SQL Server and Sybase JDBC driver

37089 Open Media Lending Database

54086 Video4LinuxGrab

57621 PHPeclipse - PHP/SQL/HTML Eclipse-Plugin

71291 ESSTP

84122 Azureus - BitTorrent Client

88344 open ArchitectureWare

106696 Simple PHP Blog

178

APPENDIX B

179

Additional Results for the LR model of Vigor

Table B.1: Summary of Stepwise Selection

Step Effect DF Score Chi-Square

Chi-Square Pr >

ChiSq

1 Age
2 126.2512 <.0001

2 Bug_Count
1 194.8111 <.0001

3 File_Size_age
1 48.8165 <.0001

4 Cnt_Team
1 14.7037 0.0001

5 use_pm
1 13.0996 0.0003

6 Downloads
1 11.4321 0.0007

7 Aud* Bug_User
1 5.8314 0.0157

8 Msg_Cnt
1 4.7238 0.0297

9 Prj_Type
5 12.9602 0.0238

10 Bug_open
1 3.9932 0.0457

11 Prj_Type*use_mail
5 11.4942 0.0424

180

Table B.2: Frequency Distribution of Input Class Variables

Class Value 1 0 Total

Age 01:low -749.08 184 395 579

 02:749.08-1377.04 96 708 804

 03:1377.04-high 57 533 590

audience1 1 157 760 917

 2 180 876 1056

clstdec2 1 19 99 118

 2 69 405 474

 3 68 272 340

 4 34 127 161

 5 56 385 441

 6 91 348 439

osi 0 257 1284 1541

 1 80 352 432

use_cvs 0 42 163 205

 1 295 1473 1768

use_forum 0 96 347 443

 1 241 1289 1530

use_mail 0 58 250 308

 1 279 1386 1665

use_news 0 35 123 158

 1 302 1513 1815

use_pm 0 101 334 435

 1 236 1302 1538

181

Table B.3: Descriptive Statistics for Continuous Variables

Variable Vigor Mean Deviation Minimum Maximum

Bug_Count 1 0.027559 0.079889 0 0.693147

 0 0.004144 0.013196 0 0.216517

 Total 0.008143 0.036187 0 0.693147

Bugs_Open 1 0.032536 0.082577 0 0.693147

 0 0.010902 0.02414 0 0.30973

 Total 0.014597 0.041368 0 0.693147

Bugs_Rep_User 1 0.017673 0.065842 0 0.693147

 0 0.001905 0.009423 0 0.27368

 Total 0.004598 0.029112 0 0.693147

DwnLds_per_age 1 0.00637 0.039762 0.000001566 0.693147

 0 0.000597 0.005637 0 0.158411

 Total 0.001583 0.017334 0 0.693147

File_size_per_age 1 0.01852 0.064017 0.000008541 0.693147

 0 0.000988 0.004637 0 0.120045

 Total 0.003982 0.027562 0 0.693147

Msg_Cnt 1 0.01404 0.057237 0 0.693147

 0 0.002305 0.011641 0 0.175149

 Total 0.004309 0.026269 0 0.693147

Cnt_OS 1 2.700297 2.037396 0 11

 0 2.361858 1.709799 0 11

 Total 2.419665 1.774069 0 11

Cnt_Team 1 5.442136 6.793975 1 48

 0 3.047066 3.745364 1 66

 Total 3.456158 4.506444 1 66

Cnt_Forum 1 2.136499 0.855168 0 7

 0 2.097188 0.888784 0 8

 Total 2.103903 0.883044 0 8

182

Table B.4: Type 3 Analysis of Effects

Effect DF Wald

Chi-Square

Pr > ChiSq

Age 2 125.8052 <.0001

Bug_Cnt 1 11.602 0.0007

Bug_Open 1 4.214 0.0401

File_size_age 1 70.8149 <.0001

Msg_Cnt 1 5.6911 0.0171

Aud*Bug_User 1 6.0876 0.0136

Prj_Type 5 15.3941 0.0088

Cnt_Team 1 14.2526 0.0002

Downloads 1 6.5237 0.0106

use_pm 1 10.1275 0.0015

Prj_Type*use_mail 5 11.2668 0.0463

183

Table B.5: Neural Network Weights for the Model of Vigor

N Parameter Estimate Gradient Objective Function

1 age1_H11 -0.15958 0.001227

2 bftdays_H11 -0.10034 0.000909

3 bugcnt_H11 -0.25133 -0.00093

4 bugopen_H11 0.011565 -0.00064

5 bugreportedbynu_H11 0.545236 -0.00092

6 cntOS_H11 -0.27152 -0.00048

7 countusr_H11 -1.03598 -0.00063

8 downloads_H11 -0.34233 -0.00035

9 filesizeperage_H11 1.191523 -0.0009

10 formcnt_H11 -0.6407 0.000702

11 msgcnt_H11 -0.39956 -0.00022

12 age1_H12 0.363 0.014659

13 bftdays_H12 0.019895 0.007423

14 bugcnt_H12 1.192353 -0.0043

15 bugopen_H12 -0.65737 -0.00582

16 bugreportedbynu_H12 1.714098 -0.00281

17 cntOS_H12 -0.08592 0.006333

18 countusr_H12 -0.06469 -0.00996

19 downloads_H12 2.085465 -0.00181

20 filesizeperage_H12 4.885095 -0.00342

21 formcnt_H12 0.102449 0.003126

22 msgcnt_H12 0.19836 -0.00112

23 age1_H13 -0.46009 -0.00539

24 bftdays_H13 0.451149 0.00032

184

Table B.5: Continued

N Parameter Estimate Gradient Objective Function

25 bugcnt_H13 -0.13137 0.001875

26 bugopen_H13 0.476282 0.00441

27 bugreportedbynu_H13 0.348048 0.002213

28 cntOS_H13 -0.78658 0.002557

29 countusr_H13 -0.98162 0.001373

30 downloads_H13 -0.02118 -0.00069

31 filesizeperage_H13 -0.97195 0.00139

32 formcnt_H13 -0.16572 0.000223

33 msgcnt_H13 -0.20365 -0.00305

34 osi0_H11 0.133397 -0.00107

35 use_cvs0_H11 -0.52265 0.000124

36 use_forum0_H11 -0.05251 0.000368

37 use_mail0_H11 0.463156 0.001218

38 use_news0_H11 0.646571 0.001088

39 use_pm0_H11 -0.12975 0.000362

40 osi0_H12 -0.07868 0.013723

41 use_cvs0_H12 0.053672 -0.02116

42 use_forum0_H12 0.001287 -0.02707

43 use_mail0_H12 0.060688 -0.01141

44 use_news0_H12 -0.10019 -0.02054

45 use_pm0_H12 -0.02032 -0.02781

46 osi0_H13 -0.55232 -0.00532

47 use_cvs0_H13 -0.04961 0.006308

48 use_forum0_H13 0.164206 0.005009

49 use_mail0_H13 0.540126 0.0048

50 use_news0_H13 -0.66791 0.00698

51 use_pm0_H13 -0.51902 0.005667

52 audience11_H11 0.182248 0.000558

53 clstdec21_H11 -0.57774 0.000478

54 clstdec22_H11 -1.21725 0.000761

185

Table B.5: Continued

N Parameter Estimate Gradient Objective Function

55 clstdec23_H11 0.554575 0.000115

56 clstdec24_H11 0.555508 0.000135

57 clstdec25_H11 -0.43886 -1.3E-05

58 audience11_H12 0.113019 0.009852

59 clstdec21_H12 0.052073 -0.00433

60 clstdec22_H12 0.142524 0.003256

61 clstdec23_H12 -0.25367 -0.00322

62 clstdec24_H12 0.07382 -0.00021

63 clstdec25_H12 -0.03134 -0.00319

64 audience11_H13 0.83985 0.003969

65 clstdec21_H13 0.371032 0.001081

66 clstdec22_H13 0.56016 -0.00206

67 clstdec23_H13 -1.07177 0.000927

68 clstdec24_H13 -0.67624 0.001032

69 clstdec25_H13 0.368155 0.000564

70 BIAS_H11 -0.53743 -0.00133

71 BIAS_H12 0.902622 0.016607

72 BIAS_H13 0.262889 -0.00617

73 H11_vigor31 0.552582 -0.00387

74 H12_vigor31 3.386263 -0.00112

75 H13_vigor31 -1.02827 0.000548

76 BIAS_vigor31 -2.2215 0.002881

186

APPENDIX C

187

Figure C.1: Decision tree for the model of usage

1
8
7

Figure C.1: Decision tree for the model of usefulness

1
8
8

189

VITA

Name: Uzma Raja

Permanent Address: Box 870223

Tuscaloosa, Alabama 35487-0223

Telephone: (205) 348-7443

Email: URaja@cba.ua.edu

Education: B.Sc. Electrical Engineering, 1993

University of Engineering and Technology

Lahore, Pakistan

 M.S. in Management Information Systems, 2002

Texas A&M University

College Station, Texas

 Ph.D. in Information Systems, 2006

Texas A&M University

College Station, Texas

