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ABSTRACT 

The Physiology of Mycorrhizal  Lolium multiflorum in the Phytoremediation of 

Petroleum Hydrocarbon-Contaminated Soil. (August 2006) 

Alejandro Alarcón, B.S., Universidad Veracruzana, Xalapa, Veracruz, México; 

M.S., Colegio de Postgraduados, Montecillo, Estado de México, México 

Chair of Advisory Committee: Dr. Frederick T. Davies Jr. 
 
 
 

Arbuscular mycorrhizal fungi (AMF) can play an important role in the 

phytoremediation of petroleum hydrocarbon (PH)-contaminated soil. However, little is 

known about the effects of AMF in combination with biostimulation via fertilization or 

bioaugmentation with hydrocarbonoclastic microorganisms, during phytoremediation of 

PH in soils. 

This research evaluated the influence of the AMF Glomus intraradices and 

inorganic fertilization on growth and physiological responses of Lolium multiflorum Lam. 

cv. Passarel Plus during phytoremediation of soil contaminated with Arabian medium 

crude oil (ACO). Also determined was the interaction of AMF with the 

hydrocarbonoclastic bacterium, Sphingomonas paucimobilis EPA505 (Sp), and the 

filamentous fungus, Cunninghamella echinulata var. elegans ATCC-36112 (Ce), on 

growth and selected physiological responses of L. multiflorum during phytoremediation 

of soil contaminated with benzo[a]pyrene (BaP) or ACO. 

This research provides evidence that AMF enhance the phytoremediation of 

petroleum hydrocarbons in soils when inoculated with L. multiflorum. The concentration 

of petroleum hydrocarbons in soil was a determining factor of potential benefits of AMF 



 

 

iv

on L. multiflorum. Low (3000 mg·kg-1) or high (15000 mg·kg-1) concentrations of ACO 

resulted in limited benefits of AMF on plant growth, physiology, and degradation of 

ACO in soil. However, when plants were exposed to an intermediate ACO concentration 

in soil (6000 mg·kg-1), AMF plants had enhanced growth, physiological responses, and 

greater ACO-degradation than non-AMF plants. The AMF symbiosis in roots of plants 

was observed at all concentrations of ACO-contaminated soil. 

This research is one of the first reports demonstrating the benefits of AMF on the 

degradation of benzo[a]pyrene or ACO, alone or in combination, with the 

hydrocarbonoclastic microorganisms. Thus, AMF resulted in a beneficial synergism with 

the hydrocarbonoclastic microorganisms, particularly during ACO-degradation in the 

rhizosphere of L. multiflorum. Hydrocarbonoclastic microorganisms had no negative 

effects on AMF colonization. 
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CHAPTER I  

 

INTRODUCTION 

 

Contamination of soil with toxic compounds is an important environmental issue, 

which has attracted public attention and led to the creation of methodologies to detoxify 

such compounds and avoid their detrimental effects. Bioremediation is an alternative to 

expensive and destructive physical and chemical processes of soil remediation, in part 

because it is more cost-effective and environmentally sound (Juhasz and Naidu, 2000). 

Phytoremediation is based on the utilization of plants to detoxify and eliminate 

contaminants from soil (Dietz and Schnoor, 2001). The establishment of plants 

contributes significant changes to the soil chemical, physical and biological properties in 

the rhizosphere, which in turn favor the dissipation and/or degradation of contaminants in 

soil. 

Plants can avoid toxic effects of soil contaminants via specific root physiological 

processes, which are stimulated by the presence of contaminants (Binet et al., 2000a; 

Dietz and Schnoor, 2001; Dzantor et al., 2000; Neduhuri et al., 2000). While 

phytoremediation research largely deals with heavy metal-contaminated soils, research on 

phytoremediation of organic contaminants is limited (Alkorta and Garbisu, 2001; 

Cunningham et al., 1997).  

Although plants utilized in phytoremediation characteristically have higher 

tolerance to organic contaminants (Merkl et al., 2005a) such as petroleum hydrocarbons 

(PH),  they  are  subjected  to  a  stressful  soil  environment  that  limits  their growth and  

This dissertation follows the style of the Journal of the American Society for Horticultural Science. 



 

 

2

development. The exposure of plants to PH in soils limits growth by affecting water and 

nutrient uptake (De Jong, 1980; Merkl et al., 2005b), which can alter physiological 

responses and therefore reduce plant tolerance and survival. Plants adapt to abiotic stress 

through selected physiological responses, which can include improvement of water 

absorption, enhanced nutrient uptake, and the induction of free-radical scavenging 

systems to avoid cellular damage (Grace and Logan, 2000; Mahayan and Tuteja, 2005; 

Misra and Gupta, 2006; Nayyar and Gupta, 2006; Qadir et al., 2004). However, 

physiological response of plants utilized in phytoremediation of petroleum contaminated 

soils is not well studied. 

Roots play an important role not only in mining the soil for water and nutrients, 

but also as a primary factor for dissipating soil contaminants, thus avoiding their toxic 

effects on plants (Heinonsalo et al., 2000; Meharg and Cairney, 2000b). Plant alleviation 

of soil contaminants is often increased by native microflora inhabiting the rhizosphere. 

Selected microorganisms can degrade soil organic contaminants and complete 

contaminant degradation is favored by microbial cooxidation and cometabolism 

(Alexander, 1999; Rivera-Cruz et al., 2002b; Trejo and Quintero, 2000). The inoculation 

of plants with free-living microorganisms, such as bacteria and filamentous fungi, has 

significantly improved the phytoremediation of organic and inorganic contaminants 

(Alexander, 1999; Anderson et al., 1993; Atlas, 1995; Ferrera-Cerrato, 2000; Jasper, 

1994; Pérez-Vargas et al., 2000). 

Arbuscular mycorrhizal fungi (AMF) are an important component of the 

rhizosphere, and have been well documented to enhance phytoremediation of heavy 

metal-contaminated soils (Cairney and Meharg, 1999; Davies et al., 2001; Gonzalez-
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Chavez, 2000;  Griffioen and Ernst, 1989; Meharg and Cairney, 2000a; Van Diun et al., 

1991). In some of these studies, physiological mechanisms for AMF have been identified 

such as avoidance and tolerance (Perotto and Martino, 2001). However, few studies have 

reported the role of AMF on phytoremediation of soils contaminated with PH and 

polycyclic aromatic hydrocarbons (PAH). The establishment of this symbiosis may 

potentially contribute to stress alleviaton by enhancing plant nutrient and water uptake, 

and subsequent growth and adaptation (Smith and Read, 1997). 

AMF may be an indicator of soil decontamination, since AMF-colonization in the 

root system increases as the contaminant is degraded or dissipated from the rhizosphere, 

which is attributed to the proliferation of petroleum-degrading (hydrocarbonoclastic) 

rhizobacteria and free-living N2-fixing bacteria in the mycorhizosphere (Hernandez-

Acosta et al., 2000). Studies have shown that AMF play a significant role on plant 

survival and tolerance to PH and PAH, such as anthracene, chrysene and 

dibenz(a,h)anthracene (Binet et al., 2000b; Joner and Leyval, 2001; Leyval and Binet, 

1998). 

Nevertheless, the physiological impact of AMF on plants during the 

phytoremediation of PAH-contaminated soils has not been well studied. There is 

evidence that AMF-plants are more tolerant of PAH-contaminated soil, which is likely 

related to the greater adaptation, survival, establishment and fitness of plants (Cabello, 

2001; Joner and Leyval, 2003b). Some proposed mechanisms by which AMF may 

contribute to the dissipation/degradation of organic contaminants (Joner et al., 2001; 

Joner and Leyval, 2003a) include: 1) mycorrhizal modification of plant and microbial 

metabolism, 2) enhanced root peroxidase activity (Criquet et al., 2000), 3) modification 
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of rhizosphere microbial populations due to alteration of root biomass and exudation of 

specific compounds that induce the degradation of organic contaminants, and 4) 

formation of an abundant extraradical mycelium with exudates, including glomalin and 

extracellular enzymes, which may enhance specific bacterial activity and drive 

cometabolic degradation of organic contaminants.  

The general objectives and hypotheses for this research were as follows: 

 

1. To study the influence of AMF inoculation and inorganic fertilization 

(biostumulation) on plant growth and selected physiological responses of Lolium 

multiflorum during phytoremediation of Arabian medium crude oil (ACO)-

contaminated soil. 

Hypothesis: AMF inoculation and application of inorganic fertilization enhance 

growth, selected physiological responses, and phytoremediation of ACO in the 

rhizosphere of Lolium multiflorum. 

 

2. To evaluate the effect of the inoculation (bioaugmentation) of petroleum 

degrading (hydrocarbonoclastic) bacterium, filamentous fungus, and AMF on 

plant growth, selected plant physiological responses of Lolium multiflorum during 

phytoremediation of benzo[a]pyrene (BaP) in sand. 

Hypothesis: Plant growth, selected physiological responses, and phytoremediation 

of BaP in the rhizosphere of Lolium multiflorum, are enhanced through the 

inoculation of AMF and hydrocarbonoclastic microorganisms (bacteria and 

filamentous fungi). 
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3. To evaluate the influence of the inoculation of AMF and bioaugmentation with 

petroleum-degrading bacteria and filamentous fungi on growth and selected 

physiological responses of Lolium multiflorum during phytoremediation of ACO-

contaminated soil. 

Hypothesis: The interaction of AMF inoculation with bioaugmentation of 

hydrocarbonoclastic microorganisms enhances growth, selected physiological 

responses, and phytoremediation of ACO in the Lolium multiflorum rhizosphere. 
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CHAPTER II 

 

LITERATURE REVIEW 

Roles of Arbuscular Mycorrhizal Fungi in Plants Growing in Petroleum 

Hydrocarbon (PH)-Contaminated Soils and Their Influence on Phytoremediation 

Performance 

 

The worldwide petroleum industry produces, distributes, and consumes large 

quantities of oil and oil-derivatives which are the major energy source for factories and 

transportation. As an example, the U.S. consumes over 250 billion gallons of oil and 

petroleum products every year, and produces and imports 125 and 114 billion gallons per 

year, respectively, of crude oil and petroleum-based products (API, 2006; USEPA, 2004). 

The production, refining, processing, distribution and storage of petroleum products are 

an environmental pollution threat (API, 2006). For developed countries, successful oil 

programs have been designed to minimize oil spills to less than 1% of the total volume 

handled each year. In contrast, countries such as Mexico with less stringent 

environmental regulations, have had significant oil spills that have contributed to the 

release of approximately 1.5 million tons of contaminants per year to soil, air, and water 

systems (SEMARNAT, 2004). In Tabasco, Mexico which is one of the most important 

Mexican States for petroleum extraction and distribution, the extent of contaminated soil 

surface by oil spills is approximately 0.07% of the total area of the state (Rivera-Cruz et 

al., 2004; Zavala-Cruz et al., 2005). 
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As a response to the release of hazardous substances to the environment, several 

strategies have been designed to cleanup contaminated sites. These remedial actions are 

directed to protect human health and the environment, as well as to maintain protection 

over time and maximize waste treatment. Remedial actions are related to the containment 

of contaminants (e.g. physical and hydraulic barriers), contaminant removal (e.g. 

excavation, pumping and treatment, enhanced removal and soil vapor extraction), and 

treatment to allow the transformation of contaminants to less hazardous materials, e.g., 

bioremediation, oxygen augmentation, nutrient application, bioaugmentation, etc. 

(Brusseau and Miller, 1996). See Table 1.1 for definitions of concepts mentioned in this 

chapter. 

Of the remedial techniques, bioremediation consists of the optimization of 

naturally occurring biodegradative processes. It has a good public acceptance and 

support, largely because of its success and low cost of application, compared to physical 

and chemical remediation techniques. Bioremediation utilizes free-living microorganisms 

which can grow in contaminated environments and start the oxidation, degradation and/or 

complete mineralization of organic contaminants by using them as carbon and energy 

sources. Either aerobic or anaerobic microorganisms drive biotransformations of organic 

contaminants such as alkanes, polycyclic aromatic hydrocarbons, volatile compounds 

and/or xenobiotic compounds, including polychlorinated biphenyls, etc. (Donnelly et al., 

1994; Alexander, 1999; Van Hamme et al., 2003). 

As an alternative to bioremediation, phytoremediation with the incorporation of 

green plants to remove, stabilize, volatilize, accumulate, and/ or degrade organic 

contaminants, is being utilized to clean up contaminated soils (Alkorta and Garbisu, 
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2001; Davis et al., 2002; Dietz and Schnoor, 2001). Microbial activity associated with 

plant roots is often directly related to enhanced ability to dissipate or degrade organic 

contaminants, also called rhizodegradation (Newman and Reynolds, 2004; Pilon-Smits, 

2005). 

 
 
Table 1.1. Definitions for common terminology utilized for decontaminating soil and water 

systems. 
Term Definition 

 

Arbuscular mycorrhizal 
fungi (AMF) 
 
Bioaugmentation 
 
 
Bioremediation 
 
Biostimulation 
 
 
Cometabolism 
 
 
 
Filamentous fungi 
 
 
 
 
Hydrocarbonoclastic 
microorganism 
 
Phytoextraction 
 
Phytoremediation 
 
 
Phytostabilization 
 
 
Phytovolatilization 
 
 
Rhizodegradation 
 
 
 

 

Ubiquitous, asexual, and obligate symbiotic fungi that belong to the Phyllum 
Glomeromycota. 
 
Inoculation with specialized microorganisms to stimulate natural microbial 
populations and enhance contaminant degradation. 
 
Application/Management of natural free-living microorganisms. 
 
Application of mineral nutrients/surfactants, aeration, etc., to stimulate or 
supplement natural microbial populations. 
 
The metabolic transformation of a an organic compound by a microorganism, 
incapable of using the substance as a primary energy or carbon source or one 
of its constituent elements. 
 
The term filamentous fungi is intended to include fungi belonging to the Phyla 
Zygomycota, Ascomycota, Basidiomycota or fungi imperfecti, including 
Hyphomycetes such as the genera Aspergillus, Trichoderma, Penicillium, 
Fusarium or Humicola. 
 
Microorganism with the ability to utilize petroleum hydrocarbons as sole 
sources of energy and carbon. 
 
Removing contaminants from soil through accumulation in plant tissues. 
 
Utilization of plants and associated rhizosphere microorganisms to degrade 
contaminants. 
 
Immobilization of a contaminant in soil through absorption and accumulation 
by roots, absortion into roots or precipitation within the rhizosphere 
 
Uptake, metabolism and/or volatilization of a solid or liquid contaminant by a 
plant, i.e. metabolism of selenium and mercury. 
 
Also called enhanced rhizosphere biodegradation, phytostimulation, and plant 
assisted bioremediation; the breakdown of organic contaminants in soil by soil-
dwelling microbes that is enhanced by the rhizosphere.  
 

Alkorta and Garbisu (2001), Dietz and Schnoor (2001), Newman and Reynolds (2004), Pilon-
Smits (2005), Susarla et al. (2002), and van Hamme et al. (2003). 
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Bioremediation or phytoremediation of petroleum-contaminated soils can be 

improved by introducing specific microbial species (bioaugmentation) with ideal 

physiological characteristics for the oxidation or degradation of organic contaminants. 

The inoculation with these microorganisms is often recommended when native 

microorganisms show low effectiveness in degrading contaminants. In addition, 

petroleum-contaminated soils are typically limited by available nutrients, particularly 

nitrogen and phosphorus due to increased C/N and C/P ratios that results in 

immobilization of N and P by soil microbes, depleting the availability of these elements. 

Thus, supplementing with organic or inorganic nutrients (biostimulation) enhances and 

optimizes the C:N:P ratio to improve the remediation of soils contaminated with PH. 

Although bioaugmentation and biostimulation have been well documented as 

effective ways to improve bioremediation or phytoremediation processes, the interaction 

of all these remedial techniques are not well understood. The success of bioremediation 

or phytoremediation is a function of not only the type of organic contaminant, but also 

the soil physical and chemical properties. In the same manner, the physiological activity 

and genetic diversity of rhizosphere microorganisms influence the aerobic or anaerobic 

degradation of PH. The interaction of well acclimated hydrocarbonoclastic 

microorganisms in the rhizosphere is crucial for the detoxification and cleanup of soil 

contaminated with organic compounds (Alexander, 1999; Suresh and Ravishankar, 

2004). 
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Phytoremediation of Organic Contaminants in Soils 

Soils are frequently the ultimate repositories of waste products and chemicals 

which are utilized by society. However, such deposition can have a negative impact on all 

biological cycles occuring in soil. Among organic contaminants deposited in soils are 

pesticides, plastics, plasticizers, lubricants, refrigerants, fuels, solvents, preservatives, 

petroleum hydrocarbons (PH), and polycyclic aromatic hydrocarbons (PAH). Other 

contaminants include synthetic organic chemicals (xenobiotics) which have inserted 

halogen atoms (Cl, F, Br) or multivalent nonmetal atoms (S and N) in their molecular 

structure (Brady and Weil, 2002; Reynolds and Skipper, 2005). Some of these organic 

compounds are extremely toxic to humans and other living organisms, including soil 

microorganisms and plants. 

Once organic contaminants such as PH reach the soil they are subjected to several 

biotic and abiotic processes including: 1) evaporation to the atmosphere without chemical 

change, 2) adsorption by soil components, 3) downward movement in soil profiles and 

loss via leaching, 4) undergoing oxidation-reduction chemical reactions, 5) degradation 

by microbial activity, 6) surface runoff by which contaminants move into streams and 

rivers, 7) absorption by plants and ultimately animals in the food chain (Brady and Weil, 

2002) (Fig. 2.1). 

Some plants colonize sites contaminated with inorganic or organic compounds, 

and have the ability not only to tolerate but also to enhance dissipation/degradation of 

recalcitrant contaminants. Davis et al. (2002) emphasized the significant benefits of 

plants in phytoremediation of complex organic molecules derived from different sources. 

Plants posses physiological mechanisms to enhance the remediation processes, such as 
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phytoextraction/phytoaccumulation (phytomining), phytopumping, water balance control, 

phytostabilization, phytotransformation/phytodegradation, phytovolatilization and 

rhizodegradation (Susarla et al., 2002). Rhizodegradation of organic contaminants is 

significantly enhanced by root exudation (rhizosphere effect) that stimulates microbial 

activity and the presence of symbiotic and facultative plant-microbe associations. Plant 

establishment creates favorable conditions such as accumulation of available nutrients 

and litter, secretion of root exudates, and enhanced oxygenation, that favor microbial 

activity which is responsible for initiating the degradation of organic contaminants. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Biotic and abiotic processes influencing the dissipation/degradation of organic 

contaminants in soils (Modified from Brady and Weil, 2002). 

 

Plant Responses to Petroleum-Contaminated Soils 

 Petroleum hydrocarbons (PH) in soil create a stressful environment for plants. 

The negative effects of PH to plants have aboveground and belowground impacts. 
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Aboveground effects include the deposition of PH on leaves causing physiological 

disorders that ultimately provoke plant death. PH on the surface of leaves may reduce gas 

exchange (photosynthesis and transpiration) by closing or blocking stomata, disrupting 

chloroplast membranes, and induced-inhibition by accumulation of toxic intermediates 

(Baker, 1970; Daly et al., 1988; Macinnis-Ng and Ralph, 2003). In addition, respiration 

increases due to mitochondrial damage, which can potentially cause oxidative stress 

(Baker, 1970; Mittler, 2002; Torres and Dangl, 2005). Depending on the crude oil 

composition of alkanes, cycloalkanes, aromatics, alkenes, naphthenic acids, sulphur, 

nitrogen compounds and trace metals such as vanadium and nickel,  phytotoxic effects 

can be classified from acute to severe (Van Hamme et al., 2003). 

 The deleterious belowground effects of PH have been little studied. Most of the 

negative impacts of PH in soils are related to their hydrophobic and lipophilic properties. 

In soils, PH may reduce water infiltration, water availability, oxygen diffusion and 

adversely alter physicochemical properties (Obire and Nwaubeta, 2002), which limit or 

inhibit either seed germination or root growth. 

Phytotoxicity of PH during seed germination and seedling emergence are related 

to their hydrophobic properties, which restrict and reduce water availability and gas 

exchange, including oxygen that is depleted by microbial activity (Miller, 1996). The 

presence pf PH alters metabolic reactions of seeds during germination and potentially 

kills the embryo (Amadi et al., 1993; Udo and Fayemi, 1975). Although seed germination 

can be inhibited or delayed by the PH, there are reports about the beneficial effects of low 

and medium concentrations of PH in soils on seed germination of selected plant species 

(Adam and Duncan, 2003; Kirk et al., 2002; Quiñones-Aguilar et al., 2003; Siddiqui et 
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al., 2001). Stimulation of seed germination by PH may be due to increased soil 

temperature, since PH-contaminated soils have higher solar radiation absorbing 

properties which can increase soil temperature (Merkl et al., 2005b). Even though seed 

germination may be stimulated by the presence of PH, the long-term exposure to these 

organic compounds typically impairs seedling emergence or plant growth and 

development (Adam and Duncan, 2003; De Jong, 1980; Ilangovan and Vivekanandan, 

1992; Kirk et al., 2002; Malallah et al., 1996; Quiñones-Aguilar et al., 2003). 

 Roots are an important component for plant adaptation to PH-contaminated soils, 

and crucial in phytoremediation. A pioneer study on root morphology under PH-

contaminated soils demonstrated that root growth of sensitive species is drastically 

impaired. In contrast, PH-tolerant species have a modified root morphology characterized 

by coarser, shorter and thicker roots, characteristics that are related to higher PH-

degradation (Merkl et al., 2005b) and the improvement of water and nutrient acquisition 

to support plant growth under soil contamination. 

The negative effects of PH on plant physiological responses and root morphology 

varies among plant species, soil type and properties, microbial composition, and 

petroleum type, concentration, and composition (Salanitro et al., 1997; Siciliano et al., 

2001; Wiltse et al., 1998). 

Grass species are considered to be less susceptible to PH in soils than legume 

species (Kirk et al., 2002; Merkl et al., 2005a), and some legumes are potential indicators 

of phytotoxicity-induced by PH in soils (Malallah et al., 1996). The screening and 

selection of suitable plant species to be utilized in phytoremediation entails their ability to 

tolerate and grow in contaminated soils, as well as enhancing PH-degradation by directly 
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secreting or exuding specific oxidative enzymes, or indirectly stimulating petroleum-

degrading microbial populations in the rhizosphere (Pilon-Smits, 2005; Siciliano et al., 

2001; Susarla et al., 2002). 

 

Arbuscular Mycorrhizal Fungi: Effects on Plant Stress Conditions 

Among the diverse microbial populations in the rhizosphere, mycorrhizal fungi 

are considered as an important microbial component on plant adaptation and nutrition 

(Bago et al., 2001; Hodge et al., 2001; Johansson et al., 2004; Smith and Read, 1997). 

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts in a living root system. 

AMF belong to the phylum Glomeromycota (Schüβler et al., 2001). In this symbiosis, the 

root system provides simple carbon sources for the metabolism of AMF, which allow 

their proliferation and life cycle (Bago et al., 2000; Bago et al., 2002; Lammers et al., 

2001). In return, AMF enhance the nutrient and water uptake of plants via their external 

and internal mycelium (Bago et al., 1998; Drew et al., 2003; George et al., 1992; Smith 

and Read, 1997). AMF are an important component of the soil biota, and can account for 

from 5 to 50 % of total microbial biomass in agricultural soils (Olsson et al., 1999). 

Survival and dispersion of AMF in soils are mainly dependent on their establishment 

with plant root systems. 

The AMF symbiosis is based on the presence of specific fungal structures, called 

arbuscules, which colonize the cortical cells of roots. AMF are present in more than 80% 

of all known-terrestrial plants (~250,000 plant species worldwide) (Smith and Read, 

1997). The importance of AMF is not only their beneficial effect on plant growth and 

nutrition, but also their relevant role in plant evolution and adaptation to terrestrial 
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ecosystems (Malloch et al., 1980; Taylor et al., 1995). According to fossil evidence, 

AMF evolved with the first land plants, around 460 million years ago (Berbee and 

Taylor, 1993; Brundrett, 2002; Redecker et al., 2000). 

Plant adaptation and survival under stressful environments can be enhanced by 

their symbiosis with AMF. Environmental stress conditions such as nutrient limitation, 

salinity, drought, disturbance during mining, accumulation of heavy metals, pesticides, 

and petroleum hydrocarbons typically impose serious difficulties to plant survival and 

growth. Nevertheless, the establishment of AMF symbiosis in the root system alleviates 

some of these abiotic stresses by improving growth as a result of enhanced nutrient and 

water uptake (Amaya-Carpio et al., 2005; Davies et al., 1992; Davies et al., 1993; Davies 

et al., 2002; Estrada-Luna et al., 2000; Smith and Read, 1997) as well as by stimulating 

or modifying specific physiological mechanisms related with adaptation to stressful 

environments (Augé, 2001, Augé et al., 2004; Azcón et al., 1996; Hause et al., 2002; 

Porcel et al., 2003; Querejeta et al., 2003). 

As phytoremediation has emerged as an environmentally sound alternative to 

detoxify and remove toxic contaminants from soils, the potential utilization of AMF to 

improve plant adaptation and performance during phytoremediation has enormous 

significance. More attention has been directed to the role of AMF on phytoremediation of 

heavy metal-contaminated soils. AMF are a critical biological component in the 

rhizosphere via avoiding toxicity of potentially toxic elements to the plants (Perotto and 

Martino, 2001) or enabling plants to phytostabilize, as well as to improve their capability 

to accumulate or phytoextract heavy metals in harvestable plant tissues (Cairney and 
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Meharg, 1999; Davies et al., 2001; Gonzalez-Chavez, 2000; Griffioen and Ernst, 1989; 

Meharg and Cairney, 2000a; Van Diun et al., 1991). 

Some AMF species have the ability to enhance phytostabilization of heavy metals 

in soil by secreting organic compounds and sequestering these elements in the external 

hyphae, which reduces their availability to susceptible plant species. In addition, some 

AMF species can potentially enhance the uptake of heavy metals (for instance, Cd, Cr, 

Pb, As, Ni) in plants that have been characterized as hyperaccumulators including species  

in the Compositae and Gramineae (Davies et al., 2001; Ernst, 2005; Leung et al., 2006; 

Zhou and Qiu, 2005). Effects of AMF may include either reducing or enhancing human 

health risks as a result of the consumption of vegetables that are cultivated at heavy metal 

contaminated areas (Jeffries et al., 2003). The utilization of both selected AMF isolates 

and tolerant-plant species or genetically-engineered plants can potentially improve the 

performance of phytoremediation of heavy metal-contaminated soils by establishing a 

more functional and efficient microbial co-operation/interaction in the rhizosphere or 

mycorrhizosphere (Barea et al., 2005; Jeffries et al., 2003; Johansson et al., 2004). 

 

Arbuscular Mycorrhizal Fungi in Plant Tolerance and Phytoremediation of 

Petroleum Hydrocarbon (PH)-Contaminated Soils 

PH drastically affect physical, chemical and biological properties of soils. As 

previously reported, these changes are related to altered nutrient availability, reduced 

oxygen diffusion and water movement through soil pore space, which impairs plant 

growth and thus, cause alterations on rhizosphere microbial populations (Kirk et al., 

2005; Merkl et al., 2005a; Wyszkowska and Kucharski, 2001). 
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Microorganisms whose physiological activity permits them to grow and to utilize 

fractions of PH as energy sources, can significantly contribute to the dissipation, 

degradation, and mineralization of these organic contaminants. In particular, the 

proliferation of aerobic, petroleum hydrocarbon-degrading (hydrocarbonoclastic) bacteria 

and filamentous fungi plays an important role in both soil and rhizosphere detoxification 

(Atlas, 1995; Banks et al., 2003; Van Hamme et al., 2003). However, enhanced microbial 

activity may reduce the quantities of available nutrients and oxygen during the oxidation 

of the organic contaminants. Since nutrients and oxygen become limiting factors during 

bioremediation, the extent of degradation of organic contaminants is partially or 

completely inhibited (Miller, 1996). In addition, the by-products resulting from the initial 

and incomplete degradation of PH may result in greater toxicity, negatively affecting 

roots and rhizosphere microorganisms (Swoboda-Colberg, 1995). 

In contrast to the activity of bacteria and filamentous fungi on PH-degradation, 

few studies have determined the role and benefits of AMF in the rhizosphere of plants 

established in PH-contaminated soils. Since PH in soils limit plant growth by reducing 

nutrient availability and altering water uptake, AMF could potentially alleviate abiotic 

stress of plants, and enhance plant adaptation, tolerance and growth (Cabello, 2001; 

Meharg, 2001). 

AMF-communities also play an important role in phytoremediation of PH and 

polycyclic aromatic hydrocarbons (PAH)-contaminated soils, which is a serious 

worldwide problem. Increased mycorrhizal root colonization occurred when kerosene 

levels were reduced in the rhizosphere through the proliferation and activity of free-living 

N2-fixing bacteria (García et al., 2000; Hernández-Acosta et al., 1998, Hernández-Acosta 
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et al., 2000). This microbial group contributes to the cometabolism of PH with 

indigenous hydrocarbonoclastic bacteria (Onwurah, 1998; Onwurah, 1999; Pérez-Vargas 

et al., 2000).  

AMF can increase the survival and tolerance of plants when PAH are present in 

the rhizosphere (Binet et al., 2000a, Binet et al., 2000b; Leyval and Binet, 1998), but in 

other cases AMF-colonization can be negatively affected by aromatic compounds (Joner 

and Leyval, 2001). Root and microbial oxidative enzymes in soil have the greatest impact 

on initiating the degradation and ring fission of PAH. In this case, AMF can increase the 

release of root peroxidases which contribute to the degradation of anthracene (Criquet et 

al., 2000).  

In tropical areas of Mexico, studies have been conducted to understand the role of 

AMF on plants established in PH-contaminated sites. An AMF strain of Gigaspora 

margarita, isolated from petroleum-contaminated soil from Veracruz, Mexico, was able 

to germinate with 100 µg·g-1 of benzo[a]pyrene (Alarcón et al., 2003a). Furthermore, 

symbiosis of this AMF with Echinochloa polystachya was not adversely affected at the 

benzo[a]pyrene (BaP) concentrations tested. AMF enhanced rhizosphere dehydrogenase 

activity of E. polystachya, but root polyphenol oxidase activity and dissipation of BaP 

from the rhizosphere were not enhanced (Alarcón et al., 2003b). Recently, Liu et al. 

(2004) reported higher phytoremediation of BaP with Medicago sativa colonized by 

Glomus caledomiun. 

Inoculation with AMF species isolated from PH-contaminated soils resulted in 

better growth and nutrient status than plants inoculated with introduced AMF species 

(Cabello, 1999). Although PH contamination generally decreases AMF propagules, there 
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are some species, such as isolates of Glomus aggregatum and Glomus mosseae, that have 

better adaptation to PH-contaminated soil, and have high colonization capacity (Cabello, 

1997).  

Similarly, the interactions between AMF and hydrocarbonoclastic 

microorganisms (bacteria or filamentous fungi) in the phytoremediation of PH or PAH 

have received little attention. One of the few reports about this microbial interactions was 

published by Gaspar et al. (2002). In this study, the presence of phenanthrene reduced the 

intraradical colonization of Glomus geosporum, but was not affected by the inoculation 

of the hydrocarbonoclastic-yeast, Rhodotorula glutinis. The combined inoculation of 

these two microorganisms resulted in reduced accumulation of phenanthrene in maize 

roots. However, neither plant physiological responses nor degradation rate of 

phenanthrene were described. 

Some of the proposed mechanisms by which AMF may contribute to the 

dissipation/degradation of organic contaminants are: i) mycorrhizal modification of plant 

and microbial metabolism, ii) enhanced root peroxidase activity, and iii) modification of 

the microbial composition of the rhizosphere as a consequence of the establishment of 

AMF-symbiosis (Joner et al., 2001). The latter mechanism is related to the modification 

of root biomass and exudation patterns, both qualitatively and quantitatively. For 

instance, AMF may induce the synthesis and release of simple phenolic compounds by 

roots, which may act as microbial inducers for PAH-degradation. In addition, the 

formation of abundant AMF-extraradical mycelium contribute to the exudation of organic 

compounds such as glomalin and other non-characterized compounds (Wright and 
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Upadhyaya, 1999), which may possibly enhance specific bacterial activity involved in the 

cometabolic degradation of persistent and recalcitrant organic contaminants. 

 

Summary 

The success of phytoremediation of organic contaminants in soil depends on the 

type and concentration of the organic compound, soil physical and chemical properties, 

environmental characteristics, and biological activity in the rhizosphere. The interaction 

of all these factors governs the rate and the extent of the degradation as well as the fate of 

PH in soils. The proliferation of microbial groups that oxidize, transform, mineralize, 

and/or utilize organic contaminants as source of carbon and energy, is paramount to 

phytoremediation. Free-living microorganisms as well as facultative-associated and 

symbiotic bacteria and fungi can contribute to PH-degradation and enhance the 

adaptation, growth and development of plants established in contaminated soils. 

Although the benefit of AMF on plants under stressful abiotic and biotic 

environments has been well documented, their adaptation, functionality, and benefits on 

plant physiological responses in the phytoremediation of PH contaminants is not well 

known. There is evidence that selected AMF have tolerance to PH and PAH-

contaminated soil, which enhances a plant’s adaptation, survival, establishment and 

fitness. While some isolates of AMF species are adversely affected by the presence of PH 

in the rhizosphere, other AMF species can significantly enhance plant adaptation, growth 

and development in contaminated soils. 

Questions remain about the role of AMF species in a PH-contaminated 

rhizosphere in regards to their capability of sequestering or stabilizing organic 
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contaminants in their fungal biomass, as reported by Gaspar et al. (2002). Secondly, 

research is needed to evaluate the influence of specific AMF ecotypes which may have 

higher potential for either inducing plant tolerance and adaptation in contaminated soils 

or stimulating the phytoremediation processes (Cabello, 1999; Joner and Leyval, 2003a). 

Thirdly, neither biochemical nor physiological mechanisms of AMF have been 

sufficiently reported to fully understand the AMF symbiosis responses during 

phytoremediation of organic contaminants, such as PH and  PAH. The benefits of AMF 

on physiological responses of plants utilized in phytoremediation of PH -contaminated 

soil are not well known. 

This research is intended to study selected physiological responses of a grass 

species inoculated with the AMF Glomus intraradices, in a PH-contaminated soil as well 

as to study the contribution of AMF-plants on phytoremediation of PH and BaP in the 

rhizosphere by utilizing biostimulation with inorganic fertilizer, and bioaugmentation 

with selected hydrocarbonoclastic microorganisms. 
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CHAPTER III 

 

ASSESSMENT AND SELECTION OF A PETROLEUM-TOLERANT GRASS 

SPECIES FOR UTILIZATION IN PHYTOREMEDIATION OF PETROLEUM 

HYDROCARBON-CONTAMINATED SOIL 

 

Introduction 

 Soil contamination with petroleum hydrocarbons (PH) due to accidental spills 

during extraction, refinement, distribution, storage of oil and oil-derivatives is an 

international environmental problem. PH drastically modifies physical, chemical and 

biological properties of soil. Depending on the amount, type of contaminants and 

environmental conditions, it may take months to many years to decontaminate soil 

(USEPA, 2004).  

The incorporation of higher plants as a biological alternative to remove, 

accumulate or degrade organic contaminants (phytoremediation) is being utilized to 

cleanup contaminated soils. Plant establishment in contaminated soils also allows 

biological transformations of organic contaminants by stimulating the microbial activity 

via root exudation (Susarla et al., 2002). Phytoremediation of PH-contaminated soils is 

dependent plant species that are highly tolerant and can establish and thrive under these 

stressful site conditions. 

Plant species utilized in phytoremediation include graminaceous plants, legumes 

and selected dicots that enhance the degradation of PH in soils, due in part to their 

influence on plant-associated microorganism populations (Rivera-Cruz et al., 2002a; 
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Siciliano and Germida, 1998). Grass species are important in phytoremediation of 

organic contaminants in soils, due to their adaptability, root growth characteristics, and 

microbial stimulation through root exudation (Merkl et al., 2005a; Merkl et al., 2005b; 

Siciliano and Germida, 1998). One of the primary characteristics of grass species for 

phytoremediation is their root system, which is usually fibrous and extensively branched, 

allowing more soil volume to be explored for nutrient absorption and uptake (Christians, 

1998; Carrow et al., 2001). Plant roots exude organic compounds that serve as carbon and 

energy sources for the microorganisms that carry out biogeochemical transformations of 

organic contaminants in soils. 

PH exert toxic effects on plants due to their complex chemical characteristics. 

Seed germination and seedling emergence are inhibited by the toxic effects of n-alkanes, 

small carbon chain hydrocarbons (n-C10 and n-C11) in soils; once these small compounds 

undergo biodegradation, germination is less inhibited (Siddiqui et al., 2001). In addition, 

light aromatic PH, including gasoline, have phytotoxic effects on seed germination of 

plant species (Chaîneau et al., 1997). Typically, seedling growth and development are 

significantly impaired with increased concentrations of PH in soil (Chaîneau et al., 1997; 

Kirk et al., 2002; Quiñones-Aguilar et al., 2003; Siddiqui et al., 2001). While small PH 

concentrations in soils can stimulate seed germination, seedling growth, and yield (Plice, 

1948; Quiñones-Aguilar et al., 2003). 

Besides PH, soil properties may also represent adverse conditions that result in 

nutritional constraints, limiting plant adaptation and growth (Dec et al., 2002). Thus, soil 

chemical, physical and biological properties play a significant role in biodegradation of 

PH in the rhizosphere. Hence, screening and selection of tolerant plants is crucial for the 
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success of phytoremediation of PH-contaminated soils. The hypothesis tested in this 

experimental stage was that grass species from the same botanical family differ in their 

tolerance and adaptation to PH-contaminated soil. The objectives of this research were to: 

1) select plant species with high tolerance to PH in soil, 2) select the most suitable plant 

species to be utilized in a plant model system for subsequent experiments, and 3) 

determine critical PH concentrations for subsequent future experiments. 

 

Materials and Methods 

Seedling Bioassay of Five Grass Species (Poaceae) for Tolerance of Soil 

Contaminated with Arabian Medium Crude Oil (ACO) 

Five grass species were screened with Arabian medium crude oil (ACO) 

contaminated soil under glasshouse conditions. The species were: bahia grass (Paspalum 

notatum Flugge var. Pensacola), Bermuda grass (Cynodon dactylon (L.) Pers. var. 

Yuma), blue grass (Poa pratensis L. var. Kentucky), annual ryegrass (Lolium multiflorum 

Lam. var. Passerel Plus), and tall fescue (Festuca arundinacea Schreb. var. Kentucky 

31). Seeds were purchased from Pennington Seed Inc®, Lebanon, Oreg. 

This study was conducted under glasshouse conditions at Texas A&M University, 

College Station, Tex. for 30 days, from 8 July to 7 August 2003. Temperature, relative 

humidity, and photosynthetic photon flux density (PPFD) were monitored with a watch 

dog data logger Model 150 (Spectrum technologies, Inc., Planfield, Ill.), and by a LI-

190SA Quantum/Radiometer/Photometer and sensor (LI-COR® Biosciences, Lincoln, 

Nebr.), respectively. Average day/night temperature and relative humidity were 32/24°C, 
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and 80/75%, respectively, and average maximum PPFD determined at solar noon, was 

684.7 µmoles·m-1·s-2. 

A mixture of sand and sandy loam soil (1:1 v/v) was utilized as a substrate, with 

chemical properties as follows: (µg·g-1) 0.9 NO3-N, 2.1 NH4-N, 1.5 P, 17 K, 9468 Ca, 72 

Mg, 161 Na, and 53 S. The electrical conductivity was 0.17 dS·m-1, pH of 7.7, and 

textural analysis of 85% sand, 10% clay, and 5% silt. The substrate was steam-

pasteurized at 70°C for eight hours on two consecutive days. Afterward, substrate was 

treated with ACO at 0, 100, 1000, 50000 or 150000 mg·kg-1. The viscosity of ACO 

contaminant was reduced through the application of dichloromethane solvent (Sigma-

Aldrich®, Steinheim, Germany, <0.002 % of residue after evaporation). 

Each petroleum concentration had five replicates (n=5), in which 20 seeds of the 

respective grass species were sown (100 seeds per treatment). Pots were watered with 

deionized water as needed. Seedling emergence was recorded after 30 days to identify the 

susceptibility or tolerance of the plant species to ACO.  The 5 (grass species) x 5 (ACO 

concentrations) factorial experiment was in a completely randomized design with 25 

treatments and five replications (n=5). Data were analyzed using analysis of variance 

(ANOVA) and mean separation was by standard error (± SE) (SAS Institute Inc., 2002). 

 

Seed Germination and Growth of Lolium multiflorum and Festuca arundinacea in 

Soil Contaminated with Arabian Medium Crude Oil (ACO) 

Annual ryegrass (Lolium multiflorum Lam. var. Passerel Plus) and tall fescue 

(Festuca arundinacea Schreb. var. Kentucky 31) purchased from Pennington Seed Inc®, 

Lebanon, Oreg., were screened for tolerance to soil contaminated with ACO. This study 
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was conducted under glasshouse conditions at Texas A&M University, College Station, 

Tex. for 20 days, from 20 August to 6 September 2003. Temperature and relative 

humidity were monitored with a watch dog data logger Model 150 (Spectrum 

technologies, Inc., Planfield, Ill.), and photosynthetic photon flux density (PPFD) was 

determined with a LI-190SA Quantum/Radiometer/Photometer and sensor (LI-COR® 

Biosciences, Lincoln, Nebr.). Average day/night temperature and relative humidity were 

33/25°C, and 80/75%, respectively, and average maximum PPFD determined at solar 

noon, was 846.5 µmoles·m-1·s-2. 

A mixture of coarse sand and sandy loam soil (1:1 v/v) was prepared and steam-

pasteurized as previously described. The substrate was treated with ACO at 0, 150, 300, 

1000, 3000, 5000, 10000, 15000, 30000, 45000, 60000 and 120000 mg·kg-1 of substrate. 

The viscosity of ACO was reduced with dichloromethane solvent (Sigma-Aldrich®, 

Steinheim, Germany, <0.002 % of residue after evaporation), as previously described. 

Two controls (with and without dichloromethane) were used to determine the influence 

of this solvent on seed germination and seedling growth. Contaminated and non-

contaminated soil was placed in 15 mm plastic petri dishes. Each petroleum 

concentration had five replicates in which 20 seeds of the respective grass species were 

sown (100 seeds per treatment). Petri dishes were sprayed daily with deionized water. 

Seedling emergence was monitored and recorded for 30 days in order to identify the 

susceptibility or tolerance of these two plant species to ACO concentrations.  

The 2 grass species x 13 (ACO concentrations) factorial was in a completely 

randomized design, with 26 treatments and five replications (n=5). Data were analyzed 

using analysis of variance (ANOVA). Treatment means for each plant species exposed to 
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ACO were compared using least significant difference (LSD, α=0.05) or standard error (± 

SE). Pearson correlation coefficients between seed germination and total plant dry weight 

were also determined (SAS Institute Inc, 2002). 

 

Results 

Seedling Bioassay of Five Grass Species (Poaceae) for Tolerance of Soil 

Contaminated with ACO 

Seed germination was significantly (P≤0.001) affected by ACO, grass species, 

and the interaction ACO x grass species. Seed germination of control plants (0 mg ACO 

kg-1 soil) varied among the plant species. Lolium multiflorum and Festuca arundinacea 

had the highest germination percentages, 87 and 79 %, respectively (Fig. 3.1). In contrast, 

very low seed germination occurred with Paspalum notatum, Cynodon dactylon, and Poa 

pratensis with 9, 30, and 15 %, respectively (Fig. 3.1). 

Increased concentrations of ACO resulted in significantly (P≤0.001) reduced 

germination in all five species. Lolium multiflorum had greater seed germination and 

tolerance to ACO-concentrations up to 50000 mg·kg-1, followed by F. arundinacea with 

significantly reduced seed germination at ACO-concentrations up to 50000 mg·kg-1 (Fig. 

3.1). Although, seed germination of P. notatum, C. dactylon, and P. pratensis was low, P. 

pratensis failed to germinate at ACO concentrations of 1000 mg·kg-1 or higher, while P. 

notatum and C. dactylon failed to germinate at 150000 mg·kg-1 (Fig. 3.1).  

Due to their higher germination, L. multiflorum and F. arundinacea were selected 

for further evaluation of their growth tolerance to increasing concentrations of ACO, with 



 

 

28

the goal of selecting one of the remaining two species as part of the plant model system 

for subsequent experiments. 

Fig. 3.1.  Seed germination percentage of five grass species exposed to soil contaminated with 

five levels of Arabian medium crude oil (ACO) after 30 days. Main effects of ACO, grass 

species and the interaction of ACO x grass species were significant at P≤0.001; Bars are 

± SE, n=5. 

 

Seed Germination and Growth of Lolium multiflorum and Festuca arundinacea in 

Soil Contaminated with ACO 

Seed germination of each plant species was significantly (P≤0.001) affected by 

ACO concentration, grass species and the interaction ACO x grass species. Increased 

concentrations of ACO resulted in reduced germination in both species (Fig. 3.2; see data 

in Appendix I, Table AI-3.1). However, L. multiflorum had significantly (P≤0.001) 

higher germination, tolerance, and growth in ACO contaminated soil than F. 

arundinacea. Seed germination in L. multiflorum was not significantly reduced in soil 
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contaminated with ACO concentrations from 150 to 10000 mg·kg-1, but at ACO  

concentrations  greater  than 10000 mg·kg-1, germination was significantly reduced (Fig. 

3.2). In contrast, although germination was 70% in the control (0 mg ACO kg-1), F. 

arundinacea had significant reduced germination when ACO concentrations increased up 

to 5000 mg·kg-1. Seedling root, shoot and total plant dry weight of L. multiflorum was 

significantly (P≤0.001) reduced by increasing ACO concentrations as a treatment effect, 

while the root:shoot ratio was not significantly different (Table 3.1). In the case of F. 

arundinacea, seedling root, shoot and total plant dry weight was also significantly 

(P≤0.001) reduced by increasing ACO concentrations, while for the root:shoot ratio, the 

effects of ACO concentration effects were significant at P≤0.05 (Table 3.2). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Influence of Arabian medium crude oil (ACO) and dichloromethane solvent (CH2Cl2) on 

seed germination of Lolium multiflorum cv. Passerel Plus and Festuca arundinacea after 

20 days. Main effects of ACO, grass species and the interaction of ACO x grass species 

were significant at P≤0.001; Bars are ± SE, n=5. 
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Table 3.1. Seed germination, plant dry weight (DW), and root:shoot ratio of Lolium multiflorum 

cv. Passerel Plus exposed to several concentrations of Arabian medium crude oil 

(ACO) in a sandy soil, after 20 days. 

ACO-Treatment  

(mg·kg-1) 

Root DW  

(mg) 

Shoot DW 

(mg) 

Total plant DW 

(mg) 

Root:Shoot ratio 

(g·g-1) 
 

Control 
 

194.0 bz 
 

67.6 c 
 

261.6 b 
 

2.9 

CH2Cl2
y 307.2 a 84.6 ab 391.8 a 3.6 

150 265.2 a 91.0 a 356.2 a 2.9 

300 164.2 b 78.4 abc 242.6 b 4.6 

1,000 98.4 c 72.4 bc 170.8 c 1.4 

3,000 87.0 cd 47.6 d 134.6 cd 1.8 

5,000 68.6 cd 41.0 d 109.6 de 1.7 

10,000 59.0 cde 33.8 de 92.8 de 1.8 

15,000 49.6 def 24.4 e 74.0 ef 2.1 

30,000 15.2 ef 8.2 f 25.6 fg 2.5 

45,000 18.2 ef 7.4 f 23.4 fg 2.5 

60,000 10.0 f 3.2 f 13.2 g 3.6 

120,000 1.4 f 0.4 f 1.8 g 3.5 
      

      Significance 
 

0.001 
 

0.001 
 

0.001 
 

NS 
ySolvent (dichloromethane) applied to reduce the oil viscosity and allow ACO homogenization in 

the soil. 
ZMeans followed by the same letter in the same column are not significantly different (LSD, 

α=0.05); NS= Nonsignificant, n=5 with 5 petri dishes containing 20 seeds per petri dish. 
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Table 3.2. Seed germination, plant dry weight (DW), and root:shoot ratio of Festuca arundinacea 

exposed to several concentrations of Arabian medium crude oil (ACO) in a sandy soil, 

after 20 days. 

ACO-Treatment  

(mg·kg-1) 

Root DW 

(mg) 

Shoot DW 

(mg) 

Total plant DW 

(mg) 

Root:Shoot ratio 

(g·g-1) 
 

Control 
 

96.2 abz 
 

36.0 b 
 

132.2 bc 
 

2.7 b 

CH2Cl2
y 110.8 a 52.8 a 163.6 a 2.2 b 

150 100.2 ab 50.8 a 151.0 ab 2.1 b 

300 97.2 ab 35.6 b 132.8 bc 2.8 b 

1,000 90.0 b 32.2 b 122.2 c 2.7 b 

3,000 41.4 c 21.0 c 62.4 d 2.1 b 

5,000 39.2 c 17.4 cd 56.6 d 2.4 b 

10,000 13.8 d 10.0 de 23.8 e 2.3 b 

15,000 10.6 d 5.3 ef 15.9 ef 1.9 b 

30,000 3.4 d 2.0 ef 5.4 ef 1.9 b 

45,000 2.4 d 0.8 f 3.2 ef 3.3 b 

60,000 1.4 d 0.2 f 1.6 ef 7.0 a 

120,000 0.4 d 0.2 f 0.6 f 2.0 b 
 

Significance  
 

0.001 
 

0.001 
 

0.001 
 

0.05 
ySolvent (Dichloromethane) applied to reduce the oil viscosity and allow ACO homogenization in 

the soil. 
ZMeans followed by the same letter in the same column are not significantly different (LSD, 

α=0.05); n=5 with 5 petri dishes containing 20 seeds per petri dish. 

 

 

The application of CH2Cl2 and 150 mg ACO kg-1 stimulated seedling growth in 

both plant species; however, reduction in total plant DW was obtained when plants were 

exposed to ACO at concentrations greater than 1000 mg·kg-1 (Fig. 3.3). 

 

 



 

 

32

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Changes in percentage of total plant dry weight (DW) compared to the control of Lolium 

multiflorum cv. Passerel Plus and Festuca arundinacea, as affected by Arabian medium 

crude oil concentrations and dichloromethane solvent (CH2Cl2) application in soil, after 

20 days. Values estimated from the difference expressed in percentage, of the total plant 

DW of controls (0 mg ACO kg-1) for each grass species and the total plant DW of ACO 

or solvent treated plants. 

 

 

Discussion 

 Increasing ACO concentrations reduced seed germination among all the plant 

species; however, P notatum, C. dactylon, and P.  pratensis had poor germination despite 

ACO concentration. In constrast, L. multiflorum and F. arundinacea had greater tolerance 

to ACO. Thus, indicating differential responses among members of the same botanical 

family (Poaceae). While selected grass species are commonly used for phytoremediation 

(Chaîneau et al., 1997; Merkl et al., 2005a; Siddiqui et al., 2001), selection of plants that 

thrive under specific environmental conditions such as soil type, climate, type and 
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concentration of contaminants in soil, is critical for the success of the phytoremediation. 

Under  our  experimental  conditions,  seedling  germination  of  the  controls  (0  mg 

ACO kg-1) were: L. multiflorum (>85 %), F. arundinacea (~80 %), P. notatum (~9%), C. 

dactylon (~30 %), and P. pratensis (~ 15 %). Seed germination percentages for the latter 

three grass species were low, suggesting problems with seed sources, seed viability, or 

environmental conditions during the experiment. The expected germination percentages 

for P. notatum, C. dactylon, and P. pratensis are ~70 %, ~85 %, and ~85 %, respectively. 

Although environmental conditions such as temperature and relative humidity 

during the experiment were considered no detrimental for grass species (Clarke and 

French, 2005; Larsen and Bibby, 2005), differences in seed germination observed among 

the species may be related to their specific temperature requirements and physiological 

characteristics. While P. notatum and C. dactylon are classified as warm-season grasses 

(C4 photosynthetic system plants); L. multiflorum, F. arundinacea and P. pratensis are 

classified as cool-season grasses (C3 photosynthetic system plants) (Christians, 1998). 

According to the recommended specifications given by the commercial provider, P. 

notatum, F. arundinacea, are tolerant to heat and drought stress, while P. pratensis and L. 

multiflorum are more suitable for cold climates (Carrow et al., 2001). However, in this 

study, factors that may have caused a direct effect on seed germination and seedling 

growth besides ACO in soil, were related with low seed viability, particularly for P. 

notatum, C. dactylon, and P. pratensis, or the temperature effects during the experiment 

(average day/night  32/24°C). 

Increasing concentrations of ACO resulted in significant reductions of tolerance 

of L. multiflorum and F. arundinacea. Root DW was greater than shoot DW in both plant 
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species (Tables 3.1 and 3.2). However, differences on root sensitivity were observed 

between L. multiflorum and F. arundinacea. When F. arundinacea seedlings were 

exposed to low ACO concentrations, such as 300 and 1000 mg·kg-1, root DW reductions 

were negligible (from 0 to -0.06 %, respectively) with respect to the control (0 mg ACO 

kg-1);  in  constrast, the reduction in root DW for L. multiflorum was -15% and -49%, 

respectively. Thus, L. multiflorum was more sensitive to low ACO concentrations in 

comparison to F. arundinacea. In contrast, when ACO concentrations in soil  increased 

up to 10000 mg·kg-1, L. multiflorum was less sentive than F. arundinacea. For instance, 

the exposure of L. multiflorum seedlings to ACO concentrations of 10000 and 15000 

mg·kg-1 resulted in a reduction of root DW of -70%, and -74%, respectively; while for F. 

arundinacea this reduction was -86% and -90%, respectively. 

Seed germination of L. multiflorum correlated with the total plant dry weight in 

70.6% (Pearson Correlation Coefficient, P≤0.001), while for F. arundinacea the 

correlation was 82.7%. By comparing total plant DW of the control seedlings with the 

seedlings exposed to ACO, it was observed that the reduction of total plant growth in L. 

multiflorum exposed to ACO concentration from 300 to 1000 mg·kg-1 was -0.003% and -

48%, respectively. In contrast, the reduction observed in F. arundinacea at the same 

ACO concentrations was 0.0% and -0.08%, respectively (Fig 3.3). This suggests that F. 

arundinacea is less sensitive to ACO concentrations ≤1000 mg·kg-1 in comparison to L. 

multiflorum. However, when ACO concentrations were higher than 3000 the extent of 

reduction in total DW for F. arundinacea was significantly greater than in L. multiflorum. 

The reductions observed for F. arundinacea were -53%, -57%, -82%, and -87% when 

exposed to ACO concentrations of 3000, 5000, 10000, and 15000 mg·kg-1, respectively; 
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while in L. multiflorum the reductions were -48%, -58%, -64%, and -72%, respectively 

(Fig 3.3). Hence, L. multiflorum was considered as a tolerant grass species when exposed 

to high concentrations of ACO in soil since this species had greater plant biomass than F. 

arundinacea (Tables 3.1 and 3.2). However, ACO concentrations greater than 15000 

mg·kg-1 resulted in plant growth inhibitions for both grass species. 

The beneficial effect of the solvent dichloromethane (CH2Cl2) on total plant DW 

of both grass species (Fig. 3.3) may be explained in part due to its influence on enhancing 

release of nutrients that were adsorbed on the surface of both clay and silt fractions of the 

substrate (Brady and Weil 2001). As a consequence of this nutrient desorption, nutrients 

may have been more available to the seedlings, resulting in enhanced dry weight of roots, 

shoots and total biomass in comparison to seedling growth in control petri dishes. There 

was no supplementary fertilization added during the experimental bioassay.  

In addition, some benefits on total plant DW were observed in plants of both 

species when exposed to low concentrations of ACO such as 150 mg·kg-1. For instance, 

the increase in total DW with respect to the corresponding control plants was +36% for L. 

multiflorum, and +14% for F. arundinacea (Fig. 3.3). Benefits of small concentrations of 

PH in soils on germination and plant growth have been previously reported (Plice, 1948; 

Quiñones-Aguilar et al., 2003). 

Selected grass species have promise for phytoremediation of organic 

contaminants in soils due to their adaptability and root growth characteristics (Merkl et 

al., 2005b). Grass root systems are usually fibrous and highly branched, allowing more 

soil volume to be explored for nutrient absorption and uptake (Christians, 1998; Carrow 

et al., 2001). Thus, phytoremediation of PH in soils requires the utilization of plant 
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species with higher tolerance and ablity to establish and develop under stressful 

conditions. In this study, grass species from the same botanical family differed in their 

tolerance and adaptation to contaminated soil with ACO. However, for P. notatum, C. 

dactylon, and P. pratensis, the results may have been confounded in their response to 

ACO, due to their initial low seed viability and temperature conditions of the experiment. 

Furthermore, Lolium multiflorum was selected for future experiments based on its 

growth rate and greater tolerance to ACO in the sandy soil with limited nutrient 

availablility system utilized in these experiments. 

 

Summary 

Phytoremediation can be used to cleanup soils containing organic or inorganic 

contaminants, and consists of utilizing plants which improve soil aeration and stimulate 

rhizosphere microbial activity via root exudation. Success of phytoremediation of 

petroleum hydrocarbons (PH) depends on the utilization of plant species with high 

tolerance and ablity to establish and develop in contaminated soils. Two glasshouse 

biossays were established to select grass species with high tolerance to Arabian crude oil 

(ACO) and to determine critical petroleum concentrations for future experiments. 

The first biossay consisted of screening the germination of five grass species 

(Poaceae) to increased ACO concentrations (0, 1000, 50000, and 150000 mg·kg-1) in a 

sand-sandy loam soil mixture for 30 days. Screened grass species were: Lolium 

multiflorum, Festuca arundinacea, Paspalum notatum, Cynodon dactylon, and Poa 

pratensis. Significant (P≤0.001) effects on seed germination were observed by ACO, 

grass species and the interaction of ACO x grass species. Increased ACO concentrations 
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resulted in reduced seed germination, but higher germination and tolerance to ACO was 

observed for Lolium multiflorum and Festuca arundinacea. However, the reduced 

germination observed for P. notatum, C. dactylon, and Poa pratensis, suggested viability 

or higher temperature problems during germination of seeds of these species. 

The second biossay consisted on exposing L. multiflorum and F. arundinacea to 

increased ACO concentrations (0, 150, 300, 1000, 3000, 5000, 10000, 15000, 30000, 

45000, 60000, and 120000 mg·kg-1) in sand-sandy loam soil mixture for 20 days. 

Germination and growth parameters were significantly (P≤0.001) affected by ACO, grass 

species, and the interaction ACO x grass species. Increased concentrations of ACO 

resulted in reduced germination, root, shoot, and total dry weight in both species. Solvent 

dichloromethane and ACO concentrations of 150 mg·kg-1, enhanced seedling growth. 

Lolium multiflorum was selected as part of the plant system for future experiments 

based on its growth rate and greater tolerance to ACO. The evaluation of PH-degradation 

in the rhizosphere of L. multiflorum inoculated with arbuscular mycorrhizal fungi (AMF) 

in combination with different treatments of biostimulation or biougmentation are 

considered in the following chapters. 
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CHAPTER IV 

 

MYCORRHIZA AND BIOSTIMULATION AFFECT GROWTH, AND 

PHYSIOLOGICAL RESPONSES OF Lolium multiflorum IN THE 

PHYTOREMEDIATION OF SOIL CONTAMINATED WITH ARABIAN 

MEDIUM CRUDE OIL 

 

Introduction 

Phytoremediation utilizes plants to detoxify and eliminate contaminants from the 

soil (Dietz and Schnoor, 2001). Plant establishment contributes to significant changes in 

chemical, physical and biological properties in the rhizosphere, which favor the 

dissipation and/or degradation of organic contaminants such as petroleum hydrocarbons 

(PH) and polycyclic aromatic hydrocarbons (PAH) in the soil. While phytoremediation of 

heavy metal-contaminated soils is more commonly reported, research on 

phytoremediation of organic contaminants is limited (Alkorta and Garbisu, 2001). 

Plants utilized in phytoremediation characteristically have higher tolerance to 

organic contaminants such as PH, however growth can be limited, in part due to reduced 

water and nutrient uptake (De Jong, 1980; Merkl et al., 2005a, Merkl et al., 2005b). 

Plants adapt to abiotic stress by adjusting selected physiological responses, which include 

improvement of water absorption, enhanced nutrient uptake, and induction of free-radical 

scavenging systems to avoid cellular damage (Grace and Logan, 2000; Mahayan and 

Tuteja, 2005; Misra and Gupta, 2006; Nayyar and Gupta, 2006; Qadir et al., 2004). 
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However, physiological responses of plants utilized in phytoremediation of PH- 

contaminated soils are not well understood. 

Alleviation of soil contaminants can be increased by bioremediation with 

microflora inhabiting the rhizosphere. Some microorganisms degrade soil organic 

contaminants more efficiently under natural conditions, and contaminant degradation is 

favored by microbial cometabolism (Trejo and Quintero, 2000: Rivera-Cruz et al., 

2002b). Bioaugmentation via inoculation of plants with free-living microorganisms, such 

as bacteria and filamentous fungi, may significantly improve the phytoremediation 

performance in detoxifying or degrading organic and inorganic contaminants (Binet et 

al., 2000b; Pérez-Vargas et al., 2000). 

As an important component of the rhizosphere, arbuscular mycorrhizal fungi 

(AMF) can enhance phytoremediation of soils contaminated with heavy metals (Davies et 

al., 2001). In some of these studies, some physiological mechanisms for AMF have been 

identified such as avoidance or tolerance (Perotto and Martino, 2001). However, few 

studies have been conduced to determine the role of AMF on phytoremediation of soils 

contaminated with petroleum and polycyclic aromatic hydrocarbons (PAH). 

Although AMF can be affected by the presence of organic contaminants in soils, 

the establishment of this symbiosis may confer some benefits to the plants. Presence of 

AMF may be an indicator of soil decontamination, since root colonization increased as 

the levels of contaminants decreased in soils (Hernandez-Acosta et al., 1998, Hernandez-

Acosta, 2000). AMF play a significant role in plant survival and tolerance to petroleum 

hydrocarbons and PAH (Binet et al., 2000a; Joner and Leyval, 2001; Leyval and Binet, 

1998). Physiologically, the effect of AMF on Medicago sativa has been reported to 
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induce higher release of oxidoreductases by roots in soil contaminated with anthracene 

(Criquet et al., 2000). There is evidence that AMF have tolerance in petroleum-

contaminated soil (Cabello, 2001), likely related to adaptation, survival, establishment 

and fitness of plants under these environmental conditions. 

The present research was conducted to determine the role of an AMF on selected 

physiological responses of plants grown in soil contaminated with Arabian medium crude 

oil (ACO), and to evaluate its performance on phytoremediation of PH. The hypotheses 

were that: 1) AMF increase plant production of antioxidants in the phytoremediation of 

ACO-contaminated soil, 2) inorganic fertilization increases growth, gas exchange and 

selected physiological responses of plants during phytoremediation, 3) microbial 

population and soil respiration are increased via biostimulation with inorganic 

fertilization using Lolium multiflorum in the phytoremediation of ACO-contaminated 

soil, and 4) AMF-inoculation and fertilization increase phytoremediation of ACO in soil 

measured as the reduction in ACO levels. 

 The objectives of this research were to: 1) determine the antioxidant production of 

AMF-plants grown during phytoremediation of ACO-contaminated soil, 2) determine the 

effect of inorganic fertilization on growth, gas exchange and selected physiological 

responses of L. multiflorum during phytoremediation, 3) determine the effect of the 

fertilization and AMF on microbial populations and soil respiration in the rhizosphere of 

L. multiflorum grown in an ACO-contaminated soil, and 4) determine the 

phytoremediation of Arabian medium crude oil (ACO) as a response of AMF-inoculation 

and the biostimulation with inorganic fertilization. 
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Materials and Methods 

Cultural Conditions, Soil Contamination, Transplant and 

Mycorrhizal Inoculation 

The study was conducted for 80 days under glasshouse conditions at Texas A&M 

University, College Station, TX. The experiment started on 28 August and terminated on 

17 November 2004. Temperature and relative humidity were monitored with a watch dog 

data logger Model 150 (Spectrum technologies, Inc., Planfield, Ill.), and photosynthetic 

photon flux density (PPFD) was determined with a LI-190SA 

Quantum/Radiometer/Photometer and sensor (LI-COR® Biosciences, Lincoln, Nebr.). 

Average day/night temperature and relative humidity were 24.8/23.1°C, and 75.3/78.4%, 

respectively; and average maximum PPFD determined at solar noon, was 758.5 

µmoles·m-1·s-2. A 14 h of photoperiod was maintained by artificially lighting plants from 

18:00 to 22:00 during October and November. 

The container substrate was a mixture of sand and sandy loam soil (1:1, v/v) with 

chemical properties of: (µg·g-1) 0.9 NO3-N, 2.1 NH4-N, 1.5 P, 17 K, 9468 Ca, 72 Mg, 161 

Na, and 53 S. The electrical conductivity (EC) was 0.17 dS·cm-1, pH of 7.7, and textural 

analysis of 85% sand, 10% clay, and 5% silt. Substrate was steam-pasteurized at 70°C for 

eight hours on two consecutive days. The substrate was treated with Arabian medium 

crude oil (ACO) at 0, 3000, or 15000 mg·kg-1. The viscosity of ACO contaminant was 

reduced through the application of dichloromethane solvent (Sigma-Aldrich®, Steinheim, 

Germany, <0.002 % of residue after evaporation), as previously described. 

Dichloromethane was allowed to evaporate from the substrate for a week prior to 

transplanting seedlings. Two week-old seedlings of Lolium multiflorum Lam. cv. Passerel 
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Plus were transplanted to two-kilograms of either non-contaminated or ACO-

contaminated substrates. Half of the seedlings were non-inoculated (Non-AMF), and the 

remaining seedlings were inoculated (AMF) with 500 spores of Glomus intraradices 

(Mycorise® ASP, PremierTech Biotechnologies, Canada) per pot. Plants were weekly 

fertilized with 100 mL of Long Ashton Nutrient Solution (LANS; Hewitt, 1966; see 

Appendix I, Table AI-4.1) at 0.5X, 1.0X and 2.0X strength, modified to supply 30 µg P 

mL-1 in all the treatments to maximize establishment of mycorrhizal symbiosis and 

encourage comparable growth between AMF and Non-AMF plants.  

 

Plant Growth Evaluation 

After 80 days, plants were harvested to determine: leaf area (cm2), leaf dry weight 

(DW), number and DW of pseudostems, aerial parts, roots, and total plant DW (g). In 

addition, leaf area ratio [(LAR): leaf area/total DW, cm2·g-1], specific leaf area [(SLA): 

leaf area/leaf DW, cm2·g-1],  and  root to shoot ratio [(RSR): root DW/aerial part DW, 

g·g-1] were determined. Leaf area was determined with a portable area meter LI-COR 

Model LI-3000 (LI-COR Biosciences, Lincoln, Nebr). Detached plant organs were 

placed in an oven at 70°C for two days, and plant samples were weighed. 

 

Selected Plant Physiological Responses 

Gas exchange measurements (photosynthesis and stomatal conductance) were 

taken at the end of the experiment with a portable photosynthesis system model LI-6400 

(LI-COR Inc., Lincoln, Nebr.) with red/blue LED light source (LI6400-02B) at 

photosynthetically active radiation (PAR) levels of 500 µmol m-2·s-1, and CO2 
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concentration of 360 µmol·s-1. This determination was performed on individual mature 

leaf blades from three randomly chosen plants per treatment (n=3). 

Leaf chlorophyll content was determined with 80% acetone extraction using the 

procedure of Harborne (1998). Absorbance readings were taken at 645 and 663 nm 

wavelengths with a Beckman UV-Vis spectrophotometer (Beckman Coulter™ Du® 

Series 640 UV/Vis Spectrophotometer, Beckman Coulter, Inc. Fullerton, Calif.). 

Chlorophyll content (total, a and b) were estimated with the following equations: 

ChlTotal  (mg·L-1) = 17.3(Absorbance646) + 7.18(Absorbance663) 

Chla  (mg·L-1)  = 12.21(Absorbance663) – 2.81(Absorbance646) 

Chlb  (mg·L-1)  = 20.13(Absorbance646) – 5.03(Absorbance663) 

Leaf samples were taken to measure the content of total phenolic compounds 

(Singleton and Rossi, 1965; Soong and Barlow, 2004), antioxidant activity (Re et al., 

1999) and ascorbic acid (Hernandez et al., 1999; Jimenez et al., 1997b). Proline content 

in leaves was determined as described by Bates et al. (1973) and Gzik (1996). 

Total phenolics content of shoots was evaluated by the Folin-Ciocalteu reagent 

assay utilizing chlorogenic acid for a standard curve (Singleton and Rossi, 1965; Soong 

and Barlow, 2004). In brief, 0.150 g of leaf fresh tissue was macerated in a chilled mortar 

with 3 mL of 80% methanol. Extracts were centrifuged for 15 min at 15,000 rpm. 

Reaction mixture consisted of mixing 30 µL of the extract added with 90 µL of Na2CO3 

and 150 µL of Folin-Ciocalteau reagent in a 96-well microplate. After 30 min the 

absorbance was measured at 725 nm using a KC-4 spectrophotometer (Biotek® 

Instruments, Inc. Winooski, Vt.). Results were expressed as micrograms of chlorogenic 

acid equivalents per gram of fresh weight tissue. 
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Shoot total antioxidant activity was determined by the 1,1-diphenyl-2-picryldrazyl 

(DPPH) radical decoloration assay (Matthäus, 2002; Re et al., 1999). Briefly, leaf 

extracts (0.150 g in 3 mL of 80 % methanol) were obtained and immediately centrifuged 

at 15,000 rpm for 15 min. The reaction mixture consisted of mixing 75 µL of the extract 

added with 250 µL of DPPH-solution in 96-well microplates. Initial absorbance readings 

at 515 nm were taken and then, microplates were incubated for 15 min to take a final 

absorbance reading using a KC-4 spectrophotometer (Biotek® Instruments, Inc. 

Winooski, Vt.). Antioxidant activity was calculated by applying known aliquots of 

Trolox (antioxidant compound) to known concentrations of DPPH solution. Results were 

expressed as micromoles Trolox equivalents per gram of fresh tissue. 

Proline content in leaves was determined with the procedures of Bates et al. 

(1973) and Gzik (1996). Briefly, 0.100 g of leaf fresh tissue was macerated in an iced-

mortar with 3 mL of 3 % sulfosalicylic acid. After centrifugation at 10,000 g for 30 

minutes, an 200 µL aliquot of the extract was reacted with 200 µL ninhydrin reagent and 

200 µL glacial acetic acid, and incubated at 100 °C for one hour. Reaction mixture was 

stopped with an ice bath, and proline was extracted with toluene. Absorbance readings 

were taken at 520 nm (Beckman Coulter™ Du® Series 640 UV/Vis Spectrophotometer, 

Beckman Coulter, Inc. Fullerton, Calif.). Proline concentration was determined from a 

standard curve of D,L-proline, and the results were expressed as micromoles of proline 

per gram of fresh tissue. 

Ascorbic acid was extracted from leaves with 2 mL of 2 % metaphosphoric acid, 

and determined by HPLC (Jimenez et al., 1997a; Jimenez et al., 1997b; Hernandez et al., 
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1999). Ascorbic acid was used as standard and results were expressed as micrograms of 

ascorbic acid per gram of fresh tissue. 

 

Plant Nutrient Analysis 

Dried tissue samples from shoots (leaves and pseudostems) from three plants per 

treatment were ground (Wiley Mill, Arthur H. Thomas Co. Scientific Apparatus, 

Philadelphia, Pa.) to pass a 40-mesh screen. Complete tissue analysis (N, P, K, Mg, Ca, 

S, Na, Fe, Mn, Zn, Cu, Al, B, and Mo) was conducted (MDS Harris Laboratory Services, 

Lincoln, Nebr.). 

 

Microbial Populations, Microbial Respiration, and 

Mycorrhizal Colonization 

Naturally occurring populations of bacteria and filamentous fungi were estimated 

by performing the dilution plate count method (Alexander, 2005). Soil samples were 

prepared in serial dilutions (10-1 to 10-6) with sterile distilled water. Briefly, 10 g of 

rhizosphere soil were mixed in 95 mL of sterile water (10-1 dilution). The suspension was 

agitated vigorously for 10 min to suspend either bacterial or fungal cells in the liquid, and 

then allowed to settle. Subsequent dilutions were prepared by transferring 1 mL of the 

cell suspension to test tubes containing 9 mL of sterile water. Aliquot transfers were 

made sequentially from tube to tube to obtain increasingly dilute cell suspensions. From 

dilution 10-5 to 10-6, 100 µL aliquots were taken to estimate bacterial colony forming 

units (CFU), and from dilutions 10-2 to 10-3, aliquots were taken to estimate fungal CFU. 

Aliquots of 100 µL were transferred and spread out on nutrient agar (total bacteria) or 
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potato dextrose agar (filamentous fungi) plates. For free-living N2-fixing bacteria 

(bacteria able to grow on N-free medium), aliquots were taken from dilutions 10-4 to 10-5 

and spread out on Petri dishes containing Rennie’s medium (Rennie, 1981). Plates were 

inverted, incubated at 26°C for 2-5 days, and bacterial CFU were counted from plates that 

yield between 30 and 300 CFU. 

Rhizosphere soil respiration (CO2) was determined at the end of the experiment as 

described by Anderson (1982) and Zuberer (1996). Briefly, 30 g of rhizosphere soil was 

weighed and put in 150 mL-glass jars and 3.5 mL of nanopure deionized water were 

added to bring the soil sample to approximately 60% of field capacity. Simultaneously, 4 

mL of 1.0 N NaOH were put into 4-mL vials. Vials containing the alkali solution were 

carefully placed on the surface of the soil in the jars, including in three empty jars 

without soil as controls. Immediately, jars were tightly sealed and incubated in an 

incubator at 30 °C for 24 h. The evolution of CO2 from soil samples and controls was 

determined when NaOH-vials were lifted out from the jars. Vials received with 2 or 3 

drops of phenolphthalein as indicator and 1.0 mL of 50% BaCl2, to precipitate the 

carbonate as an insoluble barium carbonate. The resulting solution was titrated with 1.0 N 

HCl, which was slowly added to the vials by means of a buret. Vials were gently stirred 

until the pink color disappeared. The amount of acid solution required to get the endpoint 

of the titration of each sample was recorded. The amount of CO2 evolved from each 

sample was estimated by the following formula:  

   mg CO2 = (B-V) NE, 

where B is the volume of acid (mL) to titrate the alkali in the vials from controls, V is the 

volume of acid to titrate the alakali from soil samples, N is the normality of HCl, and E is 
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the equivalent weight for CO2 which is equals to 22. Results were expressed as 

milligrams of CO2 per kilogram per hour. 

Three plants per treatment were randomly taken and assayed for AMF-

colonization (Phillips and Hayman, 1970). Roots were placed in plastic capsules and 

cleared with 10% KOH exposed to 121°C for 10 min. After rinsing with tap water, roots 

were exposed to a commercial hydrogen peroxide (~3%) for 15 min and rinsed with tap 

water. Immediately, a 10% hydrochloric acid solution was added to the roots for 15 min. 

Roots were stained with 0.05% trypan blue in a lactoglycerol solution (glycerol-lactic 

acid-distilled water, 1:1:1, v/v) at 121°C for 10 min. Finally, 1-cm root segments (20 per 

slide) were placed on slides, covered with cover slip, and observed under a compound 

microscope at 100X magnification. The frequency of arbuscules, vesicles, and hyphae 

(total colonization) was determined, and results were expressed as a percentage of each 

AM-fungal structure (Biermann and Linderman, 1981). 

 

Total Petroleum Hydrocarbon (TPH) Degradation 

Analysis of TPH was performed using a modified EPA SW-846 Method 8270B 

(Louchouarn et al., 2000; USEPA, 1986). The extraction of TPH from pre-dried samples 

(15 g) was performed with an automated accelerated solvent extractor (Dionex ASE-200, 

Dionex Corp., Sunnyvale, Calif.) (Berset et al., 1999; Popp et al., 1997; Richter et al., 

1997). The extractions were performed using 100% dichloromethane, with stainless-steel 

extraction cells held at elevated temperature (100°C) and solvent pressure (1200 psi). The 

extracted TPH dissolved in the hot solvent were collected in 60 mL glass vials, and 

immediately concentrated to a volume of 1 mL, using an evaporative solvent reduction 
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apparatus (Zymark TurboVap II, Zymark Corp. Hopkinton, Mass.). Final extracts were 

used in the quantitative determination of TPH by gas chromatographic mass spectrometry 

(HP 5890 Series II Gas Chromatograph Hewlett-Packard Co., Wilmington, Del.). 

 

Rhizosphere Soil pH and Electrical Conductivity Changes 

Rhizosphere soil pH and electrical conductivity (EC) were determined at the end 

of the experiment to evaluate the influence of LANS, AMF, and ACO on changes in pH 

and salinity build-up. Rhizosphere soil samples were taken and dried at room 

temperature, and three grams of sample were separately weighed and added with 6 mL of 

nanopure water. Soil-water suspensions were agitated for five minutes and soil particles 

allowed to settle to the bottom. Once the supernatant was clear, aliquots were taken and 

measured by means of a pH meter (Model B-213 HORBIA Ltd. Kyoto, Japan) and EC-

meter (Model B-173 HORBIA Ltd. Kyoto, Japan).  

 

Experimental Design 

The experiment was a 3x2x3 factorial in a completely randomized design 

including three levels of fertilization (0.5X, 1X, and 2X strength LANS), two AMF levels 

(Non-AMF and AMF), and three levels of ACO (0, 3,000 or 15,000 mg·kg-1). Data were 

analyzed by using analysis of variance (ANOVA), except for N content and 

concentration in shoots, which was analyzed by using the General Linear Model (GLM). 

LSD (LSD, α=0.05) or mean standard error (± SE) was also utilized for means 

comparison tests (SAS Institute Inc, 2002). Numbers of replications were: for plant DW, 

n=7; for gas exchange, phenolic content, antioxidant activity, and ascorbate content, n=3; 
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for microbial population, n=5; and for microbial respiration, AMF-colonization, leaf 

elemental analysis, TPH-degradation, rhizosphere soil pH, and EC, n=3. 

 

Results 

Plant Growth Responses 
 

After 80 days, plant growth measured as the number of pseudostems, and the dry 

weight (DW) of pseudostems, leaves, aerial part, roots, and total plant was significantly 

(P≤0.01) reduced by increasing ACO in soil (Table 4.1; see Appendix I, Fig. AI-4.1 for 

visual responses of plants). Increasing LANS enhanced (P≤0.01) all growth parameters  

at 0 mg ACO kg-1 (except root DW) and at 3000 mg ACO kg-1 (except root and total 

plant DW). LANS had no growth effects at 15000 mg ACO kg-1 (Table 4.1).  Significant 

effects (P≤0.05) were observed for AMF for pseudostems, leaf, and aerial DW of plants 

at 0 mg ACO kg-1 (Table 4.1). However, no AMF enhancement occurred at 3000 or 

15000 mg ACO kg-1. Interactions of LANS x ACO and LANS x AMF x ACO resulted in 

significant effects (P≤0.01) on plant growth, whereas the effects of the interactions 

LANS x AMF and AMF x ACO were nonsignificant (Table 4.1). Total plant DW was 

significantly affected by LANS (P≤0.05), ACO (P≤0.01), and the interaction LANS x 

AMF x ACO (P≤0.01) (Table 4.1, Fig. 4.1). 

Independent factors LANS, AMF, and ACO as well as the interactions LANS x 

ACO and LANS x AMF x ACO significantly (P≤0.01) affected leaf area (Table 4.2). 

Increasing ACO significantly (P<0.01) decreased leaf area (Table 4.2; Fig. 4.2). The RSR 

was also reduced by ACO (P<0.01), and increased by increasing LANS at 0, but not at 

3000 or 15000 mg·kg-1 ACO. In general, SLA, LAR and RSR were significantly affected 
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(P≤0.01) by ACO, and the interactions LANS x ACO and LANS x AMF x ACO (Table 

4.2). SLA and RSR were significantly affected by LANS application (P≤0.01 and 

P≤0.05, respectively). The main effects of AMF, and the interactions LANS x AMF and 

AMF x ACO were nonsignificant for SLA, LAR, and RSR (Table 4.2). 

 

 

Table 4.1. Growth response of non-mycorrhizal (Non-AMF) and mycorrhizal (AMF) plants of 

Lolium multiflorum treated with Long Ashton Nutrient Solution (LANS) in soil 

contaminated with Arabian medium crude oil (ACO), after 80 days. 

ACO 
 
 

(mg·kg-1) 

LANS 
strength 

 
(X) 

AMF 
 

No. of 
pseudo-
stems 

Pseudo-
stems 
DW 
(g) 

Leaf 
DW 

 
(g) 

Aerial 
DW 

 
(g) 

Root 
DW 

 
(g) 

Total 
plant 
DW 
(g) 

 
0 

 
0.5 

 
No 

 
21.1 def y 

 
2.4 cde 

 
2.9 c 

 
5.3 d 

 
18.4 ab 

 
23.9 c 

  Yes 21.4 def 2.6 cd 2.9 c 5.5 d 23.9 a 29.3 bc 
 1 No 32.4 c 4.7 b 5.4 b 10.0 c 25.9 a 35.9 ab 
  Yes 33.7 bc 4.9 b 5.0 b 10.0 c 25.3 a 34.8 ab 
 2 No 48.7 a 5.1 b 7.5 a 12.7 b 10.6 bc 22.1 c 
  Yes 46.1 a 6.4 a 8.5 a 14.9 a 23.4 a 38.9 a 
         
3,000 0.5 No 12.6 fgh 0.6 f 1.0 de 1.6 ef 2.3 d 3.9 de 
  Yes 15.0 efg 0.7 f 1.3 d 2.1 e 1.8 d 3.7 de 
 1 No 26.2 cd 1.7 de 2.8 c 4.6 d 3.4 cd 7.6 de 
  Yes 22.4 de 1.7 e 2.6 c 4.3 d 3.6 cd 7.7 cde 
 2 No 41.6 ab 3.1 c 5.2 b 8.3 c 3.3 cd 10.8 d 
  Yes 43.5 a 3.2 c 5.2 b 8.4 c 3.2 cd 10.8 d 
         
15,000 0.5 No 4.0 h 0.1 f 0.1 e 0.2 f 0.2 d 0.5 e 
  Yes 5.7 h 0.1 f 0.2 e 0.3 ef 0.3 d 0.7 e 
 1 No 5.1 h 0.1 f 0.2 e 0.4 ef 0.4 d 0.8 e 
  Yes 6.6 gh 0.3 ef 0.5 de 0.8 ef 0.9 d 2.0 de 
 2 No 6.3 gh 0.3 f 0.4 de 0.6 ef 1.2 d 2.0 de 
  Yes 4.5 h 0.1 f 0.2 e 0.3 ef 0.1 d 0.4 e 
         
                Significance       

LANS 0.01 0.01 0.01 0.01 NS 0.05 
AMF  NS 0.01 0.05 0.05 NS NS 
ACO 0.01 0.01 0.01 0.01 0.01 0.01 

LANS x AMF NS NS NS NS NS NS 
LANS x ACO 0.01 0.01 0.01 0.01 NS NS 
AMF x ACO NS NS NS NS NS NS 

LANS x AMF x ACO 0.01 0.01 0.01 0.01 0.01 0.01 
y Means followed by same letter in the same column are not significantly different (LSD, α=0.05); 
NS=Nonsignificant, n=7. 
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Fig. 4.1. Total plant dry weight of Lolium multiflorum after 80 days, inoculated with Glomus  

intraradices (AMF) or without (Non-AMF), treated with three levels of Long Ashton 

Nutrient Solution (LANS) and three concentrations of Arabian medium crude oil (ACO). 

A) 0 mg·kg-1, B) 3,000 mg·kg-1, C) 15,000 mg·kg-1. Main effects of LANS, ACO, and the 

interaction LANS x AMF x ACO were significant at P≤0.05, P≤0.01, and P≤0.01, 

respectively. Main effects of AMF, and the interaction of LANS x AMF, LANS x ACO, 

and AMF x ACO were nonsignificant. Bars ± SE; n=7. 
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Table 4.2. Leaf area, specific leaf area (SLA), leaf area ratio (LAR), and root to shoot ratio (RSR) 

of non-mycorrhizal (Non-AMF) and mycorrhizal (AMF) plants of Lolium multiflorum 

treated with Long Ashton Nutrient Solution (LANS) in soil contaminated with Arabian 

medium crude oil (ACO), after 80 days. 

ACO 
 

(mg·kg-1) 

 LANS 
Strength 

(X) 

AMF 
 

Leaf area 
 

(cm2) 

SLA 
 

(cm2·g-1) 

LAR 
 

(cm2·g-1) 

RSR 
 

(g·g-1) 
 
0 

 
0.5 

 
No 

 
721.9 g 

 
246.3 efghy 

 
31.2 jk 

 
3.4 ab 

  Yes 736.9 fg 241.5 fgh 23.9 k 4.5 a 
 1 No 1570.0 d 314.6 cdef 47.9 ijk 2.6 bcd 
  Yes 1705.4 cd 366.6 abcd 62.7 ghijk 2.5 bcd 
 2 No 2482.3 b 335.5 cde 106.5 cdefgh 0.9 e 
  Yes 2936.4 a 342.4 bcd 80.2  efghij 1.5 cde 
       
3,000 0.5 No 403.5 ghi 393.4 abc 131.4 bcde 1.2 de 
  Yes 491.2 gh 383.6 abc 142.3 abc 1.0 e 
 1 No 1127.7 e 433.9 ab 155.4 abc 0.9 e 
  Yes 1082.6 ef 451.2 a 166.3 ab 0.8 e 
 2 No 2022.2 c 406.2 abc 178.8 ab 0.4 e 
  Yes 1963.8 c 395.9 abc 184.9 a 0.4 e 
       
15,000 0.5 No 53.8 ij 355.2 bcd 112.8 cdefg 0.9 e 
  Yes 78.3 ij 321.9 cdef 136.0 abcd 0.6 e 
 1 No 60.5 ij 277.7defg 89.4 defghi 0.8 e 
  Yes 184.1 hij 381.8 abc 127.8 bcdef 0.9 e 
 2 No 104.4 ij 212.2 gh 55.5 hijk 2.0 bc 
  Yes 32.0 j 183.5 h 77.8 fghij 0.4 e 
       

 
Significance 

    

LANS 0.01 0.01 NS 0.05 
AMF 0.01 NS NS NS 
ACO 0.01 0.01 0.01 0.01 

LANS x AMF NS NS NS NS 
LANS x ACO 0.01 0.01 0.01 0.01 
AMF x ACO NS NS NS NS 

LANS x AMF x ACO 0.01 0.01 0.01 0.01 
y Means followed by same letter in the same column are not significantly different (LSD, α=0.05); 
NS=Nonsignificant, n=7. 
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Fig. 4.2. Total leaf area of Lolium multiflorum after 80 days, inoculated with Glomus  

intraradices (AMF) or without (Non-AMF), treated with three levels of Long Ashton 

Nutrient Solution (LANS) and three concentrations of Arabian medium crude oil (ACO). 

A)  0 mg·kg-1, B) 3,000 mg·kg-1, C) 15,000 mg·kg-1. Main effects of LANS, AMF, ACO, 

and the interactions LANS x ACO, and LANS x AMF x ACO were significant at P≤0.01, 

respectively. The interactions LANS x AMF, and AMF x ACO were nonsignificant. Bars 

± SE, n=7. 
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Selected Physiological Responses 

Total chlorophyll, chlorophyll a and b were not significantly affected by LANS, 

AMF or the interactions LANS x AMF, LANS x ACO, and AMF x ACO, but significant 

effects (P≤0.05) were observed for the interaction LANS x AMF x ACO. ACO 

significantly affect (P≤0.05) chlorophyll a and b, but had no effect on total chlorophyll 

(Table 4.3). With increasing ACO there were trends in increased chlrophyll a and 

decreased chlorophyll b. 

Photosynthesis was significantly (P≤0.01) reduced with increasing ACO, but no 

significant effects occurred with LANS and AMF (Table 4.4). The only significant 

(P≤0.01) interaction on photosynthesis was LANS x AMF x ACO (Table 4.4). 

Stomatal conductance was significantly affected by ACO, LANS, AMF, and the 

interactions LANS x ACO, and LANS x AMF x ACO (Table 4.4). Generally, there was a 

trend of lowest stomatal conductance at highest ACO. AMF had no effect on stomatal 

conductance at 3000 or 15000 mg ACO kg-1. In constrast, ACO was the only factor that 

significantly (P≤0.05) affected WUE of plants, however, the response was not consistent 

(Table 4.4.) 

The total soluble phenolics content of leaves were significantly affected by ACO 

(P≤0.05), LANS (P≤0.01), and the interaction LANS x AMF  xACO (P≤0.01). 

Increasing ACO caused a significant increase in phenolic compounds at 2X LANS, but 

had no effect at 0.5X or 1.0X LANS (Fig. 4.3). Phenolics content was generally higher at 

0.5X than 2X LANS regardless of ACO levels (Fig. 4.3). AMF had no significant effects 

on phenolics (Fig. 4.3 C). 

 



 

 

55

Table 4.3. Chlorophyll concentration (total, a, and b) of non-mycorrhizal (Non-AMF) and 

mycorrhizal (AMF) plants of Lolium multiflorum treated with Long Ashton Nutrient 

Solution (LANS) in soil contaminated with Arabian medium crude oil (ACO), after 80 

days. 

Chlorophyll 
           Total                              a                                 b 

ACO 
 

(mg·kg-1) 

LANS 
strength  

(X) 

AMF 
 

 (µg·g-1) 
 

0 
 

0.5 
 

No 
 

1171.5 bcy 
 

570.2 c 
 

602.1 abcd 
  Yes 1128.9 c 601.8 c 582.0 bcd 
 1 No 2070.3 ab 1202.8 abc 868.9 a 
  Yes 1392.0 abc 710.2 bc 682.9 abc 
 2 No 1138.1 c 527.7 c 611.3 abcd 
  Yes 1589.2 abc 851.0 bc 739.3 ab 
      

3,000 0.5 No 1619.5 abc 898.9 bc 721.8 ab 
  Yes 1401.1 abc 763.0 bc 639.1 abcd 
 1 No 1323.1 abc 648.8 bc 675.3 abcd 
  Yes 1589.4 abc 833.0 bc 757.6 ab 
 2 No 1576.4 abc 695.5 bc 882.1 a 
  Yes 1825.2 abc 937.2 bc 889.3 a 
      

15,000 0 No 2155.8 a 1667.7 a 489.3 bcde 
  Yes 1414.5 abc 1041.9 abc 373.5 de 
 1 No 1551.3 abc 1156.1 abc 396.1 cde 
  Yes 1343.8 abc 861.9 bc 482.9 bcde 
 2 No 1015.2 c 794.2 bc 221.5 e 
  Yes 1776.7 abc 1319.5 ab 458.2 bcde 
      

                    Significance    
LANS NS NS NS 
AMF NS NS NS 
ACO NS 0.05 0.01 

LANS x AMF NS NS NS 
LANS x ACO NS NS NS 
AMF x ACO NS NS NS 

LANS x AMF x ACO 0.05 0.01 0.01 
y Means followed by same letter in the same column are not significantly different (LSD, α=0.05); 
NS=Nonsignificant, n=3.  

 

Total antioxidant (AOX) activity in leaves was significantly affected by LANS 

(P≤0.01), and the interaction LANS x AMF x ACO (P≤0.05). Neither ACO nor AMF 

significantly affected AOX activity (Fig. 4.4). Increasing ACO caused a significant 

increase in antioxidant activity at 2X LANS (Fig. 4.4). Antioxidant activity was generally 

higher at 0.5X than 2X LANS regardless of ACO levels (Fig. 4.4). AMF had no 

significant effects on activity (Fig. 4.4 C). 
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Table 4.4. Photosynthesis (Pn), stomatal conductance (gs) and water use efficiency (WUE) of 

non-mycorrhizal (Non-AMF) and mycorrhizal (AMF) plants of Lolium multiflorum 

treated with Long Ashton Nutrient Solution (LANS) in soil contaminated with Arabian 

medium crude oil (ACO), after 80 days. 

ACO 
 

(mg·kg-1) 

LANS 
strength 

(X) 

AMF 
 

Photosynthesis 
 

(µmoles CO2 m-2·s-1) 

Stomatal 
conductance 

(moles m-2·s-1) 

WUE 
 

(Pn/gs) 
 

0 
 

0.5 
 

No 
 

6.1 abcd y 
 

0.04 cde 
 

169.7 bcd 
  Yes 4.7 bcdef 0.04 cde 120.9 bcd 
 1 No 3.8 cdefg 0.02 cde 148.3 bcd 
  Yes 8.0 a 0.05 c 171.3 bcd 
 2 No 7.7 ab 0.03 cde 558.7 abc 
  Yes 5.1 abcde 0.09 b 55.5 cd 
      
3,000 0.5 No 3.6 defg 0.02 cde 141.6 bcd 
  Yes 3.3 defg 0.01 cde 624.9 ab 
 1 No 3.7 cdefg 0.02 cde 164.2 bcd 
  Yes 6.8 abc 0.04 cd 158.8 bcd 
 2 No 3.2 defg 0.11 ab 24.0 d 
  Yes 7.8 ab 0.13 a 62.0 cd 
      
15,000 0.5 No 1.6 fg 0.00 e 414.6 abcd 
  Yes 2.6 efg 0.01 cde 214.3 bcd 
 1 No 2.6 efg 0.01 de 472.6 abcd 
  Yes 2.0 fg 0.02 cde 159.4 bcd 
 2 No 1.4 g 0.01 de 483.0 abcd 
  Yes 2.6 fg 0.01 de 890.6 a 
      
                    Significance    

LANS NS 0.01 NS 
AMF NS 0.05 NS 
ACO 0.01 0.01 0.05 

LANS x AMF NS NS NS 
LANS x ACO NS 0.01 NS 
AMF x ACO NS NS NS 

LANS x AMF x ACO 0.01 0.01 NS 
y Means followed by same letter in the same column are not significantly different (LSD, α=0.05); 
NS=Nonsignificant. n=3. 
 

Ascorbate content was significantly (P≤0.01) affected by ACO, while  

nonsignificant effects occurred for LANS, AMF, or the interactions LANS x ACO, 

LANS x AMF, and LANS x AMF x ACO (Fig. 4.5). At 0.5X and 1X LANS, ascorbate 

decreased from 0 to 15000 mg ACO kg-1. Conversely, ascorbate increased at 2X LANS 

from 0 to 15000 mg ACO kg-1 (Fig. 4.5). 
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Fig. 4.3. Total soluble phenolics in leaf blades of Lolium multiflorum after 80 days, inoculated 

with Glomus intraradices (AMF) or without (Non-AMF), treated with three levels of 

Long Ashton Nutrient Solution (LANS) and three concentrations of Arabian medium 

crude oil (ACO). A) 0 mg·kg-1, B) 3,000 mg·kg-1, C) 15,000 mg·kg-1. Main effects of 

LANS, ACO, and the interaction LANS x AMF x ACO were significant at P≤0.01, 

P≤0.05, and P≤0.01, respectively. Main effects of AMF, and the interactions LANS x 

AMF, LANS x ACO, and AMF x ACO were nonsignificant. Bars ± SE, n=3. 
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Fig. 4.4. Antioxidant activity in leaf blades of Lolium multiflorum after 80 days, inoculated with 

Glomus intraradices (AMF) or without (Non-AMF), treated with three levels of Long 

Ashton Nutrient Solution (LANS) and three concentrations of Arabian medium crude oil 

(ACO). A)  0 mg·kg-1, B) 3,000 mg·kg-1, C) 15,000 mg·kg-1. Main effects of LANS and 

the interaction LANS x AMF x ACO were significant at P≤0.001, and P≤0.05, 

respectively. Main effects of LANS, AMF, and the interactions LANS x AMF, LANS x 

ACO, AMF x ACO were nonsignificant. Bars ± SE, n=3. 
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Fig. 4.5. Ascorbate content in leaf blades of Lolium multiflorum after 80 days, inoculated with 

Glomus  intraradices (AMF) or without (Non-AMF), treated with three levels of Long 

Ashton Nutrient Solution (LANS) and three concentrations of Arabian medium crude oil 

(ACO). A)  0 mg·kg-1, B) 3,000 mg·kg-1, C) 15,000 mg·kg-1. Main effects of ACO were 

significant at P≤0.05. Main effects of LANS, AMF, and the interactions LANS x AMF, 

LANS x ACO, AMF x ACO, and LANS x AMF x ACO were nonsignificant. Bars ± SE; 

n=3. 
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Plant Nutritional Responses 

Increased levels of LANS application resulted in higher total macroelement  (N, 

P, K, Mg, Ca, S, and Na) content in plant shoots (leaves and pseudostems), while ACO-

contamination caused a significant reduction, particularly at 15000 mg·kg-1 (Table 4.5). 

LANS, ACO, and the interaction LANS x ACO had significant (P≤0.001) effects on N, 

P, K, Mg, Ca, S, and Na. AMF had no significant effects on total content of 

macronutrients, except for N and Ca (P≤0.05), which were highest at 2X LANS at 0 mg 

ACO kg-1 (Table 4.5).   

Increasing ACO significantly (P≤0.001) reduced total content of all 

microelements (Zn, Mn, Cu, Fe, B, Al, and Mo) in shoots (Table 4.6). Increasing LANS  

strength enhanced (P≤0.001) all microelemental content, except Mn (Table 4.6). AMF 

only enhanced (P≤0.05) Zn and Fe content at 0 ACO mg·kg-1 at 2X LANS (Table 4.6). 

The interaction LANS x AMF x ACO was only significant (P≤0.01) only for Mn content, 

while LANS x ACO effects were significant for Zn (P≤0.05), Cu, Fe, B, and Al 

(P≤0.001). There were no significant interactions of LANS x AMF or AMF x ACO on 

microelement content (Table 4.6). 

In regard to macronutrient concentrations, increasing LANS strength enhanced 

(P≤0.001) N, K and Mg concentration, but had no effect on P, S, or Na; Ca decreased 

(Table 4.7). ACO had significant (P≤0.001) effects on macronutrient concentration. 

Increasing ACO enhanced N and P (up to 3000 mg ACO kg-1), K, Mg, Ca, and S; Na was 

not affected (Table 4.7). There were significant effects of AMF (P≤0.001) on Mg, Ca, 

and S, however, AMF only enhanced concentration of Mg, Ca, and S, at 15,000 mg ACO 

kg-1 at 2X LANS. 
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Table 4.5. Total macroelement content in shoots of non-mycorrhizal (Non-AMF) and mycorrhizal (AMF) Lolium multiflorum treated with Long 

Ashton Nutrient Solution (LANS) in soil contaminated with Arabian medium crude oil (ACO), after 80 days. 

Macroelements   ACO 
 

(mg·kg-1) 

LANS 
strength 

(X) 

AMF 
 

 

N 
 

P 
 

K 
 

Mg 
(mg·plant-1) 

 

Ca 
 

S 
 

Na 

 

0 
 

0.5 
 

No 
 

70.4 fgh y 
 

17.5 efg 
 

128.1 efgh 
 

17.1 cde 
 

25.0 cd 
 

17.2 def 
 

19.8 bcde 
  Yes 71.2 efgh 15.5 efg 129.6 efgh 15.1 de 23.6 cd 17.3 def 20.7 bcde 
 1 No 143.9 def 26.2 bcde 228.5 de 33.0 bc 35.7 bc 31.2 bcd 37.9 bc 
  Yes 146.8 de 29.3 bc 228.9 de 36.3 b 42.5 b 32.7 bc 68.9 a 
 2 No 263.9 b 31.9 b 422.3 ab 45.7 b 35.2 bc 39.0 b 32.3 bcd 
  Yes 350.4 a 45.0 a 520.6 a 71.0 a 59.7 a 56.4 a 41.6 b 
          

3,000 0.5 No 29.3 gh 7.7 gh 50.0 fgh 4.8 de 6.9 ef 6.4 ef 3.9 e 
  Yes 50.1 gh 14.2 fg 92.9 fgh 8.9 de 15.2 def 10.2 ef 4.3 e 
 1 No 85.1 defg 18.4 defg 165.8 def 17.9 cde 23.1 cd 18.1 cde 6.4 e 
  Yes 95.4 defg 17.4 efg 159.7 defg 18.9 cd 21.0 cde 19.0 cde 10.6 de 
 2 No 159.1 cd 19.6 cdef 261.9 cd 32.6 bc 32.3 bc 29.3 bcd 6.8 e 
  Yes 231.4 bc 28.8 bcd 360.3 bc 42.7 b 42.9 b 40.4 b 17.9 cde 
          

15,000 0.5 No 7.2 h 1.9 h 15.1 h 2.2 e 2.7 f 3.1 f 1.8 e 
  Yes 8.4 h 2.1 h 18.3 h 2.1 e 3.5 f 3.3 f 1.5 e 
 1 No 6.5 h 1.0 h 16.5 h 2.2 e 2.6 f 3.0 f 1.1 e 
  Yes 23.1 gh 2.7 h 42.0 gh 5.7 de 5.5 f 6.6 ef 2.8 e 
 2 No 22.5 gh 2.2 h 41.4 gh 5.1 de 3.7 f 6.0 ef 0.9 e 
  Yes  .md 0.9 h 15.7 h 3.9 de 2.5 f 5.2 ef 0.8 e 
          

Significance        
LANS 0.001§ 0.001 0.001 0.001 0.001 0.001 0.05 
AMF 0.01 NS NS NS 0.05 NS NS 
ACO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

LANS x AMF NS NS NS NS NS NS NS 
LANS x ACO 0.01 0.01 0.001 0.001 0.01 0.01 0.05 
AMF x ACO NS NS NS NS NS NS NS 

LANS x AMF x ACO NS NS NS NS NS NS NS 
y Means followed by same letter in the same column are not significantly different (LSD, α=0.05); §N significance was estimated via GLM procedure due to 
missing data (md).; NS=Nonsignificant, n=3. 
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Table 4.6. Total microelement content in shoots of non-mycorrhizal (Non-AMF) and mycorrhizal (AMF) Lolium multiflorum treated with Long 

Ashton Nutrient Solution (LANS) in soil contaminated with Arabian medium crude oil (ACO), after 80 days. 

Microelements  ACO 
 

(mg·kg-1) 

LANS 
strength 

(X) 

AMF 
 

 

Zn 
 

Mn 
 

Cu 
 

Fe 
(µg·plant-1) 

 

B 
 

Al 
 

Mo 

 

0 
 

0.5 
 

No 
 

244.9 cdefy 
 

1404.4 b 
 

39.5 ef 
 

280.6 efgh 
 

298.5 de 
 

117.4 cde 
 

39.7 cdef 
  Yes 238.3 def 1173.1 bc 36.9 efg 250.3 fghi 263.3 def 88.8 de 46.3 bcde 
 1 No 324.8 bcde 1134.7 bc 75.5 bcd 463.7 def 497.6 bc 163.7 bcd 49.1 bcd 
  Yes 395.1 bc 1017.5 bc 87.9 bc 607.5 bcd 529.8 bc 269.8 ab 62.8 abc 
 2 No 405.6 b 628.3 defgh 105.8 b 752.7 ab 693.4 b 198.3 abc 82.5 a 
  Yes 686.4 a 2043.7 a 143.8 a 936.0 a 913.4 a 256.7 ab 72.7 ab 
          

3,000 0.5 No 66.0 gh 250.8 defgh 12.1 fgh 94.5 ghi 80.1 fgh 43.1 e 4.53 g 
  Yes 136.2 fgh 769.0 cdef 26.2 efgh 182.6 ghi 121.6 efgh 79.6 de 9.0 fg 
 1 No 217.9 efg 798.8 bcde 49.8 de 269.5 efgh 228.9 defg 81.3 de 15.6 efg 
  Yes 218.3 efg 668.0 cdefg 39.5 ef 314.2 efg 266.9 def 69.6 de 18.4 defg 
 2 No 346.2 bcde 877.2 bcd 57.1 cde 499.2 cde 415.0 cd 239.2 ab 27.6 defg 
  Yes 387.5 bcd 996.8 bc 75.0 bcd 709.3 abc 618.2 b 299.4 a 10.5 fg 
          

15,000 0.5 No 20.4 h 123.9 gh 3.1 h 54.6 hi 21.7 h 20.2 e 0.93 g 
  Yes 18.9 h 161.4 fgh 3.8 h 81.8 ghi 27.0 h 81.5 de 1.0 g 
 1 No 13.9 h 119.2 gh 3.1 h 26.3 i 24.2 h 9.2 e 2.3 g 
  Yes 37.0 h 203.6 efgh 6.6 fgh 64.5 hi 60.5 gh 16.9 e 3.7 g 
 2 No 27.4 h 75.5 gh 5.4 gh 57.5 hi 65.3 gh 29.9 e 5.3 g 
  Yes 9.8 h 29.0 h 5.1 gh 48.3 hi 42.5 gh 41.4 e 1.8 g 
          

       Significance        
                                        LANS 0.001 NS 0.001 0.001 0.001 0.001 0.05 

AMF 0.05 NS NS 0.05 NS NS NS 
ACO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

LANS x AMF NS NS NS NS NS NS NS 
LANS x ACO 0.01 NS 0.001 0.001 0.001 0.001 NS 
AMF x ACO NS NS NS NS NS NS NS 

LANS x AMF x ACO NS 0.01 NS NS NS NS NS 
y Means followed by same letter in the same column are not significantly different (LSD, α=0.05); NS=Nonsignificant, n=3. 
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Table 4.7. Macronutrient concentration (%) in shoots of non-mycorrhizal (Non-AMF) and mycorrhizal (AMF) Lolium multiflorum treated with 

Long Ashton Nutrient Solution (LANS) in soil contaminated with Arabian medium crude oil (ACO), after 80 days. 

Macronutrients   ACO 
 

(mg·kg-1) 

LANS 
strength 

(X) 

AMF 
 

 

N 
 

P 
 

K 
 

Mg 
(%) 

 

Ca 
 

S 
 

Na 

 

0 
 

0.5 
 

No 
 

1.3 g y 
 

0.32 de 
 

2.37 g 
 

0.33 fg 
 

0.46 hi 
 

0.32 g 
 

0.36 bcd 
  Yes 1.3 g 0.29 defg 2.43 g 0.28 g 0.44 i 0.33 g 0.38 bcd 
 1 No 1.6 fg 0.28 defg 2.47 g 0.35 f 0.38 jk 0.33 g 0.43 bc 
  Yes 1.6 fg 0.31 def 2.42 g 0.37 f 0.43 ij 0.34 fg 0.73 a 
 2 No 2.6 abc 0.30 defg 3.98 bcde 0.45 e 0.35 k 0.38 efg 0.35 bcd 
  Yes 2.2 bcd 0.29 defg 3.34 f 0.45 e 0.38 jk 0.36 fg 0.28 bcdef 
          

3,000 0.5 No 2.1 de 0.50 ab 3.87 cde 0.35 fg 0.52 g 0.45 de 0.26 bcdef 
  Yes 2.0 de 0.58 a 3.77 def 0.36 f 0.62 cd 0.42 def 0.18def 
 1 No 2.2 cd 0.48 b 4.25 bc 0.47 de 0.60 de 0.48 d 0.17 def 
  Yes 2.4 abcd 0.45 b 4.16 bcd 0.49 de 0.54 fg 0.49 d 0.22 cdef 
 2 No 2.6 ab 0.33 de 4.30 bc 0.52 cd 0.52 gh 0.47 d 0.12 ef 
  Yes 2.8 a 0.36 cd 4.37 ab 0.50 de 0.52 gh 0.48 d 0.18 def 
          

15,000 0.5 No 1.8 ef 0.47 b 3.70 def 0.53 cd 0.67 bc 0.80 b 0.45 b 
  Yes 1.8 ef 0.44 bc 3.87 cde 0.45 e 0.74 a 0.69 c 0.32 bcde 
 1 No 1.4 fg 0.22 g 3.69 ef 0.49 de 0.58 def 0.68 c 0.26 bcdef 
  Yes 2.3 bcd 0.28 defg 4.29 bc 0.58 bc 0.56 efg 0.68 c 0.28 bcdef 
 2 No 2.5 abc 0.26 fg 4.83 a 0.60 b 0.43 ij 0.70 c 0.11 f 
  Yes .md 0.24 fg 4.32 bc 1.10 a 0.68 b 1.42 a 0.22 cdef 
          

          Sufficiency range z 
 

3.3-5.1 0.35-0.55 2.0-3.4 0.16-0.32 0.25-0.51 0.27-0.56 NR 

Significance                                              LANS 0.001§ 0.001 0.001 0.001 0.001 0.001 0.01 
AMF NS NS NS 0.001 0.001 0.001 NS 
ACO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

LANS x AMF 0.05 NS 0.05 0.001 0.001 0.001 NS 
LANS x ACO NS 0.001 0.001 0.001 0.001 0.001 0.05 
AMF x ACO 0.05 NS NS 0.001 0.001 0.001 NS 

LANS x AMF x ACO NS NS NS 0.001 0.001 0.001 NS 
yMeans followed by same letter in the same column are not significantly different (LSD, α=0.05); zCarrow et al. (2001); NR=No reported. §N significance was 
estimated via GLM procedure due to missing data (md); NS=Nonsignificant, n=3. 
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Table 4.8. Micronutrient concentration in shoots of non-mycorrhizal (Non-AMF) and mycorrhizal (AMF) Lolium multiflorum treated with Long 

Ashton Nutrient Solution (LANS) in soil contaminated with Arabian medium crude oil (ACO), after 80 days. 

Micronutrients  ACO 
 

(mg·kg-1) 

LANS 
strength 

(X) 

AMF 
 

 

Zn 
 

Mn 
 

Cu 
 

Fe 
(mg·g-1) 

 

B 
 

Al 
 

Mo 

 

0 
 

0.5 
 

No 
 

45.3 cdey 
 

260.7 cde 
 

7.33 de 
 

52.0 fg 
 

55.3 fg 
 

22.0 def 
 

7.3 abc 
  Yes 44.7 cde 220.7 def 7.00 de 46.7 g 50.0 g 16.0 f 8.7 a 
 1.0 No 35.3 fg 113.7 ijk 8.33 bcde 51.3 fg 54.0 fg 19.0 ef 5.7 abcde 
  Yes 40.3 def 100.0 ijkl 9.00 bcd 65.7 def 55.3 fg 33.3 cdef 6.0 abcd 
 2.0 No 40.0 def 63.0 l 10.00 bc 70.7 cde 71.0 bcd 19.0 ef 8.3 ab 
  Yes 43.7 cde 128.7 hij 9.33 bcd 60.3 efg 59.0 efg 16.7 f 4.7 bcdef 
          

3,000 0.5 No 55.7 a 207.3 fg 10.33 bc 72.7 cde 57.3 efg 37.7 cd 3.3 def 
  Yes 55.3 a 313.0 ab 10.67 b 74.3 cde 49.3 g 32.0 cdef 3.7 cdef 
 1.0 No 56.3 a 214.7 efg 13.33 a 70.0 cde 60.7 defg 22.0 def 4.7 bcdef 
  Yes 56.0 a 167.7 gh 10.67 b 78.0 cd 68.0 bcde 20.3 def 3.7 cdef 
 2.0 No 54.7 ab 137.7 hi 9.33 bcd 80.0 cd 68.3 bcde 38.3 cd 5.0 abcdef 
  Yes 46.7 bcd 120.3 hijk 9.33 bcd 87.0 c 73.7 bc 37.3 cd 1.3 f 
          

15,000 0.5 No 50.0 abc 305.0 bc 8.00 cde 134.0 b 53.0 fg 50.0 c 2.0 ef 
  Yes 40.0 def 341.0 a 8.00 cde 173.0 a 57.0 efg 172.0 a 2.0 ef 
 1.0 No 31.0 gh 267.0 bcd 7.00 de 59.0 efg 54.0 fg 20.7 def 5.0 abcdef 
  Yes 38.0 efg 208.0 fg 7.00 de 66.0 def 62.0 cdef 17.0 f 4.0 cdef 
 2.0 No 31.7 gh 87.7 jkl 6.33 e 70.3 cde 79.3 b 35.7 cde 6.0 abcd 
  Yes 27.0 h 80.0 kl 14.00 a 133.0 b 117.0 a 114.0 b 5.0 abcdef 
          

       Sufficiency range z 
 

14-64 30-73 6-38 97-934 5-17 NR 0.5-1.0 

 Significance                                       LANS 0.001 0.001 NS 0.001 0.001 0.001 NS 
AMF NS NS NS 0.001 0.05 0.001 NS 
ACO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

LANS x AMF NS 0.01 0.01 NS 0.05 0.001 NS 
LANS x ACO 0.01 0.001 0.001 0.001 0.001 0.001 0.05 
AMF x ACO NS NS 0.01 0.001 0.001 0.001 NS 

LANS x AMF x ACO NS 0.001 0.01 0.001 0.01 0.001 NS 
y Means followed by same letter in the same column are not significantly different (LSD, α=0.05); zCarrow et al. (2001); NS=Nonsignificant; NR=No reported, 
n=3. 
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For micronutrient concentrations, LANS had significant effects (P≤0.001) on Zn, 

Mn, Fe, B, and Al (Table 4.8). While ACO had significant (P≤0.001) effects on 

micronutrient concentration, no consistent effects were observed. The interaction LANS 

x ACO had significant (P≤0.05) effects in all micronutrients, at 2X LANS at 15,000 mg 

ACO kg-1 the concentration of Zn and Mn was significantly lower (Table 4.8). There 

were significant effects of AMF on Fe (P≤0.001), B (P≤0.05), and Al (P≤0.001). AMF at 

15,000 mg ACO kg-1 enhanced the concentration of Fe and Al at 0.5X LANS, and B at 

2X (Table 4.8). 

 

Microbial Populations, Microbial Respiration, 

and Mycorrhizal Colonization 

The main effects of LANS, ACO, and AMF significantly (P≤0.01) affected the 

total rhizosphere bacteria population analyzed as logarithmic units (Table 4.9; see 

Appendix I, Table AI-4.2 for data analyzed by the actual microbial counts). The total 

bacterial numbers increased significantly in the presence of 15,000 mg ACO kg-1 with the 

combination of 0.5X and 2X LANS. However, AMF plants had higher bacterial 

populations at 0.5X LANS, but lower at 2X (Table 4.9). 

The population of bacteria able to grow on N-free medium (NFB) were 

significantly (P≤0.01) affected by LANS, ACO, and the interactions of LANS x AMF, 

LANS x ACO, and LANS x AMF x ACO (Table 4.9). Higher concentration of ACO 

tended to decrease NFB; and the combination of LANS and ACO concentrations 

stimulated or diminished the colony forming units of NFB (Table 4.9). Neither AMF or 

AMF x ACO interaction effects were statistically significant (Table 4.9). Non-AMF 
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plants with the combination of 0.5 X LANS and either 0 or 15000 mg ACO kg-1 had a 

significantly (LSD, α=0.05) higher population of NFB than AMF plants. In contrast, 

AMF plants at 1 X LANS with the combination of either 0 or 15000 mg ACO kg-1 had 

significantly (P≤0.01) greater NFB population than Non-AMF plants (Table 4.9). 

Filamentous fungi were significantly affected (P≤0.01) by LANS, ACO, and the 

interactions of LANS x ACO, and LANS x AMF x ACO (Table 4.9). ACO stimulated the 

fungal population, particularly when applied at 15000 mg·kg-1 in combination with 0.5 

and 1X LANS (Table 4.9). Non-AMF plants with the combination of 0.5 X LANS and 

15000 mg ACO kg-1 had a significantly (P≤0.01) greater fungal population than AMF-

plants (Table 4.9). 

CO2-evolution from the activity of rhizosphere microorganisms (microbial 

respiration) was significantly affected by LANS (P≤0.01), and ACO, LANS x ACO and 

LANS x AMF x ACO (P≤0.001). Increasing LANS and ACO concentration resulted in 

higher microbial respiration (Fig. 4.6C). AMF had no significant effects on microbial 

respiration at any level of ACO or LANS. 

Total mycorrhizal colonization and arbuscule formation were significantly 

affected (P≤0.01) by ACO and LANS. ACO at 15000 mg·kg-1 generally resulted in 

greater total colonization and arbuscule formation at 1X and 2X LANS (Figure 4.7). The 

lowest values of total colonization and arbuscule formation were observed at plants with 

0.5X LANS (Fig. 4.7). No significant effects of LANS, ACO and their interaction were 

observed for vesicle formation. No mycorrhizal fungal structures were found in root 

cortical cells of Non-AMF plants. 
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Table 4.9. Colony forming units (Log10CFU) of rhizosphere microorganisms of non-mycorrhizal 

(Non-AMF) and mycorrhizal (AMF)-Lolium multiflorum treated with Long Ashton 

Nutrient Solution (LANS) in soil contaminated with Arabian medium crude oil (ACO), 

after 80 days. 

ACO 
 

(mg·kg-1) 

LANS 
Strength 

(X)  

Mycorrhiza Total 
bacteria 

(Log10CFU) 

Bacteria growing 
at N-free medium 

(Log10CFU) 

Filamentous fungi 
 

(Log10CFU) 

 
0 

 
0.5 

 
No 

 
7.30 def y 

 
6.92 bc 

 
3.68 def 

  Yes 7.30 def 6.78 de 3.48 fgh 
 1.0 No 7.20 efg 6.86 cd 3.76 bcde 
  Yes 7.37 de 7.00 ba 3.60 efg 
 2.0 No 7.42 de 7.04 a 3.88 abcd 
  Yes 7.27 def 7.10 a 3.70 cdef 
      

3,000 0.5 No 7.42 de 6.56 gh 3.50 fgh 
  Yes 7.52 cd 6.60 gh 3.34 hi 
 1.0 No 7.00 ghi 6.54 gh 3.27 hi 
  Yes 6.77 i 6.46 h 3.37 ghi 
 2.0 No 7.02 gh 6.48 h 3.27 hi 
  Yes 7.10 fgh 6.72 e 3.50 fgh 
      

15,000 0 No 8.06 b 7.02 ab 3.94 abc 
  Yes 8.12 b 6.74 e 3.78 bcde 
 1.0 No 6.20 j 6.20 i 3.98 ab 
  Yes 6.92 hi 6.70 ef 4.04 a 
 2.0 No 8.57 a 6.80 de 3.20 i 
  Yes 7.70 c 6.78 de 3.40 ghi 
      

Significance:    
LANS 0.001 0.001 0.01 
AMF 0.01 0.01 NS 
ACO 0.001 0.001 0.001 

LANS x AMF 0.001 0.001 0.05 
LANS x ACO 0.001 0.001 0.001 
AMF x ACO NS NS 0.05 

LANS x AMF x ACO 0.001 0.001 NS 
yMeans followed by same letter in the same column are not significantly different (LSD, α=0.05); 
NS=Nonsignificant, n=5. (see Appendix I, Table AI-4.2 for data analyzed by the actual microbial counts). 
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Fig. 4.6. Microbial respiration in the rhizosphere soil of Lolium multiflorum after 80 days, 

inoculated with Glomus  intraradices (AMF) or without (Non-AMF), treated with three 

levels of Long Ashton Nutrient Solution (LANS) and three concentrations of Arabian  

medium crude  oil (ACO). A) 0 mg·kg-1, B) 3,000 mg·kg-1, C) 15,000 mg·kg-1. Main 

effects of LANS were significant at P≤0.01; main effects of ACO, and the interactions 

LANS x ACO and LANS x AMF x ACO were significant at P≤0.001; main effects of 

AMF, and the interactions LANS x AMF, and AMF x ACO were nonsignificant. Bars ± 

SE, n=3. 

 

0

2

4

6

8

0.5 X 1.0 X 2.0 X

Non-AMF AMF

0

2

4

6

8

0.5 X 1.0 X 2.0 X

0

2

4

6

8M
ic

ro
bi

al
 R

es
pi

ra
tio

n 
(m

g 
C

O
2·k

g-1
·h

-1
) 

A 

Long Ashton Nutrient Solution Strength 

B 

C 

0.5X 1X 2X



 

 

69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. Root mycorrhizal colonization in Lolium multiflorum after 80 days, treated with three 

levels of Long Ashton Nutrient Solution (LANS) and three concentrations of Arabian 

medium crude oil (ACO). A) total colonization, B) arbuscules and C) vesicles. For total 

colonization and arbuscules, main effects of LANS and ACO were significant at P≤0.01 

and P≤0.001, respectively, while effects of LANS x ACO interaction were 

nonsignificant; for vesicles, effects of LANS x ACO interaction were significant at 

P≤0.05, while main effects of LANS and ACO were nonsignificant. Bars ± SE; n=3. 
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Total Petroleum Hydrocarbon Degradation 

Degradation of TPH was significantly affected (P≤0.01) by ACO, LANS, and the 

interactions of LANS x ACO and LANS x AMF x ACO (Fig. 4.8). The interaction of 

LANS x AMF and AMF x ACO were also significant (P≤0.05), but the main effect of 

AMF did not significantly affect TPH-degradation. Greater percentages of TPH-

degradation occurred at 3000 than 15000 mg ACO kg-1, however, the former also had 

initial 5-fold higher ACO levels (Fig. 4.8). At 0.5X and 1X LANS, TPH-degradation was 

generally higher for Non-AMF plants at 3,000 and 15,000 mg ACO kg-1. However, 

fertilization with 1X or 2X LANS did not enhance the degradation of ACO at 3000 

mg·kg-1 (Fig. 4.8A). AMF-plants at 3,000 mg ACO kg-1 and 1X LANS had lower 

(60.3%) TPH-degradation than Non-AMF (84.6%) plants (Fig. 4.8A). Lower TPH-

degradation occurred at 15000 than 3000 mg ACO kg-1. The lowest TPH-degradation 

occurred with 1.0X LANS at 15000 mg ACO kg-1 (Fig. 4.8B). At 15000 mg ACO kg-1, 

no treatment had greater TPH-degradation than 0.5X LANS, regardless of AMF 

inoculation (Fig. 4.8B). 

 

Rhizosphere Soil pH and Electrical Conductivity Changes 

 Rhizosphere soil pH was significantly (P≤0.001) affected by the application of 

LANS and ACO while AMF had no significant effects (Fig. 4.9A,B,C). Significant 

interactions occurred with LANS x AMF (P≤0.05), LANS x ACO and LANS x AMF x 

ACO (P≤0.001). 
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Fig. 4.8. Total petroleum hydrocarbons (TPH)-degradation in rhizosphere soil of Lolium 

multiflorum after 80 days, inoculated with Glomus intraradices (AMF) or without (Non-

AMF), treated with three levels of Long Ashton Nutrient Solution (LANS) and two 

concentrations of Arabian medium crude oil (ACO).  A) 3,000 mg·kg-1,  B) 15,000 

mg·kg-1. Main effects of LANS, ACO, and the interactions LANS x ACO and LANS x 

AMF x ACO were significant at P≤0.01. Effects of LANS x AMF, and AMF x ACO 

interactions were significant at P≤0.05. Main effects of AMF were nonsignificant. Bars ± 

SE; n=3. 
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Fig. 4.9. Changes in the pH (A, B and C) and electrical conductivity (D, E, and F) of the 

rhizosphere soil of Lolium multiflorum after 80 days, inoculated with Glomus 

intraradices (AMF) or without (Non-AMF), treated with three levels of Long Ashton 

Nutrient Solution (LANS) and three concentrations of Arabian medium crude oil (ACO). 

A and D)  0 mg·kg-1, B and E) 3,000 mg·kg-1, C and F) 15,000 mg·kg-1; For pH, main 

effects of LANS, ACO, and the interactions LANS x ACO and LANS x AMF x ACO 

were significant at P≤0.001. Main effects of AMF, LANS x AMF, and AMF x ACO 

were nonsignificant. For EC, main effects of LANS and the interaction LANS x AMF x 

ACO were significant at P≤0.001. Main effects of AMF, ACO, and the interactions 

LANS x AMF, LANS x ACO and AMF x ACO were nonsignificant. Bars ± SE, n=3. 

 

 

Long Ashton Nutrient Solution Strength 

0

2

4

6

8

10

0.5 X 1.0 X 2.0 X

Non-AMF AMF

0

2

4

6

8

10

0.5 X 1.0 X 2.0 X

0

2

4

6

8

10

0 5 X 1 0 X 2 0 X

R
hi

zo
sp

he
re

 p
H

 
A 

C 

B 

 

0.5X 1X 2X 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 X 1.0 X 2.0 X

Non-AMF AMF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 X 1.0 X 2.0 X

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 X 1 0 X 2 0 X

E
C

 (d
S·

m
-1

) 

D 

F 

E 

0.5X 1X 2X 



 

 

73

In general, rhizosphere soil pH varied across 2 units (from 6.9 to 8.9). Increasing 

LANS at 0 mg ACO kg-1 increased (>8.5) pH (Fig. 4.9A); while increasing ACO resulted 

in a pH decreasing (~7.5); however, at 15,000 mg ACO kg-1 with 2X LANS had greater 

pH (~8.0) than with the application 0.5X and 1X LANS (Fig. 4.9C).  

Rhizosphere soil electrical conductivity (EC) was significantly (P≤0.001) affected 

by LANS. ACO, AMF, and interactions LANS x AMF, LANS x ACO, and AMF x ACO 

were not significant (Fig. 4.9 D,E,F). Increasing LANS resulted in higher EC (Fig. 4.9D-

F). The interaction LANS x AMF  xACO also resulted in significant (P≤0.01) effects on 

EC. In general, the EC-values ranged from 0.11 to 0.49 dS·m-1 (Fig. 4.9 D and F). 

 

Discussion 

Plant Growth Responses 

Growth of L. multiflorum was impaired by ACO in the soil as has been observed 

with other plant species (Adam and Duncan, 2003; Malallah et al., 1996; Quiñones-

Aguilar et al., 2003). The negative impact of ACO on plant biomass, pseudostem number 

and leaf area were partially compensated by higher levels of LANS. SLA, LAR, and RSR 

can be useful to understand plant growth performance under stressful cultural conditions 

(Reich et al., 1997; Westoby, 1998; Wright and Westoby, 2001). Higher SLA (thinner 

leaves) values were found in plants grown in soil contaminated with 3000 mg ACO kg-1, 

regardless of LANS concentration (Table 4.2). In contrast, lower SLA (thicker leaves) 

was obtained with plants exposed at 15000 mg ACO kg-1 at 2X LANS (Table 4.2). While 

growth was depressed by 3000 mg ACO kg-1, plants were less stressed with greater 

growth than those exposed to 15000 mg ACO kg-1. The application of 1X and 2X LANS 

to plants exposed to 3000 mg kg-1 enhanced growth and development, except root and 
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total plant DW. Thus, 0.5X LANS was nutritionally limiting growth of plants at 3000 mg 

ACO kg-1.  

A similar tendency was observed for LAR which is an indication of the efficiency 

of a given leaf area to overall plant biomass (Hunt, 1982; Lafarge and Hammer, 2002). 

Plants at 3000 mg ACO kg-1 had a higher LAR than those at 0 mg ACO kg-1, regardless 

of LANS or AMF treatment (Table 4.2). These results suggest that plants under ACO-

stress require a greater leaf area to produce higher biomass, enhancing survivability and 

adaptation to contaminated soil. However, at the more toxic levels of ACO (15,000 mg 

ACO kg-1),  LAR was greater at 0.5X and 1X LANS (but not 2X LANS) compared to 

plants without ACO. Stressfull environmental conditions typically result in significant 

reduction of leaf area expansion (i.e. leaf area was reduced) (Bayuelo-Jimenez et al., 

2003; Bruggink and Heuvelink, 1987; Estrada-Luna and Davies, 2003; Liu and Stützel, 

2004), which may in part explain the negative effects of ACO on inhibiting growth of L. 

multiflorum. The RSR was also reduced under increasing ACO levels, indicating reduced 

carbon partitioning to the root system. 

AMF can enhance plant growth under biotic and abiotic stress (Smith and Read, 

1997). The effect of AMF on plant growth under PH-contaminated soil has received little 

attention (Binet et al., 2000a; Cabello, 1999; Joner and Leyval, 2001; Leyval and Binet, 

1998). However, in this study, AMF did not significantly enhance plant growth at any 

level of ACO. This null effect of AMF on overcoming the abiotic stress of ACO may in 

part be attributed to the characteristic low dependency of monocots including grass 

species to AMF-symbiosis (Smith and Read, 1997), or to the utilization of an ineffective 

AMF strain (Cabello, 2001). The nonsignificant reduction in total plant DW (-80%) of 
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AMF-plants at 15000 mg ACO kg-1 at 2X LANS may in part be explained to increased 

carbon drain from the plant to the AMF (Smith and Read, 1997; Sylvia, 2005). Oil spills 

inhibit photosynthesis, which alters carbon translocation and repartitioning towards plant 

sink regions, i.e., new shoot and root growth (Daly et al., 1988), and AMF-symbiosis 

(Smith and Read, 1997). Growth suppression in AMF-plants may occurr when 

photosynthesis is limited, or due to incompatibilities between AMF and plant (Hart et al., 

2003; Klironomos, 2003; Sylvia, 2005).  

In the current experiment, even though plants were supplied with different levels 

of LANS, the P-level in nutrient solution was the same for all treatments (30 µg·mL-1). 

The rationale of this was to avoid P-defficiency in Non-AMF and to have comparable 

growth between AMF and Non-AMF plants. AMF-species may differ in their ability to 

tolerate and enhance plant growth under PH-contaminated soil; hence, AMF isolated 

from contaminated soils may be more effective in improving plant growth than 

introduced AMF species (Cabello, 1999; Cabello, 2001). Although Glomus intraradices 

has been reported as an effective fungal isolate for plant growth under petroleum 

contaminated soil (Cabello, 1999), the fungal strain utilized in this study was from a 

commercial pure liquid inoculum originally isolated from a non PH-contaminated site in 

Canada. While the G. intraradices isolate was able to colonize the root system, its effects 

on plant growth under the tested ACO conditions were limited. 

 

Plant Nutritional Responses 

Macro- and microelement content and concentration were enhanced with 

increasing LANS concentration. Greater total nutrient content and concentration was 
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generally observed in plants growing in non-contaminated soil with 2X LANS. 

Increasing ACO concentrations reduced macro- and microelement content in plants, but 

that reduction was significantly alleviated by biostimulation with LANS (Tables 4.5, 4.6). 

The main effect of AMF was not significant, except for Ca, Zn, and Fe (P≤0.05); 

however, there was observed a trend of generally higher content of macro- and 

microelement content in AMF than non-AMF plants at 1X and 2X LANS (Tables 4.5, 

4.6). The highest contents of N, P, K, Mg, Ca, S, Zn, Mn, Cu, and B were in AMF-plants 

at 2X LANS at 0 mg ACO kg-1, which were significantly different (LSD, α=0.05) than 

those at Non-AMF plants with the same combination of LANS and ACO (Tables 4.5, 

4.6). At 3000 mg ACO kg-1, there was a nonsignificant trend of greater total content of 

macro- and microelements with AMF than Non-AMF plants, particularly at 0.5X and 2X 

LANS. Beneficial effects of AMF on plant nutrition has been well documented in the 

literature (Amaya-Carpio et al., 2005; Smith and Read, 1997; Sylvia, 2005). However, in 

this study, the benefits of AMF on plant nutrient uptake were significantly diminished, 

particularly at high levels of ACO. For instance, at 15000 mg ACO kg-1, nutrient uptake 

was drastically reduced for AMF- and Non-AMF plants (Tables 4.5, 4.6). 

LANS and ACO had significant effects on macro- and microelement 

concentration, while the main effect of AMF was significant for only 50% of elemental 

concentrations (Tables 4.7, 4.8). Regardless of ACO, LANS or AMF, plants were 

sufficient in K, Mg, Ca, S, Na, Zn, Mn, Cu, Fe, B, and Mo leaf tissue concentrations 

(Carrow et al., 2001). All treatments were deficient in leaf N concentration, which may 

be in part due to the high N-requirement for this grass species (120 to 300 kg N ha-1). 

However, Lolium species are characterized by their high degree of adaptation to N 
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availability (Gilsum et al., 2003). A decline in N concentration in leaf tissue of Lolium 

genotypes during N deficiency may be related to greater efficiency of N utilization by 

which those plants can sustain biomass production and growth, from the utilization of 

amino acids derived from protein turnover, and from stored NO3
- (Maduff et al., 1989; 

Marino et al., 2004). 

In this study, plants were differentially fed with 30 µg P mL-1 at all LANS levels 

to minimize greater P-efficiency of AMF, so that comparable P concentration and 

subsequent equal plant size would be maintained between AMF and Non-AMF plants. At 

0 and 15000 mg ACO kg-1 at 1X and 2X, plants were deficient in P, whereas P 

sufficiency occurred at all treatments at 3000 and 15000 mg ACO kg-1 with 0.5X LANS. 

Growth was greater at 0 mg ACO kg-1, which may have depleted tissue P, whereas higher 

LANS (1X and 2X) under the more toxic levels of 15,000 mg ACO kg-1 led to deficiency. 

Sufficiency levels of Na and Al have not been reported for L. multiflorum. For 

graminaceous plants, Al should be less than 200 µg·g-1, hence, the concentration of Al in 

L. multiflorum was well below toxicity level (Jones, 1998). 

There are no previous reports on the effects of PH on nutrient uptake of plants 

utilized during phytoremediation. Thus, this study is one of the first reports describing the 

effects of ACO and biostimulation on the nutritional status of L. multiflorum during 

phytoremediation.  

 

Selected Physiological Responses 

This is one of the first studies to report the physiological responses of AMF plants 

in ACO-contaminated soil, in combination with the biostimulation of inorganic 
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fertilization (LANS) to enhance TPH degradation/dissipation. Little has been reported on 

the physiological responses of plants to PH in soils (Malallah et al., 1996). 

Regardless of ACO concentrations, chlorophyll (total, a, and b) content in leaves 

was similar in all treatments (Table 4.3). The highest content of total and a chlorophyll 

was at Non-AMF with 15000 mg ACO kg-1 and 0.5X LANS; while for chlorophyll b, the 

lowest content was at Non-AMF plants with 15000 mg ACO kg-1 and 2X LANS.  

Photosynthesis of L. multiflorum plants was significantly impaired at 15000 mg 

ACO kg-1, and consequently plant growth was also affected. There was a nonsignificant 

trend of reduced stomatal conductance in plants exposed to ACO, particularly at 15000 

mg·kg-1. Consequently, the WUE of these plants was nonsignificantly higher than that 

from plants at 0 mg ACO kg-1. The negative effects of ACO on chlorophyll and 

photosynthesis are in aggrement with those previously reported for terrestrial plants 

(Baker, 1970; Daly et al., 1988; Ilangovan and Vivekanandan, 1992; Malallah et al., 

1996) and seagrasses (Durako et al., 1993; Macinnis-Ng and Ralph, 2003; Ralph and 

Burchett, 1998). 

Some legume species growing in soil contaminated with PH have higher 

phenolics when compared to plants growing in non-contaminated soil (Ilangovan and 

Vivenkanandan, 1992; Malallah et al., 1996). In contrast, L. multiflorum had variable 

phenolic content, which was dependent on LANS and ACO concentrations. There was a 

nonsignificant trend of AMF-plants generally having lower phenolics when fertilized 

with 0.5X and 1X LANS in combination with 0, 3000, or 15000 mg ACO kg-1, which 

may indicate that AMF-plants were less stressed by the presence of ACO (Fig. 4.3). Total 

phenolics and antioxidants (Fig. 4.4) decreased with increasing LANS concentration at 0 
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and 3000 mg ACO kg-1. In contrast, when plants were exposed to 15000 mg ACO kg-1 

there was no consistent trend of LANS or AMF on phenolics and antioxidants. ACO 

affected leaf ascorbate content (Fig. 4.5). In general, increased ACO concentrations 

resulted in nonsignificant lower ascorbate content in plants, except for the combination of 

2X LANS with 15000 mg·kg-1 in which ascorbate content increased, indicating higher 

stress for plants, as reported with plants under abiotic and biotic stress (Sharma and 

Dubey, 2005; Song et al., 2005; Wolucka et al., 2005). 

Plant response to stressful environmental conditions may be evaluated by the 

synthesis of specific compounds such as phenolics and ascorbate content that confer 

higher detoxification of reactive oxygen species (ROS) in the internal tissues (Mittler, 

2002; Singer et al., 2003; Noctor, 2006). Phenolic compounds play an important 

ecological role. Their synthesis and storage are considered good indicators of biotic and 

abiotic stress to plants. In general, phenolics and ascorbate, reflect the antioxidant activity 

in stressed plants, and may contribute to protecting cells from oxidative damage of free 

radicals by reducing their toxicity on cytoplasmic structures (Ferrat et al., 2003; Misra 

and Gupta, 2006; Mittler, 2002; Wahid and Ghazanfar, 2006). Phenolics and antioxidant 

activity were particularly higher in plants with 0.5X than plants with 2X LANS. This 

observation is in agreement with reports describing the increase of phenolics at low 

fertility, providing greater host plant resistance to insect herbivory and pathogen 

interactions (Dudt and Shure, 1994; Hakulinen, 1988; Witzell and Shevtsova, 2004). 

The contribution of AMF to phenolic compounds, antioxidant activity, and 

ascorbate content in plants exposed to ACO-contaminated soil had not been previously 

reported. However, studies under drought stress postulated that AMF protect plants 
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against oxidative damage by increasing levels of enzymatic or non-enzymatic 

antioxidants (Alguacil et al., 2003; Porcel et al., 2003; Ruiz-Lozano, 2003; Wu et al., 

2006). Perhaps with the inoculation of AMF (single or multiple isolates) more tolerant to 

ACO, there may have been more significant responses. 

 

Microbial Populations, Microbial Respiration, and Mycorrhizal Colonization 

Microbial populations were significantly affected by the application of ACO and 

LANS. Total bacteria were stimulated by 15000 mg ACO kg-1, when fertilized with 0.5X 

and 1.0X LANS. Population of bacteria able to grow on N-free medium generally 

decreased as ACO levels increased, particularly at 1X and 2X LANS. Conversely, 

filamentous fungi were generally higher at 15000 mg ACO kg-1 at 0.5X and 1X LANS. 

Microbial respiration was greater in the rhizosphere soil at 15000 mg ACO kg-1, and 

significantly higher with 2X LANS. AMF-colonization was detected in all plants 

inoculated with Glomus intraradices, and higher total colonization and arbuscule 

formation was found at plants exposed to 15000 mg ACO kg-1 with 1X or 2X LANS. 

Plant adaptation to PH-contaminated environments is a result of microbial 

interactions in the rhizosphere that facilitate mineralization of organic contaminants by 

cooxidation and cometabolism processes (Barea et al., 2005; Dec et al., 2002; Jeffries et 

al., 2003; Rillig and Steinberg, 2002; Robson et al., 2004; Siciliano and Germida, 1998). 

The dynamic, diversity and significance of microbial populations in the rhizosphere are 

critical in phytoremediation, but they are not well understood. Microbial interactions are 

dependent on soil properties, type and concentration of contaminants, nutrient 

availability, plant genotype, and root exudation pattern. The carbon partitioning, below-
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ground translocation, and transfer of soluble and insolube material from roots to soil 

(rhizodeposition) also stimulate specific microbial populations involved in degradation of 

PH in soils (Bundy et al., 2002; Cohen et al., 2004; Kim et al., 2005; Kirk et al., 2005; 

Kuzyakov et al., 2001; Onwurah, 1999; Siciliano et al., 2001; Wyszkowska and 

Kucharski, 2001). Rhizosphere microorganisms use substances from the roots for their 

nutrition and degrade organic materials into inorganic forms e.g., mineralization of 

carbon and nitrogen. The metabolic products of microbial organisms can subsequently 

influence plant growth (Hodge et al., 2000). 

 

Total Petroleum Hydrocarbon Degradation 

Degradation of PH is a result of combined factors such as soil type, microbial 

activity in the soil/rhizosphere, type, bioavailability, and concentration of the 

contaminant, and available nutrients for plants and microorganisms (Anderson et al., 

2002; Dec et al., 2002; Kuzyakov et al., 2001; Newman and Reynolds, 2004). 

Phytoremediation performance was higher at low ACO concentration, and the application 

of 0.5X LANS showed similar TPH-degradation than that obtained with either 1X or 2X. 

In general, there was no consistent AMF treatment response. TPH-degradation of AMF 

was lower at 1X LANS at 3000 mg ACO kg-1, and higher at 2X LANS at 15,000 mg 

ACO kg-1. AMF may alleviate the toxic effects produced by PH (Cabello, 1999; Joner 

and Leyval, 2003a; Leyval and Binet, 1998). However, mechanisms of AMF benefit on 

phytoremediation of organic contaminants in soils is not well documented. AMF 

enhancement in plants during phytoremediation may be related to release of oxidative 

enzymes by roots, improved plant nutrition and growth, creation of favorable 
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microenvironments in the mycorrhizospehere, including changes on microbial 

populations that may degrade organic contaminants (Criquet et al., 2000; Joner and 

Leyval, 2003a; Rillig, 2004; Sylvia, 2005). 

With 15000 mg ACO kg-1, 0.5X LANS had significantly higher TPH-degradation 

(~60%) than 1X LANS (~25%). The application of 0.5X seemed to stimulate microbial 

population and root activity, which may have contributed on higher TPH-degradation, as 

previously mentioned (Günther et al., 1996). In contrast, TPH-degradation significantly 

decreased with the application of 1X LANS. This effect is contrary to that reported by 

Hutchinson et al. (2001) who obtained higher degradation of aged petroleum sludge via 

biostimulation with higher rates of fertility. This effect may be in part explained by the 

expression of nutrient immobilization and competition, between microorganisms and 

plants. In this study, the results denote the complex interaction among PH, plant, 

rhizosphere microbial activity, AMF inoculation, and inorganic fertilization. The ultimate 

benefit of plants during phytoremediation is evaluated by their contribution on the 

dissipation/degradation of petroleum hydrocarbons (Banks et al., 2003). In general, the 

extent of TPH-degradation was dependent on ACO-concentration in the soil, as well as 

bioremediation with LANS. However, further research is needed to understand the 

interaction of AMF and hydrocarbonoclastic microorganisms in PH-contaminated soil. 

 

Rhizosphere Soil pH and Electrical Conductivity Changes 

 Soil pH is a chemical variable that significantly influences physical, chemical and 

biological soil properties. In addition, soil pH is a critical factor that not only affects the 

mobility of organic contaminants, but also influences their biochemical breakdown, 
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solubility, adsorption to colloids, and transport and distribution along soil profile (Brady 

and Weil, 2002; Pepper, 1996). In this study, rhizosphere soil pH showed variations 

among treatments of 2.0 units, ranging from 6.9 to 8.9, depending on the interaction of all 

the tested factors (LANS, AMF, or ACO). These variations resulted in increased 

alkalinity (>8.0 pH) for some treatments as a direct effect of the application of 1Xor 2X 

LANS and its combination with 0 or 15000 mg ACO kg-1. Although AMF-inoculation 

did not have significant effects on the rhizosphere soil pH, AMF-symbiosis can change 

the mycorrhizosphere pH, depending on the N-form (N-NO3
- or N-NH4

+) (Bago et al., 

1996; Ortas et al., 2004). Furthermore, AMF-response to soil pH is differentially 

affected, thus, some species are more tolerant to acidic or alkaline soil conditions in soil 

(Mohammad et al., 2005; Rohyadi et al., 2004; van Aarle et al., 2002).  

 Salinity build-up was observed as a consequence of the application of LANS to 

the soil. Salinity may stress susceptible plants and impair their physiology and growth 

(Taiz and Zeiger, 2002). However, salt accumulation was minimal (low EC) and not a 

factor with growth of L. multiflorum. Hence, the main abiotic factor that limited 

physiological responses and plant growth was ACO. Conversely, LANS application 

minimized the adverse effects of ACO to plants,  particularly at  3000 mg·kg-1. 

 

Summary 

While arbuscular mycorrhizal fungi (AMF) are an important component in the 

phytoremediation of petroleum hydrocarbons (PH), the physiological responses and 

growth of AMF-plants during phytoremediation of PH, in combination with the 

biostimulation through inorganic fertilization, are not well understood. The present study 



 

 

84

evaluated the effects of AMF and biostimulation with fertilization on selected 

physiological responses and growth of Lolium multiflorum in the phytoremediation of 

soil contaminated with Arabian medium crude oil (ACO). A 2x3x3 factorial experiment 

was conducted in glasshouse conditions for 80 days with L. multiflorum seedlings 

inoculated (AMF) or not (Non-AMF) with Glomus intraradices, established in a 

sand:sandy loam soil mixture (1:1 v/v), contaminated with three levels of ACO (at 0, 

3000, or 15000 mg·kg-1), and fertilized with three levels of Long Ashton Nutrient 

Solution [(LANS) at 0.5X, 1X, or 2X]. 

Plant growth, photosynthesis, and nutrient content in shoots were significantly 

reduced by increased ACO. Growth, photosynthesis and nutrient uptake of plants in 

ACO-contaminated soil were enhanced by LANS. Microbial populations and soil 

respiration were stimulated by ACO and LANS. Regardless of ACO concentration, total 

phenolics and antioxidant activity in leaves decreased with increasing LANS. Increasing 

ACO concentrations resulted in decreased ascorbate content at 0.5X and 1X LANS, but 

increased at 2X LANS. 

AMF had minimal effects on plant growth, photosynthesis, and nutrient content, 

depending on ACO and LANS combinations. Mycorrhizal colonization and arbuscule 

formation was observed at all ACO levels. At 3000 mg ACO kg-1, total petroleum 

hydrocarbon (TPH)-degradation was >60% in average in all treatments, while at 15000 

mg ACO kg-1 the higher TPH-degradation occurred at 0.5X LANS. Neither LANS nor 

AMF consistently increased TPH-degradation. LANS and ACO significantly affected soil 

pH, which ranged from 6.9 to 8.9. While LANS significantly enhanced electrical 

conductivity (EC) in soil, no toxic levels of salt build-up occurred. 
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CHAPTER V 

 

BIOREMEDIATION AND PHYTOREMEDIATION OF BENZO[a]PYRENE 

CONTAMINATED SAND 

 

Introduction 

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous and can have negative 

impacts on human health as carcinogenic compounds (Cunningham et al., 1997). PAH 

are organic compounds of low or high-molecular-weight, such as flouranthene, pyrene, 

benzo[a]antrhacene, chrysene, benzo[a]pyrene and dibenzo[a,h]anthracene (Kanaly and 

Harayama, 2000). The mechanisms of PAH formation is complex, but they originate 

from incomplete combustion of fossil fuels, organic material, and wood, and typically 

have 2-6 aromatic rings and less alkylated substitution (Hwang et al., 2003; Masclet et 

al., 1987; NCR, 1983). The U.S. Environmental Protection Agency (EPA) is developing 

strategies for controlling source, persistence and toxicity effects of PAH benzo[a]pyrene 

(BaP) (Renner, 1999, Kanaly and Harayama, 2000). BaP in soil ranges between 26 and 

12,600 µg·kg-1 (Coleman and Mauro, 2002) and this compound is found as a part of a 

complex mixture of PAH  in  industrially  contaminated  soils,  ranging  from  3.1 to 8.1 

g·kg-1 (Joner et al., 2002; Leyval and Binet, 1998). 

Bioremediation with free-living microorganisms is utilized to detoxify PAH-

contaminated soils. Bacteria, such as Sphingomonas spp. or Mycobacterium spp., with 

hydrophobic cell surfaces have a high mineralization rate of flouranthene, as well as 

oxidizing other PAH (Cerniglia, 1992; Juhasz and Naidu, 2000; Willumsen and Karlson, 
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2001). In particular, the bacterial genus Sphingomonas is effective in oxidizing two- or 

three-ring PAH, thus contributing to their initial degradation (Dutta et al., 1998; Kästner 

et al., 1998; van Hamme et al., 2003). 

On the other hand, filamentous fungi have physiological mechanisms that allow 

the mineralization of PAH and are important component in bioremediation of persistant 

organic compounds in soil. Fungal species such as Phanerochaete chysosporium, 

Candida utilis, Penicillium chrysogenum, Aspergillus niger, Cunninghamella elegans, 

and Cunninghamella echinulata are characterized as PAH-oxidizers (Cerniglia, 1992). 

Cunninghamella is one of the most studied fungal genera for degradation of PAH in 

liquid media. Some species of this genus, such as C. elegans or C. echinulata var. elegans 

have a particular enzymatic system (cytochrome P450 oxidoreductase), which is involved 

in the metabolism of PAH and aliphatic contaminants (Cutright, 1995; Garon et al., 2000; 

Yadav and Loper, 2000). The effect of sphingomonads bacteria and Cunninghamella 

fungal strains (bioremediation) has not been tested during phytoremediation (with plants) 

of PAH-contaminated soils. 

Arbuscular mycorrhizal fungi (AMF) are ubiquitous rhizosphere microorganisms 

that form a mutually beneficial symbiosis with the root system of approximately 80% of 

all terrestrial plants (Smith and Read, 1997). The symbiosis between AMF and plants can 

be an important component during phytoremediation of soils contaminated with both 

inorganic and organic compounds (Cabello, 2001; Meharg, 2001; Joner and Leyval, 

2003b). Phytoremediation of petroleum hydrocarbons (PH) in soil can be successful 

(Günther et al., 1996; Newman and Reynolds, 2004), but the contribution of AMF during 

phytoremediation of PAH is not well documented (Joner and Leyval, 2003b).  
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Direct benefits of AMF in phytoremediation of organic contaminants in soils are 

related to enhanced plant adaptation and tolerance as well as improved nutritional and 

physiological status. Indirect benefits of AMF are associated with the modification of 

microbial groups in the mycorrhizosphere, including the proliferation of PH-degrading 

(hydrocarbonoclastic) microorganisms via hyphae exudation (Joner and Leyval, 2003a). 

Nevertheless, few studies have been conducted to understand the role of AMF on plant 

physiological responses, rhizosphere microbial interactions, and phytoremediation of 

PAH. In addition, the interaction of AMF and hydrocarbonoclastic microorganisms 

(bacteria and filamentous fungi) is not well understood. Gaspar et al. (2002) reported that 

Zea mays inoculated with the AMF Glomus geosporum and the yeast, Rhodotorula 

glutinis, had reduced accumulation of the PAH, phenanthrene, in roots. 

The present study tested the following hypotheses: 1) inoculation with 

hydrocarbonoclastic, free-living microorganisms does not impede the establishment of 

AMF, 2) gas exchange and selected physiological responses of Lolium multiflorum plants 

are enhanced by bioaugmentation of AMF (Glomus intraradices [AMF]), bacteria 

(Sphingomonas paucimobilis [Sp]), and filamentous fungus (Cunninghamella echinulata 

var. elegans [Ce]), 3) dissipation/degradation of the PAH benzo[a]pyrene (BaP), from the 

rhizosphere of L. multiflorum is enhanced by bioaugmentation of AMF, Sp, and Ce, and 

4) phytoremediation (with L. multiflorum inoculated with Sp and Ce) is more effective in 

the degradation of BaP than bioremediation with the two hydrocarbonoclastic 

microorganisms (Sp and Ce) inoculated separately. 

The objectives of this research were to: 1) evaluate the interaction of BaP-

degrading microorganisms (Sp and Ce) and the AMF, G. intraradices (AMF), inoculated 
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in the rhizosphere of L. multiflorum during phytoremediation of BaP, 2) evaluate the 

effect of Sp, Ce, and AMF, on gas exchange, proline content, phenolic content, 

antioxidant activity, and nitrate reductase activity of L. multiflorum, 3) determine if 

phytoremediation was enhanced by bioaugmentation with Sp, Ce, and AMF, on the 

dissipation/degradation of BaP from the rhizosphere of the L. multiflorum 

phytoremediation system, and 4) compare the phytoremediation of L. multiflorum and 

bioaugmentation of Sp, and Ce in the BaP-degradation with the bioremediation of the two 

hydrocarbonoclastic microorganisms applied separately. 

 

Materials and Methods 

The study was conducted under greenhouse conditions at Texas A&M University, 

College Station, TX for 60 days from 11 April to 9 June 2005. Temperature and relative 

humidity were monitored with a watch dog data logger Model 150 (Spectrum 

technologies, Inc., Planfield, Ill.), and photosynthetic photon flux density (PPFD) was 

determined with a LI-190SA Quantum/Radiometer/Photometer and sensor (LI-COR® 

Biosciences, Lincoln, Nebr.). Average max/min temperature and relative humidity were 

34.6/18.9°C, and 71.7/78.4%, respectively, and average maximum PPFD determined at 

solar noon, was 701.5 µmoles·m-1·s-2. Autoclaved sand was utilized as substrate, and 

treated with BaP (Sigma-Aldrich®) at 100 mg·kg-1 dissolved in 50 mL of 

dichloromethane solvent (Sigma®, <0.002% of residue after evaporation) to contaminate 

the sand as previously described. 
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Growth and Physiological Responses of Lolium multiflorum in the 

Phytoremediation of BaP – Effect of Rhizosphere Microorganisms 

One week old-Lolium multiflorum Lam. cv. Passerel Plus seedlings were 

transplanted to BaP contaminated sand, and immediately inoculated with selected 

microorganisms. Bacterial cells on culture medium were washed with sterile water, and 

two milliliters of bacterial liquid inoculum (4.0x108 CFU mL-1) [flouranthene-preadapted 

S. paucimobilis (Sp), strain EPA505; Mueller et al., 1990] were applied directly to the 

root system of the seedlings. The filamentous fungus C. echinulata var. elegans [(Ce), 

ATCC-36112] was cultured for five days at 26°C, in Petri dishes containing PDA 

medium. Spores were collected in a suspension with sterile water, and two milliliters 

(1.2x104 CFU mL-1) were applied to the root system of the respective seedlings. For 

AMF treatments, seedlings were inoculated with 500 spores of G. intraradices (AMF) 

[Mycorise® ASP, PremierTech Biotechnologies, Quebec, Canada]. Non-inoculated 

seedlings were utilized as the control. 

Plants were fertilized weekly with 30 mL of 1X strength Long Ashton Nutrient 

Solution (Hewitt, 1966; see Appendix I, Table AI-4.1) modified  to supply 22 µg P mL-1 

to maximize the AMF-colonization. 

Plant growth responses were evaluated at the end of the experiment (60 days), 

including leaf area (cm2), and dry weight (DW) of leaves, pseudostems, roots and total 

plants. Leaf area ratio (LAR=leaf area/total plant DW), specific leaf area (SLA=leaf 

area/leaf DW), and root to shoot ratio were also determined. 

Net photosynthesis (Pn), stomatal conductance (gs), and water use efficiency 

(WUE, Pn/gs) were evaluated at 30 and 60 days, with a portable photosynthesis system 
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model LI-6400 (LI-COR Inc., Lincoln, Nebr.) with red/blue LED light source (LI6400-

02B) at photosyntheticaly active radiation (PAR) levels of 500 µmol m-2·s-1, and CO2 

concentration of 360 µmol·s-1. 

Leaf samples were taken at 30 and 60 days for proline, total phenolics and 

antioxidant activity. Proline content in leaves was determined as described by Bates et al. 

(1973) and Gzik (1996). Briefly, 0.100 g of leaf fresh tissue was macerated in a chilled 

mortar with 3 mL of 3% sulfosalicylic acid. After centrifugation at 10,000 rpm for 15 

min, 200 µL aliquot of the extract was reacted with 200 µL of ninhydrin reagent and 200 

µL of glacial acetic acid, and incubated at 100°C for one hour. Reaction mixture was 

stopped with an ice bath, and proline was immediately extracted with toluene. 

Absorbance readings were taken at 520 nm by means of a Beckman UV-Vis 

spectrophotometer (Beckman Coulter™ Du® Series 640 UV/Vis Spectrophotometer, 

Beckman Coulter, Inc. Fullerton, Calif.). Proline concentration was determined from a 

standard curve of D,L-proline. 

Total phenolics were evaluated by the Folin-Ciocalteu reagent assay utilizing 

chlorogenic acid as a standard curve (Singleton and Rossi, 1965; Soong and Barlow, 

2004). In brief, 0.150 g of leaf fresh tissue was macerated in a chilled mortar with 3 mL 

of 80% methanol. Extracts were centrifuged for 15 min at 15,000 rpm. Reaction mixture 

consisted on mixing 30 µL of the extract added with 90 µL of Na2CO3 and 150 µL of 

Folin-Ciocalteau reagent in a 96-well microplate. After 30 min the absorbance was 

measured at 725 nm using a KC-4 spectrophotometer (Biotek® Instruments, Inc. 

Winooski, Vt.). Results were expressed as micrograms of chlorogenic acid equivalents 

per gram of fresh weight tissue. 
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Total antioxidant activity was determined by the 1,1-diphenyl-2-picryldrazyl 

(DPPH) radical decoloration assay (Matthäus, 2002; Re et al., 1999). Briefly, leaf 

extracts (0.150 g in 3 mL of 80 % methanol) were obtained and immediately centrifuged 

at 15,000 rpm for 15 min. The reaction mixture consisted of mixing 75 µL of the extract 

added with 250 µL of DPPH-solution in 96-well microplates. Initial absorbance readings 

at 515 nm were taken and then, microplates were incubated for 15 min to take a final 

absorbance reading using a KC-4 spectrophotometer (Biotek® Instruments, Inc. 

Winooski, Vt.). Antioxidant activity was calculated by applying known aliquots of 

Trolox (antioxidant compound) to known concentrations of DPPH solution. Results were 

expressed as micromoles Trolox equivalents per gram of fresh tissue. 

Leaf chlorophyll was determined at the end of the experiment with 80% acetone 

extraction using the procedure of Harborne (1998). Absorbance readings were taken at 

645 and 663 nm with a Beckman UV-Vis spectrophotometer (Beckman Coulter™ Du® 

Series 640 UV/Vis Spectrophotometer, Beckman Coulter, Inc. Fullerton, Calif.).  

Chlorophyll content (total, a and b) were estimated with the following equations:  

ChlTotal  (mg L-1) = 17.3(Absorbance646) + 7.18(Absorbance663) 

Chla  (mg L-1)  = 12.21(Absorbance663) – 2.81(Absorbance646) 

Chlb  (mg L-1)  = 20.13(Absorbance646) – 5.03(Absorbance663) 

Nitrate reductase activity was performed with the procedure of Foyer et al. 

(1998). Briefly, leaf samples were ground with 3 mL of extraction buffer solution, 

consisting of 50 mM Mops-KOH, pH 7.8, 5 mM NaF, 1 µM Na2MoO4, 10 µM FAD, 1 

µM leupeptin, 1 µM microcystin, 0.2 g-1 fresh weight PVP, 2 mM ß-mercaptoethanol, 

and 5 mM EDTA. The homogenate was centrifuged at 4°C for 15 min at 12,000 rpm. An 
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aliquot of 200 µL was taken and then reacted to 200 µL of reaction mixture solution 

consisting of 50 mM Mops-KOH buffer, pH 7.5, supplemented with 1 mM NaF, 10 mM 

KNO3, 0.17 mM NADH, and 5 mM EDTA. Reaction was terminated after 15 min with 

the addition of 200 µL of sulfanilamide (1% [w/v] in 3 N HCl) and 200 µL of 

naphthylethylene-diamine dihydrochloride (0.02% [w/v]) to the reaction mixture, and the 

absorbance at 540 nm was measured by means of a Beckman UV-Vis spectrophotometer 

(Beckman Coulter™ Du® Series 640, Beckman Coulter, Inc. Fullerton, Calif.). Nitrate 

reductase activity was determined from a standard curve of NO2Cl. 

Dehydrogenase activity of the rhizosphere soil was performed following the 

procedures of Casida et al. (1964). Briefly, 1.5 g of rhizosphere sand were added in a test 

tube with 0.001 g CaCO3, 250 µL of 3% triphenyl tetrazolium chloride, and 2.5 mL of 

nanopure water. Tubes were sealed with a rubber stopper and incubated for 24 h at 37°C. 

Immediately after incubation, 2.5 mL of methanol were added to each tube and mixed 

with vortex for a few seconds. Suspensions were filtrated using Whatman paper filter # 1. 

Aliquots of 500 µL were taken and transferred to 1.5 mL microtubes and added with 1 

mL methanol. Absorbance readings were taken at 485 nm with a Beckman UV-Vis 

spectrophotometer (Beckman Coulter™ Du® Series 640 UV/Vis Spectrophotometer, 

Beckman Coulter, Inc. Fullerton, Calif.). Dehydrogenase activity was determined from a 

standard curve prepared with known quantities of triphenyl formazan. 

Mycorrhizal colonization was determined by the alkaline phosphatase vital stain 

procedure (Pearse, 1968; Tisserant et al., 1993). Briefly, roots were incubated for two 

hours at room temperature in a digestion solution consisting of 0.05 M Tris/Citric acid  

buffer (pH 9.2), 0.05% sorbitol, 15 units cellulase mL-1 and 15 units pectinase mL-1. 
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Roots were exposed to a sodium chloride solution (1% active chlorine) for five minutes. 

Staining procedure consisted on overnight exposure of roots to reaction medium 

consisted on 0.05 Tris/citric acid buffer (pH 9.2), 1 mg·mL-1 fast blue RR salt , 1 mg·mL-1 

α-naphtyl acid phosphate, 0.5 mg·mL-1 MgCl2, and 0.8 mg·mL-1 MnCl2·4H2O. Fractional 

colonization was estimated microscopically as the intensity of AMF-colonization of the 

root cortex, expressed as a percentage. 

Analysis of BaP was performed by a modified EPA SW-846 Method 8270B 

(Louchouarn et al., 2000; USEPA, 1986). Extraction and concentration of BaP from pre-

dried samples (15 g) was done with an automated accelerated solvent extractor (Dionex 

ASE-200, Dionex Corp., Sunnyvale, Calif.) following the procedures of Berset et al. 

(1999), Popp et al. (1997), and Richter et al. (1997). The extractions were done using 

100% dichloromethane, and stainless-steel extraction cells held at elevated temperature 

(100°C) and solvent pressure (1200 psi). The extracted BaP dissolved in the hot solvent 

was collected in 60 mL glass vials, and immediately concentrated to a volume of 1 mL, 

using an evaporative solvent reduction apparatus (Zymark TurboVap II, Zymark Corp. 

Hopkinton, Mass.). Final extracts were utilized in the quantitative determination of BaP 

by gas chromatographic mass spectrometry (HP 5890 Series II Gas Chromatograph 

Hewlett-Packard Co., Wilmington, Del.).  

The experiment was a completely randomized experimental design with six 

treatments (Control, Ce, Sp, AMF, Ce+SP, Ce+Sp+AMF) and eight replications per 

treatment. Data were analyzed with analysis of variance (ANOVA), and LSD test for 

mean comparison (LSD, α=0.05) or mean standard error (± SE) (SAS Institute Inc, 2002). 

The number of replications was as follows: plant growth responses, n=5; and for gas 
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exchange, chlorophyll, proline, total phenolics, antioxidant activity, nitrate reductase 

activity, mycorrhizal colonization, dehydrogenase activity, and BaP-degradation, n=3. 

 

Bioremediation and Phytoremediation of BaP with Free-Living 

Hydrocarbonoclastic Microorganisms 

This experiment was conducted to determine the effect of bioagumentation with 

hydrocarbonoclastic microorganisms on bioremediation and phytoremediation of sand 

contaminated with 100 mg BaP kg-1. It was run concurrently under the same glasshouse 

and cultural conditions of the previously described experiment. Treatments consisted of 

bioremediation (without plants) or phytoremediation with L. multiflorum. Plants and 

plantless containers were immediately inoculated, as previously described, with S. 

paucimobilis (Sp), C. echinulata (Ce), or with the combination of both microorganisms, 

including a non-inoculated as control. 

Soil dehydrogenase activity and BaP-degradation were determined as previously  

described. The experiment was a 2x4 factorial, with two remediation levels 

(phytoremediation and bioremediation), and four microbial levels (control, Sp, Ce, and 

Ce+Sp), n=3. AMF-treatments were not considered for bioremediation since AMF is an 

obligate symbiont in the rhizosphere, requiring a host plant. Soil dehydrogenase activity 

(n=3) and BaP-degradation (n=3) were statistically analyzed with analysis of variance 

(ANOVA), and LSD test for mean comparison (LSD, α=0.05) or mean standard error (± 

SE) (SAS Institute Inc, 2002). 
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Results 

Growth and Physiological Responses of Lolium multiflorum in the 

Phytoremediation of BaP – Effect of Rhizosphere Microorganisms 

Rhizosphere inoculation with Ce, Sp, AMF, singly or in combination had no 

significant effects on leaf area, DW of leaves and pseudostems, SLA, and shoot number 

(Table 5.1). Microbial treatments had significant effects on root DW (P≤0.01), and total 

plant DW, RSR, and leaf area ratio LAR (P≤0.05) (Table 5.1). However, inoculation with 

Ce, AMF, and Ce+Sp+AMF had significantly reduced total plant DW than control. 

AMF-plants had significantly higher LAR than control and plants with Sp or 

Ce+Sp+AMF (Table 5.1; see Appendix I, Fig. AI-5.1 for visual responses of plants). 

Gas exchange [net photosynthesis (Pn), stomatal conductance (gs), and water use 

efficiency (WUE)] of L. multiflorum at 30 and 60 days, was not significantly different due 

to microbial inoculation (Table 5.2). Level of Pn, gs, and WUE were high among 

treatments, and not adversely affected by BaP (Table 5.2). Chlorophyll content (total, a 

and b) was not significantly different among microbial treatments (Table 5.3). Effects of 

microbial inoculation on leaf proline, total phenolics, and antioxidant activity at 30 and 

60 days, were nonsignificant (Tables 5.4, 5.5). Neither leaf nitrate reductase nor soil 

dehydrogenase activity were significantly enhanced by microbial inoculation (Table 5.6). 

Total arbuscular mycorrhizal colonization and arbuscule formation were not 

adversely affected by the co-inoculation with hydrocarbonoclastic microorganisms (Fig. 

5.1). While vesicle formation was statistically (P≤0.05) higher in AMF treatment alone, 

the AMF isolate of G. intraradices had very low vesicle formation of less than 5% (Fig. 

5.1). 
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Table 5.1. Effect of Glomus intraradices (AMF) and two hydrocarbonoclastic microorganisms 

[Cunninghamella echinulata var. elegans ATCC-36112 (Ce) and Sphingomonas 

paucimobilis EPA505 (Sp)] on plant growth of Lolium multiflorum var. Passerel Plus 

during the phytoremediation of benzo[a]pyrene-contaminated sand, after 60 days. 
 

Treatment 
Leaf 
Area 

 
(cm2) 

Leaves 
DW 

 
(g) 

Pseudostems 
DW 

 
(g) 

Root 
DW 

 
(g) 

Total 
plant 
DW 
(g) 

RSR 
 

 
(g·g-1) 

SLA 
 
 

(cm2·g-1) 

LAR 
 
 

(cm2·g-1) 

Shoot 
number 

 
Control 

 
306.0 

 
1.8 

 
1.8 

 
4.6 a z 

 
8.2 a 

 
1.3 a 

 
170.9 

 
38.3 b 

 
25.8 

 
Ce 267.3 1.6 1.7 2.9 bc 6.3 b 0.9 bc 167.4 42.4 ab 30.5 

 
Sp 232.8 1.7 1.7 4.6 a 8.0 a 1.3 a 138.5 29.8 b 23.8 

 
AMF 304.7 1.8 1.7 2.5 c 6.0 b 0.7 c 172.7 51.7 a 30.8 

 
Ce+Sp 298.5 1.7 1.7 4.0 ab 7.4 ab 1.2 ab 182.2 42.1 ab 27.7 

 
Ce+Sp+AMF 208.8 1.5 1.8 3.0 bc 6.4 b 0.9 abc 132.6 33.3 b 30.1 

 
Significance 

Treatment 
 

NS 
 

NS 
 

NS 
 

0.01 
 

0.05 
 

0.05 
 

NS 
 

0.05 
 

NS 
 

zMeans in the same column followed by the same letter are not significantly different (LSD,  
α=0.05); NS=Nonsignificant, n=5. 
 

 

Table 5.2. Effect of Glomus intraradices (AMF) and two hydrocarbonoclastic microorganisms 

[Cunninghamella echinulata var. elegans ATCC-36112 (Ce) and Sphingomonas 

paucimobilis EPA505 (Sp)] on gas exchange of Lolium multiflorum var. Passerel Plus 

during the phytoremediation of benzo[a]pyrene-contaminated sand. 

30 days  60 days  
Treatment Pn 

(µmoles CO2 m-2·s-1) 
gs 

(moles m-2·s-1) 
WUE y 
(Pn/ gs) 

 Pn 
(µmoles CO2 m-2·s-1) 

gs 
(moles m-2·s-1) 

WUE 
(Pn/ gs) 

 

Control 
 

22.1 
 

0.05 
 

398.5 
  

16.4 
 

0.05 
 

507.2 
 
Ce 

 
20.3 

 
0.06 

 
309.5 

  
21.3 

 
0.04 

 
794.3 

 
Sp 

 
19.3 

 
0.06 

 
296.8 

  
22.7 

 
0.04 

 
600.7 

 
AMF 

 
24.1 

 
0.08 

 
308.3 

  
14.5 

 
0.03 

 
481.2 

 
Ce+Sp 

 
21.5 

 
0.08 

 
275.0 

  
23.6 

 
0.04 

 
578.3 

 
Ce+Sp+AMF 

 
21.2 

 
0.08 

 
282.2 

  
18.1 

 
0.03 

 
556.6 

 

Significance 
Treatment 

 

 
NS 

 

 
NS 

 

 
NS 

  

 
NS 

 

 
NS 

 

 
NS 

 

y WUE= Water Use Efficiency, µmoles C02/moles H20 m-2·s-1;  NS=Nonsignificant, n=3. 
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Table 5.3. Effect of Glomus intraradices (AMF) and two hydrocarbonoclastic microorganisms 

[Cunninghamella echinulata var. elegans ATCC-36112 (Ce) and Sphingomonas 

paucimobilis EPA505 (Sp)] on chlorophyll content in leaves of Lolium multiflorum var. 

Passerel Plus during the phytoremediation of benzo[a]pyrene-contaminated sand, after 

60 days. 

Chlorophyll content 
(µg·g-1 FW) 

 

 
Treatment 

Total a b 
 

Control 
 

1032.4 
 

723.6 
 

309.4 

Ce 1521.5 999.4 523.1 

Sp 1333.2 900.8 433.3 

AMF 1385.2 913.6 472.5 

Ce+Sp 1531.9 1091.4 441.4 

Ce+Sp+AMF 1730.1 1124.3 606.9 
 

       Significance 
Treatment 

 

 
NS 

 

 
NS 

 

 
NS 

FW=Fresh weight; NS=Nonsignificant, n=3. 
 

 

  

Table 5.4. Effect of Glomus intraradices (AMF) and two hydrocarbonoclastic microorganisms 

[Cunninghamella echinulata var. elegans ATCC-36112 (Ce) and Sphingomonas 

paucimobilis EPA505 (Sp)] on proline content in leaves of Lolium multiflorum var. 

Passerel Plus during the phytoremediation of benzo[a]pyrene-contaminated sand. 

Proline 
(µmoles g-1 FW) 

 

 
Treatment 

30 days  60 days 
 

 

Control 
 

1.8   

1.5 

Ce 2.8  2.0 

Sp 3.0  1.5 

AMF 2.3  1.3 

Ce+Sp 1.9  1.8 

Ce+Sp+AMF 1.8  2.3 
 

       Significance 
Treatment 

 

 
NS 

  

 
NS 

FW=Fresh weight; NS=Nonsignificant, n=3. 
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Table 5.5. Effect of Glomus intraradices (AMF) and two hydrocarbonoclastic microorganisms 

[Cunninghamella echinulata var. elegans ATCC-36112 (Ce) and Sphingomonas 

paucimobilis EPA505 (Sp)] on total phenolics and total antioxidant activity in leaves of 

Lolium multiflorum var. Passerel Plus during the phytoremediation of benzo[a]pyrene-

contaminated sand. 

Total phenolics 
(µg Chlorogenic acid g-1 FW) 

Total antioxidant activity 
(µmoles Trolox g-1 FW) 

 

 
Treatment 

30 days 60 days 30 days 60 days 
 

 

Control 
 

3437.5 
 

4381 
 

12.5 
 

13.1 
 

Ce 4224.9 5033 15.0 16.2 
 

Sp 4107.5 4696 15.4 17.0 
 

AMF 4158.4 5533 13.3 18.5 
 

Ce+Sp 3558.5 3900 12.9 13.5 
 

Ce+Sp+AMF 4785.7 6791 18.2 21.8 
 

 

       Significance 
Treatment 

 

 
NS 

 

 
NS 

 

 
NS 

 

 
NS 

 

FW=Fresh weight; NS=Nonsignificant, n=3. 
 

 

Table 5.6. Effect of Glomus intraradices (AMF) and two hydrocarbonoclastic microorganisms 

[Cunninghamella echinulata var. elegans ATCC-36112 (Ce) and Sphingomonas 

paucimobilis EPA505 (Sp)] on leaf nitrate reductase activity, and dehydrogenase 

activity in the rhizosphere of Lolium multiflorum var. Passerel Plus during the 

phytoremediation of benzo[a]pyrene-contaminated sand, after 60 days. 

Treatment Leaf Nitrate Reductase 
(µmoles NO2 g-1 FW) 

Rhizosphere soil dehydrogenase activity 
(µg Formazan g-1 soil) 

 

Control 
 

67.9 
 

2.2 
 

Ce 71.9 1.7 

Sp 74.9 3.3 

AMF 62.3 1.7 

Ce+Sp 70.4 2.7 

Ce+Sp+AMF 92.8 1.9 

       Significance 
Treatment 

 
NS 

 
NS 

FW=Fresh weight; NS=Nonsignificant, n=3. 
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Fig. 5.1. Influence of the inoculation of hydrocarbonoclastic-microorganisms [Cunninghamella 

echinulata var. elegans ATCC-36112 (Ce) and Sphingomonas paucimobilis EPA505 

(Sp)] on Glomus intraradices (AMF)-colonization with positive reaction of fungal 

alkaline phosphatase activity in roots of Lolium multiflorum var. Passerel Plus during 

phytoremediation of benzo[a]pyrene-contaminated sand, after 60 days. Main effects of 

microbial inoculation were nonsignificant for total colonization and arbuscules, but 

significant (P≤0.05) for vesicles. Bars  ± SE, n=3. 

 

 

In regards to phytoremediation, degradation of BaP in the rhizosphere of L. 

multiflorum was significantly (P≤0.05) enhanced by the microbial inoculation (Fig. 

5.2A). The single inoculation of Ce and the combination Ce+Sp+AMF, resulted in 

increased degradation of BaP, compared to control plants (Fig. 5.2). The inoculation of 

AMF stimulated BaP-degradation in the rhizosphere of L. multiflorum, which was 

comparable to the single inoculation of Sp, but significantly different than control plants 

(Fig. 5.2A). Thus, phytoremediation of BaP was more efficient when plants where 

inoculated with either hydrocarbonoclastic microorganisms (Ce or Sp) or with AMF  

(Fig. 5.2B). 

Treatment

A
M

F-
C

ol
on

iz
at

io
n 

(%
) 

0

10

20

30

40

50

AMF Ce+Sp+AMF

Total colonization
Arbuscules
Vesicles



 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Phytoremediation of benzo[a]pyrene (BaP) (100 mg·kg-1), after 80 days, with Lolium 

mutiflorum inoculated with Glomus intraradices (AMF), Cunninghamella echinulata var. 

elegans (Ce), and Sphingomonas paucimobilis (Sp). A) Degradation of BaP. Main effects 

of microbial inoculation were significant (P≤0.01), Bars ± SE, n=3. B) Inoculation 

Efficiency Effect (IEE) on BaP-degradation: IEE (%)= [(BaP degradation (µg·g-1) of 

inoculated plants–BaP degradation (µg·g-1) of control plants)/(BaP degradation (µg·g-1) of 

control plants)] x 100. 
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Bioremediation and Phytoremediation of BaP with Free-Living 

Hydrocarbonoclastic Microorganisms 

 Main effects of remediation (bio- or phytoremediation), microbial inoculation, 

and their interaction had no significant effect on dehydrogenase activity (Table 5.7). 

BaP-degradation was significantly affected by remediation, microbial inoculation, 

and their interaction (P≤0.001). BaP-degradation was significantly higher with 

bioaugmentation via bioremediation than phytoremediation (Fig. 5.3A). Thus, the single 

or combined inoculation of Ce and Sp during bioremediation (no plants) was more 

efficient on BaP-degradation than phytoremediation (Fig. 5.3B). 

 

 

Table 5.7. Effect of the inoculation of two hydrocarbonoclastic microorganisms [Cunninghamella 

echinulata var. elegans ATCC-36112 (Ce), and Sphingomonas paucimobilis EPA505 

(Sp)] on soil dehydrogenase activity during bioremediation (no plant) or 

phytoremediation (with Lolium multiflorum var. Passerel Plus) of benzo[a]pyrene (100 

mg·kg-1), after 60 days. 

Remediation Microbial Inoculation 
 

Rhizosphere soil dehydrogenase activity 
(µg Formazan g-1) 

 

Bioremediation 
 

Control 
 

1.64 
 Ce 2.81 
 Sp 1.80 
 Ce+Sp 2.28 
   
Phytoremediation Control 2.16 
 Ce 1.71 
 Sp 3.34 
 Ce+Sp 2.72 
           Significance 

Remediation 
Microbial inoculation 

Remediation x Microbial inoculation

 
NS 
NS 
NS 

NS=Nonsignificant, n=3. 
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Fig. 5.3. A) Effect of bioaugmentation with two hydrocarbonoclastic microorganisms 

[Cunninghamella echinulata var. elegans (Ce), and Sphingomonas paucimobilis (Sp)] 

on the bioremediation (no plants) and phytoremediation (with Lolium multiflorum) of 

benzo[a]pyrene (BaP) (100 mg·kg-1)-contaminated sand, after 60 days. Main effects of 

remediation, microbial inoculation, and their interaction were significant at P≤0.001,  

Bars ± SE, n=3. B) Inoculation Efficiency Effect (IEE) on BaP degradation. IEE (%)= 

[(Inoculated treatments of bioremediation or phytoremediation–Non-inoculated 

treatments of bioremediation or phytoremediation)/(Non-inoculated treatments of 

bioremediation or phytoremediation)] x 100.  
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Discussion 

This research demonstrates the benefit of incorporating AMF with a 

hydrocarbonoclastic bacterium and a filamentous fungus for phytoremediation of 

benzo[a]pyrene (BaP) with a Lolium multiflorum system. In addition, this research is one 

of the first reports that shows that the efficiency of BaP-degradation by 

hydrocarbonoclastic microorganisms is higher with the bioremediation, solely using free-

living microorganisms than phytoremediation with the L. multiflorum system.  

Bioaugmentation with Ce, Sp, AMF or their combination during 

phytoremediation of BaP, had no significant effect on L. multiflorum growth. In general, 

growth responses of inoculated plants were similar or lower than control plants. Thus, the 

hypothesis that bioaugmentation improves plant growth was rejected. AMF-plants had 

significantly higher LAR but significantly lower root DW and RSR, compared to control 

plants. Similar trends were reported in non-phytoremediation studies of abiotic stress of P 

and drought, respectively (Aguilera-Gomez et al., 1999; Davies et al., 1999). The LAR 

suggests that AMF-inoculated plants required a greater leaf area to produce a unit of plant 

DW, but less dry matter was partitioned to the root system. 

The inoculation with Ce, AMF, and Ce+Sp+AMF resulted in significant reduction 

of total plant DW (~24.4% less), compared to control plants. In the case of AMF, this 

effect may be related with the carbon drain from the plant to the roots to satisfy the 

greater carbon requirements to support growth and metabolism of AMF (Bago et al., 

2000; Bago et al., 2003). This metabolic cost to the plants may explain, in part, the 

reduced total plant biomass and the enhanced LAR. Nonsignificant effects of AMF-

inoculation on plant growth response during phytoremediation of anthracene were 
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previously reported (Binet et al., 2000a). However, this is one of the first reports of the 

inoculation of Ce and Sp on growth of L. multiflorum during BaP-phytoremediation. 

 Physiological responses of plants utilized in phytoremediation of PAH have 

received little attention, especially when inoculated with either hydrocarbonoclastic 

bacteria or filamentous fungi with the ability to degrade these persistent organic 

contaminants. In this study, microbial inoculation did not significantly enhance gas 

exchange, chlorophyll content, proline content, antioxidant activity, nitrate reductase, and 

soil rhizosphere dehydrogenase activity. Thus, the tested hypothesis that bioaugmentation 

enhanced physiological plant response was rejected. However, there was a nonsignificant 

trend of enhanced chlorophyll content, total phenolics, and antioxidant activity with the 

inoculation of Ce+Sp+AMF, compared to control plants. These apparent benefits 

provided by the inoculation of the three microorganisms may represent a physiological 

advantage to plants during phytoremediation of BaP, which may minimize toxic effects 

to plants (Binet et al., 2000b; Qiu et al., 1994; Schwab and Banks, 1994). Some of the 

physiological evaluations of plants exposed to PAH are related with the modification on 

the synthesis of specific enzymes (i.e., laccases, dehalogenases, nitroreductases, 

nitrilases, and peroxidases) that contribute to the initial oxidation and degradation of 

PAH in the rhizosphere (Alkorta and Garbisu, 2001; Criquet et al., 2000; Criquet et al., 

2001; Schnoor et al., 1995; Susarla et al., 2002). 

Total mycorrhizal root colonization and arbuscule formation, measured as the 

positive reaction of the alkaline phosphatase (ALP) activity in the intraradical hyphae 

(Tisserant et al., 1993; Smith and Gianinazzi-Pearson, 1990), was not affected by the 

interaction with the two hydrocarbonoclastic microorganisms. Previous results showed 
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that ALP of AMF-symbiosis in Echinochloa polystachia was not reduced by the presence 

of several concentrations of BaP in soil (Alarcón et al., 2006). Nevertheless, negative 

effects of either petroleum hydrocarbons and mixtures or single PAH on AMF 

colonization have been reported (Cabello, 1997; Gaspar et al., 2002; Leyval and Binet, 

1998; Liu et al., 2004). In one of the few reports on the interaction of AMF with 

hydrocarbonoclastic-microorganisms, Gaspar et al. (2002) reported that the inoculation of 

maize plants with the yeast Rhodotorula glutinis caused significant reduction of 

mycorrhizal colonization measured as succinate-dehydrogenase activity of Glomus 

geosporum hyphae, exposed to the PAH, phenanthrene.  

This is one of the first reports describing the microbial interaction of G. 

intraradices with the bacteria, S. paucimobilis, and the filamentous fungus, C. echinulata 

var. elegans, during phytoremediation of BaP. The single or combined microbial 

inoculation resulted in significantly enhanced efficiency of BaP-degradation in the 

rhizosphere of L. multiflorum when compared to the control (Fig. 5.2B). The beneficial 

effects of Ce and Sp on the degradation of PAH has been well demonstrated, particularly 

in liquid cultures and soils without plants (Casillas et al., 1996; Cerniglia et al., 1980; 

Daugulis and McCracken, 2003; Kanaly and Harayama, 2000; Story et al., 2001; 

Sutherland, 1992), but effects of hydrocarbonoclastic microorganisms during 

phytoremediation has received little attention (Kelley et al., 2001). In this study, the 

combined inoculum of Ce+Sp+AMF showed similar BaP-degradation to plants 

inoculated with Ce alone, but significantly higher than the inoculation with Ce+Sp (Fig. 

5.2A). In this particular case, the reduced capability of both hydrocarbonoclastic 

microorganisms when coinoculated may be in part due to microbial competition for 
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carbon compounds, rather than antagonism between both microorganisms. The possible 

antibiosis of Sp to Ce was tested in vitro but results were negative, indicating that the 

presence of Sp did not inhibit the growth of Ce (see Appendix I, Fig. AI-5.2). Thus, the 

reduced BaP-degradation observed in the rhizosphere inoculated with Sp+Ce was not 

attributed to antibiotic effects of Sp to Ce. Furthermore, microbial competition for carbon 

sources derived from root exudation may result in greatly reduced or minimal 

degradation of organic contaminants (Siciliano and Germida, 1998).  

AMF can contribute directly or indirectly to the phytoremediation of PAH in the 

rhizosphere (Joner and Leyval, 2003a). The BaP-degradation observed in AMF-

inoculated plants in this study is in agreement with Liu et al. (2004). More recently, 

Volante et al. (2005) published the first report that AMF dissipate aromatic compounds in 

the rhizosphere of Allium porrum; however, the mechanisms remain unknown. Since this 

experiment was not in a completely closed system, it is possible that the mycorrhizal 

symbiosis may have stimulated either naturally-occurring microorganisms or root activity 

(Joner and Leyval, 2003a), thus contributing on the BaP-degradation in the rhizosphere. 

However, in our study neither microbial populations nor root physiology was determined. 

Furthermore, the identification of those functional PAH-degrading microorganisms 

stimulated by the presence of AMF in the root systems merits further investigation. To 

our knowledge, no studies have reported on the bioaugmentation of AMF-plants for 

enhancing BaP-degradation in the rhizosphere. Thus, this study showed the beneficial 

effect of G. intraradices on the degradation of BaP in the rhizosphere of L. multiflorum, 

although C. echinulata var. elegans was the most efficient microorganism. 



 

 

107

On the other hand, bioaugmentation with Ce, Sp, and their combination during 

bioremediation (no plants) or phytoremediation (with L. multiflorum) did not 

significantly enhance soil dehydrogenase activity. Most importantly, by comparing the 

effect of bioaugmentation on bioremediation or phytoremediation of BaP, it was observed 

that the extent of BaP-degradation was significantly higher during bioremediation than 

phytoremediation (Fig. 5.3B). In phytoremediation, the inoculation with Ce resulted in 

higher BaP-degradation than in the combination of Ce+Sp, while in bioremediation, the 

single or combined inoculation of Ce and Sp had similar BaP-degradation. 

Conversely to the expected outcome of one hypothesis proposed in this work, 

phytoremediation was less efficient for BaP-degradation than bioremediation, when 

bioaugmentation was applied. This effect may be attributed to competition for carbon 

sources in the rhizosphere as previously discussed. Root exudates could have delayed 

BaP-degradation since they may represent rapidly assimilable carbon to 

hydrocarbonoclastic microorganisms (Siciliano and Germida, 1998), which resulted in 

the inhibition of their expression of PAH-degrading behavior. Furthermore, Kelley et al. 

(2001) reported that degradation of recalcitrant contaminants was higher in soil without 

plants, suggesting that plants may impede the metabolism of the contaminant via soil 

microorganisms. 

 

Summary 

While bioaugmentation with hydrocarbonoclastic microorganisms (bacteria and 

filamentous fungi) can improve bioremediation of polycyclic aromatic hydrocarbons 

(PAH), their interaction with arbuscular mycorrhizal fungi (AMF) during  



 

 

108

phytoremediation of PAH is not well known. Glasshouse experiments were conducted to 

evaluate the effect of bioaugmentation on phytoremediation and bioremediation of 

benzo[a]pyrene (BaP). Phytoremediation of BaP (100 mg·kg-1) was done with a Lolium 

multiflorum plant system inoculated with a hydrocarbonoclastic bacterium 

[Sphinghomonas paucimobilis EPA505 (Sp)], a filamentous fungus [Cunninghamella 

echinulata var. elegans ATCC-36112 (Ce)], and an arbuscular mycorrhizal fungus 

[Glomus intraradices (AMF)], or combinations of the three microorganisms. Microbial 

inoculation did not significantly enhance plant growth during phytoremediation of BaP, 

and the inoculation with Ce, AMF, and Ce+Sp+AMF significantly reduced total plant dry 

weight (~24.4% less) and root-to-shoot ratio when compared to the control. In addition, 

microbial inoculation did not significantly enhance net photosynthesis, stomatal 

conductance, chlorophyll content, proline, nitrate reductase, total phenolics, antioxidant 

activity, and soil rhizosphere dehydrogenase activity. The inoculation of Ce+Sp did not 

impede root colonization or arbuscule formation of AMF. Most importantly, single or 

combined microbial inoculation enhanced BaP-degradation in the rhizosphere of L. 

multiflorum, and inoculation with Ce or Ce+Sp+AMF caused the greatest BaP-

degradation. Bioaugmentation with Ce, Sp, or Ce+SP enhanced both bioremediation and 

phytoremediation of BaP. Bioremediation was more efficient than phytoremediation for 

BaP-degradation. 
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CHAPTER VI 

 

PHYTOREMEDIATION OF PETROLEUM-CONTAMINATED SOIL VIA 

BIOAUGMENTATION WITH ARBUSCULAR MYCORRHIZA AND 

HYDROCARBONOCLASTIC MICROORGANISMS IN A Lolium multiflorum 

RHIZOSPHERE SYSTEM 

 

Introduction 

Enhanced degradation of petroleum hydrocarbons (PH) via phytoremediation is 

dependent on abiotic and biotic conditions of: 1) soil type, nutrient and water availability, 

2) type and concentration of PH in soil, and 3) proliferation of hydrocarbonoclastic 

microorganisms that degrade available contaminants in the soil and rhizosphere (Schnoor 

et al., 1995; Cunningham et al., 1997; Siciliano y Germida, 1998). Plant sensitivity to 

contaminants, low soil fertility, slow plant growth rates, and reduced microbial 

populations in soils due to chronic exposure to contaminants are factors limiting 

phytoremediation of PH-contaminated soils (Alkorta and Garbisu, 2001; Susarla et al., 

2002; Pilon-Smits, 2005). 

During phytoremediation, plants may improve aeration via their root system, 

which enhances rhizosphere microbial activity and contaminant degradation. Microbial 

activity is stimulated by root exudates that serve as alternate sources of carbon and 

energy for microorganisms that oxidize and/or degrade organic contaminants. However, 

in spite of the apparent benefit of plants in the phytoremediation of PH-contaminated 

soils, there is little information about the effect of combining phytoremediation with 
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bioaugmentation utilizing hydrocarbonoclastic microorganisms (Huang et al., 2004). 

Microorganisms with the ability to degrade PH are ubiquitous, however when their 

populations are depleted, bioaugmentation via inoculation with specific microbes to 

enhance bioremediation and/or phytoremediation is usually recommended. Free-living 

bacteria such as Sphingomonas paucimobilis, as well as filamentous fungi, such as 

Cunninghamella spp., are ideal microorganisms that oxidize and/or degrade PH, 

including polycyclic aromatic hydrocarbons (PAH) in soil (Cerniglia, 1992; van Hamme 

et al., 2003). Although the physiological and biochemical mechanisms by which these 

microorganisms degrade PH are known, there are few reports about their effects on plants 

utilized in phytoremediation. 

Arbuscular mycorrhizal fungi (AMF) are ubiquitous rhizosphere microorganisms 

that form mutually beneficial symbiosis with the root system of approximately 80% of 

the terrestrial plants (Smith and Read, 1997). This symbiosis can have important effects 

on phytoremediation of soils contaminated with inorganic and organic compounds 

(Cabello, 2001; Meharg, 2001; Joner and Leyval, 2003a; Joner and Leyval, 2003b). 

Direct benefits are related with enhanced plant adaptation and growth, including 

enhanced nutrition, and abiotic and biotic stress resistance. Indirect benefits include 

modification of microbial groups in the mycorrhizosphere, and potential proliferation of 

PH-degrading (hydrocarbonoclastic) microorganisms via extraradical hyphae exudation 

(hyphosphere effect). The interaction of AMF and hydrocarbonoclastic microorganisms 

has received little attention (Gaspar et al., 2002). In addition, little is known about the 

role of AMF and their interaction with hydrocarbonoclastic microorganisms on plant 

growth, physiological responses, and rhizosphere microbial populations in the 
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phytoremediation of PH in soils. The hypotheses in this research were that: 1) 

bioaugmentation with a hydrocarbonoclastic bacterium and a filamentous fungus 

improves the physiological response of AMF-colonized plants in the phytoremediation of 

PH-contaminated soil, and 2) degradation of PH in the rhizosphere of Lolium multiflorum 

colonized with AMF is enhanced by inoculation with hydrocarbonoclastic 

microorganisms. Thus, objectives of this research were to: 1) determine selected 

physiological responses (gas exchange, total antioxidant activity, nitrate reductase, and 

proline) of AMF-colonized plants of Lolium multiflorum utilizing bioaugmentation with 

Sphingomonas paucimobilis and Cunninghamella echinulata var. elegans in Arabian 

medium crude oil (ACO)- contaminated soil, and 2) determine the phytoremediation of 

PH via bioaugmentation of hydrocarbonoclastic microorganisms in soil contaminated 

with ACO. 

 

Materials and Methods 

Cultural Conditions, Soil Contamination, Transplant, Microbial and 

Mycorrhizal Inoculation 

The study was conducted under glasshouse conditions at Texas A&M University, 

College Station, TX for 80 days. The experiment was initiated on 6 September and 

terminated on 24 November, 2005. Temperature and relative humidity were monitored 

with a watch dog data logger Model 150 (Spectrum technologies, Inc., Planfield, Ill.), and 

photosynthetic photon flux density (PPFD) was determined with a LI-190SA 

Quantum/Radiometer/Photometer and sensor (LI-COR® Biosciences, Lincoln, Nebr.). 

Average day/night temperature and relative humidity was 25.7/22.3°C, and 64.9/72.4%, 
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respectively,  average  maximum  PPFD  determined  at solar  noon,  was  583.5 

µmoles·m-1·s-2. A 14 h of photoperiod were maintained by artificially lighting plants from 

18:00 to 22:00 during October and November. 

A mixture of sand and sandy loam soil (1:1 v/v) was utilized as a substrate, with 

chemical properties of: (µg·g-1) 0.9 NO3-N, 2.1 NH4-N, 1.5 P, 17 K, 9468 Ca, 72 Mg, 161 

Na, and 53 S. The electrical conductivity was 0.17 dS·m-1, pH of 7.7, and textural 

analysis of sand 85 %, clay 10 % and silt 5%. 

Substrate was steam-pasteurized at 70°C for eight hours on two consecutive days.  

Arabian medium crude oil (ACO) concentrations were 0 and 6000 mg·kg-1. The viscosity 

of ACO contaminant was reduced through the application of dichloromethane solvent 

(Sigma®, <0.002% of residue after evaporation), as previously described. 

One week-old seedlings of Lolium multiflorum Lam. cv. Passerel Plus were 

transplanted, with one seedling per container, and selected treatments were inoculated 

with 500 spores of Glomus intraradices (AMF) [Mycorise® ASP, PremierTech 

Biotechnologies, Quebec, Canada] and/or with two milliliters of liquid inoculum (8.8x108 

CFU mL-1) of the flouranthene-preadapted bacterium, Sphingomonas paucimobilis (Sp, 

EPA505; Mueller et al., 1990) and two milliliters of liquid inoculum (5.5x104 CFU mL-1) 

of the filamentous fungus, Cunninghamella echinulata var. elegans (Ce, ATCC-36112). 

Microbial inoculation was applied directly to the root system of the seedlings. Non-

inoculated seedlings in ACO-contaminated or non-contaminated soil were utilized as 

controls. 

Plants were fertilized weekly with Long Ashton Nutrient Solution (LANS) at 1X 

(Hewitt, 1966; see Appendix I, Table AI-4.1) modified to supply 30 µg P mL-1. Plants 
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were watered as needed with deionized water. An additional control treatment with 

LANS modified to supply 44 µg P mL-1 was included to determine if high P substituted 

or equaled AMF effects on plant physiology and phytoremediation. 

 

Plant Growth Evaluation 

At the termination of the experiment, plants were harvested to determine the 

following parameters: leaf area (cm2), and dry weights (DW) of leaves, pseudostems, 

roots, and total plants. The leaf area ratio [(LAR): leaf area/total plant DW, cm2·g-1], 

specific leaf area [(SLA): leaf  area/leaf  DW,  cm2·g-1],  and  root  to  shoot  ratio  

[(RSR):  root  DW/leaf + pseudostems DW, g·g-1] were also estimated. Leaf area was 

determined using a portable area meter LI-COR Model LI-3000 (LI-COR Biosciences, 

Lincoln, Nebr.). Detached plant organs were placed in an oven at 70°C for two days, then 

plant samples were subsequently weighed. 

 

Plant Gas Exchange, Chlorophyll Content and Selected Physiological Responses 

Gas exchange measurements (photosynthesis and stomatal conductance) were 

taken at the end of the experiment at 80 days. Measurements were done on individual 

mature leaf blades from three random plants per treatment (n=3), with a portable 

photosynthesis system model LI-6400 (LI-COR Inc., Lincoln, Nebr.) with red/blue LED 

light source (LI6400-02B) at photosyntheticaly active radiation (PAR) levels of 500 µmol 

m-2·s-1, and CO2 concentration of 360 µmol·s-1. 

Leaf chlorophyll content was determined with 80% acetone extraction using the 

procedure of Harborne (1998). Absorbance readings were taken at 645 and 663 nm with a 
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Beckman UV-Vis spectrophotometer (Beckman Coulter™ Du® Series 640 UV/Vis 

Spectrophotometer, Beckman Coulter, Inc. Fullerton, Calif.). Chlorophyll content (total, 

a and b) were estimated by the following equations:  

ChlTotal  (mg L-1) = 17.3(Absorbance646) + 7.18(Absorbance663) 

Chla  (mg L-1)  = 12.21(Absorbance663) – 2.81(Absorbance646) 

Chlb  (mg L-1)  = 20.13(Absorbance646) – 5.03(Absorbance663) 

Nitrate reductase activity in leaves was performed by the procedures described by 

Foyer et al. (1998). Briefly, leaf samples were ground with 3 mL of extraction buffer 

solution consisted on 50 mM Mops-KOH, pH 7.8, 5 mM NaF, 1 µM Na2MoO4, 10 µM 

FAD, 1 µM leupeptin, 1 µM microcystin, 0.2 g PVP g-1 fresh weight, 2 mM ß-

mercaptoethanol, and 5 mM EDTA. The homogenate was centrifuged at 4°C for 15 min 

at 12000 rpm. An aliquot of 200 µL was taken and then reacted to 200 µL of reaction 

mixture solution consisted on 50 mM Mops-KOH buffer, pH 7.5, supplemented with 1 

mM NaF, 10 mM KNO3, 0.17 mM NADH, and 5 mM EDTA. The reaction was 

terminated after 15 min by the addition of 200 µL of sulfanilamide (1% [w/v] in 3 N 

HCl) and 200 µL of naphthylethylene-diamine dihydrochloride (0.02% [w/v]) to the 

reaction mixture, and the absorbance at 540 nm was measured by means of a Beckman 

UV-Vis spectrophotometer (Beckman Coulter™ Du® Series 640 UV/Vis 

Spectrophotometer, Beckman Coulter, Inc. Fullerton, Calif.). Nitrate reductase activity 

was determined from a standard curve of NO2Cl. 

Proline in leaves was determined with the procedures of Bates et al. (1973) and 

Gzik (1996). Briefly, 0.100 g of leaf fresh tissue was macerated in an iced-mortar with 3 

mL of 3 % sulfosalicylic acid. After centrifugation at 10000 g for 30 minutes, an aliquot 
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the extract was reacted with ninhydrin reagent and glacial acetic acid, and incubated with 

at 100 °C for one hour. Reaction mixture was stopped with an ice bath, and proline was 

extracted with toluene. Absorbance readings were taken at 520 nm (Beckman Coulter™ 

Du® Series 640 UV/Vis Spectrophotometer, Beckman Coulter, Inc. Fullerton, Calif.). 

Proline concentration was determined from a standard curve of D,L-proline, and the 

results were expressed as micromoles of proline per gram of fresh tissue. 

Leaf total antioxidant activity was determined by the 1,1-diphenyl-2-picryldrazyl 

(DPPH) radical decoloration assay (Matthäus, 2002; Re et al., 1999). Briefly, leaf 

extracts (0.150 g in 3 mL of 80 % methanol) were obtained and immediately centrifuged 

at 15,000 rpm for 15 min. The reaction mixture consisted of mixing 75 µL of the extract 

added with 250 µL of DPPH-solution in 96-well microplates. Initial absorbance readings 

at 515 nm were taken and then, microplates were incubated for 15 min to take a final 

absorbance reading using a KC-4 spectrophotometer (Biotek® Instruments, Inc. 

Winooski, Vt.). Antioxidant activity was calculated by applying known aliquots of 

Trolox (antioxidant compound) to known concentrations of DPPH solution. Results were 

expressed as micromoles Trolox equivalents per gram of fresh tissue. 

Total phenolics in leaves were evaluated by the Folin-Ciocalteu reagent assay 

utilizing chlorogenic acid as a standard curve (Singleton and Rossi, 1965; Soong and 

Barlow, 2004). In brief, 0.150 g of leaf fresh tissue was macerated in a chilled mortar 

with 3 mL of 80% methanol. Extracts were centrifuged for 15 min at 15,000 rpm. 

Reaction mixture consisted on mixing 30 µL of the extract added with 90 µL of Na2CO3 

and 150 µL of Folin-Ciocalteau reagent in a 96-well microplate. After 30 min the 

absorbance was measured at 725 nm using a KC-4 spectrophotometer (Biotek® 
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Instruments, Inc. Winooski, Vt.). Results were expressed as micrograms of chlorogenic 

acid equivalents per gram of fresh weight tissue. 

 

Total Microbial Populations and Mycorrhizal Colonization 

Populations of bacteria and filamentous fungi were estimated by performing the 

dilution plate count method (Alexander, 2005). Soil samples were prepared in serial 

dilutions (10-1 to 10-6) with sterile distilled water. Briefly, 10 g of rhizosphere soil were 

mixed in 95 mL of sterile water (10-1 dilution). The suspension was agitated vigorously 

for 10 minutes to suspend either bacterial or fungal cells in the liquid, and then allowed to 

settle. Subsequent dilutions were prepared by transferring 1 mL of the cell suspension to 

culture tubes containing 9 mL of sterile water. Aliquots transfers were made sequentially 

from tube to tube to obtain increasingly dilute cell suspensions. From dilution 10-5 to 10-6, 

100 µL aliquots were plated to estimate bacterial colony forming units (CFU), and from 

dilutions 10-2 to 10-3, aliquots were plated to estimate fungal CFU. Aliquots of 100 µL 

were transferred and spread out on nutrient agar (total recoverable bacteria) or potato 

dextrose agar (filamentous fungi) plates. For free-living N2-fixing bacteria (bacteria able 

to grow on N-free medium), aliquots were taken from dilutions 10-4 to 10-5 and spread out 

on Petri dishes containing Rennie’s medium (Rennie, 1981). Plates were inverted and 

incubated at 26°C for 2 to 5 days. Bacterial CFU were counted from plates that yield 

between 30 and 300 CFU. 

After 80 days, three plants per treatment were randomly taken and assayed for 

AMF-colonization (Phillips and Hayman, 1970). Briefly, roots were placed in plastic 

capsules and cleared with 10% KOH exposed to 121°C for 10 min. After being rinsed 
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with tap water, roots were exposed to a commercial hydrogen peroxide for 15 min and 

rinsed with tap water. Immediately, a 10% hydrochloric acid solution was added to the 

roots for 15 min. Roots were stained with 0.05% tripan blue colorant in a lactoglycerol 

solution (glycerol-lactic acid-distilled water, 1:1:1 v/v) at 121°C for 10 min. Root 

segments (20 per slide) were placed on slides, covered with cover slip, and observed 

under light microscope at 100X magnification. The frequency of arbuscules, vesicles, and 

hyphae (total colonization) was determined, and results were expressed as a percentage of 

each AM-fungal structure (Biermann and Linderman, 1981). 

 

Total Petroleum Hydrocarbon Degradation 

Analysis of total petroleum hydrocarbons (TPH) was performed by a modified 

EPA SW-846 Method 8270B (Louchouarn et al., 2000; USEPA, 1986). Extraction of 

TPH from pre-dried samples (15 g) was done with an automated accelerated solvent 

extractor (Dionex ASE-200, Dionex Corp., Sunnyvale, Calif.) following the procedures 

of Berset et al. (1999); Popp et al. (1997), and Richter et al. (1997). Extractions were 

performed using 100% dichloromethane, and stainless-steel extraction cells held at 

elevated temperature (100°C) and solvent pressure (1200 psi). The extracted TPH 

dissolved in the hot solvent were collected in 60 mL glass vials, and immediately 

concentrated to a volume of 1 mL, using an evaporative solvent reduction apparatus 

(Zymark TurboVap II, Zymark Corp. Hopkinton, Mass.). Final extracts were used in the 

quantitative determination of TPH by gas chromatographic mass spectrometry (HP 5890 

Series II Gas Chromatograph Hewlett-Packard Co., Wilmington, Del.). 
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Experimental Design 

The experiment was a 5 x 2 factorial in a completely randomized design with five 

levels of rhizosphere management (Control-44 P µg·mL-1; Control, AMF, SpCe, and 

AMF+SpCe at 30 µg P mL-1 of modified LANS), and two levels of ACO-contamination 

(contaminated and non-contaminated soil). Each pot containing one plant was one 

replicate, (n=15). Data were analyzed by using analysis of variance (ANOVA) and LSD 

test for mean comparison (LSD, α=0.05) or mean standard error (± SE) (SAS Institute 

Inc, 2002). The number of replications was as follows: plant DW, n=7; gas exchange, 

chlorophyll, proline, total phenolics, antioxidant and nitrate reductase activities, n=3; 

microbial population, n=5; mycorrhizal colonization, n=3; and TPH-degradation, n=3. 

 

Results 

Plant Growth Responses 

Plant growth was significantly (P≤0.001) reduced by ACO, and enhanced by  

rhizosphere management (RM). Treatments of AMF, SpCe, or AMF+SpCe increased leaf 

area, leaf (P≤0.001) and pseudostem DW (P≤0.05) at non-contaminated soil compared to 

control with 30 µg P mL-1 (Table 6.1). The interaction of ACO x RM had no effect on 

plant growth (Table 6.1). However, none of the RM treatments of AMF, SpCe or their 

combination overcame reduced plant growth in ACO-contaminated soil (Table 6.1; see 

Appendix I, Fig. AI-6.1 for visual responses of plants). 

ACO (P≤0.001) and ACO x RM interaction (P≤0.05) resulted in higher specific 

leaf area (SLA), leaf area ratio (LAR), and lower root:shoot ratio (RSR) compared to 

plants in non-contaminated soil (Table 6.2). RM treatment had no effects on SLA, LAR 
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or RSR (Table 6.2). Highest  SLA  was  obtained  in  plants  inoculated with  AMF+Sp  

and  in  control-44 µg P mL-1 plants at 6,000 mg ACO kg-1 (Table 6.2). Control plants 

and plants inoculated with either SpCe or AMF+SpCe in non-contaminated soil had the 

highest RSR (Table 6.2). RM had no effect on LAR or RSR of plants exposed to ACO. 

 

Plant Gas Exchange, Chlorophyll Content and Selected Physiological Responses 

ACO significantly reduced (P≤0.001) net photosynthesis (Pn), stomatal 

conductance (gs), and transpiration (E), and increased water use efficiency (WUE), while 

nonsignificant effects for RM and the interaction of ACO x RM interaction were 

observed (Table 6.3). 

 

 

Table 6.1. Effect of rhizosphere management (RM) and Arabian medium crude oil (ACO) on 

plant growth of Lolium multiflorum cv. Passerel Plus, after 80 days. 

Rhizosphere 
management 

(RM) 

ACO 
 

(mg·kg-1) 

Leaf 
Area 
(cm2) 

Leaf 
dry weight 

(g) 

Pseudostem 
dry weight 

 (g) 

Root 
dry weight 

 (g) 

Total plant  
dry weight 

(g) 
 

Control-44 P 
 

0 
 

887.6 a w 
 

2.9 bc 
 

2.9 bc 
 

6.0 c 
 

11.7 b 
Control x  710.6 b 2.7 c 2.5 c 12.4 ab 17.6 a 
AMF xy  921.4 a 3.4 ab 3.8 a 9.1 bc 16.3 ab 
SpCe xz  867.3 ab 3.3 abc 2.8 bc 12.8 ab 18.9 a 
AMF + SpCex 
 

 809.7 ab 3.6 a 3.5 ab 14.2 a 21.3 a 

Control-44 P 6,000 121.9 c 0.3 d 0.1 d 0.6 d 1.0 c 
Control  x  66.6 c 0.2 d 0.1 d 0.3 d 0.6 c 
AMF x  148.9 c 0.4 d 0.2 d 0.5 d 1.1 c 
SpCe x  152.6 c 0.5 d 0.2 d 0.6 d 1.3 c 
AMF + SpCe x  163.8 c 0.4 d 0.2 d 0.6 d 1.2 c 
       

          Significance      
ACO 0.001 0.001 0.001 0.001 0.001 

RM 0.01 0.01 0.05 NS NS 
ACO x RM NS NS NS NS NS 

      
wMeans in the same column followed by the same letter are not significantly different (LSD, α= 0.05). NS= 
Nonsignificant,  n=7. xTreatments fertilized with Long Ashton Nutrient Solution (LANS), modified to 
supply 30 µg P mL-1; yAMF= Glomus intraradices; zSpCe= Sphingomonas paucimobilis and 
Cunninghamella echinulata var. elegans. 
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Table 6.2. Effect of rhizosphere management (RM) and Arabian medium crude oil (ACO) on 

plant growth parameters of Lolium multiflorum cv. Passerel Plus, after 80 days. 

Rhizosphere 
management 

(RM) 

ACO 
 

(mg·kg-1) 

Specific Leaf Area 
(SLA) 

(cm2·g-1) 

Leaf Area Ratio 
(LAR) 

(cm2·g-1) 

Root:Shoot Ratio 
(RSR) 
(g·g-1) 

 

Control 44 P 
 

0 
 

312.3 bcd w 
 

82.1 dc 
 

1.0 c 
Control x  289.7 cd 71.7 de 2.0 a 
AMF xy  272.3 cd 57.9 de 1.3 bc 
SpCe xz  263.8 de 48.9 de 2.2 a 
AMF + SpCe x 
 

 227.8 e 39.5 e 2.1 a 

Control 44 P 6,000 392.7 a 119.8 ab 1.2 c 
Control x  321.3 bcd 114.3 bc 0.9 c 
AMF x  363.0 ab 130.8 ab 0.9 c 
SpCe x  327.1 bc 118.8 ab 0.9 c 
AMF + SpCe x  398.4 a 151.2 a 0.8 c 

     

          Significance    
ACO 0.001 0.001 0.001 

RM NS NS NS 
ACO x RM 0.01 0.05 0.05 

    
wMeans in the same column followed by the same letter are not significantly different (LSD, α= 0.05). NS= 
Nonsignificant, n=7. xTreatments fertilized with Long Ashton Nutrient Solution (LANS), modified to 
supply 30 µg P mL-1; yAMF= Glomus intraradices; zSpCe= Sphingomonas paucimobilis and 
Cunninghamella echinulata var. elegans. 
 

Table 6.3. Effect of rhizosphere management (RM) and Arabian medium crude oil (ACO) on 

plant gas exchange of Lolium multiflorum cv. Passerel Plus, after 80 days. 

Rhizosphere 
management  

 
(RM) 

ACO 
 
 

(mg·kg-1) 

Photosynthesis 
 

(Pn) 
(µmoles CO2 m-2·s-1) 

Stomatal 
conductance 

 (gs) 
(moles m-2·s-1) 

Transpiration 
 

(E) 
(moles m-2·s-1) 

Water use 
efficiency 

(WUE) 
(Pn/gs) 

 

Control 44 P 
 

0 
 

8.4 a w 
 

0.05 a 
 

2.7 a 
 

158.1 c 
Control x  6.5 abc 0.03 bc 1.5 bc 229.4 c 
AMF xy  5.9 bcd 0.03 bcd 1.3 bcd 229.8 c 
SpCe xz  6.9 ab 0.04 b 1.9 ab 212.3 c 
AMF+SpCe x 
 

 7.3 ab 0.04 ab 1.9 ab 189.7 c 

Control 44 P 6,000 4.3 de 0.01 cd 0.8 cd 298.9 bc 
Control x  3.9 e 0.01 d 0.5 d 551.9 a 
AMF x  4.8 cde 0.02 cd 0.9 cd 297.0 bc 
SpCe x  5.7 bcde 0.02 cd 0.9 cd 319.2 abc 
AMF+SpCe x  4.8 cde 0.01 cd 0.7 cd 484.2 ab 

      

         Significance     
ACO 0.001 0.001 0.001 0.001 

RM NS NS NS NS 
ACO x RM NS NS NS NS 

     
wMeans in the same column followed by the same letter are not significantly different (LSD, α= 0.05). NS= 
Nonsignificant, n=3. xTreatments fertilized with Long Ashton Nutrient Solution (LANS), modified to 
supply 30 µg P mL-1; yAMF= Glomus intraradices; zSpCe= Sphingomonas paucimobilis and 
Cunninghamella echinulata var. elegans. 
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Total chlorophyll content was significantly (P≤0.05) increased by ACO, RM, and 

the ACO x RM interaction (Table 6.4). Plants exposed to ACO had higher total 

chlorophyll (P≤0.05), chlorophyll a (P≤0.01), and chlorophyll a/b ratio (P≤0.05) than 

plants in non-contaminated soil (Table 6.4). RM significantly affected (P≤0.001) 

chlorophyll b and the chlorophyll a/b ratio. The interaction of ACO x RM had no 

significant effect on chlorophyll a, b and a/b ratio (Table 6.4). 

Leaf nitrate reductase and proline of L. multiflorum were significantly (P≤0.01) 

affected by ACO, RM and the interaction of ACO x RM; however, RM had no 

significant effect on leaf nitrate reductase (Table 6.5). Nitrate reductase activity and 

proline were significantly increased (P≤0.001) in plants exposed to ACO (Table 6.5).  

 

Table 6.4. Effect of rhizosphere management (RM) and Arabian medium crude oil (ACO) on leaf 

chlorophyll of Lolium multiflorum cv. Passerel Plus, after 80 days. 

Chlorophyll content 
     Total                     a                       b 

Rhizosphere 
management  

(RM) 

ACO 
 

(mg·kg-1)   (µg·g-1)  

Chlorophyll 
ratio 
a/b 

 

Control 44 P 
 

0 
 

804.6 cd w 
 

620.1 bc 
 

184.9 cd 
 

3.4 ab 
Control x  627.6 d 453.4 c 174.5 d 2.6 abc 
AMF xy  871.8 bcd 617.2 bc 255.1 bcd 2.6 abc 
SpCe xz  1101.4 abc 647.7 bc 454.4 a 1.4 d 
AMF + SpCe x 
 

 1094.8 abc 614.6 bc 480.9 a 1.3 d 

Control 44 P 6,000 792.5 cd 590.7 bc 202.4 cd 3.1 abc 
Control x  1063.4 abc 829.5 ab 234.6 cd 3.5 a 
AMF x  1296.3 a 952.9 a 317.1 bc 3.3 abc 
SpCe x  898.3 bcd 624.2 bc 274.7 bcd 2.2 bcd 
AMF + SpCe x  1208.8 ab 827.0 ab 382.5 ab 2.2 cd 

      

          Significance     
ACO 0.05 0.01 NS 0.05 

RM 0.05 NS 0.001 0.001 
ACO x RM 0.05 NS NS NS 

     
wMeans in the same column followed by the same letter are not significantly different (LSD, α= 0.05). NS= 
Nonsignificant,  n=3. xTreatments fertilized with Long Ashton Nutrient Solution (LANS), modified to 
supply 30 µg P mL-1; yAMF= Glomus intraradices; zSpCe= Sphingomonas paucimobilis and 
Cunninghamella echinulata var. elegans. 
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Table 6.5. Effect of rhizosphere management (RM) and Arabian medium crude oil (ACO) on leaf 

nitrate reductase activity, proline, antioxidant activity, and total phenolics of Lolium 

multiflorum cv. Passerel Plus, after 80 days. 

Rhizosphere 
management 

(RM) 

ACO 
 

(mg·kg-1) 

NO3-reductase 
 

(µM NO2 g-1) 

Proline 
 

(µg·g-1) 

Antioxidant 
activity 

(µM Trolox g-1) 

Total phenolics 
 

(µg chlorogenic acid g-1) 
 

Control 44 P 
 

0 
 

174.6 cde w 
 

1.8 cd 
 

7821.3 a 
 

4502.9 b 
Control x  186.7 bcd 0.8 de 1377.5 d 4483.8 b 
AMF xy  136.1 de 0.5 e 1544.2 cd 3647.6 bcd 
SpCe xz  172.7 cde 0.9 de 1513.0 cd 6274.5 a 
AMF + SpCe x 
 

 123.7 e 1.4 de 1448.4 cd 4187.8 bc 

Control 44 P 6,000 152.7 de 0.9 de 6534.5 b 1920.2 f 
Control  233.3 ab 3.8 ab 1685.6 cd 3406.8 cde 
AMF  214.6 abc 0.9 de 1807.9 c 2962.4 de 
SpCe  251.1 a 5.0 a 1561.4 cd 2629.6 ef 
AMF + SpCe  229.1 abc 3.1 bc 1624.8 cd 3171.6 de 

      

          Significance     
ACO 0.001 0.001 0.001 0.001 

RM NS 0.001 0.001 0.001 
ACO x RM 0.05 0.001 0.001 0.001 

     
wMeans in the same column followed by the same letter are not significantly different (LSD, α= 0.05). NS= 
Nonsignificant, n=3.xTreatments fertilized with Long Ashton Nutrient Solution (LANS), modified to 
supply 30 µg P mL-1; yAMF= Glomus intraradices; zSpCe= Sphingomonas paucimobilis and 
Cunninghamella echinulata var. elegans. 
 

 

Antioxidant activity and total phenolics were significantly (P≤0.001) affected by 

ACO, RM, and their interaction (Table 6.5). Control-44 µg P mL-1 plants in non-

contaminated or ACO-contaminated soil had significantly higher antioxidant activity than 

other RM treatments at 30 µg P mL-1. For total phenolics, in non-contaminated soil, 

plants inoculated with SpCe had significantly higher phenolic content (Table 6.5); while 

control-44 µg P mL-1 plants in ACO-contaminated soil had significantly lower total 

phenolics than the other RM treatments with 30 µg P mL-1 (Table 6.5).  
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Microbial Populations in the Rhizosphere and Mycorrhizal Colonization 

 Populations of total bacteria, bacteria able to grow on N-free medium, and 

filamentous fungi populations analyzed as logarithmic units, were significantly (P≤0.001) 

affected by the ACO, RM, and the interaction ACO x RM (Table 6.6; see Appendix I, 

Table AI-6.1 for data analyzed by the actual microbial counts). Total bacteria and 

filamentous fungi were generally stimulated when the rhizosphere was contaminated with 

ACO, compared to non-contaminated soil. However, the lowest bacterial and fungal 

populations in ACO-contaminated soil, were with control-44 µg P mL-1 treated plants 

(Table 6.6). 

  

Table 6.6. Effect of rhizosphere management (RM) and Arabian medium crude oil (ACO) on 

logarithmic colony forming units (Log10CFU) of total bacteria, filamentous fungi, 

and bacteria able to grow on N-free medium, in the rhizosphere of Lolium 

multiflorum cv. Passerel Plus after 80 days. 

Rhizosphere 
management 

(RM) 

ACO 
 

(mg·kg-1) 

Total bacteria 
 

(Log10CFU) 

Filamentous fungi 
 

(Log10CFU) 

Bacteria able to grow 
on N-free medium 

(Log10CFU) 
 

Control 44 P 
 

0 
 

6.77 f w 
 

3.60 e 
 

5.90 ab 
Control x  6.87 de 3.77 e 5.07 f 
AMF xy  6.73 f 4.47 b 5.88 abc 
SpCe xz  6.90 d 3.60 e 5.76 cd 
AMF + SpCe x 
 

 6.80 ef 4.03 d 5.97 a 

Control 44 P 6,000 7.10 c 3.10 f 5.80 bcd 
Control  7.50 a 4.30 bc 5.18 f 
AMF  7.47 a 4.10 cd 5.99 a 
SpCe  7.23 b 5.33 a 5.51 e 
AMF + SpCe  7.50 a 5.40 a 5.71 d 

     

Significance:    
ACO 0.001 0.001 0.05 

RM 0.001 0.001 0.001 
ACO x RM 0.001 0.001 0.001 

    

wMeans in the same column followed by the same letter are not significantly different (LSD, α= 
0.05).  n=5 
xTreatments fertilized with Long Ashton Nutrient Solution, modified to supply 30 µg P mL-1 
yAMF= Glomus intraradices 
zSpCe= Sphingomonas paucimobilis and Cunninghamella echinulata var. elegans. 
See Appendix I, Table AI-6.1 for data analyzed by the actual microbial counts. 
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For bacteria able to grow on N-free medium, ACO generally resulted in 

significantly lower populations (Table 6.6). With non-contaminated soil, the inoculation 

of AMF, AMF+SpCe, or control-44 µg P mL-1 plants significantly (LSD, α=0.05) 

enhanced the proliferation of this bacterial group compared to control plants (Table 6.6). 

In ACO-contaminated soil, the highest population of these bacteria occurred with AMF-

plants, while the control at 30 µg P mL-1 had the lowest population  (Table 6.6). 

The main effect of ACO significantly (P≤0.001) reduced total mycorrhizal 

colonization, but had no effect on arbuscules and vesicles formation (Fig. 6.1A-C). The 

main effects of RM (AMF or AMF+ScCe), and the interaction of ACO x RM had no 

effect on total colonization, arbuscule, and vesicle formation. AMF-structures were not 

found in plants without AMF-inoculation. 

 

Total Petroleum Hydrocarbon Degradation 

 Rhizosphere management (RM) resulted in significant (P≤0.001) effects on TPH-

degradation in the rhizosphere of Lolium multiflorum (Fig. 6.2A). The lowest TPH-

degradation was with control plants, while the highest degradation occurred with plants 

inoculated with AMF+SpCe. In general, all inoculated plants and control-44 µg mL-1 had 

significantly greater TPH-degradation than the control at 30 µg P mL-1 (Fig. 6.2A). 

The treatment effect efficiency (TEE) on TPH-degradation mirrored that of the 

TPH-degradation. Plants inoculated with AMF+SpCe had 60% more TPH-degradation 

than the 30 µg P mL-1 control plants, while control-44 µg mL-1, SpCe or AMF plants, had 

34%, 26%, and 24% more TEE of TPH-degradation, respectively, than the 30 µg P mL-1 

control plants (Fig. 6.2B). 
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Fig. 6.1. Effect of hydrocarbonoclastic microorganisms and ACO contamination on the 

colonization of Glomus intraradices (AMF) in roots of Lolium multiflorum cv. Passerel 

Plus after 80 days. SpCe=Sphingomonas paucimobilis and Cunninghamella echinulata 

var. elegans. Main effects of Arabian medium crude oil (ACO) were significant only 

for total colonization (P≤0.001). Main effects of Rhizosphere management (RM) and 

ACO x RM interaction were not significant for total colonization, arbuscules or 

vesicles. Bars ± SE, n=3. 
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Fig. 6.2. A) Effect of hydrocarbonoclastic microorganisms [Sphingomonas paucimobilis (Sp) and 

Cunninghamella echinulata var. elegans (Ce)], Glomus intraradices (AMF), and higher 

fertility [control with modified Long Ashton Nutrient Solution (LANS) to supply 44 µg P 

mL-1 (Control 44P)] on total petroleum hydrocarbon (TPH) degradation in the 

rhizosphere of Lolium multiflorum contaminated with Arabian medium crude oil (ACO) 

at 6,000 mg·kg-1)], after 80 days. All treatments supplied with 30 µg P mL-1 LANS, 

except Control 44P. Main effect of treatment was significant at P≤0.001. n=3. B) 

Treatment Efficiency Effect (TEE) of TPH degradation. TEE (%)= [(TPH degradation of 

treated plants – control plants)/(control plants)] x 100. 
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Discussion 

This research is one of the first studies that demonstrates the importance of 

bioaugmentation utilizing a mixture of hydrocarbonoclastic microorganisms with AMF 

during phytoremediation of soil contaminated with Arabian medium crude oil (ACO) 

with a L. mutiflorum system. 

 

Plant Growth Responses 

ACO in soil caused a significant reduction in plant growth (leaf area, leaf, 

pseudostem, root and total plant DW). ACO reduced leaf area and total plant DW by -  

91% and -96%, respectively. Inoculation with AMF or application of 44 µg P mL-1 

resulted in significantly greater plant growth than control plants only in non-

contaminated soil. Although no significant effects were observed, bioaugmentation with 

microorganisms and biostimulation with 44 µg P mL-1, resulted in two-fold increased leaf 

area and total plant DW of ACO-treated plants. Results on impaired plant growth of L. 

multiflorum in ACO-contaminated soil were in agreement with reports for other plant 

species (Adam and Duncan, 2003; Malallah et al., 1996; Quiñones-Aguilar et al., 2003). 

Bioaugmentation with AMF+SpCe in ACO-contaminated soil resulted in 

significantly higher SLA and LAR than control plants. ACO also increased SLA and 

LAR, and decreased RSR. These plant growth ratios can be useful in determining how 

plants cope with stressful environmental conditions (Wright and Westoby, 2001). 

Increased SLA (thinner leaves) reflects more leaf area that may contribute to enhanced 

light capture per unit of leaf mass (Westoby, 1998; Reich et al., 1997), while LAR 

indicates the efficiency of a given leaf area to produce a given plant size (Hunt, 1982; 
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Lafarge and Hammer, 2002). Since SLA and LAR were significantly increased by 

AMF+SpCe plants exposed to ACO-contaminated soil, plants in this treatment may have 

better adaptation. 

 

Plant Gas Exchange, Chlorophyll Content and Selected Physiological Responses 

Photosynthesis, stomatal conductance, and transpiration of L. multiflorum plants 

were significantly diminished by ACO. Furthermore, neither bioaugmentation with the 

microorganisms nor biostimulation with 44 µg P mL-1 overcame the deleterious effect of 

ACO. The negative effects of PH on photosynthesis of marine and terrestrial plants have 

been previously described (Baker, 1970; Daly et al., 1988; Durako et al., 1993; Macinnis-

Ng and Ralph, 2003).  

Conversely, water use efficiency (WUE) was significantly higher (+48%) with 

plants exposed to ACO-contamination than plants in non-contaminated soil. WUE can be 

used to determine the plant performance under stressful conditions, since it relates carbon 

gain and biomass accumulation to transpiration and water loss (Kramer and Boyer, 

1995); this is in agreement with the observed decreased growth, Pn and gs of L. 

multiflorum plants exposed to ACO-contamination. WUE is the ratio of carbon fixed into 

dry weight to the total amount of water lost by evapotranspiration (Klingeman et al., 

2005) or Pn/gs, and indicates the biomass accumulated per total water consumed (Davies 

et al., 2002). Thus, high WUE under ACO-contamination suggests that plants are more 

efficiently accumulating biomass (µmoles CO2 m-2·s-1) per mole of water utilized or lost, 

albeit at a much reduced rate.  
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Plants exposed to ACO had an increased total chlorophyll and chlorophyll a as 

well as a higher chlorophyll a/b ratio, though nonsignificant effects of ACO were 

observed for chlorophyll b. Neither microbial inoculation nor application of 44 µg P mL-1 

resulted in increased chlorophyll content compared to control plants. Similar responses 

on increased chlorophyll and chlorophyll a/b ratio have been reported for Non-AMF 

plants grown in soil contaminated with organic compounds (Huang et al., 2004). The 

chlorophyll a/b ratio generally increases when plants are nutrient deficient (Kitajama and 

Hogan, 2003) and consequently under stress. Furthermore, increased chlorophyll a/b ratio 

can be used as an indicator of stress in plants so that it may represent higher sensitivity to 

light by which electron transport from PSII to PSI is impeded. Then, photochemical 

oxidation of light harvesting complexes that bind chlorophyll b can occur (Huang et al., 

1997). However, further research is needed to understand the benefits of free-living and 

symbiotic rhizosphere microorganisms on the alleviation of the stress induced by ACO-

contaminated soil on the photosynthetic apparatus of L. multiflorum. 

Enzymatic and biochemical responses of plants during phytoremediation of PH in 

soils have been little studied (Malallah et al., 1996). In our study, leaf nitrate reductase 

activity was significantly higher in  plants growing at ACO-contaminated soil. Nitrate 

reductase in control plants in ACO-soil increased ~25%, while plants inoculated with 

AMF, SpCe, and AMF+SpCe showed an increase of ~58%, ~45%, and 85%, 

respectively, when compared to their corresponding treatment at non-contaminated soil. 

This effect indicates that microbial inoculation stimulated N-assimilation in plants under 

ACO-contaminated soil through enhanced nitrate reductase. In this respect, the nitrate 
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reductase is an important enzymatic activity in plants exposed to different environmental 

stresses (Foyer et al., 1998; Sinha and Nicholas, 1981; Taiz and Zeiger, 2002).  

The presence of ACO in soil significantly increased the proline in plants, except 

for control-44 µg P mL-1 and for AMF-inoculated plants, compared to control-30 µg P 

mL-1 plants. Proline in plants can be a water stress indicator (Aspinall and Paleg, 1981) 

induced by PH in soils due to their hydrophobicity properties (Binet et al., 2000a; Qiu et 

al., 1994; Schwab and Banks, 1994). The low proline content in either AMF plants or 

control-44 µg P mL-1 may indicate that these plants are less affected by the ACO-induced 

stress. This suggests that either AMF-inoculation or improved P-nutrition may contribute 

towards PH stress alleviation, as also indicated for other non-PH stress conditions (Diouf 

et al., 2005; Ramakrishnan et al., 1988; Ruiz-Lozano et al., 1995; Ruiz-Lozano et al., 

1996; Wu and Xia, 2005). However, more research is required to understand these 

benefits on plants exposed to PH-contaminated soils. 

Antioxidant activity in control-44 µg P mL-1 was significantly reduced (P≤0.001) 

by ACO-contamination, compared to the same treatment at non-contaminated soil. 

Regardless of ACO-contamination, the antioxidant activity of control-44 µg P mL-1 

plants was significantly higher than control-30 µg P mL-1 and plants bioaugmented with 

the microorganisms, which did not show a consistent or significant trend in antioxidant 

activity. In contrast, both controls (at 30 and 44 µg P mL-1) or inoculated plants in ACO-

contaminated soil had significantly reduced phenolics (-39%) than plants at non-

contaminated soil. Generally, in ACO-contaminated soil control-30 µg P mL-1 and 

inoculated plants in ACO-contaminated soil, except SpCe plants, had significantly greater 

phenolics than control-44 µg P mL-1.  
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The reduction in phenolic compounds by ACO is in agreement with reports of 

other researchers studying non-inoculated plant species exposed to PH-contaminated soil 

(Ilangovan and Vivenkanandan, 1992; Malallah et al., 1996). While the inoculation of 

plants under abiotic stress with AMF seems to confer more plant protection to oxidative 

damage (Alguacil et al., 2003; Porcel et al., 2003; Ruiz-Lozano, 2003; Wu et al., 2006), 

neither AMF nor SpCe enhanced plant antioxidant and phenolics in ACO-contaminated 

soil. However, the effects of AMF and hydrocarbonoclastic microorganisms on plant 

protection against oxidative damage had not been previously reported during 

phytoremediation of PH-contaminated soil. 

 

Microbial Populations in the Rhizosphere and Mycorrhizal Colonization 

ACO increased the populations of total bacteria and filamentous fungi, but 

reduced population of bacteria able to grow on N-free medium. However, the highest 

population of N2-fixing free bacteria occurred with AMF in ACO-contaminated soil, and 

with AMF+SpCe in non-contaminated soil. The rhizosphere microbial populations may 

enhance plant adaptation to PH-contaminated soils by detoxifying soils through 

mineralization of organic contaminants directly or as a result of cooxidation and 

cometabolism processes (Barea et al., 2005; Dec et al., 2002; Jeffries et al., 2003; Robson 

et al., 2004; Siciliano and Germida, 1998). 

Total colonization by AMF was significantly decreased from 35% in non-

contaminated to 23% in plants exposed to ACO. Arbuscules, which are the exchange site 

between host plant and symbiont, were also reduced by ACO, whereas vesicles, which 

are the main fungal structure for storage in the root system, were not affected. Negative 
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effects of crude oil and other fractions of petroleum on AMF-colonization have been 

previously reported (Cabello, 1997; Gaspar et al., 2002; Leyval y Binet, 1998). 

Importantly, bioaugmentation with hydrocarbonoclastic microorganisms (SpCe) did not 

negatively affect AMF-colonization in roots. 

 

Total Petroleum Hydrocarbon Degradation 

The TPH-degradation in the rhizosphere of L. multiflorum was significantly 

enhanced by either the application of 44 µg P mL-1 or bioaugmentation, particularly with 

AMF+SpCe. TPH-degradation at control-44 µg P mL-1 was 34% more than control plants 

at 30 µg P mL-1. For inoculated plants, all of which were treated with LANS at 30 µg P 

mL-1, the extent of TPH-degradation was 23%, 26%, and 60% greater with AMF, SpCe, 

and AMF+SpCe, respectively, when compared to the non-inoculated control with 30 µg 

P mL-1. Plants inoculated with AMF+SpCe had 26% more TPH-degradation than control-

44 µg P mL-1 plants. 

The biostimulation with 44 µg P mL-1 in control plants, enhanced TPH-

degradation. In this case, P is a critical nutrient during bioremediation of PH (Chang et 

al., 1996), and in this study, P not only enhanced adaptation and growth of L. multiflorum 

but also improved phytoremediation of ACO, which may be due in part, to supporting 

rhizosphere bacterial activity and plant growth. 

On the other hand, the inoculation with a mixture of beneficial bacteria such as 

Pseudomonas putida, Azospirillum brasilense, and Enterobacter cloacae to grass species 

enhances the effective remediation of organic contaminants (Huang et al., 2004). In 

addition, AMF are an important rhizosphere component that contributes to the alleviation 
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of toxic effects induced by PH, as well as to enhanced growth, tolerance and dissipation 

of contaminants in the rhizosphere (Cabello, 1999; Joner and Leyval, 2003a, Joner and 

Leyval, 2003b; Leyval and Binet, 1998; Volante et al., 2005). 

 This study is one of the first reports of the interaction of hydrocarbonoclastic 

microorganisms (bacteria and filamentous fungi) with AMF on growth and physiological 

responses of plants during phytoremediation of PH. Furthermore, this is one of the first 

reports on the microbial synergism between the AMF and two hydrocarbonoclastic 

microorganisms in stimulating higher TPH-degradation in the rhizosphere of the L. 

multiflorum system. The results suggest that AMF can indirectly enhance 

phytoremediation of PH in soils by enhancing the activity of hydrocarbonoclastic bacteria 

and filamentous fungi. Although the mechanisms are not well understood, this study 

supports the hypothesis that AMF may induce changes in plant physiology, and create 

favorable microenvironments (mycorrhizosphere/hyphosphere effect) that allow the 

proliferation and activity of hydrocarbonoclastic microorganisms during 

phytoremediation of PH (Criquet et al., 2000; Joner and Leyval, 2003b; Rillig, 2004; 

Sylvia, 2005). The indirect effects of AMF are a significant benefit for plants used in the 

phytoremediation of a complex mixture of PH such as ACO. 

 

Summary 

Plants can phytoremediate soils contaminated with petroleum hydrocarbons (PH), 

however, bioaugmentation with hydrocarbonaclastic microorganisms and arbuscular 

mycorrhizal fungi (AMF) is not well understood. Phytoremediation of Arabian medium 

crude oil (ACO) was done with a Lolium multiflorum plant system inoculated with an 
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AMF [Glomus intraradices], a mixture of hydrocarbonoclastic microorganisms [the 

bacteria, Sphingomonas paucimobilis EPA-505 (Sp) and the filamentous fungus, 

Cunninghamella echinulata var. elegans ATCC-36112 (Ce)], or with a combination of 

microorganisms (AMF+SpCe). A glasshouse experiment was conducted with L. 

multiflorum plants exposed to ACO-contaminated soil (6000 mg·kg-1). A modified Long 

Ashton Nutrient Solution (LANS) was supplied to all treatments at 30 µg P mL-1, except 

for a second control treatment at 44 µg P mL-1. After 80 days, ACO-contamination 

reduced plant growth, photosynthesis, stomatal conductance, transpiration, leaf phenolics, 

but increased water use efficiency, total chlorophyll, nitrate reductase, and proline. Plant 

growth and physiological responses were not significantly enhanced by 44 µg P mL-1 or 

bioaugmentation. ACO generally increased total bacteria and filamentous fungi, while 

bacteria able to grow on N-free medium decreased (except for an increase with AMF 

plants). While total colonization and arbuscule formation were reduced by ACO-

contamination, average colonization was ~20% and ~8%, respectively. There were no 

adverse effects of SpCe on the AMF symbiosis in roots. Most importantly, TPH-

degradation was significantly enhanced by 44 µg P mL-1 and the microbial inoculation. 

Highest TPH-degradation and efficiency on TPH-degradation was observed with 

AMF+SpCe (60%), followed by control plants at 44 µg P mL-1 (34%). Hence, there was 

a beneficial synergism between hydrocarbonoclastic microorganisms and AMF on TPH-

degradation. Phytoremediation of ACO was also improved by the single inoculation of 

AMF or SpCe, compared to controls. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

Summary 

Phytoremediation utilizes plants to cleanup soils contaminated with organic or 

inorganic contaminants, in part, through improvement of soil aeration and stimulation of 

rhizosphere microbial activity via root exudation. Bioaugmentation with 

hydrocarbonoclastic bacteria, filamentous fungi, and arbuscular mycorrhizal fungi (AMF) 

may enhance phytoremediation. However, the effect of inorganic nutrients 

(biostimulation) and bioaugmentation with microorganisms beneficial to plants during 

phytoremediation is not well understood. 

The objective of this dissertation was to evaluate the effects of AMF on plant 

growth, selected physiological responses, and degradation of PH in soil in combination 

with biostimulation and/or bioaugmenation with hydrocarbonoclastic bacteria and a 

filamentous fungus during phytoremediation. 

The first study (Chapter III) was conducted to screen and select a grass species 

(Poaceae) tolerant to increased levels of Arabian medium crude oil (ACO) to determine 

the most suitable grass species and critical petroleum concentrations for subsequent 

phytoremediation experiments. Among five grass species tested, Lolium multiflorum 

Lam. cv. Passerel Plus was selected as the most tolerant, based on seed germination and 

growth responses to ACO in a sand-sandy loam soil mixture (1:1 v/v). ACO 

concentrations selected for a subsequent experiment, were 3000 and 15000 mg·kg-1.  
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The second study (Chapter IV) evaluated the effects of inoculation with Glomus 

intraradices (AMF) and fertilization with three levels of Long Ashton Nutrient Solution 

[(LANS) 0.5X, 1X, and 2X] on plant growth, selected physiological responses, and 

phytoremediation of total petroleum hydrocarbons (TPH) in a soil contaminated with 

ACO, at three levels: 0, 3000 and 15000 mg·kg-1. Plant growth, photosynthesis, and 

nutrient uptake in shoots were significantly reduced by increased ACO. Growth, 

photosynthesis and nutrient uptake of plants in ACO-contaminated soil were enhanced by 

LANS. Microbial populations and soil respiration were stimulated by ACO and LANS. 

Regardless of ACO concentration, total phenolics and antioxidant activity in leaves 

decreased with increasing LANS. Increasing ACO concentrations resulted in decreased 

ascorbate content at 0.5X and 1X LANS, but increased at 2X LANS. AMF had minimal 

effects on plant growth, photosynthesis, and nutrient content, depending on ACO and 

LANS combinations. Mycorrhizal colonization and arbuscule formation was observed at 

all ACO levels. At 3000 mg ACO kg-1, TPH-degradation was >60% in all rhizosphere 

treatments, while at 15000 mg ACO kg-1 higher TPH-degradation occurred at 0.5X 

LANS. Neither LANS nor AMF consistently increased TPH-degradation. LANS and 

ACO significantly affected soil pH, which ranged from 6.9 to 8.9; while LANS increased 

EC. No toxic effects of salt accumulation occurred. 

The third study (Chapter V) evaluated inoculation with the hydrocarbonoclastic 

bacterium, Sphinghomonas paucimobilis EPA505 (Sp), and a filamentous fungus, 

Cunninghamella echinulata var. elegans ATCC-36112 (Ce), and AMF, Glomus 

intraradices, in a L. multiflorum system during phytoremediation of sand contaminated 

with benzo[a]pyrene (BaP) at 100 mg·kg-1. The effectiveness of bioaugmentation with 
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Ce, Sp, or Sp+Ce on phytoremediation and bioremediation of BaP was also determined. 

Microbial inoculation did not significantly enhance plant growth during 

phytoremediation of BaP, although Ce, AMF, and Ce+Sp+AMF significantly reduced 

total plant dry weight and the root-to-shoot ratio, compared to control plants. Microbial 

inoculation did not significantly enhance photosynthesis, stomatal conductance, 

chlorophyll, proline, nitrate reductase, total phenolics, antioxidant activity, and 

rhizosphere dehydrogenase activity. The inoculation of Ce+Sp did not adversely affect 

total root colonization and arbuscule formation of AMF. Single or combined microbial 

inoculation significantly enhanced BaP-degradation in the rhizosphere of L. multiflorum 

when compared to the control, but inoculation with Ce or Ce+Sp+AMF had the highest 

BaP-degradation. Bioaugmentation with Ce, Sp, and Ce+Sp enhanced bioremediation 

and phytoremediation of BaP; however, bioremediation was more efficient than 

phytoremediation. 

The fourth study (Chapter VI) evaluated phytoremediation of ACO utilizing a 

microbial mixture of Sp and Ce (SpCe), AMF, and their combination on plant growth, 

selected physiological responses, and TPH-degradation with L. multiflorum. Inoculated 

plants and a control were irrigated with LANS modified to supply 30 µg P mL-1, and an 

additional control with 44 µg P mL-1 was included. After 80 days, 6,000 mg ACO kg-1 

reduced plant growth, photosynthesis, stomatal conductance, transpiration, leaf phenolics, 

but increased water use efficiency, total chlorophyll, nitrate reductase, and proline. Plant 

growth and physiological responses were not significantly enhanced by 44 µg P mL-1 or 

bioaugmentation. ACO generally increased total bacteria and filamentous fungi, while 

bacteria able to grow on N-free medium decreased (except for an increase in AMF 
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plants). While total colonization and arbuscule formation were reduced by ACO-

contamination, there were no adverse effects of SpCe on AMF symbiosis. TPH-

degradation was significantly enhanced by 44 µg P mL-1 and the microbial inoculation. 

Highest TPH-degradation was observed with AMF+SpCe (60%), followed by control 

plants at 44 µg P mL-1 (34%). A beneficial synergism occurred among the 

hydrocarbonoclastic microorganisms and AMF in TPH-degradation during 

phytoremediation, which was also enhanced by the single inoculation of AMF and SpCe 

when compared to controls. 

 

Conclusions 

The present research demonstrated variations among grass species from the same 

botanical family in their tolerance to petroleum contaminated soil. Festuca arundinacea 

and particularly Lolium multiflorum, showed greater seed germination than Paspalum 

notatum, Cynodon dactylon, and Poa pratensis.  

Most importantly, the results of this research provided further evidence about the 

effects of AMF on improving the phytoremediation of petroleum hydrocarbons in soils 

when inoculated with Lolium multiflorum Lam. cv. Passarel Plus. 

In addition, the concentration of petroleum hydrocarbons in soil was determining 

factor of potemtial benefits of AMF on L. multiflorum. Low (3000 mg·kg-1) or high 

(15000 mg·kg-1) concentrations of Arabian medium crude oil (ACO) resulted in limited 

benefits of AMF, Glomus intraradices, on plant growth, physiology, and degradation of 

ACO in soil. However, when plants were exposed to an intermediate ACO concentration 

in soil (6000 mg·kg-1), AMF plants had enhanced growth, physiological responses and 
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greater ACO-degradation in comparison with Non-AMF plants. AMF symbiosis was 

observed at all concentrations of ACO-contaminated soil. 

This research is one of the first reports demonstrating the benefits of AMF on the 

degradation of benzo[a]pyrene or ACO in combination with hydrocarbonoclastic bacteria 

(Sphingomonas paucimobilis EPA-505) or filamentous fungi (Cunninghamella 

echinulata var. elegans ATCC-36112). Thus, AMF resulted in a beneficial synergism 

with the hydrocarbonoclastic microorganisms, particularly during ACO-degradation in 

the rhizosphere of L. multiflorum. 

Thus, further studies must be conducted to understand the effects of AMF on 

plants exposed to different concentrations of PH and to single or mixtures of specific 

petroleum fractions such as polycyclici aromatic hydrocarbons. In the same manner, the 

physiological responses of AMF, and their interaction with different hydrocarbonoclastic 

microorganisms during phytoremediation merits future research.  
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APPENDIX I 

 
 

Table AI-3.1. Seed germination of Lolium multiflorum and Festuca arundinacea exposed to 

several concentrations of Arabian medium crude oil (ACO) in a sandy soil, after 20 days 

(Chapter III). 

Germination (%) ACO-Treatment  

(mg·kg-1) Lolium multiflorum Festuca arundinacea 
 

Control 
 

92.0 az 
 

72.0 de 

CH2Cl2
y 95.0 a 86.0 abc 

150 97.0 a 87.0 ab 

300 98.0 a 74.0 cd 

1,000 97.0 a 72.0 de 

3,000 96.0 a 60.0 e 

5,000 90.0 a 67.0 de 

10,000 87.0 ab 42.0 f 

15,000 76.0 bcd 28.0 g 

30,000 31.0 fg 11.0 h 

45,000 32.0 fg 5.0 h 

60,000 13.0 h 3.0 h 

120,000 2.0 h 1.0 h 

       Significance:   

ACO 0.001 

Grass species 0.001 

ACO x Grass species 0.001 
  

ySolvent (Dichloromethane) applied to reduce the oil viscosity and allow ACO homogenization in 

the soil. 
zMeans followed by the same letter between columns are not significantly different (LSD, 

α=0.05); NS= Nonsignificant, n=5 with 5 petri dishes containing 20 seeds per petri dish. 
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Table AI-4.1. Modified Long Ashton Nutrient Solution Composition, full strength (1X). 

(Chapter IV). 

Stock Solution Amount of reagent 
to weight 

(g·L-1) 

Amount of stock to 
use to make 1 L 

(mL) 
 

KNO3 

MgSO4·7H2O 

Ca(NO3)2·4H2O 

NaH2PO4·H2O 

 

 

80.8 

73.6 

188.8 

36.8 

 

5.0 

5.0 

5.0 

        1.25 for 10.25 µg·mL-1 

        2.50 for 20.5 µg·mL-1 

         5.0 for 41 µg·mL-1 

Trace elements 

Citrate solution (Add just before fertilizing) 

1.0 

5.0 

Trace Element Stock Solution: 
• Make up to 1000 mL with distilled water 

MnSO4·H2O 

CuSO4·5H2O 

ZnSO4·7H2O 

H3BO3 

NaCl 

(NH4)6Mo7O24·4H2O 

1.69 

0.25 

0.29 

3.10 

5.90 

0.088 

 

Citrate Stock Solution: 
• Make up to 1000 mL with distilled dionized water 
• Stir for a few minutes and autoclaved for complete dissolution 
• Store in cooler or refrigerator 

 

Ferric citrate (FeC6H5O7) 

Citric acid (H3C6H5O7·H2O) 

4.9 

4.9 

 

Hewitt (1966). 
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Table AI-4.2.  Microbial population in the rhizosphere of non-mycorrhizal (Non-AMF) and 

mycorrhizal (AMF)-Lolium multiflorum treated with Long Ashton Nutrient Solution 

(LANS) in soil contaminated with Arabian medium crude oil (ACO), after 80 days. 

(Chapter IV). 

Microbial colony forming units (CFU)  
ACO 

 
(mg·kg-1) 

 
LANS 

strength  
(X) 

 
Mycorrhizal Total 

bacteria 
(CFUx106 g-1 soil) 

Bacteria growing 
at N-free medium 
(CFUx106 g-1 soil) 

Filamentous fungi 
 

(CFUx103 g-1 soil) 
 
0 

 
0.5 

 
No 

 
20.8 efgh y 

 
8.4 cd 

 
5.4 cde 

  Yes 20.4 efgh 5.8 ef 3.4 efg 
 1 No 15.7 efgh 7.4 de 5.6 cde 
  Yes 26.2 ef 9.9 bc 4.2 def 
 2 No 22.4 efg 11.5 ab 7.6 bc 
  Yes 20.0 efgh 12.7 a 5.2 cde 
      

3,000 0.5 No 27.4 ef 3.7 ghi 3.6 efg 
  Yes 32.6 e 4.0 ghi 2.4 fg 
 1 No 11.2 fgh 3.5 hi 2.0 fg 
  Yes 7.2 hg 2.9 ij 2.5 fg 
 2 No 10.2 fgh 3.2 ij 2.0 fg 
  Yes 12.8 fgh 5.2 fgh 3.6 efg 
      

15,000 0.5 No 114.4 c 10.5 b 9.0 ab 
  Yes 143.6 b 5.4 fg 6.4 cd 
 1 No 2.0 h 1.7 j 10.2 a 
  Yes 11.7 fgh 5.3 fgh 11.4 a 
 2 No 377.5 a 6.3 ef 1.7 g 
  Yes 51.4 d 6.3 ef 2.5 fg 
      

                    Significance    
LANS 0.01 0.01 0.01 
AMF 0.01 NS NS 
ACO 0.01 0.01 0.01 

LANS x AMF 0.01 0.01 NS 
LANS x ACO 0.01 0.01 0.01 
AMF x ACO 0.01 NS NS 

LANS x AMF x ACO 0.01 0.01 0.01 
yMeans followed by same letter in the same column are not significantly different (LSD, α=0.05); 

NS=Nonsignificant, n=5. (see Appendix I, Table AI-4.2 for data analyzed as logarithms). 
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Table AI-6.1. Effect of rhizosphere management (RM) and Arabian medium crude oil (ACO) on 

colony forming units of total bacterial, filamentous fungi, and nitrogen-fixing free bacteria 

population (bacteria able to grow on N-free medium), in the rhizosphere of Lolium multiflorum 

cv. Passerel Plus, after 80 days. (Chapter VI). 

Rhizosphere 
management 

(RM) 

ACO 
 

(mg·kg-1) 

Total bacteria 
 

(CFU x 106 g-1 soil) 

Filamentous fungi 
 

(CFU x 104 g-1 soil) 

Bacteria growing at N-
free medium  

(CFU x 104 g-1 soil) 
 

Control 44 P 
 

0 
 

6.0 gf w 
 

0.4 f 
 

79.7 b 
Control x  7.4 ef 0.6 ef 12.0 f 
AMF xy  5.2 g 2.9 c 76.3 bc 
SpCe xz  7.7 e 0.4 f 58.3 d 
AMF + SpCe x 
 

 6.5 efg 1.2 e 93.7 a 

Control 44 P 6,000 12.3 d 0.1 f 65.0 cd 
Control  34.0 a 2.0 d 15.7 f 
AMF  28.9 b 1.3 de 98.0 a 
SpCe  17.2 c 22.3 a 32.7 e 
AMF + SpCe  28.7 b 26.8 a 51.7 d 

     

Significance:    
ACO 0.001 0.001 0.001 

RM 0.001 0.001 0.001 
ACO x RM 0.001 0.001 0.001 

    
wMeans in the same column followed by the same letter are not significantly different (LSD, α= 0.05).  

n=5. xTreatments fertilized with Long Ashton Nutrient Solution (LANS), modified to supply 30 µg P mL-1; 
yAMF= Glomus intraradices; zSpCe= Sphingomonas paucimobilis and Cunninghamella echinulata var. 

elegans. 
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Fig. AI-4.1. Growth responses of Lolium multiflorum Lam. cv. Passerel Plus inoculated 

with Glomus intraradices (AMF) or not (C), and treated with three levels of 

Long Ashton Nutrient Solution (LANS) in soil contaminated with three levels 

of Arabian medium crude oil (ACO), after 80 days (Chapter IV).  

LANS 1X

LANS 2X

LANS 0.5X

AMF AMF AMF C C C 
15,000      mg ACO kg-10 3,000
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Fig. AI-5.1. Growth responses of Lolium multiflorum Lam. cv. Passerel Plus inoculated 

with Cunninghamella echinulata var. elegans ATCC-36112 (Ce), 

Sphingomonas paucimobilis EPA-505 (Sp), Glomus intraradices (AMF), and 

their combination, in sand contaminated with benzo[a]pyrene (100 mg·kg-1), 

after 60 days (Chapter V). 
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Fig. AI-5.2. In vitro evaluation of the antiobiosis of Sphingomonas paucimobilis to 

Cunninghamella echinulata var. elegans Note the overgrowth of Sphingomonas 

by Cunninghamella in the center Petri plate demonstrating lack of antagonism of 

the fungus by the bacterium. (Chapter V). 

 

 

 

 

 

 

 

 

 

 

 

 

PDA-culture medium, growth after 10 days 

Sphinghomonas paucimobilis 
(Sp) EPA505 
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var. elegans (Ce) ATCC-

36112 

Sp 

Ce 
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Fig. AI-6.1. Growth responses of Lolium multiflorum Lam. cv. Passerel Plus biaugmented 

with a microbial mixture constituted by Cunninghamella echinulata var. 

elegans ATCC-36112 (Ce) and Sphingomonas paucimobilis EPA-505 (Sp), 

and Glomus intraradices (AMF), and biostimulated with phosphorus supplied 

in Long Ashton Nutrient Solution (LANS), in soil contaminated with Arabian 

medium crude oil (ACO) (6000 mg·kg-1), after 80 days (Chapter VI). 

 

 

 

LANS 44 µg P mL-1 LANS 30 µg P mL-1 

SpCe SpCe + AMF AMF Control Control-44P 

Without ACO 

With ACO (6,000 mg kg-1) 
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