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ABSTRACT

Code Design for Multiple-Input Multiple-Output

Broadcast Channels. (August 2006)

Momin Ayub Uppal, B.S, GIK Institute of Engineering Sciences and Technology

Chair of Advisory Committee: Dr. Zixiang Xiong

Recent information theoretical results indicate that dirty-paper coding (DPC)

achieves the entire capacity region of the Gaussian multiple-input multiple-output

(MIMO) broadcast channel (BC). This thesis presents practical code designs for

Gaussian BCs based on DPC. To simplify our designs, we assume constraints on

the individual rates for each user instead of the customary constraint on transmit-

ter power. The objective therefore is to minimize the transmitter power such that

the practical decoders of all users are able to operate at the given rate constraints.

The enabling element of our code designs is a practical DPC scheme based on nested

turbo codes. We start with Cover’s simplest two-user Gaussian BC as a toy exam-

ple and present a code design that operates 1.44 dB away from the capacity region

boundary at the transmission rate of 1 bit per sample per dimension for each user.

Then we consider the case of the multiple-input multiple-output BC and develop a

practical limit-approaching code design under the assumption that the channel state

information is available perfectly at the receivers as well as at the transmitter. The

optimal precoding strategy in this case can be derived by invoking duality between

the MIMO BC and MIMO multiple access channel (MAC). However, this approach

requires transformation of the optimal MAC covariances to their corresponding coun-

terparts in the BC domain. To avoid these computationally complex transformations,

we derive a closed-form expression for the optimal precoding matrix for the two-user

case and use it to determine the optimal precoding strategy. For more than two users
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we propose a low-complexity suboptimal strategy, which, for three transmit antennas

at the base station and three users (each with a single receive antenna), performs

only 0.2 dB worse than the optimal scheme.

Our obtained results are only 1.5 dB away from the capacity limit. Moreover

simulations indicate that our practical DPC based scheme significantly outperforms

the prevalent suboptimal strategies such as time division multiplexing and zero forcing

beamforming. The drawback of DPC based designs is the requirement of channel state

information at the transmitter. However, if the channel state information can be

communicated back to the transmitter effectively, DPC does indeed have a promising

future in code designs for MIMO BCs.
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CHAPTER I

INTRODUCTION

Since the formulation of Shannon’s classical point to point information theory, sev-

eral practical schemes have been developed which achieve the performance promised

by theory. This is not true however for the case of multi-terminal communication

networks, where there exists no unified network information theory. The partially

developed theory in this case promises performance gains over the conventional point

to point scenario, at the cost of increased complexity. An interesting case of a multi-

terminal communication network is the broadcast channel (BC), also sometimes re-

ferred to as the downlink channel, where a single transmitter (base station) transmits

messages to many users. Whereas one can argue that a great deal of progress has

been made recently on the underlying information theory of a BC, the same cannot

be said about practical coding strategies. Thus this thesis makes contributions to

this area by developing practical coding schemes for multiple-input multiple-output

(MIMO) BCs.

A. Degraded Gaussian BC

The simplest setup for a Gaussian BC is where the transmitter is equipped with only

one transmit antenna. If the users receive their signals at different signal-to-noise

ratios (SNRs), the channel is known as a degraded Gaussian BC. This can be true in

many practical situations, e.g., users farther away from the base station will receive

a weaker signal than the ones near it. Such a degraded Gaussian BC with two users

was considered by Cover [1] in 1972, for which he provided an achievable rate region.

The journal model is IEEE Transactions on Automatic Control.
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Cover’s scheme was based on the principle of superposition coding where the message

for one user is embedded in that for the other. Bergman [2] showed that Cover’s rate

region is in fact the capacity by proving the converse.

B. Non-Degraded MIMO BC

It is well known that the presence of multiple transmit/receive antennas provides

gains in both diversity and multiplexing. Hence, a BC where both the base station

and the users can have multiple antennas is of great practical interest. Unfortunately,

the channels in this setup might not necessarily be degraded, and therefore Cover’s

superposition scheme is no longer capacity achieving. In fact, the capacity region for

such a MIMO BC had been an open problem until only very recently. A rate region

for the MIMO Gaussian BC was found in [3] and was shown to achieve the sum-rate

capacity [3]–[6]. The same region was later shown to characterize the whole capacity

region in [7].

C. Dirty-Paper Coding and BCs

The core of the capacity-achieving scheme [3] for a Gaussian MIMO BC is a non-linear

precoding technique which involves channel coding with encoder side information,

called dirty-paper coding (DPC) [8]. According to the somewhat surprising result

of [8], in a Gaussian interference channel, if the interfering signal is known non-

causally at the transmitter, there is no loss in capacity due to the interference. This

scenario is typical in the Gaussian BC, where the signal received at each user includes

interference from signals meant for other users, but which are available non-causally

at the transmitter – thus one can employ DPC at the base station to mitigate their

effect.
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DPC is the only optimal, i.e., capacity-achieving technique for the non-degraded

Gaussian MIMO BC. Moreover, besides superposition coding, DPC can also be shown

to achieve the capacity of a degraded Gaussian BC. However, it has not found wide-

spread use in code designs for practical applications – perhaps because its complexity

might be too high for applications that require encoding and decoding in real time.

So far mostly suboptimal techniques e.g. time division multiple-access (TDMA) and

beamforming have found their way into the existing practical designs for the MIMO

BC. Recent theoretical comparisons of achievable rate regions [3, 9] indicate significant

coding gains of DPC over TDMA and beamforming strategies for the MIMO fading

BC in many setups, especially when the SNR is high and the number of transmit

antennas large. Practical DPC involves both source and channel coding [10] and

near-capacity code designs have appeared recently [11]–[14]. Thus the motivation to

develop practical DPC-based designs for the MIMO fading BC and compare their

performance and complexity with others based on suboptimal strategies. We point

out that our scheme is the first practical DPC-based limit approaching design1.

D. Summary of Our Work

In this thesis 2, we start with Cover’s simplest, yet most celebrated, two-user degraded

Gaussian BC [1], and develop a DPC-based design using advanced nested turbo codes

[11]. Due to efficient code nesting and high turbo coding gain, our design is superior

to previously reported DPC-based schemes of [16, 17] and comes within only 1.44

1We note that besides our design, the scheme of [15] involving Tomlinson-
Harashima precoding (THP) is the only practical DPC-based design for the MIMO
BC. However, since THP is a scalar scheme which does not have any channel coding,
it incurs a large practical coding loss

2Preliminary results of this work appeared in [18]. Some parts of this thesis have
been taken from the journal version submitted for publication [19].
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dB of the capacity region boundary at the transmission rate of 1.0 bit per sample

per dimension (b/s) for each user. Note that, in this simple setup, besides DPC,

superposition coding [1] also achieves the capacity. A practical coding scheme that

exploits superposition coding reported in [20] performs only 1 dB from the capacity at

1 b/s. However, the advantage of DPC is that it guarantees the privacy of users, since

it ensures that the stronger user (the one with the better channel) decodes its message

without knowing the codebook of the weaker user (the one with the worse channel).

This is in contrast to the superposition coding scheme [1, 20], where the only way

the stronger user can decode its message is by decoding the message intended for the

weaker user first.

Another problem of the superposition coding scheme of [20] is that it is not

clear how it can be extended to handle MIMO fading BC, where the channels are

not necessarily degraded. On the other hand, since in contrast to superposition,

DPC achieves the capacity of both degraded and non-degraded BCs, our DPC-based

design for Cover’s setup naturally applies to the MIMO BC. Thus, we continue with

the MIMO Rayleigh slow flat-fading BC and develop practical capacity-approaching

DPC-based designs for the cases where the total number of transmit antennas and the

total number of users are either two or three. We assume that both the transmitter

and the receivers have non-causal knowledge of the channel state information. 3

Most of the information-theoretical works [3]–[6] have focused on maximizing the

sum-rate, i.e., the sum of the transmission rates for different users under a fixed total

transmission power constraint, which is equivalent to minimizing the total transmis-

sion power for a fixed sum-rate constraint. This implies all possible combinations of

different transmission rates at different users (as long as the sum-rate is fixed). In

3This is the only scenario where the capacity region is fully known.
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practice, however, to simplify the implementation of our DPC-based design, we limit

the rate of the employed code at each user to a few (e.g., integer) choices. Thus, our

design objective is to minimize the total transmission power under fixed individual

transmission rate constraints (with the sum-rate constraint being implicit). Because

we cannot optimally allocate transmission rates to different users, we incur a small

loss in the minimum total transmission power when compared to the case with only

the sum-rate constraint.

To determine a precoding scheme at the transmitter that minimizes the total

power, the duality [4, 5, 21] between the BC and the multiple access channel (MAC)

can be invoked. However, such a duality-based approach is computationally expen-

sive. To reduce the complexity, we directly compute the optimal precoding matrix

and give a closed-form expression for the two-user case. For more than two users, we

were not able to find a closed-form expression for the optimal precoding matrix; we

thus propose a suboptimal strategy, which avoids the complex BC-to-MAC transfor-

mation needed in the duality-based approach. Our suboptimal design is of the same

order of complexity as that of the two suboptimal strategies proposed in [3], namely,

zero-forcing DPC and zero-forcing linear beamforming, yet it outperforms the latter

two by a significant margin.

Our simulations indicate that for both the two and three-user cases, our practical

DPC-based designs perform only 1.5 dB worse than the theoretical limits computed

from our precoding schemes. Although the focus of this thesis has been on code

design for two or three users, we point out that our DPC-based design philosophy

extends to the case with many more users and that the practical performance loss in

terms of the total transmission power will stay at the same 1.5 dB regardless of the

number of users.
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E. Notation

Notation-wise, all logarithms are of base two unless otherwise stated; vectors and

matrices are represented by boldface small and capital letters, respectively; Ik is the

k×k identity matrix; | · | denotes magnitude of a complex number and || · || represents

norm of a vector; (·)H means Hermitian and (·)∗ denotes conjugation, and tr(·) trace

of a matrix.

F. Thesis Organization

Our objective is to develop code designs for MIMO Gaussian BCs using DPC. There-

fore, we will present the basics of channel coding with side information (CCSI) in

Chapter II, where we will describe DPC as a subclass of CCSI. Although we provide

basic theoretical aspects of CCSI in this chapter, our emphasis will be to examine

approaches to developing practical DPC schemes. It is in this chapter that we will

present the practical DPC scheme which we will use later in our code designs.

Chapter III will then provide background on Gaussian BCs, along with the chan-

nel capacities and more importantly the role played by DPC in achieving the capac-

ities. We will also introduce the duality of MIMO BCs with MIMO multiple access

channels, since it serves as a helpful tool in the code designs which will be presented

in Chapter IV. Before presenting the overall coding scheme, Chapter IV will discuss

various approaches to evaluating the precoding matrix at the transmitter such that

the individual rate constraints at the users are satisfied. Simulation results will be

given at the end of Chapter IV. Finally conclusions and areas of possible future

research will be presented in Chapter V.
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CHAPTER II

CHANNEL CODING WITH SIDE INFORMATION

Channel coding with side information (CCSI) is just one of the problems faced in

multi-terminal communication networks. CCSI refers to the problem of communicat-

ing over a noisy channel with some knowledge of the channel state available as side

information at the encoder, but not at the decoder. Gelfand and Pinsker [22] obtained

the capacity for the problem involving a discrete memoryless channel in 1980. Three

years later Costa [8] used Gelfand’s and Pinsker’s result to formulate the theory for

the special case of Gaussian channel. Costa’s work, also referred to as “writing on

dirty paper” 1 , did not address the relevance of its results to communication networks

and hence did not draw much attention at first. However, we now know that besides

broadcast, several situations in communication networks can be modelled as a CCSI

problem e.g. ISI channels, cross talk interference pre-subtraction in vectored digital

subscriber line, and cooperative networks to name a few. Moreover it finds widely

celebrated applications in covert operations such as data hiding and watermarking.

Since we want to design practical schemes for a Gaussian broadcast channel

(BC), we will mostly discuss dirty-paper coding (DPC) as a special case of CCSI. The

objective of this chapter is to review both theoretical and practical aspects of DPC,

with greater emphasis on discussing practical approaches to solving the problem.

The organization of this chapter is as follows. In Section A we will introduce the

Gelfand-Pinsker coding problem and discuss how it applies to the special case of

Costa coding. Section B discusses practical approaches to solving the DPC problem,

which will highlight the importance of source coding in the apparent channel coding

1We will use the terms “Costa Coding” and “Dirty-paper Coding” interchangeably
throughout this chapter.
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problem of DPC. Section C will present an information theoretic perspective to the

requirement of a source code in DPC. We will finally present a few sophisticated

practical DPC schemes in Section D.

A. Gelfand-Pinkser Coding and Costa Coding

Gelfand and Pinsker [22] considered the case of CCSI in a discrete memorlyless chan-

nel. The channel model is shown in Fig. 1.

S  

Encoder Channel
p(y|x,s)

 
 

Decoder 
X  Y   

^

ww

Fig. 1. Gelfand-Pinsker Channel

The input to the channel is denoted by X, the output by Y , and the side infor-

mation by S which is known non-causally at the encoder but not at the decoder. The

encoder is to transmit message w over a discrete memoryless channel characterized

by the transition probability p(y|x, s). [22] showed that the capacity of this channel

is given by

C = max
p(v,x|s)

(I(V ; Y ) − I(V ; S)), (2.1)

where V is an auxiliary random variable. The proof of Gelfand-Pinsker capacity is

based on random coding and binning. For the general CCSI, Gelfand-Pinsker coding

suffers a loss compared to the situation when the side information is available at both

the encoder and the decoder.



9

Costa [8] used the general formula in (2.1) to prove the capacity of a Gaussian

channel, where the signal is corrupted by an additive Gaussian noise as well as

Gaussian interference. Costa’s channel is shown in Fig. 2. Costa drew an anal-

ogy of this channel to the problem of writing on a sheet of paper covered with dirt,

where the writer knows the location and intensity of the dirt particles but the reader

does not. Thus the whimsical title of “dirty-paper coding”.

 

 

Channel
 

 

Encoder

 

 
 

+  +

 

 
^

w

Z

YX

S

w
Decoder

Fig. 2. Costa channel

The transmitter wishes to send the message such that a power constraint E[|X|2] ≤

Pt is satisfied. The output of the channel is given by Y = X + S + Z, where the

interference S ∼ N (0, PQ) is known non-causally at the transmitter but not at the

receiver, and Z ∼ N (0, PZ) is the additive noise. If the auxiliary random variable is

chosen as V = X + αS, with α = Pt

Pt+N
, Costa proved the surprising result that the

capacity of the channel in Fig. 2 is the same as if the interfering signal S were not

present at all. This capacity is given by

C =
1

2
log

(
1 +

Pt

PZ

)
. (2.2)

Costa’s proof is once again based on random coding and binning arguments. Although

Costa proved this result for a Gaussian interference, it was later generalized for any

arbitrary distribution on S in [23].
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B. Approaches to Practical Dirty-Paper Coding

Since Costa’s proof is based on random coding and binning, its practical implemen-

tation is not possible. However, it does provide a very visible clue of “binning”.

Not surprisingly, many recent works on practical schemes for DPC have utilized the

concept of structured binning.

In this section we will introduce Tomlinson-Harashima precoding (THP) which

can be seen as a one dimensional implementation of DPC. We will then draw parallels

between THP and scalar quantizers, and thus show the need of a source code in solving

the DPC problem. Finally, we will introduce a structured binning strategy based on

nested lattices [10].

1. Tomlinson-Harashima Precoding

THP [24, 25] shown in Fig. 3 was originally designed to counter the interference

in ISI channels. Consider a message codeword U to be transmitter over a channel

characterized by an additive interference S and an additive noise Z, with powers PQ

and PZ , respectively. The interference S is available non-causally to the encoder but

not to the decoder. One can immediately see the equivalence of this problem to DPC

if the noise Z were Gaussian. At first glance one would consider pre-subtracting the

side information from the transmitted signal in order to cancel the interference, i.e.,

transmitting Xs = U −S. Indeed, the received signal will now be Y s = Xs +S +Z =

U + Z, and hence interference free. A closer look at this approach however reveals

that this pre-subtraction would have to pay a severe power penalty. Assuming that

U and S are independent, the transmitter power will be E[|Xs|2] = E[|U |2]+E[|S|2].

Since the side information can have an arbitrarily high power, E[|Xs|2] can be much

higher than E[|U |2], which will result in a severely reduced transmission rate than
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(2.2). In order to avoid this power penalty, THP uses modulo arithmetic in order to

constrain the transmitted signal to a finite interval.

Channel

mod ∆ + +

^

U

Z

YX

S

+

Encoder

mod ∆
U

Decoder

Fig. 3. Tomlinson-Harashima precoding

Let the codeword to be transmitted U be constrained to a finite interval of length

∆, i.e., U ∈ [0, ∆]. The signal transmitted to the channel is X = (U − S) mod ∆.

Because of the mod operation, X is now limited to the same finite interval as U and

hence it does not suffer the power penalty which a simple pre-subtraction would. At

the decoder, a same mod operation is performed to get an estimate of U . In the

absence of noise, THP guarantees that U is recovered without error at the decoder.

This can be shown as follows. The recovered codeword Û is given by

Û = Y mod ∆

= (X + S) mod ∆

= ((U − S) mod ∆ + S) mod ∆

= (U − S + S) mod ∆

= U mod ∆

(a)
= U,

where (a) follows from the fact that U ∈ [0, ∆].
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2. THP with Scalar Quantizers

The encoding process in THP reduces the signal U ′ = U − S to one of the equivalent

representatives of the symbol given as n∆, where n = ⌊U ′

∆
⌋. The difference X =

U ′ − n∆ is then transmitted to the channel. One can draw parallels between the

output of the mod operation in THP and the quantization error in a scalar quantizer.

Consider a scalar uniform quanitzer whose quantization points are given by n∆ with

n ∈ Z. If U is distributed on the interval [0, ∆), then the mod operation in THP is

related to the quantizer by

U ′ mod ∆ = U ′ − Q(U ′ − ∆

2
), (2.3)

where Q(·) represents uniform quantization. It can be shown that the mod operations

in THP can be replaced by the scalar quantizer by making sure that the input signal is

distributed on the interval [−∆
2
, ∆

2
) instead of on [0, ∆). Fig. 4 shows equivalent THP

with scalar quantizers. When the interference power PS is large, the quantization

error X is approximately uniformly distributed on the interval [−∆
2
, ∆

2
) and hence

the power of the transmitted signal is independent of PS and is approximately given

by ∆2

12
.
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Fig. 4. Tomlinson-Harashima precoding with scalar quantizers
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3. Generalization of THP to Vector Quantizers

As pointed out in [23, 26] THP suffers a signigicant loss from Shannon’s capacity

limit, especially at low signal to noise ratios (SNRs). The main drawback of THP is

that it only uses the current value of the side information S and does not consider

the future values. The mod operation is performed on a symbol by symbol basis re-

sulting in an output which is uniformly distributed on [−∆
2
, ∆

2
). This is equivalent to

performing a mod operation over a high dimensional cuboid, which suffers a shaping

loss. An optimal quantizer however should be equivalent to performing a mod opera-

tion over a high dimensional sphere, resulting in Gaussian quantization error in each

dimension. Thus instead of using the side information on a symbol by symbol basis,

one needs to consider an entire sequence. The solution to recovering the shaping

loss therefore lies in performing a high dimensional mod operation, or equivalently in

vector quantization.

4. Binning Based on Nested Lattices

So far, we have only discussed the source coding (quantization) portion of the DPC

problem, which is essential to satisfy the power constraint. We found that one can

accurately retrieve the coded message in the absence of noise. However, in practice

one needs to add error protection to the transmission in order to combat the chan-

nel’s additive Gaussian noise. This therefore introduces an additional channel coding

aspect to the problem. The question here is: How do we view the joint source and

channel code design under a similar framework? Zamir et al [10] proposed a practical

binning scheme based on nested codes. Hence the solution to the Gelfand-Pinsker

problem lies in nested parity check codes, and in nested lattice codes for the Costa

coding problem.
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Fig. 5. Binning scheme using a 1-D nested lattice (a) Nested lattice (b) Encoding (c)

Decoding

A nested lattice code comprises of a coarse lattice code nested inside a fine channel

code, i.e., every codeword of the coarse lattice code is also a codeword of the fine

lattice code but every codeword of the fine lattice is not a codeword of the coarse

lattice. According to [10], for a good dirty-paper code design, the fine code should be

a good channel code whereas the coarse code should be a good source code. Hence

the source code is nested within the channel code. The concept of binning can be

derived from this nesting approach. The group of channel codewords nested within a

single source codeword are said to belong to the same bin, where the bin is indexed

by that particular source codeword.

Let us illustrate how binning based on nesting works by considering a one dimen-
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sional nested lattice as an example. Note that we select a one dimensional lattice for

illustrative purposes only – in practice a high dimensional lattice should be used in

order to achieve good performance. Fig. 5 demonstrates a binning strategy based on

a 1-D nested integer lattice. The points on the lattice indexed by a 0 correspond to

the channel codewords in the basic coset. Similarly the points indexed by the other

numbers correspond to the other cosets. The message to be transmitted (which in

this case will be a two bit message) selects one of these cosets. In this example, coset

2 is indexed by the message. The message is first scaled by a factor α (the necessity

of this scaling comes from Costa’s original proof in [8]). This scaled side information

is then quantized to the nearest codeword in the coset 2 and the quantization error

is sent to the channel. At the decoder the nearest codeword to the scaled received

signal is found to get an estimate of the transmitted signal. The decoded message

therefore is the index of this estimate. THP with scalar quantizers can be viewed as

a binning scheme based on nested lattices. The input U in Fig. 4 can be thought of

as a channel codeword selected by the message. Quantizing the difference U − αS

to an infinite integer lattice n∆ is the same as quantizing αS to a lattice where the

channel codeword U has been infinitely replicated.

As mentioned earlier, the lattice codes in practice should be of higher dimensions,

as opposed to the 1-D lattice we used for the illustration. However we point out

that nested lattice codes require a joint source-channel code design with the same

dimensional source and channel lattice code, which becomes difficult to implement at

higher dimensions. Let Λc denote the L dimensional channel/fine lattice code which is

nested within the source/coarse lattice code Λs, and let Λw be the coset code indexed

by a length L message sequence wL. Then a general block diagram of a DPC scheme

is presented in Fig. 6.
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Fig. 6. A DPC scheme based on nested lattices (a) Encoder (b) Decoder

C. Information Theoretic Perspective

An information theoretic framework for studying the Costa coding problem was pre-

sented in [23]. Costa coding is inherently a channel coding problem. According to

[27], there are packing and shaping gain in channel coding. The shaping gain has to

do with the shape of the Voronoi region of the lattice, which ideally has to be a sphere.

The packing gain has to do with the way the code regions are packed against each

other. Costa coding problem as explained earlier can be split into a source coding

and channel coding component. The source coding becomes necessary to satisfy the

power constraint and is hence required to reduce the scaled side information modulo
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the Voronoi region. The constellation therefore needs to be replicated infinitely so

that one can quantize the side information to satisfy the power constraint. This source

coding therefore is not conventional in the sense that it only has the granular gain

and no boundary gain. One can easily draw equivalence between the granular gain in

source coding and the shaping gain in channel coding. Hence in channel coding with

side information problem, the shaping gain is achieved through source coding and

the packing gain through channel coding. In order to get close to the Costa capacity

limit, the source coder should be designed such that its Voronoi region is almost a

spherical region in high dimensional Euclidean space (such as trellis coded quantiza-

tion). Similarly the channel code should also be near capacity (such as Turbo codes

or LDPC). Erez et al [12] proved that the capacity limit for a dirty paper channel

with its source coder having a shaping gain of gs(Λ) is given by

C∗ =
1

2
log

(
1 +

Pt

PZ

)
− 1

2
log (2πeG(Λ)) , (2.4)

where G(Λ) is the normalized second moment of the quantizer lattice Λ. G(Λ) is upper

bounded by 1
12

for a uniform quantizer whose Voronoi region is a high dimensional

cuboid, and asymptotically approaches 1
2πe

with the dimensionality of Λ going to

infinity for a quantizer lattice whose Voronoi region is a high dimensional sphere [28].

We can see that with a lattice that achieves the lowest normalized second moment

(ideal quantizer), the capacity limit of the nested lattice DPC scheme is equivalent

to Costa’s capacity in (2.2). This necessitates the use of a strong source code, along

with a capacity achieving channel code in order to get close to Costa’s capacity limit.
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D. Practical DPC Schemes

A practical nested lattice coding scheme was presented in [29], which uses trellis coded

quantization TCQ as the source code and turbo trellis coded modulation (TTCM) as

the channel code. An improved design involving nested turbo codes was described in

[11], which uses a stronger source code referred to as Turbo TCQ (TTCQ)2 nested

within a channel code based on TTCM. At a transmission rate of 1.0 bit per sample

per dimension (b/s), the DPC design of [11] outperforms the one in [29] by 0.54 dB.

Hence we will utilize the scheme of [11] which we refer to as TTCQ/TTCM for our

BC code design. However, before describing the nested lattice coding scheme based

on TTCQ/TTCM, we will first introduce the TCQ/TTCM scheme of [29].

1. The TCQ/TTCM Scheme [29]

The TCQ/TTCM scheme of [29, 30] is shown in Fig. 7. The trellis structure is

constructed via a rate-k/n/m concatenated code (denoted by C1+C2, with C1 being

a non-systematic rate-k/n convolutional code characterized by trellis Γ1 and C2 being

a systematic rate-n/m convolutional code characterized by trellis Γ2). The message

to be transmitted w is input to an inverse syndrome mapper H−1, where H is the

parity check matrix for code C1. We point out that the inverse syndrome mapper

H−1 is in fact the pseudo-inverse of the parity check matrix H. The output of this

inverse syndrome mapper is used to shift the codewords of C1 by a fixed amount and

select a source code for quantization. In other words, w selects the coset to be used

for quantization. The channel code is a punctured TTCM [32] which consists of a

parallel concatenated code with convolutional code C2 in both parallel branches. C2

2TTCQ was shown to underperform TCQ in [31] as the number of encoding iter-
ations increases. The quantization in [11] is different from that of [31] in the sense
that it uses only one iteration. Despite this difference we still call it TTCQ.
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in the bottom branch is preceded by an n-bit symbol interleaver and followed by an

m-bit symbol deinterleaver. The two branches are multiplexed by taking half of the

samples from the top branch, and the other half from the bottom (hence a punctured

TTCM). The times indices at which the final output sequence is taken from the top

branch is referred to as the even indices, whereas the ones at which it is taken from

the bottom branch are referred to as odd indices.

C�
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S
�

α

U
�

Source Code

Channel Code

Π 1−Π

+
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w
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Fig. 7. Nested turbo construction with TCQ as the source code and punctured TTCM

as the channel code.

The objective of the encoder is to quantize the side information sequence α~S =

α[S(0), . . . , S(L − 1)] using the coset selected by the message sequence ~w, where L

is the sequence length (or trellis size) and S(t) is the t-th value of the sequence.

Let ~I1 and ~I2 be the n-bit output sequence of C1, and the n-bit input sequence

of C2, respectively. If instead of the parallel concatenated turbo structure, we had

a simple convolutional code C2 as the channel code, the best way to perform this
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quantization would have been to use Viterbi algorithm on the trellis Γ12(~w)3 of the

serially concatenated code C1+C2 such that the mean squared quantization error

(MSQE) was minimized. However, using the Viterbi algorithm to minimize the MSQE

for the current turbo setup is no longer a practical option, since presence of the

interleaver greatly increases the number of paths that need to be searched. Therefore

[29] proposes a suboptimal solution which involves first ignoring the bottom path and

using the trellis Γ12(~w) of the serially concatenated code C1+C2 to minimize MSQE.

The sequence ~I2 thus determined is input to the bottom branch. The output sequence

of the top branch is the one which minimizes MSQE. However, the output of the

bottom branch is randomly different from the top branch because of the interleaver.

Since the final output takes half of the samples from the top branch, and half from

the bottom, the resulting sequence will result in a higher distortion than if only the

sequence from the top branch were used. Consequently, the performance of the source

code suffers.

The decoder uses BCJR to decode the received signal to the closest to the code-

word, and the n-bit input sequence of C2, ~̂I2 is recovered. Since ~I2 = ~I1 + ~wH−1,

the message sequence can be recovered by calculating the syndrome of the recovered

sequence ~̂I2. If ~̂I2 is decoded without any errors, then the recovered message ŵ(t) at

time t is given by

ŵ(t) = I2(t)H = (I1(t) + w(t)H−1)H

= I1(t)H + w(t)H−1H

(b)
= w

where (b) follows from the fact that I1(t)H = 0. Hence the original message can be

3This indicates that the trellis Γ is not only a function of the two constituent
trellises but also of the message sequence ~w
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recovered perfectly.

One can immediately see a venue for improving on this TCQ/TTCM design

by employing a stronger source code. Sun et al. [11] view the performance loss

of the source code as a consequence of the mismatch between dimensionalities of

the equivalent lattice source and channel codes. The presence of the interleaver

increases the dimensionality (and hence performance) of the equivalent lattice channel

code. However, this results in a dimensional mismatch between the high dimensional

channel code and the relatively lower dimensional source lattice code. The work in

[11] improves upon the design of [29, 30] by attempting to reduce this dimensional

mismatch.

2. The TTCQ/TTCM Scheme [11]

In order to reduce the dimensional mismatch mentioned above, Sun et al. [11] propose

a stronger source code. The construction in [11] follows the same principles as the

one in Fig. 7 except that the calculation of ~I1 is realized via a single iteration of

TTCQ [31]. A block diagram of the quantization procedure is shown in Fig. 8, a brief

description of which follows.

Before calculating the sequence ~I1, its soft version ~IS1 is evaluated using a soft-

output Viterbi algorithm (SOVA) [33]. Let ~Id
1 be a dummy sequence over which

the search operation will be performed. Corresponding to this dummy sequence is a

dummy codeword sequence ~Ud = [Ud(0), . . . , Ud(L − 1)] which is generated by the

turbo encoder of the right portion of Fig. 7 with the sequence ~Id
1 + ~w as the input. Let

C = {0, 1, . . . , 2n − 1} be the set of all possible n-tuples. Then the soft value IS1(t, c)

for a fixed time t and a fixed n-bit symbol c is given by the minimum total quantization

error over all possible input sequences ~Id
1 ∈ CL, provided that all such sequences at

time t are equal to c, i.e., Id
1 (t) = c. This soft value is given mathematically as
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Fig. 8. Turbo-Trellis coded quantization for the Costa problem.

IS1(t, c) = min

~Id
1 ∈ CL;

Id
1 (t) = c ∈ C

L−1∑

l=0

{ ∣∣Ud(l) − αS(l)
∣∣2
}

, (2.5)

where ~S = [S(0), . . . , S(L− 1)] is the length-L sequence of side information. The soft

values need to be calculated for all t = 0, 1, . . . , L − 1 and all c ∈ C. Therefore, ~IS1

can be written in matrix form as

~IS1 =





IS1(0, 0) · · · IS1(L − 1, 0)

...
. . .

...

IS1(0, 2
n − 1) · · · IS1(L − 1, 2n − 1)




. (2.6)

Once the soft values have been calculated, the sequence ~I1 can be found by per-

forming a hard thresholding operation on ~IS1, i.e., I1(t) = arg minc∈C={0,1,...,2n−1} IS1(t, c).

Let us now see how the soft values are calculated.

The calculation of ~IS1 is based on two parallel trellises as shown in Fig. 8. The
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trellis of the top branch, Γ12(~w) is constructed by the serial concatenation of codes

C1 and C2. The argument ~w indicates that this trellis is a function of the message

sequence (Recall that the message sequence should select the coset for quantization).

The trellis of the bottom branch is constructed by the trellis Γ2 of code C2. Because of

the even odd multiplexing of the TTCM encoder of Fig. 7, the branch metrics in trellis

Γ12 is set to the quantization error for even indices only, i.e., ρe(t) =
∣∣Ud(t) − αS(t)

∣∣2

with t taken from the set of even indices. The metrics at odd indices are provided by

trellis Γ2 as a priori information. Similar to the idea of the initialization step in TTCM

decoding, for a systematic C2, the a priori information at time t, denoted by Ao(t, c) as

the minimum distortion corresponding to the bits Id
1 (t) = c and all possible parity bits

B(t) ∈ B = {0, 1, . . . , 2m−n−1}, i.e., Ao(t, c) = minId
1
(t)=c;B(t)∈B |Ud(Π(t))−αS(Π(t))|2

with t taken from the set of odd time indices, and where Π(t) denotes the same

symbol interleaver as used in the TTCM encoder. This a priori information is then

deinterleaved and fed into the top trellis code. If ρe(t) = 0 for odd t, and Ao(t, c) = 0

for even t, then the computation in (2.5) can be modified to

IS1(t, c) = min

~Id
1 ∈ CL;

Id
1 (t) = c ∈ C

L−1∑

l=0

{
ρe(l) + Ao(Π

−1(l), c)
}

, (2.7)

with Π−1(l) denoting the symbol deinterleaver as the TTCM encoder. The minimiza-

tion in (2.7) can be performed by using SOVA on trellis Γ12(~w).

Since the turbo-like TTCQ source code in this case has a similar parallel con-

catenated code structure as that of TTCM, the dimensionality of the source code is

higher than that of simple TCQ, and thus it facilitates better nesting of the source

code inside the channel code. An additional means of alleviating the dimensional mis-

match can be achieved by varying the percentage T of the total number of samples
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L that are selected from the top branch in the parallel-branch structure. By default

for both TCQ/TTCM and TTCQ/TTCM, T = 50%. Increasing T from 50% reduces

the effect of the interleaver in the bottom branch causing degradation in the channel

code performance. However, at the same time, it guarantees improved performance of

the source code (Note that when T = 100%, no interleaving is performed. Hence the

source code becomes regular TCQ based on trellis Γ12(~w), whereas the channel code

becomes regular TCM). Increasing T can be viewed as increasing the dimensionality
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Fig. 9. Effect of T on the performance of TTCQ/TTCM scheme at a transmission rate

of 1.0 b/s and block length of L = 10, 000.

of the equivalent source lattice code, while decreasing that of the channel lattice code,

thus providing a way of reducing the dimensional mismatch. An optimal T ∗ can be

searched between 50% and 100% to achieve the best performance in terms of the bit
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error rate (BER) of the decoded message. Fig. 9 shows the gap to Costa’s capacity

(2.2) of the TTCQ/TTCM scheme of [11] as a function of T . It can be seen that the

optimal percentage is T ∗ = 80% for which the gap to capacity is 1.53 dB. We point

out that the process of dimensionality balancing by varying T is equally applicable

to the TCQ/TTCM scheme of [30]. The effect of this dimensionality balancing for

TCQ/TTCM scheme was studied in [11] and have been provided here in Table 2.

We also provide the performance of TCQ/TCM scheme as a benchmark. Note that

at T = 50% TTCQ/TTCM outperforms TCQ/TTCM, thus corroborating the fact

that the former facilitates better nesting of the source and channel lattice codes than

the latter. Although at the optimum percentages T ∗, the gap between the two is

decreased, yet TTCQ/TTCM still performs better than TCQ/TTCM.

Table I. A performance comparison of the practical DPC schemes of [30] and [11] in

terms of the gap (in dB) to Costa’s capacity.

TCQ/TCM [30] TCQ/TTCM [30] TTCQ/TTCM [11]

T=50% T ∗=82.5% T=50% T ∗=80%

5.23 2.07 1.63 [11] 1.86 1.53
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CHAPTER III

GAUSSIAN BROADCAST CHANNELS

In this chapter we will introduce the theoretical aspects of Gaussian BCs and present

the channel capacities. We will start in Section A with the simplest example of a

BC with one transmit antenna at the base station sending messages to two users

each with a single antenna. Under these conditions we will specifically consider the

scenario where the two users receive their signals at different SNRs, which is referred

to as degraded Gaussian BC. We will then introduce a MIMO Gaussian BC in Section

B where the channels might not necessarily be degraded. Finally we will introduce

duality of the MIMO Gaussian BC with the MIMO multiple access channel (MAC)

in Section C, which will serve as a helpful tool in our code designs.

A. Degraded Gaussian BC

1. Channel Model

Base station

User 2

User 1
Y1

Y2

X

Fig. 10. A simple broadcast channel with one transmit antenna at the base station

and two users each with a single antenna.

A two-user Gaussian BC is shown in Fig. 10. The base station wishes to send messages

w1 and w2 to user 1 and user 2, respectively. The single antenna at the base station
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transmits the baseband signal X(w1, w2) indicating that it will be a function of the

messages for both users. If Pt is the maximum allowable transmitter power, the

transmitter signal X should satisfy E[|X|2] ≤ Pt. The received signals at the two

users are given by

Y1 = X + Z1

Y2 = X + Z2,
(3.1)

where Z1 and Z2 are independent, identically distributed (i.i.d.) zero mean Gaussian

noises with variances N1 and N2, respectively, independent of X. Since we consider

the case of a degraded Gaussian BC, the received SNRs at the two users will be

different. The user with the better channel is referred to as the “strong” user, and

the one with the worse channel as the “weak” user. Without loss of generality, we

assume that user 2 is strong and user 1 is weak, i.e., N2 < N1

2. Channel Capacity

Let the messages w1 be coded to U1 and w2 be coded to U2, such that both the

codebooks are of unit power i.e., E[|U1|2] ≤ 1 and E[|U2|2] ≤ 1. The total transmission

power can be allocated to the two users through precoding, i.e., by selecting the

transmitted signal as X = Bu, where u = [U1, U2]
T and B is the precoding matrix

given by B = [
√

(1 − γ)Pt,
√

γPt]. γ (0 ≤ γ ≤ 1) is a parameter that controls the

power allocation between the two users. Cover [1] obtained the capacity region for this

setup by using superposition coding, where the codebooks U1 and U2 are Gaussian

and uncorrelated. The received signals at the two users are given by

Y1 =
√

(1 − γ)PtU1 +
√

γPtU2 + Z1

Y2 =
√

(1 − γ)PtU1 +
√

γPtU2 + Z2.
(3.2)
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Consider the following decoding scheme. User 1 treats U2 as an unknown inter-

ference, which means the unwanted noise term for user 1 is
√

γPtU2 + Z1. Since U1

is Gaussian and is independent of Z1, the effective noise is Gaussian with variance

γPt + N1. The achievable rates at user 1 therefore satisfy

R1 ≤
1

2
log

(
1 +

(1 − γ)Pt

γPt + N1

)
. (3.3)

Since the noise at user 2 is weaker than that at user 1, i.e., N2 < N1, user 2 can also

decode U1 with arbitrarily low probability of error. It can then subtract the decoded

U1 term to obtain Y ′
2 =

√
γPtU2 + Z2, which implies that w2 can be transmitted at

rates satisfying

R2 ≤
1

2
log

(
1 +

γPt

N2

)
. (3.4)

Since user 2 also decodes w1 correctly, the effective upper bound on the achievable

rates at user 2 is R1 + R2. Cover proved that the maximum achievable rates in

(3.3) and (3.4) are in fact the maximum rates over all encoding schemes. Bergman

[2] completed the capacity result by proving that any rates above these bounds are

not achievable. The achievable rate region characterized by (3.3) and (3.4) is shown

in Fig. 11. The rates along the dashed line are achievable with time-sharing. The

concavity of the capacity region indicates that one can always do better than time

sharing by employing Cover’s superposition scheme (or a DPC scheme as will be

shown later). An interesting case however is when N2 = N1, for which the time

sharing region is the same as the rate region described by (3.3) and (3.4).

One of the issues with Cover’s superposition scheme is that in order to achieve

capacity, user 2 besides decoding its own message, also has to decode the message

intended for user 1 which does not bode good from the privacy point of view. This

problem can be overcome by using dirty-paper coding (DPC) which also achieves all
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Fig. 11. Achievable rate region of a degraded Gaussian BC with N2 < N1.

the points in the capacity region described by (3.3) and (3.4). Indeed, if U1 is drawn

from a standard Gaussian codebook and U2 is dirty-paper coded with
√

(1 − γ)PtU1

as the encoder side information (ideal DPC codebook is Gaussian), user 1 still treats

the U2 term as unknown interference and therefore the achievable rates at user 1

satisfy (3.3). User 2, because of DPC, achieves the same rate as if the interference

from U1 were not present, and therefore the achievable rates at user 2 satisfy (3.4).

Note that if the encoding order is reversed, i.e., if U1 is dirty-paper coded with U2

as the encoder side-information with U2 drawn from a standard Gaussian codebook,

another rate pair is also achievable which is given by

R1 ≤ 1
2
log
(
1 + (1−γ)Pt

N1

)
,

R2 ≤ 1
2
log
(
1 + γPt

(1−γ)Pt+N2

)
.

(3.5)

However, it can be shown that when N2 < N1, this rate region is smaller than the

true capacity region characterized by (3.3) and (3.4).
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B. Non-Degraded MIMO BC

1. Channel Model

Base station

User K

User 1
Y1

YK

X1

XM

h11

h1M

hK1

hKM

Fig. 12. A broadcast channel with M transmit antennas at the base station, and K

users each with a single antenna. The channel between antenna j and user i

experiences a fading coefficient of hij.

The previous section was limited to the case where the number of users and the

transmit antennas at the base station are limited to two. However, the demands on

modern day communications require the base station to service several users simul-

taneously. Moreover, additional transmit antennas at the base station promise gains

in data rate as well as in quality of service. Therefore, in this section we consider a

BC which can have multiple transmit antennas at the base station sending messages

possibly to more than two users. Note that the aforementioned gains in data rate and

quality of service can also be attained by employing multiple receive antennas at the

users. These antennas should be physically located significantly far apart in order to

attain any noteworthy gains. However, in applications where the users are mobile,

the receiving units are limited by their size and power, and therefore having more
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than one antenna at the receiver becomes unfeasible. Therefore, we will only consider

the scenario where the users have a single receive antenna each. Moreover, in many

practical wireless channels, the transmitted signal undergoes fading in addition to an

additive noise. Therefore, we model the channel as a quasi-static flat fading channel

with additive white Gaussian noise. We are now ready to mathematically define the

channel model.

A MIMO fading BC is shown in Fig. 12. Let the number of transmit antennas at

the base station be M , which sends messages to K users each with a single antenna.

If hij is a complex channel gain between user i (1 ≤ i ≤ K) and transmit antenna j

(1 ≤ j ≤ M), then

Yi =
M∑

j=1

hijXj + Zi (3.6)

is the complex baseband equivalent of the signal received by user i, Xj is the complex

baseband equivalent of the transmitted signal at antenna j, and the Zi’s are i.i.d.

complex zero-mean Gaussian noises with unit variances, independent of the Xj’s.

The transmitter should satisfy the following power constraint:

M∑

j=1

E[|Xj|2] ≤ Pt (3.7)

Let y = [Y1, Y2, . . . , YK ]T , x = [X1, X2, . . . , XM ]T , and z = [Z1, Z2, . . . , ZK ]T and H

be a size K ×M channel matrix whose element at the ith row and jth column is given

by the channel coefficient hij; then (3.6) in the matrix form becomes

y = Hx + z. (3.8)

2. Channel Capacity

An achievable rate region using successive DPC was presented in [3]. We first present

a description of this successive DPC scheme along with its achievable rate region. We
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will then see how this rate region relates to the capacity of the MIMO BC.

Let wi be the message intended for user i, then the transmitter sends X = BU,

where B is an M × K precoding matrix, and

u = [U1, U2, U3, . . . , UK ]T

= [U1(w1), U2(w2; U1), U3(w3; U1, U2), . . . , UK(wK ; U1, . . . , UK−1)]
T

is generated using successive DPC with all K codebooks being uncorrelated and

Gaussian with unit power. Here, Ui = Ui(wi; U1, . . . , Ui−1), 2 ≤ i ≤ K, indicates

that wi is coded to the codeword Ui using DPC with the linear combination of

U1, U2, . . . , Ui−1 as the encoder side information (i.e., known interference).

Let bi be the ith column of the precoding matrix B, i.e., B = [b1, . . . ,bK ]. Then

x = Bu translates to x =
∑K

i=1 biUi. The covariance matrix of the vector x can now

be written as a function of bi’s as

Sxx = E[xxH ]

= E[
∑K

i=1 biUi

∑K

j=1 bH
j UH

j ]

=
∑K

i=1

∑K

j=1 biE[UiU
H
j ]bH

j

(a)
=

∑K

i=1 bib
H
i

where (a) follows from the fact that the codebooks are of unit power and uncorrelated,

i.e., E[UiU
H
j ] is equal to 1 for i = j and equal to 0 otherwise. Let Si = bib

H
i be a

size M × M positive semi-definite transmitter covariance matrix for each user which

indicates how the codebook Ui is correlated across the M transmit antennas. The

power constraint of (3.7) in terms of these transmit covariance matrices translates

into
M∑

j=1

E[|Xj|2] = E[xHx] =
K∑

i=1

bH
i bi =

K∑

i=1

tr(Si) ≤ Pt. (3.9)
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In order to compute the achievable rates with this precoding scheme, let us

analyse the received signal at the users. Let hi represent the ith row of the channel

matrix H, i.e., H = [hT
1 , . . . ,hT

K ]T . The received vector y in (3.8) thus becomes

y = Hx + z =





h1

...

hK




[b1, . . . ,bK ]





U1

...

UK




+ z.

The received signal Yi at user i is given by

Yi = hi

∑K

k=1 bkUk + Zi

= hi

∑i−1
k=1 bkUk + hibiUi + hi

∑K

k=i+1 bkUk + Zi.
(3.10)

Note that due to DPC, user i can cancel out the first term, whereas the second term

is the useful signal, and the third treated as Gaussian interference. Since Ui’s are

Gaussian codebooks, with the noise being white Gaussian, the maximum achievable

rate for this Gaussian channel is given by 1
2
log(1 + SNR). The signal power can be

evaluated from (3.10) as

E[(hibiUi)(hibiUi)
H ] = hibiE[UiU

H
i ]bH

i hH
i

= hiSih
H
i .

Similarly the power of the unknown interference in (3.10) is given by

E[(hi

∑K

k=i+1 bkUk)(hi

∑K

j=i+1 bjUj)
H ] = hi

∑
k=i+1

∑
j=i+1 bkE[UkU

H
j ]bH

j hi

(b)
= hi

∑K

k=i+1 Skh
H
i ,

where (b) once again is due to the codebooks being uncorrelated. The achievable rate

at user i therefore satisfies
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RBC
i ≤ 1

2
log

(
1 +

hiSih
H
i

1 + hi

∑K

k=i+1 Skh
H
i

)
, i = 1, . . . , K. (3.11)

Note that the rate vector RBC = [RBC
1 , . . . , RBC

K ] is achievable under a fixed encoding

order, where the message of user i is dirty-paper coded by treating signals for pre-

viously encoded users as known interference. One can therefore obtain K! different

achievable rate vectors, one for each distinct encoding order. The DPC achievable

rate region of the MIMO BC for a fixed channel matrix H and a power constraint

Pt is the union of all rate vectors obtained over all possible encoding orders and all

covariance matrices Si satisfying the power constraint
∑K

i=1 tr(Si) ≤ Pt. This region

turns out to be convex, and hence this region RDPC(Pt,H) is given by

RDPC(Pt,H) = Co




⋃

π,Si,...SK ,Si≥0;
PK

i=1
tr(Si)≤Pt

RBC(π,Si, . . .SK ,H)



 , (3.12)

where Co(·) denotes the “convex hull” operation.

As mentioned above, the rate region in (3.12) was presented in [3]. A number of

works [3]–[6] have focused on maximizing the achievable sum-rate with the successive

DPC scheme just described. The maximum achievable sum-rate for the fixed encoding

order discussed in this section can be written in terms of the following maximization

RSR
DPC(H, Pt) = max

S1,...,SK ;Si≥0,
PK

j=1
tr(Sj)≤Pt

K∑

i=1

1

2
log

(
1 +

hiSih
H
i

1 + hi

∑K

k=i+1 Skh
H
i

)

(3.13)

The maximization is to be performed over the positive semi-definite transmitter

covariance matrices S1, . . .SK . However, it can be seen that the objective function

(3.13) is not a concave function of S1, . . .SK . Thus, numerically finding the maximum
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is not easy. However, the authors in [3] were able to derive closed-form expression for

RSR
DPC for any number of transmit antennas M but where the total number of users

is two, i.e., K = 2. Their calculations are based on performing a QR decomposition

on the channel matrix, i.e., H = GQ, where G is a lower diagonal matrix, and Q

satisfies QQH = I2. By selecting the precoding matrix B as B = QHR, where R

is an upper diagonal matrix, they were able express the sum-rate as a function of

the non-zero elements of the matrix R and evaluate the expressions for this elements

which yield the maximum achievable sum-rate over this DPC scheme. This maximum

sum-rate was calculated to be

RSR
DPC =






1
2
log(1 + ||h1||2), Pt ≤ A,

1
2
log {Ptdet(HH

H)+tr(HH
H)}2−4||h2(h1)H ||2

4det(HH
H)

, Pt > A,

(3.14)

where A = ||h1||2−||h2||2

det(HH
H)

, and it is assumed without loss of generality that ||h1|| ≥ ||h2||.

In addition, they showed that an outer bound on the maximum achievable sum-rate

using Sato’s technique [34] coincides with the maximum achievable sum-rate of (3.14)

indicating that the precoding scheme in fact achieves sum-rate capacity. The biggest

disadvantage with the capacity result of [3] however, is that it is not clear how it can

be extended to a case with more than two users, and neither does it give an insight

into the structure of the optimal covariance matrices Si’s.

The sum-rate capacity result of [3] has been generalized to more than two users,

with each user possibly having more than one receive antennas, separately in [6] and

[4]. The former uses the idea of a generalized decision feedback encoder (GDFE), and

the latter uses duality of the MIMO BC with MIMO MAC to prove the achievability

of the sum-rate capacity. As for the converse part of the capacity result, both works
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use Sato’s upper bound [34] on the achievable rates of a BC. We will separately

review the duality result [4] between MIMO BC and MIMO MAC in Section C, since

it will be helpful in calculating the precoding matrix for our practical DPC based

code design. Let us therefore briefly review how [6] arrives at the capacity result.

The problem in calculating the capacity of a BC lies in the fact that the infor-

mation is spread across several users, which are not allowed to cooperate amongst

each other. Therefore, the capacity cannot be calculated as the mutual information

between the input vector x and the output vector y. The main idea behind the

work of [6] is that an equivalent of jointly processing the received signal vectors at

the users (receiver cooperation) can be implemented using precoding (using DPC

and the precoding matrix B) at the encoder. Consider a Gaussian vector channel

given by y = Hx + z. This channel differs from the BC of (3.8) because the vec-

tor channel assumes a single user with K receive antennas (thus the received signals

can be jointly processed) as opposed to the BC where there are K users each with

a single receive antenna which are not allowed to cooperate. The GDFE of [6] is a

generalization of a decision-feedback equalizer which is widely used to mitigate the

effect of inter-symbol interference (ISI) in linear dispersive channels, where each input

symbol is decoded sequentially, the effect of which is subtracted before decoding the

next symbol. This DFE is generalized to the vector Gaussian channel, the advan-

tage of which is that it decomposes the vector channel into sub-channels for which

encoding and decoding of the elements vector x can be performed independently. As

long as the decision-feedback operation is error free, the achievable sum-rate of these

sub-channels is the same as the achievable rate of the original vector channel. Since

the encoding of each element of the vector x can be done independently, transmitter

cooperation is not necessary to achieve the capacity. However, receiver cooperation

is required since in a GDFE the entire received vector y should be input to a feed-
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forward filter, and secondly the feedback operation requires correct codeword from

one sub-channel to be available for correct decoding of the codewords for other sub-

channels. Thus GDFE is naturally suited to MACs. The main result of [6] is that this

GDFE structure can be moved to the transmitter, and is equivalent to a DPC based

precoder. The sum-rate capacity of the BC can be upper bounded by the capacity

of the vector channel I(x;y), where the Y1, . . . , YK are allowed to cooperate. Since

in a BC, the users do not cooperate, the BC capacity only depends on the marginal

statistics of the noise vector, and not on the joint statistics. For Gaussian vector

x, I(x;x) = 1
2
log
(

|HSxxHH+Szz |
|Szz |

)
, where Szz is the covariance matrix for the noise

vector z. An outer bound can be found by the following optimization problem

min
Szz

1

2
log

( |HSxxH
H + Szz|

|Szz|

)
subject to Szz(i, i) = 1, i = 1, . . . , K. (3.15)

Thus the optimization is over all off-diagonal elements of Szz. The noise vector whose

statistics minimize the objective function of (3.15) is referred to as the “least favorable

noise”. The outer bound should be maximized over the input covariance matrix Sxx,

and can be written as

RSR = min
Szz

max
Sxx

1

2
log

( |HSxxH
H + Szz|

|Szz|

)
subject to

Szz(i, i) = 1, i = 1, . . . , K,

tr(Sxx) ≤ Pt

(3.16)

Thus the sum capacity is a saddle point of a Gaussian mutual information game

where the signal player chooses the transmit covariance matrix to maximize the mu-

tual information, while an imaginary noise player chooses the noise covariance matrix

to minimize the mutual information. The achievability of the outer bound is proved

by showing an existence of the precoding matrix B such that when the GDFE de-

signed for this B and the least favorable noise Szz is moved to the transmitter to form

the equivalent DPC based precoder, it results in a diagonal feedforward filter at the
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receiver indicating that no user cooperation is required, and thus the receiver is not

concerned about the cross correlation between the noises. Since the marginal distrib-

utions of the least favorable noise are the same as those of the actual noise, the DPC

precoder with the precoding matrix B achieves the outer bound. This saddle point

corresponding to the sum-rate capacity can be found iteratively by first computing

the best input covariance matrix Sxx for a given noise covariance, and then computing

the least favorable noise covariance matrix Szz for the given input covariance, until

the iterative process converges.

It was shown recently in [7] that the achievable rate region of the successive DPC

scheme characterized by (3.11) not only achieves the sum rate capacity as shown in

[3]–[6] but in fact achieves the full capacity region. The main idea behind their proof

was an introduction of the concept of an enhanced channel. According to [7] for

every point on the boundary of the achievable rate region of a degraded MIMO BC,

an enhanced channel can be found which contains the achievable rate region (due to

Gaussian coding) of the original channel. The same Gaussian coding scheme which

was used to obtain the points on the achievable rate region in the original channel

can be used to achieve the same rate points in the enhanced channel. Using entropy

power inequality (the same idea as that of Bergman [2]) it can be shown that this

point lies on the capacity region boundary of the enhanced channel. As this can be

repeated for every point on the achievable rate region, the achievable rate region due

to Gaussian coding is indeed the capacity region.

C. Duality between the Gaussian BC and MAC

The duality between the capacity regions of the Gaussian MIMO BC and MAC was

pointed out in [4, 5]. Unlike the achievable rates for the MIMO BC, given by (3.11),

the rates for the MAC are concave functions of the input covariances. Therefore,



39

Base station

User K

User 1
U1

UK

YM

Y1

11hMAC

 
1Mh MAC

K1hMAC

KMhMAC

Fig. 13. A multiple access channel with K users each with a single transmit antenna

sending messages simultaneously to a base station with M receive antennas.

The channel between user i and antenna j of the base station experiences a

fading coefficient of hMAC
ij .

it is easier to find the boundary of the capacity region of the MAC than that of

the BC. By exploiting the duality [4, 5], the achievable rates for the MIMO BC can

be derived from those of its dual MAC. This fact can be helpful in evaluating the

minimum transmitter power required to achieve a certain point on the capacity region

boundary. Indeed we will show in the next chapter that the optimal precoding matrix

B for our practical DPC based code design can be evaluated by invoking this duality.

In the following, we first discuss the dual MIMO MAC and the corresponding channel

capacity. We will then briefly review the duality principle.

1. MIMO Multiple Access Channel

a. Channel Model

A Gaussian MAC is shown in Fig. 13 where K users, each with a single antenna trans-

mit messages simultaneously over flat Rayleigh fading channels to a single receiver
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with M receive antennas. The ith user transmits a codeword Ui which is uncorrelated

with the codewords for the other users. The received signal vector is given by

y =
K∑

i=1

Uih
MAC
i + n, (3.17)

where n is an i.i.d. Gaussian noise vector independent of the Ui’s with its covariance

matrix equal to IM , and hMAC
i is a column vector comprising of the fading coefficients

of the channels between user i and the M receive antennas of the base station, i.e.,

hMAC
i = [hMAC

i1 , . . . , hMAC
iM ]T . The individual transmission power of each user is given

by ξi = E[|U2
i |]. The sum-power constraint therefore is given by

∑K

i=1 ξi ≤ PMAC
t .

b. Channel Capacity

An achievable rate region of MIMO MAC can be found using successive decoding

at the receiver, where all codewords Ui, i = 1, . . . , K are drawn from independent

Gaussian codebooks. Assuming that the receiver decodes the message for user K

first, it treats the signals from all other users as unknown interference. Thus the

useful signal vector is UKhMAC
i , while the unwanted interference plus noise term is

∑K−1
i=1 Uih

MAC
i + n. Once the message for user K is decoded without error, the

term UKhMAC
K can be subtracted from y and the result used to decode message

for user K − 1. Hence for decoding UK−1, only the signals from user 1 through

K − 2 contribute to the unwanted interference. Using the same line of reasoning, the

unwanted interference term at any user i (i = 2, . . . , K) comprises of signals from

user 1 through i − 1 only. For user 1, there is no unwanted interference term left.

Thus the useful signal vector at user i (i = 1, . . . , K) is

xi = Uih
MAC
i ,
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whereas the unwanted interference plus noise vector is

zi =
i−1∑

k=1

Ukh
MAC
k + n.

The achievable rates for such a Gaussian vector channel at user i should satisfy

Ri ≤ 1
2
log
(

|Ki
x+Ki

z |
|Ki

z |

)
, where Ki

x and Ki
z are the covariance matrices of xi and zi,

respectively. These covariance matrices can be calculated as

Ki
x = E[xix

H
i ]

= hMAC
i E[|Ui|2]hMAC H

i

= hMAC
i ξih

MAC H
i

and

Ki
z = E[ziz

H
i ]

(c)
=

∑i−1
k=1

∑i−1
j=1 hMAC

k E[UiU
∗
j ]hMAC H

j + IM

(d)
=

∑i−1
k=1 hMAC

k ξkh
MAC H
k + IM

where (c) is due to the fact that the noise vector is independent of the channel inputs,

and (d) due to the codebooks being uncorrelated. Hence the achievable rate for user

i should satisfy

RMAC
i ≤ 1

2
log

(
|IM +

∑i

k=1 ξkh
MAC
k hMAC H

k |
|IM +

∑i−1
k=1 ξkh

MAC
k hMAC H

k |

)
. i = 1, . . . , K (3.18)

The achievable rate region is the union of all rate vectors obtained over all possible

encoding orders and over all possible input covariances {ξ}K
i=1 which satisfy the power

constraint
∑K

i=1 ξi ≤ PMAC
t . The rate region characterized by (3.18) is in fact the

capacity region [35] of the MIMO MAC of Fig. 13.
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2. Duality

According to [4] a duality exists between the MIMO BC and MIMO MAC. Specifically,

if the power constraint for both are the same, i.e., Pt = PMAC
t , and if the MAC channel

vectors {hMAC
i }K

i=1 are related to the BC channel vectors {hi}K
i=1 by hMAC

i = hH
i , the

achievable rates in (3.11) of the BC domain are exactly equal to the achievable rates

in (3.18) of the MAC domain, i.e., RMAC
i = RBC

i for i = 1, . . . , K. Note that the

encoding order of the BC is reverse of the decoding order of the MAC, e.g., when in

BC, the message for user i is encoded by treating signals from user 1 through i − 1

as encoder side information, in its dual MAC, when decoding the message for user i,

the signals from user i + 1 through K should be treated as known interference.

As explained earlier, it is generally much easier to find the optimum input covari-

ances in the MAC domain which maximize the weighted sum of the achievable MAC

rates (since the rate in (3.18) is a concave function of ξi’s) than it is to do the same

in the BC domain. Since RMAC
i = RBC

i , the BC optimization could be performed by

performing the same optimization in the MAC domain over its corresponding covari-

ances. [4] shows the existence of a transformation of the covariances from the MAC

domain to the BC domain, and vice versa. Hence the optimal BC covariances could be

evaluated by applying the MAC to BC transformation on the MAC covariances. We

thus review these transformations in the proceeding subsections. The precise set of

circumstances where this duality comes in handy for our code designs would become

clear in Chapter IV. Although we will only require the MAC to BC transformations,

for the sake of completeness, we list the BC to MAC transformation as well.



43

a. MAC to BC Transformation

Given a set of covariances {ξi}K
i=1 of a MAC channel (described by (3.17) with hMAC

i =

hH
i ) that satisfy the power constraint

∑K

i=1 ξi ≤ Pt, a one to one transformation from

ξi’s to the BC covariance matrices Si’s can be defined as a function of the hi’s [4]

such that the Si’s satisfy the same power constraint
∑K

i=1 tr(Si) ≤ Pt, and such that

RMAC
i = RBC

i for i = 1, . . . , K. This transformation is as follows. Let

ci = 1 + hi

∑K

k=i+1 Skh
H
i

and Di = IM +
∑i−1

k=1 ξkh
H
k hk

1 ≤ i ≤ K. (3.19)

If D
− 1

2

i hH
i c

− 1

2

i = gfi such that fH
i fi = 1 with some constant g, then the corresponding

covariance matrix Si (1 ≤ i ≤ K) for the MIMO BC can be computed as

Si = ciξiD
− 1

2

i fif
H
i D

− 1

2

i . (3.20)

Since Si = bib
H
i , the precoding vector bi can be obtained as

bi =
√

ciξiD
− 1

2

i fi. (3.21)

b. BC to MAC Transformation

Given a set of BC covariance matrices {Si}K
i=1, a transformation can be defined to

obtain the MAC covariances which satisfy the same power constraint as that of their

BC counterparts, and that achieve exactly the same rates in the MAC domain as the

BC covariance matrices do in the BC domain [4]. This transformation is similar to

the MAC to BC transformation. This transformation is as follows. If Di and ci are

defined by (3.19), and if D
− 1

2

i hH
i c

− 1

2

i = gfi such that fH
i fi = 1 with some constant g,

then the MAC covariances can be calculated from

ξi = cif
H
i D

− 1

2

i SiD
− 1

2

i fi (3.22)
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CHAPTER IV

CODE DESIGN FOR MIMO BCS

Practical code design for the MIMO BC not only requires designing practical dirty-

paper and channel codes, but it also calls for selecting an appropriate precoding

matrix B which caters for the practical aspects of the dirty-paper/channel codes.

Previous information-theoretical works [3]–[6] have mainly focused on evaluating B to

maximize the achievable sum-rate, in which case the encoder and decoder for each user

must be able to operate at an arbitrary code rate. However, it is impractical to design

good channel codes and dirty-paper codes at different rates on the fly. Therefore,

we consider a more practical scenario in which each user is assumed to operate at a

fixed transmission rate, for which we already have an efficient dirty-paper code design

(TTCQ/TTCM scheme of Chapter II – Section D). Thus, instead of having one single

sum-rate constraint, we have K separate rate constraints − one for each user (As a

reminder to the reader, K is the number of users). When compared to the former case,

the latter will lead to performance loss because we cannot now arbitrarily allocate

transmission rates to different users. Thus we will discuss approaches to selecting the

precoding matrix B under K individual rate constraints in Section A. We will convert

these rate constraints to individual SNR constraints; the two of which are equivalent.

With these individual SNR constraints, it would be easier for us, as will be shown, to

cater for the fact that the practical DPC and channel coding schemes require a higher

SNR than if they were ideal. Besides the optimal approach to selecting the precoding

matrix, we will also present a few suboptimal approaches and provide a complexity

comparison of these approaches to the optimal scheme. We will then present the

overall scheme involving the TTCQ/TTCM DPC scheme in Section B, followed by

the simulation results in Section C.
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A. Optimal Precoding under Individual Rate Constraints

In this section we discuss approaches to evaluating the precoding matrix B, when

the practical channel/dirty-paper codes are required to operate at fixed transmission

rates. Let Ri be the rate of the practical channel code (i = 1) and the dirty-paper

code (2 ≤ i ≤ K). If the rate-Ri code performs δi dB away (at a certain BER) from

the corresponding Shannon limit of 10 log10(2
2Ri − 1) dB, its operating SNR ηi must

satisfy

ηi ≥ ηo
i = 10 log10(2

2Ri − 1) + δi dB. (4.1)

For example, the dirty-paper code of [11], that we use in this work, performs δi = 1.53

dB away from the Shannon limit at Ri = 1.0 b/s and a BER of 10−5. Since there is a

one-to-one correspondence between the rate Ri of the practical code and its minimum

operating SNR ηo
i given by (4.1), in the subsequent sections, we exclusively speak of

the SNR constraints instead of the rate constraints at different users.

Our optimal choice of the precoding matrix in practice minimizes the total trans-

mission power Pt such that the SNR requirement (4.1) at each user is satisfied. We

perform this power minimization while assuming a fixed encoding order. A search for

an encoding order that minimizes the total power is then needed. In our simulations,

since we deal with two or three users, we use the brute force approach. Since the

total number of encoding orders is K!, the brute force method will not be feasible

when the number of users K is larger. In this case, the iterative algorithm proposed

in [15] can be adopted to find the optimal encoding order.

In the following, we discuss optimal precoding for the case of a degraded Gaussian

BC [1] before moving on to the case of MIMO BCs, for which we also mention a few

suboptimal precoding approaches.
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1. Precoding for Two-User Degraded Gaussian BC

The problem here is to find a precoding matrix B that minimizes the total transmis-

sion power subject to the individual SNR constraint on η1 and η2. The achievable

rates for the two-user degraded Gaussian BC were provided in (3.3) and (3.4), which

we reproduce here for convenience.

R1 ≤ 1
2
log
(
1 + (1−γ)Pt

γPt+N1

)
,

R2 ≤ 1
2
log
(
1 + γPt

N2

)
.

The received SNRs at the two users are therefore given by η1 = (1−γ)Pt

γPt+N1
, and η2 = γPt

N2
.

Also recall that the precoding matrix is given by B = [
√

(1 − γ)Pt,
√

γPt]. Hence

optimal precoding requires evaluating the parameter γ, which would minimize the

transmitter power Pt subject to the SNR constraints in (4.1). It can be shown that

Pt is an increasing function of both η1 and η2, therefore, the received SNRs at both

users should be equal to the minimum required values. Thus

η1 = (1−γ)Pt

γPt+N1
= ηo

1 and

η2 = γPt

N2
= ηo

2.
(4.2)

Hence, the optimum γ can be found by solving the two equations in (4.2) for it. The

solution yields

γ′ =
ηo

2N2

ηo
2N2(ηo

1 + 1) + ηo
1N1

(4.3)

resulting in a minimum transmitter power of

P ′
t = ηo

2N2(η
o
1 + 1) + ηo

1N1 (4.4)

2. Precoding for Non-Degraded MIMO BC

In this case, we want to find a precoding matrix B that minimizes the total transmis-

sion power Pt while satisfying the individual SNR constraints of (4.1). That is, if π
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is a fixed encoding order and H the known channel matrix, we have an optimization

problem of

min
π

min
B

Pt(B,H, π) subject to ηi ≥ ηo
i , i = 1, . . . , K, (4.5)

where ηo
i ’s are given by (4.1). Since the transmitter covariance matrices Si’s are

directly related to B via Si = bib
H
i , (4.5) is equivalent to

min
π

min
S1,...,SK

Pt(S1, . . . ,SK ,H, π) subject to ηi ≥ ηo
i , i = 1, . . . , K. (4.6)

However, direct minimization of Pt is not easy since it is in general not a convex

function of S′
is. In the following, The calculations presented in the proceeding sub-

sections are for a fixed encoding order. For a brute force approach to finding the best

encoding order, these calculations can be repeated for K! encoding orders to find the

one which yields the minimum transmitter power.

a. Optimal Precoding

Instead of directly minimizing (4.6), we outline two alternative methods for deter-

mining the optimal precoding matrix B. The first one follows [15] and is based on

the duality between BC and MAC. In the second approach, we give a closed-form

expression for the optimal B and use it to directly compute the optimal precoding

matrix; this approach is less complex than the first, but it is optimal only for the

two-user setup.

Duality-based Approach: Recall that the transmission power for the MIMO BC

equals the transmission power for its dual MAC, i.e.,
∑K

i=1 tr(Si) =
∑K

i=1 ξi ≤ Pt.

Moreover, the achievable rates in both domains are the same as well, which implies

the equivalence of the received SNRs too. Hence the SNR constraints of the BC

domain described by (4.1) are equally applicable to the dual MAC. Therefore the
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minimization in (4.6) is equivalent to minimizing Pt with respect to covariances ξi’s

of the dual MAC. According to (3.18), the achievable rate for user 1 in the dual

MIMO MAC is R1 ≤ 1
2
log(1 + ξ1h1h

H
1 ). Thus η1 = ξ1h1h

H
1 . In order to satisfy the

SNR requirement at user 1, we must have

ξ1 ≥
ηo

1

h1h
H
1

. (4.7)

Since the achievable rate RMAC
i at user i for the dual MAC is a function of the

covariances of only the preceding users (a function of users j with j ≤ i), ξi’s can be

calculated recursively via

ξi ≥
ηo

i

hi(IM +
∑i−1

k=1 ξkh
H
k hk)−1hH

i

. (4.8)

The transmission power is minimized when the SNR requirements are satisfied with

equality, i.e., when equality in (4.8) holds. Once the ξi’s that minimize the transmis-

sion power for the particular encoding order are known, we can apply the transfor-

mation outlined in Chapter III- Section C to obtain the optimal covariance matrices

Si’s and hence the optimal precoding matrix B.

Direct Calculations: The above duality-based approach is optimal, but compu-

tationally complex. Therefore, we derive a simpler approach by directly computing

the precoding matrix B that minimizes the transmission power. For the case of two

users, we derive the optimal solution for B [18], whereas for the case of three or more

users we provide a suboptimal solution, which is close to the optimal one obtained

from the duality-based approach.

In deriving the optimal B, we modify the method of [3], which is developed under

the sum-rate constraint, to suit our setup with individual rate/SNR constraints. Let

H = GK×KQK×M be the QR decomposition of the channel matrix obtained by

Gram-Schmidt orthogonalization, where G is a lower diagonal matrix, i.e., gij = 0 for
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j > i, and Q satisfies QQH = IK . As before, M denotes the number of transmitter

antennas, and K is the number of users (two or three in our case) each with a single

antenna.

The precoding matrix is chosen as B = QHRK×K , where without loss of general-

ity R is a complex upper diagonal matrix, i.e., rij = 0 for j < i. The power constraint

becomes

E[xHx] = E[uHRHQQHRu]

= E[uHRHRu]

= tr(RE[uuH ]RH)

(a)
= tr(RRH)

(b)
=

∑K

i=1

∑K

j=i |rij|2 ≤ Pt.

where (a) is due to the fact that E[uuH ] = IK , and (b) is due to R being an upper

diagonal matrix. Let qj be the jth row (j = 1, . . . , K) of the matrix Q, i.e. Q =

[qT
1 , . . . ,qT

K ]T . Then, the ith row of the channel matrix H is given by hi =
∑i

j=1 gijqj.

Similarly, the ith column of the precoding matrix B is given by bi =
∑i

j=1 rjiq
H
j . The

received SNR at user i from (3.11) is evaluated as ηi =
hiSih

H
i

1+hi

PK
k=i+1

SkhH
i

. We need to

write this received SNR as a function of the elements of the matrix G and R. The

signal power hiSih
H
i can be evaluated as

hiSih
H
i = hibib

H
i hH

i

=
∑i

j=1

∑i

k=1

∑i

l=1

∑i

m=1 gijrkig
∗
mjr

∗
liqjq

H
k qlq

H
m

=
∑i

j=1

∑i

l=1 gijrjig
∗
ljr

∗
li Since qjq

H
k = δjk

= |∑i

j=1 gijrji|2

Thus the received SNR is

ηi =
hiSih

H
i

1 + hi

∑K

k=i+1 Skh
H
i

=
|∑i

j=1 gijrji|2

1 +
∑K

k=i+1 |
∑i

j=1 gijrjk|2
. (4.9)
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In the two-user case, the SNR constraints become

|g11r11|2
1 + |g11r12|2

≥ ηo
1 (4.10)

|g21r12 + g22r22|2 ≥ ηo
2. (4.11)

(We note that these are in fact our individual rate constraints expressed in terms

of the SNR constraints.) One needs now to minimize the total transmtter power

Pt = |r11|2 + |r12|2 + |r22|2 subject to the constraints in (4.10). In this optimization

problem, there are six unknowns: the magnitudes and the phases of r11, r12, and

r22. The optimum choices of phases for r12 and r22 are such that |g21r12 + g22r22|2 =

(|g21r12| + |g22r22|)2. The phase of r11 is irrelevant since it is not involved in the rate

equations. Thus (4.10) and (4.11) can be re-written as

|r11|2 ≥
ηo

1(1 + |g11r12|2)
|g11|2

|r22|2 ≥
(
√

ηo
2 − |g21r12|)2

|g22|2
, (4.12)

with 0 ≤ |r12| ≤
√

ηo
2

|g21|
. Thus the total transmitter power Pt can be lower bounded by

a function of |r12| only, via

Pt ≥
ηo

1(1 + |g11r12|2)
|g11|2

+ |r12|2 +
(
√

ηo
2 − |g21r12|)2

|g22|2
. (4.13)

Since the right hand side of (4.13) is a convex function of |r12|, differentiating it with

respect to |r12| gives a minima at

|r12|′ = min(

√
ηo

2|g21|
|g22|2 + |g22|2ηo

1 + |g21|2
,

√
ηo

2

|g21|
). (4.14)

Since r21 ≡ 0, (4.12) and (4.14) completely specify the optimal choice for R, hence

the optimal precoding matrix B = QHR.

We perform a similar analysis for the three-user case. From (4.9) the individual
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SNR requirements in this case are

|g11r11|2
1 + |g11r12|2 + |g11r13|2

≥ ηo
1, (4.15)

|g21r12 + g22r22|2
1 + |g21r13 + g22r23|2

≥ ηo
2, (4.16)

|g31r13 + g32r23 + g33r33|2 ≥ ηo
3. (4.17)

In this problem, there are twelve unknowns: the phases and magnitudes of the six

nonzero elements of the matrix R. As means of simplifying the problem, we sub-

optimally force the interference at user 2 to zero by choosing

r23 = −g21

g22

r13. (4.18)

Substituting (4.18) in (4.17), we get

|(g31 −
g32g21

g22

)r13 + g33r33|2 ≥ ηo
3. (4.19)

Let tg = g31 − g32g21

g22
. Then, the choices for the phases of r13 and r33 should be such,

such that |tgr13 +g33r33| = |tgr13|+ |g33r33|. Similarly, the phases of r12 and r22 should

be chosen such that |g21r12 + g22r22| = |g21r12| + |g22r22|. The choice of these phases

in (4.15)–(4.19) yields the following constraints

|r11|2 ≥ ηo
1(1 + |g11r12|2 + |g11r13|2)

|g11|2
,

|r22| ≥
√

ηo
2 − |g21r12|
|g22|

,

|r33| ≥
√

ηo
3 − |tgr13|
|g33|

,

|r23| =
|g21|
|g22|

|r13|. (4.20)

The total transmitter power is Pt = |r11|2 + |r12|2 + |r13|2 + |r22|2 + |r23|2 + |r33|2.

Substituting (4.20) into Pt and setting its derivative with respect to |r12| and |r13| to
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zero, we get the optimal |r12|′ and |r13|′ as

|r12|′ = min (
|g21|

√
ηo

2

|g22|2(1 + ηo
1) + |g21|2

,

√
ηo

2

|g21|
), (4.21)

|r13|′ = min (
|tg|

√
ηo

3

|g33|2(1 + ηo
1 + |g21|2

|g22|2
) + |tg|2

,

√
ηo

3

|tg|
). (4.22)

Together with (4.20), the above two equations give a suboptimal choice for the up-

per diagonal matrix R, for which the precoding matrix is evaluated as B = QHR.

We point out that, in contrast to the two-user case, where we find the closed-form

expression for the optimal B, for the three-user setup, our choice with r23 = −g21

g22
r13

does not guarantee power minimization and is therefore suboptimal.

When the number of users K is more than three, we provide a suboptimal yet

simple extension of the above precoding strategy. Since K > 3, we first apply the

three-user precoding technique to users K, K − 1, and K − 2, by performing a QR

decomposition on the last three rows of the channel matrix H, denoted by hK , hK−1,

and hK−2. This provides us with a suboptimal choice of the last three columns

bK , bK−1, and bK−2 of the precoding matrix B. We now need to evaluate bi’s for

i ≤ K − 3. Recall that the received SNR constraint at user K − 3 is given by

hK−3bK−3b
H
K−3h

H
K−3

1 + hK−3

∑K

j=K−2 bjb
H
j hH

K−3

≥ ηo
K−3. (4.23)

Note that the denominator is a known quantity, since bj’s for j ≥ K−2 have already

been evaluated. Denote the denominator of (4.23) as cK−3. Then we choose bK−3 such

that the individual contribution of SK−3 to the total transmitter power is minimized.

Hence we choose bK−3 such that tr(SK−3) = bH
K−3bK−3 is minimized (Recall that the

total transmission power is Pt =
∑K

i=1 tr(Si) =
∑K

i=1 bH
i bi) subject to the constraint

of (4.23). This optimization results in the following choice of bK−3

bK−3 =
√

ηo
K−3cK−3

hH
K−3

|hK−3|2
.
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This choice is clearly suboptimal since it does not depend on bj’s or hj’s for j < K−3.

Similarly, the rest of bj’s can be chosen such that their individual contribution to the

total power is minimized. This leads to the following step down recursion:

bj =
√

ηo
j cj

hH
j

||hj||2
, j = K − 3, . . . , 1. (4.24)

We note that with increasing number of users, we expect the performance gap of this

suboptimal scheme from the optimal to increase.

b. Zero-Forcing

We briefly mention the two suboptimal approaches considered in [3], namely, zero-

forcing DPC (ZFDPC) and zero-forcing beamforming (ZFBF) [36]. As the name

zero-forcing suggests, the choice of the precoding matrix forces the interference at

each user to be zero, and hence induces K non-interfering channels between the

transmitter and the K users.

In ZFDPC, the precoding matrix is chosen as B = QHR, where R is a diagonal

matrix, i.e., rij = 0 for all i 6= j. This choice of R ensures that at user i the

interference from all users j > i is forced to zero. Hence, the received SNR in (4.9)

reduce to ηi = |giirii| (1 ≤ i ≤ K). The SNR constraints of (4.1) means that the

diagonal elements of the matrix R should satisfy

|rii|2 ≥
ηo

i

|gii|2
, i = 1, . . . , K. (4.25)

For minimizing the transmitter power, the inequality in (4.25) should be replaced

with equality.

On the other hand, in ZFBF, the precoding matrix is chosen as the pseudo-

inverse of the channel matrix, i.e., B = HH(HHH)−1R, with R being again a diagonal

matrix. The received signal vector in this case is y = HBu + z = Ru + z. Thus the
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interfering signals from all users are forced to zero, which simplifies the code design

since DPC is no longer required. Since now the received SNR at user i is equal to

|rii|2, the diagonal elements of matrix R should satisfy |rii|2 ≥ ηo
i (1 ≤ i ≤ K).

Although zero-forcing is near optimal when the sum-rate is maximized [3], our

simulations in Section C show that in practice it is far from optimum in the setup

with individual rate constraints. One disadvantage of zero-forcing in this setup is

that it fails when there are more users than the total number of transmit antennas,

i.e., when M < K. This is because when M < K, H is not a full rank matrix,

which in ZFDPC will result in one or more of the diagonal elements of the matrix

G to be zero, indicating that the received SNR at one or more users is always zero.

Similarly in ZFBF, when M < K, the inverse (HHH)−1 will not exist. This problem

was recently addressed in [37], where different suboptimal solutions based on partial

interference cancellation are proposed.

3. Complexity Comparisons

Table 3 compares the computational complexity of different precoding strategies in

terms of the number of complex multiplications. (One complex multiplication refers

to multiplication of two complex numbers). We assume that inverting or taking

the square root of an M × M matrix requires M3 multiplications, whereas the QR

decomposition of a K ×M matrix needs a total of min(K,M)×KM multiplications.

In addition, we count each complex division as one multiplication. Note from Table

3 that for K = M , the duality-based approach is of complexity O(K4), whereas all

other approaches (direct calculations, ZFDPC, and ZFBF) are of complexity O(K3).

When M = K = 2, both the duality-based approach and the direct calculations

yield the same optimal result, however, the number of multiplications required by

the duality-based approach is significantly higher at 98 compared to 30 for the direct
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calculations. When M = K = 3, our suboptimal approach is only slightly (0.2 dB)

worse in performance than the optimal duality-based approach, but it requires only

73 complex multiplications versus 354 needed with the duality-based approach.

Table II. Number of multiplications required by various techniques for evaluating the

precoding matrix B, with K and M being the number of users and transmit

antennas, respectively.

Precoding technique Number of complex multiplications

Duality-based approach K(2M3 + 5M2 + 6M + 1)

Our direct calculation 7M + 16
(for K = 2)

Our suboptimal calculation min(3,M)3M + 6M + 28 + (K − 3)(M2 + 3M + 2)
(for K > 2)

ZFDPC (for K ≤ M) K2M + KM + K

ZFBF (for K ≤ M) 3
2
K2M + K3 + M

2
+ KM

B. Proposed DPC Based Design for MIMO BCs

Our analysis so far assumes the baseband equivalent of the coded messages Ui to

be complex numbers. In practice this can be realized by using a two dimensional

constellation such as QAM. However, note that the coded message in the DPC scheme

of Fig. 7 is mapped to a PAM constellation, indicating that the baseband equivalent

of the coded message is real. Moreover, the side information V in Fig. 7 is also real,

as opposed to it being complex in our analysis. In order to get a complex output, we

combine the outputs of two independent nested turbo codes (denoted by UI and UQ),
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in which the phase of UQ is shifted by 90 degrees (multiplied by j =
√
−1) as shown

in Fig. 14. The outputs of the two copies are thus analogous to the in-phase I and

quadrature Q components of two dimensional signals in many digital communication

system architectures. Hence we refer to the two dirty-paper encoder as the I and the

Q encoders, which separately encode wI and wQ respectively, where wI and wQ are

obtained by splitting the original message w (e.g., for a two bit message, wI can be

the first bit and wQ the second). If V is a complex side information at the encoder,

the side information inputs to the two encoders are VI = Re{V } and VQ = Im{V }.

At the decoder, the real part of the received signal YI can be tied to the input of one

DPC decoder which gives the decoded message w′
I , while the imaginary part YQ to

another independent decoder which decodes w′
Q. This way we effectively convert the

PAM constellation of our DPC scheme to a QAM constellation.

The complex baseband equivalent of the received signal at user i is now given

by (3.10). In order to keep the same constellation step size at both the encoder

and the decoder, we normalize the received signal by hibi. It is apparent that this

normalization does not affect the received SNR. The resulting signal can be written

as

Y ′
i = Ui(wi; U1, . . . , Ui−1)︸ ︷︷ ︸

Useful signal

+
hi

∑i−1
j=1 bjUj

hibi︸ ︷︷ ︸
Encoder side information

+
hi

∑K

j=i+1 bjUj

hibi︸ ︷︷ ︸
Unknown interference

+
Zi

hibi︸︷︷︸
Gaussian noise

.

Hence the effective encoder side information at user i (i > 1) is

Vi =
hi

∑i−1
j=1 bjUj

hibi

. (4.26)
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TTCQ/TTCM 
Encoder
(Fig. 1)

wI
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+

x
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U
DPC Encoder

w = [wI, wQ]
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1-D DPC decoder
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wI’
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Y’ w’ = [wI’, wQ’]

(a) Encoder

(b) Decoder

UI

UQ

YI

YQ

Fig. 14. Combining two 1-D TTCQ/TTCM schemes to a 2-D scheme.

In theory the unknown interference term has to be Gaussian for the rate equation

(3.11) to hold. In practice it is not perfectly Gaussian. However, our decoders assume

that the interference noise is Gaussian, which will lead to a small loss compared to

the case when the interfering signals are from an ideal Gaussian codebook. Similarly,

the side information Vi will not be Gaussian, but Costa’s capacity result [8] holds also

for arbitrary side information. Our simulations with our TTCQ/TTCM DPC scheme

verify this.

Since user 1 does not have side information, we use a conventional TTCM code

and a PAM constellation for user 1. We combine two independent copies of these

codes (similar to the combination of Fig. 14) to effectively generate a QAM constel-
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lation. The remaining users exploit nested turbo code for DPC. Thus we require

one conventional channel code and K − 1 dirty-paper codes. Our overall DPC-based

code design is schematically shown in Fig. 15. This design is applicable to both the

degraded Gaussian BC and the MIMO Gaussian BC. As described in Chapter III –

Section B, for the degraded Gaussian BC, we assume that the channels experience

no fading, and hence the entries of the channel matrix in Fig. 15 can be considered

as being equal to one.

User K

User i

User 1

ChannelTransmitter

TTCM 
Encoder

w1

U1

UiDPC 
Encoder

wi

Vi

DPC 
Encoder

wK

VK UK

Precoding

B = [b1,…, bK]

Y1
'

x

1 1

1

h b

+

TTCM 
Decoder

wi'
x

1

i ih b
DPC

Decoder
Yi

'

x

1

K Kh b

DPC
Decoder

YK
' wK'

w1'

X1

XM

h1 +

Z1

hi

Zi

+hK

ZK

X

Fig. 15. Overall coding scheme requires one channel code and K−1 dirty-paper codes.

The side information Vi for the DPC encoders is calculated from (4.26).
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C. Simulation Results

In our code designs we use a 16-state, rate-1
2

systematic convolutional code for TTCM.

The code polynomial is chosen as the constraint-length four Ungerboeck code [38]

for the PAM constellation (suboptimally to maximize the average Euclidean distance

between TCM codewords). Specifically, the parity check polynomials for this code are

h0(D) = 23 and h1(D) = 10 in octal notation. For our practical TTCQ/TTCM DPC

scheme, we choose C1 as a 16-state, rate-1
2
, non-systematic convolutional code with

generator polynomials g0(D) = 23 and g1(D) = 10. Code C2, on the other hand,

is a 16-state, rate-2
3
, systematic convolutional code with parity check polynomials

h0(D) = 23, h1(D) = 10, and h2(D) = 0. The block length for both TTCM and

dirty-paper code is fixed at 10, 000 samples.

1. Degraded Gaussian BC

First we simulate our DPC-based design for the two-user degraded Gaussian BC (with

N1 = 10 and N2 = 1) at fixed individual rates of R1 = R2 = 1.0 b/s. Our results

indicate that the TTCM code for user 1 suffers a loss of δ1 = 0.98 dB at R1 = 1.0 b/s.

At R2 = 1.0 b/s, the dirty-paper code at user 2 performs δ2 = 1.53 dB away from

the Shannon limit. We use the optimal γ =
ηo
2
N2

ηo
2
N2(ηo

1
+1)+ηo

1
N1

= 0.0742. The overall

bit error rate (BER) of both users 1 and 2 versus the total transmission power Pt is

shown in Fig. 16. With BER=10−5, it is seen that the transmission power needed

to achieve R1 = R2 = 1.0 b/s is 17.65 dB, which is the same as that calculated from

(4.4), and is 1.44 dB away from the power required if both the channel code and

dirty-paper code were ideal. This result is 1.8 dB better than that reported in [16].

Fig. 17 depicts the capacity region for Pt = 17.65 dB, which is the required total

power for our code design to operate at R1 = R2 = 1.0 b/s. Our operating point is

significantly above the time-sharing line.
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Fig. 16. BER vs. the transmission power Pt for the degraded Gaussian BC, with

R1 = R2 = 1 b/s, N2 = 1, N1 = 10, and optimal γ = 0.0742. The dash line

represents the capacity region boundary.

2. Non-Degraded MIMO Fading BC

We assume the channels undergo independent Rayleigh slow flat fading, i.e., each

element of the matrix H is i.i.d., circularly symmetric, zero-mean, complex Gaussian

with unit variance, and H is frame-wise constant. In all our simulations, we fix

transmission rate to 1 b/s at each user. For a particular encoding order π and

precoding scheme (described in Section 2), we compute the required transmission

power Pt(B,H, π) such that the set of SNR requirements for {ηi} in (4.1) are satisfied.
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Fig. 17. The capacity region for the degraded Gaussian BC with transmission power

Pt = 17.65 dB, N2 = 1, and N1 = 10.

We use the probability of frame error as the performance measure. Assuming that

the transmitter is power limited, i.e., the maximum power it can transmit is Pmax
t ,

the probability of frame error Pfe is computed as

Pfe = Pr{min
π

Pt(B,H, π) > Pmax
t }. (4.27)

Note that this probability can be thought of as the outage probability. If the system is

in outage, we assume that the frames at all users are received in error. The probability

in (4.27) is calculated by averaging over the entire ensemble of the channel matrix H.

In the following we present our simulation results for cases when the number of

users and transmit antennas is up to three.
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a. Simulations for the Two-User Case
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Fig. 18. Probability of frame error vs. maximum transmission power Pmax
t for K = 2

and M = 2.

Fig. 18 compares code designs based on optimal DPC, ZFDPC, and ZFBF in

terms of the probability of frame error vs. transmission power for two antennas at

the transmitter. At a frame error rate of 2%, compared to the sum-rate constrained

(R1 + R2 = 2.0 b/s) optimal scheme of [3], our practical DPC-based code design

loses 3.7 dB in performance. About 2.3 dB of this loss is due to the individual rate

constraints R1 = 1.0 and R2 = 1.0 b/s. Practical coding accounts for the remaining

1.4 dB loss. Compared to the optimal DPC-based design, ZFDPC is approximately

6.5 dB worse; ZFBF loses an additioal 5.5 dB. Note that for the case of two users, the

duality approach and our direct calculations yield identical results. However, in order

to compare their complexities from a practical point of view, we record the CPU time
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that Matlab needs for computing the precoding matrix B for each case. The duality

approach takes 0.5 ms CPU time versus 0.16 ms for the direct approach.

Fig. 19 shows similar results for three transmit antennas. Note that with the

increase in transmit antennas the loss due to the constraint on individual rates at a

frame error rate of 2% is reduced to 1.3 dB. However, the practical coding loss remains

at 1.4 dB. The performance gap between the optimal DPC scheme and zero-forcing

is also reduced to 1.4 dB for ZFDPC and 5 dB for ZFBF.
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Fig. 19. Probability of frame error vs. maximum transmission power Pmax
t for K = 2

and M = 3.
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Fig. 20. Probability of frame error vs. maximum transmission power Pmax
t for K = 3

and M = 2.

b. Simulations for the Three-User Case

The results for three users and two transmit antennas are provided in Fig. 20. Since

in this case the number of transmit antennas is less than the number of users, zero-

forcing (both ZFDPC and ZFBF) does not work. The optimal sum-rate constrained

curve is obtained by using the iterative waterfilling algorithm of [39]. The overall

practical coding loss is 1.50 dB. We also include the performance of the suboptimal

scheme based on direct calculations presented in Section a, which at a frame error

rate of 2% loses only 0.5 dB from the optimal precoding strategy.

Results for the case of three transmit antennas are presented in Fig. 21, where

our suboptimal precoding strategy is only 0.2 dB worse than the optimal scheme,

whereas complexity-wise the duality approach requires a CPU time of 1.1 ms, which
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is almost four times 0.28 ms required by the suboptimal approach. Moreover, there

is a huge gap of 6.5 dB and 15.5 dB between the performance of our practical DPC

scheme with optimal precoding and the theoretical ZFDPC and ZFBF, respectively.
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Fig. 21. Probability of frame error vs. maximum transmission power Pmax
t for K = 3

and M = 3.

We note that regardless of the number of users, the practical coding loss of all

schemes remains at roughly 1.5 dB. Upon first glance, many readers would tend to

think that the coding dB loss of the overall scheme should be roughly equal to the

sum of the individual coding dB losses. Upon close examination however one would

realize that this is not true. We show here simple calculations which shows that the

practical dB loss does not blow up with increasing number of users.

For illustrative purposes, we consider the simple example of ZFDPC, where the

transmitter power is minimized when the diagonal elements of the matrix R should
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satisfy (4.25) with equality. Then the total transmitter power is given by

Pt =
K∑

i=1

|rii|2 =
K∑

i=1

|ηo
i |

|gii|2
.

Let the minimum required SNR at user i for an ideal channel/dirty-paper code be ηth
i ,

and for the practical code with a coding loss of δi be ηpr
i = ηth

i δi. Then the required

transmitter power for the practical scheme is P pr
t =

∑K

i=1
|ηth

i |δi

|gii|2
. If the individual

coding losses δi’s are almost the same, i.e., δ1 ≈ . . . ≈ δK ≈ δ, then

P pr
t ≈

K∑

i=1

ηth
i

|gii|2
δ.

The summation term is in fact the required theoretical transmitter power P th
t . Hence

P
pr
t

P th
t

≈ δ, indicating that the overall coding loss is not a function of the number of

users.
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CHAPTER V

CONCLUSIONS

In this thesis, we have presented practical capacity-approaching code designs for the

degraded Gaussian BC and for the MIMO fading BC. Realizing the importance of

DPC in achieving the full capacity region of not only the degraded Gaussian BC

but also that of the MIMO Gaussian BC, we presented a few practical approaches

to DPC. Starting with the simplest approach of THP for illustrative purposes, we

built our case to present more sophisticated practical DPC schemes which perform

close to Costa’s capacity limit. Specifically, we propose using a DPC scheme which

employs nested turbo codes – with TTCQ as the source code and TTCM as the

channel code. Before employing this TTCQ/TTCM scheme to develop, to the best

of our knowledge, the first capacity-approaching designs for the non-degraded MIMO

BC, we identify the role of precoding at the transmitter. Limited by the inability

of our DPC scheme to adapt to varying transmission rates, we consider the scenario

where each user operates under a fixed rate constraint. Under these individual rate

constraints, the optimal precoding should try to minimize the transmitter power such

that the individual rate constraints are satisfied. Although duality of the MIMO

BC with MIMO MAC provides an easy means of evaluating this optimal precoding

strategy, it requires considerable computational complexity. Therefore, for the two

user case we provide the optimal precoding approach using direct calculations which

possesses significantly lower complexity than the duality approach. For more than

two users, based on direct calculations, we provide a suboptimal approach which for

three users and three transmit antennas performs only 0.2 dB worse than the optimal

duality based approach. We also present other suboptimal precoding strategies such

as ZFDPC and ZFBF.
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Simulation results indicate that our schemes perform close to the capacities,

with a practical coding loss of approximately 1.5 dB. Moreover, our results show a

significant performance gain of optimal DPC over other suboptimal strategies (e.g.,

time sharing and zero-forcing linear beamforming), e.g., for the case of three users

and three transmit antennas our practical DPC design with suboptimal precoding

outperforms theoretical ZFBF by approximately 15.5 dB.

In short, our DPC based design beats suboptimal strategies by a significant

margin, provided that the channel state information (CSI) is known perfectly at

the receivers as well as at the transmitter. Whereas, CSI can be estimated quite

accurately at the receivers, it is not easily available at the transmitter. An important

future direction of research is to design DPC based practical schemes where the

channel state information is not perfectly available at the transmitter. It would be

interesting to analyze the performance of DPC in such a situation and compare it to

the prevalent suboptimal strategies.

There can be several other directions of future work as well. For example, one

research direction is to improve the performance of our designs by employing the

stronger dirty-paper codes of [12, 13, 14]. Finding a closed-form expression for the

optimal precoding matrix where the number of users is more than three is still an open

problem. A research area closely related to the BCs is that of cooperative networks,

where closely located network nodes are grouped together into clusters, inside which

nodes cooperate when sending or receiving information. For instance, consider two

closely located nodes which intend to transmit messages to two distant nodes. Instead

of sending messages independently, the two nodes can cooperate by first exchanging

each other’s messages. After this exchange, the network effectively is a BC. Thus the

two transmitting nodes can make use of spatial diversity without the need of multiple

transmit antennas at a single node. Similarly, the receiving nodes can also cooperate
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to achieve receive diversity. The channel capacities for such cooperative networks

however are not fully known. At the same time code designs for such networks also

hold a healthy research potential. This is part of our ongoing research, results for

which have been presented in [40] and [41].
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