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ABSTRACT 

Early Age Delamination in Concrete Pavements Made with Gravel Aggregates.  

(August 2006) 

Juanyu Liu, B.E., Tongji University, P.R. China; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Dan G. Zollinger 

Gravel aggregates had been used extensively in the Houston District of Texas 

Department of Transportation (TxDOT) for continuously reinforced concrete pavements 

construction for many years. However, some of these pavements have been subject to 

early age delamination and eventual spalling damage. Therefore, a series of studies 

funded by TxDOT since the early 1990’s has been conducted to gain a better 

understanding of mechanisms, material properties, and construction practices, and to 

provide guidelines and recommendations for minimizing early-age delamination in 

concrete pavements made with gravel aggregates.   

In this study, a test protocol to measure the bond strength between aggregates 

and cement mortar was established, and the effects of different material and construction 

parameters on the bond strength of concrete at early ages using a fractional factorial 

design were investigated. The significances of each factor to achieve better bonding 

performance were determined, and the optimum design combination was subsequently 

chosen and validated. Geometric parameters were proposed to characterize aggregate 

shape properties relative to bonding performance with the facilitation of the Aggregate 

Imaging System.  A rating system based on utility theory was developed to evaluate the 

overall contribution of aggregate properties (i.e. physical, geometric, and chemical) to 

the concrete bonding capability and the feasibility of certain mixture design 

combinations. As for theoretical representation of the bond strength across the interfacial 

transition zone, a model of interfacial fracture energy between aggregate and mortar that 

represents the energy necessary to create a crack along the interface was formulated. 
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This model built the connection between concrete properties at the meso-level 

(represented by the interfacial fracture energy between aggregate and mortar) and the 

macro-level (represented by fracture toughness of concrete and significant influencing 

materials and construction factors). In addition, the moisture effects on stress 

development of concrete pavements at early ages using field data as inputs were 

numerically simulated, and a fracture mechanics-based approach was used to predict the 

occurrence of delamination. A delamination detection protocol for the field was 

developed to explore the feasibility and potential of utilizing Ground Penetration Radar 

technology in delamination detection.  Research findings from laboratory investigation, 

field testing, theoretical modeling, and numerical analysis were further validated through 

field test sections, and the associated framework for delamination guidelines was 

established. 
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CHAPTER I 

 

INTRODUCTION 

 

GENERAL 

 

Spalling is a very common distress type for all types of concrete pavements. It refers to 

the breakdown or dislodging of concrete segments along a joint or crack in a concrete 

slab within 0.6 m (2 ft) of a joint or crack (SHRP 1993), and does affect the quality of 

the pavement smoothness and ride quality, and has been very expensive to maintain and 

repair. Early age delamination, a very significant contributor of spall damage, is 

typically oriented parallel to and at a shallow depth below the surface of the pavement, 

developing often within days after paving (Zollinger et al. 2004). This failure plane, 

horizontally oriented near the pavement surface and in the vicinity of transverse cracks 

or joints, can eventually develop into spall damage by fatigue primarily due to repetitive 

traffic loads passing over the delaminated area. 

Particularly in Texas, gravel aggregates have been extensively used in the 

Houston District for continuously reinforced concrete (CRC) pavements construction for 

many years, however, some of these pavements in many instances have been subject to 

debonding of gravel aggregate, early age delamination and eventual spalling damage.   

There were several questions raised to minimize early age delamination in 

concrete pavements made with gravel aggregates. Can gravel aggregates continue to be 

used? How to evaluate aggregate performance? How to select feasible material design? 

Is it possible to detect the existing delamination in the field and predict the delamination 

occurrence? Accordingly, this study focuses on answering these questions, and 

providing guidelines and recommendations for using gravel aggregates in concrete 

paving. 

 
This dissertation follows the style and format of the Journal of Transportation 
Engineering (ASCE).  
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OBJECTIVE 

 

The objective of this study is to develop a mechanistic understanding of the delamination 

process, and provide recommendations to minimize early age delamination for using 

gravel aggregates in concrete paving, which will address:  

 

• Development of a test protocol to measure the bond strength between aggregates and 

cement mortar. 

• Evaluation of the effectiveness of corrective measures and optimization of material 

design.  

• Investigation of the effects of aggregate characteristics on the bonding performance 

of concrete. 

• Development of early age delamination detection in the field. 

• Approach development for predicting delamination occurrence. 

• Modeling of aggregate-mortar interfacial fracture energy.   

 

RESEARCH METHODOLOGY 

 

To meet the objective of this study, the following major tasks are conducted: 

 

• Task 1: Literature review 

• Task 2: Experimental design and laboratory testing  

• Task 3: Aggregate properties characterization and application of utility theory  

• Task 4: Approach  for predicting  the delamination occurrence and formulation of  

interfacial fracture energy model  

• Task 5: Development of delamination detection protocol and test section 

validation 

• Task 6: Guideline frame work development and recommendations to use gravel in 

CRC pavement construction 
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Task 1: Literature Review 

 

A comprehensive literature review was conducted to gather information on key subjects 

that pertain to this study such as research on interfacial transition zone (ITZ), current 

representations and measurements of interfacial bond between aggregates and mortar, 

the effects of concrete mixture proportions (i.e. various aggregate and non-aggregate 

factors), method of construction, and method of curing on bonding strength of concrete, 

previous efforts to improve bond strength and related information on the ITZ. A review 

of the bonding mechanism and details of a delamination and spalling modeling was 

reviewed; literature findings were summarized and documented. This task is presented in 

Chapter II. 

 

Task 2: Experimental Design and Laboratory Testing 

 

Based on the previous study (Zollinger et al. 1993), fracture toughness of concrete is 

used to represent the bond between aggregate and mortar. A test method developed by 

Texas Transportation Institute (TTI) using a modified split tensile specimen based on 

size effect law (SEL) (Tang et al. 1999) is used to determine fracture toughness and 

process zone length. 

Various possible corrective measures to improve the interfacial bonding between 

aggregate and mortar were conducted in the laboratory, to narrow down a list of possible 

corrective measures including application of different aggregate types, lowering water-

cement ratio, improving curing, and application of ultra-fine fly ash among others.  

A fractional factorial design (Taguchi method) based on “orthogonal array” 

(Taguchi et al. 1993) was used to evaluate the effects of various factors on the bonding 

strength. Test runs were made according to the fractional factorial design, where for each 

test run, compressive strength and fracture toughness at different ages were conducted.  

Data analysis involved laboratory test data reduction and analysis relative to 

compressive strength, fracture toughness, and process zone length. According to the 
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Taguchi design, the test data was analyzed by statistical software such as MINITAB 

(Mathews 2004) to evaluate the significances of each factor to achieve better fracture 

toughness performance. The optimum combination was subsequently chosen and 

validated in further laboratory testing. Chapter III describes the work on this task. 

 

Task 3: Aggregate Properties Characterization and Application of Utility Theory  

 

The aggregate properties investigated under this task include physical, geometric, and 

chemical properties. Physical properties investigated include aggregate gradation, oven-

dry bulk specific gravity (BSG-od) and dry rodded unit weight (DRUW), and absorption 

capacity (AC). The aggregate shape and texture characteristics were analyzed using the 

Aggregate Imaging System (AIMS) available at TTI. Based on a statistical distribution 

of angularity and texture parameters, the concrete aggregates were evaluated at all size 

levels.  The results were summarized and used to investigate the effects of the aggregates 

mechanical interlocking on the bonding mechanism. 

The Universal Sorption Device (USD) was used to determine the surface energy 

of aggregates. This method utilizes a vacuum gravimetric static sorption technique that 

identifies gas adsorption characteristics of selected solvents with known surface free 

energy components to indirectly determine the surface energies of the aggregate (Cheng 

2002). To investigate the effects of possible chemical interaction between aggregates 

and mortar, the mineralogy components of each aggregate type were classified.  

Utility theory (Ledbetter et al. 1977) facilitates a way to compare dissimilar 

things based on their values and utilities, and can be used to synthesize and account for a 

variety of factors that play a role to varying degrees in engineering processes. A rating 

system based on utility theory was applied to evaluate the overall contribution of 

aggregate properties on concrete bonding.  A combined value can be generated to 

represent the integral overall contribution of an aggregate for each aggregate type by 

assigning a user defined weighting factor to the rating of each individual aggregate 

property allowing for an overall rating to be combined from several single parameters. 
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The feasibility of selected combinations relative to the bonding mechanism can also be 

accomplished based on utility theory as that of the aggregate contribution, but with 

respect to mix design factors. Chapter IV provides the report of this task. 

 

Task 4: Approach for Predicting the Delamination Occurrence and Formulation of 

an Interfacial Fracture Energy Model 

 

The interfacial fracture energy between the aggregate and mortar can be described as the 

energy necessary to create a crack along this interface. Considering concrete as a three-

phase composite material with the three phrases being hardened cement paste, aggregate 

and interfacial zone between the hardened cement paste and aggregate, the interfacial 

fracture energy can be predicted based on the relation between fracture energy of 

concrete and fracture energies of its components.  

Under this task, the relation between the interfacial fracture energy and related 

construction factors was investigated. The aggregate factors  included maximum 

aggregate size, coarse aggregate factor, aggregate physical properties, aggregate shape 

characteristics (form, angularity, and texture), and chemical properties, and whether the 

overall performance of the aggregate can be represented by an overall rating of the 

contribution of aggregate to the bonding performance. Non-aggregate factors include 

water/cementitious ratio (w/cm), cement factor, ultra-fly ash content, and curing quality. 

The overall effects of all material, construction, and time factors on are closely related to 

the feasibility rating value of each design combination. Therefore, the final results build 

the connection between concrete properties at the meso-level (represented by the 

interfacial fracture energy between aggregate and mortar) and at the macro-level 

(represented by fracture toughness of concrete and significant influencing materials and 

construction factors).   

Stress intensity and fracture toughness are key fracture mechanics parameters 

that can be used by materials engineers and designers in design analysis (Boresi et al. 

1993; Irwin 1958; Irwin 1957; Hertzberg 1976). Within the scope of linear elastic 
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fracture mechanics, the stress field at the crack tip is determined by the stress intensity 

factors (KI). Therefore, by comparing KI and critical stress intensity factor or fracture 

toughness (KIC) directly based on fracture criteria for unstable growth, one can then 

determine the crack stability of the material under given loading conditions. The KIC 

value at early ages of concrete has been used to represent the nature of the interfacial 

bond between aggregate and mortar relative to the delamination. Therefore, it is appears 

to be feasible to predict the occurrence of delamination by comparing the development 

of KI and KIC. In this manner, it can also be used for evaluating the effectiveness of 

pavement design methods to prevent delamination and spalling problems. 

Till now, many methods have been adopted to compute KI, such as finite element 

method, boundary element method, and finite difference method, etc. Among these, 

finite element method is the most popular tool. In this study, finite element software 

packages — Temperature and Moisture Analysis of Curing Concrete (TMAC2) (Jeong 

2003) and ABAQUS (ABAQUS 2003) were applied to predict the development of KI. 

Though temperature variation is also a factor in the delamination development, this 

study specifically focuses on early age concrete behavior associated with volumetric 

contraction due to moisture induced shrinkage. Therefore, a coupled hygro-mechanical 

stress analysis is numerically carried out using typical concrete pavement examples. The 

KI at an early age is investigated by incorporating distribution and history of moisture 

relative to the material-related moisture transport property in the analysis. The 

correlation to the development of delamination was then evaluated by comparing the K 

against KIC developed under lab investigation through examples with different design 

factors. The work in this task is included in Chapter V. 

   

Task 5: Development of Delamination Detection Protocol and Test Section 

Validation 

 

As a non-destructive testing (NDT) technique, the ground penetrating radar (GPR) has 

been applied in pavements to determine the thickness of pavement layers and detect the 
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defects in the pavements (Saarenketo and Scullion 1994). In this study, ground coupled 

GPR from TTI was used to detect delaminations. Several highways paved with gravel 

aggregates in Houston district were selected for GPR testing. Visual observation and 

distress survey were also conducted. Concrete cores were taken from these sites to verify 

the nature of the delaminations.  

The laboratory work and numerical analysis conducted in the previous tasks 

reveals important information on curing and climatic conditions, mixture design, 

aggregate combinations, time of placement, and method of early age crack control to 

provide sufficient guidance to establish test sections. Therefore, pavement test sections 

using gravel were established in November, 2005 to produce performance test data to 

validate measures, practices and techniques to minimize the development of 

delamination in CRC paving. Three continuous days from November 16
th 

to 18
th 

were 

spent for paving of total ten sections.  

Field data has been collected through various techniques available to TTI, Texas 

Department of Transportation (TxDOT), University of Texas at El Paso (UTEP), and 

Center of Transportation Research (CTR). Weather data, concrete temperature and 

relative humidity profiles, and drying shrinkage development were monitored, and 

pavement surveys were conducted to monitor the crack pattern development over time in 

different test sections. Bonding strength was measured, and GPR technique was 

conducted on November 28
th 

to track the delamination development. Correspondingly, 

results from stress analysis and GPR delamination detection protocol were further 

validated from visual observation of concrete cores taken on cracks. Chapter VI 

describes the detailed results about this task. 

  
Task 6: Conclusions and Recommendations 

   

Upon completion of experimental data analysis, numerical simulation and modeling, and 

field testing and validation, the results were synthesized to draw conclusions and 

recommendations, as presented in Chapter VII. The conclusions include the significant 
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findings through the above tasks, and the recommendations include further investigation 

of material characteristics, validation and optimization of analysis approaches proposed 

in this study. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

GENERAL 

 

In this chapter, a comprehensive literature review was conducted to gather information 

on key subjects that pertain to this study such as current aggregate bond strength 

measurement techniques, the effects of concrete mixture proportions (i.e. various 

aggregate factors, w/cm, and application of mineral admixture etc), method of 

construction, and method of curing on the bonding performance of concrete pavements, 

and trials to improve bonding performance and information on the ITZ. The research 

status of bonding mechanism and development of delamination and spalling modeling 

was also reviewed, and the literature findings were summarized and documented. 

 

DELAMINATION MECHANISM 

 

As shown in Figure 2.1 (a) (Soares and Zollinger 1998), spalling refers to the breakdown 

or dislodging of concrete segments along a joint or crack in a concrete slab within 0.6 m 

(2 ft) of a joint or crack (SHRP 1993, Senadheera and Zollinger 1996) that can affect the 

structural slab integrity.  A significant contributor to spalling is the existence of shallow, 

horizontal delaminations that is oriented parallel to and at a shallow depth below the 

surface of the pavement (Figure 2.1 (b)). As shown in Figure 2.2, water starts to 

evaporate from inside of concrete to the air once the concrete is paved. However, 

relative humidity distribution is not uniform, because the water at the surface or close to 

the surface is much easier to evaporate than that inside the concrete. The development of 

the moisture gradient is due to evaporation as a function of the ambient and curing 

conditions during and after placement of the concrete. If the loss of moisture is great 

enough in terms of evaporation and time, a failure plane, horizontally oriented near the 
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pavement surface and in the vicinity of transverse cracks or joints, can develop resulting 

in a weakening or lowering of the resistance of the pavement surface to spall damage.   

  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Spalling in concrete pavements (b) Early age delamination 

Figure 2.1 Spalling and delamination 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Formation of horizontal delamination 
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Early age delamination occurs when stresses caused by the moisture variation 

surpass the concrete shear strength. A design framework for delamination formation and 

subsequent spalling development was introduced by Soares and Zollinger (1998), where 

stresses due to moisture variation were considered within the scope of the formation of 

delamination fracture, and shear stress relative to delamination was determined from 

stress functions derived from median-thick plate theory in a fashion similar to that 

shown by Westergaard (1927) and Tang et al. (1993).  

Conditions necessary for formation of delamination include low interfacial 

strength between the aggregate and mortar and sufficient evaporation of pore water from 

the hydrating concrete, resulting in differential drying shrinkage near the pavement 

surface (Wang and Zollinger 2000). In concrete mixtures made with certain coarse 

aggregate types, a greater tendency exists to cause early age delamination and eventual 

spalling.  For that reason, experience relates spalling to certain aggregate types, their 

associated aggregate-mortar bond characteristics, and the tendency of concrete to allow 

water to evaporate during curing.   

 

INTERFACIAL BOND BETWEEN AGGREGATE AND MORTAR  

 

The interfacial transition zone (ITZ) in concrete refers to the region surrounding a 

reinforcing phase as exists in concrete as "aureole de transition", derived originally from 

optical microscope observations made by Farran (Ollivier and Grandet 1980) many years 

ago.  Scrivener and Pratt (1986) reported that “the relative movement of the sand and 

cement grains during mixing, and possibly settling of the aggregates before the cement 

paste sets, may lead to regions of low paste density around grains and to areas of 

localized bleeding at the aggregate-cement interface in which large Calcium hydroxide 

(Ca(OH)2) crystals precipitate.” The interface regions are, in general much different 

from the bulk cement paste in terms of morphology, composition, and density. At least 

in part due to bleeding referred to earlier, the interface region between aggregate and 

cement paste is more porous than bulk paste, leading to lower densities (Figure 2.3).  
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(a) Accumulation of Bleed Water  (b) Wall Effect 

 
 (c) One Sided Growth of C-S-H Gel 

Figure 2.3 Factors leading to porous aggregate-HCP interface (Subramanian 1999) 
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The major ITZ models in the literature come from Barnes (1980), Ollivier and 

Grandet (1980), Monteiro (1985), and Zimmelman (1985), as shown in Figure 2.4.  

These models differ primarily in the presence of a C-S-H film, preferential orientation of 

the Ca(OH)2 crystals at the interface (either horizontal or vertical), epitaxial 

development of Ca(OH)2 crystals within the transition zone, and the presence of 

ettringite in direct contact with the aggregate and in high concentration zone. The 

fracture path often runs along the cleavage planes of oriented Ca(OH)2 crystals. Mehta 

(1986) stated that “in mature pastes, the fracture surface generally contains unusually 

large areas of calcium hydroxide crystals.” Due to the large crystal size and, therefore, a 

small surface area, the inter-particle bonding forces between calcium hydroxide crystals 

or between calcium hydroxide crystals and other particles in the cement pate are weak.  

Extensive studies have been done on the microstructure of cement 

paste/aggregate interfacial zone by using scanning electron microscopy (SEM), X-Ray 

Diffraction (XRD) and mercury intrusion porosimetry (MIP) techniques (Scrivener and 

Gartner 1988, Nehdi and Mindess 1997, Zhang et al. 1996, Winslow et al. 1994). Many 

studies (Scrivener and Pratt 1986, Monteiro et al. 1985, Scrivener and Gartner 1988, 

Larbi and Bijen 1990, Monteiro and Ostertag 1989) reported that the thickness of the 

interfacial region is approximately 40 to 50 μm, with the major difference in 

characteristics form the bulk paste occurring within the first 20 μm from the physical 

interface. The weakest part of the interface of this interfacial zone lies not right at the 

physical interface, but 5 to 10 μm away from it within the paste fraction. Microscopic 

examination of polished concrete surfaces by Diamond et al. (1982) revealed that the 

mean spacing between the aggregate particles is only about 75 to 100 μm. Even though 

the variability of this spacing is large, it suggests that with an interfacial zone thickness 

of approximately 50 μm, most of the hydrated cement paste (HCP) lies within the 

interfacial zone and only a small volume of bulk HCP exists. This indicates that the 

representation of the actual concrete in the models is far from satisfactory.  
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Figure 2.4 Various models of ITZ 
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Interfacial Bond Representation 

 

There are no standard test methods to measure or quantify strength of the interfacial 

zone. Some of the indirect methods of measuring bond are: (1) “push out” test, in which 

cement mortar is cast against a aggregate prism and the interface is tested in shear, (2) 

modified indirect tensile test, in which a predetermined notch is cast, the specimen is 

tested in the indirect mode and fracture face is analyzed, and (3) volumetric surface 

texture analysis (VST), through this test process the micro- and macro-texture of the 

fracture face can be analyzed and also the crack path can be determined. As shown in 

Figure 2.5, eleven of the techniques which have been used for measuring aggregate-

mortar bond strength were summarized by Alexander et al. (1965), such as mid-point 

and one-third-point transverse tests, cantilever methods, conventional, centrifugal and 

indirect tensile tests, and axial compression tests on shear bond specimens.  

Akçaoğlu et al.(2002) investigated the influence of surface, rigidity and size of 

aggregates and w/cm of the matrix on bond strength at the ITZ and the interrelationship 

between the bond and the matrix in the failure process of concrete under uniaxial 

compression, where they prepared cube mortar specimens inserted with a single 

spherical steel aggregate into the center of the specimens, and tensile strength and tensile 

strength loss  after the application of 40%, 60%, and 80% of compressive strength were 

used to represent the interfacial bond strength. Rao and Prasad (2002) used two types of 

test specimens (fresh mortar cast against aggregate surface; and sandwich specimens) 

under double-edge notched compact tension, and the bond strength was calculated as the 

failure load divided by the actual failure surface of the interface. 
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Figure 2.5 Techniques used for measuring aggregate-cement bond strength 

  

 

No current strength theory has been applied directly to the interface between 

aggregate and cement paste due to the complexity of the microstructure. As a first 

approximation, Ping and Beaudoin (1992) built a relationship between interfacial bond 

strength and electrical conductivity of the transition zone, considering interfacial bond 

strength is directly proportional to the total area fraction of solid phases associated with 

fracture surface in the transition zone.  The interfacial bond strength is linearly related to 

the electrical conductivity of the transition zone. Bond strength for the non-porous 

aggregate-portland cement paste system is proportional to the negative thickness ratio of 

the water layer and transition zone and inversely proportional to w/cm ratio. 

 The emerging technology with fractal analysis may pose as a considerable 

advance towards the development of new methods for aggregate-mortar bond, which 

will be better than techniques such as AASHTO T 177 Flexural Strength of Concrete 
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(Using Simple Beam with Center Point Loading) and AASHTO T 97 Flexural Strength 

of Concrete (Using Simple Beam with Third Point Loading), which have been used 

among others, to determine bond strength (Fowler et al. 1996). 

 

Interfacial Microhardness 

 

As a nondestructive method, microhardness measurement is a measure of strength of 

metals and nonporous materials. The test method employs the Vicker’s pyramid indentor 

placed in a conditioned box. Hardness is calculated by the following formula 

(Ramachandran 1995): 

 

( ) 2
2 4.1854 

d
PmmKgH v

×
=−   (2.1) 

 

where P = load (g), d = mean value of the indentation diagonals, and Hv = 

microhardness. Microhardness can be useful as a measure of strength development in 

cements and cement minerals hydrated for different lengths of time. 

As a measure of specific surface energy, the hardness of materials has very close 

relation with mechanical properties of materials. Microhardness testing provides a tool 

for quantifying microstructural gradients across the ITZ. Microhardness measurements 

can contribute to characterization of the properties of the ITZ relative to the bulk cement 

paste matrix and also provide one means of estimating the width of the ITZ. Where the 

ITZ microstructure is weaker than the bulk region, a depression in the microhardness 

profile is expected within the zone of influence of the aggregate, the profile at the 

aggregate surface also being influenced by the strength of the paste–aggregate bond 

(Asbridge 2002). 

The relation between the facture behavior and microhardness makes it possible to 

predict the fracture parameters from microhardness measurements (Beaudoln 1982).  

Tamimi (1994) applied both minimum and maximum microhardness of cement paste-

aggregate interface to represent the interfacial bond. 
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Fracture Parameters 

 

Through microstructural studies, Prokopski (1991) stated that it is the transition zone, 

and specifically, the aggregate-cement paste interface, where the greatest number of 

defects occur, and that the concrete failure process commences at the transition zone. 

Therefore, it is reasonable to utilize the methods of fracture mechanics to relate the 

fracture parameters to the structural defects (primary cracks).  Fracture toughness (or 

critical stress intensity factor) was commonly used to represent the interfacial bond, 

because it can be used as a criterion to evaluate concrete quality (Prokopski and Langier 

2000), and it can describe the sensitivity of coarse aggregate characteristics to the 

aggregate-mortar interfacial bond (Senadheera and Zollinger 1996). 

A number of studies on the interface fracture mechanics of biomaterial systems 

have been made (Rice 1988; Hutchinson 1990). Fracture of a biomaterial interface can 

be expressed in terms of two parameters, an energy release rate, G, and a phase angle, ψ. 

Interface cracking occurs when G reaches a critical value, defined as the interface 

fracture energy, Гi (Büyüköztürk and Lee 1993). A micromechanical model (Mohamed 

and Hansen 1999) was developed based on the numerical simulation to investigate the 

crack-aggregate interaction in concrete materials, and the results showed that the tensile 

strength ratio, fracture energy ratio, and the moduli ratio between the aggregate and the 

matrix play the dominant role in determining the crack penetration condition. 

Pye and Beaudoin (1992) proposed an energy approach to bond strength 

determination in cement systems, and they stated that interface fracture energy is a more 

appropriate descriptor of the quality of the cement paste-substrate bond due to the 

progressive failure of the bond. In the study conducted by Tan et al. (1995), Tschegg’s 

wedge splitting test (Tschegg et al. 1995), already used for testing of concrete and 

asphalt, had been slightly modified for testing the fracture behavior of sandstone-matrix 

and limestone-matrix interfaces. Their results showed that the specific fracture energies 

of sandstone-mortar and limestone-mortar interfaces were much lower than for bulk 

mortar. Wong et al. (1999) investigated the mortar-aggregate interfaces from both the 



  19  

three-point bending test of notched beams with mortar-aggregate interface above the 

notch and splitting tensile test on mortar-aggregate interface cubes. The parameters 

studied included: 1) interfacial flexural strength, 2) interfacial fracture energy, 3) 

interfacial fracture toughness; and 4) interfacial splitting tensile strength. The interfacial 

fracture toughness ( ifK ) was determined based on the theory of interface fracture 

mechanics for bi-materials, which has the complex form of , where the 

two components and  denote the normal stress intensity and the shear stress 

intensity, respectively. The magnitude of the shear stress intensity is much smaller than 

that of the normal stress intensity, which indicates that the fracture of the interface 

between the cement mortars and the aggregates can be approximately considered as the 

Mode I fracture (tension mode of fracture), and thus the values of are comparable 

with the toughness of mortar (  ). The values of were about one third of the 

values of  , which is correlated with results of Saito and Kawamura’s (1986).  The 

interfacial fracture energy (  ) was only about 10% of the corresponding mortar 

fracture energy (

ififif KKK 21 +=

ifK1
ifK2

ifK1

m
ICK ifK1

m
ICK

if
FG

m
FG ). This is consistent with the results obtained by Mistui et al. (1994) 

from the aggregate push out test and by Tschegg et al. (1995) from the wedge splitting 

test. The ratio of to if
FG m

FG was much smaller than the ratio of  to , indicating 

the fact that fracture energy and fracture toughness reflect different aspects of the 

interfacial failure. 

ifK1
m
ICK

 

Factors Affecting Aggregate-Mortar Interfacial Bond 

 

Struble et al. (1980) categorized the nature of the cement-aggregate bond according to its 

morphological, chemical, and mechanical properties, and stated that the bond between 

cement paste and aggregate results from some combination of mechanical interlocking 

between cement hydration products and the aggregate surface, and a chemical bonding 
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resulting from a reaction between aggregate and cement paste. Therefore, the influencing 

factors of aggregate-mortar interfacial bond include both aggregate and non-aggregate 

factors, which will be summarized below. 

 

Aggregate-related Factors 

 

The nature of the interfacial zone depends on the microstructure characteristics of the 

aggregate, in which any of the three mechanisms, physical interaction, physical–

chemical interaction and mechanical interlock, may be dominant (Zhang and Gjorv 

1990). The aggregate factors believed to be pertinent to the aggregate-mortar interfacial 

bonding include physical, geometric, and chemical properties, varied significantly with 

aggregate types (Senadheera and Zollinger 1996, Zimbelman 1985, Perry and Gillot 

1977, Prokopsi and Halbiniak 2000). 

The effects of aggregate type and size are important parameters in the formation 

of ITZ structure and subsequently in the failure process of concrete. Porous aggregates 

provide an excellent bond because the process of absorption increases and improves the 

contact area between the paste and the aggregate. The failure surfaces of the concrete 

made with larger size coarse aggregate show significant traces of pulling out of the 

aggregate from the matrix. Liu et al. (2006) summarized the reasons why larger 

aggregate size can have a detrimental effect on the interfacial bonding: 1) for a given 

volume of coarse aggregate, a larger maximum size reduces the specific surface area of 

aggregate; 2) an increased stress concentration and microcracks in the vicinity of the 

aggregate is expected with decreased surface area; 3) larger aggregate size results in the 

increases of the perimeter and thickness of interfacial layer between mortar and 

aggregate so that a larger flaw can be formed and the bond strength decreased; and 4) 

larger aggregate particles tend to accumulate more bleed water around it,  which could 

lead to a higher local w/cm and subsequently, a higher porosity in the ITZ than the ITZ 

around the smaller aggregates. At the same w/cm and age, reducing the aggregate size 

from 2.36–4.75 mm range to 150–300 mm range tends to reduce the porosity and 
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increase the content of unhyrdated products in the region surrounding the aggregate 

(Elsharief et al. 2003). For low w/cm ratio composites, the effect of aggregate size on the 

weakness of ITZ and the failure process of concrete is of paramount importance 

(Akçaoğlu et al. 2002). With larger aggregates, low w/cm ratio matrices result in more 

critical ITZs with a more condensed microcrack cloud in a narrower region (higher 

tensile stress distribution) with increasing aggregate size which leads to lower bond 

strength. This indicates that the adverse effect of the rigid aggregate became more 

pronounced with increased matrix quality. 

Indirect evidence of the bonding mechanisms due to mechanical interlocking 

aided by the aggregate surface texture has been established (Alexander et al. 1965, Hsu 

and Slate 1963) by comparing the bond strength of fractured rock surfaces with that of 

polished rock surfaces. Aggregate shape characteristics affect the proportioning of 

portland cement concrete mixtures, the rheological properties of the mixtures, aggregate-

mortar bond, and the interlocking strength of the concrete join/crack (Al-Rousan 2004). 

Previous studies (Mindness et al. 2002, Kosmatka et al. 2002, Will 2000, Fowler et al. 

1996) indicated that the bond strength between the cement paste and a given coarse 

aggregate generally increases as particles change from smooth and rounded to rough and 

angular. Rough, textured surfaces will improve the mechanical component of the bond 

by increasing the amount of surface area available for bonding with the paste for a given 

aggregate content. The surface roughness of the aggregate shows significant influence 

on the fracture toughness of the interface and the bond strength of the interface 

(Alexander 1993, Rao and Prasad 2002). Study conducted by Trende and Buyukozturk 

(1998) showed that for a given type of loading conditions the critical interface fracture 

energy release rate, Gi, increases with rougher aggregate surfaces for both Mode I and 

mixed mode tractions. The interlocking of angular particles results in a strong aggregate 

skeleton under applied loads, whereas round particles tend to slide by or roll over each 

other, resulting in an unsuitable and weaker structure. Using a high percentage of flat 

and elongated particles might cause problems when placing the concrete, which will 

result in voids and incomplete consolidation of the mix, and thus contribute to spalling. 
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In addition, it may cause a high internal stress concentration that leads to easier bond 

failure (Meininger 1998).   

Alexande et al. (1968) reported that bond strength varied widely according to the 

rock type and surface roughness of the aggregate, with the strengths varying by a factor 

of as much as two between different aggregates. Some researchers have used this as 

indirect evidence of chemical reaction between cement and rock types. Ozol (1978) 

pointed out that variation in bond strength could alternatively be explained by different 

roughness factors of different aggregates. However, regardless of whether the bond is 

primarily due to either mechanical interlocking or chemical reaction, the true surface 

area of the aggregate available for bonding is an important aspect of bonding. The true 

surface area entails the size, shape, and surface texture of aggregate particles. 

Chemical bonds form as a result of chemical interaction between the hydrated 

cement compounds and the constituent minerals of the aggregate. Farran (1956) first 

concluded that the bond strength was due to a combination of chemical reactions 

between aggregate and cement paste, and epitaxial growth of Ca(OH)2 on the aggregate 

surface. Langton and Roy (1980) explored the difference in morphology of the transition 

zone present near reactive and non reactive aggregates. Suzuki and Mizumaki (1975, 

1976) observed that the quantity and crystallinity of these products varied with different 

aggregates. Mehta and Monteiro (1988) concluded that the transition zone around 

limestone aggregate is strengthened while the transition zone around quartz aggregate 

does not show signs of strength increase. Senadheera and Zollinger (1996) also stated 

that carbonate aggregates produce higher bond strengths than silicate aggregates. They 

summarized that the surface chemical properties of common silicate minerals, such as 

quartz and feldspar, are different than those of the carbonate minerals because quartz, 

which is composed of silicon and oxygen atoms linked in tetrahedral coordination, yields 

a negatively charged surface through dissociation of hydrogen atoms. This results in a 

negative charge in the quartz surface and positive charges in the adjacent water medium. 

This structure is termed the double-layer structure at the quartz-water interface. This 

strong affinity to water results in a poor bond. However, the study conducted by Tasong 
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et al. (1998) showed that the limestone in particular produced a porous ITZ as a result of 

chemical interaction at an early age. The carbon dioxide gas given off as a result of a 

chemical interaction between the limestone and the hydrating cement paste is considered 

to be the main reason for this high porosity (Tasong et al. 1999), which accounts for the 

weaker bond between this rock and the cement paste at an early age. 

 

Non-aggregate Factors 

 

Non-aggregate factors summarized here include w/cm, mineral and chemical 

admixtures, and processing methods.  

 

Water-cementitious ratio (w/cm) 

 

Numerous studies (Simeonov and Ahmad 1995, Zimbelman 1985, Simenow and Ahmad 

1995) have indicated that the w/cm is a predominant influencing factor of aggregate-

mortar interfacial bond. The structure of porosity of the transition zone, its thickness and 

properties, and the quality of the matrix are all closely related to w/cm.  An increased 

porosity has been found to occur in the area of the aggregate-cement paste interface 

caused by the higher w/cm in this region with a simultaneous decrease in w/cm in the 

bulk of the matrix (Brant 1995), while reducing w/cm from 0.55 to 0.40 resulted in an 

ITZ with characteristics that were not distinguishable from those of the bulk paste as 

demonstrated by backscattered electron images (BSE) images (Elsharief 2003). Yuan 

and Gud (1998) reported that the local increase in w/cm in the area of the aggregate -

cement paste interface is proportional to the amount of free unbound water, and any 

action increasing the contents of the solid phase reduces the effect of the transition zone 

on the strength properties of concrete. Simenow and Ahmad (1995) also pointed out that 

reduction in w/cm ratio makes this critical ITZ region narrower.  However, according to 

Bentz et al.’s research (1992), w/cm has little effect on the transition zone thickness, 

while substantially influencing its porosity. 



  24  

Prokopski and Langier (2000) conducted the fracture toughness investigations for 

concretes made from natural gravel aggregate, with various w/cms, without silica fume 

and with silica fume addition. The largest values of the critical stress intensity factor 

were showed by concretes with the lowest w/cm (both with and without silica fume 

addition). This was caused by considerably lower porosity of the aggregate-cement paste 

transition zone as observed in microstructural examinations, which had in this case a 

compact structure with a small number of structural defects. As the w/cm increased, an 

increase in the structural porosity of the aggregate-cement paste transition zone 

occurred, which caused a promoted propagation of cracks and resulted in lower values of 

stress intensity factor. For concretes with the lowest w/cm, the forces of adhesion of the 

aggregate to the cement paste were high (higher than the strength of gravel grains), 

which resulted in the propagation of cracks through the coarse aggregate grains and the 

formation of flat–surface fractures. In the case of concretes with a large w/cm, the 

aggregate-cement paste transition zone was highly porous and weak, which resulted in 

the development of a crack in this zone; the so- called overgrain fractures, highly 

irregular and rough. The microstructural examinations (Prokopski 1997) showed that the 

aggregate-cement paste transition zone in concrete  from gravel aggregate with a small 

w/cm (concrete without silica fume addition) and both with a small w/cm and a silica 

fume addition was uniform and dense, with only a small number of structural 

discontinuities. A transgranular character of fracture was observed in this case, that its 

cracks going through the aggregate grains, which caused the formation of a flat fracture 

surface. The strength of the aggregate-cement paste interface was in this case higher than 

the strength of gravel grains, which resulted in highest values of fracture toughness.  

 

Mineral and chemical admixtures 

 

Extensive studies have also been done on use of mineral admixtures in concrete and their 

effects on the microstructure of ITZ (Goldman and Bentur 1992, Bentur and Cohen 

1987, Charles-Gibergues 1982). Mineral admixtures influence the development of the 
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microstructure in the interfacial zone because of two main factors: (1) a densification of 

the packing of the particles if the size of the additions is much finer than the size of the 

cement grains; and (2) a modification of the hydration process. 

 Silica fume affects the pattern of crystallization and degree of orientation of 

Ca(OH)2 crystals at the aggregate surface, resulting in very thin interface during the first 

few days of hydration (Cheng-yi and Feldman 1985, Larbi and Bijen 1990, Toutanji et 

al. 1999, Wong et al. 1999). It has been identified to be able to strengthen the interfaces 

when used in concrete (Pope and Jennings 1992, Goldman and Bentur 1989, Rao and 

Prasad 2002). According to the results of their studies, addition of silica fume increased 

the interfacial bond strength and interfacial fracture energy by about 100%. The 

interfacial bond improvement effect of such materials is due to their small particle size 

and pozzolanic reactivity, leading to the elimination of water film on aggregate surfaces 

in noncoated aggregate–cement systems, denser microstructures and stronger interfacial 

bond.  

Fly ash is another type of pozzolanic material widely being used as a cement 

replacement to produce high-performance concrete and high-volume fly ash concrete 

(Langley et al. 1989, Carette et al. 1993). Many researchers indicated that low-calcium 

fly ash (ASTM Class F) also improves the interfacial zone microstructures, although it is 

generally coarser and less reactive than silica fume. Mehta and Monteiro (1988) 

indicated that fly ash is effective in reducing the thickness of the interfacial zone and 

porosity in the interfacial zone after prolonged curing. Saito and Kawamura (1989) 

demonstrated that fly ash significantly reduced the degree of orientation of Ca(OH)2 

crystals and suppressed the precipitation of Ca(OH)2 crystals and formation of ettringite 

in the interfacial zone. The research conducted by Bijen and Selst (1992) indicated that 

fly ash reduced not only the preferential orientation but also the quantity of Ca(OH)2. 

Besides, Bentz and Garboczi (1991) predicted through computer simulation studies that 

replacing 20% of cement with fly ash with smaller particle size resulted in higher 

interfacial strength than that of the control portland cement paste. Wong et al. (1999) 

investigated the properties of fly ash-modified cement mortar-aggregate interface, and 
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the results showed that a 15% fly ash replacement increases the interfacial bond strength 

and interfacial fracture toughness at the ages of 28 and 90 days. Fly ash replacements at 

all the levels studied result in higher interfacial fracture energy at the age of 90 days due 

to the pozzolanic action of fly ash. Researchers also showed the interest in the effects of 

chemical admixtures on the contribution of ITZ (Xu et al. 2000).  

 

Processing methods 

 

Buch and Early (1999) stated that the use of crushed aggregates, sand blasted aggregates 

and aggregates coated with calcium hydroxide can enhance the bond strength. There is a 

marginal improvement in the indirect tensile strength of sand blasted limestone concrete 

mixtures. The softer limestone is subjected to “roughening” under the sand blasting 

process and thereby improving the mortar-aggregate bond. 

Sand Enveloped with Cement Concrete (SEC) was developed by Hayakawa and 

Itoh (1982).  The procedure was basically the same as for mixing of conventional 

concrete, except that the water was divided into two portions and added into the mixer at 

two separate times. The amount of the first water addition was controlled to be 25% by 

weight of the cement to be used, including any surface moisture of the sand and gravel. 

The effectiveness of this two-stage mixing method in reducing the bleeding capacity and 

improving the interfacial bond was also evaluated by Tamimi (1994).  

 

Methods of Improving Interfacial Bond 

 

According to the factors influencing aggregate-mortar interfacial bond described 

previously, ways to improve the interfacial bond are summarized below: 

 

1) removing of excess water, 

One can expect to get improved properties of the interface, simply by reducing the w/cm 

ratio, which is also confirmed by experimental results by Mitsui et al. (1993). When 
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w/cm ratio is reduced from 0.65 to 0.35, the push-out load (a measure of bond strength) 

was increased from 1200 N to 1600 N, and the porosity at a distance of 50 μm was 

reduced from 24% to 18%. A further reduction in water content near the interface can be 

effected by using aggregates having slightly porous surfaces. The excess water is drawn 

into these pores and cement particles are also pulled towards surface, which is known as 

the filter effect (Bentz et al. 1987). Another suggestion is to reduce the surface tension of 

water through the use of a water reducing agent or surfactant, which will reduce the 

thickness of the water film on the aggregate. 

Scholer (1967) suggested that the stress level for initiation of micro-level cracks 

in concrete is primarily a function of the mortar strength. Hence, one way to improve 

interfacial bond strength would be to improve the strength of the cement mortar (Buch 

and Early 1999). However, this needs to be compatible with the other functional needs 

of the resulting concrete mixture design. For example, if a higher cement content is used 

to increase mortar strength in concrete, the shrinkage strains in concrete may also 

increase, thereby reducing any benefit that may have been gained from increased mortar 

strength. 

 In addition, besides w/cm ratio, Ping and Beaudoin (1992) indicated that the 

thickness of the water layer on the aggregate surface at the beginning of the mixing is 

also a principal factor affecting bond strength at the interface between nonporous 

aggregate and portland cement paste.  Therefore, another possible way is to decrease the 

water layer at the interface.  From this view, SEC concrete (Hayakawa and Itoh 1982, 

Tamimi 1994) was developed as a concrete made by adding water at two separate times. 

Compared with the conventional concrete, the two stage concrete exhibits lower 

bleeding and increased values of both minimum and maximum micro-hardness of the 

cement paste-aggregate interface. This is attributed to lower w/cm ratio at the interface 

due to the "SEC" method, the resulting tighter packing of hydration products with more 

intergrowth and interlocking, subsequently, the densification of the interfacial zone.  
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 2) improving the packing of small particles near aggregate face,  

Average size of cement grain can be taken as say 30 to 40 μm, if we add very small 

particles, say to 5 μm diameter, the small particles will fill up the interstices and densify 

the interface and also improve the bond. Research conducted by Mitsui et al (1993) 

showed that normal concrete with w/cm = 0.35 had a push-out load of 1600 N and a 

porosity of 18%. Addition of 10% micro silica (w/cm = 0.35) dramatically improved the 

porosity characteristics to 3% and the push out load to 2600 N.  Rao et al. (2002) also 

presented similar results that the bond strength of concrete increases due to the 

pozzolanic reaction of silica fume, which improves the physical interaction at the 

interface.  

 

3) coating the aggregate faces with a reactive layer.  

Zimbelmann (1987) suggested that the bond strength of the transition zone might be 

improved by inducing a chemical or physical reaction between the aggregate and the 

hydrated cement paste. By precoating the aggregate particles with a cement/silica fume 

slurry, the push-out load was increased from 2600 N to 4200 N and the porosity at the 

interface transition zone was practically eliminated (Mitsui et al. 1994). Guinea et al. 

(2002) investigated the effect of the bond between the matrix and the aggregates on the 

cracking mechanism and fracture parameters of concrete, where he applied surface 

treatments such as bitumen and paraffin coatings to weaken the bond, and an epoxy resin 

to increase it. 
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CHAPTER III 

 

LABORATORY INVESTIGATION 

 

GENERAL 

 

As described in Chapter II, extensive research has been done to improve the interfacial 

bonding between aggregate and mortar. However, most of research has focused on later 

age of concrete (28 days or over). Since in our study, the interfacial bonding at early age 

is more critical than that at later ages, various possible corrective measures to improve 

the early age interfacial bonding were investigated in the laboratory, and the results were 

presented in this chapter. A fractional factorial design (Taguchi Method) based on an 

“orthogonal array”, which allows the user to analyze many factors with a few 

combinations (Mason et al. 1989), was used to evaluate the effects of various key factors 

on the bonding strength. The experimental design and associated laboratory testing are 

described. The analysis results of the Taguchi design by statistical software such as 

MINITAB are presented. The optimum combination is subsequently chosen and 

validated in the further laboratory tests.  

 

FRACTURE TOUGHNESS TO REPRESENT AGGREGATE-MORTAR 

INTERFACIAL BOND  

 

As described in Chapter II, fracture parameters have been used to represent aggregate-

mortar interfacial bond. Investigation of the fracture toughness of concrete has been on 

the rise for decades, due to the recognition that structural behavior is controlled not only 

by compressive strength of concrete, but also by the independent material parameter 

related to fracture toughness. Previous research has indicated that KIC at early ages of 

concrete can be used as criteria to evaluate concrete quality, and it can describe the 

sensitivity of coarse aggregate characteristics relative to the aggregate-mortar bond 
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(Zollinger et al. 1993). Therefore, in this study, KIC was used to represent the interfacial 

bond between aggregate and mortar of a variety of coarse aggregates types and concrete 

mixtures, and was the target of the Taguchi Design in this study.  

The size effect law (SEL) and its generalized theory summarizes the observed 

size effect on the nominal strength of concrete structures. It presents a fracture model of 

concrete in which KIC and another associated fracture parameter, process zone length 

(cf), are objectives. It can be synthesized as (Tang et al. 1999): 

 

( ) ( )dgcg
K

c
f

IC
nN

00' αα
σ

+
=  (3.1) 

 

where,  

σN  =  nominal strength of specimen (or structure), 

cn  =  arbitrarily defined constant, usually taken so as to make σN the maximum 

tensile stress in the specimen of the same type with no crack, 

d  =  specimen size, 

( ) ( )ααπα 22      Fcg n= , 

α  =  geometry factor, 

F(α)  =  geometry function, obtained with finite element analysis, 

g’(α) =  derivative of g(α), and 

α0  =  ratio of the initial crack length (2a0) to the specimen dimension d. 

For specimens of a given geometry, Equation 3.1 can be converted to a linear regression: 
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It is obvious that after linear regression, KIC can be calculated from the regression 

coefficients and values of g(α0) and g’(α0). 

The variable-notch, one-size, split-tensile test method (Tang et al. 1996) 

developed at TTI was based upon the above equations. This method allows for the use of 

specimens of the same size and shape but with different notch lengths, which provides 

for a great amount of convenience in specimen preparation. The various configurations 

illustrated in Figure 3.1 were utilized in order to enhance the accuracy of the test method 

relative to specimen geometry effects. For these split tensile specimens:  

 

bR
P

N π
σ =  (3.3) 

 

where, 

b = length of the cylinder, 

R = radius of the cylinder = d/2, and 

P = the total compressive load. 

Equation 3.3 also implies that π/1=nc in Equation 3.1. For the three different 

geometric shapes of the specimens in Figure 3.1, different F(α) and associated g(α) and 

g’(α) were obtained based on finite element analysis (Tang et al. 1996). For the regular 

split cylinder (1 and 2 in Figure 3.1),  

 

( ) 32 256.0472.1026.0964.0 αααα −+−=F  (3.4) 
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and for the holed cylinder (3 in Figure 3.1), 

 

( ) 32 940.14938.22451.10849.2 αααα −+−=F  (3.5) 

 

The cylindrical specimens are 6-in in diameter (i.e., d in Equation 3.1), and 12-in 

in length (i.e., b in Equation 3.3). The first specimen is notchless (2a0 = 0); the second 

specimen contains a small notch of 2a0 = 1 in.; and the third specimen contains a 1-in 

diameter hole with a 1.5-in notch extending on each side of the hole, in such a way that 

2a0 is 4-in. 

 

 

 
           (1) Notchless  (2) Notched  (3) Notched with a hole

Figure 3.1 Specimen geometries 

 

 

 A spreadsheet was programmed to facilitate the above procedures. The only 

input necessary for the calculations is the maximum applied load for each of the three 

different specimens. By filling the measured maximum loads of specimens in the 

spreadsheet, KIC is computed instantly. 
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MEASURES TO IMPROVE EARLY AGE AGGREGATE-MORTAR 

INTERFACIAL BOND 

 

Literature review in Chapter II indicated that aggregate-mortar interfacial bond can be 

improved by optimizing both materials and construction factors. In this section, based on 

the summary of measures of improving aggregate-mortar interfacial bond, and previous 

field practice, laboratory investigation of possible measures of improving aggregate-

mortar interfacial bond were described to gain a better understanding of materials effects 

on bonding performance of concrete. Those improvements mainly aim to manipulate the 

ITZ through lowering w/cm ratio, modifying mixing cycles, using ultra-fine fly ash, and 

using dense-graded aggregates (or aggregate blending). The field practice about 

improvement on construction factors will be described in a later chapter.   

 

Aggregate Types 

 

Previous experience suggests that coarse aggregate type has a significant influence on 

concrete performance (Senadheera and Zollinger 1996; Shelby and McCullough 1960). 

Two different aggregates were chosen to check the possibility of improvement of 

bonding performance by selecting specific aggregate type. One is natural gravel from 

Riverside campus, College Station, TX, and the other is limestone from Caldwell, TX. 

Table 3.1 and Figure 3.2 present physical properties and gradation of two aggregates, 

respectively. It can be seen that these two aggregates have same maximum aggregate 

size and specific gravity, and similar dry-rodded unit weight. However, limestone has 

higher absorption capacity than natural gravel. For the comparison study, normal indoors 

curing at room temperature was applied. Mix proportioning parameters included 6 

sacks/cubic yard of cement factor, 0.75 of coarse aggregate factor, and 0.43 of 

water/cement ratio.   
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Table 3.1 Physical properties of different aggregates 

Aggregate type Gsb-od %AC DRUW 
(lb/ft3) 

Natural gravel 2.58 0.70% 101.4 
Limestone 2.58 1.87% 97.5 
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Figure 3.2 Gradation curves for two aggregate types 

 

 

Figure 3.3 shows the fracture toughness results of concretes with different 

aggregates. For the two ages investigated, concrete with gravel aggregate showed lower 

fracture toughness values than that with limestone aggregate, which is in accordance 

with data that obtained through previous research work (Gutierriz de Velasco and 

McCullough 1981). It indicated that selecting the right aggregate type can benefit 

bonding performance of concrete. In the next chapter, a comprehensive investigation of 

aggregate properties will explain why different aggregate types can have different 

contribution to the concrete bonding capability. 
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Figure 3.3 Fracture toughness of concretes at different ages 

 

 
Crushing Treatment of Aggregates 

 

To identify the effect of aggregate crushing in the bond strength of concrete, bond of 

concrete with crushed and natural siliceous river gravel were compared. Two gravels 

from Victoria, TX, were used; physical properties and gradation for each aggregate are 

shown in Table 3.2 and Figure 3.4, respectively. It is observed that the crushed gravel 

and the natural gravel have very similar size distribution. However, the latter has much 

higher absorption capacity than the former, whereas other properties are more or less 

similar. Mix proportioning parameters were same as previous section, which also 

included 6 sacks/cubic yard of cement factor, 0.75 of coarse aggregate factor, and 0.43 

of w/cm.   

According to the testing approach, lower fracture toughness values reflect lower 

bond strength. Based on the data up to 3 days for these two test runs (shown in Figures 

3.5 and 3.6), concrete with natural gravel showed higher compressive strength and 

fracture toughness than that with crushed gravel, which means that crushing aggregates 

does not help to improve concrete bonding performance. Figures 3.7, 3.8, and 3.9 

provide pictures of different aggregate particles, which show the difference in shape 

properties for different mineral components in aggregates.  The crushed gravel particles 
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in Figure 3.7 shows smooth crushed faces but with high angularity. Those particles are 

mostly amorphous or crypto-crystalline silica particles, which predominate in the gravel. 

On the contrary, natural gravel particles in Figure 3.8 show surfaces with high roundness 

(low angularity) but with higher surface roughness than crushed gravel. This is 

correlated with lower early age fracture toughness in crushed gravel concrete than that of 

natural gravel. Further investigation and findings of the contribution of aggregate 

properties to bond strength of concrete will be described in Chapter IV.  

 

 

Table 3.2 Physical properties of two gravel aggregates 

Aggregate type Gsb-od %AC DRUM 
(lb/ft3) %Solid 

Natural gravel 2.56 1.42 103.3 64.63 
Crushed gravel 2.58 0.72 97 60.22 
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Figure 3.4 Gradation curves for coarse aggregates 
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Figure 3.5 Compressive strength of concretes at different ages 
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Figure 3.6 Fracture toughness of concretes at different ages 
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Figure 3.7 Crushed gravel particles 

  

 

 

Figure 3.8 Natural gravel particles 
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Dense Gradation of Aggregates 

 

The bond strength comparison of concrete with dense graded and normal graded 

aggregates was also conducted in the laboratory. All aggregate sources were from 

Victoria, TX, and 25% of fly ash replacement (10% ultra-fine fly ash and 15% of Class 

F fly ash) by total cementitious materials were applied. The w/cm of concrete mixtures 

was 0.4, and specimens were cured in the moisture room before tested. Mix proportion 

parameters are summarized in Table 3.3, where the workability factor represents the 

fraction of total aggregate passing the 2.36-mm sieve and coarseness factor represents 

ratio between the weight fraction of particles retained on the 9.5-mm sieve to the weight 

of all particles retained on the 2.36-mm sieve (Shilstone 1990). 

 Figure 3.9 compares the fracture toughness values for concrete with and without 

dense graded aggregates. It is obvious that dense graded aggregates greatly improved the 

interfacial bonding performance of concrete at all early ages. It is because after dense 

gradation the aggregate in the concrete mixture becomes more compacted and denser, 

which greatly reduces the voids, subsequently the potential defects in the interface zone 

of concrete. 

 

 

Table 3.3 Mix proportion parameters for mixes with and without dense gradation 

Tests Cement 

factor 

Coarse agg. 

factor 

Intermediate 

agg. factor 

Workability 

factor 

Coarseness 

factor 

Normal 6 0.75 - 34.4 58.9 

Dense 6 0.495 0.18 36 55.2 
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Figure 3.9 Fracture toughness comparison between concrete with and without 

dense graded aggregates 

 

 

Charging Sequencing 

 

Using the same mix proportion of concrete mixture but using dense graded aggregates 

described above, two charging sequencings were compared to check the possible 

improvement of bonding performance. One is conventional charging sequencing based 

on ASTM C 192/C (ASTM 2000), and the other is named a modified charging 

sequencing, which includes the following steps: 

1) Adding sand, total cementitious materials (cement and fly ash), and half of total 

water in the mixer, and mixing for 50 seconds,  

2) Charging coarse and intermediate aggregates to the mixer, and mixing for another 30 

seconds,  

3) Adding rest of half water to the mixer, and mixing for another 50 seconds.  
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Figure 3.10 Effect of charging sequencing on 3-day concrete fracture toughness 

 

 

3-day fracture toughness results for mixes with different charging sequencings 

were compared in Figure 3.10. Modified charging sequencing provided higher concrete 

fracture toughness. As described in Chapter II, an effective way to improve the 

interfacial bond is to decrease the water layer at the interface.  From this view, compared 

with the concrete using the conventional charging sequence, the modified charging 

sequencing attributed to lower w/cm ratio at the interface due to the two-stage of adding 

water, the resulting tighter packing of hydration products with more intergrowth and 

interlocking, subsequently, the densification of the interfacial zone. In addition, during 

the casting process, fresh concrete with modified charging sequence showed better 

workability, placement and finishability. Figures 3.11 and 3.12 illustrate petrographic 

observation of ITZ for these two different concrete samples using a transmitted light 

optical microscope. It can be seen that coarse Ca(OH)2 was well developed at the ITZ of 

concrete with conventional charging sequencing, while at the ITZ of concrete with  
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Well-developed 
coarse CH 

Figure 3.11 ITZ of concrete with conventional charging sequencing 

 

 

 

Scattered fine CH 

Less porous 
ITZ 

Figure 3.12 ITZ of concrete with modified charging sequencing 
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modified charging sequencing, only scattered fine CH occurred. Moreover, its ITZ was 

AGUCHI METHOD 

r. Genichi Taguchi is regarded as the foremost proponent of robust parameter design, 

eter design, the primary goal is to find factor settings that 

minimi

less porous, which indicated that modifying charging sequecing improved the ITZ 

structure, and then bonding performance of concrete.  The results were also consistent 

with other researchers’ work (Hayakawa, and Itoh 1982, Tamimi 1994). 

 

T

 

D

which is an engineering method for product or process design that focuses on 

minimizing variation and/or sensitivity to noise. Taguchi’s robust design methods are set 

apart from traditional quality control procedures and industrial experimentation in 

various respects. Of particular importance are: the concept of quality loss functions, the 

use of signal-to-noise (S/N) ratios, and the use of orthogonal arrays. Based on 

“Orthogonal Array”, experiments can be designed to reduce “variance” for the 

experiment with “optimum settings” of control parameters. Thus, the integration of 

Design of Experiments with optimization of control parameters to obtain the BEST 

results is achieved in the Taguchi Method. Orthogonal arrays provide a set of well 

balanced (minimum) experiments and Dr. Taguchi's S/N ratios, which are log functions 

of desired output, serve as objective functions for optimization, help in data analysis and 

prediction of optimum results. When used properly, Taguchi designs provide a powerful 

and efficient method for designing products that operate consistently and optimally over 

a variety of conditions. 

In robust param

ze response variation, while adjusting (or keeping) the process on target. After 

factors affecting variation are determined, settings for controllable factors that will either 

reduce the variation, make the product insensitive to changes in uncontrollable (noise) 

factors, or both should be found. Engineering knowledge should guide the selection of 

factors and responses. Control factors and responses should also be scaled so that 

interactions are unlikely. When interactions among control factors are likely or not well 
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understood, a design that is capable of estimating those interactions should be chosen.  

Robust parameter design uses Taguchi designs (orthogonal arrays), which allows the 

user to analyze many factors with few runs. Taguchi designs are balanced, that is, no 

factor is weighted more or less in an experiment, thus allowing factors to be analyzed 

independently of each other. 

Taguchi Method treats optimization problems in two categories: static problems 

and dy

]       

This is usually the chosen S/N ratio for all undesirable characteristics like “defects “etc. 

]f         

This case has been converted to SMALLER-THE-BETTER by taking the reciprocals of 

namic problems. Generally, a process to be optimized has several control factors 

which directly decide the target or desired value of the output. The optimization then 

involves determining the best control factor levels so that the output is at the target 

value. Such a problem is called as a "STATIC PROBLEM".  There are 3 S/N ratios of 

common interest for optimization of Static Problems:  

1) Smaller-the-better: 

[ ofmeanLogn  10 10−= datameasuredofsquaresofsum

for which the ideal value is zero. Also, when an ideal value is finite and its maximum or 

minimum value is defined, then the difference between measured data and ideal value is 

expected to be as small as possible.   

2) Larger-the-better: 

[ omeanLogn  10 10−= datameasuredreciprocalofsquaresofsum

measured data and then taking the S/N ratio as in the smaller-the-better case.  

3) Nominal-the-best: 

 
iance

meanosquareLogn f
var

 
10  

pecified value is MOST desired, meaning that neither a smaller 

 10=

This case arises when a s

nor a larger value is desirable.  
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Creating Taguchi Design 

 

Before a Taguchi design is chosen, all pre-experimental planning needs to be completed, 

including identifying the number of control factors that are of interest and the number of 

levels for each factor, and determining the number of runs you can perform and the 

impact of other considerations on your choice of design. 

A Taguchi design, also known as an orthogonal array, is a fractional factorial 

matrix that ensures a balanced comparison of levels of any factor. In a Taguchi design 

analysis, each factor can be evaluated independently of all other factors. Each column in 

the orthogonal array represents a specific factor with two or more levels. Each row 

represents a run. 

Table 3.4 displays the L8 (2**7) Taguchi design (orthogonal array). L8 means 8 

runs. 2**7 means 7 factors with 2 levels each. If the full factorial design were used, it 

would have 2**7 = 128 runs. The L8 (2**7) array requires only 8 runs — a fraction of 

the full factorial design. This array is orthogonal; factor levels are weighted equally 

across the entire design. The table columns represent the control factors, the table rows 

represent the runs (combination of factor levels), and each table cell represents the factor 

level for that run. 

 

 

Table 3.4 An example of L8 (2**7) Taguchi design 

 
 A  B  C  D  E  F  G 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 
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In the above example, levels 1 and 2 occur 4 times in each factor in the array. If 

comparing the levels in factor A with the levels in factor B, it can be seen that B1 and 

B2 each occur 2 times in conjunction with A1 and 2 times in conjunction with A2. Each 

pair of factors is balanced in this manner, allowing factors to be evaluated 

independently. 

  

 

Table 3.5 The single-level Taguchi designs available 

Number of levels 
Designs 

2 3 4 5 

L4 (23) 2-3    

L8 (27) 2-7    

L9 (34)  2-4   

L12 (211) 2-11    

L16 (215) 2-15    

L16 (45)   2-5  

L25 (56)    2-6 

L27 (313)  2-13   

L32 (231) 2-31    

 

 

Table 3.5 summarizes the single-level Taguchi designs available. The number 

following the “L” indicates the number of runs in the design. For example, the L4 (23) 

design has four runs. The numbers in the table indicate the minimum and maximum 

number of available factors for each design. For example, an L8 (27) design can have 

from two to seven factors with two levels each; an L16 (45) design can have from two to 

five factors with four levels each. 
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Application of Taguchi Method in Aggregate Study 

 

As mentioned in Chapter II, the bond of the aggregate-mortar interface at an early age is 

one of the most significant factors affecting the development of delamination, which 

itself is affected by both aggregate and non-aggregate factors. The aggregate factors 

believed to be pertinent to the aggregate-mortar interfacial bond include physical, 

chemical, and geometric properties varying significantly with aggregate type (e.g., 

Senadheera and Zollinger 1996; Alexander 1993; Rao and Prasad 2002; Monteiro and 

Mehta 1986; Tasong et al. 1998). The non-aggregate factors include w/cm, mineral 

admixtures, and curing methods, etc (e.g., Goldman and Bentur 1992; Bentur and Cohen 

1987; Charles-Gibergues et al. 1982; Wu et al. 1999; Wainwright and Cabrera 1990; 

Zollinger et al. 1994). Therefore, a better understanding of those factors to the bonding 

performance of concrete is of great importance to successful paving construction 

practice for using aggregates to prevent delamination and spalling distresses. 

 Widely used as screening designs, fractional factorial experiments such as the 

Taguchi method allows the user to analyze many factors with a few runs (Mason et al. 

1989). In addition, orthogonal arrays used in the Taguchi designs are balanced, that is, 

all factors are weighted equally in the experiment, thus allowing factors to be analyzed 

independently of each other (Mathews 2004). Therefore, it is desirable to apply the 

Taguchi method in this study when our purpose is to identify how important the effect of 

each key design factors  plays on the aggregate-mortar interfacial bond, and which level 

can provide best performance. 

 

EXPERIMENTAL DESIGN ANALYSIS  

 

The procedures of this experimental design in the study include the following steps: 

 

• Determining the design or control factors for which we will try different levels, 

• Selecting an appropriate orthogonal array for the experiment,  
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• Deciding how to measure the quality characteristic of interest, 

• Conducting the experiment and identify the factors that most strongly affect the 

chosen target, and 

• Predicting and verifying the optimum design combination. 

Previous studies and experience indicated that aggregate type, w/cm, ultra-fine 

fly ash, and curing method have predominant effects on aggregate-mortar bond 

(Senadheera and Zollinger 1996; Alexander 1993; Rao and Prasad 2002; Monteiro and 

Mehta 1986; Tasong et al. 1998; Goldman and Bentur 1992; Bentur and Cohen 1987; 

Charles-Gibergues et al. 1982; Wu et al. 1999; Wainwright and Cabrera 1990; Zollinger 

et al. 1994). Therefore, aggregate type, w/cm, ultra-fine fly ash content, and curing 

method were chosen as the control factors in this study. For each factor, three different 

levels were utilized. Two gravels and one limestone (as a reference) aggregates were 

selected for the aggregate type factor, and VG, GG, and GL designated gravel from 

Victoria, Texas (TX); gravel from Garwood, TX; and limestone from  Georgetown, TX, 

respectively. The ultra-fine (Micro3) fly ash was provided by Boral Industries Inc. 

Company, San Antonio, TX at three levels of 8%, 15%, and 20% replacement of 

cementitious materials, respectively. Typical Type I Portland cement was used, and the 

three levels for the w/cm ratio were 0.40, 0.42, and 0.45. The three levels for the curing 

methods included 1) wet mat curing (WMC) — sealing concrete specimens using plastic 

sheets after casting, 2) normal curing with curing compound (NCC) — spraying curing 

compound (1600-White series provided by W. R. Meadows, Inc.) on concrete after 

surface is dry, and 3) no curing (WOC) — keeping specimens in normal conditions 

without any treatment. 

Assuming there is no interaction between each factor, an orthogonal array L9 

(3**4) was selected for the experimental design, where the array L9 requires only 9 runs 

out of 81 full factorial combinations of 4 factors with 3 levels each. This array is 

orthogonal in the fact that all factor levels are weighted equally across the entire design. 

Table 3.6 lists the 9 test runs according to the L9 orthogonal array, and Table 3.7 lists 

associated mix proportions. For each test run, 6 cylindrical (6 by 12 in.) specimens (with 



  49 

three different geometric shapes as shown in Figure 3.1) were cast for fracture toughness 

testing and 3 cylindrical (6 by 12 in) specimens for compressive strength testing.  

 

 

Table 3.6  9 test runs according to orthogonal array 

Tests Aggregate 
type  

Ultra-fine 
fly ash  

w/cm Curing  

1  VG 8% 0.40 WMC 
2 VG 15% 0.42 NCC 
3  VG 20% 0.45 WOC 
4  GG   8% 0.42 WOC 
5  GG 15% 0.45 WMC 
6  GG 20% 0.40 NCC 
7  GL 8% 0.45 NCC 
8 GL 15% 0.40 WOC 
9  GL 20% 0.42 WMC 

 

 

Table 3.7  Associated mix proportions for 9 test runs 

Batch proportion weights (lbs/ft3) Tests 
Cement CA* Sand Water Fly ash 

1  19.22 77.47 42.86 10.19 1.67 
2 17.75 77.47 41.37 10.59 3.13 
3  16.71 77.47 39.49 11.18 4.18 
4  19.22 77.05 42.16 10.31 1.67 
5  17.75 77.05 40.15 10.9 3.13 
6  16.71 77.05 42.47 9.89 4.18 
7  19.22 70.63 45.13 13.56 1.67 
8 17.75 70.63 47.33 12.55 3.13 
9  16.71 70.63 45.97 12.95 4.18 

* CA — coarse aggregates 

 

 

For fracture toughness test, two types of steel inserts were inserted in the 

cylindrical molds when concrete was cast, and then pulled out by a slide hammer 3 or 4 

hours after concrete was cast. The specimens were demolded 1 day after casting, and 

cured till the test date. During testing, two plywood strips was used for load bearing for 
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each test (ASTM C 496). The specimen was placed for the notch to be vertical to the 

platen of the testing machine, that is, in the direction of the compressive load. Maximum 

load for each specimen was then recorded after all of the specimens are broken. The 

measured maximum loads of specimens were filled in a programmed spreadsheet, and 

linear regression was performed to compute the KIC. 

Figures 3.13 and 3.14 illustrate compressive strength and fracture toughness 

results for the 9 test runs. Each test run showed different development with time. 

However, an increase in both compressive strength and KIC with concrete age was 

observed. Figures 3.15, 3.16, and 3.17 illustrate examples of ITZ microstructure of 

concrete. It can be seen that for mixes of tests 3 and 5, there were Ca(OH)2 along the 

aggregates. However, for mix of test 6, the amount of Ca(OH)2 within the ITZ was 

reduced greatly, or practically there was no Ca(OH)2 in the ITZ. Those observations 

matched the fracture toughness results very well, which indicated that the less Ca(OH)2 

within the ITZ and denser of ITZ structure, the stronger the interfacial bonding.  
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Figure 3.13 Compressive strength results 
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Fracture toughness 
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Figure 3.14 Fracture toughness results
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Figure 3.15 1-day ITZ microstructure of test 3 mix
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Figure 3.16 1-day ITZ microstructure of test 5 mix
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Figure 3.17 1-day ITZ microstructure of test 6 mix

 

 

Previous field experience has shown that a few days after paving is the most 

critical time for delaminations to form in concrete paving.  On this basis, the 1-day KIC 

value was selected as the output response in the experimental design. Both signal-to-

noise ratios (S/N ratios, which provide a measure of robustness) and means (for static 

design) were used to evaluate the significances of factors. The option of larger is better 

was chosen for S/N ratio, because our goal is to maximize the value of KIC.  
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The experimental design was analyzed by a statistical software named MINITAB 

(Mathews 2004) based on the KIC values of all test runs. The MINITAB software is able 

to calculate response tables for both S/N ratios and means versus the control factors. 

These tables can then be used to determine whether the factors are significantly related 

to the KIC performance and each factor's relative importance in the model. The response 

tables for means and S/N shown in Table 3.8 and 3.9 summarize the average of each 

response characteristic (i.e., means and S/N ratios) for each level of each factor from 

MINITAB software. The tables also include ranks of factors based on Delta statistics 

(Mathews 2004), which compares the relative magnitude of the effects of the respective 

factors. MINITAB assigns ranks based on Delta values; rank 1 to the highest Delta 

value, rank 2 to the second highest, and so on. The highest Delta value (or the rank) 

indicates the greatest impact of the factor on the target value of output. In terms of the 

Delta values, both response tables indicate the following decreasing rank order with 

respect to the relative importance of each factor to KIC: aggregate type, curing method, 

w/cm, and ultra-fine fly ash content. Aggregate type was identified as the factor that 

most strongly affects the bond between aggregate and the mortar.  

 
 

Table 3.8 Response table of experimental design with respect to means 

Level Aggregate type Ultra-fine fly ash w/cm Curing method 
1 253.238 406.637 483.753 489.749 
2 530.763 420.425 357.871 439.160 
3 478.422 435.361 420.799 333.515 

Delta 277.525 28.724 125.882 156.234 
Rank 1 4 3 2 
 

 

Table 3.9 Response table of experimental design with respect to S/N ratios 

Level Aggregate type Ultra-fine fly ash w/cm Curing method 
1 47.629 52.112 53.487 53.634 
2 54.257 51.687 50.538 51.995 
3 53.590 51.677 51.451 49.848 

Delta 6.628 0.4352 2.950 3.786 
Rank 1 4 3 2 



  54 

 

VG GG GL 8% 15% 20% 0.4 0.42 0.45 WMC NCC WOC

M
ea

n

Aggregate type Ultra-fine fly ash Curing method W/cm

 
 

Figure 3.18 Main effects plot of means 
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Figure 3.19 Main effects plot of S/N ratios 

 

 

In addition, the level averages in the response tables can determine which level 

of each factor provides the best result.  For each factor, higher level average indicates the 

better level of this factor in terms of the bonding performance. It can be also observed 

from the main effects plots (i.e., Figures 3.18 and 3.19), which display graphs of the 

averages in the response tables. A horizontal line is drawn at the grand mean of all 
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factors. The effect at each level can be identified from the difference between the means 

and the reference line. For example, for aggregate type factor, both main effects plots for 

means and S/N ratios indicate that level 2 provided the highest value, which means that 

GG provided the best performance. The result is different from findings of previous field 

practice, which normally showed the better performance of limestone.  

For w/cm, the results show that level 1 (i.e., 0.4 of w/cm) was the best, and for 

curing method, level 1 (i.e., WMC) was the desired one. As for the ultra-fine fly ash 

factor, Figure 3.18 shows that level 3 (i.e., 20% of ultrafine fly ash) was the best, while 

Figure 3.19 shows level 1 (i.e., 8% of ultrafine fly ash).  If looking at response tables for 

means and S/N ratios (Table 3.9 and 3.10), the factor of ultra-fine fly ash ranked the 

lowest, which means ultra-fine fly ash plays the least important role in the bonding 

performance of concrete at early age. In addition, three levels of ultra-fine fly ash have 

very close values of average for both means and S/N ratios, which also implied that this 

factor is not significantly related to the KIC. Therefore, there will not be a significant 

difference on the bonding performance for varying content of ultra-fine fly ash. It may 

because, at very early age of concrete, ultra-fine fly ash mainly plays a role as being a 

filler for densification of the packing of the particles instead of its pozzolanic reactivity.    

Hence, considering all above reasons, the optimum design combination was 

chosen as: GG + 8% ultrafine fly ash + 0.4 of w/cm + WMC.  The predicted results of 

S/N ratio and mean from the MINITAB software were 58.014, and 648.478, 

respectively, which were both higher than any value in the associated response tables 

(Table 3.8 and 3.9). Figure 3.20 illustrates the KIC results of this optimum combination.  

The KIC at 1-day reached up to 722.34 psi·in1/2, which was obviously higher than that of 

any test run.  It can be seen from Figure 3.21 that there was no coarse Ca(OH)2 but ultra-

fine fly ash at the interfaces for the optimum mix, which indicated its dense ITZ 

structure and strong interfacial bonding. Therefore, the prediction of optimum design 

based on experimental design analysis was validated. Although different from findings 

of previous field practice, these results confirm that, with appropriate design, use of 
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gravel aggregate in concrete paving can still provide better and desirable bonding 

performance for concrete.  
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Figure 3.20 Fracture toughness of optimum combination 
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Figure 3.21 ITZ microstructure of optimum mix 

 



  57 

CHAPTER IV 

 

AGGREGATE PROPERTIES AND APPLICATION OF UTILITY THEORY 

 

GENERAL 

 

In Chapter III, among the four key construction design factors considered, aggregate 

type has the greatest effect on the bonding performance between aggregate and mortar. 

In addition, the GG’s exhibition of best contribution on bonding performance among the 

three aggregates types considered in this study is different from previous research 

findings. Hence, in this chapter, a comprehensive investigation on aggregate 

characteristics including physical, geometric and chemical properties of aggregate types 

was conducted. A rating system using utility theory was developed to evaluate the 

overall contribution of aggregate properties to the bonding performance of concrete and 

the feasibility of design combinations.   

 

AGGREGATE SURFACE FREE ENERGY MEASUREMENT 

 

By definition, surface free energy of a solid is the energy needed to create or heal a unit 

surface area of material. The concept of surface energy can be explained from a 

molecular, mathematical and thermodynamics point (Cheng 2002).  The surface free 

energy of aggregate is primarily composed of a nonpolar component ─ the Lifshitz van 

der Waals component; and an acid-base component ─ the Acid-Base component 

(Fowkes 1962; Good 1992). Equation 4.1 is used to describe the total surface free energy 

and its components: 

 
ABLW Γ+Γ=Γ  (4.1) 

 

where, 
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Γ  =  surface free energy of aggregate, 

ΓLW =  Lifshitz–van der Waals component of the surface free energy, and 

ΓAB =  acid-base component of the surface free energy. 

The Lifshitz-van der Waals force contains at least three components: London 

dispersion force, Debye induction force, and Keesom orientation force. The London 

dispersion force is the attraction between neighboring electronic shells. It is an induced 

dipole to induced dipole interaction. The Debye induction force is produced by a dipole 

inducing a dipole in a neighboring molecule. The Keesom orientation force is the 

interaction of two dipoles orienting themselves in relation to each other (Hefer 2004). 

The acid-base interaction includes all interactions of electron donor (proton 

acceptor) - electron acceptor (proton donor) type bonds including hydrogen bonding. To 

quantitatively predict and treat the acid-base interaction, Good (1992) postulated a 

resolution of the acid-base term, ΓAB,  into a Lewis acidic surface parameter and a Lewis 

basic surface parameter. The relationship among the ΓAB and its components is shown in 

Equation 4.2: 

 

−+ΓΓ=Γ 2AB  (4.2) 
 

where, 

Γ+ = Lewis acid component of surface interaction, and 

Γ- = Lewis base component of surface interaction. 

 

Surface Free Energy Measurement of Aggregate 

 

The measurement of the surface free energy of solids is not straightforward because it 

cannot be measured directly. There are several direct and indirect methods to measure 

surface energy of aggregate, including inverse gas chromatography (IGC) (Ahsan and 

Taylor 1999), atomic force microscopy (AFM) (Beach et al. 2002), microcalorimetry 

(Yildirim 2001), and universal sorption device (USD) (Cheng 2002).  
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 Gas chromatography is a simple technique for the separation on the fact that each 

solute has a different interaction with the stationary phase, which results in different 

travel times for different solutes carried by an inert gas through a column with known 

characteristics. Therefore, the IGC at infinite dilution can be used to determine surface 

energy and its components by measuring the retention volumes of different probe gases 

through a column of small aggregate particles. These experiments are relatively fast and 

commercial devices are now available which makes the process fully automated. 

However, there is only one commercial instrument that supplies software for surface 

energy analysis.  

 The AFM is a direct method to measure the intrinsic surface forces that takes part 

in fundamental adhesion at an interface. It would be possible to obtain all the surface 

energy components by using cantilevers with chemically functionalized tips. The 

operation of this device requires some experience since carefully positioning of the tip 

near the surface is required. Practicality limitations associated with aggregate 

measurements result from the heterogeneity and topographical features on aggregate 

surfaces, not being compatible with the scale at which these instruments are designed to 

operate. 

   The microcalorimetry method is attractive in that the measurement of sorption 

heats is relatively simple, and could be used to obtained surface energies and its 

components. The conversion from enthalpy to free energies can be accomplished in two 

ways: 1) by measuring contact angles at different temperatures, or 2) by performing gas 

sorption experiments. However, a procedure which would require the measurement of 

contact angles of aggregates at different temperatures would be neither practical nor 

efficient. 

 The USD method is a vacuum gravimetric static sorption technique that identifies 

gas sorption characteristics of selected solvents to indirectly determine the surface 

energies of aggregate. Sorption methods are particularly suitable due to their ability to 

accommodate the peculiarity of sample size, irregular shape, mineralogy, and surface 
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texture associated with aggregates. Therefore, it was applied in this study for the surface 

energy measurements of aggregates. 

 The USD is comprised of a Rubotherm magnetic suspension balance system, a 

computer system (with  Messpro software), a temperature control unit, a high quality 

vacuum unit, a vacuum regulator, pressure transducers, a solvent container, and a 

vacuum dissector. A schematic of the main components of the USD setup is illustrated in 

Figure 4.1. 

 The Rubotherm magnetic suspension balance has the ability to measure a sample 

mass of up to 200 g to an accuracy of 10-5 g, which is sufficient for precise measurement 

of mass increase due to gas adsorbed onto aggregate surface.  The whole USD system is 

fully automated with predetermined pressure set-points that automatically triggers when 

the captured balance readings reach equilibrium. Aggregate samples with the size 

between the No.4 and No.8 sieve size were thoroughly cleaned with distilled water and 

oven-dried for measurement. 

During the USD test process, once the chamber is vacuumed, a solvent vapor is 

injected into the aggregate system.  A highly sensitive magnetic suspension balance is 

used to measure the amount of solvent adsorbed on the surface of the aggregate. The 

vapor pressure at the aggregate surface is measured at the same time.  The surface 

energy of the aggregate is calculated after measuring the adsorption of three different 

solvents (i.e. distilled water, n-Hexane, and Methyl Propyl Ketone (MPK)) with known 

specific surface free energy components, as listed in Table 4.1.  Data (vapor pressure, 

adsorbed gas mass, and test time) are measured and captured electronically via the 

Messpro software. 
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Figure 4.1 USD setup 

 

 

Table 4.1 Surface energy components of water, n-hexane, and MPK @ 25 °C 

Surface Free Energy Components (ergs/cm2)  Solvent 

ΓLi ΓLi
LW ΓLi

+ ΓLi
- ΓLi

AB

Distilled water 72.60 21.60 25.50 25.50 51.00 

n-hexane 18.40 18.40 0.00 19.60 0.00 

MPK 24.70 24.70 0.00 0.00 0.00 

 

 

Once the adsorbed solvent mass and vapor pressure on the aggregate surface 

have been measured and the adsorption data corrected for solvent vapor buoyancy using 
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the generalized Pitzer correlation model, the specific surface area of the aggregate is 

then calculated using the BET (Brunauer, Emmett, and Teller) model shown by Equation 

4.3: 

 

( ) cnP
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where, 

 P  =  Vapor pressure (MPa), 

P0  =  Saturated vapor pressure (MPa), 

N =  Specific amount adsorbed on the surface of the absorbent (mg), and 

n0  =  Monolayer specific amount of vapor adsorbed on the surface of aggregate 

(mg). 

 For the type of isotherms associated with the pressure conditions in this USD 

test,  can be obtained from the slope and the intercept of the straight line that fits the 

plot of P/n(P-Po) versus P/Po best.  The specific surface area (SSA) of the aggregate 

can then be calculated through the following equation: 

mn
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Nn

SSA om   (4.4) 

 

where, 

α  =
3/2

091.1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρoN

M for a hexagonal close-packing model (m2), 

No = Avogadros’ number (6.02 ×1023), 

M = Molecular weight (g), and 

ρ  = Density of the adsorbed molecule in liquid at the adsorption conditions  

 (g/cm3). 
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The result from the BET equation is used to calculate the spreading pressure at 

saturation vapor pressure (πe) for each solvent using Gibbs adsorption equation:  

 

∫=
0

0

p

e dP
P
n

A
RTπ   (4.5) 

 

where, 

 πe    =  Spreading pressure at saturation vapor pressure of the solvent (ergs/cm2), 

R = Universal gas constant (83.14 cm3 bar/mol.K), and 

T = Absolute temperature (Kelvin, K) (K = 273 + °C). 

The work of adhesion of a liquid on a solid (WA) can be expressed in terms of the 

surface energy of the liquid ( lΓ ) and πe as shown in equations 4.6 and 4.7, where 

subscripts s and l represent solid (aggregate) and liquid (solvent), respectively: 

 

leaW Γ+= 2π   (4.6) 

 

+−−+ ΓΓ+ΓΓ+ΓΓ=Γ+ lsls
LW

l
LW
se 2222π   (4.7) 

 

Then, Equation 4.8 is used to calculate the of the surface for a non-polar 

solvent on the surface of the solid (aggregate).  

LW
sΓ

 

( )
LW

l

leLW
s Γ

Γ+
=Γ

4
2 2π   (4.8) 

 

For a known mono-polar basic liquid vapor (subscript ) and a known bipolar liquid 

vapor (subscript b ), the  and  values are calculated using equations 4.9 and 4.10 

as follows. 

m
+Γs

−Γs
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Finally, the total surface energy of the aggregate ( ) is calculated as expressed 

by Equation 4.11. 

sΓ

 

−+ΓΓ+Γ=Γ 2LW
ss   (4.11) 

  

SE of two aggregates studied (i.e. VG and GL) were measured by USD method, 

and the results are listed in Table 4.2. The specific surface areas of the aggregate 

samples calculated using the adsorption isotherm of the three solvents are listed as well. 

The GL showed the higher acidic surface free energy, while the VG showed the higher 

basic components of surface free energy. The SSA of VG was considerably greater than 

that of GL, which means that it had a relatively rougher surface texture than the GL. It is 

also correlated to the results from investigation of aggregate geometric properties, which 

will be reported later. Though the VG had a little lower SE value than GL; however, its 

product of SE and SSA (195.70 × 10-3 Joel/g ) was much higher than that of GL (87.31× 

10-3 Joel/g).  

 Further, the bond between the water and the aggregates were investigated, which 

is expressed by Equation 4.12. 

 
ABLW GGG Δ+Δ=Δ  (4.12) 

 

Where, 

ΔG  =  the total bond Gibbs free energy of the material surface per unit surface area, 
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ΔGLW  =  the nonpolar, Lifshitz-van der Waals bond Gibbs free energy of the material 

surface, and 

ΔGAB  =  the polar, Acid-Base bond Gibbs free energy of the material surface. 

The adhesive nonpolar bond component is determined by Equation 4.13. 

 
LW
j

LW
i

LW
ij

LWG Γ+Γ+Γ−=Δ  (4.13) 

 

And the adhesive polar bond component is of the same form and is determined by 

Equation 4.14. 

 
AB
j

AB
i

AB
ij

ABG Γ+Γ+Γ−=Δ  (4.14) 

 

The interactive term for the nonpolar LW adhesive surface energy component, Γij
LW is 

given by Equation 4.15. 

 

( )2
LW
j

LW
i

LW
ij Γ−Γ=Γ  (4.15) 

 

And the interactive term for the polar AB adhesive surface bond energy component, 

Γij
AB is given by Equation 4.16.  

 

( )( )−−++ Γ−ΓΓ−Γ=Γ jiji
AB

ij 2  (4.16) 

 

The results are summarized in Table 4.3. It shows that the total bond Gibbs free energy 

between water and VG was higher than that between water and GL. The total bond 

Gibbs free energy represents the ability of the solids to pull water. Immediately after 

pouring and before hardening, water filled pockets form under coarse aggregates. It is 
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expected that the VG has more preference to attract water than GL, which may have 

negative effect on concrete bonding performance.  

 

 

Table 4.2 SE components for the aggregates 

SE 
Component 
(ergs/cm2) 

Γ+ Γ-
ΓAB ΓLW ΓTotal SSA 

(m2/g) 

ΓTotal×SSA 
(10-3 Joel/g)

VG 1.10 426.85 43.31 81.34 124.65 1.57 195.70 
GL 1.62 362.71 48.51 79.89 128.4 0.68 87.31 

 

 

Table 4.3 Bond between water and aggregates 

i=water, 
j=agg Γij

AB Γij
LW ΔGLW ΔGAB ΔG 

(ergs/cm2) 
Water-VG -124.91 19.11 83.83 219.22 303.06 

Water-GL -105.72 18.41 83.08 205.23 288.31 

 

 

AGGREGATE SHAPE AND TEXTURE CHARACTERISTICS 

 

Researchers have distinguished between different aspects that constitute aggregate 

geometry. It has been found that the particle geometry can be fully expressed in terms of 

three independent properties: form, angularity (or roundness), and surface texture (Barett 

1980).  A schematic diagram that illustrates the difference between these properties is 

shown in Figure 4.2. Shape or form, the first order property, reflects variations in the 

proportions of a particle. Angularity, the second order property, reflects variations at the 

corners, that is, variations superimposed on shape. Surface texture is used to describe the 

surface irregularity at a scale that is too small to affect the overall shape (Al-Rousan 

2004). 
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Figure 4.2 Aggregate shape components (Masad 2001) 

 

 

Aggregate shape characteristics affect the proportioning of portland cement 

concrete mixtures, the rheological properties of the mixtures, aggregate-mortar bond, 

and the interlocking strength of the concrete join/crack (Al-Rousan 2004). Previous 

studies (Mindness et al. 2002; Kosmatka et al. 2002; Will 2000) indicate that the bond 

strength between the cement paste and a given coarse aggregate generally increases as 

particles change from smooth and rounded to rough and angular. Rough, textured 

surfaces will improve the mechanical component of the bond by increasing the amount 

of surface area available for bonding with the paste for a given aggregate content. The 

interlocking of angular particles results in a strong aggregate skeleton under applied 

loads, whereas round particles tend to slide by or roll over each other, resulting in an 

unsuitable and weaker structure. Using a high percentage of flat and elongated particles 

might cause problems when placing the concrete, which will result in voids and 

incomplete consolidation of the mix, and thus contribute to local distress.  Therefore, 

three components — texture, angularity, and content of flat/elongated aggregates have 

different (positive or negative) effects on bonding performance of concrete materials, 

which can be used to represent the effects of geometric properties of aggregates. 

Table 4.4 (Al-Rousan et al. 2004) summarizes direct and indirect test methods 

that have been used by highway state agencies and research projects for measuring some 
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aspects of aggregate shape properties. Direct methods are defined as those wherein 

particle characteristics are measured, described qualitatively and possibly quantified 

through direct measurement of individual particles. In indirect methods, particle 

characteristics are lumped together as geometric irregularities and determined based on 

measurements of bulk properties.  

The comparative analysis and intensive evaluation conducted by Al-Rousan et al. 

(2004) highlighted the advantages of AIMS in measuring aggregate shape properties: 

• Able to capture images and analyzing the shape of a wide range of aggregate sizes 

and types, 

• Measures all three aggregate shape properties (form, angularity, and texture) for all 

aggregate types and for different aggregate sizes, 

• Capable of performing two and three dimensional analysis as needed, 

• Captures images of aggregates at specified resolutions in order to minimize the 

influence of particle size on shape results, 

• Uses image analysis techniques that are based on sound scientific concept, 

• Rapid, computer automated, accurate, practical and user friendly, and  

• Able to work in central and field laboratories. 

Figure 4.3 shows the entire AIMS set-up, and it was utilized to facilitate this study. 
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Table 4.4 Summary of methods for measuring aggregate characteristics (Al-Rousan 

et al. 2004)  
Test References for the test method Direct (D) or 

Indirect (I) 
method 

Field (F) or 
Central (C) 
laboratory 
application 

Uncompacted void content of CA AASHTO* TP56, NCHRP 
Report 405, Ahlrich (1996) 

I F, C 

Index for particle shape and 
texture 

ASTM D3398 I F, C 

Angle of internal friction from 
direct shear test 

Chowdhury et al. (2001) I C 

Percentage of fractured particles 
in CA 

ASTM D5821 D F, C 

Flat and elongated CA ASTM D4791 D F, C 

Multiple ratio shape analysis David Jahn (Martin Marietta, 
Inc.) 

D F, C 

VDG-40 videograder Emaco, Ltd. (Canada), 
Weingart and Prowell (1999) 

D F, C 

Computer particle analyzer Mr. Reckart (W. S. Tyler 
Mentor Inc.), Tyler (2001) 

D C 

Micromeritics optisizer PSDA Mr. M. Strickland 
(Micromeritics optisizer) 

D C 

Video Imaging System (VIS) John B. Long Company D C 

Buffalo wire works PSSDA Dr. Penumadu, University of 
Tennessee 

D C 

Camsizer Jenoptik Laser Optik System 
and Research Technology 

D C 

WipShape Marez and Zhou (2001) D C 

University of Illinois Aggregate 
Image Analyzer (UIAIA) 

Tutumluer et al. (2000), Rao 
(2001) 

D C 

Aggregate Imaging System 
(AIMS) 

Masad (2003) D C 

Laser-Based Aggregate Analysis 
System 

Kim et al. (2001) D C 

* AASHTO = American Association of State Highway and Transportation Officials 
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Figure 4.3 AIMS set-up 

 

 

Parameters Representing Aggregate Shape 

 

In AIMS analysis system a number of indices have been proposed to characterize 

particle form, angularity, and texture. Among the form parameters, sphericity is 

expressed in terms of three dimensions: 
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l
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d
dd
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∗

=   (4.17) 

 

where, 

dl = longest dimension of the particle, 

di = intermediate dimension of the particle, and 

ds = shortest dimension of the particle. 

 The form index, describing form in two-dimensions, uses incremental changes in 

the particle radius. The length of a line that connects the center of the particle to the 
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boundary of the particle is termed radius. The form index is expressed by the following 

equation: 
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where, 

θ = the directional angle, and 

R = the radius in different directions. 

 If a particle was a prefect circle, the form index would be zero. Although the 

form index is based on two-dimensional measurements, it can easily be extended to 

analyze the three-dimensional images of aggregates. Another way of presenting form of 

a particle is by using Flat and Elongated Ratio (FER), which is: 
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 The analysis methods of angularity have used mainly black and white images of 

2-dimensional projections of aggregates, with the assumption that the angularity 

elements in 2-dimensions are a good measure of the 3-dimensional angularity. For the 

gradient method, the angle of orientation values of the edge-points (θ), and the 

magnitude of the difference in these values (Δθ) for adjacent points on the edge are 

calculated to describe how sharp or how rounded the corner is, as illustrated in Figure 

4.4. The angularity values for all boundary points are calculated and their sum 

accumulated around the edge to finally form a measure of angularity, which is noted, the 

gradient index (GI) (Chandan et al. 2004): 
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where, 

i = the ith point on the edge of the particle, and 

N = the total number of points on the edge of the particle. 

 Masad et al. (2001) proposed the angularity index, which is described by the 

following equations: 
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where, 

RPθ = the radius of the particle at a directional angle, θ, and 

REEθ = the radius of an equivalent ellipse at the same θ. 

 

 

 Gradient vectors
 

 

 

 

 

 

Figure 4.4 Difference in gradient between particles 

 

 

The index relies on the difference between the radius of a particle in a certain direction 

and a radius of an equivalent ellipse taken in the same direction as a measure of 

angularity. Both gradient and radius angularity results are presented in AIMS.  
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Wavelet analysis method is used in AIMS for texture characterization. The 

wavelet transform works by mapping an image onto a low-resolution image and a series 

of detail images, as shown in Figure 4.5. The original image is shown in Figure 4.5a. It 

is decomposed into a low-resolution image (Image 1 in Figure 4.5b) by literatively 

blurring the original image. The remaining images contain information on the fine 

intensity variation (high frequency) that is lost in Image 1. Image 1 can be further 

decomposed similarly to the first iteration, which gives a multi-resolution decomposition 

and facilitates quantification of texture at different scales. Image 2 contains the 

information lost in the y-direction, Image 3 has the information lost in the x-direction, 

and Image 4 contains the information lost in both x- and y-direction. Texture index is 

taken at a given level as the arithmetic mean of the squared values of the detail 

coefficients at that level: 
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where, 

N  =  the level of decomposition, 

i  =  1, 2, or 3, for the three detailed images of texture, and  

j  =  the wavelet coefficient index. 
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(a) Original image 
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Image 3 Image 4  

(b)  

Figure 4.5 Illustration of the wavelet decomposition (Chandan 2004) 
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Figure 4.6 Example of AIMS gradient angularity index curve 
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Figure 4.7 Example of AIMS texture index curve 

  

  

 The output of the analysis software can be an Excel file with summary reports 

and graph illustrations for all size combined or individual sizes. It also shows the results 

in terms of a cumulative distribution curve and some statistics such as standard 

deviation, mean, and values of first, second, and third quartiles. Figures 4.6 and 4.7 show 

the examples of output from analysis software. 

Table 4.5 summarized the features of each shape parameter used in the AIMS. 

Texture index and gradient angularity index were picked up for this study. The 

sphericity value gives a very good indication on the proportions of a particle dimensions. 

However, one cannot determine whether an aggregate has flat, elongated or flat and 

elongated particles using the sphericity alone. Therefore, percentage of flat/elongated 

aggregates was used, which can be obtained from AIMS analysis summary report.  

 The blue lines in Figures 4.6 and 4.7 show the aggregate shape classification 

limits, as also summarized in Figure 4.8. For example, if texture index of aggregate is 
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below 165, it is defined as polished texture. If the value is higher than 460, it is defined 

high roughness.  

 For each size level of each aggregate type, AIMS analysis software provides the 

results in terms of cumulative distribution functions and statistical parameters such as 

average texture index (TIk), angularity index (GIk), and percentage of flat/elongated 

aggregates (%Ek) based on 56 particles for each individual size level. To consider the 

 

 
 Table 4.5 Features of analysis methods in AIMS 

Method Description Features 

Texture index using 
wavelet 

Used by AIMS analysis 
software (AIMSTXTR) 

• Capable of separating aggregates 
with different texture characteristics 

• Most unique among the texture 
parameter 

Gradient angularity 
index 

Used by AIMS analysis 
software (AIMSGRAD) 

• Capable of separating aggregates 
with different angularity 
characteristics 

• Capable of separating angularity 
from form 

• Most unique among angularity 
parameters 

Radius angularity 
index 

Used by AIMS analysis 
software (AIMSRAD) 

• Captures angularity but it is not 
capable of separating two 
dimensional form from angularity 

2-D form index Used by AIMS analysis 
software (AIMSFORM) 

• Captures two dimensional from but it 
is not capable of separating form 
from angularity 

Sphericity Used by AIMS analysis 
software (AIMSSPH) 

• Capable of separating aggregates 
with different from characteristics 

• Captures unique characteristics of 
aggregates 

• Most unique among the form 
parameters 
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Figure 4.8 Aggregate shape classification limits (Al-Rousan 2004) 
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overall contribution of aggregates at all size levels in concrete, overall shape and texture 

parameters were proposed based on these original statistical parameters from AIMS, 

which can be expressed as:  

 

460
%∑ ⋅

= kk TIA
STI  (4.23) 

 

where, 

STI  =  overall standardized texture index, 

%Ak  =  percentage of aggregates on the size k sieve, and 

460  =  threshold value for high roughness particle in AIMS. 

 

5400
%∑ ⋅

= kk GIA
SGI  (4.24) 

 

where, 

SGI  =  overall standardized gradient angularity, and 

5400 =  threshold value for angular particle in AIMS. 

and,   

 
∑ ⋅= kk EAOS %%  (4.25) 

 

where, 

OS  =  overall percentage of flat/elongated aggregates. 

After standardized by the threshold value, STI ranges from 0 to 1. The higher the 

value of STI, the rougher the aggregate surface. SGI ranges from 0 to 1 as well. The 

closer to 1, the more angular the aggregate is. In terms of OS, a higher value indicates 

more flat/elongated aggregates in the concrete. Therefore, these three parameters can 

represent various effects (positive or negative) of aggregate shape on concrete bonding 

performance. 
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Before measurements, aggregates were cleaned, dried, and sieved to four size 

levels: passing 1 in but retaining on ¾ in sieves; passing ¾ in but retaining on ½ in 

sieves; passing ½ in but retaining on 3/8 in sieves; and passing 3/8 in but retaining on #4 

sieves. Table 4.6 shows sources and sizes of aggregates tested.  

 

 
Table 4.6 Aggregate sources and sizes 

Aggregate sizes 

Aggregate Source Aggregate 
description 

25.4-19.0 
mm (1-
3/4”) 

19.0-12.5 
mm (3/4”-
1/2”) 

12.5-9.5 
mm 

(1/2”-
3/8”) 

9.5-4.75 
mm 
(3/8”-#4) 

GG Garwood, 
TX 

Uncrushed 
river gravel X X X X 

VG Victoria, TX Uncrushed 
river gravel X X X X 

GL Georgetown, 
TX Limestone X X X X 

 

 

A summary of these aggregate shape parameter results is illustrated in Figure 4.9. 

It can be seen that different aggregates showed different behaviors in terms of these 

three independent components. The decreasing rank orders of bonding performance as 

measured are GG, GL, and VG with respect to angularity;  VG, GG, and GL with 

respect to  texture; and VG, GG, and GL with respect to percentage of flat/elongated 

particles. GG is the most angular aggregate, and VG has the roughest aggregate surface 

and also highest amount of flat/elongated particles.  
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Figure 4.9 Aggregate geometric properties summary 

 

 

AGGREGATE PHYSICAL PROPERTIES 

 

Gradation (also called particle-size distribution or grain-size distribution) refers to the 

proportions – by mass or weight – of aggregate particles distributed in special particle-

size ranges (Somayaji 2001). It affects the workability of concrete which may, in turn, 

affect the segregation of constituents, bleeding, water-cement requirements, handling, 

placing, and finishing characteristics. These factors may then affect strength, volume 

change, durability, and the economy of concrete.   

The gradations for three aggregates studied are illustrated in Figure 4.10. Not 

only maximum size but also the fineness modulus can be calculated from the gradation 

curves of aggregates. It is useful as an indicator of the average size of an aggregate. A 

lower fineness modulus of aggregate indicates a larger percentage of finer materials; 

similarly, a higher number means fewer finer particles or plenty of coarser particles. The 

fineness modulus cannot be used as a single description of the grading of an aggregate, 

but it is valuable for measuring slight variations in the aggregate gradation. It gives an 

indication of the probable behavior of a concrete mix made with aggregate having a 

certain grading, and the use of the fineness modulus in assessment of aggregates and in 
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mix proportioning has had many advocates (Neville 1995; Popovics 1966). Therefore, 

both of these two parameters were used to investigate size effect of aggregates studied, 

where the results are summarized in Table 4.7.  

  

 

Aggregate gradation curves

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 5 10 15 20 25 30 35 40

sieve size (mm)

to
ta

l p
as

si
ng

 (%
)

GG VG GL

 
Figure 4.10 Aggregate gradation curves 

 

 

 It is obvious that there was a finer grading associated with GL aggregate than the 

gravel aggregates. The two gravel aggregates had the same maximum aggregate size; 

however, the VG aggregate had higher contents of particles at larger size levels than GG, 

which can also be found from their fineness modulus data.  Larger aggregate size can 

have a detrimental effect on the bonding due to the following reasons: 1) for a given 

volume of coarse aggregate, a larger maximum size reduces the specific surface area of 

aggregate; 2) an increased stress concentration and microcracks in the vicinity of the 

aggregate is expected with decreased surface area; 3) larger aggregate size results in the 

increases of the perimeter and thickness of interfacial layer between mortar and 

aggregate so that a larger flaw can be formed and the bond strength decreased (Akcaoglu 
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et al. 2002); and 4) larger aggregate particles tend to accumulate more bleed water 

around it,  which could lead to a higher local w/cm and subsequently, a higher bulk 

porosity and the size and porosity in the interfacial transition zone (ITZ) than the ITZ 

around the smaller aggregates (Elsharief et al. 2003; Basheer et al. 1999). Therefore, in 

terms of aggregate size effect, the decreasing rank order of bonding performance as 

evaluated is GL, GG, and VG. 

Other physical properties are also summarized in Table 4.7. It can be seen from 

Table 4.7 that all three aggregate types, especially the two types of gravel, had very 

close values of bulk specific gravity in the oven-dry condition (BSG-od) and dry rodded 

unit weight (DRUW). AC represents the maximum amount of water the aggregate can 

absorb. As for the AC, the two gravels had very close values. However, GL had much 

higher AC than the gravel aggregates, which means that the GL aggregate is much more 

porous and absorbent. Though abnormally high absorption capacities indicate high –

porosity aggregates, which may have potential durability problems, this property is 

beneficial to the bond performance at early ages, because the process of absorption 

increases and improves the contact area between the mortar and the aggregate. 

Therefore, in terms of AC, the bonding performance rank can be predicted as GL, VG, 

and GG in a decreasing order. 

  

 

Table 4.7 Physical properties of aggregates 

Aggregate type GL VG GG 
Max. size (in) 3/4 1 1 
Fineness Modulus 6.78 7.04 6.92 
BSG-od 2.50 2.56 2.56 
DRUW (lbs/ft3) 94.17 103.3 102.74 
AC (%) 4.79 1.42 1.05 
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AGGREGATE CHEMICAL PROPERTIES 

 

Struble et al. (1980) stated that one of the sources of the aggregate-mortar interfacial 

bond is a chemical bond resulting from a reaction between the aggregate and the cement 

paste. Therefore, in this study an attempt was made to provide evidence elucidating the 

role played by aggregates in influencing ionic chemical interactions at the interface. 

The total bond Gibbs free energy between water and aggregates could be a good 

parameter to represent the chemical characteristics of aggregate relative to the concrete 

bonding performance, since it represents the preference of aggregate to pull water. 

However, it didn’t make it due to the equipment problem. In an alternative way, the 

mineralogy analysis of aggregates was conducted by visual observation and optical 

microscope analysis, as shown in the rock components table (Table 4.8). It was found 

that these two gravels are actually mixtures of several rock components. GG is a 

combination of chert (i.e. microcrystalline quartz), quartzite, and acid volcanic, while 

VG is composed of chert, quartzite, limestone and acid volcanic.  It can be seen that VG 

and GG have almost similar chert content. However, GG has a much higher content of 

quartzite than VG. GG has no limestone in it, but VG contains about 21.09% of 

limestone. Different compositions of rock components for these aggregates lead to 

different chemical activities and subsequently, the aggregate-mortar bond.  

  

 

Table 4.8 Rock components of aggregates 

Aggregate type GL VG GG 
Chert / 67.26 68.38 
Quartzite / 8.03 24.21 
Limestone 100 21.09 / 

Rock 
components 
(%) 

Volcanic / 3.42 6.25 
 

 

The study on ITZs of different rock types at varied curing ages conducted by 

Tasong et al. (1999) provided reasonable interpretations of the results obtained in this 
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study.  Figure 4.11 compares the ITZs of limestone and quartzite at an early age by SEM 

analysis. It shows that very high porosity formed in the limestone ITZ (shown in Figure 

4.11 (a)), while it was not found in the quartzite ITZ. Instead, the cement paste side at 

quartzite ITZ did not show any microstructural differences compared with its bulk paste 

(shown in Figure 4.11 (b)). Different from previous findings by other researchers 

(Monteiro and Mehta 1986), carbon dioxide gas given off as a result of a chemical 

interaction between the limestone and the hydrating cement paste is considered to be the 

main reason for this high porosity (Tasong et al. 1999), which accounts for the weaker 

bond between this rock and the cement paste at an early age.  

 The study on Ca(OH)2 orientation index at ITZ for different rock types proved 

similar conclusions as well, which represents the degree of preferred orientation of 

Ca(OH)2 crystals with their c-axes normal to the aggregate surface (Grandet and Ollivier 

1980). Higher values of Ca(OH)2 orientation index represents more Ca(OH)2 crystals 

orientated with their c-axes perpendicular to the ITZ, which weaken the ITZ structure 

and associated bonding between aggregate and mortar.  The Ca(OH)2 orientation index 

at the limestone ITZ was higher than that of the bulk paste at all ages studied, while that 

at the quartzite ITZ was more or less the same as that of the bulk cement paste at all ages 

studied. In addition, for all ages studied, quartzite ITZ provided lower Ca(OH)2 

orientation index than limestone, which indicates the poorer ITZ of the former than the 

latter. The low Ca(OH)2 orientation index at the quartzite ITZ could be due to a 

pozzolanic reaction between Si4+, leached out of the rock, and the Ca(OH)2 or the 

hydroxyl ion to produce calcium silicate (CSH), which is known to enhance the density 

of the ITZ and subsequently increase the bond strength.  
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 (a) Limestone ITZ  (b) Quartzite ITZ 

Figure 4.11 ITZ comparisons of limestone and quartzite (Tasong et al. 1999) 

 

 

Though detailed information of mineralogy analysis by XRD technique is 

recommended for further study, it is not surprising that due to the higher content of 

quartzite and no limestone in GG, GG was expected to provide the more beneficial 

chemical reaction than the other two aggregate types. The very porous nature of the ITZ 

associated with the reaction of limestone with the cement paste at an early age resulted 

in a negative effect on the bonding strength. Therefore, the decreasing rank order of 

bonding strength as evaluated in terms of aggregate chemical properties is GG, VG, and 

GL.     

 

UTILITY THEORY 

 

To put it in its simplest form, utility theory is a way to compare dissimilar things (apples 

and oranges) based on the following concepts (Ledbetter et al. 1977): 

Value  –  the worth attached to an object or a service, and  

Utility  –  capability of a practice or measure to satisfy a particular need or provide a 

desirable result 

It can be used to synthesize and account for a variety of factors that play a role to 

varying degrees in a decision or evaluation processes. A basic premise in utility theory is 
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that decisions are arrived at using a rational basis, i.e., there is a set of transitive 

preferences for the outcome of the courses of action available, and the best of the 

alternatives will be chosen on the basis of maximizing some parameter. Furthermore, 

these preferences can be rated in terms of their relative power (utility) to satisfy the 

decision maker’s desires. 

MacCrimmon has classified the various methods of formally modeling a multiple 

objective decision making process into: a) weighting methods, b) sequential elimination 

methods, c) mathematical programming methods, and d) spatial proximity methods. 

Among MacCrimmon’s classification scheme, weighting methods are the most 

appropriate models relative to choosing a particular method.  The weighting methods are 

further subdivided into a) trade-offs, b) simple additive weighting, c) hierarchical 

additive weighting, and d) quasi-additive weighting.  Hierarchical additive weighting 

was selected in this case because of its relative simplicity. 

 A utility curve is a mapping from one scale of measurement to a second. The first 

scale represents a result variable that can be quantified, and the second scale is the level 

of value (satisfaction, utility) that is generated. Use of a utility curve provides a means to 

characterize the decision variable. It allows one to determine the utility of any decision 

variables once a particular value of that variable is known. 

 In accordance with the hierarchical additive weighting method of decision 

analysis, the individual utilities for each decision criterion must be weighted and added 

together to give an overall utility for each design method. Weighted expected values are 

added directly according to the following relation: 
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where, 

Ei(u) =  the average rating of the ith attribute component, 

wi  =  the weight of the ith attribute component, 
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E(u)  =  the overall expected rating of utility, and 

n  =  the number of attribute components. 

 

Overall Evaluation of Aggregate Contribution 

 

Based on the investigation of the aggregate physical, geometric, and chemical properties 

described in the previous chapter, it can be seen that any property alone could not be 

used to completely evaluate bond strength. This is because the aggregate-mortar 

interfacial bond for a given cement paste was found not to be a simple function of any 

one of aggregate properties, but a function of all three properties aggregated together. In 

addition, different relative importance existed in the different aggregate properties and 

different components within the property, which then affected the overall contribution of 

that particular property (i.e., physical, geometric, and chemical) to the interfacial bond of 

the concrete.  

As previously introduced, utility theory facilitates a way to compare dissimilar 

things based on their values and utilities. Therefore, a rating system based on utility 

theory was applied to evaluate the overall contribution of aggregate properties on 

concrete bonding performance.  A combined value can be generated to represent the 

integral overall contribution of the aggregate properties for each aggregate type by 

assigning a pre-determined weighting factor to the rating of each individual aggregate 

property allowing for all rating values to be combined into a single parameter in 

Equation 4.26.  

  Table 4.9 lists a summary of overall evaluation for aggregates investigated, 

where the rating system is on a scale of 0 (poor) to 10 (best). Higher overall expected 

rating value indicates better overall aggregate contribution to the bonding performance, 

which is identified based on the combination of physical, geometric, and chemical 

properties with suggested weighting values of 4, 3, and 3, respectively.  These weighting 

values were assigned on the basis that physical properties (with a value of 4) are the 

most basic properties relating to concrete mix and construction design. Geometric and 
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chemical properties (with a value of 3 each) were assumed to have equal contribution 

and then were assigned equal weighting values. 

 Within each property, there are sub-attribute components with individual 

weighting values. Within the scope of this study, the aggregate contribution in terms of 

physical property was evaluated with respect to 1) aggregate size effect, and 2) AC; 

while 1) angularity, 2) texture, and 3) percentage of flat/elongated particles were 

considered in the evaluation of the aggregate contribution in terms of geometric 

properties. As shown in Table 4.9, different rating values were assigned to each 

aggregate type based on the analysis of bonding performance in each attribute 

component in the previous chapter. Higher rating values represented better performance 

of components for different aggregate types. Equation 4.26 was applied twice to 1) get  

overall rating values for physical and geometric property considering their sub-attributes, 

and then 2) to obtain the combined rating values representing overall aggregate 

contribution in terms of  all three properties. The overall ratings considering all attributes 

and their sub-attributes were 6.1, 4.5, and 5.0 for GG, GL, and VG, respectively, which 

indicated that GG provided best overall contribution, GL was the second, and VG was 

the poorest. This result also matched the experimental design analysis very well.   

 

 

Table 4.9 Overall evaluation for aggregates 

Rating   Weight Attribute Weight 
GG VG GL 

size effect 5 5 3 8 Physical 
properties 4 AC 5 4 4 8 

angularity 3.5 8 3 6 
texture 3.5 6 8 3 Geometric 

properties 3 %flat 
particles 3 5 8 3 

Chemical 
properties 3  /  / 8 4 2 

Overall rating 6.1 4.5 5.0 
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   Therefore, it is possible to draw a conclusion that with appropriate combination 

of properties, any coarse aggregate type can provide positive effects on the bonding 

performance between the aggregate and the mortar. In addition, for a given aggregate 

type, based on the overall evaluation of the aggregate contribution, aggregate blending is 

also a possible means to optimize the physical properties of aggregates, and then the 

aggregate contribution to bond strength of concrete. Based on the composite contribution 

of the individual aggregate properties to the bonding strength of concrete as depicted by 

utility theory, this approach allows for the selection of the best aggregate type in 

concrete paving construction. 

 

Feasibility Evaluation of Design Combinations 

 

The previous Taguchi design analysis indicated the relative importance of the design 

factors relative to the bond strength, and different effects of levels for each factor. 

Therefore, utility theory can be also used to evaluate the feasibility of mixture design 

combinations relative to the bonding performance.  The basic idea behind the use of 

utility theory is that if there is a set of prerequisite preferences associated with the end 

result of a given design combination, then the best combination can be chosen on the 

basis of maximizing the rating.  

 It can be accomplished in a similar manner as that of the aggregate evaluation, 

but with respect to 1) aggregate contribution, 2) w/cm, 3) curing method and 4) ultra-

fine fly ash content. A combined value can be generated to represent the integral overall 

performance of a design combination by assigning a user defined weighting factor to the 

rating of each individual component allowing for all rating values to be combined into a 

single parameter using Equation 4.26. Figure 4.12 shows the correlation between the 

rating values and bonding performance in the utility curve, where the rating system is on 

a scale of 0 (poor) to 10 (best). It indicates that the higher rating values, the better the 

bonding performance and the more feasible the design combinations. 
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Utility curve of 1-day KIC
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Figure 4.12 Utility curve of 1-day KIC

 

 

 Table 4.10 provides an example of this approach by comparison of test run 1 

(i.e., VG + WMC + 0.4 of w/cm + 8% of ultra-fine fly ash), test run 3 (i.e., VG + WOC 

+ 0.45 of w/cm + 20% of ultra-fine fly ash), and the optimum design (i.e., GG + WMC + 

0.4 of w/cm + 8% of ultra-fine fly ash). As shown in Table 4.10, different weights and 

ratings were assigned to the design factors due to the different relative importance of 

each factor to KIC and different levels of each factor (Table 3.10 and 3.11).  Higher 

weights represented greater importance given to the factors relative to KIC, and 

corresponding to the higher levels in Table 3.10 and 3.11, higher ratings represented 

better performance relative to bond strength. Optimum design combination provided 

highest overall rating value, which was also correlated with the previous result from 

experimental design. The overall rating values of test run 1 (i.e., 6.6) was higher than 

that of test run 3 (i.e., 5.6). Therefore, the design of test run 1 is more feasible (Figure 

4.12), which is consistent with the KIC results of these two designs (Figure 3.15). In 

addition, these two designs used the same aggregate type. However they provided 

different bonding performance due to different selections of other factors. Therefore, for 

a given gravel aggregate type, it is possible to improve the bonding performance of 

concrete by selecting optimum levels of other design factors.  
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Table 4.10 Summary of evaluations by rating systems 

Rating 
  Weight Test 1 Test 3 Optimum 
Aggregate type 4 4.5 4.5 8.0 

Curing method 3 8.0 5.4 8.0 
W/cm 2 8.0 6.9 8.0 
Ultra-fine fly ash content 1 7.5 8.0 7.5 

Overall rating 6.6 5.6 8.0 
   

 

The application of utility theory to the evaluation of overall contribution of 

aggregate properties to the bonding performance of concrete, and feasibility of design 

combinations enable the selection of the best aggregate type, and aggregate blend to 

optimize the design combinations for concrete paving construction to relieve 

delamination and further spalling distresses.  
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CHAPTER V 

 

INTERFACIAL FRACTURE ENERGY MODEL AND STRESS ANALYSIS 

APPROACH 

 

GENERAL 

 

To further investigate the strength characteristics of the interface between aggregate and 

mortar, in this chapter, a model of interfacial fracture energy between aggregate and 

mortar was formulated based on the relation between fracture energy of concrete and 

fracture energies of its components.  The relation between the interfacial fracture energy, 

material, and construction factors was investigated. The final results built the connection 

between concrete properties at the meso-level (represented by the interfacial fracture 

energy between aggregate and mortar) and at the macro-level (represented by fracture 

toughness of concrete and significant influencing materials and construction factors).       

An approach to predict the delamination occurrence by numerical simulation and 

laboratory investigation was also proposed. It’s based on comparing KI (stress intensity 

factors) and KIC (critical stress intensity factor or fracture toughness) directly in terms of 

fracture criteria for unstable growth. One can then determine the crack stability of the 

material under given loading conditions. It can also be used for evaluating the 

effectiveness of pavement design methods to prevent delamination and spalling distress. 

 

INTERFACIAL FRACTURE ENERGY 

 

The specific fracture energy is one of the important material properties of concrete. It is 

defined as the area under the load-deflection curve per unit fractured surface area, and is 

used to characterize the process of fracture (Petersson 1980). Fracture energy and 

fracture toughness reflect different aspects of the interfacial failure. As stated by Pye and 

Beaudoin (1992), interface fracture energy is a more appropriate descriptor of the quality 
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of the cement paste-substrate bond due to the progressive failure of the bond. However, 

the testing of interfacial fracture properties is not as easy as other property testing to 

perform. Work was conducted to formulate an interfacial fracture energy model to 

investigate the characteristics of fracture process at the aggregate-matrix interface and 

build the relation between it and the macro fracture property of concrete.   

The energy approach states that crack extension (i.e. fracture) occurs when the 

energy available for crack growth is sufficient to overcome the resistance of the material. 

According to the First Law of Thermodynamics, when a system goes from a 

nonequilibrium state to equilibrium, there will be a net decrease in energy. Griffith 

(1920) applied this idea to the formation of a crack, and his model is based on a global 

energy balance: for fracture to occur, the energy stored in the structure must be sufficient 

to overcome the surface energy of the material (Anderson 1995). For a plate subjected to 

a constant stress, σ, which contains a crack 2a long under plane stress condition, the 

fracture stress can be presented as: 
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where, 

E = modulus of elasticity,  

γs = surface energy of the material, and  

a = half-crack length.  

 Equation 5.1 is valid only for ideally brittle solids such as ceramics and glass. In 

such a material, a crack can be formed merely by breaking atomic bonds; γs reflects the 

total energy of broken bonds per unit area. However, when a crack propagates through a 

metal, dislocation motion occurs in the vicinity of the crack tip, resulting in additional 

energy dissipation. Irwin (1948) and Orowan (1948) independently modified the Griffith 

expression to account for materials that are capable of plastic flow, as given by: 
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where γp is the plastic work per unit area of surface created, and is typically much larger 

than γs. 

 Therefore, the Griffith model can be generalized to account for any type of 

energy dissipation: 
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Where wf is the surface fracture energy, which may include the surface energy, plastic 

work, or other type of energy dissipation associated with a propagating crack. It can 

consider various materials properties such as plastic, viscoelastic, or viscoplastic 

properties, and also phenomena such as crack meandering and branching during crack 

propagation. Figure 5.1 illustrates various types of material behavior and the 

corresponding fracture energy.   

 Therefore, considering concrete as a quasi-brittle composite, interfacial fracture 

energy is more suitable than interfacial surface energy to represent the energy necessary 

to create a crack along the interface between aggregate and mortar. The results showed 

later will also indicate this. 
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(a) Ideally brittle material (wf = γs) 

 

(b) Quasi-brittle elastic-plastic material (wf = γs + γp) 

 

(c) Brittle material with crack meandering and branching 

Figure 5.1 Crack propagation and fracture energy for materials (Anderson 1995) 
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Formulation of Interfacial Fracture Energy Model 

 

Interfaces which represent discontinuities are intrinsic to the concrete composites, and 

their structural performance is generally influenced by these interfaces (Mindess 1988). 

The concrete may be considered as a kind of three-phase composite material with the 

three phrases being hardened cement paste, aggregate and interfacial zone between the 

hardened cement paste and aggregate. Normally, when concrete fails, there are two 

modes of failure of the coarse aggregate as shown in Figure 5.2: (a) the crack deflects 

around the aggregates, i.e., debonding of the coarse aggregate, or (b) the crack penetrates 

through the aggregates, i.e., rupture of the coarse aggregate. The nature and path of crack 

propagation illustrated in Figure 5.2. Depending on the strength of the interface relative 

to the aggregate and to the matrix, a crack will propagate either in mode (a) or (b), 

producing a different crack roughness. The type of propagation influences the energy 

consumption and the interlock effects, and has a direct effect on concrete toughness.   

 

 

 
(a)  (b) 

Figure 5.2 Failure modes of coarse aggregates 

 

 

Therefore, interfacial fracture energy between aggregate and mortar which 

represents the energy necessary to create a crack along the interface can be predicted 

based on the following equation: 
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adiarammligc AGAGAGAG −− ⋅+⋅+⋅=⋅   (5.4) 
 

where, 

Gc, Gm, Ga, and Gi = fracture energy of concrete, mortar, coarse aggregate and interface, 

Alig = ligament area = Am + Aa = Am + Ar-a + Ad-a,

Am = the cracking surface passing through mortar, 

Ar-a = the cracking surface passing through coarse aggregates, or the surface area of 

ruptured coarse aggregates, and 

Ad-a = the cracking surface area of interface, or the surface area of debonding coarse 

aggregates. 

A parameter to represent the failure mode of aggregates along the fracture surface, 

rupture probability of coarse aggregate (RPCA), was defined as the ratio of the area of 

ruptured coarse aggregates (Ar-a) to the total projected area of coarse aggregates (Aa) 

(Wu et al.1999):  
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The higher the RPCA, the more ruptured coarse aggregates and the stronger the interface 

between aggregate and mortar.  

Therefore, Equation 5.4 can be described as: 
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 (5.6) 

Stereology is a geometrical statistical tool for an objective quantitative analysis 

that enables an unbiased estimation of the three dimensional (3D) structural parameters, 
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such as volume and specific surface area, from observations of lower dimensions 

(Underwood 1968). Certain important relationships exist connecting the stereological 

parameters for two dimensional (2D) measurement and the ones for 3D structure. As for 

structural analysis of material structure, a relevant 2D parameter reflecting the 

composition aspect is the area fraction of phase of interest (A
A
), which can be accurately 

determined from a full section of the structure. A
A 

is an unbiased estimator of V
V 

for the 

phase of interest (Hu 2004). Therefore, based on stereological theory, the area ratio in 

the above equation can be converted to volume ratio as follows.   

 

lig

a
A

c

a
V A

A
A

V
V

V ===  (5.7) 

 

where, 

VV = volume fraction (volume of feature per unit test volume), 

Va = volume of coarse aggregates, and  

Vc = volume of concrete.  

Then, Equation 5.6 can be further presented as: 

 

( ) ( )1 1c m V a V i VG G V G RPCA V G V RPCA= ⋅ − + ⋅ ⋅ + ⋅ −   (5.8) 
 

The interfacial fracture energy can be defined as: 

 

( )
( )

1
2 1
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i

V

G G V G RPCA V
G

V RPCA
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=
⋅ −

 (5.9) 

 

Equation 5.9 indicates that the interfacial fracture energy between aggregate and mortar 

can be back-calculated based on the relation with fracture energy of concrete and mortar.  

 Digital image analysis (DIA) technique (Wu et al. 1999) can be applied to 

calculate the length and area of ruptured coarse aggregates, and all coarse aggregates on 
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the fracture surfaces to calculate the RPCA value based on Equation 5.5.  Previous 

research (Wu et al. 1999, Wu et al. 2002) has indicated that the RPCA can be regarded 

as an intrinsic parameter that characterizes the strength of concrete determined by both 

the properties of matrix and aggregate. It depends on the interfacial bond strength and 

also the aggregate characteristics including the intrinsic strength, size, shape, and also 

the reactivity of the coarse aggregates. There is a very good correlation between KIC and 

RPCA (Wu et al. 2002):    

 

((0.182 1.32 )  0.881ICK RPCA r= + = )  (5.10) 

 

where, KIC here is in the unit of MPa·m1/2. After rewriting Equation 5.10, the following 

equation can be used to predict the RPCA in this study: 

 

0.182 /1.32
910.0461

ICKRPCA ⎛ ⎞= −⎜ ⎟
⎝ ⎠

  (5.11) 

 

where, KIC in Equation 5.11 is in the unit of psi·in1/2.  

 Fracture energy is defined as the amount of energy required to create a crack of 

one unit of area. Sometimes it is also called the critical strain energy release rate or 

toughness (Petersson 1980).  The critical stress intensity factor (or fracture toughness) is 

a measure of the magnitude of the stress concentration which exists in front of the crack 

tip when the crack starts to propagate. The relation between fracture energy and fracture 

toughness can be expressed as (Knott 1973): 

 

C CK G= E  (5.12) 

 

where, E is the Young’s modulus, and sub C in KC and GC here represents ‘critical’. 

Therefore, Gc and Gm in Equation 5.9 can be back-calculated once their Young’s moduli 

and fracture toughness values are known. As described in previous chapters, variable-
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notch one-size split-tensile test is applied to calculate the fracture toughness values of 

concrete and mortar. Young’s modulus E can be calculated indirectly from the 

compressive strength using the ACI Building Code formula (ACI 1996): 

 

( ) 2/1,000,57 cfE =  (5.13) 

 

where, fc’ is the compressive strength in units of psi. As for Ga values in the model, they 

are not equivalent to two times the surface free energies of the aggregates (2γi) due to the 

same reason pointed out in the previous section regarding the  interfacial surface energy 

and fracture energy. Instead, those values are referenced to a database of fracture 

mechanics parameters for rocks (Atkinson 1987, Lin 1998). 

In addition, the relation between volume of coarse aggregates in the concrete, Va, 

and yield of concrete, Vc, can be described as: 

 

a c
a

w w

W CAF V DRUV
BSG BSGγ γ

⋅ ⋅
= =

⋅ ⋅
W  (5.14) 

 

where,  

Wa  =  coarse aggregate amount in mass, 

BSG  =  bulk specific gravity of coarse aggregate, 

CAF  =  coarse aggregate factor, 

DRUW  =  dry-rodded unit weight of coarse aggregate, and  

γw  =  unit weight of water = 62.4 lb/in2. 

Therefore, the following equation 

 

a
V

c w

V CAF DRUWV
V BSG γ

⋅
= =

⋅
 (5.15) 

 

relates VV to the physical properties of coarse aggregates.  
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 Overall, Equations 5.9, 5.11, 5.12, 5.13, and 5.15 are proposed as a formulation 

of aggregate-mortar interfacial surface energy inherently, incorporating aggregate failure 

modes and concrete, mortar and coarse aggregate properties.  

 

Results and Analysis 

 

Various experimental factors (as shown in Table 5.1) were considered to investigate the 

development of fracture energy on the mortar-aggregate interface at early ages.   

 

 

Table 5.1 Experimental parameters for interfacial fracture energy investigation 

Experimental parameters Levels  

Time 3 1-day, 3-day, 7-day 

Aggregate type 2 VG, GL 

W/cm 3 0.4, 0.42, 0.45 

Cement factor 2 5.5, 6 

% ultra-fine fly ash replacement  4 0, 8%, 15%, 20% 

Curing method 3 WMC, NCC, WOC 

 

 

Comparison between VG and GL 

 

Figure 5.3 shows RPCA development of concretes made with both aggregates, keeping 

other design parameters constant (i.e. w/cm = 0.40, CF = 6, and WOC).  The results 

were also correlated with analysis of fracture surface area of specimens by Senadheera 

and Zollinger (1995). With time, the RPCA increases, which indicates that the mortar-

aggregate bond becomes stronger, causing more aggregates to rupture. Research 

conducted by Guinea et al. (2002) also showed similar results. In addition, due to 

different fracture energies of these two aggregates, there is a large difference in 
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aggregate failure modes. VG is “harder” with a fracture energy of 35 N/m, while GL is 

“softer” with a fracture energy of 15 N/m. Therefore, especially at very early ages, most 

of VG aggregates debond (as shown in Figure 5.3), while most of GL aggregates 

rupture. As a result, when the load is applied, these two different concretes present 

different crack paths and associated different energies released.   
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Figure 5.3 RPCA of two aggregates 
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Figure 5.4 Fracture surface of concrete with VG 

 

 

Table 5.2 compared the interfacial fracture energies of concretes made with two 

different aggregates, calculated based on Equations 5.9, 5.11, 5.12, 5.13, and 5.15. Other 

design parameters were kept constant (i.e. w/cm = 0.42, CF = 6, and WMC). It can be 

seen that at each age, the interfacial fracture energy of concrete made with GL was much 

higher than that made with VG, which indicated that much higher energy is required (or 

needed) to create a new unit surface area of interface for concrete made with GL than 

concrete made with VG. In addition, once a crack initiates, it propagates along path 

which requires the lowest energy consumed.  Therefore, VG prefers failure mode a (i.e. 

the crack deflects around the aggregates), and GL prefers failure mode b (i.e. the crack 

penetrates through the aggregates) as shown in Figure 5.2. 
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Table 5.2 Comparison of interfacial fracture energies 

Concrete age (days) Gi_VG (N/m) Gi_GL (N/m) 

1 6.98 37.28 

3 9.70 37.42 

7 12.51 48 

 

 

Effects of Cementitious Factors 

 

Figure 5.5 illustrates the development of interfacial fracture energy of different concretes 

made with VG but with different w/cms and cement factors.  For all concretes, 

interfacial fracture energy of concrete increases with the time. In addition, at all age of 

concrete made with same aggregate, interfacial fracture energy increases with w/cm and 

cement factor.  

 

 

0
2

4
6
8

10
12
14
16
18
20

1 3 5 7concrete age (days)

G
i (

N
/m

)

w/cm=0.4,CF=5.5 w/cm=0.42,CF=5.5 w/cm=0.45,CF=5.5 w/cm=0.4,CF=6
w/cm=0.42,CF=6 w/cm=0.45,CF=6

 
Figure 5.5 Effects of material factors on interfacial fracture energy 
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From the point of view of the concrete failure process, aggregates affect crack 

propagation through two ways: 1) by creating and initiating cracks; and 2) by arresting 

the propagation of cracks. For normal concrete, aggregates are stronger than the matrix. 

If a crack starts to spread under a given load from a pore in the matrix or from an 

interface there is a chance that it may be blunted by an aggregate and then will be 

stopped, as schematically shown in Figure 5.6.  

 

 

 
Figure 5.6 Schematic representation of crack blunting (Wittmann 1983) 

 

 

2cm is assumed to be the length of the initial crack in the matrix. Once the stress 

level reaches σm, the crack will spread in an unstable way according to: 

 

2 m
m

m

E
c
γσ

π
=   (5.16) 
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γm denotes the fracture surface energy of the matrix, and 2 γm denotes the fracture energy 

of the matrix. Assuming the crack meets an aggregate when it has grown by ΔC, at the 

crack tip the condition for further crack growth has now changed: 

 

( )
2 A

A
m

E
c C

γσ
π

=
+ Δ

  (5.17) 

 

In Equation 5.17, γA stands for the fracture surface energy of the aggregate. In normal 

concrete, γA is higher than γm and therefore the resulting curve is shifted towards the 

right as shown in Figure 5.7.  In this case, the crack runs from point P1 and is arrested at 

point P2.  From point P2 to point P3, if the load is increased to σA, the crack will 

propagate through the aggregate. Normally the energy required for the crack to 

circumvent the aggregate is less than that for the crack to penetrate the aggregate. 

Therefore, in most of cases, before the load is reached to σA, the crack will already have 

propagated around the aggregate. Therefore, according to this crack arresting 

mechanism, this type of crack path absorbs more energy (or increases  interfacial 

fracture energy)  than that of penetrating the aggregate by increasing the tortuosity of the 

crack path which 1) increases the length of crack extension, and 2) deflects the direction 

of crack propagation.  
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Figure 5.7 Schematic representation of Equations 5.16 and 5.17 (Wittmann 1983) 

 

 

Immediately after pouring and before hardening, sedimentation (bleeding) takes 

place. This process causes water filled pockets under coarse aggregates, which are most 

likely the initiation of horizontal cracks (Wittmann 1983). As shown in Figure 5.5, for 

concrete made with same aggregate type and same cement factor, the increase of w/cm 

results in an increase of the water content in concrete. Therefore, concrete with higher 

w/cm has more water accumulated under the aggregates than that with lower w/cm, 

which results in more cracks and defects along the interface and more energy consumed, 

leading to higher ductility. In a similar manner, for concrete made with same aggregate 

type and same w/cm, an increase of the cement factor also results in an increase of water 

content in concrete. Therefore, concrete with a higher cement factor has more cracks and 



  109 

defects along the interface and higher interfacial fracture energy than that with lower 

cement factor.  

 

Fracture Energy of Interface, Concrete and Matrix 

  

The relationship among fracture energy of interface, concrete, and mortar were also 

investigated for concretes made with different types of aggregates, as summarized in 

Table 5.3. It can be seen that the interfacial fracture energy can be linearly related to 

both concrete and mortar fracture energy for concretes made with different aggregates.  

 

 

Table 5.3 Regression analysis of interfacial fracture energy 

Concrete made with “harder” aggregates (such as VG): 
( )98.0R   505.05871.19445.1 2 =−−= mci GGG  

Predictor Coefficient t Stat P-value 

Constant -0.505 -0.879 0.393 

Gc 1.9445 30.688 5.95×10-15

Gm -1.5871 -21.352 1.22×10-12

Concrete made with “softer” aggregates (such as GL): 
( )99.0R   74.448343.03151.5 2 =−−= mci GGG  

Predictor Coefficient t Stat P-value 

Constant -44.74 -8.271 1.69×10-4

Gc 5.3151 23.888 3.53×10-7

Gm -0.8343 -1.101 0.313 

 

 

Both equations in Table 5.3 show high t values and low P values for the 

coefficients of Gc and Gm, indicating the high significance of regression relations. Gi 

increases with the increase of Gc and the decrease of Gm. Previous research including 

three-point bending test of notched mortar-aggregate interface beam by Wong et al. 

(1999), aggregate push out test by Mitsui et al. (1994), and the wedge splitting test by 
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Tschegg et al. (1995) showed that the interfacial fracture energy was only about 10% of 

the corresponding mortar fracture energy. However, the results in this study showed that 

the ratio of interfacial fracture energy to mortar fracture energy ranged from 0.04 to 

11.17. This is because that concretes investigated in the previous research are at their 

later ages (from 28-day to 90-day), at which concretes are fully developed; while early 

ages of concretes (from 1-day to 7-day) were focuses of this study. Typically at an early 

age of concrete, the strengths of concrete and cement mortar are not fully developed, and 

the fracture energies of interface, mortar and concrete are much lower than those at late 

ages. In addition, the development of these parameters with the time was different, and 

also varied with different material combinations. The fracture resistance of the interface 

is lower than that of the bulk paste due to micro-cracks in the ITZ initiating and 

propagating around the aggregates.  

Figure 5.8 shows a linear relation between Gi and Gc. In Chapter IV, a utility 

curve was developed to relate the fracture toughness of concrete to the overall effects of 

material, construction, and time factors on bonding performance.  Therefore, based on 

the relation as presented in Figure 5.8, the interfacial fracture energy can be predicted 

once a design combination is known. Though further validation is needed, the approach 

described in this section builds the connection between concrete properties at the meso-

level (represented by the interfacial fracture energy between aggregate and mortar) and 

at the macro-level (represented by fracture toughness of concrete and significant 

influencing materials and construction factors).   
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Figure 5.8 Linear relation between Gi and Gc

 

 

DELAMINATION OCCURRENCE PREDICTION 

 

During the first three days after paving the moisture gradients near the surface of the 

pavement slab can actually generate stresses large enough to create delamiations in the 

concrete. It is possible to predict early age delamination in the concrete. In this study, a 

fracture mechanics based approach is illustrated facilitated by numerical analysis to 

predict the time when delamination would occur. As described in previous chapters, one 

necessary condition for delamination to develop is the sufficient evaporation of pore 

water from the hydrating concrete resulting in differential drying shrinkage near the 

pavement surface. As a consequence of its dominating effect, the nature of the moisture 

profile in hardening concrete particularly near the evaporative surface was also 

considered in this prediction protocol.   

  

Criterion for Delamination Occurrence 

 

Stress intensity and fracture toughness are key fracture mechanics parameters that can be 

used by materials engineers and designers in design analysis (Boresi et al. 1993; Irwin 

1957; Hertzberg 1976). By comparing K (stress intensity factors) and KC (critical stress 
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intensity factor or fracture toughness) directly, one can then determine the crack stability 

based on fracture criteria for unstable growth of the material under given loading 

conditions. In the previous chapters, fracture toughness was used to represent the nature 

of the interfacial bond between the aggregate and mortar relative to delamination. 

Therefore, it is appears to be feasible to predict the occurrence of delamination by 

comparing the development of K and KC.  

An early experimental study on the measurement of the fracture toughness of 

mortar-aggregate interfaces in concrete was performed by Hillemeier and Hilsdorf 

(1977). They reported test results for cases involving mode I loading conditions. 

However, the crack along the aggregate-matrix interfaces may have been caused either 

by tensile or by shear stresses or by combinations of tensile and shear stresses (Taylor 

and Broms 1964). Büyüköztürk and Lee (1993) stated that cracking of mortar-aggregate 

interfaces involves mixed mode fracture effects due to the difference in the properties 

between mortar and aggregate, as well as due to loading conditions, which means that 

the stress field in the vicinity of the crack front is defined not only by the stress intensity 

factor KI, but also by KII (Richard et al. 2005). In this case, plane mixed mode conditions 

are characterized by the superposition of the fracture modes I and II. As can be seen in 

Figure 5.9, the beginning of unstable crack growth can be described by a facture limit 

curve. If the loading condition on a crack in a structure corresponds to the point P, no 

unstable crack growth is to be expected. If in contrast to this, the load level increases in 

such a way, which, for example point C of the fracture limit curve is reached, immediate 

unstable crack growth will occur. 
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Figure 5.9 Fracture limit curve (Richard et al. 2005) 

 

 

However, different researchers have different opinions about this. Previous 

research (Tan et al. 1995) showed that for the same interfaces the specific fracture 

energy in shear (mode II) is an order of magnitude higher than in tension (mode I). Since 

interfacial cracking precedes bulk cracking, initiation of interfacial cracks in mode I is 

the critical step for failure. The mode II fracture energy is found to be far larger than the 

mode I fracture energy (Bažant and Pfeiffer 1987), and the critical stress intensity factor 

KIC is about a fifth of KIIC, which means that GIIF is about 25 times as large as GIF 

(Ozbolt et al. 1999). In addition, the predicted values of mode II stress intensity factor 

(KII) were much smaller than those of mode I stress intensity factor (KI), which will be 

shown later. Therefore, in our study, the crack initiation in mode I was thought as the 

predominant type. Then the criterion for predicting early age delamination occurrence is 

that delamination occurs when K > KIC. 

Till now, many methods have been adopted to compute K, such as finite element 

method, boundary element method, and finite difference method, etc. Among these, 

finite element method is the most popular one. In this study, finite element software 

packages — Temperature and Moisture Analysis of Curing Concrete (TMAC2) (Jeong 

2003) and ABAQUS (2003) were applied to predict the development of K. 
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Concrete Moisture Diffusivity Profiles 

 

The nature of the moisture profile in hardening concrete particularly near the evaporative 

surface and the associated drying shrinkage are subjects of great interest relative to their 

effects on the formation of early aged delamination at cracks and joints in concrete 

pavements. Moisture flow and diffusion in concrete have been a significant topic in the 

research of concrete pavement materials (Bazant and Najjar 1972; Parrott 1988; Parrott 

1991; Xin et al. 1995; Buch and Zollinger 1993).   

In freshly placed concrete, moisture movements are typically characterized by 

high rates of diffusion followed by gradually lower rates 10 to 12 hours after placement.  

This drying characteristic is inherently related to a material property referred to as the 

moisture diffusivity (D) which has been generally accepted to be dependent upon the 

pore water content within the cement paste.  It has been observed that moisture 

diffusivity may change significantly with variations in the moisture content or the 

relative humidity (from 100 to 70 percent) of the concrete (Pihlajavaara 1964; Kasi and 

Pihlajavaara 1969; Bazant 1970; Bazant and Najjar 1972).  At constant water content 

(w), moisture diffusivity changes little with time in mature concrete in contrast with the 

dramatic changes fresh concrete undergoes during the first 24 hours after placement.  In 

this regard, diffusivity in early-aged concrete is not only a function of humidity but also 

of concrete age and porosity.  The moisture diffusivity is important in modeling moisture 

flow in hardening concrete.   

The rate of moisture flow through concrete can be expressed by the velocity of 

flow (J) representing the mass of evaporable water passing through a unit area 

perpendicular to the direction of flow per unit time.  The velocity of flow by Darcy’s law 

is derived from energy gradients (Bazant and Najjar 1972): 

 

 J C grad μ= − ⋅   (5.18) 
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where, μ is Gibb’s free energy (GFE) per unit mass of evaporable water and the 

coefficient C characterizes the permeability of porous concrete.  Equation 5.18 is 

restricted to small energy gradients and laminar flow conditions.  Assuming water vapor 

behaves as an ideal gas, Gibb’s free energy is (Bazant and Najjar 1972): 

 

)(ln TH
MV
RT

sat
w

μ+⋅⎟
⎠
⎞

⎜
⎝
⎛=μ   (5.19) 

 

where, 

R =  universal gas constant (8.3143 J/mol/oK), 

T =  absolute temperature (oK), 

M =  molecular weight of water (18.015 g/mol), 

Vw =  specific volume of water (1 cm3/g), 

H =  humidity of concrete ⎟
⎠
⎞

⎜
⎝
⎛=

100
RH , and 

RH =  relative humidity of concrete (%) 

 Equation 5.18 can be rewritten in terms of temperature (T) and humidity (H) of 

concrete as (Bazant and Najjar 1972): 

 

 J c grad H= − ⋅   (5.20) 

where the coefficient c is permeability as a function of temperature and humidity of 

concrete as below: 
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Figure 5.10 Example of desorption-sorption isotherms of cement paste, established 

by powers (Bazant 1970) 

 

 

The relationship between humidity and water content within concrete at a 

constant temperature and the degree of hydration is described by desorption or sorption 

isotherms as illustrated in Figure 5.10 (Bazant and Najjar 1972).  It should be noted that 

the isotherm for sorption is different from the isotherm for desorption.  This 

characteristic may be due to the various states of equilibrium of the pore water.  An 

investigation by Parrott (1988) implied the significance of porosity with respect to the 

position of the desorption or sorption isotherm within concrete.  The results indicated 

that a greater amount of moisture loss in drying concrete would occur in regions nearest 

to exposed drying surfaces which may be also regions of greater porosity.  Therefore, it 

can be explained that there is a greater volume of coarse pores at positions nearer to an 

exposed concrete surface and consequently the relationship between weight loss and 

relative humidity of concrete will vary with distance from the exposed surface.  In this 

respect, the performance and behavior of a concrete pavement may be affected by the 

porosity of the surface. It should also be noted that the resulting desorption isotherm at 

any time during hydration of hardening slab concrete must be interpreted not only as a 
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function of the degree of hydration, but also as a function of porosity.  At a given 

porosity, the desorption isotherm may be expressed in the differential form as (Bazant 

and Najjar 1972): 

 

kdwdH =   (5.22) 
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where the parameter k represents the slope of the moisture isotherm where the mass of 

water (w) is described as a function of humidity (H).  Moisture movements in an 

unsaturated porous medium is effected by temperature profiles of the medium (Huang 

1979; Suh et al. 1988; Somasundaram et al. 1989).  Thus, the calculation of humidity in 

hydrating concrete requires additional terms under variable temperature conditions as 

(Bazant and Najjar 1972): 

 

sdHKdTkdwdH ++=   (5.24) 

 

where, 

K   =  hygrothermic coefficient ( w
T
H

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= ), and 

dHs  =  change in humidity (H) due to hydration at a constant water content (w) and 

time (t).  

The hygrothermic coefficient represents the change in humidity due to one 

degree of change in temperature at a constant water content and a given level of 

hydration.  It should be noted that the pore water content (w) includes both the 

evaporable or capillary water (wc) and the non-evaporable water (wn) per unit volume of 

materials.  

The rate of moisture flow in unit volume of concrete is determined from: 
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Substituting Equation 5.20 into Equation 5.25 and subsequently substituting Equation 

5.25 into Equation 5.24 leads to: 
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which is the diffusion equation for the drying concrete under variable temperature 

conditions.  Equation 5.26 is further developed to be Equation 5.27. 
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  (5.27) 

 

Permeability (c) is also a function of the porosity and indirectly a function of 

position x.  Because permeability change with position x is assumed to be very small, the 

second term in the equation 5.27 is considered to be negligible and is consequently 

dropped from the diffusion equation as: 
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where D (= k⋅c) is moisture diffusivity (L2/t). 

 

Governing Differential Equations 

 

Drying shrinkage occurs as a result of evaporation of pore water to the surrounding 

environment; however it is probably the least widely recognized cause of volume change 
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in concrete paving. Stress occurs when the shrinkage is restrained. Though temperature 

variation is also a factor in the delamination development, this study specifically focused 

on early-age concrete behavior associated with volumetric contraction due to moisture 

induced shrinkage. Delamination is caused by differential drying shrinkage induced 

stress. The drying process is mainly related to the moisture variation in concrete. 

Whether delamination occurs or not is mainly related to this stress level in concrete. 

Therefore, in this study, early-age concrete subjected to moisture induced shrinkage was 

modeled as an isotropic, time-dependent material subjected to coupled hygro-mechanical 

loading conditions.  

For two-dimensional problems we consider three strain components, namely, 
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The relations between the components of stress and the components of strain are 

presented as: 
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Compared with original Hooke’s law, there is one more term at the right side of 

Equation 5.32 and 5.33, which is the strain component due to the moisture variation.   

The differential equations of equilibrium for two-dimensional problems are 

(Timoshenko and Goodier 1970):  
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Converting Equation 5.32, 5.33, and 5.34 to equations represented by displacement 

components, then substituting them into Equations 5.29, 5.30, and 5.31, and 

subsequently substituting into Equation 5.35 and 5.36, the equilibrium equations are 

finally developed as: 
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where,  

E  =  elastic modulus of concrete, 

ν  =  Poisson’s ratio of concrete, 

α  =  coefficient of shrinkage, and  
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H  =  relative humidity of concrete. 

For two-dimensional analysis, Equation 5.28 is converted to 
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If the dry bulb temperature, T, used in Equation 5.39 is assigned a constant temperature 

value (though it is not a realistic assumption), the third item in the right side of the 

equation will become zero, simplifying Equation 5.39 to: 
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If the humidity change due to self-desiccation is assumed to be insignificantly small, 

Equation 5.40 reduces to: 
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Equation 5.37, 5.38 and 5.41 are governing equations used in this analysis. The third 

term on the left side of Equations 5.37 and 5.38 indicate that the relative humidity of the 

concrete influences the force equilibrium of the concrete by strains due to shrinkage or 

swelling. The proportionality between drying shrinkage and the decrease of pore 

humidity is dictated by the coefficient of shrinkage, which is analogous to the coefficient 

of thermal expansion, and it is equivalent of the ultimate shrinkage (Lim 2002).  

It has been noted that there are some similarities between the coupled thermal 

stress problem and the coupled hygro-mechanical stress analysis warranted by 

dimension analysis and comparison, though time dependency is not addressed (Zhang 

2004). For example, the relative humidity is corresponding to the temperature and the 

moisture diffusivity is corresponding to the thermal conductivity. Heat transfer and the 
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coupled thermal stress have been studied in the mechanical engineering for decades. 

Some methods for conducting this type of analysis are already well-established and a lot 

of commercial software packages, for examples, ABAQUS, and ANSYS have provided 

options to solve the differential equations numerically. Therefore, the program 

specifically for the coupled thermal stress approach in ABAQUS was used for the 

coupled hygro-mechanical stress analysis. Considering the time-dependency of E, H, and 

D in the above equations, subroutines were developed to facilitate the input and updating 

of those parameters.  

 

Numerical Study 

 

Although the definition of the term early-age is somewhat arbitrary, the analysis of 

drying and stress development was conducted up to about 7 days (604800 seconds). 

Figure 5.11 shows the typical geometry and finite element mesh of the pavement section 

studied, and the mechanical boundary conditions are also shown. The concrete slab was 

0.3-meter (12-in) thick. Due to the symmetry of the pavement structure, a 1-meter (3.3-

ft) of length was chosen. The finite element analyses were made with the ABAQUS 

program using rectangular mesh of 4-node quadrilateral elements. Full bond between 

concrete slab and foundation was modeled by fixing displacements in all directions. 

Only vertical displacements were allowed for the left and right side of the structure, 

since the section was considered as a part of the whole pavement. For some cases, the 

concrete slab was also notched to simulate the sawcut effects, with a notch width of 4 

mm.  

The ABAQUS program offers the contour integral method for the evaluation of 

stress intensity factors, which means that in a finite element model each evaluation can 

be thought of as the virtual motion of a block of material surrounding the crack tip. Each 

such block is defined by contours: each contour is a ring of elements completely 

surrounding the crack tip or crack front from one crack face to the opposite crack face. 

The beginning of unstable crack growth as well as the crack growth direction can be 
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determined by the use of one of fracture criteria (Erdogan and Sih 1963; Sih 1974; Bilby 

and Cardew 1975). Here, the criterion of energy release rates by Nuismer (1975) was 

chosen for calculating the direction of cracking initiation.  

 At the time of concrete placement, a concrete mixture is assumed to be 

completely wet. Therefore, the initial boundary condition was as follows:   

 

(5.42)  0at   0.1 == tH

 

 

 

Figure 5.11 Geometry and mesh of modeling 

  

 

 The stress intensity factor at an early age was investigated by incorporating 

distribution and history of moisture relative to the material-related moisture transport 

property in the analysis. Since the moisture differences between ambient conditions and 

those inside the concrete cause moisture to migrate from the concrete to the surrounding 

atmosphere. Hence, the boundary conditions were the humidity histories at the surface 

and bottom of the concrete slab.  

 TMAC2 program, a finite element program developed by TTI, produces the 

temperature and moisture profiles and accounts for the interaction between them at any 

points in a hydrating concrete slab as a function of time and ambient boundary 

conditions (Jeong 2003). The input data include climatic parameters, mix design, 
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materials properties, parameters for hydration, and construction parameters. The finite 

element mesh of TMAC2 has total 120 rectangular elements (5 columns × 24 rows) with 

539 nodal points (9 nodal points per each element). This program was used to predict the 

humidity histories, with the assumption that the humidity at concrete surface has been 

assumed to be the same as the humidity of ambient condition during the analysis period. 

Figure 5.12 shows an example of relative humidity trends at the bottom and the surface 

of the slab estimated from TMAC2 program.  

 

 

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

t (hrs)

R
H

 

bottom of the slab surface of the slab

 
Figure 5.12 Relative humidity trends from TMAC2

 

 

 A typical Poisson’s ratio of 0.15 was used for the concrete.  The history of elastic 

modulus of concrete was converted from that of compressive strength based on their 

relationship from the ACI building code formula (Equation 5.13) (ACI 1996), where 

compressive strength data were obtained from laboratory testing. The coefficient of 

shrinkage, equivalent of the ultimate shrinkage, was determined by the BP model 

(Bazant and Panula 1978):  

 

yshrult 9701330 −== −εα  (5.43) 
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where, 
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a    =  total aggregate/cementitious ratio, 

s
g   =  coarse Aggregate/fine aggregate, 

cm
s   =  fine aggregate/cementitious ratio, 

cm
w   =  water/cementitious ratio, and 

'
28cylf  =  28-day compressive strength of concrete (ksi). 

 Three Subroutines (i.e., USDFLD, UMAT and UMTHT) were developed to 

facilitate the numerical analysis. Because all material properties used in the analysis 

were time dependent, USDFLD was used to obtain stress, strain and relative humidity 

from previous calculation step. UMAT was used to update the stiffness matrix of the 

FEM simulation and UMTHT was used to update the corresponding moisture diffusivity 

matrix during the simulation.  

 

Example of Stress Intensity Factor Development 

 

An example of typical concrete with material characteristics shown in Table 5.4 was 

selected for analysis purposes.  The development of the concrete elastic modulus is 

illustrated in Figure 5.13. 
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Table 5.4 Material parameters in the example analysis 

Parameters w/cm Cement 
factor 

a/cm g/s s/cm '
28cylf  (ksi) α  

(micro-strain) 
 0.45 5.5 6.336 4.351 1.985 5.207 424.5 
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Figure 5.13 Development of elastic modulus of concrete 

  

 

 The distribution and history of moisture diffusivity was back-calculated from 

TMAC2 program by transforming the governing equations of moisture diffusion to 

calibrate predicted humidity. Details can be referred from the previous section and also 

the reference (Jeong 2003). It can be seen from Equation 5.43 that D is the function of 

both curing time and concrete dimensions. Figure 5.14 shows an example of the 

prediction of the diffusivity history at 8.02 cm below the concrete surface.  
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Figure 5.14 Diffusivity history at 8.02 cm below the surface of concrete 

 

 

The evaluation of the stress intensity factor KI, where the relative displacement 

of mating crack surfaces normal to the fracture plane, is shown in Figure 5.15. From 

Figure 5.15, it can be seen that instead of increasing with the time monotonically, the 

development of KI with the time showed a cycling pattern with the cyclic change of 

relative humidity profiles, similar to the stress analysis. There were seven sets of peak-

and-trough values within the analysis period, which indicates that everyday there were 

maximum and minimum stress values consistent with the relative humidity profiles. In 

addition, with time, the maximum and minimum stress values increased with a gradually 

lower rate. 
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Stress intensity factor of Mode I
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Figure 5.15 Mode I stress intensity factor history 

 

 

As mentioned before, the development of KII was also conducted. The values of 

KII associated with the KI values in Figure 5.15, which correspond to in-plane shear, 

were shown in Figure 5.16. Similarly, the development of KII followed cyclic patterns as 

well, though toward the direction of negative values, where the negative symbol 

indicated the direction of the crack propagation. The values of KII were much lower than 

those of KI. This is the reason that we neglected mode II crack in our analysis. 
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Stress intensity factor of mode II

-3.0

-2.0

-1.0

0.0

1.0

2.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Curing time (hrs)

KI
I (

KP
a.

m
1/

2 )

 
Figure 5.16 Mode II stress intensity factor history 

 

 

Prediction of Delamination Occurrence 

 

The occurrence of delamination can be determined by comparing KI against the fracture 

toughness KIC developed under laboratory investigation. Two examples were utilized to 

show the ability of this method to select and evaluate the effectiveness of pavement 

design methods to prevent delamination and spalling in concrete paving.  

 

Crack Induction 

 

The sawcutting technique has been used widely to form controlled cracking and relieve 

the stress level at the surface of concrete pavements (Tang et al. 1994), and it is 

considered as one of remedial measures of delamination in concrete pavements. For the 

simulation of sawcutting, both horizontal and vertical directions were considered as the 

direction of crack initiation for KI prediction. However, the results showed that for a 

vertical existed sawcut, the predicted KI values with vertical crack initiation were much 

higher than those with horizontal crack initiation.  Therefore, KI values with vertical 

crack initiation were used for comparison. Figure 5.17 compares the effect of sawcut 
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depth on the KI development of concrete pavement made with VG, 0.45 of w/cm, and 

without any curing treatment. The a/h represented the relative sawcut depth, where a was 

the sawcut depth, and h was the thickness of the concrete slab.  The notch depths were 0, 

1, 2, 3, 4, and 6 in, respectively, corresponding to the relative sawcut depths of 0, 1/12, 

1/6, 1/4, 1/3, and 1/2.  

From Figure 5.17, it can be seen that without sawcut most of KI values were 

lower than KIC, which means that the probability of delamination to occur at the sawcut 

front is very low. Instead it could occur at any other locations. With the increase of the 

sawcut depth, the local stress at the sawcut tip increased significantly, which greatly 

increased the probability of occurring of delamination at the sawcut front, while 

reducing the stress at other locations. Among different relative sawcut depth, relative 

depth of 1/4 provided the highest KI values through the period studied. In addition, 

almost all values of KI exceeded the corresponding KIC, which indicated that 

delamination would occur at the sawcut location through the early age of concrete 

instead of other locations in the pavement.  Continually increasing relative notch depth 

(i.e. 1/3 and 1/2) resulted in a decreased KI profile. It may because of lower moisture 

gradient and associated strain energy. Therefore, within the scope of this study, cutting 

the pavement 1/4 of whole slab thickness provided the best performance in terms of 

relieving delaminations in concrete pavements.  
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Sawcut effect comparison
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Figure 5.17 Sawcut effect comparison 

 

 

Optimization of Design Factors 

 

As described in Chapter III and IV, current research on using gravel aggregates in 

concrete paving suggested a way to optimize the combination of construction and 

material design factors for improving delamination resistance. These factors include 

aggregate type, w/cm, replacement with ultra-fine fly ash, and curing method. Figure 

5.18 shows the results from two different design combinations. One is a) GG + 0.4 of 

w/cm + 8% of ultra-fine fly ash + WMC, which is the optimum design combination from 

analysis of the laboratory data; and the other is b) VG + 0.45 of w/cm + 20% ultra-fine 

fly ash + WOC, which provided a low KIC based on laboratory results. From Figure 5.18, 

it can be seen that for combination b, the earliest delamination occurs within 15 hours 

after concrete was paved when the KI development exceeds KIC. However, for 

combination a, the stress level in the pavement is reduced, and over the analysis period, 

KI did not surpass KIC. Therefore, no delamination occurs, which signifies the 
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effectiveness of this method. The result was also confirmed from field tests on SH 290, 

where similar materials design was used at one of test sections and there was no 

delamination from concrete cores taken at that section. 
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Figure 5.18 Design methods comparison 
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CHAPTER VI  

 

FIELD TESTING 

 

GENERAL 

 

Evaluation of the delamination in concrete pavements under different curing conditions 

and mixture combinations is also an important part in this study. One way is retrieving 

cores from selected areas for visual confirmation of delamination, but a more efficient 

way is the application of NDT method which would be capable of collecting a large 

amount of data in a relatively short period of time and extend the findings from the 

visual observations to a broader area of pavement.  In this chapter, the application of 

ground coupled GPR to detect delamination occurrence was described. A delamination 

detection protocol was developed, and validated by visual observation and concrete 

coring test.  

 Pavement test sections using gravel aggregates were established to validate 

measures and practices from laboratory investigation, field testing, and numerical 

analysis. The results were also presented in this chapter. 

 

GROUND COUPLED GPR  

 

The GPR technique can provide continuous and nondestructive measurement compared 

to some traditional highway detection methods (Maser 2000, Liu et al. 2004). The 

unique ability of GPR to rapidly evaluate subsurface conditions has been identified 

through various applications, including 1) subgrade investigations, 2) bedrock 

evaluation, 3) locating sinkholes, 4) detecting frost damage, 5) identifying defects such 

as stripping or voids, 6) pavement moisture-content measurement, 7) monitoring crack 

growth within the pavement structure, 8) detecting subsurface problems in hot mix 

surfacings and asphalt stabilized bases, 9) measuring the thickness of recently 



  134 

constructed concrete pavements, and 10) assisting with the pavement evaluations as the 

first step in the pavement rehabilitation process (Saarenketo and Scullion 1994, Maser 

2000, Scullion et al. 1995).  

GPR is a pulse-echo method. GPR systems typically have three components 

(Saarenketo and Scullion 1994): 1) a pulse generator which generates a single pulse of a 

given frequency and power, 2) an antenna which transmits the pulse into the medium, 

and 3) a sampler or a recorder which captures and stores the reflected signals from the 

medium. Figure 6.1 illustrates the principle of GPR technique. The GPR transmits short 

pulses of electromagnetic energy into the pavement structure. These pulses are then 

reflected and refracted at each layer interface, and the reflected energy is collected and 

displayed as a waveform with amplitudes and arrival times of reflections.  It is the travel 

time and strength of these echoes that are used in determining certain pavement 

characteristics.   

 

 

 

Figure 6.1 Principle of GPR (Scullion et al. 1992) 

surface layer
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Although GPR data analysis in the past was performed visually and only by 

experienced personnel, today GPR data processing is fully automated allowing for 

processing of large quantities of data with a minimum effort. Signal process systems 

such as DACQ (Scullion et al. 1992), COLORMAP (Scullion et al. 1995) were 

developed for facilitating the interpretation of GPR data.  The former one is an 

automated peak tracking system in which the user identified significant peaks within the 

GPR trace and the software automatically traced these peaks throughout the entire file. 

The latter one is a Windows based system for rapidly reviewing and interpreting GPR 

data. Another Windows based software named GPRView has similar functions as 

COLORMAP (Liu et al. 2004).  

There are two types of GPR systems in common use: air-launched system and 

ground-coupled system. Figure 6.2 shows the setup of ground coupled GPR system. 

Compared with air-launched system, the clear advantage of ground coupled antennae is 

their depth of penetration and better vertical resolution. High frequency ground coupled 

GPR has been found to work well with concrete pavements for applications such as 

detecting mid-depth delamiantions, and locating steel or identifying possible sub slab 

defects such as voids (Scullion et al. 1997). Some specific comments on the applicability 

of GPR for characterizing in-place concrete pavements were summarized in study 

conducted by Zollinger et al. (2004): 1) layer thickness measurements in concrete slabs 

are different from those in HMA pavements; 2) voids under JCP slabs filled with water 

can be detected by visual review of the graphical output and/or using site calibrated 

interpretation algorithms, and 3) the hand-held contact type GPR equipment has been 

used successfully to determine dowel alignment to an accuracy of ±3 mm (±0.12 in) in 

the vertical and the lateral planes.   
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Figure 6.2 Ground coupled GPR setup 

 

 

GPR TESTING 

 

In this study, ground coupled GPR was applied to several highways made with gravel 

aggregates within Houston district, Texas to monitor the process of delaminations. These 

tests included 1) test at SH 6 (intersection between FM 529 and SH 6) on February 6, 

2004; 2) test on IH 10 (near Baytown) and SH 225 on February 27, 2004; and 3) test on 

US 290 (near Hempstead) on September 23, 2004. Cores were also taken either adjacent 

to or on the transverse cracks from these sites to confirm the nature of the delaminations.  

Detailed data information is included in Appendix A. 

 

GPR Test on SH 6 on February 6, 2004 

 

11 cracks within 3 test sections built in previous research were picked up for GPR 

monitoring. For each crack, GPR data was collected at different distances to the shoulder 
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by pulling ground coupled antenna from upstream side of crack to the downstream side. 

For each location, the length which the antenna passed was 6 feet. Visual survey was 

also conducted for those selected sections, and another impact echo technology was 

applied by research members from UTEP to monitor the progress of the delaminations. 

Cores were taken both along the transverse cracks and transverse saw-cuts for visual 

confirmation of delaminations. 

 

 

 
Figure 6.3 The pavement section without sawcuts before the core was taken (the 

arrow shows the location where the core was taken) 
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Figure 6.4 The pavement section with sawcuts before the core was taken (the arrow 

shows the location where the core was taken) 

 

 

 

Figure 6.5 Cored samples: (a) along the sawcut; (b) along the crack 
(a) (b) 
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Figure 6.6 GPR data from test area with the confirmed delamination 

 

 

Figures 6.3 and 6.4 show the pavement sections with and without sawcuts before 

cores were taken. It is obvious that in the section without sawcuts there were random 

transverse cracks, while in the section with sawcuts, transverse cracks occurred just 

along the sawcuts. It is because sawcuts initiate the cracks and defects and cause stress 

concentration at the tips, which relieve stresses and control cracks at other locations. In 

addition, there was no indication of delamination in the core taken beside the transverse 

sawcut, while significant delamination along the transverse crack without sawcuts, 

which can be also seen from Figure 6.5. The delamination for the section without sawcut 

was also confirmed from GPR data showed in Figure 6.6. As shown in Figure 6.6, 

during the testing, the marker was made at the location of the crack, where the core was 

taken. In the ‘no defect area’, there were no strong reflections. In this area the concrete is 
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judged to be solid. In the ‘delamination area’ which was at the right of the crack marker, 

there were obvious disturbance of GPR signals, which indicated the occurrence of 

delamiantion. 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

delamination 

(a)  (b) 

Figure 6.7 The coring sample with delamination: (a) top view of the coring hole; (b) 

fracture surface 

 

 

The full-depth core with confirmed delamination (shown in Figure 6.5 (b)) was 

split into three parts due to significant delamination. Figure 6.7 shows the detailed 

observations from concrete core specimens. Both (a) and (b) showed that the interfacial 

zone is weaker than the coarse aggregate, cracks prefer to propagate along the interfacial 

zone, while the coarse aggregates debond, and then deflect and bridge cracks.  

 

GPR Test at IH 10 and SH 225 on February 27, 2004 

 

8 cracks within 5 test sections were picked up for GPR monitoring. For each crack, GPR 

data was collected at 7 different locations (i.e. 1, 2, 3, 4, 5, 6, and 7 feet to the shoulder) 
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by pulling ground coupled antenna from upstream side of crack to the downstream side 

with constant interval of 6 feet. Visual survey was also conducted for those selected 

sections, and another impact echo technology was applied at the same locations by 

research members from UTEP to monitor the progress of the delaminations. Cores were 

taken besides transverse cracks / sawcut from different pavement sections along IH10 

and SH-225 to confirm delamination where spalling is not manifested on surface but 

delamination suspected inside.  

 

 

 
Figure 6.8 Test section at IH10 without sawcut 

 

 

Figures 6.8 to 6.14 show selected test sections where GPR data was collected and 

concrete cores were retrieved (red circles besides the cracks represent the core 

locations). Generally spalling distress is very prominent at IH10 as shown in Figure 6.8. 

One core was taken besides one fine transverse crack where spalling was not observed. 

The idea was to check the presence of delamination (in any) inside. This core sample 

from I-10 did not show any delamination, which indicated delamination may not take 
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place under fine transverse cracks. However, observation on more number of cores 

besides fine transverse cracks or application of GPR / impact echo to detect delamination 

(if any) in more number of locations is necessary in order to prove it.  

The concrete pavement test section at SH 225 was paved on November 11, 1991, 

and was opened for traffic on December 12, 1991. Till the date when GPR test was 

conducted, the test section is already 13 years old. The layout of experimental sections 

within the SH 225 test section is indicated in previous research (Senadheera and 

Zollinger 1996), and section 2, 3 (without early age sawcut) and 9 (with early age 

sawcut) were picked up for our GPR tests. As for SH 225, spalling distress is not 

prominent although cracking is prominent. We have collected several cores to check the 

presence of delamination (if any) inside. Delamination was observed at 4-5 inch below 

in pavement sections without sawcut at SH 225 (shown in Figures 6.11 and 6.13). On the 

other hand, de-lamination was not observed in core taken (besides one prominent crack) 

from pavement section with sawcut (Figure 6.10). The observations were consistent with 

those obtained by Senadheera and Zollinger (1996) 14 years ago. They summarized that 

there were delaminations present near random transverse cracks and there was no 

indication of delamination in cores taken at the transverse sawcuts. Early age sawcutting 

helps in releasing some of the strain energy generated due to shrinkage and temperature 

change in the pavement, and it is very effective to minimize delaminations at shallow 

depths, which was also verified from stress analysis described in Chapter V. 
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Figure 6.9 Test section at SH 225 with sawcut 

 
 

Figure 6.10 Core collected from location marked at Figure 6.9 
 

No 
delamination 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  144 

 
Figure 6.11 Test section at SH 225 without sawcut  
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at 4.5// below 

Figure 6.12 Core collected from location marked at Figure 6.11 
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Figure 6.13 Another test section at SH 225 without sawcut  

 

 

 

Figure 6.14 Core collected from location marked at Figure 6.13 
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GPR Test at US 290, Hempstead on September 23, 2004  

 

This test section was constructed in August 1992. Till the date when GPR test was 

conducted, the test section is already 12 years old. The layout of experimental sections 

within the US 290 test section is presented in previous research (Senadheera and 

Zollinger 1996), and 12 cracks within section 1, 2, 3, and 4 were picked up for GPR 

monitoring. For each crack, GPR data was collected at seven different locations (i.e. 2, 

5, 7, 8, and 10 feet to the shoulder) by pulling ground coupled antenna from upstream 

side of crack to the downstream side at constant interval of 6 feet. Visual survey was 

also conducted for those selected sections, and another impact echo technology was 

applied by research members from UTEP to monitor the progress of the delamination. 

15 cores were taken both along the transverse cracks and transverse sawcuts for visual 

confirmation of delamination. 

 Figures 6.15 to 6.18 show the conditions of two of investigated cracks. One is 

crack #4 at station 2 (shown in Figure 6.15(a)), where concrete was paved during day 

time with siliceous gravel, CRCP 89 steel standard, transverse sawcut and polyethylene 

film curing. With transverse sawcuts, slight cracking or spalling existed. From GPR 

waveform (shown in Figure 6.16), it can be seen that disturbance of GPR signals only 

occurred around the cracking. Concrete cores (shown in Figure 6.15 (b)) were taken at 

different locations along the crack; however, no delamination was detected. The other is 

crack #9 at station 3 (shown in Figure 6.17 (a)), where concrete was paved during day 

time with limestone, CRCP 89 steel standard, and two coats of standard TxDOT curing 

compound curing. Without transverse saw cuts, the pavement was severely spalled. 

From GPR waveform (shown in Figure 6.18), it can be seen that disturbance of GPR 

signals was almost everywhere. However, there was no delamination occurred from 

concrete cores retrieved (shown in Figure 6.17 (b)).  In fact, there was no any 

delamination detected from all 15 cores taken from locations adjacent to selected cracks. 

However, an extensive coring test conducted in June 1993 from all test sections 

(Senadheera and Zollinger 1996) showed that there were delaminations detected. It also  
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(a)  (b) 

Figure 6.15 Crack #4 and concrete cores 

 

 

                                                    

Figure 6.16 GPR waveform of crack #4 
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(a)  (b) 

Figure 6.17 Crack #9 and concrete cores 

 

 

 
Figure 6.18 GPR waveform of crack #9 
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implies coring test cannot be a detecting method but a validating method for other 

NDTs. The analysis from GPR delamination detection protocol, which will describe in 

the next section, also indicates the possibility of delamination existing in US 290, though 

it was not present from selected cores. 

 

GPR DELAMINATION DETECTION PROTOCOL 

 

The data interpretation for GPR in asphalt pavement applications has been very 

successfully.  However, when GPR was applied to early age delamination detection in 

concrete pavements, there were difficulties we faced. Firstly, there was no metal plate 

file available for ground coupled GPR technique, which is a mandatory file for 

calculating layer thicknesses for air launched GPR system. Secondly, concrete is very 

similar in dielectric properties to the granular base. Thirdly, early age delamination 

below the surface is rather shallow. Because the GPR pulse energy travels down through 

the material and echoes are created at boundaries of dissimilar materials, and it is the 

travel time and strength of these echoes that are used in determining certain pavement 

characteristics, in our case, it may cause the boundary not significant to be detected by 

the echoes, and the GPR waveform very difficult to be interpreted. This is also the 

reason why through the GPR tests conducted on several highways, in some cases early 

age delamination can be determined directly from GPR waveforms, and then confirmed 

from concrete cores retrieved later. However, in some cases it is very difficult to 

determine the possibility of delamination occurrence based on visual review of the 

graphical output only.  

Therefore, it is very necessary to improve the analysis quality and facilitate data 

interpretation for GPR technique.  In this section, an analysis approach of GPR data was 

proposed to improve quality of data interpretation and accuracy of delamination 

detection. It includes the following several steps: 1) initial evaluation, 2) comparison of 

negative intermittent peaks, and 3) establishment of threshold voltage difference. 
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 The GPR return waveform from a pavement with a homogeneous surface layer 

and in generally “good” condition is shown in Figure 6.1. Peaks A1, A2, and A3 are 

reflections from the top of the surface, base and subgrade, respectively. The surface 

layer is classified as “homogeneous and uniform” because there are no significant peaks 

between A1 and A2. However, in Figure 6.19, a negative peak C occurs between major 

peaks A and B, which signifies a layer of lower dielectric properties. In Texas, when 

there are intermittent negative peaks in the surfacing layer, they are usually related to the 

presence of a low density layer within the surface layer due to significant defects or 

deterioration (Scullion et al. 1995). On this basis, the subsurface condition can be 

initially evaluated. 

 

 

 
Figure 6.19 Example of GPR return waveform with subsurface problem (Scullion 

et al. 1995) 
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 Though the metal plate file is not available for our study, it is still possible to 

develop site calibrated interpretation algorithm based on the GPR signals. Before GPR 

test, a simple NDT method, also referred to as the “sounding method” was applied to 

determine the good and bad locations, by dropping a heavy steel bar on the pavement 

and listening to the sound emanating from the pavement. If the pavement is 

homogeneous solid concrete (good locations), the sound emanating from the pavement is 

a high-pitched “ringing” sound. If there is a delaminated concrete segment, the sound is 

a low frequency “rattling” sound.  Based on this method, in our study, normally the 

locations with “bad” condition were those adjacent to a transverse crack (either or both 

sides of the transverse cracks), while the locations with “good” condition were those 

away from the crack. It is also correlated to the observations by Senadheera and 

Zollinger (1996). Using the GPR waveform of locations with “good” conditions at the 

same pavement section as a reference or site calibration, we can know how “bad” those 

locations with “bad’ conditions are (or the severity level of the subsurface). On this 

basis, a data retrieving program was developed to obtain data for GPR waveforms (i.e., 

voltage versus travel time curves) at any trace point, which made quantitative 

comparison possible between locations with “good” and “bad” conditions.  
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Figure 6.20 Typical GPR waveforms for bad and good locations 
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 Figure 6.20 compares typical GPR waveforms for “good’ and “bad” locations. 

The red circle indicates the major difference between these two waveforms. Compared 

with the waveform of good location, there is a very significant intermittent negative peak 

for the one of bad location.  

In order to find the correlation between those intermittent negative peaks in the 

GPR waveforms and the early age delamination in concrete slab, for each location of 

each crack where the GPR was conducted, all GPR data were reduced. Detailed 

information of 164 sets of data is listed in Table A-1 of Appendix A. Using the 

intermittent negative peak value of locations with “good” conditions (V1) as a reference, 

the difference between negative peak voltage values of “good” and “bad” locations (V2-

V1) can be used to evaluate the delamination situation. Figure 6.21 illustrates the 

summary of peak values comparison of GPR data from SH 6 and US 290, where V2 

represents the intermittent negative peak value of location with “bad” condition. After 

calibrated by V1, it is certain that there is no delamination detected from GPR if the 

value of (V2-V1) is great than zero. Figure 6.22 illustrates the probability of (V2-V1) less 

than a certain value for GPR data from SH 6 and US 290. The curve for US 290 shifted 

to the right, compared with that for SH 6, which indicated that the concrete slab 

condition of US 290 is better than that of SH 6. This finding is also correlated to the 

results from observations of concrete cores retrieved from these roads.  
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Figure 6.21 Comparison of intermittent negative peak values 
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Figure 6.22 Probability of peak differences  
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In addition, by correlating the GPR results with associated concrete cores taken 

at the same locations, it is found that if the value of (V2-V1) is not low than a certain 

negative value, early age delamination will not occur. This value is the threshold value 

which can identify the delamination occurrence for concrete pavements from ground 

coupled GPR data. Within the scope of this study, -0.3 was determined as the threshold 

value.  

Therefore, this approach makes easily and quantitatively interpreting the ground 

coupled GPR data possible, which greatly explores the application of GPR to the 

concrete pavements research. The approach was also preliminarily validated through 

winter test sections built at SH 288, which will be described later.  

 

FIELD TEST SECTIONS 

 

The laboratory work revealed important information on curing and climatic conditions, 

mixture design, aggregate combinations, time of placement, and method of crack control 

to provide sufficient guidance to establish test sections and formulate a framework of the 

guideline for using gravel aggregates in concrete paving. To this end, gravel test sections 

using Fordyce materials were established in November, 2005 on SH 288 to produce 

performance test data to validate measures and trends relative to the practices and 

techniques to minimize the development of spall related delamination in CRC paving. 

Three continuous days from November 16th to 18th were dedicated to paving a total of 

ten sections. Field data was collected through various types of instrumentation and 

monitoring by personnel from TTI, TxDOT, UTEP, and CTR over a period of days since 

paving. Weather data, concrete temperature and relative humidity profiles, and drying 

shrinkage development were monitored, and pavement surveys were conducted to 

monitor the crack pattern development over time in each test section. Bonding strength 

in the field was measured and ground coupled GPR was conducted on November 28th 

and December 19th to track the delamination development. The stress analysis to predict 



  155 

delamination occurrence and GPR field delamination detection protocol were further 

validated through visual observation of concrete cores on associated cracks retrieved.   

 

Field Testing Program 

 

10 test sections were located on SH 288 approximate 3 miles south of Beltway 8. The 

field test section design was finalized through several discussion and meetings.  The 

design has ultimately narrowed down to 3 factors, i.e., fly ash content, curing method, 

and batching sequence with a total of 10 test sections, as summarized in Table 6.1.  

These combinations were a result of 2 different fly ash replacements, 3 curing methods, 

and 2 charging sequences. 2 different fly ash contents were: 1) a combination of 10% of 

ultra-fine fly ash and 15% of Class F fly ash, and 2) 25% of Class F fly ash. The curing 

methods consisted of high reflective resin-based curing (HRC) compound, normal 

(conventional) resin-based (NC) curing compound, and wet mat curing. For 2 curing 

compounds, 2 times of application (10 minutes and 30 minutes after paving) were 

carried out. The HRC was applied by hand spray. A modified charging sequence was 

formulated to minimize the available water at the aggregate-paste interface which 

consisted of 1) mixing 75 ~ 80% of the water with the fine aggregate and the 

cementitious materials for 50 seconds, then 2) adding the coarse aggregates and mixing 

for 30 seconds, and 3) adding the rest of water and mixing for 50 seconds; the normal 

charging sequence consisted of the traditional mixing of the materials together at the 

same time.   
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Table 6.1 Test variables for the field program 

Test Section 
FA replacement 

(%) 
Curing Charging sequence 

1 (10+15) * HRC Normal 

2 (10+15) HRC Modified 

3 (10+15) NC Normal 

4 (10+15) NC Modified 

5 25 ** HRC Normal 

6 25 Wet Mat Modified 

7 25 NC Normal 

8 25 NC Modified 

9 (10+15) Wet Mat Normal 

10 25 Wet Mat Normal 

* 10% ultrafine fly ash and 15% Class F fly ash 
** 25% Class F fly ash 
 HRC = High Reflective Curing Compound, and NC = Normal Curing Compound.  

 

 

 The concrete mixtures for test sections were designed with dense graded 

aggregates supplied by the Fordyce Company, Victoria, Texas. Prior to paving the test 

sections, dense graded mix was developed in the laboratory at TTI, and trail batched 

mixtures successfully met the required strength and workability levels. The design of 

w/cm was 0.4, using a cement factor of 6 and a Type I/II cement. Table 6.2 shows the 

mix proportions of concrete on 1 cubic yard batch basis.  
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Table 6.2 Concrete mix proportion (1 cubic yard) 

Mixture Component Weight 

Cement (lbs) 423 

Total fly ash (lbs) 141 

Coarse aggregate (1 1/2in, OD, lbs) 1370 

Intermediate aggregate (3/8in, OD, lbs) 498 

Fine aggregate (Sand, OD, lbs) 1215 

Net water (lbs) 225 

Air-entraining Admixture (oz) 2 

Water reducer (oz) 23 
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Figure 6.23 The schematic of test sections 
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 As previously noted, a total of 10 test sections were constructed over a three-day 

period. The planned construction length for each test section was 175ft. However, the 

actual lengths of 10 sections varied, as shown in Figure 6.23. 

 

Field Test Data and Analysis   

 

The field test data and analysis presented here include 1) weather data, concrete 

temperature and relative humidity profiles, and drying shrinkage development, 2) 

pavement condition such as the crack pattern development over time in each test section, 

3) field bond strength of concrete and 4) GPR data. The data information in first 3 items 

was further used as inputs for stress analysis to predict associated delamination 

occurrence, and GPR data was analyzed by the field delamination detection protocol. 

The results were further validated by associated concrete coring tests. 

 

Weather Data 

 

The development of delaminations, and spalling distresses in CRCP at an early age is 

significantly affected by climatic factors. Therefore, a weather station (shown in Figure 

6.24) was used to collect weather data in the field which recorded ambient relative 

humidity, ambient temperature, solar radiation, wind direction, wind speed, and rainfall. 

This data was collected at hourly intervals on a continuous basis.  

      



  159 

 
Figure 6.24 Weather station setup 

 

 

Figures 6.25 and 6.26 record the trends of relative humidity, temperature, solar 

radiation and wind speed with time over the placement period and beyond (from 

11/16/2005 to 11/21/2005). As shown in Figure 6.25, relative humidity shows the 

inverse relation with the temperature, i.e. the higher temperature associates with the 

lower relative humidity, and vice versa. Over the first several days after construction, 

ambient temperatures ranged from a low 40 oF in the morning hours to a high 65 oF in 

the afternoon. The relative humidity ranged from a low around 20% in the afternoon to a 

high almost 100% in the morning. As shown in Figure 6.26, 0.65 kW/m2 of maximum 

solar radiation and 0.62 m/s of wind speed were recorded over the monitored period.  
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Figure 6.25 Ambient temperature and relative humidity cycles during field test 

operation 
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Figure 6.26 Solar radiation and wind speed cycles during field test operation 
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Concrete Temperature Profiles 

 

Vertical temperature profiles through the thickness of the pavement for all the test 

sections were measured immediately after concrete placement by embedded I-buttons 

(as shown in Figure 6.27 (a)) at  3 different locations in the concrete (1 inch from the 

top, mid-depth, and 1 inch from the bottom; and two different transverse locations: 2ft 

and 6ft from the edge). Figure 6.28 shows the temperature development in the concrete 

for one of test sections (section 8). Figure 6.29 summarizes the maximum temperature at 

different locations in the pavement and the associated elapsed time when these 

temperatures were reached. A complete set of data is provided in Appendix B. 

It can be seen that at each location, the development of concrete temperature with 

time followed a cycling pattern. For almost all test sections, there was an increase in 

temperature from top to bottom. Different maximum temperature existed for different 

test sections, which is related to the temperature at the time of placement. Generally, the 

higher temperature at the time of placement, the higher the maximum temperature which 

the concrete can reach. Figure 6.30 illustrates the main effects plot for maximum 

temperature concrete at mid-depth, and Delta statistics (described in Chapter III) was 

again used to determine the significance of design factors related to the maximum 

concrete temperature. The higher Delta value represents the higher impact of the design 

factor on the target value of output (here, maximum concrete temperature). Based on 

Delta statistics, these factors followed a decreasing rank order with respect to their 

relative importance to the concrete maximum temperature: curing method, fly ash 

content, and charging sequencing. Compared with the experimental design in the 

laboratory, same trend of the relative importance of design factors held, except that the 

factors of aggregate type and w/cm were not considered in the field design. Maximum 

temperature of concrete represents the maximum heat evolved during the hydration 

process. For the factor of curing method, WMC provided higher maximum concrete 

temperature than the other two curing methods. It is because that the best curing quality 

provided by WMC enables the least loss of heat energy in the concrete. As for the factor 
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of fly ash, 25% Class F fly ash provided higher maximum concrete temperature than the 

combination of 10% ultra-fine fly ash and 15% Class F fly ash. Compared with ultra-fine 

fly ash, Class F fly ash is coarser. Therefore, the latter has less specific surface areas 

than the former. Under same condition of w/cm, concrete made with 25% Class F fly ash 

may have more water to ensure the adequate reaction of hydration products than that 

made with 10% ultra-fine fly ash and 15% Class F fly ash, which then increases the 

concrete maximum temperature. In addition, modified charging sequence provided 

higher concrete maximum temperature than normal one. It may because that for 

modified charging sequence, the coarse aggregates are added to the mixer later than 

other materials, which ensures the sufficient mixing of water with cementitious 

materials, and then improves the hydration process and increases the concrete maximum 

temperature. 

In general, concrete at the mid-depth and 1 in from the bottom reached their 

highest temperature at almost the same elapsed time, while the concrete at 1 in from the 

top reached its highest temperature later than at the other two locations. However, the 

small difference reflected the effects of different design parameters on the temperature 

development. Using concrete temperature at mid-depth and comparing section 1 and 2, 

10 and 6, and 7 and 8, the associated elapsed time when the maximum temperatures 

were reached for sections with modified charging sequence (section 1, 10, and 7) was 

shorter than those with normal charging sequence (section 2, 6, and 8). It also may be 

due to the improvement of hydration process by modified charging sequence. As for the 

effect of curing method, in the case of wet mat curing, it took longer time for concrete to 

reach its maximum temperature than the other two curing methods. However, the effect 

of fly ash combination is not that significant. It may because that at very early age of 

concrete, fly ash mainly plays the role of being the filler. On this basis, there is not big 

difference between the combination of 10% ultra-fine fly ash and 15% Class F fly ash, 

and 25% Class F fly ash only. 
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(a) (b) 

Figure 6.27 I-button and VWG setup 
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Figure 6.28 Temperature profile of test section 8 
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Figure 6.29 Maximum temperature for each test section 
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Figure 6.30 Main effects plot for maximum concrete temperature 

 

Moisture Profiles 

 

Moisture profiles at different locations (i.e. surface, ambient, and 1 in below the surface) 

were measured by curing monitor system (CMS) (as shown in Figure 6.31). Figure 6.32 
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gives an example of time histories of relative humidity for one of test sections (section 

2), and complete data can be referred in Appendix B. At any time, the ambient relative 

humidity was lower than those of concrete. When the concrete is placed initially, the 

relative humidity values at the surface and 1 in below the surface of concrete were very 

close to each other, however, with the time, the surface relative humidity becomes lower 

than the relative humidity at 1 in below the surface. In addition, the development of 

ambient relative humidity with the time follows a cyclic pattern. However, the moisture 

profile at the surface and 1 in below the surface varied with the different materials and 

curing methods. The data of relative humidity at both top and bottom of the concrete 

slab were used as boundary conditions for stress analysis to asses the possibility of 

delamination occurrence for each test section, which will be reported later.  
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Figure 6.31 CMS setup 
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Relative humidity @ section 2 (10%UF+15%FFA-HRC-M)
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Figure 6.32 Moisture profiles of test section 2 

 

 

Figure 6.33 illustrates total evaporation of concrete sections at 24 hours.  The 

higher total evaporation, the worse curing quality of concrete pavements. As shown in 

Figure 6.33, the total evaporation of section 2 (HRC + 10%ultra fine fly ash + 15% Class 

F fly ash + modified charging sequence) at 24 hours was less than half of that of section 

4 (NC + 10%ultra fine fly ash + 15% Class F fly ash + modified charging sequence), 

which indicated much higher curing effectiveness of HRC than NC for concrete at age of 

one day.  
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Figure 6.33 Total evaporation of concrete at 24 hours 

 

 

Drying Shrinkage  

 

To measure the strain in the concrete, ten vibrating wire strain gages (VWG, shown in 

Figure 6.27 (b)) (four from TTI and the other six from CTR) were installed at 1 inch 

below the surface for all test sections. Ten concrete shrinkage bar specimens were also 

cast according to ASTM C157 for unrestrained shrinkage strain measurements with 

VWGs placed within the specimens.  

Figure 6.34 illustrates the free shrinkage strain development with time for all test 

sections. It can be seen that for all most all sections free shrinkage strain increases with 

time, and maximum free shrinkage strain occurs at the later stage of analysis period. 

Figure 6.35 illustrates their maximum free shrinkage strain within 7-day analysis period. 

The comparisons between section 1 and 5, 3 and 7, 4 and 8, and 9 and 10 show that the 

combination of 10% ultra-fine fly ash and 15% of Class F fly ash presented lower 

maximum free shrinkage than that of 25% of Class F fly ash. The comparisons between 

2 and 4, 6 and 8, and also among 1, 3, and 9, among 5, 7, and 10 show that HRC 

provided highest maximum free shrinkage strain among these three curing methods, 
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which implies that HRC appears to be effective at very early age of concrete, and 

become less effective with the time. These results are also consistent with the result from 

experimental design analysis shown in Figure 6.36, which illustrates the main effects 

plot for maximum free shrinkage strain. Again, based on Delta statistics, these factors 

followed a decreasing rank order with respect to their relative importance to the 

maximum free shrinkage: curing method, fly ash content, and charging sequencing. 

Curing method has the most significant effect on the shrinkage development. Compared 

with the other two design factors, the effect of charging sequence on the maximum free 

shrinkage strain was not significant.  
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Figure 6.34 Free shrinkage with time for different sections 
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Figure 6.35 Maximum free shrinkage of concrete 
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Figure 6.36 Main effects plot for maximum free shrinkage 

 

 

Figure 6.37 presents the gage shrinkage strain development with time for test 

section 2, 4, 7, and 8 from VWGs. For all test sections, the development of gage 

shrinkage in the concrete followed a cyclic pattern, which indicated the gage shrinkage 
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is a function of not only concrete material properties but also curing methods and 

environmental effects.  
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Figure 6.37 Gage strains with time for different sections 

 

 

Figure 6.38 illustrates the maximum creep strains for all test sections after 

subtracting thermal effect and drying shrinkage from the curves of gage shrinkage 

strains. Figure 6.39 indicates the significance of each design factor related to the 

maximum creep of concrete. It is found that these factors showed similar relative 

importance to the maximum creep strain. With respect to the maximum creep strain, 

these factors followed a same decreasing rank order as that for the maximum free 

shrinkage: curing method, fly ash content, and charging sequencing. Again, the 

combination of 10% ultra-fine fly ash and 15% of Class F fly ash presented lower 

maximum creep strain than that of 25% of Class F fly ash. HRC provided highest 

maximum creep strain among these three curing methods, which again implies that HRC 

appears to be effective at very early age of concrete, and become less effective with the 

time. Compared with the other two design factors, the effect of charging sequence on the 

maximum creep strain was not significant because of its very low Delta value.  
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Figure 6.38 Maximum creep for different sections 
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Figure 6.39 Main effects plot for maximum creep  
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Pavement Survey 

 

Pavement crack survey of ten test sections was conducted on November 19th, November 

20th, November 23rd, November 24th, November 29th , December 7th, December 19th, 

February 11th, and March 24th, which included collecting number of cracks, and crack 

spacing and crack width of each crack.  The first crack was detected on section 7 in the 

morning of November 19th on the 3rd day after paving. Figure 6.40 shows the probability 

of crack spacing at different concrete ages, using data of section 5 as an example. The 

probability of crack spacing less than a given value presented a sigmoidal shape. With 

the age, the curve shifted to the left gradually, which indicated that the probability of 

crack spacing less than a given value increased. Figure 6.41 compares the development 

of crack spacing for all test sections. At an early age of the concrete the crack spacing 

for each section was large due to only a few cracks developing. The increase in the 

numbers of cracks with the time resulted in the decrease of average crack spacing for 

each section.  In addition, the decrease of average crack spacing with time got slower, 

which can be reflected from close values for crack spacing at 20 days and 126 days of 

concrete age.  
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Figure 6.40 Crack development with time 
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oncrete Strength 

igure 6.42 illustrates the 4-day compressive strength of concrete for all sections, and 

 
Figure 6.41 Crack spacing for concrete sections 

Crack Spacings of Sections

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e 

CS
 (f

t)
6-day 20-day 126-day

 

C

 

F

data of other compressive strength, flexural strength, elastic modulus, and coefficient of 

thermal expansion more strength data is listed in Appendix B. It can be seen that except 

for section 7, other sections had very similar compressive strength values. This was 

because that after the concrete specimens for all sections were cast, they were moved to 

the laboratory and cured in water tank, which then made the design combinations 

different from the original designs. Instead, the design combinations for section 1, 3, and 

9 were same, which was: water curing/10%U+15%F/NOR; those for section 2 and 4 

were same, which was water curing/10%U+15%F/MOR; those for section 5, 7, and 10 

were same, which was: water curing/25%F/NOR; and those for section 6 and 8 were 

same, which was: water curing/25%F/MOR. The very close strength data resulted from 

the exclusion of the effect of curing method in the original designs, which has much 

more significant effect than the other factors.  In addition, section 7 showed the lowest 

strength data.  This is because that the concrete mixture for section 7 was very dry, and it 
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was difficult to be placed. Additional water was applied to facilitate casting, which at the 

same time compromised the strength development.   

 

 

 
Figure 6.42 4-day compressive strength of concrete for all test sections 

 

ield Fracture Toughness Testing 

s described in Chapter III, the fracture toughness value at early ages of concrete was 

 

F

 

A

used to represent the interfacial bond between aggregate and mortar and the variable-

notch one-size split-tensile test method developed at TTI was applied to facilitate 

measurement of fracture toughness values. During paving, concrete fracture specimens 

were cast in cylinder molds for the purpose of determining the interfacial bond between 

aggregate and mortar. Previous field experience has shown that a few days after paving 
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is the most critical time for delaminations to form in concrete paving.  On this basis, test 

results were obtained for concrete at ages of both 1-day and 3-day. Figure 6.43 (a) and 

(b) showed the specimens cast in the field and the equipment for split-tensile testing, 

respectively.   

   

 

    
 (a)  (b) 

 Fracture toughness tests 

Figure 6.44 summarizes fracture toughness results for each test section. It can be 

seen th

Figure 6.43

 

 

at the interfacial bond between aggregate and mortar increased at different 

degrees with the time. Different design combinations produced different improvement of 

interfacial bond. Section 6 (i.e. 25% Class F fly ash + WMC + modified charging 

sequence) resulted in highest bonding strength among all test sections. The effectiveness 

of wet mat curing method can be observed from comparison among section 1, 3, and 9; 

section 5, 7, and 10; comparison between 2 and 4, and between 6 and 8. However, the 

effects of other factors on the bonding strength were not clear from results in Figure 6.44 

only.  
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Figure 6.44 Summary of fracture toughness for each section 

 

Hence, experimental design analysis was further conducted to check the relative 

importa

 

nce of each design factors and the best level for each factor. Figure 6.45 is the 

main effects plot for means of all design factors at concrete age of 1-day. Based on the 

Delta values, these factors showed a decreasing order related to their relative importance 

to the bonding performance: curing method > fly ash > charging sequence. The factor of 

curing method was identified as the most significant factor relative to the bonding 

performance. For each factor, higher level average indicates the better level of this factor 

in terms of the bonding performance. It can be seen that for curing methods, WMC 

showed the best performance, and HRC was better than NC. With respect to the 1-day 

bonding performance, the level of 25% of Class F fly ash was better than that of the 

combination of 10% ultra-fine fly ash and 15% of Class F fly ash. However, the level of 

normal charging sequence was better than that of modified charging sequence, which 

was not consistent with the result from the laboratory investigation.   
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Figure 6.45 Main effects plot for 1-day KIC

 

 

Figure 6.46 illustrates the main effects plot for means of all design factors at 

concrete age of 3-day. Same as the case for 1-day KIC, these factors followed same trend 

of their relative importances, and the factor of curing method was identified as the most 

significant factor relative to the bonding performance. Compared with the levels of each 

factor for 1-day KIC case, for curing method, NC showed better 3-day KIC than HRC. 

The previous analysis also showed that HRC provided highest shrinkage and creep 

development at later stage of 7-day period. HRC may be only effective during very short 

period after paving, which is needed to be testified. About the charging sequence, for 

output of 3-day KIC, these two different charging sequences provided very close 

performance, which means that within the scope of the test sections, this factor was not 

significantly related to the KIC. The main reason for this may be that different from the 

experimental design for the laboratory described in Chapter III, all design combinations 

for test sections were designed with 0.4 of w/cm and dense-graded aggregates, which 

already ensured very low probability of delamination and good quality of concrete, as 

investigated in the laboratory. It will also be addressed in the next section about 

assessment of delamination probability. As a result, on the basis of low w/cm and dense-
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graded aggregates, the improvement of concrete bonding performance provided by 

charging sequence appear to not as significant as it should be. Furthermore, the actual 

operation of charging sequences in the field may cause the levels chosen for charging 

sequence not significantly different.  
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Figure 6.46 Main effects plot for 3-day KIC

 

 

Validation of GPR Detection Protocol 

 

Ground coupled GPR technique was conducted on November 28th (within days after 

placement of the test sections) to track possible delamination development over time. 

Figures 6.47 and 6.48 give examples of GPR graphic output crossing crack #48 at 

section 2 and crack #21 at section 4, respectively. The markers in the figures show the 

locations of the cracks. Complete data of GPR test is included in Appendix A. 
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Figure 6.47 GPR output at crack #48 of section 2 

 

 

 

Figure 6.48 GPR output at crack #21 of section 4 

 

 

The delamination detection protocol developed was used to analyze the GPR data 

collected from test sections. Figure 6.49 illustrates the summary of peak values 

comparison of GPR data from various locations of test sections, and Figure 6.50 

illustrates probability of (V2-V1) less than a certain value for GPR data.  It can be seen 
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that the probability of (V2-V1) less than minus 0.3 voltages was zero, which indicated 

that there was no delamination detected from test sections. This conclusion was also 

confirmed from visual observation of concrete cores retrieved on November 28th, 2005. 

Eleven cores were taken from tested cracks at all test sections, and there was no any 

shallow horizontal delamination.    
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Figure 6.49 Peak values comparison of GPR data from SH 288 

 

 

Figure 6.51 compares the probability of (V2-V1) less than a specific value for SH 

6, US 290 and SH 288. Compared with the curve for SH 6 and US 290, it is obvious that 

not only the probability of (V2-V1) less than zero for SH 288 was less, but also that less 

than minus 0.3 voltages was zero, which indicated that the material design combinations 

applied in concrete paving on test sections at SH 288 effectively mitigated the early age 

delamination problem. This result was also correlated to the stress analysis described in 

previous section. 
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Figure 6.50 Probability of (V2-V1) for SH 288 
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Figure 6.51 Summary of probability of (V2-V1) 
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Assessment of Delamination Probability 

 

In Chapter V, an approach to predict the delamination occurrence by comparing KI 

(stress) and KIC (strength) was proposed. Therefore, in this section, this approach was 

applied to assess the delamination occurrence probability. Because delamination results 

from a combination of material and environment effects, this analysis incorporated the 

net effect of climatic parameters, mix design parameters, material properties, hydration 

parameters, curing methods, and concrete properties such as elastic modulus, 

compressive strength, and shrinkage strains.   

 The stress analysis for all sections were conducted using the above data as inputs, 

and the complete results are shown in Appendix B. Here Figures 6.52, 6.53 and 6.54 

give some of examples. Figure 6.52 (a) compares the development of stress and strength 

with the time for section 3. Through the whole analysis period of over 150 hours, the 

stress didn’t surpass the strength at any time, which indicates that there was no 

delamination.  The result was also confirmed from the concrete core taken in section 3, 

as shown in Figure 6.52 (b). From the core, it can be seen that there was no horizontal 

delamination at a shallow depth below the surface from both the concrete core and also 

from the wall of the core hole. Instead, the concrete core broke at the location of the steel 

bar, where was due to the coring operation. The result was also consistent with analysis 

from UTEP research team.  
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Figure 6.52 Delamination prediction for section 3 

 

 Figure 6.53 compares the development of stress and strength with the time for 

section 2. It can be seen that through the whole analysis period of over 150 hours, there 

were a few occasions where the stress exceeded the strength, which indicates a greater 

possibility of delamination occurrence. The result was also correlated with the 

petrography analysis shown in Figure 6.54. At the aggregate-mortar interface, there was 

a low concentration of Ca(OH)2, which tends to reduce the interfacial bonding, and 

subsequently, result in an increased probability of horizontal delamination occurrence.  
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Figure 6.53 Delamination prediction for section 2 
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Figure 6.55 compares the development of stress and strength with the time for 

 

Figure 6.54 Petrography analysis of section 2 

CH 
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Top 

 

 

section 4. It can be seen that over the analysis period of over 150 hours, there were more 

occasions where the stress exceeded the strength than section 2, which indicates the 

higher probability of delamination occurrence. The result was also correlated with the 

petrography analysis shown in Figure 6.56, where at the aggregate-mortar interface, 

there was a very fine horizontal crack. 
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Figure 6.55 Delamination prediction for section 4 

 

 

 Fine Horizontal cracking at ~ 0.5 inch) 

Figure 6.56 Petrography analysis of section 4 

 

 

Establishment of Tentative Guidelines 

 

For each test section, the probability density function of the difference between strength 

and tress (i.e. x = KIC –KI) was assumed to follow a normal distribution, as shown in 

Figure 6.57. Delamination occurs when x is a negative value. Therefore, the shaded area 

in Figure 6.57 represents the probability of delamination at a given time, stress and 
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strength. Table 6.3 summarizes the maximum probability of delamination occurrence for 

test sections over the analysis period based on the stress analysis. It can be seen that 

most of test sections showed very low probability of delamination occurrence. The 

highest probability of delamination occurrence was 28%, which occurred at the curing 

age of 38 hours in test section 4. The results of the coring tests and NDT analysis 

indicated that no horizontal delamination at a shallow depth below the pavement surface 

was detected. Therefore, the probability of delamination occurrence below 25% was 

tentatively defined as a very low chance of delamination; that ranging from 25% to 50% 

was defined as low probability; that up to 75% was defined as medium probability; and 

that above 75% was defined as high probability, as illustrated in Figure 6.58.  Figure 

6.58 illustrates the relation between the probability of delamination occurrence and 

effective wind speed, which is the ratio of wind speed to relative humidity, representing 

the combined environmental effects on delamination occurrence.  

 

 

x=KIC-KI0 
 

Figure 6.57 Probability density function of stress difference 
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Table 6.3 Maximum probability of delamination occurrence 

Section Maximum probability (%) Curing age (hrs) 

1 0.24 100 

2 10.44 15 

3 0 / 

4 28 38 

5 3.82 100 

6 0 / 

7 0 / 

8 0 / 

9 10.87 64 

10 0 / 

 

 

Evaporation rate (ER) can be used as a parameter to represent the curing quality 

of concrete pavement, combining its potential of evaporation (which is a function of the 

environmental factors such as wind speed, ambient temperature, ambient relative 

humidity, and concrete surface temperature), degree of hydration, surface moisture 

condition, and effective curing thickness. The higher ER, the worse curing quality of 

concrete pavements. It is also expected that the probability curve of delamination 

occurrence will shift to the right by improving the curing quality (decreasing ER), and 

applying early age sawcutting. The threshold values for different levels of probability of 

delamination occurrence and the calibration of the curves will be addressed in the future 

research.  
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Figure 6.58 Assessment of probability of delamination occurrence 

 

 

The flowchart in Figure 6.59 illustrates the recommendations for using gravel 

aggregates in concrete paving. Firstly, the overall contribution of aggregates to the 

concrete bonding performance is evaluated with respect to their physical, geometric and 

chemical properties (details of this approach can be referred from Appendix A). The 

rating system ranges from 0 to 10, where 10 indicates the best performance. If the rating 

value for a given gravel aggregate type is greater than 5,   which means the aggregate 

has beneficial effect on concrete bonding performance, the combination of low w/cm 

and dense gradation of aggregates is the strategy to ensure the low probability of 

delamination occurrence. If the rating value for a given gravel aggregate type is less than 

5,   which means the aggregate type is not desirable, further assessment of probability of 

delamination occurrence is needed. The probability of delamination occurrence can be 

evaluated by the approach described above. If the probability is low, the combination of 

low w/cm and dense gradation of aggregates is the solution; if the probability is at 

medium level, the design combination will be low w/cm + dense graded aggregates + 

modified mixing sequence. For the condition of high probability of delamination 

occurrence, a combination of low w/cm + dense graded aggregates + early-aged saw 
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cutting or poly burlap curing (which is equivalent to wet mat curing method) is 

necessary to minimize the delamination problem.  

 

 

 

Figure 6.59 Flowchart structure of guideline 
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CHAPTER VII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

GENERAL 

 

The purpose of this study is to develop a test protocol to measure the bond strength 

between coarse aggregate and mortar, to gain a better understanding of the construction 

practices necessary to successfully use gravel aggregates, and to provide guidelines and 

recommendations to minimize early age delamination in concrete pavements made with 

gravel aggregates.  

 

CONCLUSIONS 

 

The following conclusions could be made from this study: 

 

1. Fracture toughness (KIC) value at early ages of concrete was used to represent the 

interfacial bond between aggregate and mortar of a variety of coarse aggregates 

types and concrete mixtures. The variable-notch one-size split-tensile test method 

based on Size Effect law and its generalized theory was applied to facilitate the 

measurements. This method allows the use of specimens of the same size and shape 

but with different notch lengths, which provided for a greater amount of convenience 

in specimen preparation. 

2. Various possible corrective measures to improve the interfacial bonding between 

gravel aggregate and mortar were investigated in the laboratory based on a work plan 

including different aggregate types, crushed aggregate, dense-gradated aggregate, 

modified mixing sequence, etc. The crushing treatment of aggregate did not improve 

the bonding performance, however, dense aggregate gradation and a modified 

mixing sequence showed a definite improvement in bonding performance. 
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3. A fractional factorial design (the Taguchi method) was applied to further identify if 

key material and construction parameters significantly affect the bond strength of 

concrete at early ages and the relative importance of those parameters in design 

combinations. Four factors (i.e., aggregate type, w/cm, replacement of ultra-fine fly 

ash, and curing method) with three levels for each factor based on the orthogonal 

array were considered. The significances of each factor to achieve better KIC were 

determined, and the optimum design combination was subsequently chosen and 

validated. The experimental design analysis indicated the following decreasing rank 

order with respect to the relative importance of each factor to KIC: aggregate type, 

curing method, w/cm, and ultra-fine fly ash content. Aggregate type was identified as 

the factor that most strongly affects the bond between aggregate and the mortar. The 

best levels for these factors included in the test program were Hanson gravel from 

Garwood, TX, WMC, 0.4 w/cm, and 20% ultra-fine fly ash content, respectively. 

HG’s exhibition of best contribution on bonding performance among the three 

aggregates types considered in this study is different from previous research 

findings.   

4. The Aggregate Imaging System (AIMS) at TTI was used to investigate the geometric 

properties (i.e. shape, texture, and angularity) of the aggregate used in the lab 

program. Based on original statistical parameters from AIMS, three geometric 

parameters (i.e. STI, SGI, and OS) were proposed to incorporate the overall shape 

and texture characteristics of aggregates of all sizes. These values all range from 0 to 

1. The higher the value of STI, the rougher the aggregate surface. The closer to 1 of 

SGI, the more angular the aggregate is. In terms of OS, a higher value indicates more 

flat/elongated aggregates in the concrete. Therefore, these three parameters can 

represent various effects of aggregate shape (positive or negative effect) on concrete 

bonding performance. 

5. A comprehensive investigation of aggregate properties relative to physical, 

geometric and chemical characteristics was conducted. The research findings 

indicated that the aggregate-mortar interfacial bond for a given cement paste was 
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found not to be a simple function of any one of aggregate properties, but a function 

of all three properties aggregated together. Different relative importance existed in 

different aggregate properties and different components within the property as well, 

which then affected the overall contribution of aggregates to the interfacial bond of 

concrete. This is also the reason why a specific aggregate type (i.e., HG in our study) 

had most desirable overall contribution on the bonding performance among the three 

aggregates studied, which was consistent with analysis by a rating system based on 

the utility theory. 

6. A rating system based on utility theory was applied to evaluate the overall aggregate 

contribution to the concrete bonding performance and feasibility of design 

combinations. With appropriate combination of properties, any coarse aggregate type 

can provide overall positive effects on the bonding performance between the 

aggregate and the mortar. Based on utility theory, this study also proposed that with 

appropriate combination of materials and methods, most coarse aggregate 

deficiencies relative to bonding can be mitigated to provide satisfactory mortar-

aggregate interfacial strength. The application of utility theory to the evaluation of 

overall contribution of aggregate properties to the bonding performance of concrete,  

and feasibility of design combinations enables agencies to select the best aggregate 

type, modify aggregates by blending different aggregates, and optimize the design 

combinations for concrete paving construction, to relieve delamination and further 

spalling distresses. 

7. Reflecting another aspect of the interfacial failure, the interfacial fracture energy 

between aggregate and mortar which represents the energy necessary to create a 

crack along the interface was modeled. The model incorporates aggregate failure 

modes and properties of concrete, mortar and coarse aggregate, considering the 

concrete as a kind of three-phase composite material with the three phrases being 

hardened cement paste, aggregate and interfacial zone between the hardened cement 

paste and aggregate. The relation between interfacial surface energy and material and 

construction factors was investigated. Due to different surface energies and fracture 
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energies of these two aggregates, there is a big difference of aggregate failure modes. 

The interfacial fracture energy of concrete made with GL was much higher than that 

made with VG. For concretes of all material combinations, interfacial fracture energy 

of concrete increases with the time. In addition, at all age of concrete made with 

same aggregates, interfacial fracture energy increases with the increase of both the 

w/cm and the cement factor of concrete. The results indicated that the interfacial 

fracture energy is related to the tortuosity of its crack path, which depends on the 

length of crack extension, and the direction of crack propagation. The interfacial 

fracture energy can be predicted once a design combination is known based on the 

linear relation with both concrete and mortar fracture energy. This model built the 

connection between concrete properties at meso-level (represented by the interfacial 

fracture energy between aggregate and mortar) and at macro-level (represented by 

fracture toughness of concrete and significant influencing materials and construction 

factors).   

8. A fracture mechanics based approach was proposed with the facilitation of numerical 

analysis to predict the occurrence of delamination. The criterion for predicting early 

age delamination occurrence is that delamination occurs when KI > KIC. Two finite 

element software packages — TMAC2 and ABAQUS were utilized to predict the 

development of stress intensity factor of concrete pavements at an early age with 

subroutines. In this numerical study, the effect of shrinkage was investigated by 

including the effect of the distribution and time history of moisture and time 

dependant moisture diffusivity. In addition, numerical analysis specifically designed 

for coupled thermal stress analysis was adopted for the coupled hygro-mechanical 

stress analysis, which greatly facilitated the calculation. The results showed that the 

development of KI with time followed cycling patterns consistent with the cyclic 

changes of relative humidity profiles within the analysis period. Through examples 

of practical design and construction methods, this approach is able to assess the 

probability of delamination occurrence, which will facilitate selection and evaluation 
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of the effectiveness of pavement design methods to prevent delamination and 

spalling problems in concrete paving.  

9. The exploration of feasibility and potential of utilizing the GPR technique for 

detecting delamination in concrete pavements was also performed. Various GPR data 

were collected from several in-service highways in Houston district, Texas. To 

further improve the analysis quality and facilitate data interpretation, a site 

calibration program was developed to obtain data for GPR waveforms (i.e., voltage 

versus travel time curves) at each trace point. By comparing voltage values of 

negative intermittent peaks in a typical GPR waveform for various locations of 

different concrete pavements, a threshold value of negative voltage (minus 0.3) was 

established to identify delamination occurrence. The results were preliminarily 

validated through concrete coring tests in the field, and this GPR delamination 

detection protocol for the field was identified as a potentially promising and useful 

tool for delamination assessment of concrete pavements. 

10. Test sections were established based on the research findings from laboratory 

investigation, field testing, theoretical modeling, and numerical analysis. It verified 

the measures and trends relative to the practices and techniques to minimize the 

development of spall related delamination in CRC paving. It shows that among three 

design factors, curing method was the most significant factor to the concrete 

performance in the field.  For all levels within each design factor, WMC and 25% 

Class F fly ash provided the best contribution to the early age concrete bonding 

performance. It is suggested that curing quality control is the most feasible means for 

minimizing early age delamination in the field. And it is not necessary to apply ultra-

fine fly ash due to the role of mineral admixture being filler for early age concrete 

instead of pozzolanic reactivity. In addition, both the approaches for predicting 

delamination occurrence and field delamination detection protocol by GPR technique 

were further validated through the test sections. A tentative guideline was established 

for using gravel aggregates in concrete paving. 
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RECOMMENDATIONS 

 

The recommendations that result from this study are presented herein: 

 

1. Complete mineralogical and chemical analysis of aggregates by advanced techniques 

such as XRD and SEM techniques will enhance the evaluation of overall 

contribution of aggregates to the concrete bonding performance. A systematic study 

of the ITZ of concretes made with different families of aggregates is also strongly 

recommended. The Ca(OH)2 orientation index can be a quantitative parameter of 

ITZ, which represents the degree of preferred orientation of Ca(OH)2 crystals with 

their c-axes normal to the aggregate surface. In addition, the investigation of the ITZ 

structure such as the porosity and pore size distribution with reference to different 

material combinations of concrete will be also valuable to link the micro-structural 

features of concrete with resultant engineering properties.  

2. The current early age interfacial fracture energy model needs to be further optimized 

and validated by both numerical and experimental analysis. Multiple-phase model 

will be applied to simulate the randomly-distributed aggregates in the matrix. 

Fracture mechanical theories will be applied to simulate the crack process with 

different crack paths in concrete relative to different materials and construction 

properties, incorporating various effects of aggregates on the crack propagation such 

as crack deflecting, bridging, and shielding, etc.  

3. In the current rating system for evaluating overall contribution of aggregates and 

feasibility of design combinations, properly selecting and determining weighting and 

rating values for each component through further laboratory investigation and 

engineering experience will be considered in future research to ensure the integrity 

of the evaluation and analysis. 

4. More case studies are needed to calibrate the curve of probability of delamination 

occurrence vs. effective wind speed, combining improvement of curing quality and 

construction practice (such as different curing practices and early age sawcutting). 



  196 

The threshold values for different levels of probability of delamination occurrence 

and the calibration of the curves need to be addressed in the future research.  

5. GPR data collection from in-service concrete pavements with different pavement 

conditions is highly recommended to further explore application of NDT techniques 

in evaluating concrete pavement performance. The current filed delamination 

detection protocol needs to be further validated, and the accuracy of GPR application 

can be improved by combining its use with other NDT techniques, and facilitating 

program for GPR data interpretation.  
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(a) 

                                                

 

(b) 

Figure A-1 US 290 crack #1 and associated GPR waveform 
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(a) 

 

 

(b) 

Figure A-2 US 290 crack #2 and associated GPR waveform 
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(a) 

 

(b) 

Figure A-3 US 290 crack #6 and associated GPR waveform 
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(a) 

 
(b) 

Figure A-4 US 290 crack #7 and associated GPR waveform 
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(a) 

 

(b) 

Figure A-5 US 290 crack #8 and associated GPR waveform 
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(a) 

 

(b) 

Figure A-6 US 290 crack #11 and associated GPR waveform 
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(a) 

 

(b) 

Figure A-7 US 290 crack #12 and associated GPR waveform 
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(a) 

 

 
(b) 

Figure A-8 SH 288 crack #2 and associated GPR waveform 
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(a) 

 

 
(b) 

Figure A-9 SH 288 crack #5 and associated GPR waveform 
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(a) 

 

 
(b) 

Figure A-10 SH 288 crack #29 and associated GPR waveform 
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Table A-1 Intermittent negative peaks for GPR waveforms 

Intermittent negative peak (voltage) 
Cracks Location No. 

good (V1) bad (V2) (V2-V1) 
1 -0.691 -0.693 -0.002 
2 -0.757 -0.215 0.542 
3 -0.293 -0.103 0.19 
4 -0.884 -0.669 0.215 
5 -0.454 -0.693 -0.239 
6 -0.557 -0.112 0.445 
7 -0.986 -0.85 0.136 
8 -1.162 -0.889 0.273 
9 -0.684 -0.698 -0.014 

10 -0.991 -0.063 0.928 
11 -0.557 -0.933 -0.376 
12 -0.85 -1.289 -0.439 
13 -1.221 -0.361 0.86 

SH6stn2 

14 -0.679 -1.06 -0.381 
1 -0.5565 -0.376 0.1805 
2 -0.313 -0.142 0.171 
3 -0.757 -0.835 -0.078 
4 -0.43 -0.01 0.42 

SH6st1p1 

5 -0.70167 -0.352 0.34967 
1 -0.425 -0.239 0.186 
2 -0.41 -0.361 0.049 
3 -0.854 -0.503 0.351 
4 -0.166 -0.313 -0.147 

SH6st1p4 

5 -0.327 -0.049 0.278 
1 -0.879 -0.649 0.23 
2 -0.64 0.073 0.713 
3 -0.2395 -0.137 0.1025 
4 -0.2905 -0.542 -0.2515 

SH6st1p8 

5 -0.5105 -0.146 0.3645 
SH6st2p1 1 -0.1245 -0.303 -0.1785 

1 -0.4735 -0.742 -0.2685 
2 -0.647 -0.684 -0.037 
3 -0.569 -0.093 0.476 

SH6st3cr1 

4 -0.4665 -0.21 0.2565 
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Table A-1 Continued 

Intermittent negative peak (voltage) Cracks Location No. good (V1) bad (V2) (V2-V1) 
1 -0.886 -1.27 -0.384 
2 -0.886 -0.869 0.017 
3 -0.9715 -0.669 0.3025 
4 -0.9715 -0.786 0.1855 
5 -0.708 -0.601 0.107 

US290s2c4 

6 -0.708 -0.527 0.181 
1 -0.745 -0.405 0.34 
2 -0.745 -0.244 0.501 
3 -0.745 -0.146 0.599 
4 -1.15 -0.537 0.613 
5 -1.15 -0.439 0.711 
6 -1.15 -0.41 0.74 
7 -0.618 -1.113 -0.495 
8 -0.618 -0.752 -0.134 

US290s2c5 

9 -0.618 -0.439 0.179 
1 -0.7275 -0.625 0.1025 
2 -0.7275 -0.459 0.2685 
3 -0.586 -0.767 -0.181 
4 -0.586 -0.596 -0.01 
5 -0.8545 -1.353 -0.4985 

US290s2c6 

6 -0.8545 -0.537 0.3175 
1 -0.613 -0.41 0.203 
2 -0.613 -0.903 -0.29 
3 -0.613 -0.444 0.169 
4 -0.613 -1.084 -0.471 
5 -0.999 -0.327 0.672 
6 -0.999 -0.601 0.398 
7 -0.999 -0.249 0.75 
8 -0.999 -0.669 0.33 
9 -0.637 -0.41 0.227 

10 -0.637 -0.332 0.305 
11 -0.637 -0.532 0.105 

US290s3c7 

12 -0.637 -0.942 -0.305 
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Table A-1 Continued 

Intermittent negative peak (voltage) Cracks Location No. good (V1) bad (V2) (V2-V1) 
1 -0.735 -1.592 -0.857 
2 -0.735 -1.094 -0.359 
3 -0.735 -0.122 0.613 
4 -0.735 -0.557 0.178 
5 -0.735 -0.132 0.603 
6 -1.2695 -0.991 0.2785 
7 -1.2695 -0.483 0.7865 
8 -1.2695 -0.845 0.4245 
9 -1.2695 -1.226 0.0435 

10 -1.2695 -0.562 0.7075 
11 -0.9305 -0.371 0.5595 
12 -0.9305 -0.649 0.2815 
13 -0.9305 -0.605 0.3255 

US290s3c8 

14 -0.9305 -0.776 0.1545 
1 -0.6055 -0.117 0.4885 
2 -0.6055 -0.176 0.4295 
3 -0.6055 -0.537 0.0685 
4 -0.6055 -0.01 0.5955 
5 -0.6055 -0.176 0.4295 
6 -0.6055 -0.396 0.2095 
7 -0.593 -0.41 0.183 
8 -0.593 -0.493 0.1 

US290s3c9 

9 -0.593 -0.488 0.105 
1 -0.9475 -1.104 -0.1565 
2 -0.9475 -1.108 -0.1605 
3 -0.8665 -0.947 -0.0805 
4 -0.8665 -0.454 0.4125 
5 -1.311 -0.83 0.481 

US290c10 

6 -1.311 -0.962 0.349 
1 -1.1645 -1.494 -0.3295 
2 -1.1645 -0.879 0.2855 
3 -1.057 -0.962 0.095 
4 -1.057 -1.338 -0.281 
5 -0.7155 -1.836 -1.1205 

US290s4c11 

6 -0.7155 -1.396 -0.6805 
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Table A-1 Continued 

Intermittent negative peak (voltage) Cracks Location No. good (V1) bad (V2) (V2-V1) 
1 -1.135 -0.449 0.686 
2 -1.135 -0.4 0.735 
3 -1.135 -1.084 0.051 
4 -1.135 -0.986 0.149 
5 -1.135 -1.123 0.012 
6 -1.135 -1.25 -0.115 
7 -1.135 -1.182 -0.047 
8 -1.135 -0.723 0.412 
9 -1.135 -0.771 0.364 

10 -1.299 -1.499 -0.2 
11 -1.299 -1.172 0.127 
12 -1.299 -0.63 0.669 
13 -1.299 -1.191 0.108 
14 -1.299 -0.938 0.361 
15 -1.299 -0.776 0.523 
16 -1.299 -0.654 0.645 
17 -1.299 -0.537 0.762 
18 -1.299 -0.625 0.674 
19 -1.57 -0.957 0.613 
20 -1.57 -0.425 1.145 
21 -1.57 -0.698 0.872 
22 -1.57 -1.504 0.066 
23 -1.57 -0.82 0.75 
24 -1.57 -1.523 0.047 
25 -1.57 -0.908 0.662 

US290s4c12 

26 -1.57 -1.26 0.31 
1 -0.5905 -0.288 0.3025 SH288c51 
2 -0.4835 -0.264 0.2195 
1 -0.7325 -0.259 0.4735 SH288c50 
2 -0.642 -0.347 0.295 
1 -0.52 -0.635 -0.115 SH288c5 
2 -0.747 -0.405 0.342 
1 -0.9375 -0.547 0.3905 SH288c49 
2 -0.8225 -0.479 0.3435 
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Table A-1 Continued 

Intermittent negative peak (voltage) Cracks Location No. 
good (V1) bad (V2) (V2-V1) 

1 -0.8915 -0.425 0.4665 SH288c48 
2 -0.5665 -0.342 0.2245 
1 -0.5465 -0.513 0.0335 SH288c47 
2 -0.288 -0.571 -0.283 
1 -0.691 -0.547 0.144 SH288c4 
2 -0.574 -0.493 0.081 
1 -0.5735 -0.273 0.3005 SH288c30 
2 -0.8445 -0.156 0.6885 
1 -0.635 -0.215 0.42 SH288c29 
2 -0.73 -0.244 0.486 
1 -0.4395 -0.122 0.3175 SH288c27 
2 -0.857 -0.205 0.652 
1 -0.493 -0.381 0.112 SH288c24 
2 -0.581 -0.586 -0.005 
1 -0.659 -0.752 -0.093 SH288c23 
2 -0.7205 -0.63 0.0905 
1 -0.6445 -0.283 0.3615 SH288c22 
2 -0.5955 -0.527 0.0685 
1 -0.615 -0.503 0.112 SH288c21 
2 0.2345 0.146 -0.0885 
1 -0.359 -0.156 0.203 SH288c2 
2 -0.8205 -0.61 0.2105 
1 -0.398 -0.259 0.139 SH288c19 
2 -0.5395 -0.225 0.3145 
1 0.115 0.088 -0.027 SH288c17 
2 -0.3665 -0.073 0.2935 
1 -0.542 -0.605 -0.063 SH288c1 
2 -0.6345 -0.293 0.3415 
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Section 1 (10%UFFA+15F-HC-N) 6ft. from edge
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Figure B-1 Temperature profile of test section 1 

 

 

Section2 (10%UFFA+15%F-HC-M) 6ft. from edge
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Figure B-2 Temperature profile of test section 2 
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Section3 (10%UFFA+15%F-NC-N) 2ft. from edge

40

60

80

100

0 24 48 72 9

Te
m

pe
ra

tu
re

 (˚
F)

6

6 in 11 in

11/18/05   
12:00AM

11/21/05
12:00AM

11/20/05
12:00AM

11/19/05
12:00AM

Start time
2:55PM

11/22/05
12:00AM

 
Figure B-3 Temperature profile of test section 3 

 

 

Section 4 (10%UFFA+15%F-NC-M) 6ft. from edge
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Figure B-4 Temperature profile of test section 4 
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Section 5 (25%F-HC-N) 2ft. from edge
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Figure B-5 Temperature profile of test section 5 

 

 

Section 6 (25%F-WM-M) 2ft. from edge
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Figure B-6 Temperature profile of test section 6 
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Section 7 (25%F-NC-N) 6ft. from edge
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Figure B-7 Temperature profile of test section 7 

 

 

Section 8 (25%F-NC-M) 6ft. from edge
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Figure B-8 Temperature profile of test section 8 

 



  236  

Section 9 (10%UFFA+15%F-WM-N) 2ft. from edge
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Figure B-9 Temperature profile of test section 9 

 

 

Section 10 (25%F-WM-N) 2ft. from edge
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Figure B-10 Temperature profile of test section 10 
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Relative humidity @ section 2 (10%UF+15%FFA-HRC-M)
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Figure B-11 Moisture profiles of test section 2 

 

 

Relative humidity @ section 3 (10%UF+15%FFA-NC-N)
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Figure B-12 Moisture profiles of test section 3 
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Figure B-13 Moisture profiles of test section 4 
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Figure B-14 Moisture profiles of test section 7 
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Figure B-15 Moisture profiles of test section 8 
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Figure B-16 Drying shrinkage with time for different sections 
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Figure B-17 Free shrinkage with time for different sections 
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Figure B-18 7-day flexural strength of concrete for all test sections 
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Figure B-19 7-day compressive strength of concrete for all test sections 
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Figure B-20 28-day compressive strength of concrete for all test sections 
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Figure B-21 7-day elastic modulus of concrete for all test sections by free-free test 
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Figure B-22 28-day elastic modulus of concrete for all test sections by free-free test 
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Figure B-23 19~26-day coefficient of thermal expansion of concrete for all test sections 
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Figure B-24 Delamination prediction for section 1 
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Figure B-25 Delamination prediction for section 5 
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Figure B-26 Delamination prediction for section 6 
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Delamination Prediction (Section 7)
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Figure B-27 Delamination prediction for section 7 
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Delamination Prediction (Section 8)
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Figure B-28 Delamination prediction for section 8 



  249  

Delamination Prediction (Section 9)
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Figure B-29 Delamination prediction for section 9 
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Figure B-30 Delamination prediction for section 10 
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