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ABSTRACT 

 
A GIS-Based Bayesian Approach for Analyzing Spatial-Temporal 

Patterns of Traffic Crashes. (August 2006) 

Linhua Li, B.Eng., Shanghai Maritime University; 

M.S., Texas Southern University 

Co-Chairs of Advisory Committee:  Dr. Yunlong Zhang  
 Dr. Daniel Z. Sui 

 

This thesis develops a GIS-based Bayesian approach for area-wide traffic crash 

analysis. Five years of crash data from Houston, Texas, are analyzed using a geographic 

information system (GIS), and spatial-temporal patterns of relative crash risk are 

identified based on a hierarchical Bayesian approach. This Bayesian approach is used to 

filter the uncertainty in the data and identify and rank roadway segments with potentially 

high relative risks for crashes. The results provide a sound basis to take preventive 

actions to reduce the risks in these segments.  

To capture the real safety indications better, this thesis differentiates the risks in 

different directions of the roadways, disaggregates different road types, and utilizes GIS 

to analyze and visualize the spatial relative crash risks in 3-D views according to 

different temporal scales. Results demonstrate that the approach is effective in spatially 

smoothing the relative crash risks, eliminating the instability of estimates while 

maintaining real safety trends. The posterior risk maps show high-risk roadway 
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segments in 3-D views, which is more reader friendly than the conventional 2-D views. 

The results are also useful for travelers to choose relatively safer routes.  
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1 INTRODUCTION 

1.1 Background 

Transportation accidents were the seventh highest leading cause of death in the 

United States (United States Department of Transportation [USDOT] and Bureau of 

Transportation Statistics [BTS], 2001). However, motor vehicle crashes, which account 

for about 95 percent of transportation-related deaths and an even higher percentage of 

transportation injuries, were the leading cause of death for people between the ages of 3 

and 33 (National Highway Traffic Safety Administration [NHTSA], 2005). There were 

42,815 fatalities and approximately 2,926,000 injuries in the U.S.A. in 2002, resulting 

from approximately 6,316,000 police-reported motor vehicle crashes (USDOT and 

NHTSA, 2004). There is a crash-related death every 12 minutes and crash-related injury 

every 11 seconds in the U. S.  

It was estimated that motor vehicle crashes occurred in 2000 alone cost U.S.A. 

$230.6 billion (Blincoe et al., 2002). This is equal to about $820 for every person living 

in USA and 2.3 percent of the U.S. Gross Domestic Product (GDP). The components of 

the crash costs include productivity losses, property damage, medical costs, 

rehabilitation costs, travel delay, legal and court costs, emergency services, insurance 

and administration costs and the costs to employers (Blincoe et al., 2002). Deaths, 

injuries, and property damage due to these crashes are not only a major cause of personal 
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suffering and financial loss to the victims, their families, and friends, but also to society 

at large.  

Despite the rapid progress that has been made during the past 40 years to 

improve highway safety, motor vehicle crashes have become and remain a major social 

problem in USA (USDOT and BTS, 2001), and the need to improve traffic safety has 

become a societal concern at the global level (Evans, 2004).  

Decades of interdisciplinary research on traffic crashes has revealed that there are 

generally three categories of factors affecting traffic safety and efficiency – driver 

behavior (about 160 million drivers in USA), vehicle types (motorcycles, passenger car, 

sport utility vehicles, pickup truck to large trucks), environmental conditions (roadway 

condition, design, number of lanes, capacity, pavement type, traffic flow, speed, density, 

occupancy, weather, lighting etc.) (Brodsky and Hakkert, 1983; Fridstrøm and 

Ingebrigtsen, 1991; Golias, 1992; Golob et al., 1990; Haight and Oslen, 1981; Jegede, 

1988; Jones et al., 1991; Levine et al., 1995a; Miaou and Lum, 1993; Ng et al., 2002) All 

these factors interact with each other and influence the occurrences and severity of 

crashes simultaneously. Among those, errant driver behavior—such as alcohol and drug 

use, reckless operation of vehicles, failure to properly use occupant protection devices, 

and fatigue—is a major factor contributing to a high proportion of crashes (USDOT and 

BTS, 2001).  

In USA, the first step for transportation agencies, such as state Departments of 

Transportation (DOTs) and local government transportation departments to improve 

transportation safety is to identify and rank hazardous sites on roadways. By focusing on 
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these identified roadway sites/segments/intersections, funds can be allocated to address 

critical safety concerns and to develop countermeasures to reduce crash frequency, 

severity, and risk. Due to limited resources, the question for transportation agencies 

often is how to accurately determine where the risky roadway sites/segments are and 

when the risks are the highest. 

 

1.2 Research Objectives 

The primary objective of this thesis is to develop a geographic information 

system (GIS)-based Bayesian approach for area-wide traffic crash analysis.  The main 

focuses of the crash analysis are to estimate relative crash risks and to determine the 

spatial-temporal patterns of the risks. To better capture the real safety indications, this 

research:  

• differentiates the risks in different directions of the roadways,  

• disaggregates different road types,  

• integrates hierarchical Bayesian approach to filter the uncertainty in the data with 

large variance and capture the real safety tendency, and  

• incorporates GIS to analyze and visualize the spatial relative crash risks in 3-D 

views according to different temporal scales. 

This thesis uses a Houston case study to demonstrate and validate the proposed 

method. The results of the analysis can help pinpoint high-risk roadway segments that 

need attention from transportation agencies. The severe locations could be mapped to 

alert motorists. 
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1.3 Thesis Organization 

This thesis consists of 5 sections. In Section 1, some background information on 

transportation safety, especially on automobile crashes, is introduced, and the research 

objectives are defined. In Section 2, the available literature on spatial and temporal 

analyses on traffic crashes, GIS applications in crash analysis, crash models, Bayesian 

approach, and methods of identification of hazardous sites for crashes are reviewed and 

summarized. In Section 3, the methods used in the research are described, including data 

collection and preliminary processing, GIS mapping, crash prediction modeling, 

hierarchical Bayesian modeling, and 3-D mapping technologies are described. Using 

Houston, Texas as study area, the estimations of parameters of crash models for different 

road types, results of temporal, spatial, and spatial-temporal patterns of relative crash 

risks are presented in details in Section 4. The conclusions and proposed 

recommendations based on the research results are summarized in Section 5. 
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2 LITERATURE REVIEW 

This section contains a review of the literature related to existing studies on 

traffic crashes in many perspectives. Previous spatial, temporal, spatial-temporal 

analyses of traffic crashes are summarized in the first section, followed by a detailed 

review of GIS applications in crash studies. Crash prediction models and Bayesian 

approach are reviewed in sections 2.3 and 2.4. Section 2.5 introduces the current 

methods of identifying hazardous roadway sites for crashes. The last section points out 

the voids in the existing literature that this research is attempting to fill. 

 

2.1 Temporal, Spatial, and Spatial-temporal Patterns Analyses of Crashes 

Crashes have been studied from different spatial and temporal perspectives with 

various methodologies.  As for the temporal patterns of motor vehicle crashes, reported 

studies focused primarily on the fluctuation of the quantity or rate of crashes, injuries, 

and fatalities according to different temporal scales, such as hourly, daily, monthly, and 

yearly (El-Sadig et al., 2002; Fridstrøm and Ingebrigtsen, 1991; Levine et al., 1995c; 

USDOT and BTS, 2001). High levels of temporal aggregation (e.g., yearly) can not 

easily detect the changes of short-term structural variables, while more disaggregated 

analysis requires detailed temporal information and has high variability. 

Concerning the spatial patterns of motor vehicle crashes, several studies 

examined crashes that occurred in different environmental settings, such as specific 

roads (Skabardonis et al., 1998), road types (Brodsky and Hakkert, 1983), intersections 
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(Golias, 1992; Nicholson, 1985) or corridors (Golob et al., 1990; Okamoto and Koshi, 

1989). Additionally, studies on traffic crashes have also been performed at different 

geographic scales using data aggregated to different administrative units, ranging from 

census tract/traffic analysis zone (TAZ) (Ng et al., 2002), city (Jones et al., 1991; Levine 

et al., 1995a), county (Fridstrøm and Ingebrigtsen, 1991; Jegede, 1988), to state and 

national level (Haight and Oslen, 1981). 

Using spatially disaggregated data is another trend in recent crash analyses. Prior 

to the wide application of GIS, most researchers had used a highly aggregated data set 

(total number of crashes, total travel distance etc.) or attempted to disaggregate data 

based on demographic (age, sex, race, etc.), severity (fatality vs. injury vs. property 

damage only (PDO); long duration vs. short duration, etc.), vehicle types (truck vs. car, 

etc.) or roadway facility type (urban vs. rural, etc.) rather than spatial aspects (Brodsky 

and Hakkert, 1983; Fridstrøm and Ingebrigtsen, 1991; Jones et al., 1991; Miaou, 1994). 

With GIS becoming more and more popular, it was easier or less costly to spatially 

disaggregate data and conduct analyses at finer resolutions.  

Researchers also explored disaggregation of crash data in both time and spatial 

scales (Black, 1991; Miaou et. al., 2003) to identify the temporal and spatial changes of 

crash patterns distributions or crash risks. GIS facilitates both spatial disaggregation and 

temporal disaggregation, and its applications in crash analysis are discussed in the next 

section. 
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2.2 GIS Applications in Crash Analysis 

“GIS is a collection of computer hardware, software, and geographic data for 

capturing, managing, analyzing, and displaying all forms of geographically referenced 

information (Environmental Systems Research Institute (ESRI), 2006).” GIS can provide 

many more analytical capabilities than many other normal mapping tools. For example, 

GIS is a database that has geographic information, and it is an intelligent mapping 

system that can link features with other features. It is also an information transformation 

tool that can create new geo-database based on existing one by applying analytic 

functions (ESRI, 2006). 

The fundamental difference between GIS and any other information system is 

“that it has the knowledge of how events and features are geographically located (Goh, 

1993).” With spatial (geographic) data stored, GIS enables spatial display, spatial 

integration, spatial query, spatial analysis and processing, etc., almost all of which had 

implementations in transportation studies, especially in crash analysis (Miller and Shaw, 

2001; Thill, 2000).  

2.2.1 Spatial Display 

Crashes can be shown at their occurrence locations on digital maps. There are at 

least three methods to correctly add crashes onto maps. The selection of the method 

depends on the recorded location data.  

• Crashes can be directly added if the exact geographic references of crash 

locations, like XY coordinates (e.g., latitude and longitude), are available. This 

applies to the crash locations that were recorded using a GPS receiver.  
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• Address geocoding can be conducted when the exact address is available. This 

normally applies to the two format types of crash addresses that were recorded on 

crash reports. One is the exact address, like street name and number, city, state, 

and zip code. The other format is an intersection of two streets. Both of these 

address formats can be recognized and added to the correct locations if the 

correct address locator manager is selected (Ormsby, 2004). However, this 

method needs the input of a reference layer, which stores all the geographic 

information and attributes of each road section.  

• Dynamic segmentation (linear referencing) can be performed to locate crashes on 

routes when the roads on which crashes occurred and their positions relative to 

the starting points of the roads are known. This method requires a route layer, 

which includes linear features that store unique identifiers and measurement 

systems. The crash data should be stored with an attribute indicating the route 

name and attribute indicating the measurement.  

With the development of computer science and GIS techniques, numerous 

researchers used GIS to display crash locations on digital maps and then perform spatial 

analysis (including clustering analysis) of crashes (Kam, 2003; Levine et al., 1995a; 

Petch and Henson, 2000; Steenberghen et al., 2004). The spatial analysis of crashes is 

discussed in details in section 2.2.4.  

 



 9

2.2.2 Spatial Integration  

GIS enhances integration of data from different sources based on geographic 

locations. In a crash analysis, researchers used GIS to link crash data with traffic data 

(e.g., traffic volume, speed limit) (Saccomanno et al., 1997 ), roadway inventory data 

(e.g., pavement, geometry, road condition, number of lanes) (Siegel and Yang, 1998), 

environmental data (e.g., land use ) (Ng et. al., 2002), demographic data (e.g., 

employment, population) (Levine et al., 1995b), social-economic and other potential 

contributing factors and particular locations of interest such as schools (Affum and 

Taylor, 1995) to better capture the relationship between the crash occurrences and 

contributing factors. It was also argued that the GIS integration capabilities are 

fundamental for a project even when GIS is not the focus of the project (Lamm et al., 

1995).  

 

2.2.3 Spatial Query  

The major advantage of spatial query in GIS is that the results of query from the 

database can be viewed in a spatial format (Miller et al., 1995), and the results of query 

from digital maps can be viewed in a tabular format. The linkage between a database 

format and a spatial format is one of the main characteristics of GIS data.  

This capability facilitates contributing factor analysis. One can select crashes 

based on variables and visually see the spatial patterns of selected crashes and discern 

geographic relationships. For example, by limiting crashes to those that occurred on 

Friday and Saturday evenings between 9:00 p.m. and 6:00 a.m. and involved drivers less 
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than 24 years of age, certain types of spatial cluster could be found (Miller, 1999). One 

can spatially select crashes to see whether these crashes share common attributes. For 

example, Affum and Taylor (1995) found that crashes involving children were always 

within 1 km of schools.  The spatial query and tabular query can also be used 

simultaneously. For example, one can determine whether one crash was caused by an 

earlier crash by examining a space criterion (within 1600 m of the earlier crash) by 

spatial query and a time criterion (within 15 minutes of the earlier crash) by tabular 

query (Raub, 1997).  

 

2.2.4 Spatial Analysis 

Spatial analysis of crashes is a highly quantitative, statistical analysis. In crash 

analysis, the cluster analysis was commonly conducted in order to find out the hot spot 

of crashes, by either two-dimensional approach or linear approach (Black, 1991; Levine 

et al., 1995a; Flahaut et al., 2003; Kam, 2003; Petch and Henson, 2000; Steenberghen et 

al., 2004). One essential problem with the crash cluster analysis is spatial autocorrelation, 

which had already been discussed by Black (1992), and Black and Thomas (1998). Grid-

based crash cluster analysis was suggested and implemented by Choi and Park (1996) 

and Steenberghen et al. (2004). Following earlier works on network autocorrelation 

analysis, one recent significant advance is the network-constrained approach to conduct 

spatial point pattern analysis over a network (Yamada and Thill, 2004).  Statistical 

approaches for cluster analysis are also widely available in a number of software 
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packages including CrimStat III (Levine, 2004), SAS (SAS Institute Inc., 1999), SPSS 

(SPSS Inc, 2005), Splus (Insightful Corp., 2001), ArcGIS (ESRI, 2004).  

In the linear approach of spatial analysis of crashes, it is common to divide 

roadways into analysis units (segments) to address the safety. There are different ways to 

define segments. The Highway Safety Manual (HSM) attempts to make each segment 

“homogeneous with respect to traffic volume, lane width, shoulder width, shoulder type, 

driveway density, roadside hazard rating, curvature, grade, presence of passing lanes or 

short four-lane sections, and presence of center two-way left turn lanes” for two-lane 

highways (Bellono-McGee Inc. and Midwest Research Institute, 2003). Thus, a new 

roadway segment starts wherever any of the variables (Annual average daily traffic 

(AADT), lane width, shoulder width, shoulder type, driveway density, etc.) changes. 

Furthermore, a new segment begins at intersections, 250 ft before and after the center of 

each intersection, beginning or end of a horizontal curve, point of vertical intersection 

for a vertical curve or an angle point at which two different roadway grades meet, etc. 

(Bellono-McGee Inc. and Midwest Research Institute, 2003). Another way is to define a 

segment with a specific length, and let the segment dynamically move along the 

roadway until the segment reaches a specific threshold, like at least such a minimum 

number of crashes so that the possible hazardous site could be identified (Hovenden et 

al., 1995; Miller et al., 1995). The third way is sliding window method, which uses a 

predetermined size of cells/grids sliding on the map. The roadways are cut by the cells 

into different segments. (Choi and Park, 1996). 
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2.3 Crash Prediction Models 

Researchers over the past two decades have developed a variety of statistical 

methods to predict crashes in different roadway sections and establish the relationship 

between crash characteristics (rate, frequency, fatality, injury, duration, severity, etc.) 

and related variables, such as weather conditions, geometric design of roads, traffic 

volume, road density, and driver behaviors. 

Models that have been widely used since the early days include multivariate 

linear regression model and log-linear regression model. These two models assume that 

the random error term in the function is normally and independently distributed with 

constant variance, so that statistical tests on the model parameters confidence intervals 

on coefficients and variables can be easily obtained. Unfortunately, there are a lot of 

practical situations where the assumption of normally distributed error term can not hold. 

Crash count data, binary responses or other continuous variables with positive and high-

skewed distribution can not be modeled with a normally distributed error term (Lord, 

2006).  

The generalized linear model (GLM) was developed to allow fitting regression 

models for univariate response data that follow very general distributions, called 

exponential family, including normal, binomial, Poisson, negative binomial, geometric, 

gamma distributions etc. (Lord, 2006). GLM usually consists of three components, a 

random component, a systematic component, and a link function that connects the 

random and systematic components to produce a linear predictor (Lord and Persaud, 

2000). GLM has the advantages over multivariate linear model and log-linear model 
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because it provides flexibility in choosing a link function and a distribution of the error 

term (Qin and Lin, 2006). For example, log-linear link function and negative binomial 

error distribution can be chosen for crash count data analysis. The formal structure of 

GLM is summarized by Myers et al. (2002). Equations 2.1 and 2.2 show a typical 

functional form and its log form for statistical models in safety. It is very convenient to 

use software program to fit the data and estimate coefficients.  

 )exp(*
20

1 ∑ =
=

k

j jjii xFy ββ β  (2.1) 

 ∑ =
++=

k

j jjii xFy
210 lnlnln βββ  (2.2) 

Where:  = outcome or response variable, crash count per unit of time;  iy

iF  = traffic flow;  

0β  = intercept; 

1β  = coefficient for traffic flow; 

jβ  = unknown coefficients; and  

jx  = covariates or explanatory variables.  

Miaou and Lum (1993) found that conventional linear regression models were 

not appropriate for modeling vehicle crash events on roadways. When the mean and 

variance of the crash frequencies were approximately equal, the Poisson regression was 

found to be a more appropriate model for examining the relationship between crashes 

and influential factors (Miaou, 1994). Overdispersion occurs when observed variance of 
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the data is larger than the predicted variance. When overdispersion was moderate or high, 

the use of negative binomial regression was found to be more appropriate (Miaou, 1994).  

In the recent research, Lord and Persaud (2000) presented an application of a 

generalized estimating equation (GEE) procedure to develop a crash prediction model 

that incorporates temporal trends in crash data. The results showed that the GEE model 

incorporating time trends was superior to the models that did not accommodate trend 

and/or the temporal correlation in crash data.  

The relationship between the number of crashes (by type, severity, etc.) and the 

amount of exposure on a transportation facility (e.g., traffic flow, travel distance, etc.) 

was of interest to researchers. Linear relationship ( 11 =β ) between number of crashes 

and AADT was supported by Chipman (1982), Gårder (1989), Hauer (1982), and 

Janssens (1999) and Wolf (1982). This means that the individual probability of being 

involved in a crash increases linearly as the exposure increases. Persaud and Dzbik 

(1993) found that 1206.11 >=β  for severe crashes on freeway segments that have more 

than 4 lanes. However, most researchers agree that the relationship between crashes and 

traffic flow has been shown to actually follow a non-linear relationship ( 11 <β ), in 

which, crash counts usually increase at a decreasing speed as traffic flow increases 

(Tanner, 1953; Hauer and Persaud, 1988). This implies that the individual risk decreases 

as the flow increases and it is less dangerous for a driver to travel under heavy flow 

conditions than under light flow conditions (Lord, 2002).  The possible reasons include 

that the variance of the speed becomes lower; drivers are more alert; and more non-

reported minor crashes occurred as traffic flow increases.  
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However, the result that power coefficient of traffic flow is less than 1 can cause 

problem in the optimization of network safety. Maher et al. (1993) attempted to optimize 

safety and vehicular delay simultaneously on computerized transportation networks, and 

found that traffic flow tends to concentrate on a few roads rather than disperse on many 

roads when the network is solely optimized for safety. This raises doubts on the 

correctness of 11 <β . Furthermore, common sense would tell us just the opposite of 

11 <β . The individual risk of being involved in a crash should increase under heavy 

flow condition because of limited gaps or spaces, reduced maneuverability and more 

complicated driving tasks. 

Therefore, Lord (2002) argued that perhaps the current model forms in the 

literature are not appropriate, and the traffic flow may not be a suitable measure of 

exposure. It is suggested that Gamma function might be more appropriate for the 

relationship between crash count and traffic flow, and density might be a suitable 

measure of exposure in crash function (Lord, 2002; Lord et al., 2005).  

 

2.4 Bayes Method  

The Bayesian approach has been widely used in statistics and sciences over the 

past decade. One of the major advantages of the Bayesian approach is that it is capable 

of predictive forecasting of risks even in the presence of sparse data or rare events 

(Withers, 2002). The ability to incorporate prior knowledge without the restriction of 
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classical distributional assumptions makes Bayesian inference a potent forecasting tool 

in a wide variety of fields (Withers, 2002).  

In the modeling and data analysis, the Bayes method can be shown in Equation 

2.3. Given y as the observed crash frequency, what is the probability of occurrence of θ 

crashes?  

 ( ) ( ) ( ) ( ) ( )
( ) ( )  

)( ∫
==

θθθ

θθθθ
θ

dypp

ypp
yp

ypp
yp  (2.3) 

Where: ( ) yp θ  = posterior probability conditional on y;  

( ) θp  = prior distribution (can be informative or non-informative);  

( θyp )  = likelihood function when it is regarded as a function of θ for a fixed y; 

and  

( )yp  = prior projective distribution (also called marginal distribution of y).  

 

2.4.1 Empirical Bayes Method 

The empirical Bayes (EB) method is usually employed to simplify the Bayes 

computation. The prior distribution is estimated from actual data. This goes against the 

fundamentals of full Bayes method because EB method uses the data twice. For the EB 

method, different weights are assigned to the prior distribution and standard estimate 

respectively. The weights are estimated with assumption that the mean for each segment 

follows a Gamma distribution.  

 ititititEBit y)1(ˆ γµγµ −+=  (2.4) 
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Where  EBitµ  = empirical Bayes posterior estimate for segment i, time t; 

itµ̂  = expected crash count of segment i, time t, (maximum likelihood estimate, 

mean of a, can be estimated from a reference site);  

itγ  = weight given to expected crash count for segment i, time t; 

ity  = observed crash count for segment i, time t; and 

φ  = inverse dispersion parameter of Poisson-gamma regression (maximum 

likelihood estimate).  

As can be seen from the equations, the posterior estimate is always between the 

observed crash count and expected crash count. The weight is dependant on the data 

themselves. For a fixed itµ̂ , as φ  increases from 0 to infinity, the EB estimate would 

increase the weight on itµ̂  from 0 to 1, and conversely decrease the weight on  from 1 

to 0 (Hauer and Bamfo, 1997; Hauer et al., 1989; Miaou and Lord, 2003). Poisson model 

can be obtained when 

ity

φ  approaches infinity. 

The applications of the EB method in crash frequency estimation and before-after 

studies are abundant (Arnold and Antle, 1978; Hauer, 1992, 2002; Ng et al., 2002; 

Mountain et al., 1996; Qin and Lin, 2006). It can also eliminate effects due to regression-

to-the-mean in crash data (Brüde and Larsson, 1988; Hauer, 2002). It is expected that EB 

method will continue to be popular because of the relatively simple computation and its 

superior ability to perform a maximum likelihood estimate. 
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2.4.2 Full Bayes Method 

Full Bayes method is a computationally-intensive process, so it is commonly 

modeled using computers and Markov Chain Monte Carlo (MCMC) simulation 

techniques are now frequently used for estimating the posterior distribution. It 

commonly uses multiple levels of analysis in an iterative way, so it is called hierarchical 

Bayes model. The hierarchical model allows the modeler to structure some dependence 

between the parameters under study in a logical manner. The hierarchical procedures, 

whether from a full Bayes or EB model, usually result in a smoothing of estimates for 

each unit towards the average outcome rate, and have generally been shown to have 

better precision and predictive performance (Congdon, 2001). This thesis uses the 

hierarchical Bayesian approach to model relative crash risks, with detailed modeling 

process shown in section 3.5.  

In the public health area, considerable progress has been made in developing 

methodologies in disease mapping, risk assessment and prediction, particularly in the 

application of hierarchical Bayes models (Besag and Newell, 1991; Wakefield and 

Morris, 2001; Wakefield et al., 2000; Waller, et al., 1997; Zhu and Carlin, 1999). Studies 

have shown that the risk estimation using hierarchical Bayes models has several 

advantages over classical methods. Disease is a rare incident, and typically rare for an 

analysis unit, like census tract or county. Therefore, there is a large variability across 

analysis units, especially for analysis units with small population size. This makes it 

difficult to differentiate the chance variability and genuine difference in the estimates. 
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Hierarchical Bayes methods, with proper spatial-correlated random effects modeled, 

have been shown to be able to account for the high-variance estimate in low population 

area and keep the overall spatial trends (Ghosh et al., 1999; Sun et al., 2000).  

Traffic crashes are very similar to disease incidents, in its rare occurrence and 

large variability across the analysis units, so it is appropriate to borrow hierarchical 

Bayes models from disease mapping and apply to traffic crash analysis, risk assessment 

and crash mapping. The hierarchical Bayesian approach was already implemented in 

crash analysis in some studies to estimate crash risk and safety performance (MacNab, 

2004; Miaou et al., 2003; Miaou and Song, 2005; Qin et al., 2005). Risk maps for area-

based traffic crashes were also explored by MacNab (2004) and Miaou et al. (2003).  

 

2.5 Identification of Hazardous Locations  

There are a lot of methods used for the identification of hazardous locations, 

which is the prerequisite of the engineering study to find out the countermeasures. The 

hazardous locations are the sites that experience significantly more crashes than other 

sites with the same characteristics.  

 

2.5.1 Frequency Method 

The frequency method (Fitzpatrick et al., 2000; World Road Association 

(PIARC), 2003) summarizes the number of crashes for each site, and ranks them by 

descending order. Those sites with more than a predetermined number of crashes are 
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classified as high-frequency site. This method is commonly used to measure the safety 

for a spot location (hot spot identification). However, this method does not take into 

account of vehicle exposure (e.g., traffic volumes), which has a direct relationship with 

crash frequency. Therefore, the results have bias toward high-volume sites.  This method 

also suffers from the regression-to-the-mean bias in which an unusually high count is 

likely to decrease subsequently even if no improvement were implemented (FHWA, 

2002; Hauer, 1997).  

 

2.5.2 Crash Rate Method 

The crash rate method (Fitzpatrick et al., 2000; PIARC, 2003) ranks sites by the 

ratio between number of crashes and vehicle exposure. Rates are given in crash per 

million entering vehicles (EV) for spot locations and crashes per million vehicle miles 

traveled (VMT) for segments. Sites with rates higher than a predetermined rate are 

classified as high-rate sites. The advantage of this method is that it includes the vehicle 

exposure as denominator. The importance of using traffic volume as normalization is 

emphasized by Affum and Taylor (1996).  

The sliding window-based ranking approach is also a crash rate method. Crash 

frequency, VMT and other explanatory covariate values for each cell are aggregated and 

calculated for each cell. Then the crash rate is calculated for each cell independently and 

then the cells are ranked by the rates (Choi and Park, 1996; FHWA, 2002). 

In order to make rate ranking valid, the linear relationship between number of 

crashes and EV or VMT, which has been argued in many studies to be questionable, has 
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to hold (FHWA, 2002). Another problem in this method is that the observed rates have 

large uncertainties in low vehicle exposure (low EV or short length or low VMT) sites. 

Because of the high uncertainty, the rates on low exposure segments tend not to be 

useful since they can be extremely high or extremely low (Miaou and Song, 2005). 

 

2.5.3 Critical Crash Rate Method 

The critical crash rate method (Fitzpatrick et al., 2000; PIARC, 2003) identifies 

those sites where crash rate is greater than the average crash rate for similar sites across 

the state or similar region. This method also applies a statistical test to determine the 

significance of each site’s crash rate when compared to the mean crash rate of similar 

sites. This method also has the small area estimation problem as discussed in the crash 

rate method.  

 

2.5.4 Equivalent Property Damage Only Method 

The Equivalent Property Damage Only Method (Fitzpatrick et al., 2000; PIARC, 

2003) weights fatal and injury crashes against a base-line of PDO crash. For example, 

fatal crash and serious injury are given a weight 9.5, and minor injury is given a weight 

3.5, and PDO has the weight 1 (Agent, 1973). The Equivalent PDO index value is 

calculated based on different weights for different severities for each site, and sites are 

ranked by the Equivalent PDO index.  
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This method improves on the previous methods in that it includes crash severity 

into consideration. However, this method does not include exposure and it has the bias 

toward high-speed sites. Furthermore, the weights are assigned arbitrarily.  

 

2.5.5 Relative Severity Index Method 

The relative severity index method (Fitzpatrick et al., 2000; PIARC, 2003) 

incorporates weighted average cost of crashes at site. In this method, crash frequency at 

each severity level is multiplied by the average cost for crashes at that severity level. The 

subtotal for each of these severity-specific costs are summered and the sum is divided by 

the total crash frequency. This method has the same limitations as the equivalent PDO 

method.  

 

2.5.6 Combined Criteria Method 

In the combined criteria method (Fitzpatrick et al., 2000; PIARC, 2003), more 

than one previously mentioned method is used (e.g., frequency combined with rate 

method). Sites are ranked by one method first and sites ranked high are then investigated 

by another method. Different weights can also be assigned to different methods to select 

priority locations for investigation. This can avoid the limitations of one single method.  
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2.5.7 Statistical Model Method 

This method (Fitzpatrick et al., 2000; PIARC, 2003) requires the development of 

statistical models using the reference population, and compares the observed value with 

the predicted value. Statistical model can account for non-linear relationship between 

number of crashes and vehicle exposure to produce more accurate rank. However, this 

method is relatively complex.  

 

2.5.8 Potential for Safety Improvement 

The potential for safety improvement method (FHWA, 2002; PIARC, 2003) has 

also been defined as “identification of sites with promise.” This method compares the 

observed or predicted values at given site with predicted values estimated from a 

reference population. The difference between the two indicates that the site could 

potentially reduce its number of crashes to those of the reference population. This 

method is always used with EB method, which is discussed next. 

 

2.5.9 Empirical Bayes Method  

The EB method (FHWA, 2002; PIARC, 2003) uses information from the 

reference population and the observed information at the site to generate a more accurate 

estimate of the crashes. This method takes into consideration of long-term mean, which 

has not been addressed by any of the previous introduced methods. If the reference 

population is homogeneous, EB-method of moments should be used, in which the mean 
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crash frequency and variance are calculated directly from reference population. When 

the reference population is not homogeneous, EB-regression method should be used, in 

which crash prediction models are developed using statistical regression techniques to 

serve as reference population (Hauer 1992, 2002, 2004).  

The EB method is often used with the Potential for Safety Improvement method. 

The potential for improvement is calculated as the difference between the EB predicted 

crash frequency and average crash frequency of reference population (when population 

is homogeneous) or multivariate model predicted crash frequency (when population is 

not homogeneous) (Hauer, 2002; PIARC, 2003).  

 

2.5.10 Full Bayes Method 

The full Bayes method is a relatively new method, and it ranks sites using 

posterior probabilities that a site experiences more crashes than expected. This method 

can include all covariates of the model for the ranking purpose, and it can solve the small 

area estimation problem and remove the effects of spatial and temporal autocorrelations. 

Miaou and Song (2005) have used this method to rank intersections and counties. This 

thesis uses this method to rank roadway segments. This thesis uses a full Bayes method 

to rank the hazardous roadway segments. Section 3.5 presents the detailed hierarchical 

Bayesian modeling process. 
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2.6 Problems in the Current Literature 

In the current literature, risk maps for area-based (e.g., county-based) traffic 

crashes were explored by MacNab (2004) and Miaou et al. (2003). However, the link-

based (e.g., roadway segment-based) risk maps and rank risky segments using a 

hierarchical Bayes model has not been done very often, although full Bayes model has 

been used for roadway sections (Miaou, et al., 2005). The hierarchical Bayes model can 

incorporate spatial assumptions and enable the customary Bayesian approach to solve 

the uncertainty of the relative risks in low exposure areas, and catch similarity of relative 

risks in nearby or adjacent regions. In link-based crash risk hierarchical Bayes modeling, 

the spatial autocorrelation structure is different from area-based modeling. 

In the analyses of area-wide crash patterns, it is not common to disaggregate 

crashes in the same location based on different directions (e.g., eastbound/westbound, 

northbound/southbound). The recent research by Qin et al., (2006) showed that the 

choice of flow split factor has no significant effect on the other risk factors based on 

their small samples of data. In other words, they found that the results from the model 

that considers directional difference is similar to the one that does not take traffic 

direction as consideration. However in this thesis, relative risks in different directions as 

well as crashes are differentiated because theoretically opposite directions of roadways 

may have different risk values due to contrasted crash counts, traffic characteristics (e.g., 

traffic volumes), roadway conditions (e.g., work zone), and environments (e.g., lighting). 

Without differentiating directions for automobile crashes, risk values for two directions 

might have been averaged out, leading to erroneous risk estimation. 
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Splitting directions will split the data that include spatial autocorrelations apart. 

Theoretically, the occurrence of a crash will influence the surrounding traffic conditions. 

For example, the vehicles behind the crashed vehicle might experience unexpected delay 

due to the crash; the vehicles on the opposite directions might also be influenced because 

drivers in the other direction tend to look at crashes that occurred in this direction and 

may lose concentration on their own driving. These are the indications of spatial 

autocorrelation. The hierarchical Bayesian approach used in this thesis attempts to 

address spatial autocorrelations between adjacent segments, between opposite directions 

of roadways and between freeway and frontage road. 

The trip-based crash rate analysis was advocated because it was assumed that 

every trip (route) is unique in terms of crash risk (Kam, 2003). However, each route (e.g., 

from home to work) includes different road types (e.g., local, collector, arterial, freeway) 

and different road types should have different roadway, traffic, and environmental 

conditions, so crash risks on different road types should be different. Therefore, 

disaggregation of the crash analyses for different road types is needed. Furthermore, it is 

noticed that even the same road type’s physical environmental conditions (e.g., road 

condition, and lighting) may be different both spatially (by segment) and temporally (by 

hour/day/week/year). Therefore, it is believed that spatial disaggregation (including road 

type disaggregation) and temporal disaggregation (hourly, weekly and yearly) are 

necessary and would produce usable results. 

The visualization effect is important for information transfer. In the display of 

roadways (links) in GIS, researchers could adjust the width and color of the roadways to 
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produce a 2-D visualization, but a 3-D visualization can provide more information than a 

2-D visualization because of the extra dimension. A 3-D map turns points into vertical 

lines, lines into walls, polygon into blocks and it can be shown from different azimuths 

and altitudes so it is more reader friendly. This research explores a new 3-D visualization 

approach for mapping traffic relative crash risks along transportation networks, which 

can help presentations of research results.  
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3 STUDY METHODOLOGIES 

This thesis attempts to develop a hierarchical Bayesian approach to conduct area-

wide link-based relative crash risk analysis, in which different directions, road types are 

disaggregated along both spatial and temporal scales. Bayesian spatial smoothing among 

adjacent roadway segments was implemented to filter the uncertainty in the data and 

better capture the real risk trend. The final stable posterior relative crash risks by 

different temporal scales are detailed into segment level and displayed with 3-D 

illustrations. This method could help accurately rank the hazardous sites that need safety 

improvements. 

In this section, the study design, data collection and processing, GIS digital 

mapping and the modeling process are described. The first section presents the 

characteristics of the study area and the roadway network. The second section introduces 

the available data and how they were processed. The next section contains the methods 

of GIS mapping of the crashes. The fourth section illustrates the development of crash 

prediction model, and the final section includes step-by-step Hierarchical Bayesian 

modeling methodologies used in this thesis research. 

The overall process in this thesis can be divided into three parts (Figure 3.1): (1) 

data preparation and preliminary processing; (2) Bayesian spatial smoothing and 

updating; and (3) GIS mapping and visualization of final results. ArcMap (ESRI, 2004) 

and ArcScene (ESRI, 2004) developed by ESRI are used for GIS operations and 3-D 

mapping respectively, and Bayesian modeling is performed using WinBUGS 
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(Spiegelhalter et al., 2004) and its add-on program GeoBUGS (Thomas et al., 2004) that 

fits spatial models and produces outputs for maps.   

 

Data Preparation and 
Preliminary Processing using 

ArcMap

WinBUGS Hierarchical  
Bayesian Modeling 

GIS Mapping and Visualization 
of Posterior Spatial-Temporal 

Results using ArcScene 
 

Figure 3.1 Overall Processing Flow Chart 
 

3.1 Study Area 

Central portion of Houston, Texas was chosen as the study area for this thesis 

research. Houston is the fourth biggest city in USA and the biggest in Texas by 

population from the US 2000 census (demongraphia.com, 2001). However, the problem 

of traffic safety in Houston is important. There were 45,228 serious crashes within the 

City of Houston in year 1999, which constituted 14.5% of all serious crashes within 

Texas, compared to the City’s 9.4% share of the Texas population (H-GAC, 2006).  

In this research, the state-maintained roadways in the study area are investigated. 

The study roadways include major freeways, such as I-10, I-45, I-610, US-59, TX-288, 
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and US-290, as well as their frontage roads, and arterials such as US-90, TX-35, FM-521, 

and FM-1093 etc.  

Each roadway has two directions, represented by two lines in the GIS map 

(Figure 3.2). The roadways were evaluated separately by direction in order to avoid the 

averaging effect so that more accurate direction-based results could be obtained.  

Before the safety evaluation and crash prediction, each roadway was divided into 

analysis unit consisting of individual homogeneous roadway segments.  In the 

segmentation process, each urban freeway mainline and each frontage road were divided 

into segments by entrance ramps and exit ramps. Arterials were divided into segments 

by major intersecting roads. After the segmentation process, the roadways under 

evaluation are consisted of 1108 segments with varying length, each of which is 

homogeneous with respect to traffic volumes, number of lanes, and lane width. It is 

noted that this proposed method in this research is a macroscopic method, which only 

evaluates roadway segments, and does not evaluate safety for each individual arterial 

intersection because of the unavailability of physical characteristics of the intersection 

and crash data on the intersecting roads. 

The segments are grouped into five different types for safety evaluation 

according to their different functions and characteristics. The types, segment counts, and 

the statistics of segment lengths are listed in Table 3.1. 
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Table 3.1 Roadway Segment Types and Statistics 

Roadway Segment Types Number of 
Segments 

Minimum 
Length (mi) 

Maximum 
Length (mi) 

Average 
Length (mi) 

Urban freeway mainlines 471 0.11 1.36 0.45 

Freeway system 
interchange area 112 0.12 1.00 0.36 

Frontage roads without 
diamond interchange 171 0.10 0.89 0.41 

Frontage roads with 
diamond interchange 228 0.13 1.01 0.45 

Arterials 126 0.15 2.01 0.69 
 

There is no separate type for freeway ramps. Entrance ramp and exit ramp are the 

entrance to and exit from the freeway mainline and are considered as a part of the 

freeway mainline in this study. As a result, crashes that occurred on ramps are 

considered to have happened on the freeway mainlines. Freeway system interchange 

area is the area where two freeways interchange, starting from the upstream interchange 

ramp gore and ending at the downstream ramp gore of the same interchange. Diamond 

interchanges are common where a freeway crosses a non-major road in this study area. 

The frontage roads in diamond interchange areas are defined as the frontage road with 

diamond interchange segment. The other frontage roads are defined as the frontage roads 

without diamond interchanges. The roadway network in the study area is shown in 

Figure 3.2 with five types of roadway segments identified. 
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Figure 3.2 Study Network and Segment Types 

 

3.2 Data  

The data used in this study include crash data, traffic volume data, volume 

adjustment factors and GIS roadway data. They were obtained from different data 

sources and contained much related information for the study area. 

 

3.2.1 Crash Data 

Five years’ crash data (1996-2000) from the Texas Department of Transportation 

(TxDOT) Traffic Operations Division Crashes Data Files (TRF crash files), were 
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obtained and processed. Only the crashes with fatality (K), incapacitating injury (A) and 

nonincapacitating injury (B) were used in this thesis research and are referred to as 

“KAB crashes” in this study. The data include information for crashes on all the state-

maintained roadways such as location (by control-section number and milepoint), 

severities (e.g. fatality, injuries, property damage only), time and date, weather, road 

condition, etc. Data for crashes on roadways maintained by local government are not 

included in the database.  

 

3.2.2 Traffic Data 

Annual Average Daily Traffic (AADT) information from 1996 through 2000 was 

retrieved from traffic maps of Harris County, obtained from the Houston District 

Planning Office of TxDOT. Traffic maps indicate the AADT for each roadway segment 

(combined both directions) in the study area. However, for freeways, the AADT 

indicated by traffic maps is the combined volume of both freeway mainlines and 

frontage roads. In order to separate the volumes for these two road types, a separate 

freeway mainline volume file was obtained from the Center for Transportation Safety at 

Texas Transportation Institute (TTI). This file has all the mainline AADT for all state-

maintained roadways in the study area during the same study period. The AADT for the 

frontage roads was calculated as the difference between the combined AADT and 

mainline AADT. Annual average daily vehicle miles traveled (AADVMT) on any 

segment was calculated by multiplying the AADT and the length of the roadway 

segment (Equation 3.1). 
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 LAADTAADVMT ×=  (3.1) 

where,  AADT  = annual average daily traffic (two-way); 

AADVMT  = annual average daily VMT (two-way); and  

L  = segment length (miles). 

Average Daily VMT (ADVMT) was determined by multiplying daily adjustment 

factors with AADVMT (Equation 3.2). Hourly VMT (HVMT) was calculated by 

multiplying hourly adjustment factors with ADVMT (Equation 3.3). These adjustment 

factors were obtained from Transportation Modeling Program at Texas Transportation 

Institute (TTI) and shown in Tables 3.2 and 3.3. TTI assumed that Monday through 

Thursday had the same daily VMT adjustment factor and hourly adjustment factors. It is 

reasonable because there is mainly commuting traffic on these days and the traffic shows 

a very similar hourly pattern on each of the four days according to traffic data.  

 AADVMTFADVMT d ×=  (3.2) 

 AADVMTFKADVMTKHVMT dhh ××=×=  (3.3) 

where,  ADVMT  = average daily two-way VMT; 

  = daily VMT adjustment factor, ratio of the daily VMT to the annual average 

daily VMT;  

dF

HVMT  = hourly VMT (two-way); and 

hK  = hourly VMT adjustment factor, ratio of the two-way hourly VMT to the 

two-way average daily VMT. 
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Table 3.2 Daily VMT Adjustment Factors (Fd) (source: TTI) 
 Daily VMT Adjustment Factor 

Friday 1.15888 

Saturday 0.94946 

Sunday 0.75293 

Monday-Thursday 1.03468 
 

Table 3.3 Hourly VMT Adjustment Factors (Kh) by Day of Week (source: TTI) 
 Hourly VMT Adjustment Factors by Day of Week 

Hour of Day Friday Saturday Sunday Monday-Thursday 
12AM-1AM 0.009268 0.019596 0.025397 0.009529 
1AM-2AM 0.006234 0.01332 0.018286 0.006143 
2AM-3AM 0.005939 0.012402 0.017506 0.005635 
3AM-4AM 0.005288 0.00854 0.011188 0.005138 
4AM-5AM 0.008397 0.008764 0.008634 0.008693 
5AM-6AM 0.02491 0.015995 0.011571 0.027675 
6AM-7AM 0.055524 0.026519 0.016586 0.060862 
7AM-8AM 0.068679 0.034494 0.020995 0.072897 
8AM-9AM 0.056887 0.042011 0.027562 0.060127 

9AM-10AM 0.04875 0.049167 0.040078 0.050988 
10AM-11AM 0.048288 0.055528 0.051903 0.049274 
11AM-12PM 0.051398 0.060432 0.057388 0.051632 
12PM-1PM 0.054019 0.063779 0.065177 0.053004 
1PM-2PM 0.055247 0.06416 0.070741 0.054463 
2PM-3PM 0.058843 0.064205 0.07105 0.057966 
3PM-4PM 0.065018 0.064441 0.070007 0.064375 
4PM-5PM 0.069372 0.063472 0.068647 0.071503 
5PM-6PM 0.070934 0.062825 0.068948 0.077139 
6PM-7PM 0.060299 0.059991 0.066978 0.061615 
7PM-8PM 0.049222 0.052214 0.057674 0.045984 
8PM-9PM 0.039658 0.045855 0.051762 0.036039 

9PM-10PM 0.034536 0.042524 0.043862 0.030995 
10PM-11PM 0.030332 0.038484 0.034338 0.023266 
11PM-12AM 0.022958 0.031278 0.02372 0.015057 
 

Hourly directional volume data at some locations were obtained from the District 

of Transportation Planning at TxDOT Houston District. The data are from several 
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permanent traffic counting stations on major freeways such as I-45, I-610, US-59 and 

US-290, which continuously recorded hourly traffic volumes on both directions. Hourly 

directional VMT (Equation 3.4) were adjusted based on the directional split factors, 

which were calculated from the directional volume data collected by count stations. It is 

assumed that all the traffic, the volumes of which are indicated on each roadway 

segment by traffic maps, travel through the whole length of each segment. Therefore, the 

derived traffic direction split factors are the same as VMT directional split factors since 

the roadways on both directions have the same lengths. It is also noted that the data are 

from only seven count stations, and the direction split factors of other roadway locations 

have to been derived based on the existing count station data. Figure 3.3 gives an 

example of the directional split factors for weekdays from a count station located on US-

59 south at Beechnut Street, which is outside I-610 loop. It can be seen that in the 

morning peak, eastbound traffic is above 60% of the combined volume. In the afternoon 

the westbound traffic becomes to the majority until the early morning. It is assumed that 

the US-59 south outside I-610 loop had the same directional distribution as the one 

obtained from the aforementioned count station.  

 AADVMTFKDADVMTKDHVMTDDHVMT dhihii ×××=××=×=  (3.4) 

where,  = hourly VMT in one direction; and DHVMT

iD  = directional split factor, ratio of hourly volume in one direction to the two-

way volume. 
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Figure 3.3 Directional Split Factors (Di) by Hour of Day on Weekdays on US-59 

South at Beechnut St. 
 

The roadways inside I-610 loop must be adjusted according to assumptions since 

there is no count station data inside the loop. Theoretically, the directional difference of 

traffic inside I-610 loop should not be as big as outside the loop since employment areas 

are more scattered inside the loop. The directional difference was assumed to end in 

downtown, the freeway surrounding which was assumed to have had 50/50 traffic 

directional split all the time. The freeway segments between downtown and I-610 loop 

were assumed to have had the average directional split of those of downtown and the 

count station outside the loop, which is shown in Figure 3.4. This traffic adjustment 

method was applied to all the freeways except I-610 loop since I-610 does not head to 

downtown. In the study area, four count stations are located on the I-610 loop with each 

station on each direction. The hourly traffic split on each of the four directions of the 
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loop was assumed to be the same as the corresponding count station. The traffic on other 

days of a week was also adjusted by using the same method based on the count station 

data for corresponding days of a week.  
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Figure 3.4 Directional Split Factors (Di) by Hour of Day on Weekdays on US-59 

South inside I-610 Loop 
 

It is also assumed that the directional split of each roadway on a daily basis was 

50/50 during the study period. This means that the inbound daily volume was the same 

as outbound daily volume.  

 

3.2.3 GIS Roadway Data 

The base state-maintained roadway network was retrieved from TxDOT link 

shape file. Proper editing (cut, divide, split, merge) was done in accordance with the 
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roadway segments. In Figure 3.2, every link represents one roadway in one direction. 

The two lines in the middle are mainlines of freeway. The links that are on both sides of 

the mainline are frontage roads. Arterials do not have frontage roads beside them. Some 

freeway segments do not have frontage roads beside them either.  

The base control-section map for the study area was obtained from TxDOT map 

office in Austin. Control-section number is a specific identification number for each 

roadway section defined by TxDOT. The location of a crash in TRF crash dataset is 

simply recorded as a control-section number and a milepoint, which describes the 

position relative to the starting points of the control-section.  

 

3.3 GIS Mapping of Crash Locations 

There are at least three methods to locate crashes onto digital maps, as mentioned 

in the literature review: direct adding based on XY geographic coordinates, address 

geocoding, and dynamic segmentation. The selection of the method depends on the 

available location data. In this research, dynamic segmentation was performed to locate 

crashes on routes because the roads on which crashes occurred (control-section numbers) 

and their relative positions to the starting points of the roads (milepoints) were known 

and other location information, like exact address, zip code, latitude or longitude was not 

available. 

The base roadway network shape file was retrieved from TxDOT link data. 

Proper editing (cut, divide, split, merge) was done again based on the roadway control-

sections. Then, routes were created from existing links by giving them corresponding 
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control-section number, identifying milepoint directions and adding starting and ending 

measurements. The Houston state-maintained roadway network routes file, which was 

used as route reference, was successfully created with control-section number as the 

route identifier and milepoint as the measurement. 

The ESRI’s ArcMap was used to perform dynamic segmentation. The TRF crash 

file, which indicates the crash location along the route with control-section number as 

the route identifier and the milepoint as the measure location field, was used as point 

event table. Figure 3.5 shows the example of the dynamic segmentation process.  

 

 
Figure 3.5 Dynamic Segmentation Process in ArcMap  

(Source: ESRI’s ArcMap Help File) 
 

In ArcMap, the “add route events” function was used to add each crash as a point 

along the routes on the map layer. The accuracy level of crash location is 0.1 mile, which 

is believed to provide sufficient accuracy for area-wide macroscopic crash analysis. The 
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shortest roadway segment length is 0.10 mile, which can guarantee at least one possible 

crash location for each segment. Having segments longer than 0.10 mile is also 

consistent with the minimum length commonly used (Resende and Benekohal 1997). 

Approximately 98% of crashes were successfully and correctly located on the 

maps for each of the five years in the study period. For example, 9,305 out of 9,460 

(98.36%) crashes were located in the year 2000 map, as shown in Figure 3.6. In the 

figure, each point represents at least one crash (it is possible that several crashes 

occurred at the same location). The remaining 1.64% could not be added due to various 

reasons, such as unknown control-section number, unknown milepoint or error in the 

milepoint information, etc. It is assumed that less than 2% unallocated crashes do not 

significantly affect the analysis results.  
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Figure 3.6 Identified Locations of Traffic Crashes, 2000  

 

3.4 Crash Prediction Model  

This thesis is to analyze the spatial-temporal patterns of the relative crash risks. 

Relative crash risk in this thesis is defined as the ratio between observed crash frequency 

and expected crash frequency (Equation 3.5).  

 
ijt

ijt
ijt E

Y
Risk =  (3.5) 

where,  = relative crash risk for roadway segment i, road type j, and at time t; ijtRisk
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ijtY  = observed crash count for roadway segment i, road type j, and at time t; and 

ijtE  = expected crash count for roadway segment i, road type j, and at time t. 

In the above equation,  was counted from the GIS crash point event layer by 

Zonal Spatial Analyst in ESRI’s ArcToolbox (ESRI, 2004). Crash prediction models 

were built to estimate expected crash count  for different segment, different road type, 

and different time period. When the value of relative risk is greater than 1.0, the segment 

is riskier than expected. When it is less than 1.0, the segment is safer than expected. 

ijtY

ijtE

The crash prediction model is a mathematical equation that estimates the average 

crash frequency of an entity as a function of traffic flow and other road characteristics. 

Although a crash is a function of various characteristics of the driver, traffic, vehicle, 

road and the environment, the expected crash count for segment i and road type j, is a 

dependant variable based on only segment length and traffic flow in the model (Equation 

3.6). Segment length is assumed to have a linear relationship with expected crash count. 

The relationship between AADT and crash frequency was assumed to be unknown and 

would be found out according to the data and estimation method.   

  (3.6) 1)(***5 0
ββ ijiij DAADTLE =

where,  = expected crash count for roadway segment i, road type j per 5 years;  ijE

ijDAADT  = average of 5 years’ directional AADT from year 1996 to 2000, for 

roadway segment i, and road type j, assumed to be a half of two-direction AADT; 

iL  = segment length (miles); and 

0β , 1β = coefficients to be estimated. 
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It is common to use maximum likelihood methods to estimate the coefficients in 

the crash model. The traditional least squares or weighted least squares regression 

methods are not used since the crash counts are discrete, non-negative values, and the 

variance of the number of crashes increases as the traffic flow increases, violating the 

assumptions of these two models (Lord and Persaud, 2000). Software SAS was used to 

estimate intercept 0β  and variable parameter 1β  for each road type by using maximum 

likelihood methods in the thesis.  

Hourly crash frequency can also be estimated to calculate the relative crash risks 

for each hour of day. The expected hourly crash count is estimated by using the 

following equation. 

 
2

*
ijd

ijd
ijhijh ADVMT

E
DHVMTE =   (3.7) 

where,  =  expected crash count for roadway segment i, road type j and hour h;  ijhE

ijdE  =  expected crash count for roadway segment i, road type j and day d;  

ijhDHVMT  = directional hourly VMT for roadway segment i, road type j and 

hour h; and 

ijdADVMT  = average daily VMT for segment i, road type j and day d. 

Note: the directional average daily VMT is assumed to be 50% of the two-way 

ADVMT.  is estimated from Equation 3.6.  ijdE

The best way to estimate hourly crash frequency is to build hourly crash models 

for each of the 5 road types and each hour of the 24 hours of a day. However, hourly 
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model is not the focus of this thesis and doing 120 hourly models will consume a lot of 

time. Both the advantages and limitations of this approach will be discussed in Section 

4.1.  

The relative risk, which is the ratio of observed crash count to expected crash 

count, can be transformed into the ratio of observed hourly crash rate to average daily 

crash rate. Equation 3.8 shows the transformation.  

 ⎟
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E
DHVMT

Y
E
Y

Risk  (3.8) 

where,  = relative crash risk for freeway segment i, road type j, and at hour h; and ijhRisk

ijhY  = observed crash count for freeway segment i, road type j, and at time h. 

 

3.5 Hierarchical Bayesian Modeling 

Bayesian methods infer individual-level parameter estimates by borrowing 

information from other individuals (Bolstad, 2004; Lee, 2004). Hierarchical Bayesian 

modeling uses multiple levels of analysis in an iterative way (Carlin and Louis, 1996; 

Rossi et al., 2006).  Unlike conventional statistical inference which derives the average 

estimates of parameters, hierarchical Bayesian modeling produces parameter estimates 

for each individual analysis unit. It also identifies and flags "extra variance" (Congdon, 

2001; Winkler, 2003). In spatial statistics, if there is high uncertainty in a regression 

model, the result explains only a small amount of variance. But in a hierarchical 
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Bayesian model the unexplained "extra variance" is usually identified as either spatially-

correlated effects or heterogeneity effects (Best et al., 1999).  

Hierarchical Bayesian modeling involves two stages. At the first stage, a 

likelihood model for the vector of observed crash counts given the vector of relative 

risks of crashes was specified. At the second stage, a prior model over the space of 

possible relative risks was specified. Using software packages such as 

WinBUGS/GeoBUGS or sophisticated computation algorithms could yield a set of 

posterior means for the relative risks given the observed crash counts. The set of 

posterior means of the relative risks was then used to create a map to visualize the high- 

or low-risk segments. Observed risk maps were developed from the likelihood model 

(the first stage) only, and often feature large outlying relative risks in small areas (where 

the traffic flow and/or segment length is small). Hence, observed risk maps usually show 

high uncertainty due to the small sample sizes in the small areas. They also fail to catch 

similarity of relative risks in nearby or adjacent regions. An appropriately tailored 

Bayesian approach can incorporate spatial assumptions and help smooth the maps with 

large variances for those mapping units with small populations by borrowing strength 

from neighbors. The smooth change of the relative crash risks was assumed here along 

adjacent roadway segments based on the Tobler’s First Law of Geography—“Everything 

is related to everything else, but near things are more related than distant things (Tobler, 

1970).” 

At the first hierarchy, the likelihood model (Miaou et al., 2002; Zhu and Carlin, 

1999) assumes that the observed crash counts Yijt for road segment i, road type j, and in 
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time period t (hour, day, or year) are Poisson distributed with the mean , which is the 

product of expected crash frequency for road segment i, road type j, and in time period t 

and the relative risk. The model can be represented as: 

ijtm

 , i = 1, …, I, j = 1,…J, t =1, …T,  (3.9) )(~| ijtijtijt mPoissonmY

 )exp( ijtijtijt Em µ= , i = 1, …, I, j = 1,…J, t =1, …T, (3.10) 

where,  = observed crash counts for roadway segment i, road type j and at time t;  ijtY

ijtµ  = log relative risk for roadway segment i, road type j and at time t; 

ijtE  = expected crash count for roadway segment i, road type j and at time t; and 

)exp( ijtµ  = , relative risk for roadway segment i, road type j and at time t. ijtRisk

The second hierarchy is log-relative risk, which is modeled as 

  (3.11) )()( t
ij

t
ijjtijt x φθαβµ +++=

where, jtβ  = an overall intercept for road type j and at time t; 

x  = the covariate of road type; 

α  = the corresponding effect of road type x; 

)(t
ijθ  = non-structured random noises for segment i, road type j and at time t; and 

)(t
ijφ  = spatially-correlated random effects for roadway segment i, road type j and 

at time t. 

The overall intercept jtβ captures a main effect for road type j at time t. Although 

it is possible to specify a parametric function (e.g., linear or quadratic form) for the time 
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effect, a qualitative form that allows data to reveal the presence of any temporal trend is 

preferred.  

The next step is to define four components in the second hierarchy. The 

distribution of non-structured random noise  is assumed to be normally distributed, 

while the spatially-correlated random effect  is assumed to follow a conditional 

autoregressive (CAR) model. Placing flat (uniform) priors on the main effects

)(t
ijθ

)(t
ijφ

jtβ  and 

road type effectα  are advocated. They are modeled as 

 )  (3.12) ,0(~)(
t

t
ij Normal τθ

 )  (3.13) (~)(
t

t
ij CAR λφ

 ( )faltjt ~β  (3.14) 

 ( )falt~α  (3.15) 

According to Besag (1974), the joint distribution of the vector of spatial effects 

(at time t) is proportional to , i.e., a multivariate normal density 

with mean 0 and covariance matrix . The elements of matrix B is determined as 

 and

tφ ))2/(exp( t
T

t Bφφtλ−

1−B

kkk a=B klkkl a ω−=B , with denoting the number of neighbors of segment k, and ka

klω  being the elements in the adjacency matrix W . The (k,l)th element in matrix W 

equals to 1 if two segments k and l are adjacent to each other.  

To compute the adjacency matrix, each roadway segment is considered to be 

adjacent to its upstream segment and downstream segment in the same direction. It is 
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assumed that the segment is also adjacent to the segment with opposite traveling 

direction. Figure 3.7 shows an example of adjacent segments on a typical freeway.  

 

 
Figure 3.7 Adjacent Segments Definition on a Typical Freeway 

 

The similarity among the random effects across time is encouraged by assuming 

tτ  and tλ  to be Gamma distributed based on the conjugate distribution theory. 

 ),(~ baGammatτ  (3.16) 

 ),(~ dcGammatλ  (3.17) 

The parameters were set as a = 0.001, b = 0.001 (i.e., the tτ  have prior mean 1 

and standard deviation 1000 ) and c=0.01, d=0.01 (i.e., the tλ  have prior mean 1, 

standard deviation 10 ). These are vague priors designed to allow the data to dominate 

the allocation of excess spatial variability to heterogeneity and clustering. Note that the 

constraints , at  must be added to identify the time effects0=∑ij ijtφ Tt ,...,1= jtβ , due to 

the location invariance of the CAR prior. The MCMC implementation in WinBUGS ran 

two parallel sampling chains for 20,000 iterations each, and discarded the first 5,000 
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iterations as pre-convergence burn-in based on the evaluation of convergence statistics, 

such as MCMC error.  

 

3.6 Three-dimensional Mapping 

This thesis attempts to display relative crash risk maps in a new way, the 3-D 

views.  A 3-D map has not only all the power of a 2-D map, but also the expression from 

the third dimension, so it is believed that a 3-D map can show more information and 

readability than a 2-D map. For example, links can be displayed not only with different 

color and width, which is common in a 2-D view, but also with its third dimension—

height in a 3-D view. In the relative risk maps in this thesis, every segment will be 

displayed with corresponding height, which represents its relative risk value. ESRI’s 

software ArcScene is used to produce 3-D maps.  

The overall methodological flow diagram in this thesis can be shown in details as 

Figure 3.8. In the preliminary data processing and analysis part, GIS is needed in 

segmentation process, locating of the crashes, counting the crashes, and integrating 

volume and road type data. In the hierarchical Bayesian modeling part, GIS is needed to 

generate adjacency matrix for the model. In the last part, GIS is definitely needed to 

draw the maps. Therefore, the approach developed in this thesis is a GIS-based approach.  
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Figure 3.8 Flow Diagram of Relative Crash Risk Assessment 
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4  RESULTS AND DISCUSSIONS 

This section begins with the results of the crash prediction models for five road 

types, and their implications. Overall temporal results of crash risks, calculated from the 

raw crash and traffic data are then presented. This is followed by the statistical spatial 

results, which describe the spatial distributions of posterior relative crash risks, 

calculated from WinBUGS, for the 5-year period. Spatial-temporal results are presented 

in the final section, targeting spatial distribution of posterior relative crash risks for 

every day of a week and every hour of a day.  

4.1 Crash Model Results 

The crash model was used to estimate the relationship between traffic flow and 

crash frequency. A simple model was built with the functional form of 

(Equation 3.6) in section 3.4. Segment length is assumed to 

have a linear relationship with crash frequency. Coefficient 

1)(***5 0
ββ ijiij AADTLE =

1β  captures the flow’s 

influence on the crash count and 0β  represents the overall intercept for a particular road 

type. This model was applied to each of the five road types respectively, i.e., urban 

freeway mainlines (471 segments), freeway system interchange area (112 segments), 

frontage roads without diamond interchange (171 segments), frontage roads with 

diamond interchange (228 segments), and arterials (126 segments). The maximum 

likelihood method was used to estimate the coefficients in the crash models. The results 
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provided by SAS are shown in Table 4.1. Figure 4.1 illustrates the relationship between 

directional AADT and crash frequency for these five road types.  

 
Table 4.1 Estimated Coefficients for Different Road Types 
 0β  1β  Dispersion 

Urban Freeway 
Mainlines 

3.59×10-6 
(5.40×10-7, 2.40×10-5) 

1.3777 
(1.2102, 1.5452) 

0.2375 
(0.2045, 0.2705) 

Freeway System 
Interchange Area 

0.00059 
(2.76×10-5, 0.01279) 

0.9585 
(0.6864, 1.2307) 

0.4468 
(0.3303, 0.5633) 

Frontage Roads without 
Interchange 

0.15423 
(0.03508, 0.67801) 

0.4447 
(0.2804, 0.6089) 

1.0055 
(0.7882, 1.2228) 

Frontage Roads with 
Diamond Interchange 

2.21732 
(0.79303, 6.19969) 

0.2339 
(0.1183, 0.3496) 

0.7041 
(0.5751, 0.8331) 

Arterials 0.00103 
(0.00015, 0.00720) 

0.9870 
(0.7818, 1.1923) 

0.3780 
(0.2738, 0.4821) 

Note: 95 % confidence intervals are in parenthesis.  
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Figure 4.1 Results of KAB Crash Prediction Models by Different Road Types 
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It can be seen from Table 4.1 and Figure 4.1, the crash count on freeway system 

interchange area and arterials have linear relationships with traffic flow, because their 

95% respective confidence interval for 1β  cover 1.0. This means that with the increase 

of traffic flow, the crash count will increase with a constant rate. For urban freeway 

mainlines, 1β  is bigger than 1, implying that crash frequency increases with a higher rate 

than the increase of AADT, which matches the research result by Persaud and Dzbik 

(1993). However, the crash rate for urban freeway mainlines is always lower than any 

other road types before it reaches maximum AADT, so urban freeway mainlines are 

always the safest road type among the five types.  

Frontage roads shows different relationships, because their 1β  are both less than 

1, implying the crash counts increase with decreasing rates when their AADTs go up. 

The possible reasons can be that the speeds of vehicles are high at low volumes while 

low at high volumes. Frontage roads with diamond interchange have the highest crash 

rate before its fitting line intersects with arterials at 27,000 directional AADT. Frontage 

roads without diamond interchange experience less crashes per unit of exposure than 

frontage roads with diamond interchange. In comparison with arterials, frontage roads 

without diamond interchange have a higher crash rate at low AADT (<10,000) and lower 

crash rate at moderate and high AADT (>10,000) than arterials.  

Overall, a freeway (including urban freeway mainlines and freeway system 

interchange areas) is safer than a frontage road and arterial for all ranges of AADT, and 

freeway mainlines are always safer than freeway system interchange areas. This is 

expected since freeways have better road condition, wider lane width, and fewer traffic 
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conflicting points than frontage roads and arterials. The safety of the other three road 

types depends on the AADT. Frontage roads are relatively less safe at low AADT and 

safer at high AADT than arterials. Section 4.3 will show the calculation results of crash 

rates for these five road types for this study area.  

There are a few ways to calculate the hourly expected crash frequency. Using 

one general hourly model will produce bias when more safety performance functions 

should have been used separately for daytime, nighttime, morning peak and afternoon 

peak etc. (Mensah and Hauer, 1998). To avoid this “function averaging” problem, the 

ideal way is to build hourly models for each hour of day and each road type separately. 

However, doing that will cost a lot of time and cause another problem, which is the 

ignorance of temporal correlation between the adjacent hours. These issues are all 

important and worth more research in the future. Since it is not the focus of this thesis 

research, the hourly crash frequency was estimated by Equation 3.7 in order to simplify 

this process. 

In this hourly crash prediction model, daily average crash rate for each segment 

is used to multiply hourly VMT to get expected hourly crash frequency. The underlying 

assumption for this method is the linear relationship between flow and crash frequency, 

which is supported by Martin (2002).  

These daily expected crash counts and hourly expected counts are denominators 

in the calculation of relative crash risks. The relative risks are presented in later spatial 

analysis section and spatial-temporal analysis section.  
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4.2 Temporal Analysis 

The overall temporal analysis is based on the observed data, so it does not 

necessarily need GIS or Bayesian model, but it is useful for understanding the problem, 

and the result is a necessary precursor for the later spatial-temporal analysis, which 

targets the spatial patterns in different time periods. According to the results, the 

monthly numbers of KAB crashes do not display any significant differences in this study 

area, so the temporal analysis only focuses on temporal change of relative crash risks by 

day of week and hour of day. 

 

4.2.1 Day of Week Analysis 

Average KAB crash counts in the study area varies by day of week. Figure 4.2 

illustrates that in terms of crash count during 1996 to 2000, Sundays were the lowest, 

whereas Fridays were the highest and Saturdays were the second highest days. Mondays 

through Thursdays had very close values, which were between those of Sundays and 

Saturdays.  
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Figure 4.2 Average Daily KAB Crash Count in the Study Area, 1996-2000 

 

VMT showed a different pattern from the crash count, shown in Figure 4.3. It is 

assumed that different years have same VMT daily patterns, which are introduced in 

Table 3.1, obtained from TTI. These average daily VMT were calculated by multiplying 

the daily adjustment factors with AADVMT, which varies by years.  In terms of VMT, 

Sundays were the lowest and Fridays were the highest, whereas Mondays through 

Thursdays had similar values, which were the second highest. Since weekday traffic is 

likely work-related, drivers had more consistent driving habits. Therefore, the VMT is 

relatively stable from Monday through Thursday. On Friday not only may more people 

drive to work, but they may also like to travel for leisure activities after work. VMTs on 

Saturdays were lower than weekdays and Fridays, but higher than Sundays probably 

because there were some work-related traffic, shopping, and party traffic on Saturdays. 
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Figure 4.3 Average Annual Daily VMT by Day of Week, 1996-2000 

 

The plot of relative crash risk by day of week (Figure 4.4) shows that although 

different years had different risks, the risks in each year followed a similar “U” shape 

pattern. Saturdays had the highest overall relative crash risk in a week since Saturday has 

the moderate crash counts and relatively small expected crash frequency based on its 

relatively low traffic volumes. The relative risk for Sundays was the second highest. In 

each year, Mondays through Thursdays had similar risk values, which were below 1, 

implying that they were safer than the average. The relative risk on Fridays was in the 

middle, safer than Saturday and Sunday, less safe than weekdays. The reasons for this 

“U” shape might be that drivers were more familiar with roads and had more consistent 

driving habits during weekdays, while on weekends there were more leisure trips, higher 

speed, and high percentages of intoxicated drivers. 

Relative crash risks also fluctuated by year. The relative risks on Friday and 

Saturday in 1997 were higher than those in other years. Year 2000 had a relatively low 
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risk during the working days. However, generally, the weekly patterns of relative risks 

through these years were very similar.  
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Figure 4.4 Observed Annual Relative Crash Risks by Day of Week, 1996-2000 

 

4.2.2 Hour of Day Analysis  

The hour of day analysis aims at assessing the patterns of relative crash risks by 

each hour of a day. This analysis was performed in four categories: weekdays (Monday 

through Thursday), Friday, Saturday, and Sunday, since each category shows a similar 

hourly pattern both on crash count and VMT.  

The hourly patterns of crash count were different by day of week, as shown in 

Figure 4.5. There are two crash count peaks (7:00 a.m.—9:00 a.m. and 3:00 p.m.—7:00 

p.m.) on Weekdays and Friday. However, the two peaks in weekend were at different 

time, which were 1:00 a.m.—3:00 a.m. and 2:00 p.m.—5:00 p.m. There is no morning 

peak (7:00 a.m.—9:00 a.m.) of crash counts in weekend and no early morning peak 
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(1:00 a.m.—3:00 a.m.) on weekdays or Friday. The time of afternoon peak in weekend 

was earlier than that on weekdays and Friday, and the peak crash count was less. From 

Figure 4.5, crash counts during weekdays were higher than that on Friday in the morning 

peak (6:00 a.m.—10:00 a.m.), but lower than that on Friday during the rest of a day. 

Crash counts on Saturday was higher than that on Sunday all the time except the early 

morning peak (1:00 a.m.—5:00 a.m.).  

 

0

0.5

1

1.5

2

2.5

3

12
AM-1AM

1A
M-2A

M

2A
M-3A

M

3A
M-4A

M

4A
M-5A

M

5A
M-6A

M

6A
M-7A

M

7A
M-8A

M

8A
M-9A

M

9A
M-10

AM

10
AM-11A

M

11
AM-12P

M

12
PM-1PM

1P
M-2P

M

2P
M-3P

M

3P
M-4P

M

4P
M-5P

M

5P
M-6P

M

6P
M-7P

M

7P
M-8P

M

8P
M-9P

M

9P
M-10

PM

10
PM-11P

M

11
PM-12A

M

A
ve

ra
ge

 C
ra

sh
 C

ou
nt

 p
er

 H
ou

r Fridays
Saturdays
Sundays
Mondays-Thursdays

 
Figure 4.5 Average Hourly KAB Crash Count by Hour of Day, 1996-2000 

 

VMT had a close hourly pattern to crash count for those four categories, as 

shown in Figure 4.6. VMT during weekdays and Friday had two peaks (7:00 a.m.—9:00 

a.m. and 3:00 p.m.—7:00 p.m.), which were at the same time as crash count peaks. 

However, the hourly VMT during weekends had only one flat peak (1:00 p.m.—7:00 

p.m.), which was in the afternoon. There was no early morning peak in VMT for 
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weekend. VMT on weekdays was always lower than that on Friday and VMT on 

Saturday was bigger than that on Sunday except early morning (1:00 a.m.—4:00 a.m.). 
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Figure 4.6 Average Hourly VMT by Hour of Day, 1996-2000 

 

The plot of the relative crash risk by hour of day (Figure 4.7) shows that different 

categories have very similar trends although they have different distributions for crash 

count and VMT. Generally, the risk at nighttime (10 p.m.-5:00 a.m.) was higher than 

daytime. The risk was very high in the early morning, especially between 1:00 a.m. and 

4:00 a.m. The highest risk of around 4.0 existed between 2:00 and 3:00 a.m. on Sundays 

and Saturdays. The risks in this same period on weekdays and Fridays were also much 

higher than 1.0. Therefore, the early morning was the least safe time in a day, with 

weekend being less safe than weekdays and Friday. It was also noticed that the relative 

risks were higher than 1.0 from 11:00 p.m. to 4:00 a.m. for all categories. The 
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contributing factors probably include the dark environment without good lighting 

conditions, driver fatigue, and drunk drivers. The plot also shows that during weekdays 

and Friday, morning (risk<1) is safer than the afternoon (risk>1) although morning peak 

and afternoon peak had almost the same VMT. This is perhaps because drivers are more 

attentive after a good night sleep. The lowest risk for Mondays through Fridays existed 

at 5:00-6:00 a.m., but the lowest-risk period lagged several hours on Sundays and 

Saturdays. It can also been seen that Friday always had higher relative risk than 

weekdays except 6:00 a.m. to 10:00 a.m. and Saturday always had higher risk than 

Sunday except from 4:00 a.m. to 7:00 a.m.  
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Figure 4.7 Observed Average KAB Relative Crash Risks by Hour of Day, 1996-

2000 
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4.3 Spatial Analysis 

Spatial analysis is used to determine the spatial distribution of relative crash risks 

for the study area from year 1996 to year 2000. GIS and the Bayesian approach are two 

necessary tools to identify risky segments. In this section, the crash rates for different 

road types are calculated and compared. Then, overall spatial patterns are presented with 

both observed risk map, which used the raw data directly and a posterior relative risk 

map, which used the posterior means of the estimations from WinBUGS. The 

comparison of these two maps is used to show the strength and advantage of 

Hierarchical Bayesian approach.  

 

4.3.1 Crash Rate Analysis by Road Types 

This subsection evaluates the safety for all the five road types in the study area. 

Crash rates were calculated by dividing the observed crash count by VMT.  

 
jt

jt
jt VMT

Y
RateCrash =  (4.1) 

where,  = crash rate for road type j, and at time t (number of crashes per 

million VMT); 

jtRateCrash

jtY  = observed crash count for road type j, and at time t; and 

jtVMT  = VMT for road type j, and at time t, in millions.  

Figure 4.8 shows the overall KAB crash rates for different road types as well as 

day of week in the study area. Urban freeway mainlines are the safest road type with 
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overall crash rate 0.71 crashes per million VMT, followed by freeway system 

interchange area, whose crash rate was 1.02 crashes per million VMT. This could be due 

to the fact that freeways have better design standards, wide lanes, and with limited 

access. The reason of lower crash rate for urban freeway mainline than system 

interchange area might be less merging, diverging, or weaving maneuvers and less speed 

variance. Frontage roads and arterials had much higher crash rates than those of 

freeways, especially where diamond interchange exists. Frontage roads with diamond 

interchange (crash rate equaled to 4.59 crashes per million VMT), which was the least 

safe road type under evaluation. This might be because of more traffic conflicting points, 

turning movements, frequent lane changing, and pedestrians. The crash rate for frontage 

roads without diamond interchange was 2.19 crashes per million VMT, about 1/2 of the 

rate of the ones with diamond interchanges. This is obvious because speed changes and 

conflicting movements at diamond interchanges always accompany more crashes. 

Arterials had crash rate of 2.49 crashes per million VMT, a slight higher than frontage 

road without interchange but much lower than frontage road with diamond interchange, 

because arterial crashes combined the intersection-related crashes and non-intersection-

related crashes. In terms of crash rate by day of week, it is seen from Figure 4.8 that 

generally, Saturday and Sunday had higher risks than weekdays and Friday, and Friday 

was riskier than weekdays.  
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Figure 4.8 KAB Crash Rates by Road Types and Day of Week, 1996-2000 

 

4.3.2 Overall Spatial Pattern 

Figure 4.9 and 4.10 show the distribution of overall observed and posterior 

relative crash risks in Houston respectively during the years 1996 through 2000. The 

posterior relative risk map (Figure 4.10) shows some characteristic Bayesian smoothing 

of the observed relative risks (Figure 4.9). After careful comparison, no segment was 

assigned a risk of exactly zero, and the high risks on the segments with low traffic 

volumes or short lengths were reduced so that the risk surface became smoother. For 

example, the minimum and maximum risk values were 0 and 8.2806 respectively in the 

observed risk map, but they became 0.092 and 7.5768 in the posterior risk map; the 

variance of the observed risks was 0.674, while the variance of posterior relative risks 

was 0.573, 15% less. This is an expected result of the Bayes method as it reduces 

variances. However, the observed high risks in the frontage road of US-59 south 
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remained to be high, as the method properly recognized the much higher sample sizes in 

this area. Actually, it seems that the overall observed risk map is very similar to the 

overall posterior risk map. This is because the 5-year dataset has a lot of data points and 

has small variance, which the Bayesian approach is supposed to filter. One of the 

advantages of Bayesian approach is that it can automatically detect the uncertainty in the 

dataset and then filter it. When dealing with one-year, monthly, daily or hourly crash 

data with high variance level, the smoothing effects will be more obvious because the 

approach will filter much uncertainty that exists in the dataset. In the next section, the 

smoothing effects of this hierarchical Bayesian approach on a daily relative crash map 

and hourly relative crash risk map are shown and discussed.  

 
Figure 4.9 Overall Observed Relative Crash Risk, 1996-2000 

 



 67

 

Least Safe Frontage Road 
Segments without Interchange 

Least Safe Freeway 
System Interchange 

Least Safe Freeway 
Mainline Segment 

Least Safe Arterials 
Segments 

Least Safe Frontage 
Road Segments with 
Diamond Interchange

Figure 4.10 Overall Posterior Relative Crash Risk, 1996-2000 (3-D) 
 

The Posterior relative risk map (Figure 4.10) shows there were several risky 

roadway segments in this area after uncertainty was filtered. The least safe urban 

freeway mainline segment is located on I-45 downtown. The least safe freeway system 

interchange area is the interchange of US-59 and I-610 west. For frontage roads without 

diamond interchange, US-59 westbound has one less safe segment inside I-610 loop and 

one outside the loop, both of which had relative risks over 7. For frontage roads with 

diamond interchange, the frontage road of I-10 eastbound at the diamond interchange 

with US-90 was least safe. The least safe arterial segment was a segment of US-90, at 

the interchange area with I-45, where a big curve is located. In addition, two frontage 

road segments on I-610 south, and one frontage road segment on I-10 east also displayed 
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abnormally high relative risk values. For those roadway segments with high posterior 

relative risks, there must be something unusual that caused high risks, so the next step 

for transportation agencies is to do diagnostic analysis to identify contributing factors.  

The posterior relative risk map also shows that different directions of some 

roadways had different risk levels. For example, the least safe urban freeway mainline 

segment –southbound segments of I-45 in downtown has a posterior relative risk value 

of 4.03, much bigger than that of its opposite direction segment, which had a posterior 

relative risk value 2.30. I-10 west inside I-610 loop had an eastbound segment with 

relative risk less than 1, but westbound segment had relative risk over 1. These suggest 

the need of direction differentiation in analyzing relative crash risks. Otherwise, the 

relative risks on two directions will be averaged out so that no direction difference will 

be observed, leading to mistakes in decision making.  

Figure 4.11 shows a 2-D posterior risk map for this 5-year period. After 

comparison between Figure 4.10 and Figure 4.11, it is obvious that a 3-D map carries 

more information and is more reader friendly. A 3-D map uses not only link’s color and 

width to express information, but also link’s height in the third dimension, which 

represents the value of the relative risk. In a 2-D map, different color and size shows 

different categories, but readers can not know the difference of the risk values within one 

category. However, in a 3-D map, it is obvious that the least safe frontage segment had a 

higher risk value than the least safe freeway segment from the different heights of the 

segments. Therefore, 3-D maps help the presentation of relative risks and are advocated.  
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Figure 4.11 Overall Posterior Relative Crash Risk, 1996-2000 (2-D) 

 

4.4 Spatial-Temporal Analysis 

The objective of the spatial-temporal analysis is to show the variation of spatial 

distribution of relative crash risks by day of week and by hour of day.  The spatial 

analysis by day of week was conducted on different days such as Sunday, weekdays 

(Monday to Thursday), Friday and Saturday for different years (1996 to 2000). The 

spatial analysis by hour of day was done on each of the 24 hours for different day of a 

week (Sunday, weekdays, Friday and Saturday). 3-D maps were drawn to illustrate the 
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spatial distribution of posterior relative crash risks, which were the smoothed results 

from Hierarchical Bayesian approach.  

 

4.4.1 Spatial Analysis by Day of Week 

Figure 4.12 and 4.13 show the distribution of observed and posterior relative 

crash risks respectively for Fridays in year 1996. Because of the limited data volume, the 

observed risk map displayed a high variance level, which led to some no-risk segments 

(with relative risk value 0) and a lot of abrupt changes of relative risks between adjacent 

segments. Hierarchical Bayesian approach filtered data uncertainty so that real safety 

tendency is revealed in Figure 4.13. It is very clear that no segment had a risk of exactly 

0, high observed risks on those segments with low traffic volume or short length were 

reduced and the surface of the map became smoother with less abrupt risk changes. After 

the uncertainty was filtered, the remaining high-risk segments were the segments that 

were truly less safe and proper safety improvements were needed on those segments. For 

example, the segment with the highest observed relative risk was the US-90 arterial 

segment at the interchange area with I-45. Since it is 0.25 miles long (shorter than 

average) and had AADT 4400 (very low), the Bayes approach detected this small area, 

and smoothed its observed risks 11.9391 into posterior risk value 4.25 by incorporating 

its adjacent segments (including upstream, downstream and opposite direction segments), 

two of which had zero observed risks.  
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Figure 4.12 Observed Relative Crash Risk for Fridays in Year 1996 
 

 
Figure 4.13 Posterior Relative Crash Risk for Fridays of Year 1996 
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Figure 4.14, 4.15 and 4.16 illustrate the distribution of posterior relative crash 

risks for Saturdays in year 1997, Sundays in year 1998 and weekdays in year 2000. 

Actually the same day in a week in different years showed very similar spatial risk 

patterns. However, different days of a week showed a little different pattern. The relative 

risks on Saturday were higher than those on other days in a week, and more high-risk 

segments were observed. For example, I-10 west at Sam Houston Tollway, had a 

frontage road segment with risk over 4.0 and US-59 south westbound had three more 

frontage segments with relative risks over 4.0 than the overall posterior risk map. 

Sunday had less high-risk segments than Saturday, but more than other days of a week, 

as shown in Figure 4.15. Figure 4.13 indicates that Friday had similar spatial pattern 

with Sunday, but less risky segments. High-risk segments on weekdays were not as 

concentrated as those on other days and less high-risk segments were observed on 

weekdays, as shown in Figure 4.16. Figures 13-16 also verified the validity of overall 

temporal relative risk pattern by day of week in Section 4.2.1.  
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Figure 4.14 Posterior Relative Crash Risk for Saturdays of Year 1997 

 

 
Figure 4.15 Posterior Relative Crash Risk for Sundays of Year 1998 
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Figure 4.16 Posterior Relative Crash Risk for Weekdays of Year 2000 

 

Whatever the difference of daily pattern was, the less safe segments on one day 

of a week were probably not safe on other days. These close relative risk distributions 

suggest the stability of posterior results of Bayesian spatial smoothing due to the lack of 

the variance and the explicitness of high-risk segments no matter which day or year was 

analyzed. 

 

4.4.2 Spatial Analysis by Hour of Day  

The spatial analysis by hour of day is a higher-level disaggregated analysis, 

which needs very detailed temporal information about crash and hourly traffic flow 

information for every roadway segment. In order to calculate expected hourly crash 
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frequency, the hourly traffic volume were calculated from AADT by using 

corresponding daily traffic adjustment factors, hourly adjustment factors, and directional 

traffic split rates as mentioned in sub-section 3.2.2. The crash frequencies were counted 

by different day of week and hour of day. Because of the high-level disaggregation, 

more variance is expected in the observed risk map.  

Figure 4.18 shows the posterior relative risk distribution between 7:00 a.m. and 

8:00 a.m. on weekdays, which is the smoothed result of observed relative risk 

distribution, shown in Figure 4.17. The observed relative risks for several roadway 

segments were zero or extremely high because of the zero observed crashes or very low 

expected crash counts on those segments. The Bayesian approach showed its ability 

again in filtering the uncertainty in the data with large variance and smoothing the 

spatial relative risks for all segments. The segment with the highest observed relative 

risk was the I-10 west eastbound frontage segment without interchange. This segment is 

0.2 miles long (shorter than average) with hourly volume 185 vehicles (relatively low) at 

7:00 a.m.—8:00 a.m. on weekdays. Bayes approach detected this small area, and 

smoothed its observed risks 23.2861 to posterior risk value 3.73 by incorporating its 

adjacent segments (including upstream and downstream frontage segments and adjacent 

freeway segment).  
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Figure 4.17 Observed Relative Crash Risk, 7:00-8:00 AM, Weekdays 
 

 
Figure 4.18 Posterior Relative Crash Risk, 7:00-8:00 AM, Weekdays 
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The above figures show the spatial risk pattern for the morning peak time of 

weekdays. It can be seen that the general posterior pattern was close to the overall spatial 

pattern, but there were less high-risk segments than the overall posterior risk pattern. 

Figure 4.19 shows the spatial pattern of posterior relative crash risks of the afternoon 

peak hour (between 5:00 p.m. and 6:00 p.m.) on weekdays. 

 
Figure 4.19 Posterior Relative Crash Risk, 5:00-6:00 PM, Weekdays 

 

Figure 4.19 shows that relative risks during the afternoon peak were higher and 

distributed broader than those at the morning peak. This implies that people had less 

patience and were more tired when driving after work than before work if the traffic 

flow in the morning was similar to that in the afternoon. The distribution of relative risks 

on Fridays is similar to that on weekdays.  
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The relationship between relative risks in different directions was stable. The 

majority of the traffic moved from inbound direction to outbound direction from 

morning to afternoon, but the high-risk segments did not move to the opposite direction 

from Figure 4.18 and 4.19. This phenomena suggests the stability of the posterior 

estimations of Bayesian approach, also implies that there were factors other than traffic 

volume had influences the relative risk values.  

It is shown in Figure 4.7 that the lowest risk within a week appeared at 5:00-6:00 

AM on weekdays. Figure 4.20 shows the spatial distribution of posterior relative crash 

risks for that hour period. It can be seen that all the segments were safer than those at 

morning peak and afternoon peak. The highest risk value during that hour period is 

2.999, much less than that in other hour period.  

 
Figure 4.20 Posterior Relative Crash Risk, 5:00-6:00 AM, Weekdays 
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From Figure 4.7, the least safe hour within a week was at 2:00-3:00 AM on 

Saturday, whose posterior relative risk distribution is shown in Figure 4.21. It can be 

seen that the high risks occurred everywhere, from downtown to outside of the loop, and 

from freeways to arterials, and the relative risk value of each segments was much higher 

than that at other times. The same hour period on Sundays had the same pattern of 

relative risks as Saturdays.  

 

 
Figure 4.21 Posterior Relative Crash Risk, 2:00-3:00 AM, Saturdays 

 

In the afternoon of weekend, relative crash risks had a flat peak from 2:00 p.m. to 

5:00 p.m. The distribution of relative risks at 3:00 p.m. to 4:00 p.m. on Saturdays is 

shown in Figure 4.22.  The typical high-risk segments were the same as weekdays, but 
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the number of high-risk segments (risk>4) were not as many as there were in the 

weekday afternoon. The spatial pattern during the same period on Sunday was similar.  

 
Figure 4.22 Posterior Relative Crash Risk, 3:00-4:00 PM, Saturdays 

 

4.5 Discussions 

The hierarchical Bayesian approach is a very powerful approach to capture the 

real safety tendency behind the crash data with large variances. In this thesis research, 

Bayesian modeling involves two stages: a) a likelihood model as assumptions for the 

distributional characteristics of the observed events (e.g. traffic crashes) and b) a prior 

model which is based on prior beliefs over the parameter spaces. The observed risk map 

is based on the observed count data alone and often feature large outlying relative risks 

in segments with very low traffic volumes or very short segment length, so that visually 
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the map shows a high uncertainty. The posterior estimates of the relative risks 

incorporate both variability in the observed risks and spatial autocorrelation assumptions, 

and enable the typical Bayesian “borrow of strength” from adjacent segments. The 

relative risk map based on the posterior estimates preserves the “truly” high-risk 

segments while smoothing out the random variance. For example, Figures 4.9, 4.12, and 

4.17 are observed risk maps for 5 years, one day in a year, and one hour in a day, 

respectively, with different variance level. However, after Bayesian estimation, the 

uncertainty was detected and filtered. The posterior risk maps (Figures 4.10, 4.13, and 

4.18) are quite similar, with the almost the same high-risk segments. This means that no 

matter how much the variance is in the raw data, the Bayesian approach will detect it and 

capture the real safety tendency. Furthermore, from all the posterior risk maps, the risky 

segments that had been identified from the overall risk maps were always relatively 

riskier than other segments, although the different day of a week and different hour of a 

day had different risk patterns. This also suggests the stability of the posterior results.  

From all the posterior relative risk maps shown above, some roadways at the 

same location but in different directions have very different risk values although many of 

them have similar values. Not differentiating directions in risk assessment might average 

the two directional risks and make the problem unnoticeable. Therefore, direction 

differentiation is necessary in relative crash risk evaluations. For those segments with 

different risk values in different directions, only improving a the direction with a risk 

value of over 1 might be a wiser idea than improving both direction if the other direction 
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has a risk value less than 1. Therefore, risky segments can be identified more accurately 

and limited funds can be saved by differentiating directions.  

It should be noticed that same risk values on different road segments do not mean 

the same impact when a crash occurred. For example, in the morning peak, one lane 

blockage due to the crash on an inbound lane will cause more congestion, delay, and idle 

emissions than one on an outbound lane if the capacity of the remaining inbound lanes 

could not accommodate the inbound traffic. Furthermore, it would take more time for 

emergency personnel to clear the crashed vehicles from a congested roadway than from 

an uncongested roadway. 
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5 CONCLUSIONS  

5.1 Summary 

This research seeks to develop a GIS-based Bayesian approach to perform area-

wide link-based relative crash risk analysis. The approach was used to capture the spatial 

and temporal patterns of relative risks of traffic crashes and identify the real high-risk 

segments. To better capture the real safety indications, this thesis differentiates traffic 

directions, disaggregates different road types, integrates hierarchical Bayesian approach 

to filter the uncertainties based on the spatial assumptions and presents the results in 3-D 

visualizations. The results of spatial-temporal crash patterns could be used to determine 

risky roadway segments that need attention by transportation agencies as well as 

motorists. 

Compared to the conventional statistical inference which derives the point and 

interval estimates for parameters, hierarchical Bayesian modeling produces the full 

distribution on parameters taking account into heterogeneity effects, spatial 

autocorrelation, and covariate effects. Hierarchical Bayesian approach is effective to 

spatially estimate the observed risks with large variance and high uncertainty, and 

capture the real safety tendency underneath the crash data. Small mapping units like road 

segments sometimes are necessary for discerning possible risk factors. But the use of 

small units causes unstable risk estimates due to small sample sizes and hence produces 

risk maps with high variability. Smoothing is therefore helpful in producing maps 

displaying true spatial patterns. The hierarchical Bayesian modeling that was applied in 
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this thesis demonstrated that the approach performs as expected since the relative risk 

maps based on the posterior estimates preserve the “truly” high-risk segments for areas 

with high traffic volumes while smoothing out variability in low traffic segments or 

short segments due to random variance. 

In this study, different values of parameters for crash models are estimated for 

different road types, and the crash frequency for each road type has a different 

relationship with its directional AADT. The number of crashes on urban freeway 

mainlines will increase with a higher speed than AADT, but crash rate for urban freeway 

mainlines is always lower than any other road types given the same traffic volume. The 

freeway system interchange area is the second safest road type, and its number of 

crashes has a linear relationship with AADT. Crash count on frontage roads will increase 

at a lower rate than their AADT, but the frontage roads without diamond interchange are 

always safer than the ones with diamond interchange. The number of crashes on arterials 

has a linear relationship with AADT and its average crash rate is lower than both 

frontage road types when AADT is small (<10,000), and higher than both frontage road 

types when AADT is big (>27,000).  

Temporal results show the variation of relative crash risks for the study area by 

day of week and hour of day. In a week, Saturday is the least safe day, followed by 

Sunday and Friday, and weekdays (Monday-Thursday) are relatively safer. In hour of 

day, nighttime is less safe than daytime, especially the early morning (1:00 a.m.—4:00 

a.m.), which is the least safe time for all days. During weekdays and Friday, there are 

two flat risk peaks in the daytime, morning peak (7:00 a.m.—9:00 a.m.) and afternoon 
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peak (3:00 p.m.—7:00 p.m.). During daytime of the weekend, there is only a flat peak in 

the afternoon from 1:00 p.m. to 5:00 p.m. 

The spatial analysis and spatial-temporal analysis of relative crash risks point out 

the risky segments for different day of week and hour of day. Hierarchical Bayesian 

approach filtered the uncertainty in the data with large variance and captured the 

similarity between the risk values of adjacent segments, so the results of spatial analysis 

are more convincing and accurate. The identification of risky segments is the necessary 

prerequisite for the next step, contributing factors identification.  

Three-dimensional visualization is more effective and carrying more information 

than two-dimensional maps. Therefore, 3-D maps are advocated in presenting relative 

crash risks in crash analysis.  

 

5.2 Limitations 

The hierarchical Bayesian approach has its limitations. It is complex and 

performs well only when the variance is moderate or high in the data. When a lot of data 

are available (e.g. 5 years KAB crashes for Houston), the result of hazardous site 

identification by using hierarchical Bayesian approach (Figure 4.10) is very similar to 

the one  by using common method (Figure 4.9) since the variance and uncertainty are 

small in the big dataset And both methods identify the same high-risk segments. 

However, when look at the relative crash risks by day of week or hour of day, more 

variance is observed and Bayesian advantages of filtering uncertainty can be shown 

(Figures 12, 13, 17, and 18).  Therefore, the hierarchical Bayesian approach is most 
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suitable for the data that have large variances. For example, the crashes with speeding or 

drunk driving, which normally have large variances, can be analyzed by the Bayesian 

approach so that high-risk locations can be identified to enforcement measures can be 

allocated at appropriate locations and time periods.  

The direction differentiation cannot address some crashes accurately, although it 

can avoid averaging effect. The direction differentiation performs well when the traffic 

or crashes are unevenly distributed on different directions. However, this requires that 

every crash should be assigned to one of the two directions. It is difficult to assign cross-

median crashes (a vehicle crosses the median area of a divided roadway, enters the 

opposing traffic lanes, and then collides with one or more vehicles on the opposing lanes) 

to one of the two directions. Therefore, the direction differentiation can not address 

cross-median crashes accurately.  

This research does not address the temporal correlation by day of week and hour 

of day. The results of temporal analysis by day of week and hour of day will be more 

stable and reliable if temporal correlation is included in the analysis.  

The contributing factors have not been identified. This research found that some 

segments had a relative risk value different from the opposite direction, but it did not 

answer what caused the directional difference. Furthermore, risk maps allow 

determining where and when each roadway segment has a high relative crash risk, but 

this research did not answer why those segments are riskier or what can be done to 

improve safety for these segments. 
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5.3 Future Work 

There are many directions in which this study can be extended. Here are some 

promising extensions: 

• The contributing factors need to be determined individually for a certain high-risk 

roadway segments due to the fact that each roadway segment has its own traffic, 

roadway, and environmental conditions. The contributing factors need to be 

identified for these specific locations so that proper preventive measures can be 

implemented. 

• Different functional forms should be tested for the crash prediction models. 

Incorporating geometric conditions, road conditions, and number of lanes etc. may 

generate more accurate models for predicting crashes. 

• Different prior values can also be tried for hierarchical Bayesian model coded in 

WinBUGS. It is expected better prior values can help convergence of the two 

sampling chains with MCMC simulation.  

• The crash data with large variability, such as drunk driving crashes and speed-

related crashes, can be used for hazardous site identification by the hierarchical 

Bayesian approach. It is expected that this approach performs well in filtering the 

uncertainty and capture the hazardous sites for these types of crashes so that proper 

enforcement measures can be carried out.  
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