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ABSTRACT 
 

The Effects of Asphalt Binder Oxidation on Hot Mix Asphalt Concrete Mixture 

Rheology and Fatigue Performance. (August 2006) 

Sung Hoon Jung, B.E., Soongsil University; 

M.E., Texas A&M University 

Chair of Advisory Committee: Dr. Charles J. Glover 

 

Asphalt oxidation causes major changes to binder properties and is hypothesized 

to be a major contributor to age-related pavement failure such as fatigue cracking. 

Extensive laboratory aging research has been done to assess the effects of oxidation on 

binder properties. Previous work shows binder oxidation makes the binder stiffer and 

more brittle, leading to higher binder stresses under a given deformation. Failure occurs 

when these stresses exceed the strength of the binder. However, binder oxidation in 

pavements has not been studied in the same detail as laboratory aging of neat binders. 

The impact of binder oxidation on long-term pavement performance has been either 

underestimated or ignored. 

This research includes studies of binder oxidation in Texas pavements to 

compare the field aging with laboratory neat binder aging, the impact of binder oxidation 

on HMAC mixture aging and HMAC mixture fatigue performance, and fundamental 

rheological property changes of the binder and the mixture. 

Binder oxidation is studied in fifteen pavements from locations across Texas. 

Results indicate that unmodified binders in pavements typically oxidize and harden to a 

degree that exceeds generally accepted pavement aging assumptions. This hardening 

may also extend much deeper into the pavement than has been previously assumed or 

documented. Data suggest that pavements can oxidize at rates surprisingly uniform with 

depth once early oxidation occurs, and that these rates continue for an extended time. 

Laboratory-aged HMAC mixtures and binders were tested and analyzed for 

fatigue resistance and their rheological properties. Mixture aging shows the same aging 
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mechanisms as neat binder aging. Both binder and mixture have a higher modulus with 

aging and a good rheological correlation. The decline in mixture fatigue life (determined 

using the calibrated mechanistic fatigue analysis approach with surface energy 

measurement) due to oxidation is significant. Pavement service life is dependent on the 

mixture, but can be estimated by a cumulative damage approach that considers binder 

oxidation and pavement loading rate simultaneously. The differences in expected 

pavement life arise from differences in the rate of binder stiffening due to oxidation and 

the impact of this stiffening on the decline of fatigue life. 
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NOMENCLATURE 

 

aT(T)  Shift Factor at Temperature T relative to the Reference Temperature 

E(t)  Time Dependent Elastic Modulus 

fc  Fraction of a Consumed Pavement Service Life 

fr  Fraction of a Remaining Pavement Service Life (1- fc) 

G1  Initial Shear Modulus 

G'(ω)   Elastic (storage) Dynamic Shear Modulus 

G"(ω)  Viscous (loss) Dynamic Shear Modulus  

G*(ω)  Complex Dynamic Shear Modulus 

G'/(η'/G') DSR Function 

Ni  Number of Load Cycles to Crack Initiation 

Nf  Fatigue Life or Number of Load Cycles to Fatigue Failure 

Np  Number of Load Cycles to Crack Propagation 

Pc  Aggregate Contact Volume 

rη  Binder Hardening Rate 

rCA  Binder Oxidation Rate (Rate of Carbonyl Area Formation) 

RL  Pavement Loading Rate 

Smix  Initial Mixture Stiffness 

SFa  Shift Factor due to Anisotropy 

SFh  Shift Factor due to Healing Effects 

tr  Reduced Time 

ε   Strain 

Γ   Gamma Function. 

η'(ω)  Dynamic Shear Viscosity 

υ  Poisson’s Ratio  

σt  Tensile Stress 

ω  Angular Frequency 
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CHAPTER I  
INTRODUCTION 

 

Dissertation Outline 

 

This dissertation consists of six chapters. It begins with a general introduction 

and research background in the Chapter I. In the following chapters, the results from this 

research about the binder oxidation in pavements, and the effects of binder oxidation on 

the HMAC mixture fatigue performance, pavement service life and rheological 

properties are described. Chapter II contains a study of binder oxidative aging in Texas 

pavements. Chapter III compares the laboratory aging with mixture aging and shows the 

impact of binder oxidation on mixture fatigue performance. Chapter IV provides a 

method of estimating the effect of binder oxidation on a pavement service life by using 

cumulative damage approach. Chapter V describes the binder-mixture characterization 

with binder oxidation. Chapter VI summarizes the findings and conclusions of this 

study. 

 

Introduction 

 

Asphalt binder is man’s oldest engineering material; its adhesive and 

waterproofing properties were known at the dawn of civilization (Barth, 1962). Before 

the patriarchal age, it was used as water proofing material. Noah as a ship builder used 

pitch for sealing his Ark in Genesis 6: 14 (NIV). An ancient civilization in the Indus 

Valley used asphalt binder in the construction of large public baths or tanks about 3000 

B.C (Roberts et al., 1996). The first use of asphalt as a road building material was in 

Babylon around 625 B.C., in the reign of King Nebuchadnezzar (Gillespie and 

Crawford, 1992). 

The dissertation follows the style of the AIChE Journal. 
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The first true asphalt pavement was laid in the United States, a sand mix in front 

of the City Hall in Newark, New Jersey, in 1870. Now, there are more than 2.5 million 

miles of paved roads in the United States (FHWA, 2001). According to the National 

Asphalt Pavement Association (NAPA), asphalt binder is used in more than 94 percent 

of the paved roads in the United States. 

In spite of this remarkable growth and development in the use of asphalt 

pavement, engineers face many obstacles to building long-term durable asphalt 

pavements. Typical problems in asphalt pavements are rutting, thermal cracking and 

fatigue cracking. Rutting is the permanent deformation occurring due to heavy traffic at 

higher temperature several years after pavement construction (Huber and Decker, 1995) 

and thermal cracking results from thermal stresses generated by pavement shrinkage at 

cold temperature (Hardin, 1995). Fatigue cracking is generally believed to result from 

repeated loading. However, binder oxidation may play a significant role. 

The impact of binder oxidation has been either underestimated or ignored in its 

role in pavement long-term fatigue performance. Most of HMAC mixture fatigue study 

depends on notable conclusions by Coons and Wright (1968). They concluded that most 

of the aging occurred in the top quarter inch of the pavement but at 1.5 inches below the 

surface, very little hardening occurred after the initial increase at placement, which is 

contrary to recent studies (Al-Azri et al., 2006; Glover et al., 2005). More details are 

presented in the chapter two.  

Over the past fifteen years, much has been learned about binder oxidation and its 

impact on binder hardening and durability. In the laboratory, binder oxidation hardening 

and reaction kinetics in thin films have been determined for a large number of asphalt 

binders (Lau et al., 1992, Liu et al., 1996, Domke et al., 2000). The description of 

hardening susceptibility has been further developed using a rheological function of the 

binder's elastic and viscous properties (Glover et al., 2005; Juristyarini, 2003). The latter 

function, also called DSR Function has been shown to relate to binder brittleness under 

elongation (Ruan et al., 2003b). The studies show that binder oxidative hardening 
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continues indefinitely and binder oxidation is a major contributor to age-related 

pavement failure. 

While laboratory aging of asphalt binders has been studied extensively, aging of 

binders in pavements is much less well understood because of a number of 

complications. Such complications include suitable extraction and recovery methods; 

uncontrolled variables and unknowns such as mixture characteristics (air voids, e.g.), 

maintenance treatments, traffic, and climate; sustaining a research effort to study a given 

pavement over an appropriate time frame (in excess of one decade); and cost. Binder 

oxidation in the field is studied to find the level of hardening reached in pavements and 

to compare with laboratory binder aging. 

In addition to the binder studies, extensive studies have been performed to 

predict mixture resistance to fatigue under repeated loads. However, there is no study to 

explain the effects of binder oxidation on HMAC mixture fatigue performance. It is 

necessary to study the influence of binder oxidation on HMAC mixture fatigue 

performance to determine the binder aging effects on pavement fatigue performance. 

Therefore, a method of measuring the impact of binder oxidation on pavement service 

life is studied to provide a more reasonable estimation of pavement service time for the 

development of mixture design, pavement construction and maintenance. 

While binder oxidation has a great potential impact on HMAC mixture fatigue 

performance, the fundamental properties of binders and mixtures which affect HMAC 

mixture fatigue performance are unknown. In this study, the fundamental rheological 

properties of binders and their mixtures were investigated to establish binder-mixture 

relationships with binder oxidation. 

In short, this research concentrates on the impact of binder oxidation on binder 

aging in the field to compare with that in the laboratory. The impact of binder oxidation 

on HMAC mixture fatigue performance is studied. A new method of estimating the 

effect of binder oxidation in the pavement service life is provided. The fundamental 

rheological relationships between binders and HMAC mixtures due to binder oxidation 

are investigated. 
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Objectives 

 

This research focused on the effect of binder oxidation on binder hardening in 

asphalt pavements, HMAC mixture fatigue performance and fundamental rheological 

properties of both binders and mixtures. The specific objectives of the research were:  

1. To determine the state of binder in field pavements over time and with depth 

2. To determine the impact of binder oxidation on the fatigue performance of 

HMAC mixtures  

3. To describe the effect of binder oxidation on field fatigue performance using 

a cumulative damage approach 

4. To develop relationships between the fundamental rheological properties of 

HMAC mixtures and binders 

 

The research background for the above research objectives is divided into four 

sections. The first section describes binder oxidation hardening and reaction kinetics. 

The second section reviews binder oxidation and embrittlement. The third section 

discusses fatigue prediction models of asphalt mixtures. The last section presents binder 

mixture characterization. 

 

Binder Oxidation Hardening and Reaction Kinetics 

 

Binder oxidation greatly affects the physical and chemical properties of binders 

and over time makes binders harder and stiffer (Lau et al., 1992; Liu et al., 1998a; 

Martin et al., 1990). As binders oxidize, carbonyl (– C=O) groups are formed that 

increase the polarity of their host compounds and make them much more likely to 

associate with other polar compounds (Liu et al., 1998a; Liu et al., 1998b). As they form 

these associations, they create less soluble asphaltene materials, the formation of which 

leads to asphalt hardening. 
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The binder hardening rate can be expressed as follows: 

 

 ln ln CA
CA
ASr

t AS tη
η η∂ ∂ ∂ ∂= = ⋅ ⋅

∂ ∂ ∂ ∂
 (I-1) 

 

Three terms in Equation I-1 are important characteristics of asphalt binder that are 

dependent on its chemical composition. ∂lnη/∂AS is the effect of asphaltene (AS) 

increase on increasing viscosity and is affected by asphaltene size (Lin et al., 1996). 

∂AS/∂CA is the asphaltene formation susceptibility (AFS) that is a measure of the 

capacity of the maltene to produce new asphaltenes with aging. ∂CA/∂t is the rate of 

carbonyl area (CA) formation, also called binder oxidation rate (Lin et al., 1996; Lin et 

al., 1995). 

CA is the area under the absorption band from 1650 to 1820 cm-1 and relates 

directly to the oxygen content in the asphalt binder. The increases in CA are used to 

quantify oxidative aging (Jemison et al., 1990; Liu et al., 1998a). The increase of binder 

oxidation as well as binder hardening has a linear correlation with oxidation time after 

the early rapid aging stage that is called the initial jump (Lau et al., 1992). These 

relationships are in Equations I-2 and I-3. 

 

 0 CACA CA r t= +  (I-2) 

 0ln * ln * r tηη η= +  (I-3) 

 

where CA is carbonyl area; CA0 is the carbonyl area intercept at t=0; rCA is the binder 

oxidation rate; η* is the limiting complex viscosity; η0*= is the limiting complex 

viscosity intercept at t=0; rη= binder hardening rate; t= the time of oxidation. Both 

binder hardening rate and oxidation rate also followed an Arrhenius equation (Domke et 

al., 2000; Lin et al., 1996; Liu et al., 1996): 
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 ( / )n n
nr AP Exp E RT
t

α∂= = −
∂

 (I-4) 

 

where subscript n is CA or η, A is the pre-exponential factor, P is the pressure, α is the 

reaction order with respect to oxygen pressure, En is the activation energy, R is the gas 

Constant, and T is the absolute temperature. 

Combining the first two terms in Equation I-1 gives ∂lnη/∂CA which is defined 

as Hardening susceptibility (HS) (Domke et al., 1999; Lau et al., 1992). HS is the impact 

of CA growth on the binder viscosity. Equation I-1 can be simplified as: 

 

 CAHSr rη = ⋅  (I-5) 

 

HS is independent of oxidation temperature below about 100-110 oC and is a 

characteristic parameter for asphalt binder with aging process under constant pressure 

(Lau et al., 1992). 

Binder oxidation hardening and kinetic in laboratory aging has been reviewed in 

this section. The following section introduces the previous study of relationships 

between binder oxidation and Embrittlement. 

 

Binder Oxidation and Embrittlement 

 

As briefly introduced in the general introduction section, binder oxidation has a 

significant impact on age-related pavement failure. Through oxidation, the binder 

becomes stiffer and more brittle and thus reduces the performance of flexible pavements 

(Domke et al., 2000; Petersen et al., 1993). The process is relentless and thus, over time, 

can destroy the pavement. 

The composition change of binder due to oxidation, taken far enough, results in 

orders-of-magnitude increases in both the binder’s viscous and elastic properties (Ruan 

et al., 2003b). Thus the oxidized binder sustains high shear stress with deformation (high 
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elastic stiffness) and simultaneously the material cannot relieve the stress by flow (high 

viscosity), resulting in a pavement that is very brittle and susceptible to fatigue and 

thermal cracking.  

A literature review emphasizes the importance of a binder’s ductility to pavement 

durability (Clark, 1958; Doyle, 1958; Halstead, 1963; Kandhal, 1977; Kandhal and 

Koehler, 1984; Kandhal and Wenger, 1975). This previous research indicates that 

asphalt binder ductility correlates quite well with pavement cracking, provided it is 

measured at the low temperature (15 oC). Several studies report that a value of the 15 °C 

ductility at 1 cm/min in the range of 2 to 3 cm corresponds to a critical level for age-

related cracking in pavements (Doyle, 1958; Kandhal, 1977; Kandhal and Koehler, 

1984; Kandhal and Wenger, 1975). 

Even though ductility correlates well with cracking failure of asphalt pavements, 

the ductility test is time consuming and needs about 20 grams of binder, which is not 

always practical for binders recovered from laboratory mixtures. Thus, a correlation 

between ductility and Dynamic Shear Rheometer (DSR) measurement was investigated 

(Ruan et al., 2003b). 

 

Maxwell Model 

 

The Maxwell model is a very simple way of explaining, in a qualitative sense, 

the essence of the impact of this increase in both elastic stiffness and viscosity on 

elongational flow of a binder. The model is that of an elastic spring in series with a 

viscous dashpot element as shown in Figure I-1. 

The stress that builds in the combined element is the result of the balance 

between the elastic modulus and the viscosity. Upon elongation, the stress versus 

elongation response rises in response to the elastic spring but then goes through a 

maximum value before decaying over time in response to viscous flow. The value of the 

maximum stress depends upon the relative values of the elastic modulus and the 

viscosity. The higher their values, the higher the maximum stress; the lower the values, 
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the lower the maximum stress. If the maximum stress exceeds the failure stress of the 

material, then failure occurs. 

 

 

 
 

Figure I-1. The Maxwell Model. 
 

 

This Maxwell model is very simple and certainly is too simple to quantitatively 

characterize asphalt materials, but it still captures the basic elements that are important 

to determining binder failure that occurs due to oxidation and embrittlement. As asphalts 

oxidize, they harden, and this is a process that simultaneously increases its elastic 

stiffness and its viscosity.  

Consequently, in the context of the Maxwell model, with aging and consequent 

hardening, a binder cannot take as much deformation without building to a stress level 

that results in its failure stress being exceeded. So, as binders age harden, their ductilities 

decrease dramatically. The binder ductility for a newly constructed pavement may be of 

the order of 30 cm (15 °C, 1 cm/min) whereas the binder ductility of a heavily aged 

pavement will be much lower, down to 3 cm or less. 
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To correlate the ductility to DSR measurement, the equation in Figure I-1 was 

converted to Equation I-6 by transforming the independent variable time to the 

elongation ratio. 

 

 0
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e
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U L Ld L L
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η

⎛ ⎞⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠⎝ ⎠ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (I-6) 

 

where σt is the total tensile stress since the ductility test is a tensile test, L0 is the initial 

length of the binder, L/L0 is the elongation ratio, U0 is the constant elongation ratio rate 

(dL/dt= 1cm/min), E is the elastic modulus and ηe is the elongational viscosity. 

The elastic modulus (E) is converted to shear modulus (G) by equation I-7, 

assuming Poisson’s ratio (υ) is 0.5 for an incompressible material (Ferry, 1980; Glover 

and Jones, 1996; Rosen, 1993).  

 

 ( )2 1E G υ= +  (I-7) 

 

The elongational viscosity (ηe) is converted to shear viscosity (η) by Trouton’s rule 

(ηe=3η). Then, Equation I-6 becomes Equation I-8 where α is the elongation ratio (L/L0). 

This equation shows binder ductility is not only related to just one parameter like the 

shear modulus G, but both parameters, G and η/G. 
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DSR Function 

 

The embrittlement of binders had been captured with the discovery of a 

correlation between binder ductility (measured at 15 °C, 1 cm/min) and binder DSR 

properties (dynamic elastic shear modulus, G' and dynamic shear viscosity, η') (Glover 

et al., 2005; Ruan et al., 2003b). In Figure I-2, a very good correlation exists between 

binder ductility and DSR function (G'/(η'/G')) for ductilities less than 10 cm, 

demonstrating the interplay between elastic stiffness and ability to flow in determining 

binder brittleness, as discussed above in the context of the Maxwell model (Glover et al., 

2005; Ruan et al., 2003b). 
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Figure I-2. Correlation of Aged-Binder Ductility with the DSR Function G'/(η'/G') 

for Unmodified Binders. 
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This correlation is depicted on a “DSR map” of G' versus η'/G' in Figure I-3 

which shows the data with each material identified at different levels of aging (Ruan, 

2002; Ruan et al., 2003b). The general trend is apparent. With increased aging, a binder 

moves from the lower right toward the upper left as the result of increases in both the 

elastic stiffness and viscosity but note that G' increases more than viscosity, η', because 

movement is toward the left to smaller values of η'/G'. 
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Figure I-3. DSR Map for Unmodified Binders. 

 

 

Briefly, DSR function (G'/(η'/G')) is a rheological function combining two 

fundamental rheological parameters, G' and η'/G', and with DSR map, provides a new 

method to track the level of binder oxidation related to binder durability in asphalt 

pavements. 
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Fatigue Prediction Models of Asphalt Mixtures 

 

Traditional Fatigue Analysis Models 

 

The fatigue life of an asphalt mixture represents its ability to sustain its service 

life or resist repeated loading without fatigue failure. The fatigue characteristics of 

asphalt mixtures are commonly defined as relationships between the strain (or stress) 

and the number of load cycles to failure (fatigue life) through the following Equation I-9 

(Monismith et al., 1985; Monismith et al., 1970). According to this power law, the 

fatigue life is related to the applied strain (representing loading level). 

 

 ( ) b
fN a ε −=  (I-9) 

 

where Nf is the number of load cycles to fatigue failure or fatigue life, ε is the applied 

strain and a and b are experimentally determined coefficients. 

In addition to the fatigue life-strain relation, Monismith et al. (1985) noticed that 

the number of fatigue life cycles (Nf) decreased with the increase in asphalt mixture 

stiffness in a strain-controlled fatigue test. They included the effects of the stiffness of 

asphalt mixtures on asphalt mixture fatigue performance at an applied strain and 

characterized the fatigue life by the following model: 

 

 ( ) ( )- -b c
f mixN a Sε=  (I-10) 

 

where Smix is the initial asphalt mixture stiffness and a, b and c are experimentally 

determined coefficients. 

This model can partly explain the effect of binder oxidation on asphalt mixture 

fatigue performance by relating binder oxidative hardening to mixture stiffening. As the 

binder in an asphalt mixture is hardened due to binder oxidation, the asphalt mixture is 
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stiffened and the fatigue life of the asphalt mixture decreases. However, this model is not 

sufficient to describe the impact of binder oxidation on the pavement fatigue 

performance. 

While the stiffness of asphalt mixtures is an important parameter for the asphalt 

mixture fatigue performance, more parameters such as HMAC mixture design 

parameters, binder hardening rate, pavement structures, traffic conditions and 

environmental conditions should be considered to explain the impact of binder oxidation 

on the HMAC pavement fatigue performance. In the following section, a fatigue analysis 

approach which considers fundamental material properties and field conditions are 

described. 

 

Calibrated Mechanistic (CMSE) Fatigue Analysis Model with Surface Energy 

 

The CMSE fatigue analysis model is based on the fundamental theories which 

are the visco-elatic correspondence principle, Paris' Law fracture mechanics, Schapery’s 

work potential theory and energy concepts to characterize HMAC mixture fatigue 

resistance (Kim et al., 1997a; Lytton et al., 1993; Schapery, 1984; Si, 2001). This 

approach utilizes fundamental material properties such as asphalt mixture tensile 

strength, stiffness, relaxation modulus in tension and compression, dissipated pseudo 

strain energy and surface energies for both binders and aggregates to characterize 

HMAC mixture fatigue resistance (Lytton et al., 1993). 

In this CMSE approach, crack initiation and propagation processes for fatigue 

failure are related to stress-strain constitutive relations. Equation I-11 represents the 

CMSE model that relates field fatigue life to the number of load cycles to crack initiation 

and crack propagation with shift factors due to anisotropy and binder healing effects, 

 

 ( )f a h i pN SF SF N N= × +  (I-11) 
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where SFa is the shift factor due to anisotropy, ranging between 1 and 5, SFh is the shift 

factor due to binder healing effects, ranging between 1 and 10, Ni is the number of load 

cycles to crack initiation, Np is the number of load cycles to crack propagation and Nf is 

the number of load cycles to fatigue failure or fatigue life. 

In Equation I-11, the summation of Ni and Np produces the laboratory fatigue life 

and the shift factors product provides the field fatigue life. Because this approach 

measures fundamental asphalt mixture properties, it can be used to measure the asphalt 

mixture material properties at each aging level to estimate the field fatigue life with 

binder oxidation.  

 

Binder Mixture Characterization 

 

In addition to the impact of binder oxidation on the asphalt mixture fatigue 

performance, the impact of binder oxidation on the asphalt mixture rheological 

properties has been studied to understand the relationship of these mixture properties to 

changes in binder properties. In the next two sub-sections, previous studies of binder and 

mixture characterizations are described. 

 

Binder Characterization 

 

The storage (elastic) dynamic shear modulus (G'(ω)), loss dynamic shear 

modulus (G"(ω)) and complex dynamic shear modulus (G*(ω)) are fundamental 

rheological properties of which master curves have been used to characterize asphalt 

rheological behaviors (Lu and Isacsson, 1998; Lu and Isacsson, 1999; Palade et al., 

2000; Ruan, 2002). The time-temperature superposition (TTSP) principle is used to 

create these rheological master curves. 

TTSP was first developed by Williams, Landel, and Ferry in 1955 to describe the 

effect of time and temperature on the viscoelastic properties of amorphous polymers 

(Williams et al., 1955). The log shift factor is described as a function of the temperature 
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difference between measured and reference temperature in Equation I-12 (Ferry, 1980; 

Williams, 1971; Williams et al., 1955): 

 

 1

2

( )
log

( )
ref

T
ref

C T T
a

C T T
− −

=
+ −

 (I-12) 

 

where aT is the shift factor at temperature (T) relative to the reference temperature (Tref) 

and C1 and C2 are empirically determined coefficients. 

 

HMAC Mixture Characterization 

 

For HMAC mixture viscoelastic characterization, TTSP procedures and the 

power law model has been used in Equation I-13 (Lytton et al., 1993; Roque et al., 1994).  
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− −

∞

⎛ ⎞
= + ≅ = ⎜ ⎟

⎝ ⎠
 (I-13) 

 

where E(tr) is the time dependent elastic modulus at reduced time tr, E1 is the initial 

elastic modulus (tr=1), t is time, T is temperature and aT(T) is the shift factor at 

temperature T relative to the Tref . 

The elastic modulus obtained by the relaxation modulus (RM) test is a function 

of time because of the viscoelastic nature of the HMAC mixture. Under deformation, the 

stress builds because of the mixture’s elastic nature but then relaxes at fixed strain 

because of its ability to undergo viscous flow. This relaxation is reflected in the decrease 

of E(tr) over time. Therefore, storage (elastic) and loss (viscous) moduli can be 

calculated from the E(tr) master curve. 
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The elastic modulus E(tr) is converted to a shear modulus G(tr) according to 

Equation I-14 where υ is Poisson’s ratio for the HMAC mixture (≅ 0.33) (Huang, 1993; 

Lytton et al., 1993), E1 is the initial elastic modulus  and G1 is the initial shear modulus. 

 

 1
1

( )( ) ,  
2(1 ) 2(1 )

r
r

E t EG t G
υ υ

= =
+ +

 (I-14) 

 

According to Lytton et al. (1993), the reduced time (tr) is converted to an angular 

frequency (ω) according to Equation I-15. 

 

 1
2 rt

ω ≅  (I-15) 

 

The elastic (storage) dynamic shear modulus (G'(ω)), viscous (loss) dynamic shear 

modulus (G"(ω)) and complex dynamic shear modulus (G*(ω)) can be calculated by 

Equations I-16 to I-18 where Γ is the Gamma function and m is the exponential stress 

relaxation rate (Lytton et al., 1993; Schapery, 1973). 

 

 1
(1 )( )

2m

m mG G cos πω
ω−

Γ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

'  (I-16) 

 1
(1 ) "( )

2m

m mG G sin πω
ω−

Γ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (I-17) 

 2 2*( ) '( ) "( )G G Gω ω ω= +  (I-18) 

 

In this section, the study of the rheological master curves of asphalt binders and 

mixtures are reviewed to correlate rheological properties with binder oxidation 
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Summary 

 

Binder oxidation changes physical and chemical properties of binders and makes 

binders harder and more susceptible to the brittle failure. DSR function (G'/(η'/G')) 

provides a good relation with binder’s ductility which correlates quite well with long-

term pavement durability, and with DSR map, a new method to track binder oxidation in 

field asphalt pavements. This study tries to determine the state of binders in field 

pavements over time. 

The CMSE fatigue approach estimates the field fatigue life based on fundamental 

properties of asphalt mixtures. It is also utilized to calculate the field fatigue life with 

binder oxidation since it measures fundamental material properties. The impact of binder 

oxidation on HMAC mixture fatigue performance and a new way of estimating the effect 

of binder oxidation in field fatigue performance are studied in this research.  

Asphalt binders and mixtures are viscoelastic materials. The rheological master 

curves of asphalt binders and mixtures have been used to characterize their material 

behaviors. In this study, the impact of binder oxidation on the other HMAC mixture 

properties besides fatigue is of interest in explaining HMAC mixture fatigue changes 

due to binder oxidation. The fundamental rheological relationships between binders and 

HMAC mixtures due to binder oxidation are investigated. 
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CHAPTER II  
BINDER OXIDATIVE AGING IN TEXAS PAVEMENTS: HARDENING RATES, 

HARDENING SUSCEPTIBILITIES, AND THE IMPACT OF PAVEMENT 

DEPTH* 

 

Synopsis 

 

Aging of binders in pavements is much less well understood than laboratory 

aging of neat binders because of a number of complications including suitable extraction 

and recovery methods; uncontrolled variables and unknowns such as mixture 

characteristics (air voids, e.g.), maintenance treatments, traffic, and climate; sustaining a 

research effort to study a given pavement over an appropriate time frame (in excess of 

one decade); and cost. 

An ongoing research effort sponsored by the Texas DOT studied fifteen 

pavements across Texas with respect to binder oxidative hardening. Results indicate that 

unmodified binders in pavements typically oxidize and harden to a degree that exceeds 

generally accepted pavement aging assumptions.  This hardening also may extend much 

deeper into the pavement than has been previously assumed or documented.  Data 

suggest that pavements can oxidize at surprisingly uniform rates with depth once early 

oxidation occurs, and that these rates continue for an extended time. As a rough measure, 

one month environmental room aging of 1 mm neat binder films at 60 °C was equivalent 

to about 15 months in SH 21 after the early higher hardening rate period. 

 

 
* Reprinted with permission of TRB from “Binder Oxidative Aging in Texas Pavements: Hardening Rates, 
Hardening Susceptibilities, and the Impact of Pavement Depth,” coauthored with N. A. Al-Azri, K. M. 
Lunsford, A. Ferry, J. A. Bullin, R. R. Davison, and C. J. Glover, Presented at the 85th Annual Meeting of 
the Transportation Research Board, January 22, 2006, Washington, D.C., and accepted for publication in 
the 2006 series of the Transportation Research Record: Journal of the Transportation Research Board 
(forthcoming).  (See Appendix C) 
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Introduction 

 

Many laboratory investigations have led to a detailed understanding of asphalt 

binder hardening in response to oxidation. The reaction kinetics as it relates to 

temperature and pressure, and the asphaltene growth that leads to this hardening are 

quite well understood (Lau et al., 1992; Lin et al., 1996; Lin et al., 1995). 

Physicochemical aspects have been studied as well (Domke et al., 1999; Domke et al., 

2000; Lin et al., 1996; Petersen et al., 1993). The low shear rate viscosity hardening in 

response to oxidation (as measured by FTIR carbonyl growth) has been termed the 

hardening susceptibility (Martin et al., 1990; Petersen et al., 1993). Recently, unmodified 

binder decline in ductility with oxidation has been correlated to DSR property changes 

so that a binder’s increase in brittleness due to oxidation can be estimated from the easier 

DSR measurements (Ruan et al., 2003b). All of this work provides significant tools for 

measuring and understanding binder oxidation and hardening. 

Yet, in spite of all that is understood about the character of neat binder oxidation, 

much remains unknown about hardening in mixtures and its impact on pavement 

performance.  That binders oxidize and harden in pavements is an accepted fact.  That 

this hardening is related to performance characteristics such as fatigue cracking also has 

been reported.  Perhaps the best correlations to pavement durability use ductility of the 

recovered binder to characterize the binder hardening (Clark, 1958; Doyle, 1958; 

Halstead, 1963; Kandhal, 1977; Kandhal and Koehler, 1984; Kandhal and Wenger, 

1975). But what is not well characterized is the extent to which binders in pavements 

harden, the rates at which they harden, and the pavement depth to which significant 

hardening occurs.  

One noted paper provides data on hardening versus depth to 1.75 inches for 

pavements that ranged in age from four to 151 months (Coons and Wright, 1968). The 

authors concluded that most of the aging occurred in the top quarter inch of the 

pavement and that at 1.5 inches below the surface, very little hardening occurred beyond 

the initial increase at placement. 
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These conclusions are adopted in the Global Aging Model (GAM) of Mirza and 

Witczak (Mirza and Witczak, 1995) and subsequently incorporated into the NCHRP 

mechanistic-empirical design guide (AASHTO, 2004). Furthermore, the GAM assumes 

a hyperbolic aging function so that the great bulk of the hardening occurs in the first 10 

years of service. 

One difficulty of the data upon which the above assumptions are based is that the 

solvent recovery process likely left enough solvent in the recovered binder to soften its 

properties significantly (Burr et al., 1990). Mirza and Witczak note that the recovery 

method for the materials in their master database typically was not noted in the reference 

sources, implying that needed modifications were not employed.  Residual solvent levels 

will be greater for the more heavily aged binders.  Thus, stiffer binders will be more 

affected by residual solvent, leading to a compression of binder properties and thus 

erroneously small relative viscosity values when tracking binder properties over time. 

Finally, there have been few data that correlate laboratory binder aging to 

corresponding field properties or that assess the effect of aggregate.  Actual field aging 

data are needed to relate field aging to laboratory rates, to determine if aging 

mechanisms are the same in both situations, and to establish the level of field aging that 

can be tolerated before failure occurs. 

 

Objectives 

 

This work represents a comprehensive effort conducted over more than a decade 

to address several significant issues of binder oxidation in pavements.  Of specific 

interest was the level of hardening reached in pavements, both near the surface and four 

to six inches below the surface, the corresponding rates of hardening and hardening 

susceptibilities for field aging compared to laboratory aging of neat binders.  

Additionally, the march of a binder across the ductility-DSR map (Ruan et al., 2003b) 

with increasing oxidation in pavements was of interest to provide insight into the state of 

the binder over time. 
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Methodology 

 

Field Pavements 

 

Data were obtained from Texas Highway 21 between Bryan and Caldwell, ten Strategic 

Highway Research Program (SHRP) long-term pavement performance (LTPP) general 

pavement study (GPS) sites, and two other TxDOT pavements. In all, 15 pavements are 

reported and one (Texas Highway 21) was evaluated at eight different stations over a 15-

year period.   

 

Texas Highway 21 

 

Texas Highway 21 (SH 21) is the most investigated pavement of this study. The 

construction of this road, a four-lane divided highway, began on July 22, 1986, and was 

completed on July 21, 1988. The tank asphalt used in this road was an Exxon AC-20. 

The hotmix was produced at Young Brothers hotmix plant in Bryan, Texas. The 

aggregate was Texas crushed limestone and field sand. The pavement was placed in 

three, two-inch lifts.  The highway was seal coated and over laid in July 2000, 24 months 

before 2002 cores were taken. 

The westbound lanes of this road were cored several times during the 13-month 

construction period between the Brazos River and Caldwell, Texas. Also, stations were 

sampled in 1989 (nine locations), 1992 (seven locations), 1996 (six locations) and 2002 

(six locations).   The various locations are designated by station number. 

 

SHRP LTPP GPS Sites   

 

Ten long-term pavement performance (LTPP) general pavement studies (GPS) 

sites from across Texas were evaluated.  Cores were obtained by the LTPP program 

during the 1989-1990 time period and stored at the materials reference library (MRL) 
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without temperature control.  No doubt there was some further aging once removed from 

the pavement, but the rate of aging certainly was slower compared to pavement aging in 

Texas. 

 

Other Pavements 

 

Other Texas pavements included the northbound and southbound frontage roads 

to IH 10 near Beaumont. Both pavements were 2 inches of asphalt hotmix pavement 

over a box beam overpass and 15 years old.  However, the northbound lane visually 

appeared to be significantly more oxidized than the southbound lane. Additionally, 

newly recovered binder data from 1993 cores of a previously-reported test section study 

(Martin et al., 1990) are included. 

 

Extraction and Recovery 

 

The pavement cores (after separating the lifts either by sawing or cleaving) were 

broken into small pieces before solvent extracting the binder from the aggregate. The 

extraction used three successive washes: one wash of 100% toluene followed by two 

washes of a more powerful asphalt solvent, a mixture of 15% ethanol plus 85% toluene 

by volume (Burr et al., 1993). After the extraction, the solvent was filtered to remove all 

aggregate particles from the binder solution. 

The binder was recovered from the solvent with a Büchi, RE 111 rotovap (Burr 

et al., 1993). During recovery, nitrogen carried off solvent and prevented contact with 

oxygen.  During solvent removal, the bath temperature was kept at 100 °C to avoid 

hardening or softening of the asphalt in dilute solution (Burr et al., 1994; Burr et al., 

1991). When no more condensing solvent could be detected visually, the temperature 

was increased to 173.9 °C for an additional 30 minutes to ensure sufficient solvent 

removal (Burr et al., 1993). 
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Size Exclusion Chromatography (SEC) 

 

After the binder was extracted and recovered, it was analyzed by SEC to ensure 

complete solvent removal (Leicht et al., 2001). Without this feedback, it is likely that 

residual solvent will be left in aged binders (Burr et al., 1990). Incomplete solvent 

removal results in a peak located at 38 minutes on the chromatogram. 

  

Dynamic Shear Rheometer (DSR) 

 

After complete solvent removal, the rheological properties of the binder were 

determined using a Carri-Med CSL 500 Controlled Stress Rheometer.  The rheological 

properties of interest were the complex viscosity (η*0) measured at 60 °C and 0.1 rad/s 

(approximately equal to the low-shear rate limiting viscosity, also called the zero shear 

viscosity, ZSV) and the storage modulus (G') and the dynamic viscosity (η'), both at 

44.7 °C and 10 rad/s in time sweep mode. These temperature and frequency conditions 

are readily accessible to standard asphalt testing rheometers and correspond 

approximately to 15 oC and 0.005 rad/s through time-temperature superposition (Ruan et 

al., 2003b). A 2.5-cm composite parallel plate geometry was used with a 500 μm gap 

between the plates. 

DSR measurement was also important for deciding whether the binder was 

changed in some way by the extraction and recovery process (Burr et al., 1990; Burr et 

al., 1994; Burr et al., 1991; Cipione et al., 1991). If two replicate extraction and recovery 

processes yielded binders with matching SEC chromatograms but significantly different 

complex viscosities, then at least one of the binders was suspected of having undergone 

solvent hardening or softening. 
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Fourier Transform Infrared (FTIR) Spectrometer 

 

Carbonyl area (CA), reported in arbitrary units, was measured using a Galaxy 5000 

FTIR spectrometer with an attenuated total reflectance (ATR) zinc selenide prism 

(Jemison et al., 1992). The absorption band from 1650 to 1820 cm-1 relates directly to 

oxygen content (Liu et al., 1998a), providing a good measure of binder oxidation. 

 

Results and Discussion 

 

Texas Highway 21 

 

Experimental Data 

 

Binder was extracted and recovered from each of the three lifts of the pavement 

cores, analyzed by several methods, and the results compared to laboratory aging of the 

same binder sampled during construction. From the cores of different age, we 

determined binder hardening rates, carbonyl growth rates, and binder hardening 

susceptibilities. Each of these values was compared to laboratory values to evaluate 

similarities of field and laboratory aging, and relative rates of aging. A second issue was 

how aging rates in the top 2-inch lift compared to aging rates in the other lifts. Data on 

the top and bottom lifts (0 to 2 inches and 4 to 6 inches below the surface) were obtained 

to address this issue. 

A hardening susceptibility plot is shown in Figure II-1. For each station and lift 

for which we have sufficient data, η*0 is plotted versus the CA. The slope of each line is 

the hardening susceptibility (HS) and indicates how much the binder hardens in response 

to aging (increase in CA) and as such, serves as a valuable consistency check. Note that 

of the six correlations shown, half have a HS of approximately four, and half of about 

six (the top-to-bottom order of the regression equations is the same as the legend order). 

The laboratory-aged binder shows an HS of from 4.0 to 4.7 and agrees well with one 
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group of the recovered binders. The HS is characteristic of a binder and the value of six 

for three of the lift/station combinations is significantly outside the bounds of 

measurement error, leading to the conclusion that a different binder was used in some 

portions of the paving project. This result is not surprising, given the different lifts and 

the thirteen-month construction time span. 
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Figure II-1. Hardening Susceptibilities from Lab- and Field-Aged Binder. 

 

 

Figure II-1 also shows the hardening susceptibility of Exxon AC-20 aged in the 

laboratory under candidate conditions for an aging test and those SH 21 binders 

recovered from 1989, 1992, and1996 cores that are considered to be the same Exxon 

AC-20. The pressure oxidation vessel (POV) was reported in a previous binder kinetic 
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study (Lau et al., 1992). Note the very good agreement between the lab- and pavement-

aged binder HS values in spite of the offset of several sets of data.  

In addition to η*0, the dynamic shear modulus (G') and dynamic viscosity (η') 

were measured on binders recovered from the 1996 and 2002 cores. These properties, 

measured at 44.7 °C and 10 rad/s and time-temperature superposition shifted to 15 °C 

and 0.005 rad/s, were of interest in view of the excellent correlation between ductility 

at15 °C and 1 cm/min and the DSR function G'/(η'/G') at 15 °C and 0.005 rad/s (Ruan et 

al., 2003b). 

Thus G', η', and the DSR function could be used to track the pavement aging of a 

binder in a way that should relate to the long-term pavement cracking performance of 

the binder (Ruan et al., 2003b). Table II-1 reports measured values of η*0. Also shown 

are the measured values of the DSR function (G'/(η'/G')) for the 1996 and 2002 cores 

and an estimated value of ductility, calculated from the ductility-DSR function 

correlation reported for unmodified binders stiffened to a 15 °C, 1 cm/min ductility less 

than 10 cm (Ruan et al., 2003b): 

 

 ( )( ) 0.44
Ductility( ) 0.23 '/ '/ 'cm G Gη −

=  (II-1) 

 

Experimentally, binders recovered from pavement replicates produce estimated ductility 

values to within approximately 1cm. 

In order to add binder data to this figure from earlier measurements of the 1989 

and 1992 cores (for which the more complete DSR measurements were not available), 

estimates of the DSR function were made based upon the asphalt-dependent correlation 

of function values to the low-shear-rate complex viscosity. As a binder oxidizes, its ZSV 

increases but so does its DSR function. The correlation for the SH21 binder was 

obtained from recovered core binders, environmental-room aging, and temperature-

accelerated aging at atmospheric air pressure. 
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Table II-1. Values of η*0 and the DSR Function for the SH 21 Cores 

 

    1989a   1992a   1996 Wheel Path   2002 Wheel Path   2002 Center Path 

Station Lift η*
o 

DSR 
Func. 

Est. 
Duct.   

η*
o DSR Func. Est. 

Duct.   
η*

o 
DSR 
Func. 

Est. 
Duct.   

η*
o 

DSR 
Func. 

Est. 
Duct.   

η*
o 

DSR 
Func. 

Est. 
Duct. 

1277 Top 11400 0.000064 16.1  - - -  56230 0.001135 4.54  78190 0.001724 3.78  67130 0.001294 4.29 
 Middle 8200 0.000036 20.8  18200 0.0001477 11.15  - - -  - - -  - - - 
 Bottom 8500 0.000038 20.3  - - -  42685 0.000698 5.63  56705 0.000977 4.85  52020 0.001021 4.76 

1295 Top - - -   30200 0.0003648 7.49   56420 0.00091 5.01   85165 0.001998 3.54   45050 0.000753 5.44 
 Middle - - -  45480 0.0007575 5.43  - - -  - - -  - - - 
 Bottom - - -  14000 0.000093 13.7  39900 - 6.58  26600 0.000269  -  35565 0.000517  - 

1392 Top - - -   - - -   42700 0.000619 5.93   47235 0.000646 5.82   42785 0.000581 6.1 
 Middle - - -  - - -  23000 - -  - - -  - - - 
 Bottom - - -  - - -  19540 0.000131 11.75  11875 0.000044 18.99  12172 0.000046 18.63 

1394 Top - - -   20800 0.0001875 10.04   - - -   - - -   - - - 
 Middle - - -  15800 0.0001148 12.46  - - -  - - -  - - - 
 Bottom - - -  30000 0.0003605 7.53  - - -  - - -  - - - 

1465 Top - - -   - - -   52335 0.000822 5.24   34690 0.000429 6.97   40945 0.000519 6.41 
 Middle - - -  22500 0.0002157 9.44  - - -  - - -  - - - 
 Bottom - - -  45300 0.0007522 5.45  80160 0.001225 4.39  21090 0.000175 10.35  27220 0.000275 8.48 

1483 Top - - -   13000 0.000081 14.52   26060 0.000241 8.99   30080 0.000203 9.69   - - - 
 Middle - - -  15500 0.0001109 12.65  - - -  - - -  - - - 
 Bottom - - -  24300 0.002475 8.9  33285 0.000374 7.41  34940 0.000432 6.95  - - - 

1500 Top - - -   - - -   43600 0.000344 7.68   40350 0.000527 6.37   - - - 
 Middle - - -  - - -  - - -  - - -  - - - 
 Bottom - - -  - - -  24690 0.000189 10.01  32640 0.000376 7.39  - - - 

1518 Top - - -   - - -   - - -   - - -   - - - 
 Middle - - -  15000 0.0001046 12.98  - - -  - - -  - - - 
  Bottom - - -   - - -   - - -   - - -   - - - 
                     

a The DSR function of the 1989 and 1992 cores were estimated from the G'/(η'/G') versus η*
o 

  correlation.   
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Comparison of Field and Laboratory Hardening Rates 

 

Of particular interest to this project is the rate at which pavement binders harden 

due to oxidation. Hardening results in an embrittlement of the binder that decreases its 

ability to sustain deformation without cracking. Three questions are especially relevant: 

1) How quickly does hardening occur on the road? 2) How do hardening rates vary with 

pavement depth? and 3) How do pavement hardening rates compare to laboratory 

hardening rates? From the data reported above, we reviewed two hardening rate 

parameters (in both the top and bottom lifts) and compared them to their corresponding 

laboratory hardening rates. 
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Figure II-2. Binder η∗0 Hardening Over Time in SH 21. 

 
 

The first two questions are addressed by the data of Figure II-2 which shows 

changes in η*0 over time for several pavement stations and both bottom and top lifts. As 
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was noted before from Figure II-1 and based on common HS, the top and bottom lifts of 

station 1277 are likely constructed from the same asphalt. The same can be said for the 

bottom and top lifts of station 1295. However, the binders at these two stations do not 

appear to be the same asphalt because of their different hardening susceptibilities. Thus, 

some care is warranted in comparing their hardening rates. With that caution, note that 

the 1277 bottom and top lifts have the same hardening rates from 1989 to 1996 (0.23 ln 

poise/year). Recall that the top lift is 0 to 2 inches from the surface of the pavement and 

the bottom lift having 4 to 6 inches below the surface. A layer that deep into the 

pavement having the same hardening rate as the top 2 inches is a surprise. However, the 

1465 bottom lift, apparently the same binder because of its HS, appears to have a lower 

hardening rate, 0.14. However, for the two lifts at station 1295, the bottom lift rate is 

actually higher than that of the top lift (0.26 ln poise/year versus 0.16) and these rates 

vary by the same amounts as the 1277 rates and the 1465 rate. Further, lift 1483 top, 

which has approximately the same hardening susceptibility as the 1295 bottom and top 

lifts, has essentially the same hardening rates as the 1295 top lift (0.17 versus 0.16 ln 

poise/year). Hardening rates also were assessed using the DSR function G'/(η'/G'), and 

follow the same trends as the ZSV. 

So, while there is some uncertainty to the data that is complicated by a fairly 

limited data set, the indications are that asphalt hardening is not impeded as much as has 

been previously reported (Coons and Wright, 1968; Mirza and Witczak, 1995), by a few 

inches (4 inches in this work) of dense-graded pavement above it. This result may seem 

contrary to intuition, based on the dual assumptions of limited access to oxygen by 

pavement at deeper levels and lower maximum summertime temperatures below the 

surface. However, pavements do breathe (assuming reasonable air voids permeability) as 

daily temperature fluctuations pump air in and out of the pavement and temperatures 

below the surface are not cooled as quickly as the surface by nighttime decreases in air 

temperature. Even though more data are needed to add statistical weight to this 

conclusion, it is a result that bears on the issues of pavement performance, pavement 

maintenance and rehabilitation, and perpetual pavements. 

The third question to be addressed was how pavement binder hardening rates 

compare to the laboratory. For this calculation, we used the data of Table II-1 and Figure 
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II-2, stations 1277 (both top and bottom lifts) and 1465 bottom as these binders had the 

same hardening susceptibility as the binder sampled during pavement construction and 

studied in the laboratory. Laboratory aging beyond RTFOT equivalent aging was 

conducted in 0.86 mm thick films in an environmental room at atmospheric air pressure 

controlled to 60 oC and 25 percent relative humidity. At these laboratory conditions, the 

ZSV hardening rate was 0.0088 ln Poise/day compared to the field rate of 0.00055 and 

the DSR function laboratory and field hardening rates were 0.014 (ln MPa/s/day) and 

0.00091, respectively. Thus, we estimate that the environmental room constant-rate aging 

is about 15 times faster than in the pavement, or, in other words, one month aging in the 

environmental room is equivalent to about 15 months aging in the pavement, once the 

initial jump is past. (At constant temperature and oxygen pressure, asphalt binders 

oxidize in two stages (Lau et al., 1992). The first stage is a rapid but decelerating rate 

period; the second stage is a slower, constant-rate period. In SH 21, the end of the first 

period occurred approximately two years after mixture and laydown, i.e., in 1989.) This 

relative hardening rate is about the same whether viscosity or the DSR function is 

adopted as the measure of hardening. It should be noted that this estimate is valid only for 

SH 21 and subject to considerable error. Nevertheless, it is probably the best comparison 

that exists between field and laboratory aging rate.  

 

Tracking Pavement Aging 

 

A relationship between ductility and DSR properties was reported that provides a 

rationale for tracking binder pavement aging to the point of road performance failure 

(Ruan et al., 2003b). All unmodified asphalts that have been studied (twenty to date) 

follow this same correlation, in spite of having rather distinct DSR properties as indicated 

by their decidedly different aging paths across a G' versus η'/G' map.  Furthermore, 

literature reports suggest that a value of 15 °C ductility in the range of 3 cm is a danger 

threshold for pavement failure (Kandhal, 1977; Kandhal and Koehler, 1984; Kandhal and 

Wenger, 1975). Thus, tracking pavement binder properties across this DSR map could be 

expected to relate to age-related pavement performance. 
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Figure II-3 gives such a view of binder pavement aging over an extended period 

of time. The dashed curves are lines of equal ductility with their values (cm) shown on 

the graph. This figure includes all top and bottom lift data in Table 1 for station 1277, but 

for the pre-1996 data the points are plotted based on estimates. It was previously 

explained that pre-1996 values of the DSR function were estimated from ZSV values. 
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Figure II-3. Movement of Binder Across the DSR Map, Station 1277. 

 

 

However, these estimates are not sufficient for plotting points on the DSR map 

because the separate values of G' and η'/G' are not known. However, by using the known 

path for this binder across the DSR map (determined by 1996, 2002 cores and 

environmental-room aged binders), these individual values can be determined (for the 

estimated value of the DSR function) by trial and error and then the point located on the 

map. The Exxon AC-20 standard PAV-aged (100 °C, 20 hour, 3mm thick, after RTFOT) 
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sample also is plotted (using its ZSV value of 16,000 poise) by the same estimation 

procedure. 

During service, the binder from these 1277 lifts moves from the lower right to the 

upper left on the DSR map. The binder recovered from the 1989 cores is at the lower 

right in Figure II-3, and the binder from the 2002 cores is at the upper left where 

calculated ductility values range from 4 to 5 cm. In 1992, the binder was near 10 cm, and  

by 1996, it was between 5 and 6 cm. For the most part, the recovered binders from these 

1277 lifts show a relentless track across the DSR map. For comparison, the RTFOT plus 

standard PAV point is aged to about 12 cm, close to the 1992 recovered binder value. It 

should be noted that the 2002 binders likely were softened by the seal coat placed in 

2000, accounting for the relatively small decrease in calculated ductility from 1996 to 

2002, compared to the changes observed in prior years. 

From these results, we conclude that for this binder and this pavement, the 

RTFOT plus 20-hour PAV aging corresponded to about four years in the pavement after 

hot-mix plant and placement aging. Also, 14 years in the pavement aged the binder to a 

ductility of approximately 4 cm, short of the 3 cm level that might suggest approaching 

failure, but note again possible softening by the seal coat. 

 

Texas LTPP Pavements 

 

The LTPP sites studied in this project were from various locations across Texas, 

including the panhandle, west Texas, the gulf coast and east Texas. The thinnest 

pavement is 1.8 inches and the thickest is 12.9 inches. The LTPP site numbers are given 

in Figure II-4 and Figure II-5.  

 

Experimental Data 

 

For each core, one layer was targeted for study, the original surface layer (OSL) at 

the time the pavement was first constructed. In all but one case, this was the surface layer 

at the time of the 1989 or 1990 coring; for the other location, it was buried below 10.5 
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inches of additional layers (48-1046, US-66, was converted to I 40 in 1971, requiring a 

much thicker pavement).  

Each core was either sawn or cleaved into lifts (while frozen), and the target lift 

was further broken into pieces. Then, in two replicates (A and B) the broken core was 

sampled, extracted, and recovered, and the binder analyzed.  

 

Tracking Pavement Aging 

 

The DSR properties for both replicate extractions for each core are plotted on the 

DSR function map in Figure II-4. For easy reference, the date that the pavement OSL was 

placed is noted in parentheses in the legend for the 1989-1990 cores.  Replicate samples 

generally gave very similar results with the estimated ductility differing by less than 1 

cm. Generally, these binders follow the trend that the older binder is stiffer and thus 

appears more towards the upper left in the figure. Of course, this generalization is not 

universally true, as binders in pavements will age at different rates depending upon 

climate, air voids, binder content, binder oxidation kinetic parameters, and binder 

hardening susceptibility. That these different binders all follow roughly the same path 

across the DSR map is coincidence. 
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Figure II-4. DSR Function Map for the LTPP and IH-10 Binders. 

 

 

Other Pavements 

 

Other pavements were evaluated during the course of this work. Two pavements 

were the northbound and southbound lanes of an IH 10 frontage road in Beaumont, 

Texas. Both pavements were stated as having been constructed in approximately 1987. 

These binder DSR properties also are shown in Figure II-4. Both recovered 

binders in fact, were quite aged, with the northbound binder (calculated ductility of 1.3 

cm) somewhat more hardened than the southbound (ductility of 2.7 cm). In fact, the 

northbound lane’s binder was stiffer than any other pavement binder tested.  Based upon 

the preceding discussion, we might expect that this binder would be too brittle to hold up 

without cracking. However, the box beam construction of the overpass likely provides an 

extremely stiff system that prevents excessive deformation. 
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All Pavements - Summary of Aging Levels 

 

Figure II-5 summarizes the level of oxidative hardening that was reached by the 

various pavements studied in this work.  The low shear rate viscosity at 60 °C for each 

recovered binder is shown versus the time in the pavement when the core was obtained.  

The SH 21 pavements are shown for both the top lifts (0 to 2 inches deep) and the bottom 

lifts (4 to 6 inches below the surface), offset in time slightly so that the symbols do not 

overlay each other.  The other pavement binders were all recovered from the entire 

pavement thickness but for pavements that were only from one to three inches thick. 
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Figure II-5. Binder Aging in the Various Texas Pavements. 

 

 

Also shown in the figure for comparison are 60 °C low shear rate viscosities 

versus time for the pavement surface (top 0.25 in) and for five inches below the surface, 

calculated using the Global Aging Model (GAM) of Mirza and Witczak at 60 °C (Mirza 

and Witczak, 1995; AASHTO, 2004). For this calculation, a mean annual air temperature 
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of 70 °F and an initial (mix/laydown) viscosity of 4,600 poise were used. The effect of air 

void changes over time on this calculation was not considered. To do so would have 

resulted in even lower GAM estimates of binder aging. 

Some observations are evident.  First, the great majority of the recovered surface 

binders lie above (or only slightly below) the GAM calculation for the surface.  Most of 

them are significantly above the GAM and some are in excess of an order of magnitude 

above the GAM. The SH 21 surface cores span above and below the GAM. These results 

are in spite of the fact that these binders include much more than just the top 0.25 in of 

the pavement.  Second, one pavement (Lufkin) falls well under the surface GAM 

calculation and in fact, is in line with the 5-in deep calculation.  This clear aberration to 

the low side is almost certainly the result of very low air voids for this pavement 

(typically less than three percent, compared to seven percent (SH 21) and from 8 to 12 

percent for the Dickens pavement; air voids for the other pavements were not measured). 

It has been noted previously that low air voids correlate with reduced oxidative hardening 

(Martin et al., 1990). 

A third observation is that the SH 21 binders from the bottom lift (4 to 6 in below 

the surface) exceed the GAM calculation for five inches below the surface to a very 

significant degree, nearly by an order of magnitude in some cases, even exceeding the 

GAM calculation for the pavement surface.  In fact, the top and bottom core binder 

values are very much in agreement with the possible exception of the 2002 data which 

may have been softened by a seal coat placed in 2000. 

Finally, comparing the data for those pavements that were sampled in more than 

one year (notably 48-2108 and SH 21), the rates of binder hardening do not appear to 

have leveled out, even after 10 to 15 years, contrary to the GAM. The high level of aging 

for some of the other pavements also suggests that the pavement aging function does not 

level out. 

 

Summary and Conclusions 

 

Extensive investigations of selected Texas highway pavements have provided new 

information about changes in unmodified binder properties over time. These studies 
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included SH 21 plus 10 LTPP GPS pavements, two test sections, and two other 

pavements sampled late in their life. They were conducted to provide information on 

pavement performance as it relates to recovered binder properties and also to provide data 

on comparisons between pavement and laboratory binder oxidation rates and changes in 

physical properties. From these studies, a number of conclusions concerning unmodified 

binder aging are tentatively offered: 

1. Binders in pavements can oxidize at surprisingly uniform rates with depth once 

early oxidation occurs, even for dense-graded mixtures, and these rates may 

continue for an extended period of time, virtually unabated. 

2. The DSR function map provides a very useful method of tracking pavement 

aging over time. The coordinates on the map correlate quite well to binder 

ductility for unmodified binders, a binder characteristic that is reported to 

relate well to cracking failure. 

3. The level of hardening reached in pavement binders significantly exceeds 

estimated values calculated by the Global Aging Model, both at the pavement 

surface and at 5 in below the surface. 

4. The Superpave RTFOT plus PAV procedure ages binders at Texas conditions 

to a level that is approximately equal to hot-mix aging plus four years on the 

road, based on SH 21 data.  This is not a very severe level of aging in the 

context of pavement life in Texas.  It also is only one data point and many 

others are needed. 

5. One month of aging in the 60 °C environmental room was equivalent to 

approximately 15 months on SH 21 after the initial jump region of the 

oxidation is past.  This calibration will vary with climate, binder composition, 

binder content and air voids. 

6. On SH 21, aggregate altered neither the oxidation hardening susceptibility nor 

the path followed on the G' versus η'/G' map, compared to laboratory aging 

of the neat binder. 
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CHAPTER III  
MIXTURE VERSUS NEAT-FILM BINDER OXIDATION AND HARDENING 

AND THE IMPACT OF BINDER OXIDATION ON MIXTURE FATIGUE 

 

Synopsis 

 

Asphalt oxidation causes major changes to binder properties and is hypothesized 

to be a major contributor to age-related pavement failure such as fatigue cracking. Neat 

film asphalt oxidative aging stiffens the binder, leading to higher binder stresses under a 

given deformation; when these stresses exceed the strength of the binder, failure occurs. 

Thus, heavily-aged binders exhibit a significantly reduced failure strain (e.g. in direct 

tension,) compared to less aged binders. However, the impact of binder oxidation in 

HMAC mixtures on fatigue lives has not been adequately addressed. 

In this study, we have investigated the effect of binder oxidation on the HMAC 

mixture fatigue performance. Binder aging was characterized by FT-IR carbonyl area 

growth and by changes in the DSR function hardening (G'/(η'/G'). HMAC Mixture 

fatigue life was estimated by a calibrated mechanistic with surface energies (CMSE) 

fatigue approach. Binders recovered from aged mixtures track across the DSR function 

map (G' versus η'/G'), following the same path as neat binder aged in a 60°C 

environmental room, a path that previous study has shown correlates well with significant 

decreases in binder ductility. Mixture fatigue resistance also decreases dramatically in 

direct relation to binder oxidative hardening. 

 

Introduction 

 

Asphalt binder oxidation is one of the major contributors to age-related pavement 

failure, including fatigue cracking. However, its impact has been underestimated or 

ignored in most hot mix asphalt concrete (HMAC) mixture fatigue studies of fatigue 

failure in asphalt pavements. 

An HMAC mixture is a heterogeneous complex composite material of air voids, 

aggregates, and asphalt binder. The physico-chemical properties of binders are mainly 
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changed by binder oxidation. A recent study shows that binder oxidation can affect the 

binder hardening and embrittlement six inches below the surface of asphalt pavements 

(Al-Azri et al., 2006). It indicated that binder hardening rates of the top two inches of the 

sampled cores are almost the same as the two inch layer that is four inches below the 

surface. The findings have an important conclusion: the effects of binder oxidation are 

not limited to the asphalt pavement surface but penetrate the HMAC layer, making the 

HMAC layer stiffer and more brittle.  

Previous studies (Clark, 1958; Doyle, 1958; Halstead, 1963; Kandhal, 1977; 

Kandhal and Koehler, 1984) point out that pavement long term durability has a good 

correlation with asphalt binder ductility. Ruan et al. (2003b) found a good correlation 

between a fundamental rheological function, called the DSR function (G'/(η'/G')), and 

ductility below ductilities of 10 cm. They found that binder long-term durability is not 

dependent on a single rheological property such as the dynamic elastic shear modulus, G' 

or the dynamic shear viscosity, η' but rather both of them in the form of G' and η'/G'. The 

DSR function quantifies binder durability change with binder oxidative hardening, and 

the DSR map (G' versus η'/G') provides a convenient tool to track durability changes of 

binders in neat aged binders, HMAC mixtures and pavements. 

The detrimental impact of binder oxidation on binder durability and asphalt 

pavement cannot be ignored and must be included in fatigue analysis in addition to 

repeated traffic loading. This study focuses on how binder oxidation affects binder 

properties in HMAC mixtures and the HMAC fatigue performance. 

While extensive studies of asphalt pavement fatigue performance have been 

conducted, successful characterization of HMAC mixtures to ensure adequate fatigue 

performance is not well established and fundamental fatigue predictive models still 

remain to be developed. The conventional way of measuring asphalt pavement fatigue 

life is testing laboratory HMAC mixtures and then applying a shift factor which relates 

laboratory conditions to field conditions. 

In this study, the calibrated mechanistic with surface energy (CMSE) fatigue 

approach is utilized to measure laboratory HMAC fatigue life cycles and subsequently 

estimate field fatigue life. The CMSE fatigue analysis model uses fundamental theories 

(the visco-elastic correspondence principle, Paris' Law fracture mechanics, Schapery’s 
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work potential theory and energy concepts) to characterize HMAC mixture fatigue 

resistance (Kim et al., 1997a; Kim et al., 1997b; Lytton et al., 1993; Schapery, 1984; Si, 

2001). This approach is applied in this current study and is used to determine the impact 

of binder oxidation on the field fatigue performance because of its ability to measure 

fundamental material properties such as asphalt mixture tensile strength, stiffness, 

relaxation modulus in tension and compression, dissipated pseudo strain energy and 

surface energy for binder and aggregates to characterize HMAC mixture fatigue 

resistance (Lytton et al., 1993). 

 

Objectives 

 

This research investigated the impact of binder oxidation on HMAC mixtures and 

their fatigue resistance. The objectives of the study were 1) to compare neat-film binder 

aging to laboratory compacted mixture binder aging, 2) to determine the effect of 

oxidative binder aging on controlled-strain HMAC mixture fatigue, 3) to investigate the 

effect of different binders and their contents in HMAC mixtures on their fatigue 

performances. 

 

Methodology 

 

This section describes materials, aging processes, binder and mixture tests and the 

CMSE fatigue approach. The materials were neat binders aged in thin films, binders 

recovered from aged HMAC mixtures, and seven different types of HMAC mixtures. 

Binder tests included: gel permeation chromatography (GPC) using a refractive index 

(RI) detector to insure complete solvent removal in the binder recovery process; dynamic 

shear rheometry (DSR) to measure the rheological properties of the binder; and Fourier 

transform infrared (FTIR) spectroscopy to measure the carbonyl content in the binder. 

Mixture tests for the CMSE approach involve the use of Whilhelmy plate (WP), the 

universal sorption device (USD), and other instruments to determine tensile strength 

(TS), uniaxial relaxation modulus (RM) and dissipated pseudo strain energy (DPSE). 

These materials and methods are described in further detail in the following paragraph. 
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Materials 

 

Binders 

 

Three different binders were used in this study: a conventional binder 

(performance grade (PG) 64-22), a styrene-butadiene-styrene (SBS) polymer modified 

binder (PG 76-22 SBS) and a tire rubber/SBS polymer modified binder (PG 76-22 TR). 

Aged neat binders as well as recovered binders from aged HMAC mixtures were used to 

compare neat binder aging with mixture aging and to determine the impact of binder 

oxidation on HMAC fatigue performance. 

 

HMAC Mixtures 

 

Seven different types of mixtures were prepared in the mixture study. Table III-1 

is a summary of HMAC mixtures and binders (Lubinda et al., 2005, Lubinda et al., 2006). 

With the three different binders, two aggregate types (limestone, river gravel), and two 

binder content levels (optimum, optimum plus 0.5 percentage point binder contents), are 

used. Note that the binder contents in Table III-1 are on a binder free weight basis, and 

the values in parentheses are on a total weight basis.  

The mixtures were made based on two commonly used TxDOT mixture designs. 

The first mixture design is a basic mixture design, defined as Bryan mixture, which is a 

dense graded TxDOT type C mixture design with PG 64-22 binder and limestone 

aggregate (TxDOT, 2003). The second mixture design is a rut resistant mixture design, 

also referred to in this work as the Yoakum mixture, which is a 12.5 mm Superpave 

mixture designed with a polymer modified PG 76-22 SBS binder and crushed river gravel 

aggregate with 14 percent limestone screenings and 1 percent hydrated lime. Five more 

types of mixtures were made based on a rut resistant mixture design to determine the 

impact of binder type and content on fatigue performance. Note that the target air void 

(AV) of all HMAC mixtures is 7 0.5±  percent to simulate the in-situ AV field 

compaction during HMAC pavement construction. The standard Superpave Gyratory 
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Compactor (SGC) was used for compacting cylindrical HMAC specimens for CMSE 

testing (AASHTO, 1996b; AASHTO, 1996c; TxDOT, 2003). 

 

 

Table III-1. List of HMAC Mixtures 

Basic Mixture Design with Optimum Binder Content 

HMAC Mixture Binder + Aggregate Binder Content (%) 

Bryan PG 64-22 + Limestone 4.6a (4.4%)b 

Rut Resistant Mixture Design with Optimum Binder Content 

HMAC Mixture Binder + Aggregate Binder Content (%) 

A1 PG 64-22 + Gravel 5.3 (5.0) 

Yoakum (B1) PG 76-22 SBS + Gravel 5.6 (5.3) 

C1 PG 76-22 TR+ Gravel 5.5 (5.2) 

Rut Resistant Mixture Design with Optimum + 0.5 Percentage Point Binder Content 

HMAC Mixture Binder + Aggregate Binder Content (%) 

A2 PG 64-22 + Gravel 5.8 (5.5) 

B2 PG 76-22 SBS + Gravel 6.1 (5.8) 

C2 PG 76-22 TR+ Gravel 6.0 (5.7) 

a Binder-free weight basis 
b Total weight basis 
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Aging Processes 

 

Binder aging in pavements follows short-term (hotmix and placement) and long-

term aging (pavement in-service) processes. A stirred air flow test (SAFT), which 

stimulates the hot mix process, was used for short-term aging (Vassiliev et al., 2001; 

Vassiliev et al., 2002). The standard pressure aging vessel (PAV) aging procedure 

(AASHTO, 1996a), modified PAV aging procedure (PAV*), and the environmental room 

(ER) were used for long-term aging (Glover et al., 2005; Juristyarini, 2003). The ER (60 
oC room) is used as an approximation to field aging in Texas; one month in the ER was 

found approximately equal to 15 months in the field for one pavement in Texas (Glover 

et al. 2005, Al-Azri et al., 2006). PAV (AASHTO PP1) is used for comparison with ER 

because PAV is a standard long-term binder aging process. PAV* is used to test a 

different accelerated long-term aging process (Juristyarini et al., 2003). The conditions of 

binder and HMAC mixture aging processes are shown in Table III-2. 

 

Table III-2. Aging Processes 

Binder Aging Process Aging Conditions 

SAFT 163 oC, 1 atm, 35 min 

PAV 100 oC, 2.1 MPa, 3 mm film thickness, 20 hours 

PAV* 90 oC, 2.1 MPa, 1 mm film thicknes, 16, 32 hours 

ER (60 oC room) 
60 oC, 1 atm, 50 % relative humidity, 0.86 mm film 

thickness, 0, 3, 6, and 9 months 

Mixture Aging Process Aging Conditions 

PP2 (AASHTO PP2) 135 oC, 1 atm, 4 hours 

ER (60 oC room) 
60 oC, 1 atm, 50 % relative humidity, 0, 3, and 6 

months 
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Like binder aging processes, two different methods of HMAC mixture aging were 

used in this study. All loose HMAC mixtures were subjected to the AASHTO PP2 short-

oven aging process (PP2) for 4 hours at 135 °C prior to compaction (AASHTO, 1996b). 

After compaction, the HMAC mixtures were aged for 0, 3, and 6 months) at 60 °C room. 

 

The Calibrated Mechanistic with Surface Energy (CMSE ) Fatigue Model 

 

The CMSE approach points out that HMAC fatigue damage consists of two 

components; resistance to fracture under repeated loading and the ability to heal during 

rest periods, processes that both change over time. According to the approach, fatigue life 

(Nf) is controlled by two processes; crack initiation represented by the number of 

repetitive load cycles to crack initiation (Ni) and crack propagation represented by the 

number of repetitive load cycles for macrocrack propagation through the HMAC layer 

thickness (Np) in Equation III-1.  

 

 ESALsTrafficDesignf i i pN SF N N Q⎡ ⎤= + ≥ ×⎣ ⎦  (III-1) 

 i a hSF SF SF= ×  (III-2) 

 

The CMSE approach considers the fact that HMAC is not an isotropic material 

and introduces an anisotropic shift factor SFa to account for the differences in the vertical 

and lateral elastic modulus due to the differences in the particle orientation during 

compaction/construction.  

Due to traffic rest periods and temperature variations, the binder has a tendency to 

heal, which often results in improvement in the HMAC mixture fatigue performance. A 

SFh shift factor is thus introduced in the analysis to account for this healing process. This 

SFh is a function of the rest periods, pavement design life, field temperature correction 

factor, HMAC elastic relaxation modulus in compression, surface energy due to healing 

(∆Gh), and fatigue field calibration constants. 

Ni is defined as the number of load cycles required to initiate and grow a 
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microcrack of 7.5 mm in length in the HMAC layer. It is a function of crack density, 

specimen cross-sectional area, Paris’ Law fracture coefficients (A and n), and the rate of 

damage accumulation (b) as indicated by DPSE in the uniaxial repeated-direct tension 

test. Crack density calculations in this study were based on the cavitation analysis by 

Marek and Herrin (Marek and Herrin, 1968) assuming a brittle-adhesive mode of crack 

failure for the HMAC specimens.  

Np refers to the number of load cycles required to propagate a 7.5 mm microcrack 

through the HMAC layer thickness. Np is calculated as a function of the maximum 

microcrack length, HMAC layer thickness, shear modulus, Paris’ Law fracture 

coefficients (A and n), and a design shear strain (γ) (Cheng, 2002; Lytton et al., 1993; Si, 

2001). Other CMSE input parameters include non-linearity correction factor (ψ(t)), stress 

intensity, regression and shear coefficient factors, HMAC brittle-ductile failure 

characterization, healing constants, and field calibration constants.  

Q is a reliability factor that accounts for mixture and traffic prediction variability 

and the anticipated uncertainties in the mixture fatigue performance during service. A Q 

value of 1.0 was used in this study. However, further CMSE research should inevitably 

explore the derivation of Q as a function of reliability level so as to adequately account 

for HMAC mixture and traffic prediction variability in Nf analysis. 
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Table III-3. Summary of CMSE Laboratory Tests 

Test Loading Configuration,  Test Parameters, and Output Data 

Whilmey 
Plate   
 

 
 

Automatic immersion and withdrawal of binder coated glass plates into/from liquid 
solvents up to approx. 5 mm depth @   20±2 °C. Test time: ≅45 minutes. Measurable & 
output data is dynamic contact angle (θ) and surface energy (SE) components for the 
binder (Γi-binder) HMAC mixture fracture (ΔGf) and healing (ΔGh) bond strengths 
determination 

Universal 
Sorption 
Device 
(USD)  

 Clean oven dried 50 g aggregate of fraction size (4.75 mm < aggregate size < 2.63 mm) . 
Measurable parameters are vapor pressure & adsorbed gas mass of liquid solvents @ 
25±2 °C. Test time: 60 to 70 hrs. Output data is SE components for the aggregates (Γj-

aggregate) for HMAC mixture fracture (ΔGf) and healing (ΔGh) bond strengths 
determination 

Anisotropic 
(AN)  

 

Sinusoidal compressive stress-controlled @ 1 Hz,  20 °C & 690 kPa stress level for 200 
load cycles. Test time: ≅5 minutes Output data is HMAC mixture vertical (Ez) and (Ex) 
lateral elastic modulus shift factor due to anisotropy (SFa). 

Tensile 
Strength (TS)  

 
 

Tensile loading till break @ 0.05 mm/min @ 20 °C. Test time: ≅5 minutes. Output data 
is HMAC mixture tensile strength (σt) and failure strain (εf) for determining Paris’ Law 
fracture coefficient A 
 

Uniaxial 
Relaxation 
Modulus 
(RM)  

 Trapezoidal shaped strain-controlled @ 200 microstrain (tension & compression), 60 s 
loading & 600 s rest period @ 10, 20, & 30 °C. Test time: ≅ 25 minutes. Output data is 
HMAC mixture elastic relaxation modulus (Ei), stress relaxation rate (m), and 
temperature correction factors (aT ) for determining the healing shift factor (SFh) and 
Paris’ Law fracture coefficients A and n. 

Uniaxial 
Repeated 
Direct-
Tension 
(RDT)  

  Haversine strain-controlled @ 1 Hz, 30 °C, & 350 microstrain level for 1, 000 load 
cycles. Test time: ≅20 minutes. Output data is dissipated pseudo strain energy (DPSE) 
and rate of fracture damage accumulation (b) necessary to calculate the number of load 
cycle to crack initiation (Ni). 
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HMAC Mixture Tests 

 

The CMSE laboratory tests conducted in this study are summarized in Table 

III-3. For each test type, at least two replicate HMAC specimens were tested per aging 

condition per mixture type. For simplicity and because HMAC fatigue cracking is 

generally more prevalent at intermediate pavement service temperatures, most of the 

laboratory tests were conducted at 20 °C. Otherwise, the data were normalized to a 

reference temperature, 20 °C using a time temperature superposition shift during the 

analysis. 

Output data from these laboratory tests served as input data for predicting the 

fatigue life in Equation III-1 (Cheng, 2002; Lytton et al., 1993; Si, 2001). Fatigue failure 

for the CMSE approach was defined as crack initiation and propagation through the 

HMAC layer thickness with a 7.5 mm microcrack length as the selected failure threshold 

value based on the work by Tseng and Lytton. (Lytton et al., 1993). 

 

Field Condition 

 

For hypothetical field conditions, a standard TxDOT pavement structure 

consisting of 150 mm HMAC (3,447 MPa, υ = 0.33), 350 mm flex (granular) base (194 

MPa, υ = 0.40), and a subgrade with an elastic modulus of 63 MPa (υ = 0.45) was 

utilized. Typical traffic conditions consisted of an 80 kN axle load, 690 kPa tire pressure, 

and 5 million equivalent single axle loads (ESALs) with about 25% trucks over a design 

life of 20 years and a 95% reliability level in a Wet-Warm (WW) Texas environment 

considered critical to HMAC pavement fatigue performance (Huang, 1993; TxDOT, 

2003). Shear strains (γ) which constitute the input failure load-response parameters for 

the CMSE fatigue analysis approach were computed using an elastic multi-layered 

ELSYM5 software, but were adjusted based on Finite Element (FEM) simulations to 

account for more realistic HMAC behavior (Park, 2004; Walubita et al., 2005). 
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Binder Tests 

 

Extraction and Recovery 

 

The extraction used three successive washes: one wash of 100% toluene followed 

by two washes of a mixture of 15% ethanol plus 85% toluene by volume. After the 

extraction, the solvent was filtered to remove all aggregate particles from the binder 

solution using a centrifuge. The binder was recovered from the solvent with a Büchi, RE 

111 rotovap (Burr et al., 1993). During recovery, nitrogen gas was introduced to the 

vessel to drive off any remaining solvent and to prevent contact with oxygen. Before the 

removal of the solvent from the last batch of the solution, the bath temperature was kept 

at 100 °C to avoid hardening or softening of the asphalt in dilute solution((Burr et al., 

1994; Burr et al., 1991). When no more solvent could be detected visually, the 

temperature was increased to 173.9 °C for an additional 30 minutes to ensure sufficient 

solvent removal (Burr et al., 1990). 

 

Size Exclusion Chromatography (SEC) 

 

After the binder was extracted and recovered, it was analyzed by SEC to ensure 

complete solvent removal using previously reported methodology (Burr et al., 1990; 

Leicht et al., 2001). Without this feedback on the recovery process, it is likely that 

residual solvent will be left in the binder, especially the more heavily aged binders (Burr 

et al., 1990). Test samples were prepared by dissolving 0.2±0.005 g of binder in 10 mL 

of carrier. The sample of interest was then sonicated to ensure complete dissolution. The 

sonicated sample was then filtered through a 0.45 μm polytetrafluoro ethylene (PTFE) 

syringe filter. Samples of 100 μL were injected into 1000, 500, and 50 Å columns in 

series with tetrahydrofuran (THF) carrier solvent flowing at 1.0 mL/min.  Incomplete 

solvent removal is indicated by a peak located at 38 minutes on the chromatogram. 
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Dynamic Shear Rheometer (DSR) 

 

After complete solvent removal, the rheological properties of the binder were 

determined.  The DSR used in this research was a Carri-Med CSL 500 Controlled Stress 

Rheometer. 

The rheological properties of interest were the complex viscosity (η∗0) measured 

at 60 °C and 0.1 rad/s (approximately equal to the low-shear rate limiting viscosity) and 

the storage modulus (G') and the dynamic viscosity (η'), both at 44.7 °C and 10 rad/s in 

time sweep mode. A 2.5-cm composite parallel plate geometry was used with a 500 μm 

gap between the plates. 

DSR measurement was also important for deciding whether the binder was 

chemically altered in some way by the extraction and recovery process (Burr et al., 

1990; Burr et al., 1994; Burr et al., 1991; Cipione et al., 1991). If two extraction and 

recovery processes yielded binders with matching SEC chromatograms but significantly 

different complex viscosities, then at least one of the binders was suspected of having 

undergone solvent hardening or softening. 

 

Fourier Transform Infrared (FTIR) Spectrometer 

 

Carbonyl area was measured using a Galaxy 5000 FTIR spectrometer with an 

attenuated total reflectance, ATR zinc selenide prism (Jemison et al., 1992). The 

absorption band from 1650 to 1820 cm-1 relates directly to oxygen content (Liu et al., 

1998) and, thus, provides a good measure of binder oxidation. 
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Results and Discussion 

 

The main goal of this study was to determine the impact of binder oxidation on 

the HMAC mixture fatigue performance. Two main results, the binder test results and 

the mixture fatigue results, are provided to achieve the goal. In the binder test results, 

mixture aging is compared with neat binder aging to understand the impact of binder 

oxidation on mixture physical properties. The binder test results consist of five sections 

to compare physico-chemical properties, binder aging mechanisms, and binder aging 

paths of both the neat binders and the recovered binders: 1) binder viscosity for the 

unmodified binders, 2) DSR function hardening, 3) carbonyl area growth, 4) DSR 

function hardening susceptibility and 5) DSR map. Then, the mixture results of the 

HMAC mixture fatigue performance from the different mixtures with binder oxidation 

are presented. 

 

Mixture versus Neat-Film Binder Oxidation and Hardening 

 

As noted earlier, mixtures were prepared using the PP2 short-term aging protocol 

and then compacted to produce one aging level (PP2+0M). Second and third levels were 

obtained by aging the compacted laboratory mixture in the ER for 3 and 6 months 

beyond PP2 conditioning (PP2+3M and PP2+6M). Here, the “0 months,” “3 months,” 

and “6 months” refer to environmental room aging beyond PP2 aging. Note that the 

mixture with an optimum binder content, the Yoakum (B1) mixture has one more aging 

level - 9 month beyond PP2 (PP2+9M) and the A1 and 2, B2 and C1and 2 mixtures do 

not have PP2+3M. 

The two binders were extracted and recovered from their laboratory prepared 

mixtures at several levels of aging and evaluated. SEC was used to check whether 

solvent residue exist in the binder. SEC chromatograms for binders recovered from 

mixtures are shown in Figure III-1 and show that the recovered binders did not have 
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solvent residue, which, if present, would be detected as a peak at 38 minutes and would 

significantly affect the rheological properties. 

Neat binders were aged in a HMAC simulation, the stirred air-flow test 

(Vassiliev et al., 2001, 2002) to give one level of aging (designated SAFT). Then these 

binders were further aged in the 60 °C (140 °F) environmental room in thin films 

(approximately 1 mm thick) for 3, 6 and 9 months to obtain second, third and fourth 

aging levels (SAFT+3M, SAFT+6M and SAFT+9M).  
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Figure III-1. SEC Chromatograms for Recovered Binders from Bryan Mixtures. 
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The aged binders were characterized by DSR and FTIR measurements. Oxidative 

aging increases carbonyl area (CA, oxygen content), viscosity (zero shear viscosity, η*0) 

and DSR function (G'/(η'/G')) for both neat binders and recovered binders. The data are 

shown in Table III-4. While there is a difference between neat binder aging and mixture 

aging due to diffusion resistance in the mixture, binder oxidation still significantly 

affects binder hardening, binder durability and the CA growth of the binder in the 

mixture. 

 

 

Table III-4. Carbonyl Area and DSR Properties of Neat and Recovered Binders 

ER
Aging PG64-22 PG76-22SBS PG76-22TR

(months) SAFT SAFT SAFT
0 0.620 0.807 0.807 0.556 0.720 0.721 0.708 0.722 0.713
3 0.857 0.927 0.919 0.914 0.891 0.878 0.863 - -
6 0.957 0.964 0.975 1.033 0.961 0.960 1.045 1.051 0.994
9 1.138 - - 1.194 1.061 1.074 1.217 - -

ER
Aging PG64-22

(months) SAFT
0 10500 36900 38200
3 45760 81000 75000
6 106400 122600 115500
9 - - -

ER
Aging PG64-22 PG76-22SBS PG76-22TR

(months) SAFT SAFT SAFT
0 0.43 2.13 2.11 0.80 3.24 2.31 1.41 1.52 1.73
3 3.11 6.60 5.50 8.83 7.43 8.31 9.48 - -
6 8.30 10.00 8.90 16.1 12.6 11.4 22.5 15.60 14.90
9 19.79 - - 49.3 25.4 25.6 39.7 - -

ER
Aging

(months)
0 3.09 2.95 1.81 1.84 1.93 1.97 1.17 1.40
3 - - - - - - - -
6 6.08 5.75 4.36 4.80 12.70 13.70 7.33 6.78
9 - - - - - - - -

C2
PP2

CA

η0∗ (dPa-s @ 60 °C, 0.1 rad/s)

DSR Function x 104  (MPa/s @ 15 °C, 0.005 rad/s)

DSR Function x 104  (MPa/s @ 15 °C, 0.005 rad/s)

Bryan
PP2

Yoakum
PP2

Bryan
PP2

Bryan
PP2

Yoakum
PP2

C1
PP2

C1
PP2

A1
PP2

A2
PP2

B2
PP2
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The following sections present additional details on the effects of binder oxidation in the 

neat binders and the HMAC mixtures. 

 

Viscosity Comparison for the unmodified binders 

 

The zero shear viscosity (η*0) has been widely used to represent unmodified 

binder hardening. The binder hardening rate (rη*) has a linear correlation with aging time 

after the early rapid aging stage that is called the initial jump (Lau et al., 1992). The 

initial jump period includes the hardening in the hot mix plant and during construction 

and the hardening in the early rapid aging stage (Glover et al., 2005, Juristyarini, 2003). 

The equations III-3 - III-5 represents the ideas: 

 

 ( ) ( )0 *ln *( ) ln *( ) ln *( ) ln *( )HMix IJt t t t r tηη η η η= + Δ + Δ +  (III-3) 

 *( ) ,   > initial jump time periodBtt Ae tη =  (III-4) 

 *
ln * const,  > initial jump periodr t

tη
η∂= =

∂
 (III-5) 

 
where t is the aging time; η*(t) is the viscosity at any time; η*(t0) is the original 

viscosity; η*(tHMix) is the viscosity change at hot mix plant; η*(tIJ) is the viscosity 

change in the initial jump period and A and B are experimentally determined 

coefficients. Further, Juristyarini (2003) explains that the hardening rate in the initial 

jump period decreases with aging time until it reaches constant after the initial jump 

period. 

The binder hardening represented by the zero shear viscosity (η*0) in both the 

neat binders and the recovered binders from the Bryan mixtures (PG64-22 + limestone) 

increases with aging time shown in Figure III-2. SAFT aging leaves the binder within 

the initial jump (higher aging rate) region because the aging rate between 0 and 3 months 

is still higher than between 3 and 6 months. While PP2 aging is more severe than SAFT 
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aging, binder hardening is still not in a linear region. PP2 aging data between 0 and 3 

months show a higher aging rate (slope) than between 3 and 6 months. The neat binder 

aging is also approaching the mixture aging with aging time. 
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Figure III-2. η*0 Hardening Rate for Bryan Binders 

 

 

The other binders used for the other mixtures are polymer modified binders, for 

which the zero shear viscosity is not appropriate for characterizing hardening rate 

because polymer modified binders typically do not exhibit a low shear rate limiting 

viscosity. Instead, the DSR function (at a defined temperature and frequency) hardening 

rate is used to represent changes of binder physical properties with aging. 
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DSR Function Hardening Comparison 

 

The DSR function (G'/(η'/G')) represents binder hardening with its durability 

(Ruan et al., 2003; Al-Azri et al., 2006). The DSR function hardening rate (rDSR function) is 

also constant with aging time after the initial jump period (Juristyarini et al., 2002)  

 

 0 DSR functionln DSR function ln DSR function r t= +  (III-6) 

 

 ( )
DSR function

DSR function
const,  for initial jump time periodr t

t
∂

= = >
∂

 (III-7) 

 
where t is the aging time and DSR function0 is the intercept at t=0. 
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Figure III-3. DSR Function versus η*0 for Bryan Binders. 
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The relation of DSR function and η*0 with aging time for the Bryan binder (PG 

64-22) are shown in Figure III-3. The DSR function can be a good substitute for the zero 

shear viscosity because both the viscosity and the DSR function hardening have a very 

good linear correlation. In addition to that, as mentioned earlier, the DSR function 

increase due to binder oxidation relates to the binder's ductility decrease and its 

embrittlement increase, which will be shown graphically in the DSR map later. 

Figures III-4 to III-6 show that both mixture aging and neat binder aging increase 

a binder's DSR function with aging time, which means the binder in the mixture also 

becomes harder and more brittle, as to neat binders with aging. The neat binder aging 

(SAFT+0, 3, 6, 9M) results indicate that all the neat binders aged at the SAFT aging 

level (SAFT+ 0M) are in the initial jump period and the more aged neat binders have a 

linear DSR function hardening rate from the 3 months in the 60 oC room after SAFT 

aging. The figures also show that the recovered binders at the PP2 aging level (PP2+0M) 

are more severely aged than the neat binders at the SAFT aging level (SAFT+0M) and 

the PP2 level aged binders (PP2+0M) do not completely pass the initial jump period. 

However, after 3, 6 and 9 months additional aging in the 60 oC room, the neat aged 

binders become harder than the mixture aged binders. 

Figure III-4 shows the DSR function hardening of recovered binders from the 

three mixtures made with the PG 64-22 unmodified binder. With the PG 64-22 binder, 

limestone was used for the Bryan mixture and river gravel for the A1 and A2 mixtures to 

find the mixture design impact on the binder oxidative hardening and the HMAC fatigue 

performance. The A1 and A2 mixtures have different binder contents (optimum, 

optimum plus 0.5 percentage points) to understand the impact of binder contents on the 

binder oxidative hardening and the HMAC fatigue performance. The binders in the 

mixtures also become harder with aging time. The DSR function hardening rate between 

PP2+0M and 3M is higher than the hardening rate between PP2+3M and 6M. More 

aging levels are better for making a more accurate determination of the initial jump 

period; however, the small number of aging levels was necessary to reduce cost. The 

recovered A1 and A2 binders have two aging levels (PP2+0M, PP2+6M). The A1 binder 
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(recovered from the smaller binder content mixture) is harder than the A2 binder even 

with aging. Also, both the A1 and A2 binders show that binder oxidation can change the 

binder's rheological properties in the mixture with aging time. The comparison of 

hardening rate is not appropriate due to the limited data; PP2 + 3M data are not available 

for the A mixtures. Because of this, it is hard to determine whether the binder hardening 

has passed the initial jump period. 

The recovered binders from the aged Yoakum mixtures with two binder contents 

are shown in Figure III-5. The figure also demonstrates that the binders in the mixtures 

become harder with aging time. In this case, the increase of 0.5 percentage points of the 

binder content does not affect binder hardening with aging time. Fortunately, the 9 

month aged Yoakum mixtures with the optimum binder content after PP2 level aging 

were available (B1-PP2+9M). The figure also shows that the hardening rate of the 

recovered binders before PP2+3M is higher than the hardening rate among PP2+3M to 

PP2+9M. 

The C1 and C2 binders are recovered binders from the mixtures which were 

made by the same mixture design as Yoakum mixture but with the PG 76-22 TR binder 

with two different binder contents. Figure III-6 shows that the binder content affects 

their hardening with the longer aging time of PP2+6M. 
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Figure III-4. DSR Function Hardening Rate for the Bryan Binder 
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Figure III-5. DSR Function Hardening Rate for Yoakum Binder 
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Figure III-6. DSR Function Hardening Rate for PG 76-22TR Binder 

 

 

Carbonyl Area Growth Comparison 

 

The oxidation rate (rCA) can be described by Equation III-8 where CA is carbonyl 

area; CA0 is extrapolated amount of carbonyl area at t = 0. The oxidation rate has a linear 

correlation with oxidation time after the initial jump period (Lau et al., 1992). 

 

 0 CACA CA r t= +  (III-8) 

 

Figures III-7 to III-9 indicate that the CA also increases with aging for both the 

neat binders and for the recovered binders from the Bryan, the Yoakum and the C1 

mixtures. These figures include all the CA data in Table III-4. The figures show that the 
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the SAFT aging level (SAFT+0M); the PP2 aged binders did not pass the initial jump 

period; the binders have linear aging rates after initial jump and the neat thin film aged 

binders get the higher CA than the mixture aged binders after long term aging.  

In Figure III-9, the binder modified with tire rubber and SBS (PG 76-22 TR for C 

mixtures) at the SAFT level aging shows different CA increases from the other two 

binders. The higher CA content at the SAFT aging level makes neat binder have a 

uniform oxidation rate from the SAFT aging level. The reason is unknown and more 

research is recommended. However, one previous study reports that one tire rubber/SBS 

modified binder has higher CA growth rate compared to its binder hardening rate with 

binder oxidation (Ruan et al., 2003a). 
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Figure III-7. Oxidation Rate for Bryan Binder. 
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Figure III-8. Oxidation Rate for Yoakum Binder. 
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Figure III-9. Oxidation Rate for PG 76-22TR Binder. 
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DSR Function Hardening Susceptibility 

 

The DSR function hardening susceptibility (HS) is a characteristic of the asphalt 

and is defined as the ratio of the ln DSR function increase to the CA growth. Previous 

studies indicated that DSR function HS is linear with binder oxidation at constant 

pressure (Juristyarini, 2003, Glover et al., 2005). 

The DSR function hardening susceptibility for the Bryan binder is shown in 

Figure III-10. The DSR function is plotted on a logarithmic scale against the CA which 

represents the amount of aging. Thus, aging time is removed as a factor and both the PP2 

aged binders and SAFT aged binders show the same linear relation between CA and 

DSR function. 

Figure III-11 shows the increase in DSR function with CA for the Yoakum 

binder. Again, both the neat aged binders and the mixture aged binders show the same 

linear relation suggesting the same aging mechanism is followed in both cases. 

The DSR function of the C1 mixture binder also increases with aging time, but 

the PP2 aging process (PP2 + 0 M) aged the C1 mixture binder slightly more than the 

SAFT process (SAFT+0M) in Figure III-12. Normally, SAFT aged binder is much less 

aged than PP2 aged binder. The C1 mixture binder has exceptionally high CA and DSR 

function hardening at SAFT aging level and slower hardening rate than the other two 

binders after the initial jump period. More data are recommended for certainty. 

However, this result provides possible criteria for designing more durable pavement. 

Higher initial stiffness could provide a high rut-resistant ability in early pavement 

service and slower hardening rate could improve long-term fatigue performance. More 

research is recommended to determine the fundamental reason for the different behavior 

of the C1 mixture binder. After 6 month additional aging in the 60 oC room, the neat thin 

film aged C1 mixture binder is harder than the mixture aged binder. 
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Figure III-10. DSR Function vs. Carbonyl Area of Bryan Binder (PG 64-22). 
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Figure III-11. DSR Function versus CA for Yoakum Binder (PG 76-22 SBS). 
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Figure III-12. DSR Function versus CA for C Mixture Binder (PG 76-22 TR). 
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DSR Map 

 

DSR map (G' versus η'/G') aging paths for both the recovered binders from the 

aged mixtures and the neat-aged binders, are shown in Figures III-13 to III-15. In each 

case, all the binders move upward and to the left with aging, as has been observed 

previously (Ruan et al., 2003, Glover et al., 2005, Al-Azri et al., 2006). 

The thin film binder aging catches up with the mixture binder partly because, 

after SAFT, it is still in the higher aging-rate initial jump period, but also because binder 

aging in thin films has more access to oxygen than binder in compacted mixtures. In the 

case of the Bryan binder, it appears that the same process is occurring but that the neat 

binder takes longer to catch up to the mixture-aged binder. Even though it is not very 

decisive to determine the exact starting point for a linear hardening rate slope, the 

SAFT+3M aging from the neat binder aging is surely beyond the initial rapid aging 

period. 

DSR function values beyond SAFT+ 6 months (the neat binder aging) or PP2 +6 

months (the mixture aging) are far more aged than standard PAV-aged binders. Note that 

only the Bryan binder has standard PAV data. However, Juristyarini et al (2003) showed 

that PAV aged binder hardening is close to PAV*16 hour in her study where the 

PAV*16 hour and PAV*32 hour procedures are considered in lieu of the standard PAV 

test as a field simulating aging process. PAV*16 and 32 hour aging results are also 

shown for comparison. Either PAV or PAV*16 aged binder after SAFT aging are 

approximately SAFT+3 months aging which is not long enough aging for the long-term 

binder aging conditions when compared to Texas field data in chapter II. 

The curved, dashed lines shown are lines of costant ductility (cm at 15 oC, 

1 cm/min) that were determined for unmodified binders by Ruan et al. (Glover et al., 

2005, Ruan etal., 2003); as a binder ages, its ductility decreases. The previous studies 

suggest that a ductility of 3 cm at 15 oC is a value that corresponds well to age-related 

cracking failure in HMAC pavements (Kandhal, 1977, Dole, 1958, Vallerga 1971) 
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Figure III-13. DSR Map for Bryan Binder. 
 

 

Figure III-14. DSR Map for Yoakum Binder. 
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Figure III-15. DSR Map for C Mixture Binder 
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Mixture Oxidative Aging and Fatigue Resistance 

 

As noted above, two mixtures were aged for 0, 3, and 6 months and 5 extra 

mixtures were aged for 0 and 6 months beyond PP2 conditioning in an environmental 

room (ER), temperature-controlled at 60 °C. These mixtures were subjected to the tests 

in Table III-3 to determine the various CMSE parameters from which mixture fatigue 

under strain-controlled testing was determined. 

Table III-5 is a summary of the SFi, the lab Nf (Ni + Np), and the field Nf  

calculated from laboratory tested mixtures. While the Table shows some degree of SFa 

dependence on mixture type due to the differences in the aggregate gradation, this 

parameter did not vary significantly as a function of aging condition based on a ±15% 

error tolerance. This SFa insensitivity to aging was theoretically expected because 

anisotropy is predominantly controlled by particle orientation due to compaction and 

will therefore be insignificantly affected by aging. Therefore, the same SFa for the other 

mixtures were used for the field Nf calculations. 

SFh on the other hand is dependent on both mixture type and aging condition. In 

terms of SFh magnitude, the higher the value, the greater the potential to self heal. The 

Table shows that SFh decreases with oxidative aging and increases with binder content at 

PP2 level aging. As mentioned earlier, the A1, B1 and C1 mixtures have optimum binder 

content and the A2, B2 and C2 mixtures have optimum + 0.5 percentage point binder 

content. Therefore, mixtures lose their healing ability with aging and show better SFh 

with more binder content at the initial aging time. However, SFh does not increase 

significantly with the increase of binder content at 6 months beyond the PP2 level aging. 
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Table III-5. Summary of Shift Factor, Lab Nf , and Field Nf Results* 

Aging Condition  

(Months in 60 °C ER beyond PP2) Mixture 
 

Parameter 
0 3 6 

SFa 1.63 1.65 2.09 

SFh 6.73 4.74 3.07 

Lab Nf 6.31 E+06 2.42 E+06 0.94 E+06 
Bryan 

Field Nf 69.2 E+06 18.9 E+06 6.03 E+06 

SFa 2.10 2.08 2.40 

SFh 7.26 4.76 3.81 

Lab Nf 7.88 E+06 4.95 E+06 3.23 E+06 

Yoakum (or B1) 

Field Nf 1.20 E+08 4.91 E+07 2.95 E+07 

A1, A2, B2, C1, C2 SFa 2.0 2.0 2.0 

SFh 7.18 - 3.63 

Lab Nf 1.30E+07 - 4.98E+06 

A1 

Field Nf 1.86E+08 - 3.62E+07 

SFh 7.28 - 3.66 

Lab Nf 1.49E+07 - 5.26E+06 

A2 

Field Nf 2.16E+08 - 3.85E+07 

SFh 7.32 - 3.98 

Lab Nf 9.01E+06 - 4.12E+06 

B2 

Field Nf 1.32E+08 - 3.28E+07 

SFh 5.91 - 2.97 

Lab Nf 4.92E+06 - 2.73E+06 

C1 

Field Nf 5.82E+07 - 1.62E+07 

SFh 6.53 - 2.95 

Lab Nf 6.12E+06 - 2.71E+06 

C2 

Field Nf 7.99E+07 - 1.60E+07 

* Lubinda Walubita in the Epps research group provided these data for this study 
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Binder oxidative aging in mixtures significantly decreases controlled-strain 

fatigue performance. Figure III-16 shows the decline of Field Nf as the result of binder 

aging and the deterioration is significant in all cases. Fatigue life decline with binder 

oxidation is also characteristic of each mixture type. The mixtures show different fatigue 

decline rates which are independent of field Nf  at PP2 level aging. Even though the A 

mixture has the higher Nf than the other mixtures at PP2 level aging, the B and C 

mixtures have slower fatigue decline rates than the A mixture over the period of aging 

time. This difference is significant with respect to the expected pavement fatigue 

performance. The reasons for this difference are not as yet understood, but are important 

and merit further research. 
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Figure III-16. Decline of Field Nf with Oxidative Aging. 

 

 



 

 

71

Figure III-16 also shows the impact of binder type on the fatigue performance. 

Except for the Bryan mixtures, all the mixtures were made from the same mixture design 

where the only difference is the binder type. The mixtures with the different binder types 

give the different fatigue performance and decline rates. Compared to the binder types, 

binder content has a little impact on the fatigue performance. 

Figure III-17 shows the fatigue performance results from the different mixture 

designs that used the same binder. Even though the binder type is the same, the different 

mixture design provided different initial fatigue life and different fatigue decline rate. 

The reason is not clear, but initial bond strength between the binder and the aggregate 

and change in bond strength with aging may play a role in the different fatigue 

performances. 
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Figure III-17. Decline of Field Nf with Different Mixture Designs due to Binder 
Oxidation 
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Summary and Conclusions 

 

Three types of binders and seven types of mixtures with different aging levels 

have been studied to determine the impact of binder oxidation on the HMAC fatigue 

performance. Mixture aging was compared to neat binder aging to determine whether the 

mixture aging follows the same aging mechanism as neat binder aging. The field fatigue 

was calculated from the measured laboratory fatigue at different binder oxidation levels. 

Following are the conclusions and recommendations from this study: 

 

Findings 

 

1) Binder oxidation significantly decreases the strain controlled fatigue life. 

2) Binder oxidation in mixtures follows a similar path as neat binders (DSR 

function hardening rate, hardening susceptibility, DSR map) even though 

hardening rates in mixtures are slower than those in neat binder thin-films 

due to diffusion resistance. 

3) The PP2 level aging process ages binders more severely than the SAFT level 

aging.  However, the PP2 level aged binders for this study still are not out of 

the initial jump period. 

4) DSR Function is a good rheological property for tracking binder durability due 

to oxidative hardening. 

5) Standard PAV is not appropriate for measuring the long-term aging binder 

properties for Texas asphalt pavement. 

6) HMAC mixture fatigue performance is a function of mixture design and 

binder type, and greatly affects the HMAC mixture fatigue performance. 

However, variability of binder content within normal construction ranges 

does not affect the fatigue life as much as binder type and mixture design. 
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Recommendations 

 

1) A more fundamental study of binder hardening related to the mixture fatigue 

life is recommended. The relationship between the mixture fatigue and binder 

hardening needs better understanding. 

2) The fatigue life at PP2 level aging is not a sufficient criterion to determine 

pavement fatigue performance. Therefore, the study of better fatigue 

performance criteria is recommended. 

3) More research is recommended to find the threshold of a linear hardening 

period in mixture aging. 

4) The reason why the tire rubber/SBS modified binder has a lower DSR function 

HS and a low hardening rate needs to be determined. 

 

The impact of binder oxidation on mixture fatigue life has been studied. In the 

following chapter, a method of estimating a pavement service life by using cumulative 

damage approach is described. 
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CHAPTER IV  
ESTIMATING THE EFFECT OF BINDER OXIDATION ON PAVEMENT 

SERVICE LIFE BY USING A CUMULATIVE DAMAGE APPROACH 

 

Synopsis 

 

Binders oxidize in laboratory mixtures, leading to binder embrittlement and 

decreases in fatigue resistance. Critical questions to pavement performance prediction 

are: 1) to what extent might embrittlement and decrease in fatigue resistance lead to a 

decline in pavement life, and 2) do different mixture designs react differently with 

regard to this question. 

Seven different laboratory-aged (aged at 60 °C, 1 atm air) mixtures were 

analyzed for fatigue resistance and mixture rheological properties. Also, their recovered 

binders were analyzed for oxidation and rheological properties. Finally, laboratory-aged 

(aged at 60 °C, 1 atm) neat binders were analyzed for oxidation and rheological 

properties for comparison with the recovered mixture-aged binders.  

Declines in mixture fatigue life (determined using the calibrated mechanistic 

fatigue analysis approach with surface energy measurement, CMSE) due to oxidation, 

coupled with a Miner’s hypothesis analysis of cumulative damage, predict very 

significant decreases in pavement durability.  Additionally, different mixtures can 

provide dramatically different calculated pavement lives when this decline in fatigue 

with oxidative aging is considered.  The differences in expected pavement life arise from 

the initial fatigue lives but, even more significantly, from differences in the rate of 

binder stiffening due to oxidation in mixtures and the impact of this stiffening on fatigue 

life decline. 
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Introduction 

 

Binder oxidation has a great potential impact on long-term performance of hot-

mix asphalt concrete (HMAC) pavement. HMAC is a complex composite material of air, 

aggregates, and binder that is used in more than 2.3 million miles of asphalt pavement in 

the United States (FHWA, 2001). Among the materials in the HMAC mixture, it is 

mainly the binder that changes due to oxidation. Binder oxidation causes both the elastic 

(G') and loss (G") moduli of binder to increase and the phase angle of binder to decrease 

(Glover et al., 2005). These detrimental effects increase the susceptibility of HMAC 

mixtures to fatigue cracking. 

The mechanical properties, anisotropic behavior, and fatigue performance of 

HMAC mixtures depend on traffic loading rate, and environmental conditions (Kim et 

al., 1997b; Lee, 1996; Lytton et al., 1993). HMAC mixtures also have the potential to 

heal (closure of fracture surfaces) during traffic loading rest periods (Cheng, 2002; Kim 

et al., 1997a; Si, 2001). The complicated characteristics of HMAC mixtures are difficult 

to adequately model. 

Previous studies (Doyle, 1958, Kandahl and Koehler, 1984, Kandhal, 1977, 

Clark, 1958, Halstead, 1963) indicate that pavement long term durability relates well to 

asphalt binder ductility. Ruan et al. (2003) found a good correlation between a 

fundamental rheological function, also called DSR function (G'/(η'/G')) and ductility 

below ductilities of 10 cm. They found that binder long-term durability is not dependent 

on a single rheological property such as the dynamic elastic shear modulus, G' and the 

dynamic shear viscosity, η' but rather both G' and η'/G'. Al-Azri et al (2006) showed that 

the DSR function can represent binder hardening as well as binder durability 

(represented by ductility) in field asphalt pavements with binder oxidation.  

The primary goal of this study was to develop a method of estimating changes in 

pavement service life due to the decline of HMAC mixture fatigue with binder 

oxidation. The relation of the fatigue life to oxidative binder hardening, the binder 

hardening rate, pavement loading rates and estimated initial fatigue lives are investigated 
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for their impact on the expected pavement service lives. 

 

Objectives 

 

In this study, the effects of binder oxidative aging on HMAC fatigue resistance 

were investigated using a continuum micromechanics-based calibrated mechanistic 

fatigue analysis approach with surface energy measurement. The specific objectives of 

the study were 1) to develop a cumulative damage understanding of fatigue decline that 

utilizes both mixture and binder characteristics, 2) to estimate pavement service life by 

considering binder oxidation and pavement loading rate simultaneously, and 3) to 

determine important criteria for pavement service life. 

 

Methodology 

 

Three different types of binders, seven different types of HMAC mixtures and 

the recovered binders from the HMAC mixtures were tested at several levels of binder 

oxidation for this study. Binder tests include: gel permeation chromatography (GPC) 

using a refractive index (RI) detector to insure complete solvent removal in the binder 

recovery process; dynamic shear rheometry (DSR) to measure the rheological properties 

of the binder; and Fourier transform infrared (FTIR) spectroscopy to measure the 

carbonyl content in the binder. The CMSE laboratory tests for the HMAC mixtures 

involve the use of Whilhelmy plate (WP), the universal sorption device (USD), and other 

instruments to determine tensile strength (TS), uniaxial relaxation modulus (RM) and 

dissipated pseudo strain energy (DPSE). More details and references are given in 

Chapter III. 
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Results and Discussion 

 

The results can be divided into two parts of interest: first, the impact of binder 

oxidative hardening on the HMAC mixture fatigue performance and second, the 

estimation of expected pavement service life by using a cumulative damage approach. In 

the first part, neat binder aging is compared with the mixture aging to emphasize that 

binder oxidation gives a detrimental impact on both binders. Then, the fatigue decline 

due to binder oxidation is noted. In the second part, a method of estimating pavement 

service life by simultaneously considering binder oxidative hardening impact and 

pavement loading rate and the other parameters which can impact pavement service life 

are studied. 

 

Binder Aging Versus Mixture Aging 

 

The physico-chemical properties of thin film aged neat binders and those of 

recovered binders from aged mixtures are compared to help assess whether the mixture 

aging process ages binders with the same aging mechanism as the neat binder aging 

process. Figure IV-1 shows that the DSR function (G'/(η'/G')) for the recovered binders 

versus the CA, increases with aging. The DSR function is plotted on a logarithmic scale 

against the CA which represents the amount of aging, thereby removing aging time as a 

factor. In the figure, both the mixture aged binders and the neat aged binders have the 

same linear relations between CA and DSR function after the initial jump (rapid aging) 

period. The results suggest that neat binder aging and mixture aging have the same aging 

mechanism even though there is diffusion resistance in the mixture aging, that shows the 

binder hardening and oxidation rates compared to neat binder aging. 

The figure also indicates that the PP2 level aged binders (PP2+0M) are more 

aged than the SAFT level aged binders (SAFT+0M) but later, after 3 and 6 months 

additional aging in the 60 oC room, the neat aged binders are either catching up with or 

passing by the mixture aged binders because, after SAFT, it is still in the higher aging-
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rate initial jump period, but also because binder aging in thin films has more access to 

oxygen than binder in compacted mixtures. In the case of the Bryan binder, it appears 

that the same process is occurring but that the neat binder takes longer to catch up to the 

mixture-aged binder. 
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Figure IV-1. DSR Function versus CA for the Binders. 

 

 

 

The Impact of Binder Oxidation on Mixture Fatigue Life 
 

In Figure IV-2, the effect of binder oxidative aging on mixture fatigue resistance 

is presented. The decrease in controlled strain fatigue life with aging is striking, and 
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significant differences in the rate of decline were noted among the mixtures. The details 

of the fatigue results are given in Chapter III. The reasons for these differences are as yet 

unknown. The discussion in next section elaborates on the possible impact of this 

decline in fatigue resistance on a pavement’s service life and its relationship to binder 

mixture characteristics. 
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Figure IV-2. Decline of Field Nf  due to Binder Oxidation 

 

 

Cumulative Damage Approach 

 

The approach discussed below utilizes the binder DSR function, attempts to 

incorporate the significant aspect of traffic loading, and is based on Field Nf.  First, the 

following definitions are made: 
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Nf  =  Field fatigue life, in ESALs 

RL =  Pavement loading rate, ESALs/yr 

 

Then Nf / RL = Pavement Fatigue Life Expectancy, in years, assuming that the 

fatigue is the only factor consuming the pavement life (no decline due to aging, for 

example). If, however, Field Nf  is a function of time due to a decline with binder 

oxidative aging, for example, then this decline must be taken into account when 

estimating the pavement fatigue life. This process is typically quantified by calculating 

cumulative damage by Miner’s Hypothesis as:  

 

 i

i

nD
N

=∑   (IV-1) 

 

where D is the total damage (as a fraction) and Ni is the fatigue life when ni loads are 

applied.  

In this work, damage and hardening rates due to oxidation are related by the 

same approach but expressed in terms of time rather than loads. For a differential time 

period dt, during which the field fatigue life is Nf (t), the fraction of a pavement’s total 

available fatigue life consumed during dt is calculated as: 

 

 Fraction of Life Expended During Time 
( ) /f L

dtdt
N t R

=  (IV-2) 

 

 

Then, Miner’s hypothesis is used to sum over the pavement’s entire life, defined to be 

the amount of time to reach an integrated fraction equal to unity: 
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0

1
( ) /

endt

f L

dt
N t R

=⌠
⎮
⌡

 (IV-3) 

 

Now, from the experimental data for the decline of Field Nf with binder oxidative 

aging, Nf (t) can be represented by an exponential relation: 

 

 1 2
0( ) K K t

f fN t N e−=  (IV-4) 

 

where K1 is the magnitude of the power law slope that relates the decline of Nf  to the 

increase in the DSR function G'/(η'/G') with aging and K2 is the (exponential) rate of 

increase of the DSR function with aging time in the pavement. More explanations on K1 

and K2 are on page 81 to 83. Nfo is the initial fatigue life at t = 0. Solving this integral for 

tend gives: 

 

 1 2 0

1 2

ln( / 1)f L
end

K K N R
t

K K
+

=  (IV-5) 

 

Equation IV-5 also can be solved numerically for tend if an analytical expression is not 

available. 

An aging shift factor can be defined as the ratio of the age-shortened fatigue life 

to the unaged fatigue life expectancy: 

 

 1 2 0
aging

1 2 0

ln( / 1)Age shortened Life
Unaged Life Expectancy /

f L

f L

K K N R
SF

K K N R
=

+−=  (IV-6) 

 

From this relationship, the bigger K1 and K2 are, the smaller the aging shift 

factor, i.e., the shorter the pavement’s fatigue life expectancy. Equation IV-6 also shows 

that K1 and K2 have an identical effect on this shift factor. That is, the impact of aging on 



 

 

82

the DSR function and the response of the fatigue life to these changes in DSR function 

produce the same effect on the final aging shift factor. 

The decline of mixture fatigue life with increasing DSR function is shown in 

Figure IV-3. Values of Nf0 (here equal to the fatigue life of the PP2-aged compacted 

mixtures) were reported in Table IV-1, and K2, the ln(DSR function) hardening rate, is 

taken from a lab-to-field hardening rate conversion factor of 15 field months per one ER 

month obtained in Project 0-1872 (Glover et al., 2005) and applied to the DSR function 

hardening rate in Figure IV-4. Hardening rates of course vary from pavement to 

pavement and depend principally upon the climate but also on air voids and binder 

content.  Consequently, the value used here gives only an approximate indication for any 

specific pavement. 
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Figure IV-3. Decline of Mixture Field Nf with Binder DSR Function Hardening. 
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Figure IV-4. DSR Function Hardening Rate of Neat Binder after Initial Jump. 

 

 

Table IV-1. Summary of Pavement Fatigue Life Parameters 
 

Nfo RL K1 K2 SFaging Pavement Life

106 ESALs 106 ESALs/yr (yrs after PP2)
Bryan 69 0.25 1.37 0.25 0.049 13.5

A1 186 0.25 2.44 0.25 0.014 10.2
A2 216 0.25 1.87 0.25 0.015 13.0

Yoakum (B1) 120 0.25 0.91 0.23 0.046 22.1
B2 132 0.25 0.73 0.23 0.051 26.9
C1 58 0.25 0.57 0.19 0.129 30.1
C2 80 0.25 0.95 0.19 0.070 22.5

Mixture

 
 

 

Table IV-1 summarizes the parameters and calculations for the mixtures. A 

loading rate of 0.25 million ESALs/year was selected for these calculations, consistent 

with the hypothetical field condition discussed in the HMAC Mixtures Tests section of 
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chapter III. These calculations are intended primarily to represent a calculation 

procedure that shows the differences in fatigue life that might be expected between 

different mixtures, based upon laboratory measurements that account for binder 

oxidative aging. More laboratory and field data are needed to verify this approach. 

As an additional calculation, a remaining fraction of a pavement service life (fr) 

can be expressed in Equation IV-7 because the fraction of the remaining service life (fr) 

is equal to 1 minus the fraction of the consumed pavement service life (fc). 
 

 ( )1 2

0 1 2

1 1 1K K tL

f

Rfr fc e
N K K

= − = − −  (IV-7) 

 

The difference in the estimated pavement service lives (after PP2 short-term 

aging) for the mixtures is striking. The results are shown in the figures IV-5 to IV-7, 

where the curved lines represent the remaining service life change with aging, and the 

straight lines represent remaining service life change without aging impact. The 

remaining fraction of estimated service life drastically decreases with aging time in all 

cases, when aging impact was considered. 

The pavement service lives of the Bryan and the A mixtures, for which the PG 

64-22 unmodified binder is used, are shown in Figure IV-5. Even though the Nf0 values 

for the A mixtures are much greater than the Nf0 values for the Bryan mixture, the 

pavement service life of the Bryan mixture is better than the A1 mixtures and about the 

same as the A2 mixtures, which has 0.5 percentage point more binder than the A1 

mixture. These results show that the impact of K1 is greater than that of Nf0 because their 

K2 and RL values are the same but Nf0 and K1 are not. 

While the Yoakum mixture (B1) also has the smaller Nf0 than the A1 mixtures, it 

has the much longer pavement service life primarily due to the lower K1 value. This 

result is shown in Figure IV-6 where the B2 mixture has a higher calculated service life 

than the B1 mixture. The B mixtures like the A mixtures, improve service life with more 
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binder content; however, the impact of binder content increases is not significant, 

compared to the impact of K1 and K2. 

The C1 mixture also indicates the importance of the K1 and K2 values, Figure 

IV-7. Even though the C1 mixture has the lowest Nf0 among the seven different 

mixtures, it has the highest calculated pavement service life due to its lowest K1 K2 

product.  

 

 

 

Figure IV-5. Service Life Decline for Bryan, A1, and A2 Mixtures due to Aging 
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Figure IV-6. Service Life Decline for Yoakum Mixtures due to Aging 

 

Figure IV-7. Service Life Decline for C1 and C2 Mixtures due to Aging 
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In summary, the C and the B mixtures have longer estimated service lives than 

the A mixture even though the A mixture has a higher fatigue life than the other 

mixtures at PP2 level aging. All the data are shown in Figure IV-8 for comparison. 
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Figure IV-8. The Effect of Oxidative Aging on Estimated Pavement Service Life 
 

 

It should be noted again that PP2 short-term aging produces a binder in the 

mixture that is significantly more aged than the SAFT (Rolling Thin Film Oven Test 

equivalent) aged binder. How PP2 aging compares to the aging of an in-service HMAC 

pavement is yet unknown. However, based upon the work of Glover et al., the PP2 aging 

may reflect as much as four years of HMAC pavement in-service life (Glover et al., 

2005). If so, the calculated 10 years service life after PP2 aging (A1 mixture) amounts to 



 

 

88

14 years of HMAC pavement total service life, the 20 years service life after PP2 

(Yoakum mixture) 24 years and the 30 years after PP2 for the C1 mixture would 

correspond to 34 years of HMAC pavement total service life. 

The differences in pavement fatigue lives for the mixtures are the results of K1, 

the rate at which the fatigue life declines with binder oxidative hardening and K2, the 

binder’s hardening rate in the pavement. The hypothetical impacts of K1, K2, Nf0 and RL 

on the pavement service lives are compared in Figures IV-9 – IV-12. These comparisons 

suggest that K1 and K2 values have significant roles on the pavement service life. 

In Figure IV-9, the impact of the initial fatigue life on the pavement service life 

while holding other parameters constant is not overwhelming. Note that '*' in the figure 

represents the measured Nf0 values for a given mixture, Table IV-1. The Nf0 increases 

over those data points do not result in dramatic increases in their service lives. 

Therefore, Nf0 (the field fatigue life at PP2 level aging) may not be the most important 

indicator of fatigue life. 

Figure IV-10 shows the impact of K1 on the pavement service life while holding 

other parameters constant, which suggests that it has the most significant effect of the 

four parameters. All the given mixture's service lives are greatly affected by the K1 

values no matter how good their other parameters are. However, a fundamental 

understanding of how K1 might be decreased by changes in mixture parameters is 

unknown and more research is strongly recommended. 

The impact of K2 is shown in Figure IV-11 where the pavement service lives 

greatly decrease as the binder hardening rate increases. Therefore, more oxidative 

hardening resistant binders are desirable to expand pavement service lives. 

Figure IV-12 shows the impact of RL (pavement loading rate) which greatly 

affects the pavement service life below approximately 0.5 million ESALs/year and its 

detrimental impact is greatly reduced beyond 1.5 million ESALs/year. It also shows 

again that the mixtures with the better K1 and K2 provide better pavement service lives at 

a constant RL (C1> Yoakum> Bryan> A1). 
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Figure IV-9. The Impact of Nf0 on Pavement Service Life. 

 

Figure IV-10. The Impact of K1 on Pavement Service Life. 
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Figure IV-11. The Impact of K2 on Pavement Service Life 

 

Figure IV-12. The Impact of RL on Pavement Service Life 
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As a comparison method for calculating the binder hardening rate (K2), the global 

aging model (GAM) of Mirza and Witczak was used to calculate viscosity at 60 °C 

versus time for the Bryan binder (the unmodified PG 64-22 binder) (Mirza and Witczak, 

1995); the GAM is used by the mechanistic empirical pavement design guide (MEPDG) 

(AASHTO, 2004). For each viscosity over time, a value of the DSR function was 

determined from the known viscosity versus DSR function relationship for this specific 

binder shown in Figure III-3 in chapter III. Thus DSR hardening over time was 

determined from the GAM. Then, using the decline in fatigue life that results from 

increases in the DSR function, the field Nf as a function of time was determined. Finally, 

the integral in Equation IV-5 was evaluated numerically to give tend.  

The value thus obtained from the GAM (using a mean average annual 

temperature of 70 °C and a mix/laydown viscosity of 6,500 poise) was 73 years versus 

12.9 years from the laboratory and field experimental data. The GAM appears to 

calculate oxidative hardening rates that would significantly underestimated the impact of 

oxidation on pavement service life. 

Additional comments about pavement aging are appropriate. The above data 

suggest that when binder aging occurs in the pavement, it can have a significant impact 

on pavement service life in terms of fatigue performance.  However, it does not address 

whether or not binders in pavements actually age.  At least one report in the literature is 

used to support the idea that pavements age primarily near the surface and little more 

than an inch below the surface, and the GAM appears to follow this assumption (Coons 

and Wright, 1968).  A separate but related issue is the extent to which binders in 

pavements harden in service and how quickly they harden. This issue is discussed by Al-

Azri et al. (2006). 

 

Summary and Conclusions 

 

Binder oxidative aging in mixtures significantly decreases the controlled-strain 

fatigue performance. Fatigue life decline with binder oxidation is characteristic of each 
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mixture type. The cumulative damage approach provides a rational method for 

quantitatively estimating pavement service life by simultaneously considering both the 

pavement loading rate and the fatigue life decline due to binder oxidative aging. The 

differences in expected pavement life arise from differences in their initial fatigue lives 

and much more significantly from different declines in fatigue life with binder stiffening 

combined with different binder hardening rates in the mixtures. The cumulative damage 

controlled-strain calculation shows a rapidly accelerating decline in pavement life as 

oxidative aging progresses. 
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CHAPTER V  
BINDER-MIXTURE RELATIONS DUE TO BINDER OXIDATION 

 

Synopsis 

 

Binder oxidation and embrittlement has a significant impact on fatigue 

performance; mixture field fatigue life, measured at controlled-strain conditions, 

decreases dramatically with oxidative aging. However, the fundamental properties of 

binders and mixtures that are responsible for this fatigue life decline are unknown. In 

this work, the fundamental rheological properties of binders and their mixtures were 

studied to establish binder-mixture relationships and the impact of oxidative binder 

hardening and temperature on these relationships.  

Results indicate that binder oxidative hardening greatly increases mixture 

stiffness. The mixture G* versus binder G* correlation illustrates 1) that compacted 

mixtures formed from AASHTO PP2 (4-hr) loose mix aging follow quite well the Hirsch 

model correlation established by Christensen, but 2) that subsequent binder oxidation 

stiffens the mixture significantly more than would be indicated by this Hirsch model. 

Evidently, binder oxidation produces a fundamental change in binder and mixture 

properties that is not captured by the Hirsch Model.  Binder and mixture stiffening with 

decreases in temperature follow much more closely the Hirsch model. A mixture visco-

elastic function correlates well to the binder DSR function and may provide a useful 

indication of mixture durability in the presence of oxidative binder hardening. 

 

Introduction 

 

Pavements deteriorate over time and eventually fail in service. While the traffic 

loading is considered to be a major factor leading to pavement failure, binder 

embrittlement due to oxidative aging almost certainly plays a significant role as well. 

One objective of this study is to determine the impact of oxidative aging on mixture 
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failure resistance and on other mixture properties in general. In the previous chapters, the 

effect of binder oxidation on the mixture fatigue performance was found to be significant. 

However, fundamental properties of mixtures related to binder oxidation which 

affect the mixture fatigue performance are not known. This study addresses binder 

mixture relationships other than fatigue and the impact of oxidative binder hardening on 

these relationships. 

 

Objectives 

 

Of particular interest is the impact of binder aging on mixture stiffness, as 

characterized by the mixture's rheology. In addition to the aging effect, the impact on 

mixture stiffness and fatigue life due to binder hardening that result from temperature 

decreases are studied as a possible rapid surrogate for the effects of oxidative aging. 

 

Methodology 

 

Loose mix, aged according to AASHTO PP2 four hour short-term aging 

(AASHTO, 1996b), was compacted, tested in the nondestructive relaxation modulus 

procedure, and aged further in a 60 °C environmental room. Two types of mixtures were 

aged at intervals of 3 months (from 0 to 9 months) and tested after each of these aging 

intervals. In this way, the same physical specimen was tested at each aging level so that 

the effect of binder aging could be determined independent of other mixture variables. 

Replicate compacted mixture specimens were aged for the specified intervals and the 

binder recovered and tested for DSR properties that could be compared to the mixture 

properties. 
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Binders and Tests 

 

To associate oxidative binder hardening with mixture stiffening, two different 

binders were used in this study: a PG 64-22 from a basic mixture design and a PG 76-22 

SBS modified binder from a rut resistance mixture design. The mixtures were 

conditioned and the binders recovered and tested as shown in Figure V-1. 

 

 

 

Figure V-1. Binder Oxidative Aging and Testing. 
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used to measure the rheological properties of the recovered binders; details are described 

in Chapter III. 

 

Binder Data Analysis 

 

From DSR measurements, dynamic storage (G') and loss moduli (G") were 

measured at three different temperatures (20, 40, 60 oC), with a 2.5 cm composite 

parallel plate used for 60 oC measurement and a 1.5 cm metal parallel plate used for 20 

and 40 oC in order to prevent upper assembly compliance problems with the stiffest 

binder.  

Master-curves for the dynamic complex modulus (G*) were constructed using 

time-temperature superposition (TTSP) at 20 oC shown in Equation V-1 (Ferry, 1980; 

Williams, 1971) and compared with the Mixture G*.  

 

 
( )

( )
1

2

log ref
T

ref

C T T
a

C T T

− −
=

+ −
 (V-1) 

 

where aT is the shift factor at temperature T relative to the reference temperature Tref and 

C1 and C2 are empirically determined coefficients. In addition to master-curves, the DSR 

function (G'/(η'/G')), measured at 44.7 oC, 10 rad/s but shifted to 15 oC 0.005 rad/s by 

TTSP, was used to track changes in binders with oxidative aging (Ruan et al., 2003b).  

 

HMAC Mixtures and Tests 

 

Two different HMAC mixtures were used to assess the binder-mixture (BM) 

relationships. One was a dense graded TxDOT type C mixture with a PG 64-22 binder 

and limestone aggregate (defined as the Bryan mixture), and the other was a 12.5 mm 

Superpave HMAC mixture with a PG 76-22 SBS modified binder and river gravel 
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aggregate (defined as the Yoakum mixture). The mixture BM test was the same CMSE 

relaxation modulus (RM) tensile test described in Chapter III. Because the RM test was 

assumed to be non-destructive, the same HMAC specimen was repeatedly tested at 

different aging conditions. Thus data were obtained at each test temperature and at each 

aging level for which the only variable mixture parameter was binder stiffening; other 

mixture parameters (void in mineral aggregates (VMA), void filled with asphalt (VFA), 

binder content, aggregate size distribution and configuration, etc.) were identical within  

 

 

 

Figure V-2. Binder-Mixture Characterization Test Procedure. 

 

 

the same specimen. The test was performed with both mixtures (Bryan and Yoakum) at 

0, 3 and 6 months beyond PP2, four hour aging conditions (60 oC, 1 atm air) with at least 
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two replicate specimens for each mixture. Figure V-2 is a schematic illustration of the 

BM characterization test plan with RM testing. 

 

HMAC Mixture Viscoelastic Characterization 

 

The data obtained from the tensile RM test includes the time-dependent elastic 

relaxation modulus (E(t)), loading time (t), and test temperature (T). From these data, a 

master curve for E(t) was constructed at a reference temperature of 20 oC by using TTSP. 

Then, a master curve for E(t) and dynamic shear storage (G'(ω)), loss (G"(ω)) and 

complex (G*(ω)) moduli for a mixture were calculated to be compared with binder 

G*(ω). A viscoelastic function (VE function) for mixtures was calculated to be 

compared with binder DSR function in the frequency range where neither the viscous 

nor the elastic property is dominant. 

 

Elastic Modulus (E(t)) Master Curve 

 

A master curve for E(t) is constructed at a reference temperature of 20 oC from 

the data obtained at three different temperatures (10, 20, and 30 oC) by using the TTSP 

procedures. E(tr) is found to be well represented by the model given by Equations V-2 - 

V-4: 
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where E(t),and E(tr) = time-dependent elastic modulus at time t (MPa); E1 = initial (tr = 

1 sec) elastic modulus (MPa); tr  = reduced time (second); T = Temperature (oC); aT(T) = 

shift factor at temperature T relative to the reference temperature Tref; a and b = 

empirically determined coefficients. 

The elastic modulus obtained by the RM test is a function of time because of the 

viscoelastic nature of the HMAC mixture. Under deformation, the stress builds because 

of the mixture’s elastic nature but then relaxes at fixed strain because of its ability to 

undergo viscous flow. This relaxation is reflected in the decrease of E(tr) over time in the 

RM test. Therefore, storage (elastic) and loss (viscous) moduli can be calculated from 

the E(tr) master curve.  

The m value in Equation V-3 is assumed to be a function of time and temperature 

according to Equation V-4. Once the temperature shift factors are determined through 

TTSP alignment of the data, and the model parameters E1, a, and b are estimated, E(tr) 

can be calculated. 

 

Dynamic Mixture Storage and Loss Moduli 

 

The elastic modulus is converted to a shear modulus according to Equation V-5 

 

 1
1

( )( ) ,  
2(1 ) 2(1 )

r
r

E t EG t G
ν ν

= =
+ +

 (V-5) 

 

Converting to frequency by Equation V-6 

 

 1
2 rt

ω ≅  (V-6) 

 

dynamic shear storage (G') and loss (G") moduli are calculated by Equations V-7and 

V-8 (Lytton et al., 1993; Schapery, 1973) 



 

 

100

 

 1
(1 )( )
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 1
(1 )"( )

2m

m mG G sin πω
ω−
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 (V-8) 

 

and the magnitude of the complex dynamic shear modulus (G*) is given by Equation 

V-9 

 

 ( ) ( )( )
1

2 2 2*( ) '( ) "( )G G Gω ω ω= +  (V-9) 

 

where tr = reduced time (second); m = exponential stress relaxation rate (0 ≤ m < 1); ν = 

Poisson’s ratio (≅ 0.33); G(t) and G(tr) = time-dependent shear modulus at time t (MPa); 

G1 = initial shear modulus (MPa); '( )G ω  = elastic (storage) dynamic shear modulus 

(MPa); "( )G ω  = viscous (loss) dynamic shear modulus (MPa); G*(ω)= Complex 

dynamic shear modulus (MPa); Γ = gamma function.  

For ν, a value of 0.33 was used for the HMAC mixture consistent with the work 

done by Huang and Lytton et al (Huang, 1993, Lytton et al., 1993). Γ is the Laplace (or 

Euler) Gamma transformation function. 

 

Results and Discussion 

 

The test results are presented in five sections that address 1) binder rheology, 2) 

mixture rheology, 3) binder-mixture relationships (including the impact of temperature 

compared to that of oxidation), 4) the impact of temperature versus oxidation on DSR 

map, and 5) the impact of temperature on mixture fatigue resistance. 
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As discussed at the beginning of this chapter, aged mixture samples were 

prepared using the PP2 four hour short-term procedure. This aged mixture was then used 

to make replicate compacted mixtures. One of these replicates was tested as is (PP2 plus 

0 months), then aged and tested, according to Figure V-2. 

Binder was recovered from other replicate compacted and aged mixture samples 

and tested to provide binder properties to compare to the tested mixtures. From the 

binder properties and their corresponding mixture properties, the effect of binder 

hardening on mixtures was evaluated directly and without the variability created by 

mixture parameters other than binder rheology. 

 

Effect of Mixture Oxidation on Binder Rheology 

 

Binder master curves at 20 oC for the complex dynamic shear modulus G*(ω) 

were used to track changes in binder properties with aging. Figures V-3 and V-4 show 

the results for binders recovered from Bryan and Yoakum mixtures respectively. Note 

that the Yoakum mixture has one more level of aging (PP2+ 9 months in 60 oC room). 

The figures show that G*(ω) increases with aging for both unmodified (Bryan) 

and modified (Yoakum) binders. Continued binder hardening is evident through the 

higher aging level. These increases at low frequency reflect the well-documented, and 

seemingly without-limit, increases in the low shear rate viscosity (η∗0) that accompany 

binder aging because η* = G*/ω. 
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Figure V-3. Recovered Binder Master Curves for G*(ω) (Bryan Mixture). 
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Figure V-4. Recovered Binder Master Curves for G*(ω) (Yoakum Mixture). 
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Effect of Mixture Oxidation on Mixture Rheology 

 

Binder oxidation affects mixture properties as well as binder. Figures V-5 and V-

6 show mixture stiffness increases due to binder oxidation. Elastic modulus (E(t)) in a 

controlled tensile strain mode was measured at each aging level (PP2 + 0, 3 and 6 

months) with three different temperatures (10, 20 and 30 oC). Tensile RM master curves 

were determined for both the Bryan and Yoakum mixtures at a reference temperature of 

20 °C by using TTSP. 

Clearly, there are inconsistencies in the data, most notably toward the end of each 

relaxation test, that make the master curve determination somewhat problematic. The 

value of m in Equation V-3 is assumed to be a function of time to allow the master 

curves to be non-linear on the log-log plot to explain mixture's non linear behavior. 

Additional experience with this method and independent verification with other 

experiments (dynamic modulus, for example) is necessary in order to achieve more 

confidence in the mixture viscoelastic properties. The objective of obtaining a set of data 

at different aging levels from the same mixture specimen is to study the effect of binder 

aging alone on mixture stiffness and viscoelastic behavior. If different specimens are 

studied, then the whole host of mixture variables (aggregate gradation, VMA, VFA, 

binder content, and aggregate alignment configuration) is brought to play, and greater 

variability in the aging data will result. 

From these figures, it is clear that oxidative aging stiffens the tensile RM of the 

mixture significantly, consistent with stiffening of the neat binder with aging. Also noted 

is that the Bryan mixture is stiffer than the Yoakum mixture at comparable levels of 

aging and test conditions even though, as noted above, the Bryan binder is less stiff than 

the Yoakum binder at comparable aging conditions, probably because the Yoakum 

mixture has a higher binder content and these thicker binder films than the Bryan 

mixture. A more fundamental study is recommended to better understand these 

relationships. 
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Figure V-6. Master Curves of Bryan Mixture for E(t). 
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From these tensile RM master curves, dynamic shear moduli master curves, also 

at a reference temperature of 20 °C, were calculated as defined by Equations V-5 

through V-9. The results are given in Figure V-7 ( 'G , "G ) for the Bryan mixtures and in 

Figure V-8 ( 'G , "G ) for the Yoakum mixtures. In addition, Figure V-9 compares the 

complex dynamic shear moduli ( *G ) of the Bryan and Yoakum mixtures. Note that *G  

increases with aging for both mixtures and that the Bryan mixture is stiffer than the 

Yoakum mixture, most evident at the lower frequencies. 

Again, stiffening of the mixture with oxidative aging is evident as 'G , "G , and 

*G  all increase, and the crossover frequency (frequency at which ' "G G= ) moves to a 

lower frequency. The effects of 60 °C aging for 0, 3, and 6 months beyond PP2 

conditioning are evident in the Figures V-5 and V-6. 
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Figure V-7. Master Curves of Bryan Mixture for G'(ω), G"(ω). 
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Figure V-8. Master Curves of Yoakum Mixture for G'(ω), G"(ω). 

10-4 10-3 10-2 10-1 100 101101

102

103

104

Bryan versus Yoakum Mixtures
Ref T=20 oC

 

 BRY-MixPP2+0M
 BRY-MixPP2+3M
 BRY-MixPP2+6M
 YKM-MixPP2+0M
 YKM-MixPP2+3M
 YKM-MixPP2+6M

 G
*(

M
Pa

)

Angular Frequency (rad/sec)  
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Similar to the DSR map for the recovered binders (shown in chapter III), a 

viscoelastic property aging map can be constructed from the mixture viscoelastic master 

curves. Goodrich (1991) mentioned that the mid-temperature mixture rheological 

properties (0.1 rad/sec, from 10 oC to 50 oC) are influenced by both the binder and the 

aggregate. As a first trial in this study, an angular frequency, 0.002 rad/sec was 

arbitrarily selected where G"/G' is close to unity at 20 oC, as it is for an aged binder at 15 
oC, 0.005 rad/sec. In this way it was hoped that aging of the mixture would be readily 

observed from the viscoelastic properties. If the frequency is too high or the temperature 

too is low, then the mixture would reflect elastic limit properties and not be sensitive to 

aging. So the VE function was calculate as follows: 

 

 ( )( ) oVE function '/ "/ '  at 20 C, 0.002 rad/secG G G ω=  (V-10) 

 

Values from the 20 °C reference master curves at 0.002 rad/sec are used to plot 

G' versus η'/G', and the results are shown in Figures V-10 (Bryan) and V-11 (Yoakum). 

In both figures, one six month aged mixture (star symbol) is a different compacted 

mixture specimen than the others; nevertheless, the VE values for the two 6 month aged 

mixtures are quite close. 
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Figure V-10. VE Function Map of Bryan Mixtures 
 
 
 

 

Figure V-11. VE Function Map of Yoakum Mixtures 
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Binder-Mixture Relationships 

 

The previous sections considered binder and mixture rheology, as affected by 

mixture oxidation, separately. Binder master curves, binder movement across the DSR 

map with aging, mixture master curves and the mixture movement across a mixture VE 

function map were presented. 

In this section, the mixture properties are related to their corresponding 

analogous binder properties. For example, a mixture G* is related to binder G* (at the 

same reference temperature and frequency) or a mixture VE function is related to its 

binder DSR function. Working from the mixture and binder master curves, these 

relationships are obtained over a range of mixture and binder properties.  

Determining the impact of binder oxidation on mixture rheology, separate from 

other mixture variables and parameters is of particular interest in this effort. Key to 

achieving this objective is observing changes in mixture rheology that occur due to 

oxidative aging of the same mixture specimen, as was outlined in Figure V-2. 

As noted previously, the DSR function relates well to the binder ductility at 

15 oC, 1 cm/min. This ductility has been reported to relate to road failure, with 3 cm 

being a performance limit. The objective in developing a mixture VE function is to 

assess whether a mixture property might be used in lieu of a binder property as an 

indicator of durability as well as to better understand the relation between mixture and 

binder properties. 

Relating mixture G* to binder G* is of interest because of correlations previously 

reported in the literature, correlations that were developed through model parameter 

estimates using a large number of different mixtures (Christensen et al., 2003). The work 

reported in this section provides a detailed experimental analysis of one such correlation 

through measurements of changes in mixture G* caused by binder oxidation and by 

changes in temperatures, while mixture parameters and variables remain constant. 
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VE Function Related to the Binder DSR Function 

 

The VE function mixture trends of the previous section are obvious and very 

similar to those of the recovered binder DSR map. With aging, the VE function moves to 

the left and upward due to binder stiffening. The correlation between the mixture VE 

function and binder DSR function is shown in Figure V-12. Interestingly, the slopes of 

the Bryan and Yoakum plots are very close and differences are manifested primarily in 

an offset (magnitude) of the two sets of data. For each aging level, the Yoakum binder is 

stiffer than Bryan binder whereas the Bryan mixture is stiffer than the Yoakum mixture. 
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Mixture G* versus Binder G* 

 

Hirsch Model. According to Christensen et al, G* for a mixture is a function of 

aggregate contact volume, voids in mineral aggregate (VMA), voids filled with asphalt 

(VFA), and G* of the binder according to the Hirsch model, which is expressed in 

Equations V-11 and V-12 (Christensen et al., 2003). 
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where Pc = aggregate contact volume; VFA = voids filled with asphalt; VMA = voids in 

the mineral aggregate.  

Figure V-13 shows the mixture G* as a function of binder G* according to the 

Hirsch model for Bryan mixture design which has a VMA of 17 and a VFA of 58.8. 

According to this model, the mixture G* varies by less than two orders of magnitude as 

the binder G* varies by three orders of magnitude. 

A reasonable assumption is that mixture stiffness depends upon binder stiffness 

and not upon the manner in which it reaches this stiffness. Thus, original binder 

composition, oxidative aging, and temperature might all be presumed equal with respect 

to mixture stiffness when they provide binder of equal stiffness (G* for example). This 

assumption is implicit in the Hirsch model. HM-0M in Figure V-13 is the mixture G* 
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calculated from the Hirsch model by using Equations V-11and V-12 where G* of the 

binder is that of the binder recovered from the PP2-aged Bryan mixture. Similarly, the 

binder G* from PP2+3M and PP2+6M are used for HM-3M and HM-6M. These 

calculations show how mixture stiffening due to binder oxidation is assumed by the 

Hirsch model to follow the same relationship as less-aged binder. 
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Figure V-13. Hirsch Model from Bryan PP2 Binder. 
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Experimental Binder-Mixture G* Relationships Compared to the Hirsch 

Model. Figures V-14 and V-15 show experimentally measured PP2-aged mixture G* 

versus recovered binder G* compared to the Hirsch model calculations. At PP2 level 

aging (PP2+0M) the Bryan mixture (Figure V-14) follows the Hirsch model quite well 

above a binder G* of 10 kPa, while the Yoakum mixture at PP2 level aging (PP2+0M, 

Figure V-15), does not agree with the Hirsch model well. 
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Figure V-14. Comparison between Bryan Mixture PP2 and Hirsch Model. 

 

 

Subsequent aging of both the Bryan and Yoakum compacted mixtures, to 

PP2+3M and PP2+6M levels shifted the mixture-binder curves further away from the 

PP2-0M data. These shifts are contrary to the Hirsch model which assumes a shift along 

the same curve rather than away from it, as noted above. 
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These shifts with aging are indicated by the lines that connect points at the some 

test frequency at each level of aging. These lines represent the path followed at a 

constant test temperature (20 oC) and test frequency while the binder stiffens due to 

oxidation. According to the Hirsch model, such lines would be tangent to the PP2-0M 

curve. The fact that they are not indicates that the changes in binder composition that 

occur with oxidation play a more fundamental role in establishing mixture G* than just 

changing binder G*. 
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Figure V-15. Comparison between Yoakum Mixture PP2 and Hirsch Model. 
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Mixture Stiffening from Binder Hardening: Oxidation versus Temperature.  

In the paragraphs above, the effect of oxidative aging on the mixture G* versus 

binder G* relationships was presented, with the conclusion that binder stiffening due to 

oxidation has a different effect than that assumed by the Hirsch model. In this section, 

the effect of stiffening due to a decreasing temperature is considered and compared to 

the oxidation results. 

For the PP2 level of aging (PP2+0M), mixture and binder master curves were 

determined at several different reference temperatures: 10, 20, 30 and 40 oC. Then the 

mixture and binder G* values at 0.01 rad/s were added to Figures V-14 and V-15 to give 

Figures V-16 and V-17. These new data produce a path that would be followed if the 

PP2 aged mixture were tested first at 40 oC, then 30 oC, then 20 oC, and finally 10 oC, all 

at 0.01 rad/s.  

Interestingly, this temperature-stiffening path much more nearly follows the 

PP2+0M aging state curve than the oxidative aging path. For example, starting at the 

20 oC point and moving toward the 10 oC point (while holding the frequency at 

0.01 rad/s), the path is nearly tangent to the PP2+0M curve and much more in agreement 

with the Hirsch model calculations. Starting at that same point and increasing aging 

(while holding the temperature at 20 oC and the test frequency at 0.01 rad/s), the path 

(shown by the solid line) is much steeper and moves away from the PP2+0M curve.  

These results again suggest a fundamental difference between changes in 

mixture-binder relations brought on by decreasing temperature versus those caused by 

oxidation. This is an important observation and bears further study. 
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Figure V-16. Mixture Stiffening for Bryan Mixture: Oxidation versus Temperature 
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Figure V-17. Mixture Stiffening for Yoakum Mixture: Oxidation versus 

Temperature. 
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Binder Stiffening: Oxidation versus Temperature. The impact of temperature 

change on binder movement across the DSR map was evaluated to further explain binder 

characteristics. Of interest is how the impact of binder stiffening due to decreases in 

temperature compared to stiffening due to oxidation (both oxidation as neat binders and 

in compacted mixtures). 

Recovered binders at PP2 level aging (PP2+0M) were used to understand 

temperature hardening effects. G' and G" at 10 rad/s were measured at several 

temperatures and converted by TTSP to DSR function values at a frequency of 

0.005 rad/s. The measurement temperatures were 50, 45, 40, 35 and 30 oC and the 

corresponding reference temperatures were 20, 15, 10, 5 and 0 oC. 

The results are shown in Figures V-18 and V-19, together with the data in 

Figures III-13 and III-14 for comparison. Both the measurement and reference 

temperatures are shown for convenience. The path across the DSR map followed by 

these measurements at different temperatures tracks the aged-binder path for the Bryan 

binder well. The agreement is somewhat less for the Yoakum binder, especially for the 

measurements at higher temperatures (softer binder). 

The stiffer binder regions are particularly relevant to pavement failure and in this 

region the agreement provides significant hope that temperature may be used to establish 

an aging path as a more rapid surrogate method for aging tests. Data on more binders are 

needed to assess the universality of this approach. Also, it should be noted that even 

though the aging path across the DSR map might be determined by measurements at 

different temperature, the rate across the map due to oxidation cannot be determined by a 

surrogate temperature test protocol. 
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Figure V-18. Binder Stiffening for Bryan Mixture: Oxidation versus Temperature. 
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Figure V-19. Binder Stiffening for Yoakum Mixture: Oxidation versus 

Temperature. 
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Impact of Temperature on Mixture Fatigue. Previous sections have addressed 

the question of whether binder stiffening due to decreasing temperature might be used as 

a surrogate to predict the impact of oxidation. The results were inconclusive because the 

mixture G* versus binder G* relations were shifted differently by temperature than by 

oxidation; yet the binder path across the DSR map (after a certain level of stiffness was 

reached) was essentially the same, whether determined by decreasing temperature or by 

oxidation. This section addresses a third comparison of temperature versus oxidation, i.e. 

their impact on mixture fatigue life. 

In Figure IV-3, the mixture field Nf (CMSE calculation at 20 oC) decline with 

oxidation was presented as a function of the binder DSR function (at 15 oC, 0.005 rad/s) 

for both the Bryan and Yoakum mixtures. Using mixture and binder PP2+0M master 

curves, calculations were also done for the mixture Nf at 30 and 10 oC and for the binder 

DSR function at 25 and 5 oC. These calculations shift both the mixture and binder 

PP2+0M data to 10 degrees higher and 10 degrees lower than the data reported 

previously. These additional data are compared to the oxidative aging results in Figure 

V-20. 

As would be expected, decreasing the temperature results in a decline in fatigue 

life, most certainly because of the stiffening of the binder. Furthermore, the decline in 

mixture Nf relates to the increase in binder DSR function quite well, in a quantitative 

sense. For the Bryan mixture, the agreement with the aging decline is excellent; for the 

Yoakum mixture, the agreement is not as good, with significantly less decline due to 

temperature than to aging. The differences in the comparison may be related to the fact 

that the Yoakum binder is SBS polymer modified whereas the Bryan binder is 

unmodified. More data are needed on a variety of mixtures and binders to better 

determine whether temperature can be used as a surrogate for the effects of oxidative 

aging. 

 

 

 



 

 

120

10-5 10-4 10-3 10-2106

107

108

109

10 oC

10 oC

20 oC

20 oC

30 oC

 YKM-Nf(CMSE) due to Aging
 BRY-Nf(CMSE) due to Aging 
 YKM-Nf(CMSE) due to T
 BRY-Nf(CMSE) due to T

M
ix

tu
re

 F
ie

ld
 N

f

Binder (G'/(η'/G')) MPa/s, 15 oC, 0.005 rad/s

Field Nf vs Binder DSR Function

Increasing Aging

Decreasing Temperature

30 oC

 
Figure V-20. Fatigue Life Decline with Binder Hardening. 
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Summary and Conclusions 

 

In this chapter, two HMAC mixtures were tested to obtain mixture viscoelastic 

properties at three conditions (0, 3, and 6 months) of binder aging. Nondestructive 

tensile RM tests were used to produce mixture dynamic shear complex moduli master 

curves. Binders recovered from aged mixtures were used to determine corresponding 

master curves for the binder. From these binder-mixture aging experiments, the 

following results were obtained: 

 

• Mixtures stiffened significantly in response to binder oxidative aging.  Mixture 

stiffening was reflected in both the tensile relaxation modulus and the dynamic 

shear moduli. 

• A mixture viscoelastic property map of G' versus η'/G' at the three levels of 

mixture aging (PP2, PP2+3 months, PP2+6 months) provided a useful means of 

tracking mixture stiffening with binder oxidative aging. This mixture VE map is 

analogous to the binder DSR map. 

• A mixture VE function, defined as G'/( η'/G') at 20 °C, 0.002 rad/s correlated 

linearly with the binder DSR function G'/( η'/G') at 15 °C, 0.005 rad/s. 

• The Bryan (PG 64-22) binder was softer than the Yoakum (PG 76-22) binder. 

Conversely, the Bryan mixture was stiffer than the Yoakum mixture at 

comparable angular frequency or binder stiffness. 

• The Hirsch model provided a reasonable correlation between binder and mixture 

G* at PP2 level aging, especially for the Bryan mixture. 

• Changes in mixture stiffness with temperature at PP2 level aging followed the 

Hirsch Model reasonably well. 

• Changes in mixture stiffness with aging deviated significantly from Hirsch model 

(stiffened the mixture more). 
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• Binder stiffening with decreasing temperature followed much the same path on 

the DSR map as aging. 

• The effect of temperature on mixture fatigue life may provide a means of 

estimating the effect of aging. Data on additional mixtures are required to 

establish the accuracy of such estimates. 
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CHAPTER VI  
SUMMARY AND CONCLUSIONS 

 

Summary and Conclusions 

 

Binder Oxidative Aging in Texas Pavements 

 

The study of binder oxidation in 15 different Texas highway pavements indicates 

that binder oxidation is not only a surface reaction. Instead, oxidation has a detrimental 

impact throughout the entire depth of asphalt pavements. Binders in the pavements 

become stiffer and more brittle, like laboratory-aged neat binders, even 6 inches below 

the surface. Binders in pavements can oxidize at rates that are fairly uniform with depth 

once early oxidation occurs, even for dense-graded mixtures, and these rates may 

continue for an extended period of time. 

The DSR function map serves as an excellent method of tracking pavement aging 

over time. The Superpave RTFOT plus PAV procedure may not be an appropriate long-

term binder aging test for Texas pavement due to the high ductility value of the binder, 

(greater than 10 cm) which does not represent a very severe level of aging compared to 

the recovered binder data from the ten LTPP sites and Texas SH 21 pavement. 

The level of hardening reached in pavement binders significantly exceeds 

estimated values calculated by the Global Aging Model, both at the pavement surface 

and at 5 inch below the surface. 

 

Impact of Binder Oxidation on Mixture Aging and Fatigue Performance 

 

Binder oxidation significantly affects the decline of strain-controlled fatigue due 

to the detrimental impact on the binder durability of the mixture. The HMAC mixture 

fatigue performance is also determined to be a function of mixture design. Binder 

oxidation in mixtures follows a path similar to neat binders (DSR function hardening 
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rate, hardening susceptibility, DSR map) even though hardening rates in mixtures are 

slower than in thin-film neat binders due to diffusion resistance. 

DSR function hardening rate is used to track the binder stiffness changes and is 

found to be a very good rheological property that tracks binder durability due to 

oxidative hardening for both conventional binders and the polymer modified binders in 

thin film aging and mixture aging. This conclusion is based on one conventional binder 

and two polymer modified binders; however more samples should be studied. 

The PP2 level aging process ages binders more severely than SAFT level aging. 

However, the PP2 level aged binders for this study do not completely pass the initial 

jump period. Standard PAV after SAFT aging is less than PP2 plus 3 months aging in 

60 oC room, which indicates that this may not be appropriate for measuring the long-

term aging binder properties for Texas asphalt pavement. 

 

Estimating the Effect of Binder Oxidation on Pavement Service Life 

 

The cumulative damage approach provides a rational method for quantitatively 

measuring pavement service life that considers both binder oxidation and pavement 

loading rate. Binder hardening rate, as well as the ratio of fatigue life decline rate to 

binder hardening rate has a great impact on the pavement service life estimation. 

Pavement service life can be estimated by the following equation: 

 

 1 2 0

1 2

ln( / 1)f L
end

K K N R
t

K K
+

=  (VI-1) 

 

where: tend is pavement service life, K1 is the magnitude of the power law slope that 

relates the decline of fatigue life  to the increase in the DSR function with aging; K2 is 

the (exponential) rate of increase of the DSR function with aging time in the pavement; 

Nf0 is the initial fatigue life at t = 0. 
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Nf0, which is commonly used for pavement fatigue performance, has much less of 

an impact than K1 and K2. Therefore, the impact of binder oxidation must be included for 

a long-term pavement performance test.  

 

Impact of Binder Oxidation on Binder and Mixture Rheology 

 

The tensile relaxation modulus and the dynamic shear modulus of mixtures are 

greatly affected by binder oxidation. The mixture G* of oxidative binder hardening has a 

different stiffening mechanism from the mixture G* of temperature binder hardening. 

Even though the Hirsch model provides a reasonable correlation between binder and 

mixture G* at PP2 level aging, changes in mixture stiffness with aging deviate 

significantly from the Hirsch model. Actual mixture aging stiffened the mixture more 

than the model predicted due to binder hardening. Mixture stiffness may not be 

dependent only on binder hardening but both binder hardening and binder aggregate 

bond strength with binder oxidation. 

The mixture viscoelastic function, defined as G'/(η'/G') at 20 oC and 

0.002 rad/sec, provides a useful means of tracking mixture stiffening with binder 

oxidative aging and is correlated linearly with the binder DSR function at 15 oC and 

0.005 rad/sec. Binder stiffening with decreasing temperature follows much the same path 

on the DSR map as aging. The effect of temperature on mixture fatigue life shows a 

possible means of estimating the effect of aging. 

 

Recommendations 

 

Field and Laboratory Aging Comparison 

 

Two pavements out of the 15 Texas pavements in this study had several different 

aging levels and only one original neat binder used for the highway was available. More 

field data from different years with the same neat binders used for the pavements should 
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be studied to provide an accurate relation between the lab aging and field aging. Further, 

kinetic parameters for laboratory aged binders and more accurate pavement temperature 

profile data would improve the comparison of lab aging with field aging. Therefore, it is 

desirable for each TxDOT district to retain a sample of the original neat binders from 

pavements and begin regular sampling of the field cores and pavement failure data. This 

will lead to a more accurate pavement service life prediction and a better pavement 

maintenance method. 

 

Binder Oxidation on Mixture Rheological Properties and Fatigue Performance 

 

Mixture fabrication is very expensive and aging mixtures is very time consuming 

work. Five out of 7 different mixtures had only one aging level besides PP2 level aging. 

The PP2 level aged binder was not aged past the initial jump period even though it is 

more heavily aged than the SAFT aged binder. Therefore, mixtures with more aging 

levels above PP2 level aging are recommended in order to obtain more accurate fatigue 

results and analysis. 

This research shows that binder oxidation greatly affects mixture fatigue 

performance and mixture rheological properties. However, the reasons are not yet fully 

understood. More fundamental studies are required to understand why the decline of 

fatigue life is a function of mixture design and why a certain binder has better fatigue 

performance with the same aggregates after aging. In addition, more accurate extraction 

and recovery processes for the polymer modified binder are needed for binder-mixture 

characterization and aging comparison among neat binder aging, mixture aging and field 

aging. 

More study of the effects of temperature on mixture stiffness and fatigue 

performance is also recommended to create a substitute binder and mixture aging 

process. Development of a faster mixture aging method is also needed to accelerate the 

mixture fatigue test. 
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Table A-1. Locations and Coring Dates for the Sixteen Texas LTPP Sites 
89-90 2002 Cores

Date Taken Date Taken

48-1046 32.5/101.34, IH 40, Carson 1995 8/3/1989 Aug-02

48-1049 31.65/94.67, US 59, Nacogdoches 1984 3/28/1990 NA

48-1050 30.35/95.92, SH105, Grimes 1984 6/7/1989 NA

48-1056 36.19/100.71, US 83, Ochiltree 1969 8/2/1989 Sep-02

48-1060 28.5/97.05, US 77, Refugio 1986 3/5/1990 NA

48-1068 33.50/95.58, SH 19, Lamar 1985 NA 7/24/2002

48-1109 30.75/95.52, SH 19, Walker 1984 3/21/1990 NA

48-1168 32.67/95.46, FM 564, Wood 1985 NA 7/8/2002

48-2108 29.34/94.92, Spur 37, Galveston 1985 6/6/1989 6/26/2002

48-2133 31.07/97.31, SH 36, Bell 1984 5/12/1989 7/9/2002

48-3679 31.37/94.50, SH 103, Angelina 1988 3/27/1990 NA

48-3689 30.7/94.85, US 190, Polk 1987 3/20/1990 NA

48-3769 31.79/106.25, US 62, EL Paso 1976 7/11/1989 7/9/2002

48-3835 30.73/96.43, SH 6, Brazos 1991 NA Sep-02

48-6086 28.17/97.86, IH 37, Live Oak 1971 8/3/1990 Jul-02

48-9005 29.51/98.72 FM 1560, Bexar 1986 2/6/1990 7/10/2002

LTTP site Lat/Long, Route, county Year 
Constructed
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Table A-2. Details of the Pavement Layers for the LTPP Sites 

LTPP Site Route/County TOP 2ND LAYER 3RD LAYER 4TH LAYER 5TH LAYER Total
48-1049 US 59 OSL HMA HMA S/C

Nacogdoches (1")1984 (3.6") (0.5") 5.1
48-1050 SH105 OSL HMA S/C

Grimes (1")1984 (0.8") 1.8
48-1056 US 83 S/C S/S OSL HMA

Ochiltree (0.4")7/00 10/88 (1.8")1969 2.2/1.8
48-1060 US 77 OSL HMA HMA

Refugio (1.7")1986 (5.8") 7.5
48-1068 SH 19 O/L HMA S/C S/F OSL HMA HMA

Lamar (1.5")11/00 7/28/99 10/92 (3.1")1985 (7.8") 12.4
48-1109 SH 19 OSL HMA HMA

Walker (0.9")1984 (5.4") 6.3
48-1168 FM 564 S/C S/E OSL HMA S/C

Wood (0.4")2001 1991 (0.8")1985 (0.4") 1.6
48-2108 Loop 197 OSL HMA

Galveston (3”)1985 3
48-2133 Loop 363 S/C OSL HMA S/C

Bell (0.4”)8/00 (1.6”)1984 (0.6”) 2.6/2.2
48-3679 SH 103 OSL HMA

Angelina (1.6”)1988 1.6
48-3689 US 190 OSL HMA HMA S/C

Polk (1.1”)1987 (1.6”) (0.4”) 3.1
48-3769 US 62 S/C rubber OSL HMA

El Paso (0.4”)1986 (2”)1976 2.4
48-3835 SH 6 O/L O/L CR/S OSL HMA

Brazos (1.8”)6/00 S1.5/N5.5” 6/00 (0.4”)9/92 (1.8”)1991 S5.5/N9.5
48-6086 IH 37 O/L HMA S/C OSL HMA HMA HMA

Live Oak (1.5”)1985 (0.2”)1985 (1.2”)1971 (1.2”) (6.1”) 10.2
48-9005 FM 1560 O/L HMA S/C OSL HMA S/C

Bexar (1.1”)9/98 (0.4”)9/98 (1.1”)1986 (0.4”) 3/1.5
48-1046* IH 40 HMA O/L HMA I/L Geotextile HMA HMA

Carson (0.4")1971 (1.7")1971 (0.1")1971 (1.9")1971 (6.4")1971
6TH LAYER* 7TH LAYER*

OSL HMA HMA
(1.1")5/55 (1.3") 12.9

CR/S- Crack Seal; HMA- Hot Mixed Asphalt; I/L- Inner Layer; O/L- Over Layer
OSL- Original Surface Layer; S/C-Seal Coat; S/E-Sealed Edge; S/S-Seal Strip
*48-1046 has seven layers.
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Table A-3. Binder Properties of the LTPP Cores in 1989 or 1990 

η0*(poise) DSR Funca η'(MPa*s)a G'(MPa)a η'/G'(s)a Calc

@60℃ @15℃ @15℃ @15℃ @15℃ Duct
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s (cm)

48-1046 A 9-1-55 IH 40 813,087 0.006268 79.14 0.70434 112.4 2.14
B Carson 516,476 0.004556 73.43 0.5784 127 2.47

48-1049 A 6-1-84 US 59 36,820 0.000345 34.72 0.1095 317.1 7.67
B Nacogdoches 41,970 0.000378 35.68 0.11618 307.1 7.37

48-1050 A 3-1-84 SH105 95,710 0.002185 92.75 0.45016 206.0 3.41
B Grimes 89,280 0.002021 85.92 0.41668 206.2 3.53

48-1056 A 6-1-69 US 83 56,790 0.000377 23.12 0.09331 247.8 7.38
B Ochiltree 65,420 0.000413 22.95 0.09733 235.8 7.09

48-1060 A 3-1-86 US 77 83,730 0.001036 57.17 0.2434 234.9 4.73
B Refugio 97,620 0.001412 73.65 0.32246 228.4 4.13

48-1109 A 2-1-84 SH 19 78,760 0.000927 56.83 0.2295 247.6 4.97
B Walker 91,870 0.001029 57.96 0.24424 237.3 4.75

48-2108 A 8-1-85 Loop 197 68,820 0.001113 77.84 0.29428 264.5 4.59
B Galveston 64,850 0.000886 65.51 0.24098 271.8 5.07

48-2133 A 5-1-84 Loop 363 52,810 0.000611 54.54 0.18262 298.7 5.97
B Bell 60,040 0.000723 59.1 0.20676 285.8 5.54

48-3679 A 6-1-88 SH 103 34,030 0.000363 40.97 0.12188 336.2 7.51
B Angelina 28,720 0.000279 36.48 0.10092 361.5 8.42

48-3689 A 4-1-87 US 190 20,810 0.000142 25.81 0.06049 426.7 11.35
B Polk 19,990 0.000125 24.44 0.05519 442.8 12.01

48-3769 A 6-1-76 US 62 50,410 0.000751 45.21 0.18428 245.3 5.45
B El Paso 67,130 0.001033 50.97 0.22948 222.1 4.74

48-6086 A 6-1-71 IH 37 21,230 0.000176 38.06 0.08192 424.0 10.31
B Live Oak 24,800 0.000230 41.37 0.09758 464.6 9.17

48-9005 A 7-1-86 FM 1560 50,060 0.000835 76.3 0.25248 302.2 5.2
B Bexar 55,780 0.001043 84.41 0.29678 284.4 4.72

a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP.
a  DSR Function is G'/(η'/G')

1989 or 1990

Const 
dateLTTP site Location
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Table A-4. Binder Properties of the LTPP Cores in 2002 

η0*(poise) DSR Funca η'(MPa*s)a G'(MPa)a η'/G'(s)a Calc

@60℃ @15℃ @15℃ @15℃ @15℃ Duct
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s (cm)

48-1046 A 9-1-55 IH 40 55,580 0.000540 38.38 0.14396 266.6 6.3
B Carson 40,180 0.000357 30.17 0.10378 290.7 7.56

48-1056 A 6-1-69 US 83 18,070 0.000125 11.57 0.03806 304.0 11.99
B Ochiltree 15,960 0.000088 11.17 0.03135 356.3 14

48-1068 A 11-1-85 SH 19 39,990 0.000337 30.68 0.10172 301.6 7.75
B Lamar 38,680 0.000277 25.42 0.08387 303.1 8.46

48-1168 A 9-1-85 FM 564 30,760 0.000227 39.34 0.09441 416.7 9.23
B Wood 41,990 0.000499 59.36 0.1721 344.9 6.53

48-2108 A 8-1-85 Loop 197 173,860 0.003316 101.68 0.58064 175.1 2.84
B Galveston 160,283 0.003266 103.7 0.58198 178.2 2.85

48-2133 A 5-1-84 Loop 363 55,810 0.000674 54.73 0.1921 284.9 5.72
B Bell 50,630 0.000577 53.48 0.17566 304.5 6.12

48-3769 A 6-1-76 US 62 49,380 0.000743 47.94 0.18874 254.0 5.48
B El Paso 76,330 0.001380 61 0.29018 210.2 4.17

48-3835 A 10-1-91 SH 6 40,270 0.000581 77.57 0.21238 365.2 6.1
B Brazos 35,590 0.000411 66.85 0.16582 403.1 7.1

48-6086 A 6-1-71 IH 37 56,980 0.000504 41.44 0.1445 286.8 6.5
B Live Oak 55,240 0.000474 39.55 0.13692 288.9 6.67

48-9005 A 7-1-86 FM 1560 33,090 0.000398 46.95 0.13674 343.4 7.21
B Bexar 27,760 0.000231 33.5 0.08791 381.1 9.16

a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP.
a  DSR Function is G'/(η'/G')

2002

Const 
dateLTTP site Location

 
 

 



 

 

140

 

Table A-5. Binder Properties of the IH 10 Frontage Road Binders. 

η0*(poise) DSR Funca η'(MPa*s)a G'(MPa)a η'/G'(s)a Calc
@60℃ @15℃ @15℃ @15℃ @15℃ Duct

0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s (cm)
IH 10 N A 929,880 0.019059 77.97 1.219 64.0 1.31

Notrth Bound B 1,668,514 0.020956 56.32 1.0864 51.8 1.26
IH 10 S A 196,999 0.004622 114.31 0.7269 157.3 2.45

South Bound B 172,873 0.003265 94.64 0.5559 170.2 2.86
a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP, a  DSR Function is G'/(η'/G')

Site

 

 

 

 

Table A-6. Binder Properties of LTPP Site 48-2108 Top Layer (1.5 inch thickness) 

with 60 oC Room Aging 

η0*(poise) DSR Funca η'/G'(s)a G'(MPa)a Calc Carbonyl 
@60℃ @15℃ @15℃ @15℃ Duct Area

0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s (cm) (CA)
0 A 81,720 0.000888 245.3 0.21792 5.1 1.2276
0 B 80,080 0.000982 249.4 0.24484 4.8 1.2045
3 A 119,800 0.001562 208.4 0.32556 4.0 1.3718
3 B 148,200 0.002041 193.4 0.39468 3.5 1.3612

6.23 A 347,000 0.003361 157.6 0.52964 2.8 1.5215
6.23 B 305,190 0.003068 160.3 0.49184 2.9 1.4961

9 A 510,000 0.005625 129.0 0.72554 2.3 1.6240
9 B 470,000 0.004913 135.8 0.66746 2.4 1.6343

a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP, a  DSR Function is G'/(η'/G')
* LTPP 48-2108 Site's Oginal Surface Layer has 3 inch thickness

Aging Time 
(months, 60 

oC)
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Table A-7. Binder Properties of LTPP Site 48-2108 Bottom Layer  

(1.5 inch thickness) with 60 oC Room Aging 

η0*(poise) DSR Funca η'/G'(s)a G'(MPa)a Calc Carbonyl 
@60℃ @15℃ @15℃ @15℃ Duct Area

0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s (cm) (CA)
0 A 56,720 0.001057 281.9 0.29790 4.7 1.4525
0 B 50,140 0.000768 299.5 0.23012 5.4 1.4545
3 A 87,070 0.002062 214.9 0.44310 3.9 1.5603
3 B 78,490 0.001810 233.2 0.42212 3.6 1.5579

6.23 A 98,760 0.002544 199.0 0.50624 3.2 1.6573
6.23 B 106,000 0.002820 197.1 0.55568 3.1 1.6824

9 A 150,500 0.004027 162.6 0.65468 2.6 1.7329
9 B 154,300 0.004286 163.3 0.70002 2.5 1.6980

a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP, a  DSR Function is G'/(η'/G')
* LTPP 48-2108 Site's Oginal Surface Layer has 3 inch thickness

Aging Time 
(months, 60 

oC)

 

 

 

Table A-8. Binder Properites of LTPP 48-1046 Site in 1989 with Different Layers 

η0*(poise) DSR Funca η'/G'(s)a G'(MPa)a Calc
@60℃ @15℃ @15℃ @15℃ Duct

0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s (cm)
1st A 118132 0.000957 248.2 0.23758 4.9

(0.4 inch) B 86346 0.000502 279.8 0.14044 6.5
2nd A 6130 0.000022 570.9 0.0127 25.6

(1.7 inch) B 10520 0.000059 421.0 0.02487 16.7
3rd
4th A 316522 0.004383 126.3 0.5535 2.51

(1.9 inch) B 305664 0.003289 146.9 0.48294 2.85
6th A 516476 0.006266 112.4 0.70434 2.47

(1.1 inch) B 444396 0.004554 127.0 0.5784 2.86
a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP, a  DSR Function is G'/(η'/G')
* 5th layer data is not available

Geotestile  Innter Layer (0.1 inch)

Layer
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Table A-9. Binder Properties of LTPP 48-1046 Site in 2002 with Different Layers 

η0*(poise) DSR Funca η'/G'(s)a G'(MPa)a Calc
@60℃ @15℃ @15℃ @15℃ Duct

0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s (cm)
1st A 37,090 0.000379 327.2 0.12396 7.4 

(0.4 inch) B 37,400 0.000381 315.3 0.12018 7.3 
2nd A 23,070 0.000205 388.9 0.07965 9.7 

(1.7 inch) B 24,910 0.000195 397.2 0.07726 9.9 
3rd
4th A 49,440 0.000750 290.9 0.21806 5.5 

(1.9 inch) B 42,130 0.000533 314.9 0.16798 6.3 
5th A 23,710 0.000268 365.6 0.09789 8.6 

(6.4 inch) B 31,310 0.000371 383.2 0.142 7.4 
6th A 55,580 0.000540 266.6 0.144 6.3 

(1.1 inch) B 40,180 0.000357 290.7 0.1038 6.3 
a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP, a  DSR Function is G'/(η'/G')

Layer

Geotestile  Innter Layer (0.1 inch)

 

 

Table A-10. Extra Maintenance Information for LTPP Site 48-1046 from Datapave 
MNT_ASPHALT_CRACK_SEAL

SHRP_ID STATE_CODE CONSTRUCTION_NO DATE_COMPLETE SHRP_CASE_NO DATE_BEGAN

1046 48 2 12/22/1988 1 12/22/1988
1046 48 3 1/29/1998 1 1/29/1998

SHRP_ID CRACK_SEVERITY CRACK_TYPE
CRACK_SEAL_MA

TL
CRACK_SEAL_M

ATL_SOURCE MANUFACTURER_NAME

1046 1 6 6 3 Crafco

1046 1 4 6 1 CRACKFILLER MANUF. CO.

SHRP_ID MANUFACTURER_MAT
ERIAL AIR_TEMP_LOW AIR_TEMP_HIGH SURFACE_MOIST

URE CONDITION_SOURCE

1046 Rubber Crack Sealer 50 1 3
1046 CRACKFILLER 50 60 1 1

SHRP_ID TOTAL_LENGTH_SEAL
ED CLEAN_METHOD CLEAN_METHOD_

SOURCE RECORD_STATUS

1046 1054 1 1 E
1046 1655 1 1 E  
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Table A-11. Binder Properties of Bryan Mixture 

Name η* (poise) 60 oC 
(0.1 rad/s)

η'(Mpa*s) 
@0.005rad/s G'(MPa) η'/G' G'/(η'/G') Calculated 

Ductility(cm)
Carbonyl 

Area
PG64S 10500 9.97 0.0206 483.4 4.265E-05 19.26 0.6201

PG64-3M 45760 30.18 0.0970 311.3 3.114E-04 8.03 0.8571
PG64-6M 106400 47.84 0.1991 240.3 8.287E-04 5.22 0.9572
PG64-9M - 63.94 0.3557 179.7 1.979E-03 3.56 1.1382

PG64S+PAV*16 46730 28.75 0.0948 303.4 3.123E-04 8.02 0.8949
PG64S+PAV 60670 30.03 0.1068 281.3 3.796E-04 7.36 0.9191

PG64S+PAV*32 94400 43.28 0.1768 244.8 7.222E-04 5.55 1.0331
Bryan-A 38200 23.21 0.0702 330.5 2.125E-04 9.50 0.7981
Bryan-B 31640 22.48 0.0647 347.5 1.861E-04 10.07 0.7602
Bryan-C 28910 20.99 0.0581 361.3 1.608E-04 10.74 0.7615
Bryan-D 28320 22.11 0.0606 364.9 1.661E-04 10.59 0.7577

Bryan-0MA 36900 23.33 0.0705 330.8 2.132E-04 9.49 0.8071
Bryan-0MB 38200 22.93 0.0696 329.3 2.114E-04 9.52 0.8071
Bryan-3MA 81000 45.66 0.1731 263.8 6.560E-04 5.78 0.9266
Bryan-3MB 75000 40.20 0.1489 270.0 5.516E-04 6.24 0.9186
Bryan-6MA 122600 52.47 0.2297 228.5 0.001005 4.79 0.9642
Bryan-6MB 115500 49.5 0.2102 235.5 0.000892 5.05 0.9753

PG64S Original PG64-22 binder after SAFT

PG64-3, 6, 9M Original PG64-22 binder 3, 6, 9 months aged in 60 oC room after SAFT
Bryan A, B, C, D are recovered from the shell after coring the mixture for reference

0, 3, 6M- 0, 3, 6 months aged in 60 oC room  

 

Table A-12. Calculated Ductility versus Measured Ductility for Bryan Neat Binder 

Name Calculated 
Ductility(cm)

Measured 
Ducility (cm) Error (%)

PG64Sa 19.3 30.2 36.2
PG64-3M 8.0 7.0 14.7
PG64-6M 5.2 5.4 3.3

PG64S+PAV*16 8.0 7.4 8.4
PG64S+PAV 7.4 6.9 6.7

PG64S+PAV*32 5.5 5.7 2.7
a Only for reference, PG64-22 SAFT is too soft to apply the calculated ductility values.  
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Table A-13. Binder Properties of Yoakum Mixture 

DSR Funca η'/G'(s)a G'(MPa)a Calculated Carbonyl
@15℃ @15℃ @15℃ Ductility Area

0.005 rad/s 0.005 rad/s 0.005 rad/s (cm) (CA)
PG76-22 SAFT A 0.000053 482.1 0.02535 17.6 -
PG76-22 SAFT B 0.000083 400.0 0.03307 14.4 0.556
PG76-22 SAFT C 0.000080 398.9 0.03201 14.6 -

PG76-22 SAFT+3M 0.000883 236.2 0.20848 5.1 0.914
PG76-22 SAFT+6M 0.001609 199.1 0.32018 3.9 1.033
PG76-22 SAFT+9M 0.004925 133.9 0.65934 2.4 1.194

PG76-22 SAFT+PAV*16 0.000515 266.3 0.1372 6.4 0.902
PG76-22 SAFT+PAV*32 0.001093 220.8 0.24144 4.6 1.035
Recovered Binder from 

Yoakum Mixture
PP2+0MA 0.000231 329.1 0.0761 9.2 0.72109
PP2+0MB 0.000324 270.8 0.0877 7.9 0.71962
PP2+3MA 0.000743 242.8 0.1803 5.5 0.89119
PP2+3MB 0.000830 243.7 0.2023 5.2 0.87767
PP2+6MA 0.001263 214.5 0.2710 4.3 0.96137
PP2+6MB 0.001138 222.8 0.2535 4.5 0.95541
PP2+9MA 0.002870 165.5 0.4749 3.0 1.060542
PP2+9MB 0.002210 173.3 0.3829 3.4 1.059736
PP2+9MC 0.002440 181.9 0.4439 3.2 1.074944
PP2+9MD 0.002681 171.9 0.4608 3.1 1.073394

a  η', G' measured at 44.7 oC, 10 rad/s and converted to 15oC, 0.005 rad/s by TTSP, a  DSR Function is G'/(η'/G')
PG76-22SAFT- Oringial PG76-22 binder after SAFT
PG76-22SAFT+ 0, 3, 6, 9M- Orignal neat binder aged for 0, 3, 6 and 9 months in 60 oC room after SAFT aging.
PP2+0, 3, 6, 9 M- Binders recovered from mixtures aged for 0, 3, 6, 9 months in 60 oC room)
A, B, C, D- Different Replicates

Layer

 

 

Table A-14. Calculated Ducility versus Measure Ducility for Yoakum Neat Binder 

Calculated Measured Error
Ductility Ductility

(cm) (cm) (%)
PG76-22 SAFT+3M 5.1 6.0 15.4 
PG76-22 SAFT+6M 3.9 4.4 11.4 

Name
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APPENDIX B  

FIGURES 
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Figure B-1. Locations of the Sixteen LTPP Sites in Texas 
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Figure B-2. DSR Map for LTPP Sites in Texas 
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Figure B-3. DSR Function Map with Field Data. 
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Figure B-4. DSR Map for LTPP 48-2108 and SH 21 with Different Years 
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Figure B-5. Field Aging versus Laboratory Aging for LTPP Site 48-2108. 
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Figure B-6. DSR Map for LTPP 48-1046 with Different Layers: 1989 versus 2002. 
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Figure B-7. DSR Map for LTPP 48-1046 With Different Layers in 2002. 
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Figure B-8. DSR Map for LTPP 48-6086 with Different Layers 
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Figure B-9. FWD Data for LTPP Sites of One Aging Level. 
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Figure B-10. FWD Data for LTPP Sites of Two Aging Levels. 
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Figure B-11. Fatigue Cracking for LTPP Sites of One Aging Level. 
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Figure B-12. Fatigue Cracking for LTPP Sites of Two Aging Levels. 
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Figure B-13. Longitudinal Cracking for LTPP 48-1109. 
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Figure B-14. Binder Aging in the Original Surface Layer versus Global Aging 

Model. 
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Figure B-15. Binder Aging in the Bottom Layer versus Global Aging Model 
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Figure B-16. Global Aging Hardening with Different Mean Annual Air 

Temperature. 
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Figure B-17. Master Curves of Curves of Bryan Neat Binder for G'(ω) and G"(ω). 
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Figure B-18. Master Curves of Bryan Neat Binder for G*(ω). 
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Figure B-19. Master Curves of Bryan Binder for G'(ω) and G"(ω). 

10-5 10-4 10-3 10-2 10-1 100 101101

102

103

104

105

106

107

Ref T=20 
o

C

 

 G' (PP2+0M)
 G" (PP2+0M)
 G' (PP2+6M)
 G" (PP2+6M)

 G
', 

G
" 

(P
a)

Angular Frequency (rad/sec)

PG64-22 for A1 Mixture

 
Figure B-20. Master Curves of A1 Mixture Binder for G'(ω) and G"(ω). 
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Figure B-21. Master Curves of A2 Mixture Binder for G'(ω) and G"(ω). 

10-5 10-4 10-3 10-2 10-1 100 101102

103

104

105

106

107

y=4134785*x (̂-0.02135*log(x)+0.42653

y=3616144*x (̂-0.02*log(x)+0.47164

Ref T=20 
o

C

 

 G*(PP2+0M)
 G*(PP2+3M)
 G*(PP2+6M)

 G
*(

Pa
)

Angular Frequency (rad/sec)

Recovered Binder from Bryan Mixture

y=1809916*x (̂-0.017*log(x)+0.55025

Model
y=P1*x (̂P2*log(x)+P3)

 
Figure B-22. Master Curves of Bryan Binder for G*(ω). 
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Figure B-23. Master Curves of A1 Mixture Binder for G*(ω). 
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Figure B-24. Master Curves of A2 Mixture Binder for G*(ω). 
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Figure B-25. DSR Function Hardening Susceptibility for Bryan Binder. 
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Figure B-26. DSR Map for Bryan Binder (Thin Film Aging). 
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Figure B-27. DSR Map for Binder Recovered from Bryan Mixture. 
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Figure B-28. DSR Map for Recovered Binder from A1 and A2 Mixtures. 
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Figure B-29. Master Curves of Yoakum Neat Binder for G'(ω) and G"(ω). 
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Figure B-30. Master Curves of Yoakum Neat Binder for G*(ω). 
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Figure B-31. Master Curves of Yoakum Binder for G'(ω) and G"(ω). 
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Figure B-32. Master Curves of B2 Mixture Binder for G'(ω) and G"(ω). 
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Figure B-33. Master Curves of Yoakum Binder for G'(ω). 
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Figure B-34. Master Curves of B2 Mixture Binder for G'(ω). 
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Figure B-35. DSR Function Hardening Susceptibility for Yoakum Binder. 
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Figure B-36. DSR Map for Yoakum Binder (Thin Film Aging). 



 

 

164

100 200 300 400 500 600 700 800
0.01

0.1

1

8

10

5

6

3 42

 G
'(M

Pa
)(

15
 o C

, 0
.0

05
 ra

d/
s)

 

 

η'/G'(s)(15 oC, 0.005 rad/s)

 PP2
 PP2+3M
 PP2+6M
 PP2+9M
 PP2(Optimum+0.5%)
 PP2+6M(Optimum+0.5%)

Yoakum Binder DSR Map

 
Figure B-37. DSR Map for Binder Recovered from B1, 2 Mixtures. 
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Figure B-38. Master Curves of C1 Mixture Neat Binder for G'(ω) and G"(ω). 
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Figure B-39. Master Curves of C1 Mixture Binder for G'(ω) and G"(ω). 
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Figure B-40. Master Curves of C2 Mixture Binder for G'(ω) and G"(ω). 
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Figure B-41. Master Curves of C1 Mixture Binder for G*(ω). 
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Figure B-42. Master Curves of C2 Mixture Binder for G*(ω). 
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Figure B-43. DSR Map for C1 Mixture Binder (Thin Film Aging). 
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Figure B-44. DSR Map for Binder Recovered from C1, 2 Mixtures 
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Figure B-45. Field Nf: CMSE versus ME. 
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Figure B-46. Fatigue Life Decline due to Binder Hardening for Bryan Mixture. 
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Figure B-47. Fatigue Life Decline due to Binder Hardening For Yoakum Mixture. 
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