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ABSTRACT

Dining Philosophers with Masking Tolerance to Crash Faults. (December 2006)

Vijaya K. Idimadakala, B.Tech, National Institute of Technology, Warangal, India

Chair of Advisory Committee: Dr. Scott M. Pike

We examine the tolerance of dining philosopher algorithms subject to process

crash faults in arbitrary conflict graphs. This classic problem is unsolvable in asyn-

chronous message-passing systems subject to even a single crash fault. By contrast,

dining can be solved in synchronous systems capable of implementing the perfect

failure detector P (from the Chandra-Toueg hierarchy). We show that dining is also

solvable in weaker timing models using a combination of the trusting detector T and

the strong detector S; Our approach extends and composes two currents of previous

research. First, we define a parametric generalization of Lynch’s classic algorithm

for hierarchical resource allocation. Our construction converts any mutual exclusion

algorithm into a valid dining algorithm. Second, we consider the fault-tolerant mu-

tual exclusion algorithm (FTME) of Delporte-Gallet, et al., which uses T and the

strong detector S to mask crash faults in any environment. We instantiate our dining

construction with FTME, and prove that the resulting dining algorithm guarantees

masking tolerance to crash faults. Our contribution (1) defines a new construction

for transforming mutual exclusion algorithms into dining algorithms, and (2) demon-

strates a better upper-bound on the fault-detection capabilities necessary to mask

crash faults in dining philosophers.
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CHAPTER I

INTRODUCTION

The main goal of this thesis is to isolate the impact of process crash faults in dis-

tributed systems so that they do not starve other correct processes. In a distributed

system, the ability to localize the impact of faults becomes paramount as the size of

the system grows. We develop a specific technique which is used to isolate the impact

of crash faults in a distributed system. We consider the generalized dining philoso-

phers problem which is a model of static resource allocation problems in distributed

environments. Our goal is to weaken the requirements needed to be satisfied by the

environment to achieve masking tolerance. Masking tolerance implies that the failure

of any process does not effect any other processes in the system. Our algorithm helps

in proving a new upper bound on the system requirements needed to mask crash

faults in the generalized dining philosophers problem. We show the correctness of our

algorithm by proving that the algorithm satisfies the specified safety and progress

properties of dining under weak exclusion. This chapter gives a brief overview of the

motivation, scope and goals of this work.

A. Localizing faults in a distributed system

Faults can occur in a distributed system in a variety of ways. Since the system is

distributed, there are several machines in different locations. Although the probability

of an individual process crashing is very low, if we consider a sufficiently large system,

the probability of some process crashing in the system becomes very high. If these

crashes could have a cascading effect in the system, it would result in several systems

The journal model is IEEE Transactions on Automatic Control.
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being affected. A typical example of a cascading failure is the ARPANET (pre-cursor

of the present-day Internet) crash on October 27, 1980. This crash was a result of bit-

corruption at one local node in the network. A network-wide collapse was precipitated

as a result of bit-corruption at a single node though this should not have happened.

It is important to note that the goal of this work is not to prevent the occurrence

of crashes. Instead, we concentrate on the system failures that are precipitated by

such crashes. Our goal is to limit the propagation of these failures in the system. In

fact, the ultimate goal here is to isolate these failures so that the crash of a process

does not affect any other correct processes.

B. Resource allocation problems

In a distributed environment, resources are shared by several users because of their

scarce availability. A resource in a distributed system could imply either physical

resources like a printer or logical resources that are acquired at run time like CPU

cycles, shared variables or bandwidth.

Every process needs a subset of the existing resources in the system to perform

its task (to execute). Note that this subset might also be an empty set. Each process

needs to acquire all the resources in this subset before it can actually execute. We

assume that a process can execute independently using private (unshared) resources,

but may require access to public (shared) resources to execute a distinguished code

segment, also known as the critical section. We also assume that for every process,

the execution of critical section takes finite time. Once the process is done with the

execution of its critical section, it gives up all the resources that it uses and hence these

resources can be re-allocated to other waiting processes. An important aspect to be

noted here is that no two processes can simultaneously use the same resource. Hence
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access to the resources is mutually exclusive. We also note that if the distributed

system is fair, every process which wants to perform a task eventually gets to do so.

Hence if a process requests a set of resources to enter its critical section, in a fair

system, it will eventually get all these resources.

Typically, systems cycle among four states: (i) performing local actions with-

out using shared resources, (ii) requesting shared resources and acquiring them, (iii)

executing a critical section task and (iv) exiting the critical section to release the

resources held. Systems which actually do so are also called non-terminating reactive

systems.

We define and discuss three different resource allocation problems in the coming

subsections: the mutual exclusion problem, the dining philosophers problem and the

drinking philosophers problem. For each of these problems, we consider the following

about the underlying system. The system has a set of processes, D1, D2, ....... , Dn

and a set of resources R. Every process Di requires a subset of these resources Si to

actually execute its critical section.

Si = {R1, R2, ....... , Rm} ⊆ R

Every process can be in one of the following four states:

1. Thinking

2. Hungry

3. Eating and

4. Exit.

Each of these states is described below:

1. Thinking: This is a state where processes execute local code without utilizing

shared resources. Processes can remain in their thinking state forever or move to the

hungry state to start acquiring resources.

2. Hungry: This is a state where processes start requesting and acquiring the resources
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that they need to execute their critical section. From the hungry state, processes move

to the eating state.

3. Eating: In this state, processes execute the critical section code after acquiring all

the resources that they need. Processes done with eating move to the exit state.

4. Exit: In this state, processes execute the exit code to relinquish all their resources.

They then move to the thinking state. Observe that the transitions from one state to

Fig. 1. Our dining model

another can only progress as specified in figure 1. Hence, Thinking-Hungry-Eating-

Exit-Thinking is the only sequence of states that any correct process can follow if the

execution is well-formed.

Definition: Conflict graph

In a conflict graph, every node represents a unique process and an edge between

two nodes denotes a resource conflict between the two processes which represent these

nodes. A resource conflict between two processes implies that the intersection of the

resource requirements of these two processes is non-empty.

Definition: Crash fault

A process is said to have crashed by faulting if it ceases execution without warning

and never recovers in the infinite suffix of execution.
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A correct process never crashes. A process is said to be faulty if it has or will

crash in a given run. Any process that has not crashed yet is said to be live. Thus,

every correct process is always live, and every faulty process is live only during the

prefix prior to crashing.

1. The mutual exclusion problem

The mutual exclusion problem was first defined and solved by Edsger Dijkstra in 1965

[9]. In the mutual exclusion (MX) problem, every process requires the same subset of

resources to eat. Hence two processes cannot be eating simultaneously in the system.

Observe that the intersection of the resource requirements of any two processes in the

system is non-empty. Hence in the conflict graph, there is an edge between every pair

of processes in the system. Hence the conflict graph for a MX problem is a complete

graph.

An algorithm is said to solve the mutual exclusion problem if it satisfies the

following properties:

Safety: No two live neighbors eat simultaneously.

Progress:

(1)Starvation freedom: If no correct process eats forever, then every correct hungry

process eventually eats.

(2)Unobstructed exit: Every correct exiting process eventually thinks.

Note that the progress requirement that we specify here is stronger than the

standard progress requirement for mutual exclusion: No-deadlocks can occur in MX.

Our specification also requires that lockout cannot occur in the system. Hence if a

correct process becomes hungry, some time later, this process has to eat.
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2. The dining philosophers problem

The dining philosophers problem was first proposed by Edsger Dijkstra in 1971 [8].

The conflict graph of this problem is a ring. Hence every process has a conflict of

resources with two other processes in the system. We consider a generalized version of

this dining philosophers problem where the conflict graph is any arbitrary graph. Note

that at any future reference in this work, the term ‘dining’ refers to the generalized

dining philosophers problem.

We assume the following about the thinking and eating states: Every diner can

think indefinitely. Every correct diner that starts eating, eats only for a finite time.

Based on these assumptions, we need our dining solution to satisfy the following

properties:

Safety: No two live neighbors eat simultaneously.

Progress:

(1)Starvation freedom: If no correct process eats forever, then every correct hungry

process eventually eats.

(2)Unobstructed exit: Every correct exiting process eventually thinks.

Observe that the safety and progress properties of MX and dining are exactly

same. MX is only a special case of dining where the conflict graph is complete. Every

MX solution can also solve dining. This is possible because the conflict graph of

dining can be turned into a conflict graph of MX by trivially adding edges between

every pair of nodes. The downside of using a MX solution to solve dining is the

degradation in the concurrency. Specifically, the number of processes that can eat

simultaneously reduces drastically to 1 in MX whereas dining allows more processes

to eat concurrently. Hence as the total number of processes in the system grows, the

importance of dining solutions compared to MX solutions increases drastically.
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a. Wait chains and starvation in dining

A wait chain consists of a series of processes, each of which is waiting on a subsequent

process to release a resource that it needs to eat. A typical wait chain is shown in

figure 2. Here, process D1 is waiting on D2 to release R2. Similarly, D2 is waiting

on D3 to release R3. We also have D3, D4, D5 waiting on their subsequent processes

to release resources. Now we consider the scenario where processes can crash. Hence

suppose that D6 crashes. Because of the wait chain, D5 never gets to eat because it

is waiting on D6 to relinquish R6. A correct hungry process that can never eat is said

to starve. Hence D5 starves. Now, D4 is waiting on D5 to finish eating. However,

since D5 starves, D4 also starves. This also results in the starvation of D3, D2, and

D1. Hence starvation propagates throughout the wait chain and every process in it

eventually starves.

Intuitively, it is easy to see why D5 cannot eat if D6 crashes because the inter-

section of their resource requirements is not empty. However, the other processes in

the system, despite not having any resources in common with D6 still get to starve.

The main goal of this thesis is to present an algorithm that prevents starvation of

correct processes due to the failure of other processes in the system.

3. The drinking philosophers problem

The drinking philosophers problem was proposed and solved by Chandy and Misra

[6]. It is an extension of the dining problem where each process may need a different

set of resources every time it becomes hungry. In drinking, although the conflict

graph is still static, the resource allocation model is dynamic, in so far as each diner

can dynamically determine different subsets of resources for different critical sections.

This thesis mainly deals with the mutual exclusion and dining variants of the
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Fig. 2. A wait chain

resource allocation problems. Hence we do not study the drinking philosophers in

detail here.

C. System model

In the following sub-sections, we define our system model and explain the rationale

behind some of our assumptions.

1. Asynchronous message-passing system

We assume that our system is an asynchronous message-passing system. In such

systems, the following properties hold:

(1)There are no bounds on end-to-end message delay.
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(2)There are no bounds on relative processor speeds.

We also assume that the communication channels are reliable, in so far as mes-

sages are neither lost, duplicated, nor corrupted. More specifically, in reliable channels

every message sent to a correct process will be eventually received. Non-duplication

of messages implies that every message sent is only received once. Finally, every

message that is received on such channels is one that was previously sent by some

process. Hence there are no orphan messages.

Fault Model: Processes can fault only by crashing. A process faults by crashing

if it ceases execution without warning and never recovers in the infinite suffix of

execution.

2. Weak exclusion

There are different models of mutual exclusion that fit different application domains.

In [20], several variants of mutual exclusion are explained. We consider two of these

in this work: Strong exclusion and weak exclusion.

Under strong exclusion, no two neighbors can eat simultaneously regardless of

whether one (or both) of them has crashed. Strong exclusion models systems where

resources can be permanently corrupted by crash faults and, as such, cannot be mean-

ingfully utilized thereafter. By contrast, weak exclusion requires only that no two live

neighbors eat simultaneously. In particular, a live process can eat concurrently with

any crashed neighbor. Weak exclusion models systems where resources are recoverable

and can be re-allocated in the wake of crash faults.

We consider the model of weak exclusion in our dining problem.
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3. Fault locality

We have seen in figure 2, how several correct processes can potentially starve because

of the crash fault of a single process in the system. This is due to the wait chains

that can be formed in dining. We now give the definition of a failing process:

Definition: Failure

A process is said to fail if it does not satisfy its specifications. Typically, starving

processes are said to have failed because they are correct hungry processes which

never get to eat thus violating their progress specification (starvation freedom).

The main motivation behind this work is to limit the number of failures in the system

that are precipitated by the crash of a process. In fact, our final goal is to ensure

that no process fails in the system. We now describe the metric which is used to

measure the impact of a crash fault in the system. This metric is fault locality and it

was described by Choy and Singh [2].

Fault locality is described as follows: A dining algorithm is said to have a fault

locality of k if every process which is outside the k-neighborhood of a crashed process

never starves i.e. all hungry processes which are at least k+1 hops from any crashed

process eventually get to eat. Improving the fault locality even by a value of 1 is

significant because of the exponential factor involved. Note that if the maximum

degree of every node in the conflict graph is δ, a fault locality of k (also denoted as

FL k) would imply that the number of processes that could potentially starve is δk.

If we reduce the fault locality to k-1, the number of processes that could potentially

starve reduces to δk−1. As such, small improvements in fault locality translate into

large improvements in the number of processes potentially affected by any given crash.

FL 0 implies that the crash of a process does not affect any other processes in

the system. It is also referred to as masking tolerance.
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D. Existing results

1. Impossibility of masking tolerance in a purely asynchronous system

The problem of solving dining with FL 0 is impossible in a purely asynchronous sys-

tem. This result is implied by two stronger results. First, Choy and Singh [3] proved

that the weaker tolerance property of FL 1 is unattainable in purely asynchronous

message-passing systems. Later, Pike and Sivilotti [21] proved that FL 0 was also

unattainable in stronger computational models of partial synchrony. The inherent

difficulty in such systems is the inability to reliably distinguish a process which has

crashed from processes that are merely slow. However, algorithms have been con-

structed in purely asynchronous systems which are able to achieve a fault locality of

2 in the presence of crash faults [2] [6] [7].

2. Fault local 0 dining: Solvable in purely synchronous systems

However, dining is solvable in purely synchronous systems with reliable communica-

tion channels. In a purely synchronous system, we assume that the following is true:

(1) Bounds on end-to-end message delay exist and are known.

(2) All processes take steps at the same rate.

Hence in a purely synchronous system, if a process crashes, all its neighbors will

be able to detect for sure that it has crashed. This can be done by assuming that all

correct processes continually send “I am live” messages at the end of each round of

execution to all their neighbors. Hence if a process Pi does not receive any message

at the end of one round of execution from another process Pj, Pi can conclude that

Pj has crashed. The key idea here is that at the end of every round, in a purely

synchronous system, even not receiving a message gives information. This is because

every process expects to receive a message at the end of each round. Hence crashes can
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be reliably detected in synchronous systems. Note that since we consider the model

of weak exclusion, we are assuming that the resources are recoverable in our system.

Hence, once the crash of a process is reliably detected by other correct processes, it

is possible for these correct processes to utilize the resources which were being used

by the crashed process without violating weak exclusion. Correct hungry processes

do not have to wait on crashed processes once they detect the failure of the crashed

process. Hence dining can be solved with FL 0 in these systems.

Recent results by Pike and Sivilotti [21], have shown that a failure locality of 1

can be achieved in partial synchrony under certain assumptions, specifically, by using

the unreliable failure detectors of Chandra and Toueg [4]. We explore the path of

finding the minimum assumptions needed for achieving masking tolerance (FL 0) and

show that it can be achieved in a partially synchronous system subject to crash faults

using the concept of unreliable failure detectors and more specifically a novel detector

called the trusting detector proposed by Delporte-Gallet, et al. [10].

E. Contributions

Our contributions in this work are two-fold:

(1) We propose a new compiler that takes as input, any mutual exclusion algorithm

and provides a dining algorithm as output

(2) We demonstrate a better upper-bound on the fault-detection capabilities necessary

to mask crash faults in dining philosophers.

F. Methodology

Our methodology extends and composes two currents of previous research. First,

we construct a parametric generalization of Lynch’s classic algorithm for hierarchical
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resource allocation (HRA algorithm) [17][18]. Our construction converts any mutual

exclusion algorithm into a valid dining algorithm. It works as a modular compiler

which takes as input any MX solution and outputs a valid dining solution. A con-

struction is modular if it includes or uses modules which can be interchanged as units

without disassembly of the module. Our compiler is modular because it uses an

underlying module that is a black-box implementation of MX. We clearly define the

interface to this module without knowing any details of how the module was originally

constructed. Any correct MX solution can be used as the module.

Second, we use the fault-tolerant mutual exclusion algorithm (FTME) of Delporte-

Gallet, et al., [10] which uses the trusting detector T and the strong detector S of the

Chandra-Toueg hierarchy [4] to mask crash faults in any environment. We instantiate

our dining construction with FTME, and prove that the resulting dining algorithm

guarantees masking tolerance to crash faults.
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CHAPTER II

RELATED WORK

Modular construction has previously been used in the construction of efficient dining

algorithms. Injong Rhee [22] came up with a modular construction that takes as input

any resource allocation algorithm and provides as output, a new resource allocation

algorithm with better response time in a distributed message-passing system. The

modular algorithm M uses a subroutine S in the following way: the critical region of S

is primarily used to lock out competing processes while they schedule themselves for

resource access. The actual resource allocation is not done in the critical region of S.

The author establishes the fact that this modular construction bounds the response

time to be a function of δc, where δ is the maximum number of conflicting processes

at any time during the execution of the algorithms and c is the maximum time that

a process is in its critical region. Moreover, this construction can be used to generate

various resource allocation algorithms. If the input S to this construction is a dining

algorithm, the output algorithm M becomes a drinking algorithm which allows more

concurrency than the dining algorithm.

Comparing this solution to our generalization, we first observe that our goal is

to limit the fault locality of the resulting solution, whereas the goal of Rhee’s work

is to improve the algorithm in terms of response time and message complexity. Also,

our algorithm takes any solution to the mutual exclusion algorithm (could be any

MX, dining or drinking solution) and produces a new dining algorithm as output,

whereas the above solution actually results in different outputs depending on the

input subroutine.

Another modular algorithm has been proposed by Lynch and Welch [26]. This

algorithm solves the drinking philosophers problem given any arbitrary dining solution
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as input. The primary difference between this work and ours is that, our modular

construction preserves the fault locality of the underlying mutual exclusion algorithm

if it is FL 0. However, it has been observed that this construction by Lynch and

Welch increases the fault locality by 1.

A solution has also been proposed to the dining philosophers problem by Arora

and Nesterenko [16] that can tolerate malicious crashes. A malicious crash is one

in which the faulty process takes a finite number of arbitrary steps before halting.

Their solution achieves its tolerance through a combination of stabilization and crash

failure locality. Their work considers the shared memory model which they claim

only simplifies the presentation details. However, they claim that their results still

hold when translated to the message-passing environments.

Pike and Sivilotti [21] came up with solutions to the dining philosophers problem

that achieve a crash locality of 1 in distributed message-passing systems. They used

unreliable failure detectors or oracles that were proposed by Chandra and Toueg [4].

Pike and Sivilotti provided transformations that took existing dining solutions, added

the eventually perfect detector ♦P of the Chandra-Toueg hierarchy, and achieved

fault locality 1 dining solutions. They also showed that ♦P is the weakest detector

among the Chandra-Toueg detectors to achieve fault locality 1 dining solutions under

weak exclusion. Our work is an extension to this work where we try to find the

weakest detector to achieve masking fault tolerance (FL 0).
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CHAPTER III

THE HIERARCHICAL RESOURCE ALLOCATION(HRA) ALGORITHM

This chapter describes the HRA algorithm by Lynch [17][18] and proves that the

algorithm satisfies safety and progress. This algorithm (HRA) is so called because

of the assumption of a total-ordering on all the resources in the system. All the

resources are ordered according to some static, hierarchical ranking. This ordering is

needed to prevent deadlocks in the system. However, this condition can be relaxed

to a partial ordering on all the resources, provided that it projects to a total ordering

on the individual resource requirements of each diner.

A. The algorithm

Let R denote the set of all the resources and D1, D2, ..... , Dn denote all the diners

in the system. As stated before, all the resources in R are totally ordered. Each

individual resource is represented as Ri. Every resource Ri has a unique queue Qi

associated with it. Qi contains a list of process IDs of all the diners that are currently

waiting on Ri. The diner at the head of Qi holds Ri or is in the critical section with

respect to Ri. Every diner Di requires a subset of these resources Si to eat.

Si = {R1, R2, ....... , Rm} ⊆ R

Also observe that the head of each queue is unique. The hungry protocol is given

in algorithm 1 and is explained below.

Upon becoming hungry, Di first enqueues its ID into the queue Q1 of its least

ranked resource R1 and waits until it reaches the head of Q1. When it reaches the

head of Q1, Di holds the resource R1. Now, Di enqueues itself into the resource queue

Q2 and waits until it reaches the head of Q2. This procedure of enqueueing into a

resource queue and waiting until it reaches the head, goes on until Di reaches the
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head of the resource queues of all the resources in Si. Then Di starts eating.

Algorithm 1: The Hungry Protocol

Upon: Diner Di.hungry

for (j = 1; j ≤ m; j++)

enqueue into resource queue Qj;

Wait-until at the head of Qj;

Di.state := eating;

Eating Invariant: Di.eating ⇒ for all Rj ∈ Si, <i> at the head of Qj

The exit protocol of the HRA algorithm is given in algorithm 2 and is explained

below.

Algorithm 2: The Exit Protocol

Upon: Diner Di.Exit

for (j = 1; j ≤ m; j++)

dequeue from resource queue Qj;

Di.state := thinking;

Thinking Invariant: Di.thinking ⇒ for all Rj ∈ Si, <i> not in Qj

Upon finishing eating, Di goes into the exit section in which it dequeues itself

from all resource queues in which it was present. Di then transits to thinking.

B. Proof of correctness

Lynch proves the correctness of the HRA algorithm by showing that it satisfies the

safety and progress properties of dining that were specified in Chapter I.

1. Safety

Safety: No two live neighbors eat simultaneously
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Proof: In any dining algorithm, safety is violated if two live processes which

are neighbors are eating simultaneously. This is violation of weak exclusion which is

the safety criteria that we specify in our model. Lynch proves by contradiction that

HRA does not violate safety. Assume that two live neighbors Di and Dj are eating

simultaneously thereby violating safety. Since Di and Dj are neighbors in the conflict

graph, the intersection of their resource requirements is non-empty. Hence they have

at least one resource that they both need to start eating. Let us assume that this

resource is Rk. In the HRA algorithm, a diner can move from its hungry state to

eating only when it is at the head of all of its resource queues. Since Di is eating, by

the above requirement and the eating invariant specified in Algorithm 1, <i> has to

be at the head of the resource queue for the resource Rk. However, Dj is also eating.

Hence by the eating invariant, <j> should also be at the head of the resource queue

for Rk which is not possible, because the head of each such queue is unique. Hence

we derive a contradiction. Thus the assumption that the live neighbors Di and Dj

violate safety is false and safety (weak exclusion) is proved.

2. Progress

Starvation freedom: If no correct process eats forever, then every correct hungry

process eventually eats.

The progress requirement for Lynch’s algorithm states that if any process be-

comes hungry at some time t0, it will eat at some later time t1 > t0. Note that

for this to be guaranteed, Lynch makes some assumptions about the behavior of the

processes in their hungry and exit sections. More specifically, Lynch assumes that the

eating time of every correct process is finite. Every process which starts eating stops

after a finite time. Moreover, Lynch also assumes that unobstructed exit holds.

Definition: Dining with no-deadlock
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A dining algorithm with no-deadlock satisfies the following progress property:

If a correct process becomes hungry, then eventually some correct process eats.

Definition: Dining with no-lockout

A dining algorithm with no-lockout satisfies the starvation freedom property specified

in Chapter I.

To prove progress, we need to show that:

(1) HRA prevents deadlocks from occurring in the system.

(2) HRA guarantees no-lockout.

a. No deadlocks

Deadlocks can occur if and only if all of the following necessary conditions are satisfied:

[5]

1. Mutual exclusion

2. Hold and wait

3. No preemption

4. Circular wait

Deadlock can never occur in a system if any of the above conditions cannot hold. We

show that the circular wait condition can never occur in the system thereby preventing

a deadlock.

Circular wait is defined as follows: the processes in the system form a circular

list or chain where each process in the list is waiting for a resource held by the next

process in the list and the last process in the list is waiting for a resource held by the

first process. An illustration of circular wait is shown in figure 3.

Waits-for: Process A is said to be waiting on process B if A is waiting to obtain

some resource to enter its critical section and that resource is currently being used (or

held) by B. The relationship between A and B is said to be a waits-for relationship.
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Fig. 3. A circular wait chain. Di holds Ri and waits for Ri+1. Dn holds Rn and waits

for R1

Note that waits-for is transitive. Hence, if A waits-for B and B waits-for C, then

due to transitivity, A also waits-for C.

Consider a set of two or more processes in the system D1, D2, ......., Dk+1.

Consider the following scenario for circular wait. D1 holds R1 and waits-for R2, D2

holds R2 and waits-for R3, and so on. Dk+1 holds Rk+1 and waits-for R1. We show

by contradiction that such a scenario can never occur in the HRA algorithm. Because

of the total-ordering on all the resources, we can conclude the following about the

resources:

R1 < R2 (D1 obtained R1 before R2)

R2 < R3 (D2 obtained R2 before R3)

R3 < R4 (D3 obtained R3 before R4)
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..........................

Rk+1 < R1 (Dk+1 obtained Rk+1 before R1)

By applying the transitivity property of the ‘<’ relation on the above set of in-

equalities, we conclude that R1 < R1. However, this violates the irreflexivity property

of the total-order. Thus we derive a contradiction thereby implying that no-deadlock

can occur in the HRA algorithm.

b. No lockouts

The no-lockout condition requires that any process Pi which becomes hungry at time

t0 will start eating at some time t1 > t0. To prove this, Lynch in [18], shows that

there is an upper bound on the worst-case waiting time for any process. This proof

is based on the observation that the queues in Lynch’s algorithm are FIFO in nature.

Assume that there is a metric which is the sum of the maximum queue lengths of

the queues of all the resources that a diner needs to eat. From the time a process

becomes hungry, this metric keeps decreasing with every advancement made by the

process in any queue. Note that this metric can never increase because of the FIFO

nature of the queues.

Using the FIFO nature of the queues, Lynch proposes and solves a set of recur-

rence relations to obtain a bound on the worst-case response time (Tu) of a hungry

process. This implies that any process which becomes hungry will only have to wait

for a maximum time Tu before it can start eating. Hence process Pi which becomes

hungry at t0 will start eating no later than t1 = t0 + Tu. Hence lockout cannot occur

in a system with an upper bound on the waiting time and so the HRA algorithm

guarantees no-lockout.
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C. Observations

Analyzing the HRA algorithm, we observe the role performed by the queue at each

resource. The queue for a particular resource helps in providing mutually exclusive

access to the resource for the diner whose process ID is at the head of the queue.

Observe that in figure 4, Di is at the head of Rm and hence controls Rm. Moreover,

the FIFO nature of the queues also guarantees that no process can overtake other

processes within the same queue. Another observation here is that the FIFO nature

of the queue is used in showing that no lockout can ever occur in the system, thus

preventing the starvation of any hungry diner.

Fig. 4. Resource queue for Rm where Di is the head

If we assume that progress is guaranteed, the sole purpose of using the queue is

to ensure mutually exclusive access to the resource. Hence if we have an algorithm

which solves mutual exclusion ensuring progress, we can replace the queues with this

algorithm and still ensure that HRA functions correctly. This is the intuition behind

the generalization which is explained in the next chapter.
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D. Chapter notes

1. HRA and 2-phase locking

2-phase locking (2PL) is a lock-based concurrency control technique which is used

in database transactions to maintain the integrity of the database. In lock-based

techniques, every data object in the database has a lock associated with it. This can

be requested and held by a transaction. The transaction releases the lock after it

finishes using the data object. The concept of two-phase locking has been adopted

from [25].

Two-phase locking has two phases, a growing phase and a shrinking phase. In the

growing phase, a transaction starts requesting locks while holding any lock it gains.

When the transaction holds all the locks it needs, it is said to be at its lock point.

After performing the necessary operations, the transaction proceeds to unlock all the

locks that it holds. Observe the similarity between the HRA algorithm and the two-

phase locking. A transaction is similar to a process and the data objects represent

the resources that a process needs. Acquiring a lock is similar to reaching the critical

section of a particular resource. A transaction (process) performs its operations only

after it acquires all the locks (resources) it needs.

Several variations of 2PL exist. In one such technique, there is no total ordering

on the data objects. Hence there is the possibility of a deadlock occurring in the

system. In such systems, there is an overhead involved to detect the occurrence of

deadlocks and to take corrective measures for the correct operation of the system.

Other techniques assume a total ordering on the data objects and thereby prevent

deadlocks. These are exactly similar to the HRA algorithm.
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CHAPTER IV

GENERALIZING THE HIERARCHICAL RESOURCE ALLOCATION

ALGORITHM

As we have seen in Chapter III, the HRA algorithm works by associating a queue with

each resource and making every process request resources in rank order. We have also

observed that the use of queues is actually not necessary in the HRA algorithm. Any

mutual exclusion algorithm that ensures progress also serves the purpose.

A. Using a MX solution instead of queues

Instead of associating a queue with each resource, we use an underlying algorithm

which provides mutually exclusive access to the resource. If we assume that the MX

algorithm is safe, it will ensure that there can only be at most one process for each

resource. Also, assume that the MX algorithm guarantees progress. Hence every

process that becomes hungry for that resource is guaranteed to eat with respect to

that resource in finite time. Hence we require a MX algorithm that satisfies the

following properties:

Safety: No two live neighbors eat simultaneously.

Progress:

(1)Starvation freedom: If no correct process eats forever, then every correct hungry

process eventually eats.

(2)Unobstructed exit: Every correct exiting process eventually thinks.

Also observe that any solution to MX that satisfies the above properties is suf-

ficient for our construction. Our modular construction takes as input a black-box

implementation of the MX solution and constructs a dining algorithm from it.
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B. The generalized HRA algorithm

The generalized HRA algorithm works as follows: Consider a set of diners in the

system, D1.....Dn. We also assume that there is a set of resources R in the system.

Every diner Di requires a subset of these resources Si to eat.

Si = {R1, R2, ....... , Rm} ⊆ R

Also assume that every diner in the system cycles between the four states,

<Thinking>, <Hungry>, <Eating> and <Exit> as explained in Chapter I. Hence

every process has a local variable state to which it assigns its current state. We as-

sociate a mutual exclusion group MXi with each resource Ri. A process which is

eating in MXi currently has privileged access to Ri. A diner Di becomes hungry by

changing its state from thinking to hungry.

For every diner, we assume that there exists a proxy for each resource that it

needs. Hence for a diner Di with resource requirements Si, it contends in a total of

|Si| MX groups. Hence we assume that there are |Si| proxies for every diner. The

relationship between a diner and its proxies is specified by the following properties:

Dependent crash properties:

(1) If a diner crashes, all its proxies are assumed to have crashed.

(2) If at least one of the proxies of a diner crashes, the diner is assumed to have

crashed. Consequently, by (1), all the other proxies are also assumed to have crashed.

A plausible implementation that satisfies the above property is as follows: A

diner is a set of actions. A proxy is another set of actions. A process executes the

actions of both the diner and its proxies. Every diner has a unique process associated

with it and only processes can crash. Hence if a process crashes, both the diner and

the set of proxies associated with it crash.
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1. The hungry protocol

Di becomes hungry and changes its state to hungry which sets off the hungry protocol.

Di sets the state of pi1, the proxy for its least ranked resource R1, to hungry in the

mutual exclusion group MX1. Di waits until pi1 starts eating in MX1. Then Di

sets the state of pi2, the proxy for its second least ranked resource to hungry. This

procedure of setting a proxy’s state to hungry and waiting until the proxy starts

eating, continues until the proxy of Di’s highest ranked resource pim starts eating in

its mutual exclusion group MXm. At this moment, all the proxies of Di are eating

in their respective exclusion groups. Hence Di changes its state to eating and starts

eating. The code at each process is shown in Algorithm 3 below:

Algorithm 3: The Hungry Protocol

Upon: Diner Di.hungry

for (j = 1; j ≤ m; j++)

In MXj, set pij.state := hungry;

Wait-until pij.eating;

Di.state := eating;

Eating Invariant: Di.eating ⇒ for all Rj ∈ Si, pij.eating

2. The exit protocol

The diner Di changes its state to exit once it is done eating. This action sets off the

exit protocol. When this happens, Di sets the state of the proxy for its least ranked

resource pi1 to exit. The proxy pi1 changes its state to thinking. Once this is done,

Di then repeats the same with the proxy of the next higher ranked resource. Again

this continues until pim, the proxy for the highest ranked resource of Di changes its

state from exit to thinking. Then Di changes its own state from exit to thinking. The
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code at each process is shown below in Algorithm 4.

Algorithm 4: The Exit Protocol

Upon: Diner Di.exit

for (j = 1; j ≤ m; j++)

In MXj, set pij.state := exit;

Wait-until pij.thinking;

Di.state := thinking;

Thinking Invariant: Di.thinking ⇒ for all Rj ∈ Si, pij.thinking

C. Proof of correctness

In order to prove the correctness of the generalized HRA, we assume that we are

provided with a mutual exclusion algorithm that satisfies safety and progress. The

following properties are assumed of the underlying MX algorithm:

Safety: No two live neighbors eat simultaneously.

Progress:

(1)Starvation freedom: If no correct process eats forever, then every correct hungry

process eventually eats.

(2)Unobstructed exit: Every correct exiting process eventually thinks.

There are four steps in the proof of our generalized HRA and each of it is ex-

plained below.

Step 1: We first prove the safety of the generalized HRA. To prove this we use

the safety of the underlying MX algorithm. Note that we can use the safety property

of mutual exclusion here because it holds without making any assumptions about the

eating time of the processes in the exclusion groups.

Step 2: Theorem 1 - Unobstructed exit of generalized HRA
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Secondly, we prove that the generalized HRA algorithm has unobstructed exit. We

use the unobstructed exit of the underlying MX algorithm in this proof. Also note

that we can use the unobstructed exit of MX because it also does not make any

assumptions about the eating time of the processes in the exclusion group.

Step 3: Lemma 1 - No correct proxy eats forever in any exclusion group

To use the starvation freedom property of the MX solution, we need to provide some

guarantees on the eating time of the correct proxies in any exclusion group. In other

words, no correct proxy can eat forever in any exclusion group. Recall that the

starvation freedom property of MX holds only if this assumption is satisfied. The

dining algorithm uses the MX algorithm as a subroutine. It acts as a client of the

MX solution. Hence it is the responsibility of the dining algorithm to ensure that the

input assumptions of the MX algorithm are satisfied. Thus it is imperative that we

prove Lemma 1 before we could use the starvation freedom property of the underlying

MX algorithm in theorem 2.

Step 4: Theorem 2 - Starvation freedom of generalized HRA

Finally, we show that the generalized HRA algorithm guarantees starvation freedom.

To prove this we use the starvation freedom property of the underlying MX solution.

However, observe that the usage of this underlying property is valid only because we

proved Lemma 1 which guarantees that the input assumptions of the underlying MX

solution are satisfied.

1. Safety: No two live neighbors eat simultaneously

Proof: We prove by contradiction that the generalized HRA algorithm is safe. Assume

that safety is violated in the generalized HRA algorithm. This means that there are at

least two live neighbors in the conflict graph, Di and Dj, which share some common

resource Rk and are eating simultaneously. Di is eating. Hence by the eating invariant
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specified in Algorithm 3, all the proxies of Di are eating. Observe that the resource

Rk is in Si. Hence pik, the proxy of Di, is eating in the mutual exclusion group MXk.

By hypothesis, Dj is also eating. Hence again by the eating invariant specified in

Algorithm 3, all the proxies of Dj are eating. Observe that the resource Rk is also in

Sj. Hence the proxy of Dj, pjk is eating in MXk.

From the above argument, it can be seen that the mutual exclusion group Rk has

two live proxies pik and pjk eating simultaneously. However, this violates the safety

of the underlying MX algorithm which guarantees that only one live process can be

eating in one exclusion group. Hence our assumption that safety is violated in the

generalized HRA algorithm was wrong. Hence the algorithm guarantees safety.

This completes Step 1 of our proof structure. We now prove Step 2 of our proof. This

is the progress property – unobstructed exit.

2. Progress

We need to prove the following two progress properties:

(1) Theorem 1: Every correct exiting process eventually thinks.

(2) Theorem 2: If no correct process eats forever, then every correct hungry process

eventually eats.

a. Theorem 1: Every correct exiting process eventually thinks.

Proof: We know that the underlying MX algorithm has an unobstructed exit section.

Hence any correct process which starts exiting in the underlying MX algorithm even-

tually thinks. We continue to assume that every diner Di has resource requirements

Si.

We define the following metric for every diner Di and prove that each step taken

by the algorithm reduces the value of the metric. We also show that the metric
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eventually reaches a lower bound, at which time the diner actually moves from its

exit section to its thinking section.

Metric

M(Di)= < | Dix.state=Eating |, | Dix.state=Exit |, | Dix.state=Thinking | >

where | Dix.state=Q | denotes the number of proxies in the Q section

The metric is totally ordered lexicographically. We define < x1, x2, x3 > to be strictly

lesser than < y1, y2, y3 > if and only if:

x1 < y1 or

x1 = y1 and x2 < y2 or

x1 = y1 and x2 = y2 and x3 < y3

Observe that the initial value of the metric when a diner Di enters its exit section

is < k, 0, 0 > where k is the total number of resources that the diner needs to eat.

This is because, by the eating invariant of Algorithm 3, all the proxies of Di, pix, will

be eating at this stage. We prove that the metric keeps decreasing after each iteration

of the exit protocol (Algorithm 4) and finally reaches the value < 0, 0, k > at which

time, the diner Di can start thinking.

Let the value of the metric after the n− 1th iteration of the exit protocol (Algorithm

4) be,

M(Di) = < xn−1, yn−1, zn−1 >

Now we need to prove that the metric decreases after the nth iteration of the exit

protocol. We start with the first line of the ‘for’ loop in the algorithm where Di sets

pin.state to exit. The metric value changes to < xn−1 − 1, yn−1 + 1, zn−1 >. This

is because one of the proxies, pin, changes its state from eating to exit. Hence the

number of eating proxies reduces from xn−1 to xn−1 − 1 and the number of proxies

in their exit sections increases from yn−1 to yn−1 + 1.

Di waits until the proxy pin changes its state to thinking (the second line of the
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‘for’ loop). This eventually happens in finite time because of the progress property

(2) [unobstructed exit] of the underlying mutual exclusion algorithm. Hence when

the iteration ends, pin.state= thinking. Hence the new value of the metric would be,

< xn−1 − 1, yn−1, zn−1 + 1 >. This is because the number of proxies in the exit

section reduces by 1. Hence it changes from yn−1 + 1 to yn−1. Also, the number of

proxies in the thinking section increases by 1 to zn−1 + 1, since a proxy has changed

its state from exit to thinking.

Hence the new value of the metric at the end of the nth iteration is:

M(Di) = < xn, yn, zn > where xn = xn−1 − 1, yn = yn−1, and zn = zn−1 + 1

According to the definition of the metric given above,

< xn, yn, zn > is strictly lesser than < xn−1, yn−1, zn−1 >. Hence after the nth

iteration of the algorithm, the metric value strictly decreases.

We have also proved that at the end of each iteration, the value of the metric

changes such that < xn, yn, zn > becomes < xn − 1, yn, zn + 1 >. Hence the metric

starting at < k, 0, 0 > after k iterations will become < 0, 0, k >, which implies that

all the proxies of the diner are thinking. Observe from the exit protocol and the

thinking invariant that this condition is sufficient for the diner Di to move from its

exit state to its thinking state.

Thus we show that there exists a metric value which decreases with each step

of the exit protocol and eventually reaches a lower bound, at which point the diner

moves from its exit to its thinking state. Hence it has been proved that once initiated,

the exit protocol will eventually change the state of the diner to thinking. Thus, the

unobstructed exit of dining has been proved.

Hence we have proved Step 2 of the proof of correctness. The next step, Step 3, is

to prove Lemma 1. Observe that Lemma 1 is fundamentally, the most important proof

in our thesis. It is the basis on which the rest of the proof is structured. Theorem 2
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can only be proved after Lemma 1 because of the usage of the starvation freedom of

MX in the proof of Theorem 2.

b. Lemma 1: No correct proxy eats forever in any exclusion group

Proof: The proof is by contradiction. Assume that there exists some run α of the

algorithm in which some proxy of a correct diner Di, eats forever in a MX group of

some resource. Also assume that Rh is the highest ranked resource in which the proxy

of any diner Di eats forever in this run α. Note that there could be other processes

eating forever in other exclusion groups. But Rh is the highest ranked resource in

which such a bad scenario can ever occur in the run α. Hence we claim that:

Claim 1: pih.state = eating (forever)

There are only two possible scenarios in which the above can hold and we consider

each of them separately here:

Case 1: Rh is the highest ranked resource needed by Di

Since pih is already eating, the wait condition on Line 4 of the ‘for’ loop of the hungry

protocol (Algorithm 3) is satisfied. Since this is the highest ranked resource needed

by Di, the control exits the ‘for’ loop. The next statement that is executed changes

the state of Di to eating. We assume that the eating time of a dining process is

finite. Hence the action that starts the exit protocol will eventually be executed.

Once the exit protocol starts, we know from Theorem 1 (unobstructed exit of dining)

that the process eventually starts thinking in finite time thereby forcing all its proxies

to also start thinking because of the thinking invariant. Hence pih.state = thinking

eventually. However, this violates Claim 1. Hence we derive a contradiction to our

claim that pih is eating forever.

Case 2: Rh is not the highest ranked resource needed by Di

Assume that there is some next higher ranked resource Rz in which Di is hungry.



33

Claim 2: piz.state = hungry or will be hungry eventually

Again there are only two possible ways in which the above scenario can happen:

(1) Some correct proxy eats forever in MXz

(2) No correct proxy eats forever in MXz

We consider each of them in two different sub-cases below:

Case 2a: Some correct proxy eats forever in MXz

Let there be a proxy of another correct diner Dj which is eating forever in MXz

thereby preventing piz from progressing in MXz.

pjz.state = eating (forever).

However, Rz is ranked higher than Rh. This is because Di requests Rz after it

acquires Rh and from the hungry protocol, we know that resources are only requested

in rank order from lowest to the highest ranked resource. Hence Rz is a resource

which is ranked higher than Rh but has a proxy (pjz) eating forever in it. However

this violates our assumption that Rh is the highest ranked resource in which a proxy

can eat forever. Hence we derive a contradiction to our assumption.

Case 2b: No correct proxy eats forever in MXz

If no correct proxy eats forever in the mutual exclusion group MXz, the progress

property of MX, starvation freedom, is applicable since the input assumptions of MX

are satisfied. Hence by the starvation freedom of the MX algorithm, the hungry proxy

piz eventually gets to eat in MXz. piz.state = eating (eventually).

Also observe that in this case, no correct proxy eats forever in MXz because

of the maximality of MXh. In other words, Rz is ranked higher than Rh and we

know that Rh is the highest ranked resource in which a correct proxy can eat forever.

Hence piz has to eventually stop eating and change its state to thinking. However,

by the exit protocol, this can only happen if the diner has started its exit code. This

is because the state of a proxy can change from eating to thinking only in the exit
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code. Hence the exit code should have initiated. Once the exit protocol starts, we

know from Theorem 1 (unobstructed exit of generalized HRA) that the process has

to eventually think thereby forcing all its proxies to also think. Hence pih.state =

thinking eventually. However, this violates Claim 1 that pih.state is eating forever.

Hence we derive a contradiction to our claim.

Hence from the above arguments, it can be observed that our claims are violated

in all possible scenarios. Our assumption that there is a bad run α in which some

correct proxy eats forever in some exclusion group must be false. We conclude that

no such run exists. Hence our lemma is proved.

Thus we have finished proving Step 3 of our proof. The final step, Step 4, is

very similar to Step 2 but the only important issue here is that since we have already

proved Lemma 1, we can use the starvation freedom property of the underlying MX

solution in this proof.

c. Theorem 2: If no correct process eats forever, then every correct hungry process

eventually eats.

Proof: We assume the correctness of the underlying mutual exclusion algorithm. Note

that the input assumptions of the MX algorithm are satisfied by lemma 1. Hence any

correct process which becomes hungry in the underlying MX algorithm eats in finite

time. We continue to assume that every diner Di has resource requirements Si.

We define the following metric for every diner Di and prove that each step taken

by the algorithm reduces the value of the metric. We also show that the metric

eventually reaches a lower bound where in the diner actually moves from its hungry

section to its eating section.

Metric

M(Di)= < |Dix.state=Thinking |, |Dix.state=Hungry |, |Dix.state=Eating | > where
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| Dix.state=Q | denotes the number of proxies in the Q section

Observe that the metric is totally ordered lexicographically. We define < x1, x2, x3

> to be strictly lesser than < y1, y2, y3 > if and only if:

x1 < y1 or

x1 = y1 and x2 < y2 or

x1 = y1 and x2 = y2 and x3 < y3

Observe that the initial value of the metric when a diner Di becomes hungry

is < k, 0, 0 > where k is the total number of resources needed by the diner. This

is because, by the thinking invariant of algorithm 4, all the proxies of Di, pix, will

be thinking. We prove that the metric keeps decreasing after each iteration of the

hungry protocol and finally reaches the value < 0, 0, k > at which time, the diner Di

can start eating.

Let the value of the metric after the n− 1th iteration of the ‘for’ loop of the

hungry protocol (Algorithm 3) be,

M(Di) = < xn−1, yn−1, zn−1 >

Now we need to prove that the metric decreases after the nth iteration of the

algorithm. We start with the first line of the ‘for’ loop in algorithm 3, where Di sets

pix.state to hungry. The metric value changes to < xn−1 − 1, yn−1 + 1, zn−1 >. This

is because one of the proxies, pin, changes its state from thinking to hungry. Hence

the number of thinking proxies reduces from xn−1 to xn−1 − 1 and the number of

hungry proxies increases from yn−1 to yn−1 + 1.

Di waits until the proxy starts eating (the second line of the ‘for’ loop in algorithm

3). This eventually happens in finite time because of the starvation freedom of the

underlying mutual exclusion algorithm. Note that we can use the starvation freedom

property of the MX solution only because we have already proved Lemma 1. Hence

when the iteration ends eventually, pin.state=eating. Hence the new value of the
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metric will be,

< xn−1 − 1, yn−1, zn−1 + 1 >. This is because the number of proxies in the hungry

section reduces by 1. Hence the number of hungry proxies changes from yn−1 + 1 to

yn−1. Also, the number of eating proxies increases by 1 to zn−1 + 1 since a proxy has

moved from its hungry section to its eating section.

Hence the new value of the metric is:

M(Di) = < xn, yn, zn > where xn = xn−1 − 1, yn = yn−1, and zn = zn−1 + 1

According to the definition of the metric given above,

< xn, yn, zn > is strictly lesser than < xn−1, yn−1, zn−1 >. Hence after the nth

iteration of the algorithm, the metric value strictly decreases.

We have also proved that at the end of each iteration, the value of the metric

changes such that < xn, yn, zn > becomes < xn − 1, yn, zn + 1 >. Hence the metric

starting at < k, 0, 0 > after k iterations will become < 0, 0, k > which implies that

all the proxies of the diner are eating. However, note that by the eating invariant of

algorithm 3, at this stage, the diner Di can start eating.

Thus we show that there exists a metric value which decreases with each iteration

of the hungry protocol and eventually reaches a lower bound when the diner can eat.

Hence the theorem is proved.

Hence we have proved theorem 2 which completes the final step in our proof.

D. Conclusions

So far, we have constructed a correctness preserving compiler which takes as input

any correct mutual exclusion solution and outputs a correct dining solution. This is

illustrated in figure 5.

Observe that the fault locality of MX solutions must be either 0 or 1.
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Fig. 5. Our compiler

(1) FL 0 (good tolerance): Every correct hungry process eventually eats.

(2) FL 1 (bad tolerance): Since every process is a neighbor of every other process

in MX, a fault locality of 1 implies that if a process crashes in the system, all other

processes could potentially starve. Hence FL 1 MX solutions are not considered in

our work.

The next chapter deals with the tolerance properties of our compiler. Specifically,

we study the effects of using a FL 0 MX solution as input. We prove that our compiler

actually preserves tolerance if the tolerance of the underlying MX solution is good

(FL 0). This implies that using a FL 0 MX solution as input, our compiler produces

a FL 0 dining solution.
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CHAPTER V

DINING WITH FAILURE LOCALITY 0

So far, we have seen how the HRA algorithm by Lynch can be generalized to use a

correct MX solution instead of queues. We have also seen that any mutual exclusion

algorithm can be converted to a dining algorithm using this generalization. We have

constructed a compiler which takes as input any correct mutual exclusion algorithm

and gives as output, a correct dining algorithm. We have also proved in Chapter IV

that our compiler is correctness preserving. In this chapter, we evaluate the tolerance

properties of our compiler. Specifically, we study the effects of using a FL 0 (failure

locality 0) MX solution as input. We prove that our compiler actually preserves

tolerance if the tolerance of the underlying MX solution is good (FL 0). This implies

that using a FL 0 MX solution as input, our compiler produces a FL 0 dining solution.

A. Tolerance preservation

We now consider two different environments and analyze the tolerance properties of

our compiler.

1. Environment: No process crashes occur

In this environment, by using any correct MX algorithm, our generalization produces

a correct dining algorithm. This is because, in an environment where no process

crashes, all processes are correct. Hence we only require the following properties to

be guaranteed by the underlying MX algorithm.

Safety: No two neighbors eat simultaneously

Progress:

(1) Starvation freedom: If no process eats forever, then every hungry process eventu-
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ally eats.

(2) Unobstructed exit: Every exiting process eventually thinks.

Observe that these properties are sufficient because every process in the system

is a correct and a live process. Since no process crashes in this environment, tolerance

properties of our compiler are not applicable here.

2. Environment: Processes crash

We assume that the input MX algorithm has FL 0. We now consider the tolerance

of our output dining solution when a process crashes.

Recall the properties that we have already proved of the dining solution:

(1) No two live neighbors (diners) eat simultaneously [Safety]

(2) Every correct exiting process(diner) eventually thinks [Theorem 1]

(3) No correct proxy eats forever in any exclusion group [Lemma 1]

(4) If no correct process(diner) eats forever, then every correct hungry process(diner)

eventually eats [Theorem 2]

Observe that all the four properties above only deal with correct and live din-

ers(and their proxies). We only make assumptions about the behavior of correct

diners and prove properties which are valid only for correct and live diners(and their

proxies). We now consider the crash of a diner in every possible state and evaluate

the tolerance of our dining solution:

Case 1: Thinking

Assume that a thinking diner Di crashes. Observe that properties (1), (2) and

(4) stated above only deal with correct and live diners. Since Di is a crashed diner, it

is neither correct nor live. Hence it does not violate any of these properties. Now we

consider property (3) stated above. By the thinking invariant (Algorithm 4), we know

that every proxy of Di is thinking because Di is thinking. Also, from the dependent
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crash property (1) specified in Chapter IV, we know that if Di crashes, all its proxies

are assumed to have crashed. From this argument, we observe that all of Di’s proxies

are thinking and are assumed to have crashed. Property (3) makes assumptions about

correct proxies which eat. Since none of the proxies of Di are correct or eating, they

do not violate property (3). Hence we have shown that none of the four properties

above are violated if a thinking diner crashes. Hence by property (4), every correct

hungry process eventually eats (irrespective of other processes crashing in the system).

Hence we conclude that the dining solution has FL 0.

Case 2: Hungry

Assume that a hungry diner Di crashes. Observe that properties (1), (2) and (4)

stated above only deal with correct and live diners. Since Di is a crashed diner, it is

neither correct nor live. Hence it does not violate any of these properties. Now we

consider property (3) stated above. Since the diner is executing the hungry protocol,

at most one of its proxies is hungry in an exclusion group, zero or more proxies

are eating in some other exclusion groups and zero or more proxies are thinking.

Also, from the dependent crash property (1) specified in Chapter IV, we know that

if Di crashes, all its proxies are assumed to have crashed. Observe that the thinking

proxies do not violate property (3) [follows from Case 1]. The one hungry proxy

which crashes is neither correct nor eating. Hence it does not violate property (3).

The proxies which crash while eating, now eat forever. However, they are not correct

proxies. Hence they also do not violate property (3). We thus conclude that property

(3) is not violated by any of the proxies of Di. Hence we have shown that none of

the four properties above are violated if a hungry diner crashes. Again by the same

argument as in Case 1, we conclude that our dining solution has FL 0.

Case 3: Eating

Assume that an eating diner Di crashes. Observe that properties (1), (2) and
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(4) stated above only deal with correct and live diners. Since Di is a crashed diner, it

is neither correct nor live. Hence it does not violate any of these properties. Now we

consider property (3) stated above. By the eating invariant (Algorithm 3), we know

that every proxy of Di is eating because Di is eating. Also, from the dependent crash

property (1) specified in Chapter IV, we know that if Di crashes, all its proxies are

assumed to have crashed. From this argument, we observe that all of Di’s proxies

are eating and are assumed to have crashed. Property (3) makes assumptions about

correct proxies which eat. Since none of the proxies of Di are correct, they do not

violate property (3). Hence we have shown that none of the four properties above

are violated if an eating diner crashes. Again by the same argument as in Case 1, we

conclude that our dining solution has FL 0.

Case 4: Exit

Assume that an exiting diner Di crashes. Observe that properties (1), (2) and

(4) stated above only deal with correct and live diners. Since Di is a crashed diner,

it is neither correct nor live. Hence it does not violate any of these properties. Now

we consider property (3) stated above. Now, since the diner is executing the exit

protocol, at most one of its proxies is in its exit state in an exclusion group, zero or

more proxies are eating in some other exclusion groups and zero or more proxies are

thinking. Also, from the dependent crash property (1) specified in Chapter IV, we

know that if Di crashes, all its proxies are assumed to have crashed. Observe that

the thinking and the eating proxies do not violate property (3) [follows from Cases

1 & 2]. The one exiting proxy which crashes is neither correct nor eating. Hence it

does not violate property (3). We thus conclude that property (3) is not violated by

any of the proxies of Di. Hence we have shown that none of the four properties above

are violated if an exiting diner crashes. Again by the same argument as in Case 1,

we conclude that our dining solution has FL 0.
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Hence we have shown that the crash of a diner in any possible state does not

affect other diners in the system. Hence we prove that our dining solution has FL

0 and that our compiler preserves the tolerance (produces an output FL 0 dining) if

the tolerance of the input MX algorithm is good (FL 0).

3. A sample execution showing FL 0 dining

We now illustrate with the help of a sample execution, how our dining solution allows

correct diners to eat with crashed neighbors by using the properties of the underlying

MX solution. Consider the conflict graph shown in figure 6. There are four diners in

the system, D1, D2, D3, D4. The resource requirements of each diner are shown in

the figure. Every diner has a proxy in the exclusion group of every resource that it

needs. We will consider a run of our dining algorithm in this configuration and show

how the crash of a diner does not prevent other diners from eating. Let the diner

D1 become hungry. Since the diner is a live diner, by the hungry protocol, it sets

its proxy in the exclusion group of its least ranked resource p11 to hungry. Proxy p11

eventually gets to eat in MX1 or crashes. Assume that it eats. Once p11 starts eating,

D1 then sets the proxy of its next higher ranked resource p12 to hungry. Again p12

has to eat in MX2 or crash. We assume that p12 eventually starts eating. D1 then

sets p13 to hungry. Assume that at this time, the diner D4 becomes hungry. By the

hungry protocol of our algorithm, D4 sets the state of the proxy of its least ranked

resource p41 to hungry. At this point, let the diner D1 crash thereby resulting in the

crash of all its proxies. The scenario is shown in figure 7 below.

Consider the situation in the exclusion group, MX1. There is a correct hungry

proxy (p41) and there is a crashed eating proxy (p11). However, no correct proxy

is eating forever in MX1. Hence by the starvation freedom property of MX, every

correct hungry proxy has to eventually eat. Hence p41 eventually gets to eat in MX1.
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Fig. 6. A sample execution showing FL 0: Step 1
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D4 then sets the state of p42 to hungry which eventually starts eating by the same

argument as above. Hence p43 is then set to hungry. It starts eating eventually at

which time D4 converts its state to eating. Hence the correct hungry diner (D4)

eats despite having a crashed neighbor (D1) supporting the starvation freedom of our

dining solution. Note that this example only illustrates that a correct diner can eat

Fig. 7. A sample execution showing FL 0: Step 2

despite having a crashed neighbor who is eating. It does not specifically prove that

the dining solution has FL 0.
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B. Conclusions

In this chapter, we have proved an additional property of our compiler: tolerance

preservation for good inputs. In the next chapter, we discuss the minimum assump-

tions on synchrony that are required to construct a FL 0 mutual exclusion solution.

The next chapter explains the construction of a specific FL 0 mutual exclusion solu-

tion, fault-tolerant mutual exclusion (FTME) which was solved by Delporte-Gallet, et

al., [10] using the concept of unreliable failure detectors in an environment that does

not require full synchrony. Observe that the next chapter only serves the purpose of

supporting our assumption that there exists a FL 0 MX solution which can be used

as input to our compiler.
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CHAPTER VI

FAULT-TOLERANT MUTUAL EXCLUSION

This chapter explores FL 0 mutual exclusion solutions. We first show that FL 0 can

be trivially achieved in full synchrony. As explained in Chapter I, crash faults can be

reliably detected in such systems. Since resources are recoverable (weak exclusion),

correct processes can seize resources from processes known to have faulted (crashed).

Hence correct processes never wait indefinitely on crashed processes. This in turn will

result in FL 0 MX solutions. However, we now explore the minimum assumptions

of synchrony to achieve FL 0 MX. Full synchrony, though sufficient, is too strong

a requirement on the underlying environment. Delporte-Gallet, et al.,[10] proved

that full synchrony is not necessary. They solved FTME in an asynchronous system

augmented with unreliable failure detectors. The rest of the chapter introduces the

concept of unreliable failure detectors and explains the FTME solution of Delporte-

Gallet, et al. [10].

A. Unreliable failure detectors

The asynchronous model of computation does not make any timing assumptions on

the system. This becomes important because applications based on this model are

highly portable compared to those which incorporate specific timing assumptions.

Moreover, timing assumptions are usually only probabilistic. Hence they can rarely

be assumed to be totally accurate. However, with no timing assumptions, there is an

inherent difficulty in distinguishing a crashed process from one that is very slow.

Chandra and Toueg first introduced the concept of unreliable failure detectors[4].

These failure detectors are distributed in nature. Each process has a local failure

detector module which it can query to get information regarding the failures of other
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processes in the system. The purpose of the failure detector module is to monitor

the rest of the processes in the environment and add a process to the suspect list if

it suspects the process to have crashed. A failure detector can be unreliable. Hence

it can make mistakes. These mistakes are of two types: false negatives and false

positives. A false negative is an instance where a process which was actually crashed

was not suspected. A false positive is an instance where a correct process is incorrectly

suspected by the failure detector.

Chandra and Toueg classified the failure detectors on the basis of two properties:

Completeness and Accuracy[4]. The completeness property restricts the false nega-

tives that can be made. Specifically, it deals with ensuring that in the infinite suffix

of any run of the algorithm, all the incorrect processes in the system are suspected

by the failure detectors. The accuracy property restricts the false positive mistakes

that can be made by the failure detector, i.e., it deals with the correct processes

incorrectly suspected by the detector and tries to restrict these mistakes. These are

defined more formally in the next section.

1. Completeness

Chandra and Toueg classified completeness properties into strong and weak categories

as described below:

Strong completeness: Eventually every process that crashes is permanently sus-

pected by every correct process.

Weak completeness: Eventually every process that crashes is permanently sus-

pected by some correct process.
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2. Accuracy

Chandra and Toueg defined four accuracy properties but for our purposes we define

and discuss only three of these.

Perpetual strong accuracy: No process is suspected before it crashes by any live

process. This is the strongest requirement for accuracy. There is also an eventual

version of accuracy called the eventual strong accuracy defined below.

Eventual strong accuracy: For every run, there exists a time after which correct

processes are not suspected by any other live process.

Weak accuracy: Some correct process is never suspected by any live process.

Note that a failure detector can trivially satisfy the property of completeness

by initially and permanently suspecting all processes in the system. Also, a failure

detector can also trivially satisfy accuracy by not suspecting any process ever. Hence

completeness and accuracy are not very useful only by themselves. However, together

they accurately describe a useful failure detector.

3. Failure detector classes

Failure detectors have been classified on the basis of the completeness and accuracy

properties that they satisfy. The three detectors of significance to this work and their

properties are described below.

The perfect detector (P): This detector satisfies the two properties, strong com-

pleteness and strong accuracy.

The eventually perfect detector(♦P): This detector satisfies the two properties,

strong completeness and eventual strong accuracy.

The strong detector(S): This detector satisfies the two properties, strong com-

pleteness and weak accuracy.
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Fig. 8. The Chandra-Toueg hierarchy of failure detector classes

The Chandra-Toueg hierarcy of failure detectors is shown in the figure 8. Note

that detectors higher in the hierarchy are more powerful. Hence P is the most powerful

detector. S and ♦P are incomparable. This is because, S makes an unbounded

number of mistakes over time. It can repeatedly suspect a correct process any number

of times. However, ♦P makes an unbounded number of mistakes over space. Initially,

it can suspect all the correct processes in the system. But after it converges, it does

not make any mistakes. ♦S is the weakest detector among these four but we do not

consider it in this work.

a. Optimal localities

In the following discussion, we assume that the underlying environment is purely

asynchronous and every process in the system has access to a local module of the

specified detector.

The perfect detector,P , will detect every process crash accurately in finite time
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due to strong completeness and strong accuracy. As we have seen in Chapter I,

accurate detection of every process crash is sufficient to solve dining with FL 0 with

weak exclusion. Hence P is sufficient to achieve FL 0 dining. This work shows that

P is not necessary for FL 0 dining.

The eventually perfect detector, ♦P, has been known to achieve FL 1 dining

(result from Pike and Sivilotti[21]). Pike and Sivilotti[21] proved that ♦P is necessary

but not sufficient for FL 0 dining. Hence we need a stronger detector than ♦P to

achieve FL 0.

The strong detector, S, is known to solve dining with FL 2. Pike and Sivilotti[21]

prove that 2 is the optimal locality that can be achieved with S. It is interesting to

note that adding S to a purely asynchronous environment does not improve the failure

locality. We have already seen in Chapter I that it is possible to achieve FL 2 in an

asynchronous environment even without failure detectors.

From these optimal localities, it becomes obvious that, to solve dining with FL

0, we need a detector that is stronger than ♦P but weaker than P . We now introduce

the trusting detector.

4. The trusting detector

A new failure detector that does not belong to the class of the Chandra–Toueg hierar-

chy has been defined by Delporte-Gallet, et al.[10]. They define trust as the negation

of suspicion. Hence if a process is suspected by a failure detector, it implies that the

detector does not trust that process. Delporte-Gallet, et al., introduced the detector

called the trusting detector, T , and it is characterized by the following properties:

Strong completeness, eventual strong accuracy and trusting accuracy. Trusting accu-

racy is defined below:
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Trusting accuracy:

Every process Pj that stops being trusted by a process Pi is crashed.

Essentially T could also be defined as follows: T = ♦P + Trusting accuracy

The idea behind T is that T stops trusting some process if and only if that process

is known to have crashed in the system. This is illustrated in figure 9.

Fig. 9. Output of the Trusting detector with respect to some crashed process P. Note

that if there is a down-edge in the output of T for some process, it implies that

the process has crashed.

a. T vs. ♦P

From the definition of T , it can be seen that T has an additional property compared to

♦P, the trusting accuracy. With ♦P, suspicion can never be considered as knowledge

of a process crash. However, with T suspicion can imply knowledge of a crash if the

process was previously trusted. Also, T can only make a bounded number of mistakes

because it can only trust a faulty process once. However, ♦P, can make an unbounded

number of mistakes before it converges. Hence T is strictly stronger than ♦P. A

formal proof is presented in [10].
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b. T vs. P

Though T is strictly stronger than ♦P, it can still make mistakes. Specifically, it can

initially suspect correct processes. However, P cannot make such mistakes because of

its strong accuracy. Hence P is strictly stronger than T . A formal proof is presented

in [10].

B. Fault-tolerant mutual exclusion(FTME)

FTME denotes a mutual exclusion solution with failure locality 0 (or masking toler-

ance). Delporte-Gallet, et. al., [10] solved the MX problem and achieved FL 0 in an

asynchronous environment augmented with the failure detector T + S. Their solu-

tion satisfies the safety and progress properties of MX specified in Chapter I. Their

solution and its relevance to our work is explained in the next subsection.

Observe that for a MX solution, FL 1 implies that if a process crashes in the

system, every other process can potentially starve. This is because all the processes

are in the 1-neighborhood of the crashed process and the conflict graph in MX is

complete.

1. FTME and weak exclusion

In the FTME solution by Delporte-Gallet, et al.[10], the authors assume that if a

process crashes in its critical section, it automatically exits its critical section. This

is because, their safety property of strong exclusion does not allow processes to eat

simultaneously even with crashed neighbors. However, we observe that this is equiv-

alent to assuming a weaker model of exclusion (weak exclusion) without making any

assumptions about the crashed processes. Specifically, we allow correct processes to

eat with crashed neighbors. Hence we contend that the underlying exclusion model
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of FTME is equivalent to weak exclusion.

2. Overview of the FTME solution

The FTME solution assumes that every process is provided with two primitives

which together implement the total order broadcast. These are to-broadcast() and

to-deliver(). The output of a trusting detector is available at each process in the sys-

tem. The concept of total order broadcast has been explained by [10] and it satisfies

the following properties:

(1) validity: Any message m that is to-broadcasted by some correct process i, is even-

tually to-delivered by i

(2) agreement: If some correct process to-delivers a message m, then every correct

process eventually to-delivers m.

(3) integrity: If a message was previously to-broadcast, then it is to-delivered at most

once.

(4) total-order: If the order of message delivery at some process is m followed by m’,

it has to be the same at all other processes.

Note that the assumption of total-order broadcast is not too strong because we

assume that there exists T in the system and it has been proved by Chandra and

Toueg[4] that total order broadcast can be implemented in any system which has at

least ♦P. Since we have already shown that T is stronger than ♦P, the assumption

of total order broadcast is justified.

The key idea in the solution is that upon becoming hungry, a live process has to

become trusted by some correct process before it can start competing for the resource.

To implement this, the authors assume the presence of the strong detector in addition

to the trusting detector. By the properties of the strong detector (specifically, weak

accuracy), there should be at least one correct process in the system which is never
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suspected by any other live process. Upon becoming hungry, a process Pi sends trust

requests to all processes in the system and waits until it receives acknowledgements

from all the processes not being suspected currently by the strong detector at Pi.

Note that by the strong completeness of the strong detector, every faulty process is

eventually suspected by the strong detector at Pi. All other correct processes will

eventually trust Pi because of the eventual strong accuracy property of the trusting

detector and hence will respond to the trust request. Now, once Pi gets trusted by

all processes not in the output of its own strong detector, Pi is bound to be trusted

by the one correct process Pj that is never suspected by the strong detector.

Pi then draws a ticket which is a tuple (i, ri) where i is the process number and

ri is the number of times that i has run the hungry protocol. Pi then to-broadcasts

this ticket number to all the processes in the system. Processes are served in the

order of their ticket numbers. Note that ticket numbers are unique because process

numbers are included in the ticket.

The advantage of using total order broadcast is that candidates can be served

only in the order in which they have requested the critical section. This is because

all tickets are delivered in exactly the same order at every process. Every ticket at

a process Pi is processed sequentially, in the order of its receipt. Upon processing a

ticket, if Pi receives its own ticket, it enters its critical section. However, if the ticket

belongs to some other process Pk, Pi waits until it receives a message that Pk has

exited its critical section or that Pk has crashed. After finishing eating, Pi sends a

message to all other processes that it has exited its critical section.

We now need to consider the scenario where some process crashes in its critical

section. Observe that there is at least one correct process, Pj, that is never suspected

by S at Pi due to the weak accuracy property of S. Also Pi has to be trusted by

all processes that its strong detector does not suspect. Consequently, Pi is trusted
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by Pj before it actually eats. Hence if Pi crashes thereafter, Pj will stop trusting

Pi eventually because of the strong completeness property of T at Pj. However,

since Pi was previously trusted by Pj, by trusting accuracy, Pj detects the crash

of Pi accurately using the down edge shown in figure 10. This crash can then be

broadcasted to the entire network. Upon receiving this crash message, other waiting

processes make progress as explained in the previous paragraph. The authors also

prove the correctness (safety and progress) of this solution.

3. Necessity of the trusting detector

The authors also prove that no detector weaker than T can solve the FTME problem

for every environment where there are no restrictions on the number of faults that

can occur in the system. They do this by showing that if some algorithm A solves

FTME using a detector D, a reduction algorithm can be given which converts D to T .

This shows that D is at least as strong as T . Hence T is necessary to solve FTME.

a. The reduction algorithm(sketch)

The authors assume that there are n concurrent instances of FTME algorithm where

n is the total number of processes in the system. Hence there is one critical section for

each process in the system. Every correct process gains access to its critical section

and eats forever in its critical section. If a process crashes in its critical section, some

other correct process then gets to eat in it.

Input: We are given some algorithm A that solves the MX problem using some

detector D.

Output: We need to provide a valid history of T in terms of the suspected

processes as the output.
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Procedure: Initially output the set of all the processes in the system. This is a

valid output for the trusting detector since it can suspect every process initially. Now

every process becomes hungry to gain access to its unique critical section. Hence for

each process i, there is a mutual exclusion group MXi in which it is the only process

that is hungry. Now, because of the correctness of the algorithm A (specifically, the

starvation freedom property), the process i has to eventually get to eat in MXi or

crash.

If it crashes, since T suspects the process anyway, our output is valid for T . If

i is a correct process, it eventually gets to eat in MXi. It then broadcasts a message

to every process saying that it is in its critical section in MXi. Once this happens,

i is removed from the suspect list of all processes which receive this message from i.

Every process j that receives this message from i also becomes hungry in MXi. If i

crashes in MXi some time later, one of the other hungry processes, j, gets to eat in

MXi because of the starvation freedom property of A. This is because j is a correct

hungry process in MXi and no correct process is eating forever in MXi. Once j gets

to eat in MXi, it broadcasts the crash of i to every process in the system. Upon

receipt of this message, every process puts i back on the suspect list and it remains

there forever because it has crashed. Hence given any algorithm that solves FTME,

this construction gives a valid output for the trusting detector. Hence it can be seen

that the trusting detector is necessary to solve this problem.

C. Observations and conclusions

Delporte-Gallet, et al.,[10] solved the MX problem and gave FL 0 solutions in two

different environments.

1. An environment with a majority of correct processes and the trusting detector T .
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2. An environment with no restrictions on the number of crashes along with the

detectors T and S. Note that there should be at least one correct process in the

system in this scenario to implement S.

We now observe the implications of these assumptions in our dining topology.

Consider the first solution with T and a majority of correct processes in each un-

derlying exclusion group. Assume that our conflict graph is a ring. Hence every

process shares a resource with its left and right neighbors. Every resource is shared

by two processes. Each underlying exclusion group has two processes. If we require

a majority of them to be correct, we are assuming that both processes in every ex-

clusion group are correct. This reflects to an assumption that every process in the

system is correct. This is not very reasonable because, though we now have a FL 0

dining solution, we are assuming that no process ever crashes. Hence our solution is

irrelevant.

Hence we consider the second solution in our work. This means that in our

dining topology, we have to assume that there is at least one correct process in every

underlying exclusion group. This translates to an assumption that each resource in

the system has at least one correct process that would require this resource to eat.

This is a reasonable assumption and hence we consider the second solution in our

construction.

We have already proved in Chapter V that our compiler is tolerance preserving.

Hence by using the second solution of Delporte-Gallet, et al., which solves FTME,

we now conclude that we have a FL 0 dining solution with the assumption that every

resource in the system has at least one correct process that would require this resource

to eat.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Conclusions

The contribution of this work is two-fold. Firstly, we have constructed a compiler that

gives as output, a solution to the generalized dining philosophers problem by using any

underlying solution to the mutual exclusion problem as input. Using our compiler,

every possible MX algorithm that has been constructed so far can be converted into

a dining algorithm. Hence, we have managed to construct a host of new dining

solutions. Moreover our compiler preserves the fault locality of dining if the locality

of the MX algorithm is 0.

We then used the FTME solution of Delporte-Gallet, et al., as input to our

compiler to achieve a FL 0 dining solution in a partially synchronous environment.

To our knowledge, this is one of the first dining solutions to mask crash faults in any

environment which is weaker than full synchrony. Weakening the requirements on

the environment by not having to make any specific timing assumptions makes our

solution more portable.

B. Future work

Observe that every dining algorithm also solves mutual exclusion. This is because

MX is only a special case of dining. Hence we could potentially give another dining

algorithm as input to our compiler. The consequences of this action could be studied

as future work. A potential goal would be to extend the generalized HRA algorithm

and use the oracle ♦P such that any dining algorithm supplied as input will be

transformed into a dining algorithm with failure locality 1. Note however, that the
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input assumptions will need to be strengthened in this scenario. We need to ensure

that the input dining algorithm is abortable. Abortable dining implies that the diner

should be able to abort while in any state to get back to its thinking state. We also

need to demonstrate that abortable dining algorithms actually exist by showing how

some classic dining solutions can be converted into abortable variants.

Another different extension to this work could be in finding the weakest detector

to solve dining with FL 0 in an environment where there are no restrictions on the

number of processes that can fault at any time. We have seen that T + S can

solve dining with FL 0 in any environment. Hence it is already known that T + S

is sufficient. However, the necessity of T + S is still an open question and can be

considered future work.

Also observe that we consider the performance of our algorithm only with respect

to the tolerance metric. Analyzing the message complexity and the response time of

our solution have also been left as future work. Observe that there are actually several

variants of the MX solution. There have been fast MX solutions [14][24][27] which

guarantee a response time that is proportional to the number of hungry processes in

the system. Using these MX algorithms as input, the performance of our compiler

and the output dining algorithm in terms of response time can be studied as future

work. There are also bounded-overtaking MX algorithms[1][23]. Bounded-overtaking

implies that once a process becomes hungry, there is a bound on the number of times

it can be overtaken by other processes in the system before it can get to eat. It ensures

that the system is fair to all competing processes. The performance of our compiler

when given a bounded-overtaking MX solution as input could also be considered

as future work. Specifically, it would be interesting to see if an input bounded-

overtaking MX solution would result in a dining algorithm which also guarantees

bounded-overtaking with a larger bound.
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APPENDIX A

HAPPENS-BEFORE

In this appendix, we provide an alternate proof of progress for Lynch’s original HRA

algorithm. Specifically, we prove that in the HRA algorithm, no deadlocks can occur

between any pair of processes in the system. Note that this is only a part of the proof

and does not by itself hold as proof of progress for the HRA algorithm. We do not

prove the no-lockout property of the HRA algorithm. We only prove that deadlocks

cannot occur between any two processes in the system. The impossibility of multiple

processes deadlocking is not proved here.

We use the concept of a happens-before relationship in this proof.

Using happens-before

The ‘happens-before’ relationship has been defined by Leslie Lamport[17]. It is de-

scribed below:

For two events A and B, we say that A happens before B or A → B if and only if

either of the following conditions is satisfied:

1. If A and B occur at the same process and A occurs before B at that process, then

A → B is true

2. If A is an event where some message is sent at a process and B is an event at a

different process where that message sent at A is received, then A → B is true.

happens-before satisfies transitivity i.e. if there are three events A, B and C such that

A → B and B → C, then A → C.

happens-before defines an irreflexive partial order, i.e., if neither A → B nor B → A,

then A and B are said to be concurrent events.

To prove: Circular wait cannot occur with the HRA algorithm for distributed re-

source allocation.
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We show by contradiction that there cannot be a circular wait in Lynch’s HRA. Con-

sider two diners Di and Dj and two resources Rm and Rn. Assume that circular wait

exists between the two processes. Without loss of generality, assume that Di is ahead

of Dj in the resource queue of the resource Rm. Similarly, Dj is ahead of Di in the

resource queue of the resource Rn.

Consider the following events:

Eim - Enqueue of Di into the resource queue for resource Rm

Ein - Enqueue of Di into the resource queue for resource Rn

Ejm - Enqueue of Dj into the resource queue for resource Rm

Ejn - Enqueue of Dj into the resource queue for resource Rn

Fig. 10. Using happens-before. The relationships between various events are illus-

trated.

These events are linked with the following happens-before relationships:

Relationship: Eim → Ein

Reasoning: Two events occurring at the same process and one occurring before the
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other.

Relationship: Ejn → Ejm

Reasoning: Two events happening at the same process and one occurring before the

other.

Fig. 11. Resource queue for Rm

Fig. 12. Resource queue for Rn

The resource queues of Rm and Rn are shown in figures 11 and 12. From these,

we can also observe that the following relationships exist between the events:

Relationship: Eim → Ejm

Reasoning: Di lies before Dj in the queue for Rm and processes cannot overtake one

another in the queue.

Relationship: Ejn → Ein

Reasoning: Dj lies before Di in the queue for Rn and processes cannot overtake one

another in the queue.

Without loss of generality, we assume that there is a total ordering on all the resources

and that Rm < Rn in the resource ordering. Hence we should have the following

relationships between events.

Relationship: Ejm → Ejn

Reasoning: A process which requires both resources Rm and Rn needs to get to the
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head of the resource queue for Rm before enqueueing into the resource queue for Rn.

Hence it should enqueue itself into Rm first.

From this relation, and the relation Ejn → Ejm, we apply transitivity to get

Ejm → Ejm

But this violates the irreflexivity of the happens-before relation. Hence we derive a

contradiction. Thus it has been proved that no circular wait can occur in the HRA

algorithm between any two processes.
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