
ADAPTIVE INVERSE MODELING OF A SHAPE MEMORY ALLOY 

WIRE ACTUATOR AND TRACKING CONTROL WITH THE MODEL 

 
 
 
 
 
 

A Thesis 

by 

BONG SU KOH 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

 

August 2006 

 

 

 

Major Subject: Aerospace Engineering 

 

 



ADAPTIVE INVERSE MODELING OF A SHAPE MEMORY ALLOY 

WIRE ACTUATOR AND TRACKING CONTROL WITH THE MODEL 

 

 

A Thesis 

by 

BONG SU KOH 

 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 

 

Approved by: 

 
Chair of Committee, John L. Junkins 
Committee Members, Othon K. Rediniotis 
 Darbha Swaroop 
Head of Department, Helen Reed 

 
 
 
 

August 2006 
 

Major Subject: Aerospace Engineering 
 



 

 

iii 

ABSTRACT 

 

Adaptive Inverse Modeling of a Shape Memory Alloy  

Wire Actuator and Tracking Control with the Model. (August 2006) 

Bong Su Koh, B.S., Korea Advanced Institute of Science and Technology 

Chair of Advisory Committee: Dr. John L. Junkins 

 

It is well known that the Preisach model is useful to approximate the effect of 

hysteresis behavior in smart materials, such as piezoactuators and Shape Memory 

Alloy(SMA) wire actuators. For tracking control, many researchers estimate a Preisach 

model and then compute its inverse model for hysteresis compensation. However, the 

inverse of its hysteresis behavior also shows hysteresis behavior. From this idea, the 

inverse model with Kransnoselskii-Pokrovskii(KP) model, a developed version of 

Preisach model, can be used directly for SMA position control and avoid the inverse 

operation. Also, we propose another method for the tracking control by approximating 

the inverse model using an orthogonal polynomial network. To estimate and update the 

weight parameters in both inverse models, a gradient-based learning algorithm is used. 

Finally, for the SMA position control, PID controller, adaptive controllers with KP 

model and adaptive nonlinear inverse model controller are compared experimentally. 
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CHAPTER I 

INTRODUCTION 
 

 Shape Memory Alloy(SMA) actuators have great advantages, namely large 

deformation, large pull force, and good recovery strain. With these benefits, a SMA 

actuator has been used for many diverse applications in robotics, medical 

instrumentation and the aerospace vehicle applications. For example, Hasimoto et al.[1] 

used SMA actuators for the biped walking robot. Ikuta[2] designed a micro/miniature 

SMA actuator for a gripper. J. Kudva[3] developed the SMA-actuated, hingeless, 

flexible leading and trailing edge control surface. F. K. Straub et al.[4] used two biaxial 

SMA tubes for in-flight blade tracking. 

 To model and control SMA actuators is not an easy problem because SMA 

actuators exhibit a thermomechanical behavior with large hysteresis due to temperature 

and applied force. To describe this nonlinear behavior, Ikuta et al.[5] proposed the 

variable sublayer model. Madrill and Wang[6] extended this model in order to explain 

the dynamic characteristics of SMA position control system. Brinson et al.[7] developed 

a different type of model based on the constitutive laws. This model can successfully 

describe the relationship among the stress, strain and temperature.  

 Another popular approach is the use of Preisach model. Many researchers have 

used this model to describe hysteretic phenomena of smart materials such as 

piezoelectrics and SMA actuators because a controller with hysteresis compensation can 

improve the performance of tracking control[8]. However, this model cannot express the 

drift due to cycling effect. Also, this model with identified parameters of weighting 

functions cannot predict the SMA deformation under the varying environments of the 

applied stress and ambient temperature. So, Webb et al.[9],[10] used the adaptive control 

method with the Krasnoselskii-Pokrovskii(KP) operator, a developed type of Preisach 

operator. This model can be updated continuously by using adaptive method so that it 
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can describe the hysteresis behavior of an SMA wire actuator successfully under 

extended disturbances and various loading conditions. Moreover, by computing the 

inverse of it, the effect of the hysteresis in SMA actuator can be actively compensated.  

 This thesis uses a similar adaptive control technique with a KP hysteresis 

operator. However, in order to evade the computation of the inverse of the KP model, 

the inverse model with KP hysteresis operator can be directly used because the inverse 

of hysteresis behavior also has qualitatively the same characteristics of hysteresis. This 

property will be explained. These Preisach types of models require many computations 

and a lot of memory because of their model structure. These are a burden for the real 

time applications. So, we propose the nonlinear adaptive inverse model control by using 

an orthogonal function approximation to solve the SMA position control. This proves to 

be a more compact and computational attractive approach. 

 In this thesis, first, the characteristics of SMA wire actuator are studied. Second, 

the properties of Preisach types of hysteresis models and their operators are examined. 

Further, the adaptive control for the estimation of parameters in KP model will be 

validated. Finally, in experiments for the SMA position control, PID controller, adaptive 

controller with KP model, and adaptive nonlinear inverse model controller will be 

compared. 
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CHAPTER II 

SHAPE MEMORY ALLOY(SMA) 
 

 This section introduces the material properties of shape memory alloy, thereby 

helping us to select the SMA wire actuators for appropriate applications. 

 

A. Characteristics of SMA 

 The main property of SMA is the shape memory effect: If there is no applied 

force, the SMA is not deformed. However, this alloy is deformed easily at a low 

temperature by external forces. This deformed alloy can be restored to the original shape 

by the application of heat. These two different phases are called as Martensite and 

Austenite, respectively. From these observations, we can realize that the shape of SMA 

depends on the external stress and temperature. The effect of phase transformation on 

Ti-Ni is shown in Fig. 1[11]. 

 This characteristic of SMA makes it a good candidate for use as a displacement 

actuator. Unfortunately, the relationship between temperature and strain exhibits a 

hysteretic phenomenon. This hysteresis prevents the use of SMA as a linear actuator. 

 

 
Fig. 1. Effect of phase transformation 
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B. Cycling Effect 

 The property of SMA by which its characteristics change due to repeated use is 

called the cycling effect. So, this effect should be considered for the design of signal 

inputs to the SMA for use as an actuator. The cycling effect results in the reduction of 

maximum available deformation and force. In case of Ti-Ni alloys, it is known that the 

available strain deformation changes from 7-8 % to 2-3% after 100,000 cycles. 

 

C. Properties of Ni-Ti Alloy Wire 

 Table 1 shows the properties of Ni-Ti Alloy wire manufactured by DYNALLOY, 

Inc[12]. For the control application, these values should be carefully considered. If the 

diameter size is twice as large, then the maximum pull force increases about four times 

more. However, the cooling time(Off Time) and the current required for heating are also 

increasing. So, this table gives us guidance about SMA selection for control application.  

 
Table 1 

Properties of Ni-Ti Alloy 
Diameter 

Size(Inches) 

Resistance 

(Ohm/Inch) 

Maximum Pull 

Force(gms) 

Approximate 

current(mA) 

Contraction 

time(Seconds) 

Off Time 70ºC 

Wire(Seconds) 

0.0010 45.10 7 20 1 0.10 

0.0015 21.0 17 30 1 0.25 

0.002 12.0 35 50 1 0.3 

0.003 5.0 80 100 1 0.5 

0.004 3.0 150 180 1 0.8 

0.005 1.8 230 250 1 1.6 

0.006 1.3 330 400 1 2.0 

0.008 0.8 590 610 1 3.5 

0.010 0.5 930 1000 1 5.5 

0.012 0.33 1250 1750 1 8.0 

0.015 0.2 2000 2750 1 13.0 

0.020 0.16 3562 4000 1 17.0 
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D. Heating and Cooling 

 The passage of electric current causes the SMA material to heat. This has been 

used as an effective and popular method for temperature control. However, the 

resistance of an SMA wire is so small that large current is required for heating. From the 

table 1, Ni-Ti wire with 0.015’’ diameter needs 2.75A approximately for heating at the 

room temperature. If the ambient temperature is low, the more current is required for 

heating. So, a large enough power supply should be selected for the control under the 

various environments. Also, the SMA wire must be electrically isolated from other 

surrounding objects as the current flowing directly through the SMA wire could cause a 

short circuit.  

 The cooling time determines the response time of the system. In order to increase 

the bandwidth of an SMA actuator, the effective cooling method should be employed. 

The following methods have been examined: forced convection cooling(with fan), 

cooling with running water, ice cooling, and cooling with a Peltier element or heat sink. 

Each method has advantages and disadvantages. M. Hashimoto et al.[13] show the 

cooling curves for various cooling methods with 0.8 Ti-Ni wires. This graph explains 

that the heat sink and water cooling method can have a faster response than air-cooling 

and ventilation with 1.0 m/s. However, the heat sink and water cooling method need 

other complex hardware for installation.  

 In our application, an SMA wire actuator with 0.012’’ diameter has been used. 
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CHAPTER III 

CLASSICAL HYSTERESIS MODEL 
 

 In this section, the relationship between hysteresis and its inverse will be 

examined. Also, the concept and features of the classical Preisach model and modified 

Preisach model will be presented. A detailed coverage of the material in this section may 

be found in the reviews[14],[15]. 

 

A. Relationship between Hysteresis and Its Inverse 

 

  
(a)                                                                   (b) 

Fig. 2. Hysteresis and its inverse 

 

 The figures represent a one to one mapping between the input and output of a 

hysteretic system. In the SMA wire, the relationship between the temperature and the 

displacement yields such a hysteresis behavior. In SMA control application, many 

researchers used Preisach models to describe the hysteresis behavior of SMA actuators 

and compensate for it by computing the inverse model as depicted above. However, if 

we want only tracking control of SMA wire, it is possible to obtain the direct inverse 

model with Preisach model to avoid the inverse operation. M.M. Khan et al.[16] show 

that the relationship between strain and stress has a type of hysteresis represented in Fig. 
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2 (b), and they use the Preisach model for describing this relationship[16]. From this 

observation, we can conclude that the Preisach model can describe several types of 

hysteresis in Fig. 2. Such a classical Preisach model is introduced below. 

 

B. Classical Preisach Model 

 The classical Preisach model can be written as follows 

                                           βαγβαµ αβ
βα

ddtutf )(ˆ),()( ��
≥

=                                             (1) 

where )(tu  is the input and )(tf  is the output, and αβγ̂  is the elementary hysteresis 

operator which represents the hysteresis nonlinearities with local memories[14]. In our 

case, the input is the temperature of the SMA wire and the output is the displacement of 

the SMA wire. The function ),( βαµ , called Preisach function, is an arbitrary weight 

function over the Preisach Plane described as }),({ βαβα ≥=P . If this Preisach 

function is known from the experiment, the above equation can model the hysteresis. 

Therefore, to construct the Preisach function from the experimental data, we use an 

identification process. 

 From Eq. (1), this model can be considered as a system with parallel connected 

relays. This interpretation is explained in Fig. 3. From this figure, the input )(tu  is 

applied to each relay which has its own switching pair values ),( ii βα  over the Preisach 

plane and then multiplied by the weight function. After these multiplications, those 

outputs are integrated. This is the output of the Preisach model. 

 

 
Fig. 3. Classical Preisach model 
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 The function of each relay operator is explained as shown in Fig. 4. The values of 

α and β  represent the switching values, “up” and “down”, respectively. When the input 

)(tu  increases monotonically above the value ofα , )(ˆ tuαβγ  has the “+1”. And, when the 

input )(tu  decreases monotonically below the value of β , )(ˆ tuαβγ  has the “-1”. This 

means that each relay operator has only “+1” or “-1”.  

 M. M. Khan et al.[16] suggest the modified relay operator to describe the SMA 

tube undergoing tension or compression. This modified relay operator has “+1” or “0” 

instead of “+1” and “-1”. It can apply to our application with SMA wire because the 

displacement has the only positive value. 

 

 
(a) Classical Preisach operator                    (b) Modified relay operator 

Fig. 4. Relay operator 

 

C. Geometric Interpretation of the Classical Preisach Model 

 Fig. 5 shows the Preisach plane. The weight function ),( βαµ  has “0” in the 

outside of right triangular T in Fig. 5. Each point ),( ii βα  in the Preisach plane has its 

only one particular relay operator iαβγ̂ . This means that the relationship between point 

),( ii βα  and hysteresis operator is a one-to-one correspondence. Therefore, if we define 

the Preisach plane and find the weight function from experiments, our Preisach model is 

complete. 

+1 
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Fig. 5. Preisach plane 

 

 Let us explain how this Preisach model can work by using Preisach plane in Fig. 

6. First, assume that the input )(tu  has the value below the value of 0β . In this case, all 

Preisach operators αβγ̂ values in the right triangular T have the “-1”. When the input 

)(tu  increases monotonically to some maximum value 1u  as in Fig. 6(a), αβγ̂  operators 

in the +S turn into “+1”. At this time, the other area in the T is denoted by the −S , and 

αβγ̂  operators in this area still have “-1”. When the input )(tu  decreases monotonically 

to some minimum value 2u , the −S area increases. Whereas the +S area decreases as 

shown in Fig. 6(b). If we have the input history described in Fig. 6(d), the +S area and 

the −S area in the Preisach Plane can be divided as shown in the Fig. 6(c). And, relay 

operators in the +S  have “+1” and αβγ̂  operators in the −S  have “-1”. 

 Thus, Preisach Plane has two types of area with )(tS +  and )(tS −  at any instant 

of time in the T. Each of them has the points ),( βα  which have the corresponding relay 

operators with “+1” and “-1”, respectively. From this interpretation, Eq. (1) can be 

subdivided into two integrals. 

�=� 
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� 
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(a)                                                                          (b) 

 
(c)                                                                            (d) 

Fig. 6. Preisach plane and input history 
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 For the modified hysteresis relay operator, )(ˆ tuαβγ  is “0” in the )(tS − . So,  

Eq. (2) and Eq. (3) can be written as 

                                        �� +
=

)(
)(ˆ),()(

tS
ddtutf βαγβαµ αβ                                            (4) 

                                                �� +
=

)(
),()(

tS
ddtf βαβαµ                                               (5) 

 This classical Preisach model has the following two important properties. First is 

the wiping-out property[14]. This property represents that Preisach model only stores the 

alternating dominant input extrema. Second is the congruency property[14]. This 

property tells that if the input is continuously changing between two consecutive 

extremum values, the corresponding outputs are congruent. These properties can be the 

important criteria for the possibility when we apply the smart material to the Preisach 

model. For SMA, D. Hughes and J. Wen[17] verify these properties experimentally. 

 

D. Properties of Preisach Model for Inverse of Hysteresis 

 If the each weight fuction has a positive value over the Preisach plane, the input-

output graph has the property described in Fig. 2(a). However, to get the characteristic of 

hysteresis like Fig. 2 (b), some analysis about the weight function of Preisach model is 

required. 

 

Fig. 7 Output history of hysteresis 
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 Fig. 7 represents the output history of hysteresis like Fig 2(b). The corresponding 

Preisach plane and input-output graph are shown in Fig. 8. 

 

 
(a)                                                                 (b) 

Fig. 8. Preisach plane and its input-output graph 

 

 From Fig. 8(a) and Eq. (1), the output of hysteresis at t3 is following as 
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 At each time tk, }10,9,8,7,6,5,4,3,2,1{ ∈k , we can express the output value with a, 

b, c, d, e and f in Fig. 8(a). The relationship between these outputs is shown in Fig. 8(b). 

As a result, we can introduce the relative value and sign of the weight function ),( βαµ  

from Fig. 8(b). These relationships are expressed as 

0>>++>+++++ acbafedcba   

∴ 0,0,0,0 >++++>>+>++ fedcbacbfed                                                     (7) 
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0>++>++++>+++++ dbaedcbafedcba  

∴ 0,0,0,0 >++>++>+> dbafececf                                                                 (8) 

0>++>+> dbabaa ∴ 0,,0,0 >++>−>> dbadbdb                                         (9) 

0>++++>+++>++ edcbadcbacba  

∴ )()(,0,0 cbaeded ++−>+>>                                                                              (10) 

 From Eq. (7) – (10), we can verify the important properties. These properties 

give us intuition about the weight function of the hysteresis like Fig. 2(b). So, these 

properties can help in guessing the initial values of weight function for adaptive 

identification. This will be discussed later. 

 As a result, we can express both types of hysteresis described in Fig 2 by using 

the Preisach model. 
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CHAPTER IV 

KRASNOSELSKII-POKROVSKII(KP) INTEGRAL HYSTERESIS MODEL 

 

 The KP integral hysteresis model has better properties for real time control 

application. The KP operator is developed from the classical Preisach operator[18]. The 

value of each elementary hysteresis operators is obtained from the integration over a 

class of kernels. Also, the gradient algorithm about the on-line identification for the KP 

model is examined. We demonstrate this with a simulation. Finally, gradient method can 

find the KP model or the direct inverse model with the KP model in the well-defined 

problem. The KP model is discussed in further detail in [15],[19],[20]. 

 

A. Modified Preisach Operator 

 Fig. 4(b) shows the modified Preisach operator. The classical Preisach operator is 

explained in [15]. In our case, some modifications will be presented to describe the 

modified Preisach model. The following is the mathematical representation of the 

modified Preisach model.  

 The kernel of the modified Preisach operator is represented by 

          

αφ
βφ

φξκ
ξκ

=≠
=≠

=

�
�

�
�

�

=
)))((max()(
)))((max()(

)(

1
0

)0)](,(ˆ[

))](,(ˆ[
tTuandtT

tTuandtT

tT

if

if

ifu

tu

cc

cc

c

         (11) 

where u(t) is the input, }1,0{∈ξ  is the initial state of the operator. Also, 

}),,(:{ 2 βααβ >=∈= sRsS  is the set of pairs of switching values and the crossing 

time is defined as })()(:],0({)( αηβηη ==∈= uoruttTc [15]. This means that 

cT has the time values whenever the input is crossing the switching values. The initial 

state of the delayed relay operator is given by 
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B. KP Operator 

 For any monotone function, the output operator is defined by 
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where u(t) is the input and }1,0{∈ξ  is the initial state of the operator[15]. Also, )(xr  is 

locally a Lipschitz continuous ridge function, as shown in Fig. 9. In our case, this 

function is defined mathematically by 
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Fig. 9. Ridge function 

 

 For all functions with ],0[ TCu ∈ , the KP kernels can be extended. This work is 

discussed in literature[15]. The kernel of the Preisach operator is only piecewise 

continuous in time, whereas the KP operator is continuous in time and parameter 

space[19]. As a result, the KP operator is useful in deriving a convergent approximation 

for the identification problem of a hysteretic behavior. The proof about this continuous 

mapping is shown in reference[15]. 
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C. Parameterized KP Model 

 The KP integral model is the continuous form, but, for practical application, it 

needs a lot of computation time. So, the discretized KP model for the SMA actuator was 

developed by G. Webb[15]. The following explanation is the summary of KP model 

developed. 

 

 
Fig. 10. Preisach plane in parameterized KP model 

 

 First, the Preisach plane }),({ βαβα ≥=P  is discretized into a mesh grid as 

shown in Fig. 10. Each grid point in the Preisach plane is denoted by ii sss ),( 21= , and 

the corresponding kernel function ),( ijs u
ij

ξκ  should be discretized. Thus, the output of 

the discretized KP integral model is written by 

                                            ��
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K
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ijijs tuuy

ij
1

))](,([)( θξκ                                          (15) 

where K  is parameterization number which decides the number of grids in the vertical 

or horizontal line over the Preisach plane, ),( 21 jiij sss = , ijξ is the inner loop memory for 

ijs , ijθ  is the weighting value of the discretized form of the weight function ),( βαµ  and 

),( ijs u
ij

ξκ  is the kernel function represented by  
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This kernel operator was explained in the previous chapter. The output of this KP model 

will be denoted as )(uYKP . 
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The above equation can be written as the vector form for more convenience in adaptive 

identification. 

                                                       )()( uKuY KP
T

KP Θ=                                                 (18) 

where Θ  is the parameter vector and is defined as 

                                            T
KK ],,,,[ 221211 θθθθ �=Θ Nℜ∈                                         (19) 

And, )(uKKP  is the vector function and is defined as 

                T
KKssssKP uuuuuK

KK
)],(,),,(),,(),,([)( 221211 221211

ξκξκξκξκ �= Nℜ∈            (20) 

where N is not only the dimension of Θ  and )(uKKP but also the number of grid 

points, ijs , which is obtained from the relationship by 

                                                            
2

)1( += KK
N                                                     (21) 

 

D. Gradient Algorithm for the Recursive Identification of Hysteresis 

 As mentioned before, the parameterized KP hysteresis model is represented by 

                                                    )()( uKuYy KP
T

KP θ==                                              (22) 

For the estimation of parameterθ , our estimator is generated as  

                                                    )(ˆ)(ˆˆ uKuYy KP
T

KP θ==                                              (23) 

where θ̂  is the estimate of θ  at each time t. The estimation error 1e is created as 

                                                             yye ˆ1 −=                                                          (24) 
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 To minimize it with respect to θ , we use the update law of normalized gradient 

algorithm[21]. 

                                                              2
1 )(ˆ

m
uKe KPγθ =�                                                  (25) 

where )()(12 uKuKm KP
T

KP+= .  

 When we know a priori about bound on parameterθ , the update law can use this 

information. The normalized gradient algorithm with projection[21] is expressed by 
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m

uKe
f jKP

j

γ
= , nℜ∈θ and nj ,...,1= . 

 

E. Simulation Study 

 From the following example, we can guarantee that any type of hysteresis shown 

in Fig 2. can be described with the direct inverse model of hysteresis with the KP model. 

First, input and output data from the KP hysteresis model like Fig. 2(a) are generated. 

Then, input and output data exchange for getting the direct inverse model with a KP 

hysteresis model. 

 The specifications of the KP hysteresis model are the following. The model has 

N=210 KP operators and the parameter a  of the ridge function in KP kernel is 5. The 

input is given as 

                                             )8.0cos()5.0sin(2545)( tttu ππ+=                                         (27) 

The input should be persistent excitation(PE) for parameter convergence of the adaptive 

control. Fig. 11 represents the input and output from the KP model. 
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Fig. 11. Input and output signal from KP model 

 

 The inverse model with a KP hysteresis model has N=136 operators and 

parameter a  of the ridge function in KP kernel is 0.066. The input range is from 0.1 to 

1.09. In Fig. 11, the input and output are exchanging for this model. The initial values of 

weight function are given by the following equations.  

                                          
�
�
�

=×−
>×+−

=
jiifi

jiifi
ij 3.012

01.08.0
θ                               (28) 

where i and j are the index of switching values, α and β , in the parameterized KP Plane, 

respectively. Fig. 12 shows these values roughly. Because of βα ≥  in Fig. 12, ji ≥  in 

},...,1{},,...,1{ KjKi ∈∈ . And K is chosen as16. This guess may be obtained from the 

information about the relationships between values of weighting function in the chapter 

III. 
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Fig. 12. Initial values in KP plane 

 

 The update law of normalized gradient algorithm with projection is used for the 

adaptation of the ijθ  weight function. The adaptation gain γ  is selected as 20.  
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γ
=  and )()(12 uKuKm KP

T
KP+= . 

 Fig. 13 shows that the hysteresis response with adaptive update. The adaptive KP 

model can follow the hysteresis plant well. If the adaptation gain γ  is large, the 

adaptation is faster[22]. Fig. 14 represents the output prediction of the KP model with 

the updated parameters shown in Fig. 15. This fixed model can also predict the 

hysteresis output with reasonable error. These relationships between the input and output 

in both cases are shown in Fig. 16. 

�=� 

� 

� 
i=j, �ij>0 

i ≠ j, �ij<0 
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Fig. 13. Adaptive identification of KP model 

 
Fig. 14. Output prediction with a fixed KP model 
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Fig. 15. Weight values of KP model after adaptation of 30 seconds 

 

 
(a) Adaptive KP model                                 (b) Fixed KP model 

Fig. 16. Hysteresis response 

 

 Generally, the hysteresis model has the shape and the movement direction of Fig. 

2(a). For the tracking problem, many researchers found the hysteresis model and its 

inverse model. From the above results of simulation, any types of hysteresis shown in 

Fig. 2 can be helpfully described with the direct inverse model of hysteresis with the KP 

model and utilize it for the tracking control without the process of obtaining its inverse 

model. 
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CHAPTER V 

CONTROL OF SMA WIRE ACTUATOR 

 

A. Experimental Setup 

 
Fig. 17. Schematic of SMA wire actuator 

 

 Fig. 17 represents the schematic and data flow for the control of an SMA wire 

actuator. SMA wire is fixed to the top of the test frame and the other end is connected to 

the load which is free to move vertically. Linear Variable Displacement 

Transducer(LVDT) can measure the absolute displacement � of an SMA wire. The sign 

of the displacement is assigned positive when the load is moving upward, and the K-type 

thermocouple sensors the temperature of the SMA wire through the temperature reading 

circuit designed by using AD595AC. To amplify the current, the power amp transistor, 

MJE3055T, is used. More detail circuit diagram is shown in the appendix A. 

 To implement the real time control, dSPACE Data acquisition and 

Matab/Simulink are used. dSPACE Data Acquisition provides the input control signal 

with low current. This input signal with low current is amplified through the current 

amplifier circuit, and then supplied to the SMA wire actuator. The SMA wire used in our 

experiment is Nickel-Titanium SMA wire with 1 foot in length and 0.012’’ in diameter. 

LVDT 

Load 

Thermocouple 

Power & Current 
Amplifier Circuit 

Dspace & 
Matlab/Simulink 

Temperature 
Reading Sensor 

�0 : Originally deformed position 

� :  Displacement of SMA 
(+) 1.89kg 
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The weight of the load applied acts as the restoring force on the SMA wire back to its 

original position. 

 

B. Heat Transfer and Temperature Control 

 In our KP model, the input is temperature, and the output is SMA displacement. 

However, when we want to heat the SMA wire, we cannot increase the temperature 

directly. So, a heat source is required. This means that even if we can get the right input 

prediction, we cannot give it to the plant directly. In our experiment, by controlling a 

voltage from the power supply into the SMA wire, a desired temperature is attained. 

 To know the heat transfer equation of the SMA wire, we assume that only natural 

convection occurs. From many researches, it is well known that a heat equation of SMA 

wire as follows. 

                                              gainQ
c

TT
c

h
T

ρρ
1

)( +−−= ∞
�                                           (30) 

where h  is the convection heat transfer coefficient, ρ  is the mass density of the SMA 

wire, c  is the specific heat of the SMA wire, and ∞T  is the ambient temperature[15]. 

 Our electrical energy gainQ  from our experimental setup can be expressed as a 

function of both value of resistor and an applied voltage or current. 
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The temperature of the SMA wire is governed by the following heat transfer equation. 
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The above equation can be given by 
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 Generally, many researchers assume that h  and c  are constant. However, it is 

known that h and c  are temperature dependent for an SMA wire[23],[24]. Also, 

parameter R  changes during the transformation of the SMA between martensite and 

austenite phases. So, in the above equation, a  and b are temperature dependent. 

Therefore, it is complex to determine the parameters exactly. However, without any 

complex experiments, we can get a good tracking result of temperature by using 

Proportional Integral and Derivative(PID) controller. This temperature tracking problem 

is also solved by using an adaptive Model Reference Control(MRC)[15]. 

 

C. PID Feedback Controller for Temperature and Displacement Tracking Control 

 

 
Fig. 18. Schematic of PID closed loop controller 

 

 A PID controller is easy to implement. Traditionally, PID controllers are known 

for their robustness properties. In our experiment, we have the two kinds of PID 

controllers. One is used for displacement tracking control when we use the PID 

controller as a SMA position controller in Fig. 18. Another one is used for temperature 

control. PID controller used for tracking control does not require temperature control, 

whereas adaptive controllers with inverse models need the temperature control because 

their models have the relationship between temperature and displacement. For these two 

objectives, a PID feedback controller is used.  

 PID controller in the Laplace domain can be described as 

                                                     D
I

P sK
s

K
KsY ++=)(                                              (34) 

where PK  is the proportional gain, IK  is the integral gain and DK  is the derivative gain. 
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After some repeated experiments, we can adjust these three gains for good results.  

 

D. Control Methodology for Adaptive Controller 

 

 
Fig. 19. Schematic of adaptive controller 

  

 With the adaptive algorithm studied from the previous chapter, the KP model can 

be used as a tracking controller for prediction of input. Also, the adaptive inverse model 

with an orthogonal polynomial network will be used. This will be explained in the next 

section. Both adaptive controllers have the schematic in Fig. 19.  

 

 
Fig. 20. Schematic diagram of adaptive control methodology 

 

 Generally, many researches find the hysteresis model H(t) adaptively and obtain 

the inverse model H-1(t) of it for tracking control[15],[25],[26]. They used output-based 

adaptive control. This means that the output error is used for the adaptation. However, in 

our case, the hysteresis model H(t) is not required, and the inverse model H-1(t) is 
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directly obtained by using an adaptive identification technique. Now, the input for the 

model is displacement of SMA and the output is temperature. Fig. 20 illustrates the 

concept of this adaptive controller. The adaptive inverse model is described as two ways. 

One is the adaptive KP model and the other is the inverse model with an orthogonal 

polynomial network. Each adaptive inverse model is continuously updated online to 

minimize the error between the temperature measurement and temperature continuously 

updated reference. Temperature prediction with respect to the input of a desired 

displacement is obtained from the direct inverse model. As a result, these adaptive 

inverse models can predict the hysteresis of SMA wire actuator and compensate for the 

hysteretic behavior. 

 The difference between the adaptive direct model with KP model and the inverse 

model with an orthogonal polynomial network is only the model representation. As a 

method to update the model, the gradient algorithm is applied to both models. 

 

E. Adaptive Inverse Model by using Orthogonal Polynomial Network 

 

 

Fig. 21. Weighting function approximation of a one-dimensional function 
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 A Global-Local Orthogonal Polynomial Mapping(GLO-MAP) network has the 

good applications to input-output function approximation[27]. Basically, a GLO-MAP 

network consists of weighting functions and local approximations. The local 

approximations are selected as the linear combinations of a set of basis functions which 

are orthogonal with respect to the weighting functions. For one dimensional case, 

weighted average approximation is written as 

                           )()()()()( 1
1 XGxwXGxwXG I

I
I

I
I +

++= , for 10 <≤ xI                         (35) 

where the weighting functions )(xw  used to average the two adjacent preliminary local 

approximations, )( XGI  and )(1 XGI + . Also, X represents the global coordinate and x is 

the local coordinate. Fig. 21 shows this approximation graphically for a one-dimensional 

function. After choosing the weight functions and basis functions shown in table 2[27], 

each coefficient of the basis functions can be updated by learning law through the input-

output data. For our inverse problem, gradient learning algorithm is used for obtaining 

the coefficients of the basis functions.  
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 The inverse function can be approximated as 
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For the estimation of coefficient C , the estimator is generated as  

                                                              WCg T
I

ˆˆ =                                                         (38) 

where Ĉ  is the estimate of C  at each time t. The normalized estimation error ε is 

created as 

                                                             2

ˆ

m
gg II −=ε                                                       (39) 

where snm += 12  and WWn T
s = . By applying the gradient algorithm, the adaptive law 

is following as 

                                                               WC εΓ=�̂                                                         (40) 

 The input is the displacement of the SMA actuator, and the temperature is the 

output of the inverse model. So, the displacement of the SMA actuator is X variable, and 

the temperature is )( Xg I  in Eq. (36).  
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 At each running time, we can approximate the adaptive inverse model of the 

SMA output and the temperature. From this inverse model, corresponding temperature 

with respect to the desired displacement of SMA actuator can be obtained. 

 

F. Simulation Study 

 
Fig. 22. One input-output data set from SMA experiment 

 

 One input-output data set obtained from the experiment in Fig. 22 is used to get 

the inverse model. This describes the relationship between temperature and displacement 

of the SMA wire actuator. Two inputs and two outputs are used: {Displacement of the 

SMA actuator, Variation of displacement} and {Temperature, Variation of temperature}. 

The range of the input is in 10 <≤ xI . So, modified input set is used by scaling such as 

{Displacement of SMA actuator/1.5, Variation of displacement/10}. 8810 XI and 

8815.0 XI  are used for the adaptation gain. 

 Two inverse models are represented with displacement and temperature, and with 

the variation of displacement and the variation of temperature, respectively, as 

                                                         1111 )( WCXg T
I =                                                    (41) 

                                                        2222 )( WCXg T
I =                                                   (42) 
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 These models can update by the adaptive law described in Eq. (40). 

 

G. Simulation Results 

 Fig. 23 shows that the inverse model control with an orthogonal polynomial 

network has a good tracking for the reference. This inspiring result gives a possibility for 

real-time control. The results of on-line inverse model control will be shown in the next 

section. Fig. 24 shows that it is hard for the second inverse model to follow the variation 

of the displacement. Because the error between experimental data and the inverse data in 

second inverse model is bounded and the main interest is the displacement, this result is 

reasonable for our control problem.  

 

 
Fig. 23. Temperature and output from adaptive inverse model 



   

 

32 

 

 
Fig. 24. Displacement variation and output from adaptive inverse model 

 
Fig. 25. Coefficients of inverse model 
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Fig. 26. Input-output relationship in the inverse model 

 

 Fig. 25 shows the coefficients of the inverse model. Each coefficient is bounded 

in the some range. Fig. 26 shows that the relationship between the input and output of 

the inverse model is almost same as the experimental data.  
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CHAPTER VI 

EXPERIMENTAL RESULTS 

 
A. Adaptive Identification of the Direct Inverse KP Model 

 To get the direct inverse model with the KP hysteresis model, first, the shape and 

the movement direction of hysteresis should be validated experimentally. As mentioned 

before, this gives us an insight into the range of reasonable values for the weight 

function. If the hysteresis behavior obtained from the experiment is like Fig. 2(a), each 

discretized point in the KP plane may have the positive values in weight function. 

Whereas, if the hysteresis is like Fig. 2(b), each discretized point follows the properties 

mentioned in chapter III. When we use the displacement as the input and the temperature 

as the output for the direct inverse model, Fig. 27 shows that the hysteresis is like Fig. 

2(a). Point � and � represent the position at t=50secs and t=65secs, respectively. 

Therefore, each value of the weight function has mostly the positive value in our case. 

This information will be used for the gradient method with projection. 

 
Fig. 27. Relationship between temperature and displacement 
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 Moreover, there are several design parameters for KP model to be chosen 

carefully. With these parameters, the adaptive KP model will be obtained. 

a) Parameterization number K 

This number decides the number of grids in the vertical or horizontal line over the 

Preisach plane. If K is large, the parameterized KP model acts like the integral KP 

model. However, there is computational cost for large K so that a proper K should 

be considered. For our experiment, 10 is selected for K. 

 

b) Parameter a  of ridge function in KP kernel 

This decides the curve shape of the ridge function. The optimal rise constant is 

determined as 

                                                   
1

minmax

−
−=

K
uu

aopt                                                   (43) 

where maxu and minu  represent the maximum and minimum input values[15]. 

 

c) Input Range  

This is the range of the SMA displacement. The range should cover the entire SMA 

displacement. So, it is from 0 to 1.8 in case of this experiment. 

 

d) The adaptive law 

Each ijθ of weight function has a priori: ijθ  is greater than 0. This information is 

used for gradient algorithm with the projection. The adaptive gain is chosen by 10. 

 

 Fig. 28 represents the comparison between the SMA output and the output of the 

adaptive KP model. The adaptive KP model can follow the SMA output perfectly. Fig. 

29 shows that the fixed KP model with parameters obtained from the adaptive KP model 

after 123 seconds can also predict the hysteresis behavior with reasonably small error. 

Hysteresis responses of the adaptive KP model and the fixed KP model are described in 

Fig. 30. The weight function of the fixed KP model is described in Fig. 31 and Table 3. 
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This fixed KP model also can be used as the feed-forward model for the SMA position 

control. 

 
Fig. 28. Comparison between SMA output and the adaptive KP model 

 
Fig. 29. Comparison between SMA output and fixed KP model after 123 seconds 
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(a) Adaptive KP model                                 (b) Fixed KP model 

Fig. 30. Hysteresis response  

 
Fig. 31. Weight values after adaptation of 123 seconds 
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Table 3 

Estimated Weight Values after Adaptation of 123 Seconds 
          Index j  

Index i 
1 2 3 4 5 6 7 8 9 10 

1 37.4057 0.5529 0.5529 0.5529 0.5529 0.5529 0.5529 0.5529 0.2292 0.100 

2 0 0.6715 0.5637 0.4588 0.4006 0.3857 0.4155 0.4494 0.2292 0.100 

3 0 0 0.8661 0.5023 0.2305 0.1909 0.2372 0.2943 0.1756 0.100 

4 0 0 0 0.7132 0.2988 0.1681 0.2195 0.2646 0.1613 0.100 

5 0 0 0 0 0.4433 0.1742 0.2074 0.2497 0.1468 0.100 

6 0 0 0 0 0 0.3722 0.3078 0.4049 0.1488 0.100 

7 0 0 0 0 0 0 0.5642 0.6702 0.2207 0.100 

8 0 0 0 0 0 0 0 0.9260 0.2843 0.100 

9 0 0 0 0 0 0 0 0 0.2806 0.100 

10 0 0 0 0 0 0 0 0 0 0.100 

 

B. Comparison among Controllers 

 In order to test three controllers for real-time tracking control, step and sinusoidal 

response are applying to the SMA wire actuator: regular PI controller, adaptive 

controller with KP model and adaptive controller with an orthogonal polynomial 

network. However, regular PI controller give both adaptive controllers have the PID 

controller for the temperature control. Both adaptive controllers are implemented by 

using S-function in Matlab/simulink.  

 

1) Step Response 

Fig. 32 shows the step response of SMA wire actuators and the performance of SMA 

wire actuator. The rise time is within 1 second and the cooling time is around over 4 

seconds. If one of the cooling methods mentioned in chapter II is used, this cooling 

time reduces. All controllers have a reasonable good tracking result. The adaptive 

controller with the KP model exhibits the shortest overshoot. The adaptive controller 

with an orthogonal polynomial network has slightly worse tracking result than others.  
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(a) PI controller 

 
(b) Adaptive controller with KP model 

 
(c) Adaptive controller with an orthogonal polynomial network 

Fig. 32. Step response 
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2) Sinusoidal Response 

Fig. 33 represents the sinusoidal response of SMA wire actuators. To compare the 

performance of controllers, the RMS error and maximum error are given in Table 4. 

According to Table 4, the adaptive controller with the KP model has the smallest 

value in RMS and maximum error, whereas the adaptive controller with an 

orthogonal polynomial network has the largest error. This means that the adaptive 

inverse model with the KP model predicts the temperature well with respect to the 

desired displacement. However, all controllers have good performance in the 

sinusoidal response. 

  
(a) PI controller 

  
(b) Adaptive controller with KP model 

Fig. 33. Sinusoidal response 
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(c) Adaptive controller with an orthogonal polynomial network 

Fig. 33. Continued. 

 

Table 4 

Comparison of Tracking Error 

 PI KP model O.P.Network 

RMS tracking error(cm) 0.027 0.0248 0.0287 

Maximum tracking error(cm) 0.1111 0.1083 0.1176 

 

 As mentioned before, both adaptive inverse controllers have the PI controller for 

the temperature control. If the temperature control is improving, more good tracking 

results are expected. 
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CHAPTER VII 

 CONCLUSIONS 

 

 The characteristics of an SMA wire actuator are studied in order to obtain the 

guidance for selection of the SMA wire actuators for appropriate applications. To 

compensate for the effect of the hysteresis behavior of an SMA wire actuator in tracking 

control, we use the adaptive inverse model of an SMA wire actuator based upon the KP 

hysteresis model. This is done in order to avoid the inverse operation because the inverse 

of hysteresis behavior also has qualitatively the same characteristics of hysteresis. 

 These Preisach types of models require many computations and a lot of memory 

because of their complex model structures. So, we propose the nonlinear adaptive 

inverse model control by using an orthogonal function approximation to control the 

SMA displacement. This proves to be a more compact and computational attractive 

approach. 

 Finally, a PI controller, an adaptive controller with the KP model and an adaptive 

nonlinear inverse model controller with an orthogonal polynomial network are compared 

experimentally. The adaptive controller with the KP model has the shortest overshoot in 

the step response and the smallest RMS error in the sinusoidal response. The adaptive 

controller with an orthogonal polynomial network has slightly worse tracking results 

than other controllers, but the results are acceptable. 
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APPENDIX A 

CURRENT AMPLIFIER AND TEMPERATURE MEASUREMENT CIRCUIT 
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