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ABSTRACT 
 

Simulation of Three-Dimensional Laminar Flow and Heat Transfer in an Array of 

Parallel Microchannels.  (May 2007) 

Justin Dale Mlcak, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. N.K. Anand 
 
 

 Heat transfer and fluid flow are studied numerically for a repeating microchannel 

array with water as the circulating fluid.  Generalized transport equations are discretized 

and solved in three dimensions for velocities, pressure, and temperature.  The SIMPLE 

algorithm is used to link pressure and velocity fields, and a thermally repeated boundary 

condition is applied along the repeating direction to model the repeating nature of the 

geometry.  The computational domain includes solid silicon and fluid regions.  The fluid 

region consists of a microchannel with a hydraulic diameter of 85.58μm.  Independent 

parameters that were varied in this study are channel aspect ratio and Reynolds number.  

The aspect ratios range from 0.10 to 1.0 and Reynolds number ranges from 50 to 400.  A 

constant heat flux of 90 W/cm2 is applied to the northern face of the computational 

domain, which simulates thermal energy generation from an integrated circuit. 

 A simplified model is validated against analytical fully developed flow results 

and a grid independence study is performed for the complete model.  The numerical 

results for apparent friction coefficient and convective thermal resistance at the channel 

inlet and exit for the 0.317 aspect ratio are compared with the experimental data.  The 

numerical results closely match the experimental data.  This close matching lends 
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credibility to this method for predicting flows and temperatures of water and the silicon 

substrate in microchannels. 

 Apparent friction coefficients linearly increase with Reynolds number, which is 

explained by increased entry length for higher Reynolds number flows.  The mean 

temperature of water in the microchannels also linearly increases with channel length 

after a short thermal entry region.  Inlet and outlet thermal resistance values 

monotonically decrease with increasing Reynolds number and increase with increasing 

aspect ratio. 

 Thermal and friction coefficient results for large aspect ratios (1 and 0.75) do not 

differ significantly, but results for small aspect ratios (0.1 and 0.25) notably differ from 

results of other aspect ratios. 
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NOMENCLATURE 

a discretization coefficient 

A area of control volume face, m2  

Ac channel cross-sectional area, m2 

At computational boundary area at y = W, m2 

A(|P|) dimensionless coefficient, represents convection-diffusion at boundary  

C distance between the bottom of the substrate and the channel central axis, m 

C* friction coefficient 

cp specific heat at constant pressure, J/(kg K) 

D diffusive conductance 

Dh hydraulic diameter, m 

F convection strength, kg/s 

f friction factor 

h channel height, m 

H computational domain height (y-direction), m 

J total flux 

k thermal conductivity, W/(m K) 

Ki constant term in matrix of discretized equations 

Kn Knudsen number 

L channel length, m 

m  mass flow rate, kg/s 

P Peclet number 
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p pressure, Pa 

PCV pressure control volume 

Po Poiseuille number (fRe) 

Ps channel perimeter, m 

q ′′  heat flux, W/m2 

R residual 

Re Reynolds number 

Rt thermal resistance 

S surface along channel perimeter 

SC constant source term 

SP proportional source term 

ST temperature source term 

T temperature, K 

Tm mean (bulk) temperature, K 

Tw average wall temperature, K 

u x-direction velocity component, m/s 

UCV u-velocity control volume 

V  velocity vector 

v y-direction velocity component, m/s 

VCV v-velocity control volume 

W computational domain width (z-direction), m 

w z-direction velocity component, m/s 
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wc channel width, m 

WCV w-velocity control volume 

x x coordinate direction 

y y coordinate direction 

z z coordinate direction 

Greek 
 
α channel aspect ratio (w/h) 

Γ  diffusion coefficient 

δ diffusion length, m 

∆ length of control volume side, m 

ε convergence value 

μ viscosity, N s/m2 

ρ density, kg/m3 

φ  general transport variable 

Subscripts 
 
app apparent 

b bottom (referring to area between nodes) 

B bottom neighbor node 

e  east (referring to area between nodes) 

f fluid 

E eastern neighbor node 

n north (referring to area between nodes) 



xvii 

N northern neighbor node 

nb all neighboring nodes 

P central point 

s south (referring to area between nodes) 

S southern neighbor node 

t top (referring to area between nodes) 

T top neighbor node 

w west (referring to area between nodes) 

W western neighbor node 

Superscripts 
 
 ’ pressure correction 

* guessed value 

T referring to temperature 

u referring to x-direction velocity 

v referring to y-direction velocity 

w referring to z-direction velocity
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1. INTRODUCTION 
 
Over two and a half decades ago, microchannels emerged as a potential solution 

for dissipating thermal energy from densely packed integrated circuitry.  Proposals and 

research indicated that high heat fluxes could be dissipated by a fluid passing through 

microchannels that offer an increased surface area to volume ratio.  Though dimensions 

are not formally defined, microchannels are typically rectangular channels with 

hydraulic diameter between 1μm and 200μm.  Heat fluxes from integrated circuits have 

exceeded 100W/cm2 [1], and in the early 1980’s, Tuckerman and Pease [2] reported heat 

flux dissipation as high as 790W/cm2 for a microchannel heat sink with a 71ºC mean 

fluid temperature rise.  As the density of integrated circuits increases and the heat flux 

multiplies, there is an increasing need for more research into microchannel design, 

performance, and application. 

Microchannels can be formed directly on the chip (integrated circuit) substrate.  

The advantage of the location on the substrate is the reduced thermal resistance from 

heat source to heat sink [2].  To avoid any disruption of circuit function, the 

microchannels can be built onto or etched into the electrically inactive side of the chip.  

The work of early microchannel pioneers initiated research and development of other 

micro-fluidic devices including ink jet printers, fuel cells, micropumps, heat exchangers, 

chemical reactors, and biomedical devices. 

 

 

This thesis follows the style of Numerical Heat Transfer. 
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This research work includes modeling fluid flow and heat transfer for water 

flowing in an array of parallel rectangular microchannels with an 86.58μm hydraulic 

diameter as shown in Figure 1.1.  This research models the case studied experimentally 

by Kawano et al. [3].  In addition, five different aspect ratios are considered in this work.  

The experiments use a heat source to model constant heat flux coming from an 

integrated circuit. 

The microchannel array has a sump at both the inlet and the outlet of the 

channels for the purpose of ensuring uniformity of velocity distributions and pressure 

drops for the fluid in each of the channels.  With a sump, flow maldistributions may 

occur in channels along the edge of the array, which may be caused by uneven pressure 

drop and uneven heat flux.  The channels are repeated in the transverse (z) direction, and 

Figure 1.2 shows one slice of the repeating geometry including one channel and 

surrounding solid region that will be modeled.  This approach greatly simplifies the 

computational procedure and is valid for most channels except those along the outer 

edges.  The sump may ensure a uniform pressure at each channel inlet, but temperature 

maldistributions may cause local fluid viscosity variations.  Changes in the local fluid 

viscosity can change velocity profiles and friction factor and result in flow 

maldistributions among the channels.   

1.1 Motivation 

As the presence of microchannels on integrated circuitry substrates will likely be 

a necessary feature of densely packed electronics, much research work will be devoted 

to the simulation, design, and optimization of such devices.  While some microchannel 
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Figure 1.1.   Top view and 3-D cut away of microchannel array. 

 
 
 

 
Figure 1.2.   Repeating microchannel geometry and single computational domain used for simulating 
entire array. 
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devices are well understood, many researchers do not have a fundamental understanding 

of the thermal and hydraulic performance of microchannel devices.  With unknown 

thermohydraulic performance of fluids within microchannels, these devices may not be 

designed for optimum heat transfer or pressure drop.  Not only does this affect the 

design of the microchannel device, but this also impacts the design of external pumping 

and thermal management systems. 

Existing experimental data and analytical models for heat transfer and fluid flow 

sometimes differ greatly from one another.  While some experimenters claim 

conventional theory is not applicable to microchannel flow, others indicate that 

conventional theory is an accurate predictor of microflows [4].  Furthermore, 

experiments performed by different investigators often give conflicting results [4], which 

contributes to confusion within this field of research.  Over the past two decades, over a 

dozen experimental and physical conditions have been suspected as factors that effect 

fluid flow and heat transfer in microchannels [5], and combining each factor into a 

working simulation of microchannel flow and heat transfer would be a difficult task.  

Clearly, widely-accepted theories are needed that explain the behavior of fluid flow and 

heat transfer on the micro-level. 

This research work aims at a better understanding of thermal and hydraulic 

performance of water in a parallel series of rectangular microchannels.  A finite volume 

technique [6] is used to solve the three-dimensional flow and energy equations in both 

the solid and the liquid regions. 
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1.2 Objectives 
 

The research objectives in the present study are: 

1. To develop a numerical code that can be used to simulate three-

dimensional velocity distributions, pressure distributions, and temperature 

distributions in a parallel array of rectangular microchannels.  

2. To numerically implement the thermally repeated boundary condition for 

the repeating series of microchannels. 

3. To compare the apparent friction coefficient and thermal resistance 

obtained from the numerical simulation to available experimental data [3]. 

4. To present results of the numerical simulation in the form of friction 

coefficient required pumping pressure vs. flowrate, thermal resistance, and 

maximum substrate temperature for Reynolds number ranging from 50 to 

400 and aspect ratio ranging from 0.1 to 1.0. 

5. To numerically analyze the effect of viscous dissipation on the bulk 

temperature for one case of aspect ratio. 

1.3 Thesis Outline 

This thesis is a documentation of the creation, implementation, and results of a 

numerical study that solves for velocity, pressure, and temperature in a three 

dimensional microchannel array. 

In Section 1, an introduction to the problem is coupled with an explanation of 

microchannel terminology.  Several statements about the need for microchannel research 
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are given which act as the impetus for this work, and direct statements define the 

objectives of this work. 

In Section 2, a review of the open literature pertaining to the topic of heat 

transfer and fluid flow in microchannels is presented, which includes work of both 

experimental and numerical investigators. 

The geometries that are to be considered in this study are presented in Section 3, 

and this is followed by the relevant mathematical equations and boundary conditions that 

describe fluid flow and heat transfer.  Since an objective of this work is to compare the 

numerical results with experimental data, Section 3 also includes a brief description of 

the experimental conditions that produced the experimental data. 

The numerical procedure, including discretization method, grid generation, and 

solution algorithm, are included in Section 4.  While the numerical code is not provided 

in this section, the methods by which it was produced are included. 

Section 5 contains information about the validation and grid independence 

studies that were performed which give credibility to the numerical code.  The code is 

validated by viewing numerical symmetry, comparing fully-developed flow values to 

analytical results, and performing an overall energy balance.  The comparison of the 

numerical results to experimental data is not considered in Section 5 because no set of 

experiments has been widely accepted as a baseline case for validation purposes. 

Results of the numerical code are presented and discussed in Section 6.  The 

results include friction coefficient, system characteristic, thermal resistance, and 

maximum substrate temperature for Reynolds number ranging from 50 to 400 and 
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channel aspect ratio ranging from 0.10 to 1.0.  Also, the numerical results are compared 

to experimental results for the case of a 0.317 aspect ratio. 

Lastly, Section 7 includes a summary and conclusions obtained from the 

numerical work and results, and suggestions for future work in the area of modeling 

fluid flow and heat transfer in microchannels are discussed. 
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2. PRIOR WORK 
 

Many investigators cite differences between micro-scale and macro-scale fluid 

flow and heat transfer, while various other investigators cite similarities between the 

flow regimes.  Beginning the study, it is necessary to understand the scale on which the 

flow and thermal physics occur.  Among other researchers, Bontemps [5] explains the 

usefulness of the Knudsen number (Kn) as a validity indicator of the continuum 

hypothesis for a fluid in a channel of a specified length scale.  The Knudsen number is 

the ratio of the molecular mean free path and the channel characteristic length, and a 

very small value of Kn will mean that the channel is significantly larger than the distance 

between fluid molecules.  In this case, the fluid can be treated as a continuum, and 

Navier Stokes equations and standard no-slip boundary conditions apply. 

Further research has indicated that for increasing Kn, standard boundary 

conditions (zero fluid velocity at boundary) do not apply, and for even larger Kn, 

molecular flow effects must be considered because the fluid can no longer be treated as a 

continuum.  The mean molecular free path is approximately 8nm for liquid water, and 

the characteristic length of the microchannels for the proposed work is 21.7µm, which 

makes Kn=3.70×10-4.  Figure 2.1 illustrates appropriate fluid flow models with respect 

to Knudsen number [5].  As shown by the point of interest for liquid water in the figure, 

the Navier Stokes equations and standard boundary conditions apply to the proposed 

work.  While the Knudsen number indicates that Navier Stokes equations and no-slip 

boundary conditions are applicable for liquid microflows with this length scale, the same 

is not true for gas microflows.  The average mean molecular free path for air is 
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approximately 70nm, which makes Kn=3.24×10-3, a value that is clearly in the range of 

slip boundary conditions. 

 

 
Figure 2.1.   Assumed fluid flow model as a function of Knudsen number (Kn) (adapted from [5]). 

 
 
  Nearly all sources of experimental data for laminar microchannel flows make 

some attempt to compare data against the Navier Stokes and energy equations, and some 

investigators try to propose new theories to explain observed phenomena.  Often times, 

the assumptions of hydrodynamic and thermally fully developed flow are used, which 

can greatly simplify the non-linear equations, but this assumption is not always correct.  

Currently, there appears to be no widely accepted method for modeling thermohydraulic 

performance within microchannels. 

Figure 2.2 shows a comparison of friction factor data for several different 

microchannel flow experiments that was compiled by Papautsky et al. [7], and the data 

are evenly scattered above and below the value predicted by the fully-developed flow 

reduction from the Navier Stokes equations.  References given in Figure 2.2 are the 

results of Papautsky et al. [7] that the present author could review and validate, while 
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Papautsky et al. [7] provides a complete set of references.  Similar results are reported 

for Nusselt number. 8 9 10 11 12 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.   Experimental/theoretical friction factor ratio [C*=(fRe)exp/(fRe)theor] as a function of 
Reynolds Number (adapted from [7]). 
 
 

An important observation from Figure 2.2 is that each investigator consistently 

reports numbers higher, lower, or the same as those predicted by theory [7].  From this 

result, one may conclude that experimental conditions among different experiments are 

not carefully controlled, and measurement techniques may be in error.  Also, some 

experiments may be performed in a carefully controlled environment, but an analyst is 

not able to determine which experimental data are free of outside error because 

experimental data do not match.  The data in Figure 2.2 are comparable to most available 

experimental data, but there exist several explanations why experimental data and 

theoretical predictions do not match.  The results shown in Figure 2.2 are from 

microchannels of differing geometries, surface roughnesses, materials, conditions and 

even fluids.  This observation is important because experimental conditions among 

Wu & Little [8] 
Pfahler et al. [9] 
Pfahler et al. [9] 
 
Choi et al. [10] 
Yu et al. [11] 
Wilding et al. [12] 
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different microchannel investigations often vary, and this reflects the need for more 

consistent and clearly documented experimental data. 

Mala and Li [13] compared experimental results of water flow in cylindrical 

microtubes for Reynolds numbers ranging from 100 to 2100.  Diameters analyzed 

ranged from 50μm to 254μm.  Mala and Li reported larger friction factors than predicted 

from a reduction of Navier Stokes, and the difference became larger with decreasing 

microtube diameter.  These effects were attributed to an early transition to turbulence 

and a change in tube surface roughness.  The surface roughness effects were determined 

by testing with tubes of different material.  An effect not considered in this study was the 

possibility of a longer hydrodynamic entry length for microtubes of smaller diameter.   

Wu and Cheng [14] measured friction factor and Nusselt number for laminar 

water flow in trapezoidal microchannels.  Surface roughnesses, surface hydrophilic 

properties, and channel geometries were varied, and correlations were presented for 

Nusselt number and friction factor as functions of these variables.  The surfaces with 

different hydrophilic properties were bare silicon and silicon with a 5000Å thermal 

oxide coating [14].  Ok et al. [15] reported contact angles of liquids on various solid 

surfaces, and their investigations found a contact angle of 38º for liquid on a thermal 

oxide coated silicon wafer and a contact angle of 47º for liquid on a silicon wafer.   The 

thermal oxide surface is labeled as more hydrophilic than the bare silicon surface 

because hydrophilic surfaces have lower contact angles than hydrophobic surfaces.  This 

result implies that the wafer with the thermal oxide coating provides a surface with 

better wetting characteristics for liquids than the bare silicon surface.  There was a 
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noticeable increase in friction factor and Nusselt number for increased surface 

roughness, and the more hydrophilic surface (silicon with thermal oxide coating) had a 

higher friction factor and Nusselt number than the less hydrophilic surface (bare silicon).  

Both friction factor and Nusselt number were reported to linearly increase with 

increasing Reynolds number between Re=100 and Re=600, which differs from fully 

developed Navier Stokes and energy equation predictions. 

Several investigators attribute differences between experiment and theory to 

experimental errors and incorrect reporting of experimental uncertainty.  Agostini et al. 

[16] detailed the importance of obtaining a very low uncertainty when measuring the 

dimensions of mini and microchannels.  An example illustrated that a 3% uncertainty on 

channel width and height results in a friction factor uncertainty of 21%.  Mehta and 

Helmicki [17] reported that measured pressure drops did not correlate with theoretically 

predicted pressure drops for laminar flow through microchannels.  However, 

correspondence with the experimenter found that a thin polymer membrane covering the 

channels deformed under the applied pressure.  After this effect was considered and 

suggested deformation dimensions were substituted into the equations, the theoretical 

and measured pressure drops matched within 10%.   

Additional sources of possible experimental error are: 

• Increased pressure drop because of singular pressure losses at the 

entrance and exit of  flow manifolds [16] and because of 

hydrodynamically developing flow [18] 

• Thermocouples can be of the size of microchannels [5]  
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• The temperature rise of the fluid can be on the order of thermocouple 

uncertainty [5] 

• Trapped gas in liquid microchannel flows can increase pressure drop and 

decrease Nusselt number [19] 

In some cases, theoretical results closely approximated experimental results.  Xu 

et al. [20] measured friction factor for hydraulic diameters ranging from 30 to 344μm 

and Reynolds numbers ranging from 20 to 4000.  For this set of experiments, theoretical 

predictions matched the recorded data when error ranges from experimental uncertainty 

were considered.   

Toh et al. [18] used the SIMPLER algorithm and a finite volume technique was 

used to numerically solve the flow, continuity, and energy equations in three dimensions 

for water flow in a microchannel.  The numerical solution was then compared with 

experimental data for flow in a microchannel of the same geometry.  Previously, 

attempts had been made to validate the experimental results against hydrodynamically 

and thermally developed Navier Stokes and energy equation predictions, but Toh et al. 

[18] were the first to model thermally and hydrodynamically developing flow.  In 

addition, velocity and temperature fields for the solid and fluid region were considered.  

The thermal resistance and friction factor obtained from the numerical results of Toh et 

al. [18] closely matched the experimental data.  The major difference reported was a 

lower friction factor at low Reynolds numbers.  This difference was attributed to lower 

viscosity as a result of increased mean flow temperature.  Toh et al. recommend that 
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numerical solvers include this in the approximation, though temperature dependence of 

other fluid properties can be neglected.   

Another numerical study by Fedorov and Viskanta [21] solved for fluid flow and 

conjugate heat transfer in three dimensions for a 57.0μm x 180μm channel using the 

SIMPLER algorithm with Reynolds number ranging from 50 to 400.  Results were 

compared against existing experimental data.  Nearly all numerical predictions for 

friction factor and thermal resistance matched the experimental data when experimental 

uncertainty was considered. 

Bontemps [5] recently published a figure that shows Nuexp/Nuclassical and 

fexp/fclassical as a function of published year from 1990 to 2004.  The plot of these ratios 

shows a clear convergence toward a value of 1 as the years approach 2004.  Although 

this trend is not published in other sources, Bontemps extrapolates from this result that 

classical (Navier Stokes and energy equations) theories may be applicable on the micro 

scale [5].  This clear convergence is a possible result of better experimental 

measurements and techniques with the advancement of time. 

As previously mentioned, much of the experimental data from microchannel flow 

and heat transfer is scattered, and many researchers in this area cite the need for 

additional experimental data with clear descriptions of experimental conditions and 

uncertainties before correlations for micro-scale flows are widely accepted. 

This work differs from that of Fedorov and Viskanta [21] by using a thermally 

repeated boundary condition along the z-boundaries; by using the SIMPLE algorithm 

instead of the SIMPLER algorithm; by obtaining solutions for channels with different 
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aspect ratios; and by including viscous dissipation when solving the energy equation in 

the fluid region.  Although two analyses of dimensionless parameters including 

Brinkman number [22 and 23] do not indicate that viscous dissipation will be important 

for the channel geometries considered, Koo et al. [24] states that viscous heating should 

be considered for microchannels operating in the laminar regime with hydraulic diameter 

less than 100μm.  The reason for this consideration is because large velocity gradients 

and long channel length to hydraulic diameter ratios are present in small diameter 

microchannels.  This study includes the viscous dissipation term in the energy equation 

and makes a comparison to results obtained without the viscous dissipation term. 
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3. MODEL FORMULATION 

Numerical models must be based upon overlying theory and/or assumptions.  

While the results of the model are dependent upon many factors during the model 

development, the results cannot provide more insight to the physical phenomena than 

given by the governing equations and assumptions.  Numerical codes are often 

developed because the governing equations are tightly coupled, nonlinear, difficult to 

solve, and/or because data used as input to the equations are discrete. 

The case considered in this research work is single-phase forced convective flow 

of water in an array of parallel microchannels.  Convection heat transfer is the transfer of 

thermal energy in the presence of a temperature difference as a combination of bulk fluid 

motion (advection) and random molecular motion (diffusion) [25].  Since the liquid 

water is forced through the channels by means of an external pump, the mode of liquid 

and heat transport is known as forced convection.  Velocity components appear in the 

convective terms of the energy equation, so the solution of the energy equation is 

dependent upon the converged solution of the flow field.   

The density of liquid water does not change appreciably with an increase of 

temperature, and as a result, mixed convection (free and forced convection) effects are 

not considered.  If gas flows were considered in this study, mixed convection in addition 

to slip boundary conditions for velocity would likely be included.  Since an objective of 

this study is to compare the numerical results with experimental data, the geometry and 

experimental conditions will be described, and subsequent discussion will focus on the 
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equations and boundary conditions that can be used to model the thermohydraulic 

behavior of liquid water in a microchannel array. 

3.1 Description of Experimental Setup of Kawano et al. [3] 

The experimental conditions that serve as an origin for the present numerical 

model are the work of Kawano et al. [3].  Figure 3.1 illustrates the experimental 

apparatus as used by Kawano et al. [3].  The microchannel device was constructed by 

etching 110 identical channels centered onto a 15mm by 15mm by 450μm thick silicon 

substrate.  Each channel was 57μm in width and 180μm in height, and the pitch of the 

channels was 100μm.  After the etching, the channels were covered with a 450μm thick 

silicon cover plate which was etched with holes for connection to the sumps.  While the 

exact method of cover plate attachment is not documented, the two silicon pieces were 

joined by a molecular diffusion technique [3].   

 

 

Figure 3.1.   Experimental apparatus for microchannel device (adapted from [3]). 
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Thin film Fe-Ni thermocouples were created at the inlet and exit of the device by 

sputtering.  These thermocouples allow for measurement of the solid silicon temperature 

near the channel inlet and outlet.  Measurements from these thermocouples will be 

compared to numerical predictions of temperature in the solid at the same location. 

In the experimental work, water was supplied by an external pump to the 

microchannel device.  The microchannel device was housed in a container that allowed 

fluid connections and pressure measurements to be made at the inlet and outlet sumps.  

Water flow was controlled by means of a flow meter and a valve for Reynolds number 

ranging from approximately 50 to 400.  A heating device which provided a constant heat 

flux of 90 W/cm2 was mated to the side of the microchannel device which is opposite 

from the flow inlet.   

A cross section of one repeating section of the microchannel geometry and the 

associated boundary conditions are illustrated in Figure 3.2 below.  The area shown 

serves as the model for the initial numerical computational domain.  As shown in Figure 

3.2, the constant heat flux is applied to the silicon substrate at y = H, and a thermally 

insulated condition is present at y = 0.  Although no insulation was in place at y = 0 

during the experiment, this was the location of the holder, and Kawano et al. assumes 

that this location is thermally insulated [3]. 

3.2 Geometry 

The cross section considered is 100μm wide which is the same value as the pitch 

of the repeating array, and all microchannels are 10mm long.  For the thermal analysis, 

any repeating cross sectional geometry could be modeled because of the thermally 
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repeating boundary condition applied in the z-direction.  This means that the channel 

could be centered in the cross section shown in Figure 3.2, and the thermal model would 

give similar results for temperature distributions within the fluid and solid regions.  

 

 
Figure 3.2.   Y-Z cross section and boundary conditions for the rectangular microchannel under study. 

 

The case shown in Figure 3.2 has a hydraulic diameter of 86.58μm.  Additional 

geometries are numerically modeled which have the same hydraulic diameter and 

vertical (y-direction) centering, C, but have different aspect ratios as shown in Figure 

3.3.  Dimensions for each of the geometries shown in Figure 3.3 are given in 
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Table 3.1.  Each of the geometries shown in Figure 3.3 has the thermally repeated 

boundary condition applied in the z-direction. 

 

 

Figure 3.3.   Aspect ratios and scale geometries of the six rectangular channels considered. 
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Table 3.1.  Dimensions of channel geometries for cases of different aspect ratio 
Aspect 
Ratio 
α (w/h) 

Channel 
Height, h 

(μm) 

Channel 
Width, wc 

(μm) 

Domain 
Height, H 

(μm) 

Domain 
Width, W 

(μm) 

Center 
Height, C 

(μm) 
0.10 476.2 47.62 900. 100. 431.78 
0.25 216.5 54.11 900. 100. 431.78 
0.317 180.0 57.00 900. 100. 431.78 
0.50 129.9 64.94 900. 100. 431.78 
0.75 101.0 75.76 900. 100. 431.78 
1.0 86.58 86.58 900. 100. 431.78 

The channel length and domain length are 10mm for all cases of aspect ratio. 
 

3.3 Basic Equations and Boundary Conditions 

This study considers laminar forced convection of water, a Newtonian fluid, in 

an array of silicon microchannels.  As shown in Section 2, the dimensions of this 

problem allow standard continuum hypothesis to be applied while modeling the behavior 

of water flow in the channels. 

The following assumptions were made for the numerical model: 

1. Laminar flow 

2. Steady state flow and heat transfer 

3. Water is incompressible 

4. Gravitational forces are negligible 

5. Radiation heat transfer is negligible as compared to convection-diffusion 

heat transfer 

6. Buoyancy forces are negligible 

7. No internal heat generation is present aside from viscous heating 

8. Constant solid properties 
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9. Fluid properties are dependent on average of outlet and inlet temperatures 

only, which are a function of Reynolds number when heat flux is 

constant. 

Simulation of fluid flow and heat transfer in a section of the repeated geometry 

will require the solution of the non-linear three dimensional Navier Stokes equations and 

the solution to the conjugate (solid and fluid) energy equations.  Shah and London [26] 

indicate that the entry length problem can be solved either by linearizing the momentum 

equations or by using a finite difference method.  Although a more rapidly developing 

flow is modeled by the linearization method, corrections can be applied to counteract 

this problem.  This method provides a solution for fluid flow in a three dimensional 

channel, but the velocities in the transverse directions are neglected.  This study, 

however, uses the finite volume method because it provides a better solution for the 

conjugate heat transfer problem, all velocity components are considered, and the finite 

volume method is known to give accurate results without the necessity of adding 

corrections to the model.  The finite volume method must use the flow and energy 

equations in three dimensions as a starting point. 

The Navier Stokes, energy, energy source term, and continuity equations for 

steady-state, incompressible flows in the absence of gravitational forces are given in 

Eqs. (3.1) through (3.4), respectively, where the ST term of the energy equation in Eq. 

(3.2) is equal to the viscous dissipation term as shown in Eq (3.3). 

 
 ( ) ( )VpVV ⋅∇⋅∇+−∇=∇⋅ μρ  (3.1) 
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 ( ) ( ) Tp STkTcV +∇⋅∇=∇⋅ ρ  (3.2) 
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 ( ) 0=⋅∇ Vρ  (3.4) 

 
 The solution to these equations will use the finite volume method and solution 

technique by Patankar [6] described in Section 4.  Because constant fluid properties are 

considered, the momentum and continuity equations are not dependent upon the energy 

equation, and the momentum and energy equations may be solved independently.  The 

reverse statement is untrue.  The energy equation and source term, Eqs. (3.2) and (3.3), 

respectively, are dependent upon the velocity field, and for computational efficiency, the 

velocity field should be determined before the temperature field is solved.   

The solution to Eqs. (3.1) through (3.4) is dependent upon the application of 

boundary conditions, which are graphically depicted in Figure 3.2, and the boundary 

conditions are the same for all cases, except the value of the entrance fluid velocity.  

Boundary conditions for velocity include: zero velocity at all y- and z-domain boundary 

surfaces, uniform x-velocity for liquid at the channel inlet according to Eq. (3.5), zero y- 

and z-velocities at channel inlet, and zero velocities in the solid region at x=0.  

 
hfluid

fluid
inletfluidx D

u
ρ

μRe
,0

=
=

 (3.5) 
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Thermal boundary conditions include:  uniform fluid and solid temperature of 

20ºC at the channel inlet, constant heat flux of 90 W/cm2 at y = H for all x and z, 

thermally insulated at y = 0, and a thermally repeated boundary condition at z = 0 and z 

= W.  The mathematical definition of the thermally repeated boundary condition is given 

by Eqs. (3.6) and (3.7). 

 Wzz TT == =0  (3.6) 
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A thermally repeated boundary condition is one in which the temperatures at the 

ends of the computational domain are equal only in the direction of repeating geometry, 

and the heat flux leaving the z = W side of the computational boundary is equal to the 

heat flux entering the z = 0 size of the computational boundary.  This makes physical 

sense because of the repeating nature of the geometry [27].   

The basic channel and solid dimensions given in Figure 3.2 are similar to those 

used to validate Fedorov and Viskanta’s code [21].  Fedorov and Viskanta simulate a 

different geometry where the fluid channel was centered in the computational domain 

because an insulated boundary condition was applied in the repeating direction instead 

of a thermally repeated boundary condition.   

The thermally repeated boundary condition is a better depiction of reality 

compared to an insulated boundary condition because it resembles the repeating nature 

of the physical geometry.  The insulated boundary condition, as modeled in Fedorov and 

Viskanta’s work, is a special case of the thermally repeated boundary condition, which is 
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true only when the solid region on both sides of the channel are equal in length within 

the computational domain.  In the proposed model, any repeating cross-sectional 

geometry of constant width in the z-direction could be solved with the application of the 

thermally repeated boundary condition.  For example, the fluid channel could be located 

at any z-location inside the computational domain shown in Figure 3.2, and the results 

for the thermal performance of the entire channel array would be identical to the results 

obtained for any other case.  The implementation of a thermally repeated boundary 

condition differs from the non-thermally repeating cases by using a different line-by-line 

solver in the repeating direction.  The details of the cyclic line-by-line solver are given in 

Section 4. 

The solution is not dependent upon the conditions at the outflow boundary, and 

no information is carried from the outflow boundary into the computational domain.  

The gradient of the transport variable, φ , in the flow direction, x, is zero at the outflow 

boundary.  This assumes that the flow is hydrodynamically and thermally fully 

developed at the channel outlet, which is a good approximation because the channel 

length is approximately 115 times longer than the hydraulic diameter. 

3.4 Fluid Properties 

The conjugate problem is solved by including the solid and liquid regions in the 

computational domain for temperature, pressure, and velocity.  The solid region is given 

a very high viscosity (~1045) which drives the velocities in this region to a very low 

value (~10-45), and the thermal conductivity in the solid region are equal to the bulk, 

temperature-invariant thermal conductivity of the solid material.  According to 
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convection-diffusion relationships given in Section 4, when velocity approaches zero, 

diffusion dominates, which means that conduction is the only method of heat transfer 

within the solid region.   

 The assumptions listed in Section 3.3 state that fluid properties are dependent 

upon inlet and outlet temperatures only, which are a function of Reynolds number in the 

case of constant heat flux.  Since initial tests during the development of the code showed 

that adding temperature dependent properties increased solution iterations by as much as 

300% when compared to constant properties, a different method was employed to 

determine fluid properties. 

 From an overall energy balance of the computational domain at steady state, one 

can determine the outlet temperature of the fluid, as given by 

 
p

t
inletmoutletm cm

Aq
TT

′′
+= ,, . (3.8) 

The average of the inlet and outlet temperatures was used to determine fluid properties, 

and as these were updated, the inlet velocity changed because of the dependence of 

velocity on μfluid and ρfluid  for constant Reynolds number as detailed by Eq. (3.5).  

Iterations of Eqs. (3.5) and (3.8) were performed until the average of the inlet and outlet 

temperature ceased to change.  Performing the iterations required μfluid, ρfluid, kfluid, and 

cp,fluid to be temperature dependent.  These functional relationships were determined for 

water from available steam tables [25], and the polynomial equations given in Eqs. (3.9) 

through (3.12) were found to fit the discrete data points very well. 
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 Other than a very high viscosity, the only property that differs in the solid region 

is the thermal conductivity.  The thermal conductivity used for the solid was 148 W/mK, 

which is the thermal conductivity of single crystal silicon. 
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4. NUMERICAL PROCEDURE 
 

As shown in the previous section, the equations representing fluid flow and heat 

transfer in the microchannel are second order partial differential equations.  The flow 

equations are nonlinear and the conjugate nature of the energy problem adds complexity 

to the energy equation.  In such a nonlinear and conjugate problem, no closed form 

(exact) solution may be obtained for temperature, pressure, and all three velocity 

components simultaneously, so an appropriate numerical scheme must be implemented. 

This work uses the finite-volume technique described by Patankar [6] because of 

computational accuracy and ease of implementation.  This method is also known as the 

control volume formulation.  In a control volume approach, the governing equations are 

integrated over each control volume so that these equations are satisfied within each 

control volume, over any quantity of control volumes, and over the entire computational 

domain.  Furthermore, only the unknown values at each nodal point are solved, not the 

variation between the discrete points [6].  Variations of the transport variable between 

discrete points are considered locally one-dimensional, and values of the transport 

variable and fluid properties must be known at each node and control volume face.   

4.1 General Transport Equation 

A generalized form of the flow and energy equations given in Eq. (4.1) is useful 

in drawing a similarity among these equations, and the same solution method can be 

applied to each of these different equations [28].  The solution to Eq. (4.1) requires a 

technique that accounts for the convective-diffusive nature of the problem.  To avoid 
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confusion, this text uses the term convection-diffusion to represent advection (bulk fluid 

motion)-diffusion, which is actually convection.  The term on the left hand side of Eq.  

(4.1) represents the convective term, and the terms on the right hand side represent 

diffusive terms and source terms, respectively.  Substituting the variables in Table 4.1 

into Eq. (4.1) produces the governing partial differential equations given in Section 3.3. 

 ( ) ( ) φφ φρφ SV +∇Γ∇=∇       (4.1) 

 
Table 4.1.  Values used in the generalized transport equation for each transport variable, φ  

Transport 
Variable, φ  

Diffusion 
Coefficient, φΓ  Source Term, φS  Equation 

1 0 0 Mass Conservation 
u µ xp ∂∂− /  X-Momentum 

v µ yp ∂∂− /  Y-Momentum 

w µ zp ∂∂− /  Z-Momentum 
T k/cp Eq. 3.3 Energy 

 
 
The goal of the numerical procedure is to solve the partial differential equation 

shown in Eq. (4.1) for a set of discrete points which lie inside the computational domain.  

The discretization method converts the partial differential equation into multiple series 

of algebraic equations where the unknowns are the discrete nodal values.  When mass, 

momentum, and energy fluxes are consistent about all control volume faces, Patankar [6] 

shows that a discretized equation in the form of Eq. (4.2) can be solved provided that all 

ai coefficients are positive, SP is less than or equal to zero, and Eq. (4.3) holds.  

Subscripts in Eq. (4.2) indicate the location of the neighboring transport variables and 

coefficients.  Equations (4.4) and (4.5) illustrate the meaning of the source term 

components shown in Eqs. (4.2) and (4.3).   
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 baaaaaaa TTBBNNSSEEWWPP ++++++= φφφφφφφ  (4.2) 

 zyxSaaaaaaa PBTSNWEP ΔΔΔ−+++++=   (4.3) 

 zyxSb C ΔΔΔ=    (4.4) 

 PPC SSS φφ +=    (4.5) 

When an equation is transformed from the form of Eq. (4.1) to Eq. (4.2), the ai 

coefficients must contain convection-diffusion information as well as the distances 

between the discrete points.  The remainder of this section details the transformation 

from Eq. (4.1) to Eq. (4.2). 

4.2 Discretization Method 

 Obtaining discretized equations for a given problem first requires selection of the 

control volume geometry.  Typically, one of two different control volume geometries 

can be considered:  control volume faces located directly between nodal points, or nodal 

points centered in the middle of the control volume.  This research work uses the latter 

formulation because a nodal value in the center of the control volume is a better 

representation of the transport variable within control volume.  Additionally, grid 

generation is much easier, especially in the case of conjugate and staggered grid 

problems.  Figure 4.1 shows an example of a control volume with dimensions ∆x, ∆y, 

and ∆z, and it shows the variables and subscripts that appear in this section’s equations.  

The variables δxi, δyi, and δzi are the distances between the central point and the 

neighboring points. 



 

 

 

 

Figure 4.1.   Typical control volume with neighboring nodes and variables. 
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 A discretized form of the governing equations can easily be obtained in one 

dimension, and the results of the one-dimensional solution can similarly be applied in 

three dimensions.  A one-dimensional case of a central node and two neighboring nodes 

is shown in Figure 4.2 [6].  The control volume illustrated in Figure 4.2 has unit length 

in both the y- and z-directions. 

 

 

Figure 4.2.   One dimensional case for discretizing the generalized transport equation [6]. 
 
 

Equation (4.6) results from integrating Eq. (4.1) without the source term about 

the control volume shown in Figure 4.2. 
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Grouping the results of Eq. (4.6) by eastern and western faces gives Eq. (4.7).  The first 

term on the left hand side of Eq. (4.7) denotes the total flux of the transport variable at 

the eastern face, Je, and the second term denotes the total flux of the transport variable at 

the western face, Jw.  
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As shown in Eqs 4.6 and 4.7, values of the transport variable and its derivative 

must be known at the control volume faces.  The definition of these values at the 

boundary faces requires an assumption to be made about how the transport variable 

varies between nodal points.  Patankar [6] suggests several schemes to be used as 

solution methods, which include central difference, upwind, hybrid, exponential, and 

power law schemes.  Each of these schemes represents the variables on the left hand side 

of Eq. (4.7) in terms of nodal quantities. 

The scheme for representing the transport variables at control volume faces is 

one of the paramount issues that must be addressed when discretizing a convection-

diffusion equation.  For example, if there is a high flow rate from west to east through 

the control volume in Figure 4.2, the transport variable at the western face of the control 

volume would have more influence from the western node than from the central node.  

One simply cannot set the variable at the western face equal to the value at the western 

nodal point because this methodology would not allow any information to travel from P 

to W in the case of low flow rates. 

In response to the aforementioned problems, Patankar [6] suggests using the 

power-law scheme to model convection-diffusion behavior at control volume 

boundaries.  The power-law scheme is recommended because it is a very close 

approximation to the exact solution to Eq. (4.1) in one dimension, and it provides 

computational savings as compared to the exact solution.   

In one dimension, the power-law scheme reduces to Eq. (4.8), which is in the 

same form as Eq. (4.2).  The operator [|x,y|] is equivalent to max[x,y]. 
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The values of iΓ and ui are evaluated using any kind of interpolation method, but 

this research work uses the harmonic mean of closest neighbors to calculate iΓ , and 

average values of neighboring nodes are calculated for velocity.  The definition of 

harmonic mean is given in Eq. (4.12) below.  The reason for this difference is because 

iΓ  must accommodate step changes between the solid and liquid regions.  For example, 

if PΓ  represents the thermal conductivity in a piece of insulation ( PΓ  ≈ 0), then one 

would expect iΓ ≈ 0 as in the case of harmonic mean.  The numerical average value 

would only give a value midway between 0 and EΓ . 

 
EP

EP
i Γ+Γ

ΓΓ
=Γ

2  (4.12) 

The discretization equation in three dimensions is formed via an approach similar 

to the one-dimensional formulation.  Because the convective and diffusive terms often 

repeat themselves, it is useful to define the flow and diffusion variables, Fi and Di, 

respectively as [6]: 
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zyD

δ
ΔΔΓ

= , (4.13) 

 ( ) zyuF ww ΔΔ= ρ  ( )w
w

w x
zyD

δ
ΔΔΓ

= , (4.14) 

 ( ) zxvF nn ΔΔ= ρ  ( )n
n

n y
zxD

δ
ΔΔΓ

= , (4.15) 

 ( ) zxvF ss ΔΔ= ρ  ( )s
s

s y
zxD

δ
ΔΔΓ

= , (4.16) 

 ( ) yxwF tt ΔΔ= ρ  ( )t
t

t z
yxD

δ
ΔΔΓ

= , (4.17) 

 ( ) yxwF bb ΔΔ= ρ  ( )b
b

b z
yxD

δ
ΔΔΓ

= , (4.18) 

 iii DFP /= .  (4.19) 

The definition of the power-law scheme is given by Eq. (4.20).   Other schemes 

can be used to represent transport variables at the control volume boundaries by 

changing the value of A(|P|) in Eq. (4.20). 

 ( ) ( )[ ]51.01,0 PPA −=  (4.20) 

Using Eq. (4.20), the discretized equation in three dimensions is represented as [6]: 

 baaaaaaa TTBBNNSSEEWWPP ++++++= φφφφφφφ , (4.2) 

where 

 ( ) [ ]0,eeeE FPADa −+= , (4.21) 

 ( ) [ ]0,wwwW FPADa += , (4.22) 

 ( ) [ ]0,nnnN FPADa −+= , (4.23) 

 ( ) [ ]0,sssS FPADa += , (4.24) 
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 ( ) [ ]0,tttT FPADa −+= , (4.25) 

 ( ) [ ]0,bbbB FPADa += , (4.26) 

 zyxSaaaaaaa PBTSNWEP ΔΔΔ−+++++= , (4.3)  

 zyxSb C ΔΔΔ= . (4.4) 

4.3 Staggered Grid 

With the nodal points centered within each control volume, the most obvious 

choice for a grid scheme would be to draw each control volume according to the 

geometric requirements and place the temperature, pressure, and velocity nodes in the 

middle of each volume.  This method is known as a collocated grid, which is the 

simplest approach, but this method is not used in this study because potential flaws can 

arise when obtaining solutions via this method.  When velocities, pressures, and 

temperatures are each defined at the same nodes, pressures and velocities are dependent 

upon each other at alternate grid points rather than adjacent grid points.  The definition 

of pressures and velocities at alternate grid points can results in wavy pressure fields and 

velocity fields, which would not violate any of the discretized equations, but the wavy 

results would violate physical intuition and the continuous equations that define the fluid 

flow.   

A solution to the wavy velocity and pressure field problems associated with the 

use of the collocated grid is the implementation of a staggered grid.  In this approach, the 

temperature and pressure nodes are still in the original locations, but each of the velocity 

grids are staggered in the respective coordinate direction.  The staggered grid solution 
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violates no rules of the control volume method because each dependent variable can 

have a different grid as long as the volumes within each unique grid are non-

overlapping.  In the staggered grid approach, the center of the velocity control volumes 

is located along the face of the pressure/temperature control volume.  Another advantage 

of the staggered grid is that the pressure difference between two adjacent pressure nodes 

becomes the driving force for the velocity node located at the pressure volume boundary.   

The staggered grid presents some difficulty in three dimensions because four 

different grids must be generated for each computational domain.  Each grid has 

different indexes and coefficients, and boundary conditions must be applied to all grids.  

Also, properties and dependent variables must be interpolated between nodal values to 

give results along staggered nodes, which lie on the faces of non-staggered nodes and 

vice-versa.   

A three-dimensional staggered grid is difficult to represent graphically, so a two-

dimensional slice is used to illustrate the grid layout.  Figure 4.3 shows such a two-

dimensional slice, which can be used to represent a slice along a constant z-plane (Case 

A) or a constant x-plane (Case B).  The legend identifies the volumes and nodes for 

pressure, temperature, and velocity for both cases.  Note that the w-velocity nodes for 

Case A and the u-velocity nodes for Case B (illustrated by hollow circles) do not lie in 

the plane of the slice.  Rather, they are located midway between the current slice and the 

next pressure/temperature node.  Velocity control volumes are 1.5 times larger along the 

domain boundaries because the control volumes must be staggered while filling the 

entire computational domain.   
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Figure 4.3.   Staggered grid in two dimensions. 
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Figure 4.4 shows a sample of the staggered control volumes in three dimensions.  

Notice that velocity and pressure control volumes share the same outer faces, but 

velocity control volumes are 1.5 times larger along the edge.  This comes as a 

consequence of the staggered grid approach.  To visualize the entire three-dimensional 

grid, one should imagine the example volumes spreading from their coordinate axes to 

fill the entire computational domain. 

 
 

 
 
Figure 4.4.   Three-dimensional representation of staggered grid and overlapping control volumes 
(adapted from [29]). 

x 

z 
y 
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4.4 Solution Algorithm 

 Although a generalized differential equation and discretized equation for φ  has 

been presented, one cannot simply solve these equations with boundary conditions and 

obtain a correct solution.  The reasons for this are the nonlinearities in the velocity 

equations and inherent coupling between pressure and velocity.  Recall that Table 4.1 

shows pressure difference as a source term in the velocity equations.  Another problem is 

that internal coupling occurs between each of the velocity components.  If the final 

converged pressure field was supplied, the velocity and temperature equations could be 

solved in an iterative fashion to alleviate the problem of internal coupling of velocity 

components.  Pressure, velocity, and temperature fields must be calculated for given 

boundary conditions, and a special method is employed to link the pressure and velocity 

fields. 

The solution algorithm employed in this study is the Semi-Implicit Method for 

Pressure-Linked Equations (SIMPLE) as described by Patankar [6].  The steps of the 

algorithm, as given below, provide an iterative procedure for determining the pressure 

and velocity fields when neither field is specified.  Basically, this method starts with a 

guessed pressure field; using this pressure field, the velocity fields are calculated.  If the 

continuity equation is satisfied by the calculated velocity field, then there is no need for 

additional iterations.  If the calculated velocity field does not satisfy the continuity 

equation, the pressure field is corrected and the procedure starts over.  The SIMPLE 

procedure given by Patankar [6] is useful in determining how to apply a correction to the 

pressure field. 
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4.4.1 SIMPLE Algorithm Procedure 

The procedure followed in this research work for calculating the pressure and 

velocity fields is the following [6]: 

1.  Begin with a reasonable guessed pressure field p*. 

2.  Using the guessed pressure field, solve Eq. (4.2) for u*, v*, and w* using an 

appropriate line-by-line technique (as discussed in subsequent sections).   

3.  Solve for the pressure correction.  The pressure correction is obtained by 

integrating the continuity equation about a pressure control volume and 

substituting velocity correction factors and velocity values from Step 2.  If 

the pressure correction is zero, then the solved pressure field is the correct 

pressure field for the velocities obtained in Step 2 and no further pressure 

correction is necessary. 

4.  Calculate the new pressure field by adding the pressure correction to the 

initial guess. 

5.  Calculate new values for u, v, and w using existing u*, v*, and w* values; aP
u, 

aP
v, and aP

w coefficients; face areas of the pressure control volumes; and 

pressure correction values as shown in Eqs. (4.27) through (4.29) [6]. 

 ( )''*
EPu

P

e
ee pp

a
A

uu −+=  (4.27) 

 ( )''*
NPv

P

n
nn pp

a
A

vv −+=  (4.28) 

 ( )''*
PPw

P
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tt pp

a
A

ww −+=  (4.29) 
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6.  Use the new pressure field as the guessed pressure field and return to step 2.  

Repeat this procedure until pressure and velocity variables converge. 

7. Calculate temperature after converged velocity and pressure fields are 

obtained.  This is done by solving Eq. (4.2) for temperature by the 

appropriate line-by-line technique in each coordinate direction (discussed in 

the subsequent sections).  In this work, fluid properties are not temperature 

dependent.  Therefore, the flow equations do not depend on temperature.  

This saves time and computational effort. 

4.4.2 Line-by-line TDMA 

 Steps 2, 3, and 7 of the SIMPLE algorithm require the solution of velocity, 

pressure, and temperature fields, respectively.  With a large system of algebraic 

equations, one may use either solve them by direct or iterative methods.  Direct methods 

include Gauss elimination and Gauss-Jordan (including matrix inversion).  Examples of 

iterative techniques include Jacobi Iteration, Gauss-Seidel, and Success-Over/Under-

Relaxation.  Iterative techniques are accurate, but often require many iterations for 

convergence. 

As the discretized equations and coefficients are formed for each node in this 

study, each grid point depends only on its closest neighbors.  For example, grid point 

(2,1,1) will not depend on (3,6,3), but it will depend on (2,2,1).  The consequence of this 

is that the coefficient matrix will have three values centered along the diagonal and zeros 

everywhere else.  Computational effort would be wasted if the entire matrix were 

inverted or if an iterative technique were used because each variable is coupled only to 
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its nearest neighbors.  Therefore, a special case of the Gauss elimination method is used 

to solve the tri-diagonal matrix in one dimension. 

When only one dimension is considered at a time, each line can be solved 

directly by the Tri-Diagonal Matrix Algorithm (TDMA), which is also known as the 

Thomas Algorithm [30].  This algorithm sweeps the entire computational domain one 

dimension at a time, and multiple sweeps can be utilized to solve the entire field.  

Variables in other dimensions that influence a given node are treated as known constants 

during the solving algorithm, but each variable is updated when the lines it belongs to 

are solved.   

For the three dimensional problem, the line-by-line algorithm solves one line at a 

time and sweeps the entire cross-sectional domain for a given slice of the third 

dimension.  Once the entire slice has been solved, the next slice in the third dimension 

will be solved.  In this research work, the computational domain is swept by using three 

sweeping patterns:   

• North/south and bottom /top sweep while solving TDMA in x-direction 

• West/east and top/bottom sweep while solving TDMA in y-direction 

• South/north and west/east sweep while solving TDMA in z-direction 

Every time a sweep in the x-direction is encountered, the sweeping direction is 

from flow inlet to outlet.  Sweeping in the opposite direction would not allow 

information to propagate as easily because the sweep direction would oppose fluid 

motion.  The TDMA algorithm is used to solve all variables in all directions except for 

temperature in the z-direction.  The reason for this difference is because the z-direction 
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is the coordinate direction of the thermally repeating boundary condition, and this 

requires the application of a Cyclic Tri-Diagonal Matrix Algorithm (CTDMA). 

4.4.3 Line-by-line CTDMA 

The solver for the discretized energy equation in the z-direction must differ from 

the standard line-by-line solver because of the thermally repeated boundary condition in 

the z-direction only.  In this case, an additional algorithm must be used to solve the 

temperature field in the z-direction.  Kim et al. [27] illustrate the need for thermally 

repeated boundary conditions, and Anand et al. [31] present a Cyclic Tri-Diagonal 

Matrix Algorithm (CTDMA) that solves the discretized equations in the repeating 

direction.  The CTDMA solver is similar to the TDMA solver discussed previously, but 

the z = 0 and z = W nodes must have the same value, and the heat flux entering control 

volumes along the face of the z = 0 boundary must equal the heat flux leaving the control 

volumes along the z = W boundary. 

An example of the repeating boundary condition in the z-direction is given in 

Figure 4.5 below.  Creation of discretization equations in this dimension results in the 

matrix shown in Eq. (4.30).   

 

 

Figure 4.5.   Repeating calculation domain in the z-direction. 

Calculation Domain 

Tz,-1       Tz,0  Tz, 1 Tz, 2     Tz,3       Tz,4        Tz,5 Tz,1 Tz,2           Tz,3 
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Notice from Eq. (4.30) that each node of Figure 4.5 depends only upon its 

neighboring nodes.  When the thermally repeating boundary conditions are applied, the 

node to the west of node 1 is equivalent to the western node of node 6 since node 1 is 

equal to node 6 by Eq. (3.6).  Clearly, the application of the thermally repeated boundary 

condition forces the coefficient matrix to be non-tri-diagonal.  The algorithm given by 

Anand et al. [31] is used in this study because it is capable of solving a matrix that 

exhibits near tri-diagonal behavior. 

4.4.4 Convergence 

Step 6 of the SIMPLE algorithm states that the entire algorithm must be repeated until 

convergence is achieved.  Often times, convergence is declared by one of three methods:  

comparison to the true solution, monitoring the residual of each discretization equation, 

or performing complete mass and energy balances about the entire computational 

domain.   

 In this study, convergence is declared by monitoring velocity, pressure, and 

temperature residuals.  Residual equations, iR , and convergence criteria, εi , are defined 

in Eqs. (4.31) through (4.33) [32].  The ai values represent the coefficients for the 
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variable that is solved for in the discretized equations.  Similar residuals were used for v-

velocity, w-velocity. 
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Different values of εi were used throughout the code development, but the 

convergence criteria that were used to declare convergence for each of the geometric 

cases shown in Figure 3.3 are given in Table 4.2 below. 

 
Table 4.2.  Convergence criteria used for non-validation results 

Convergence Term Value 
εu 10-7 

εv 10-7 

εw 10-7 

εT 5 x 10-8 

εp 10-5 
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5. VALIDATION AND GRID INDEPENDENCE 
 

The main objective of this research is to develop a numerical simulation for 

predicting flow and heat transfer in a three-dimensional microchannel.  Without a 

method for validating the results and ensuring that they are accurate, there is no way to 

prove that the results of the numerical simulation are giving realistic and meaningful 

results.  The code is first validated for a different geometry than that shown in Figure 

3.3.  After the initial validation, a grid independence study was performed for the case 

shown in Figure 3.3 with an aspect ratio of 0.10 and Reynolds number of 400. 

5.1 Initial Validation 
 

A three-dimensional velocity, pressure, and temperature solver utilizing the 

SIMPLE algorithm [6] was developed as a starting point for this problem.  The initial 

code solved only the fluid region (not a conjugate problem) with standard velocity 

boundary conditions.  Thermal boundary conditions varied among the studies from 

constant temperature to constant heat flux.   

5.1.1 Symmetry 

The code was initially verified by solving the flow, pressure, and temperature 

fields and using strict convergence criteria for velocities, pressure, and temperature for a 

10 x 10 x 10 grid size for Re=100.  The geometry considered was a square channel of 

dimensions 20mm x 20mm x 20mm, and constant temperature of 100ºC was used as the 

thermal boundary conditions on all sides.  Properties for air at 25ºC were used.  
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Throughout this initial validation, convergence criteria given in Table 5.1 were used.  

Temperature, velocity, and pressure values were symmetric about the y- and z- 

midplanes to 12 or more significant figures, which verified that erroneous imbalances 

were nonexistent.   

 
Table 5.1.  Convergence criteria used to verify symmetry of numerical results across y- and z-cross 
sections 

Convergence Term Value 
εu 10-12 
εv 10-12 
εw 10-12 

εp 10-10 

εT 10-14 
 

 
Table 5.2 shows a cross section of temperature data from a z-cross section and a 

y-cross section.  The fifteen significant figures are not important to provide meaningful 

temperature results, but symmetry in temperature data is an important validation method 

to use because the temperature equations use the converged velocity field.  If there is an 

imbalance in the velocity field, the resulting imbalance will appear in the temperature 

distribution throughout a cross section. 

 
Table 5.2.  Symmetric temperature distributions in z- and y-cross sections 

Z-cross section temperatures (ºC) Y-cross section temperatures (ºC) 
100.000000000000 100.000000000000 
69.3930708620383 69.3930708620267 
39.4353053302964 39.4353053302788 
30.2365790633610 30.2365790633610 
28.1235160900451 28.1235160900577 
27.7611008603448 27.7611008603622 
27.7611008603429 27.7611008603622 
28.1235160900348 28.1235160900577 
30.2365790633288 30.2365790633611 
39.4353053302391 39.4353053302806 
69.3930708620011 69.3930708620281 
100.000000000000 100.000000000000 
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5.1.2 Forced Convective Flow Through a Rectangular Channel 

Next, a channel was created that was long enough to establish hydrodynamically 

and thermally fully developed flow.  The channel geometry was 3.0mm x 300μm x 

100μm, and an evenly distributed grid of 100 x 30 x 10 was used.  Later studies showed 

that this grid could be coarsened considerably in the x and y directions without any 

considerable change in friction factor or Nusselt number results.  Air is used as the fluid 

in the channel because analytical data was available for hydrodynamic and thermal entry 

lengths for air and not for water [26].   

For a Reynolds number of 100, the hydrodynamic and thermal entry lengths in 

the 300μm x 100μm channel are 0.735mm and 1.785mm, respectively.  Thus, the 

selection of a channel of length 3.0mm is more than adequate to ensure that the flow is 

fully developed before the channel exit. 

A cross section of the velocities near the channel exit was analyzed and 

compared to hydrodynamically developed flow conditions reported by Shah and London 

[26].  Figure 5.1 and Figure 5.2 compare the velocity profiles in the y- and z-directions 

for the present computation and the analytical approximation.  As shown in the figures, 

the numerical results approximate the analytical approximations quite well. 

Following this step, results for the developing entry region were obtained.  

Values of friction factor and Nusselt number were compared to analytical 

approximations.  The local friction factor, f, apparent friction factor, fapp, and Nusselt 

number, Nu, are defined by Eqs. (5.1) through (5.3). 
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Figure 5.1.   Comparison of present computational results with the analytical solution of Shah and London 
[26]; x-direction velocity (u) profile along y-cross section. 
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Figure 5.2.   Comparison of present computational results with the analytical solution of Shah and London 
[26]; x-direction velocity (u) profile along z-cross section. 
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 Figure 5.3 compares the numerically determined friction coefficient and 

apparent friction coefficient with the analytically determined fully-developed friction 

coefficient.  In the fully developed region, the friction coefficients match within 2.3%. 
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Figure 5.3.   Validation of friction factor results as a function of channel length. 

[26] 



52 

 

 
Figure 5.4 compares the Nusselt number obtained as a function of channel length 

from the present numerical code with the analytical thermally developed Nusselt number 

[26].  The Nusselt numbers match within 0.4% the fully developed region. 
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Figure 5.4.   Validation of Nusselt number distribution in developing and fully developed regions. 

 
 

As shown in the comparison and validation figures above, the numerical results 

favorably approximate well-known theory in the fully developed region.  This provides a 

firm validation and lays the foundation for solving the cases illustrated in Figure 3.3.   

5.2 Second Validation 

The code was further developed from the geometries used to obtain the initial 

validations, and the solid regions were added to the computational domain.  In addition, 

the energy equation solvers were modified to allow for constant heat flux at y = 0 

(insulated) and y = H, and the CTDMA line-by-line solver was implemented at z = 0 and 

[26] 
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z = W for the thermally repeated boundary condition.  The fluid properties were changed 

to those of water and the thermal conductivity of silicon was used for the solid thermal 

conductivity. 

5.2.1 Thermally Repeated Boundary Condition 

The thermally repeated boundary condition was validated by considering the 

geometry shown in Figure 5.5.  Thermally repeated boundary conditions were 

implemented at z = 0 and z = W, and three different cases as shown in Figure 5.6 were 

solved.  The three cases are equivalent to moving the calculation domain about the z-axis 

of a repeating geometry.  If the thermally repeated boundary condition is correctly 

implemented, then the temperature distributions along the z-direction among the three 

cases should be shifted but otherwise identical to one another. 

 

 

Figure 5.5.   Test geometry for validation of thermally repeated boundary condition. 
 

y 

180μm 

z 

180μm 
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Figure 5.6.   Validation cases for thermally repeated boundary condition. 

 
 

The results of the thermally repeated boundary condition validation are shown in 

Figure 5.7 below.  As shown, the values of temperature at each nodal point appear 

identical among the three cases except they are shifted, as expected.  Also, one can 

clearly determine the areas of solid and fluid from the temperature distribution. 
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Figure 5.7.   Results of thermally repeated boundary condition validation. 
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Figure 5.8 shows the same results except the data have been translated and 

superimposed over case 1 data.  The only discrepancies occur along the rightmost side at 

the solid/fluid interface.  Consider cases 2 and 3 in Figure 5.6.  If cases 2 and 3 are 

shifted to reflect case 1, there will be an intermediate grid point present because of the 

zero-thickness control volumes that are present at the z = 0 and z = W surfaces.  The 

curves shown in Figure 5.8 differ only because of the addition of an intermediate grid 

point.  All other points in cases 2 and 3 match case 1 closely. 
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Figure 5.8.   Adjusted results of thermally repeated boundary condition validation. 

 

5.2.2 Energy Balance 

Another validation was used which monitored the overall energy balance for the 

computational domain.  If the energy gained by the fluid is equal to the amount of 
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energy input into the domain, then there is additional evidence that the flow and energy 

equation solvers within the numerical code are correct. 

The mean temperature of the fluid at the outlet in the numerical study is 

calculated by Eq. (5.5), and this value is compared to the mean outlet temperature from 

the energy balance in Eq. (3.8).  For the case of 0.317 aspect ratio shown in Figure 3.3 

and Reynolds number of 250, the mean fluid temperatures for the numerical 

computations and the energy balance are given in Table 5.3 below.  As shown in the 

table, the mean outlet temperature values match quite well.  Differences could result 

from a velocity field not being held to very strict convergence criteria and the fact that 

viscous dissipation is being considered for the numerical computation.   

 
Table 5.3.  Comparison of outlet mean temperatures between computation methods 

Tm,outlet, present numerical 
computation (ºC), Eq. (5.5) 

Tm,outlet, energy balance 
(ºC), Eq. (3.8) 

Percent  
Difference 

28.07 28.01 0.21 % 
 

5.3 Grid Independence Study 

After the various validation tests were performed on the code and acceptable 

results were produced, the code was ready to run the various cases shown in Figure 3.3.  

Since exact solutions were not known for each of these cases, it was important to 

perform a grid independence study for the highest Reynolds number case in the worst 

geometry scenario.  The aspect ratio of 0.10 was chosen to be the worst case geometry 

because it has the largest cross sectional flow area and because of large velocity 

gradients in the narrow z-direction of the channel.  The values of two variables were 

monitored to declare grid independence.  The fappRe value as defined in Eq. (5.2) was 
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used to monitor behavior of the velocity and pressure fields for the entire channel length, 

and the outlet thermal resistance value, Rt,outlet, as defined by Eq. (5.6) was used to 

monitor the behavior of the temperature field. 

 
q

TT
R inletfoutletw

outlett ′′
−

= ,,
,    (5.6) 

 The thermal resistance is an indicator of conduction and convection.  For a case 

of constant thermal conductivity in the substrate and variable flow rate, a low thermal 

resistance value indicates a high convection coefficient between the substrate and the 

fluid.  Conversely, high thermal resistance indicates relatively weak convective 

transport.  The thermal resistance is also an indicator of maximum substrate temperature 

since the wall temperature at y = H is used at the channel outlet, which is the location of 

the maximum substrate temperature. 

For a case of constant flow rate and variable thermal conductivity in the 

substrate, a low thermal resistance would indicate a high substrate thermal conductivity 

since the temperature gradients would be small, implying a relative insensitivity to fluid 

temperatures.  A high value of thermal resistance would indicate that the substrate acts 

as an insulator (i.e., low k) since there would be a large difference between inlet fluid 

temperature and substrate temperature at the channel exit. 

 Seven different grid sizes were used in the grid independence study, and a non-

uniform grid size was used.  Since the solid region has zero velocity and a very high 

thermal conductivity as compared to the fluid, control volumes in the solid region were 

larger than those in the fluid region.  The results of the grid independence study are 
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shown in Table 5.4 below.  According to the results, the percent differences between 

cases 5, 6, and 7 are very low.  Therefore, case 5 is declared as grid independent.   

 
Table 5.4.  Tabulated results of the grid independence study 

Case X Y Z Number 
of Nodes % diff fappRe % diff Rt,outlet % diff 

1 100 44 8 35200  80.397  7.164x10-2  
2 105 54 9 51030 44.97 82.504 2.62 7.191x10-2 0.368 
3 110 60 11 72600 42.27 83.791 1.56 7.203x10-2 0.175 
4 115 70 13 104650 44.15 84.674 1.05 7.218x10-2 0.197 
5 120 84 15 151200 44.48 85.702 1.21 7.232x10-2 0.201 
6 123 90 16 177120 17.14 86.020 0.371 7.237x10-2 0.0622 
7 125 105 17 223125 25.97 86.051 0.0360 7.231x10-2 0.0801 

 

Values of Δx, Δy, and Δz for case 5 were used to solve the other geometries of 

different aspect ratio shown in Figure 3.3.  The values of ∆x, ∆y, and ∆z are given in 

Table 5.5.  The first 100 nodes within the first 4mm use the ∆x value shown in Table 5.5, 

and after the first 4mm, ∆x increases at a rate of 16% per node until the channel exit is 

encountered.  Smaller control volumes are used in the first 4mm so that all entry length 

effects are simulated correctly.  The values of velocity, pressure gradient, and 

temperature gradient are constant after the entry region, so a coarser grid is used.  

Furthermore, velocities are zero within the solid region and temperature gradients are 

small compared to those in the fluid region so a coarser grid is also used in the solid 

region.  Each solid control volume bordering the fluid region was given the same size as 

those in the fluid region so that accurate temperature and velocity gradients would be 

obtained.  In case 5, 10 solid control volumes were used in the y-direction and 5 solid 

control volumes were used in the z-direction. 

 
 



59 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.5.  Control volume lengths used in case 5 of the grid independence study 
Solid Region Fluid Region 

∆x 40 ∆x 40 
∆ynorth / ∆ysouth 59.10 / 38.49 ∆y 6.435 

∆z 14.29 ∆z 4.762 
All control volume dimensions are in μm 
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6. RESULTS AND DISCUSSION 
 

The basic equations presented in Section 3 and the numerical procedure 

presented in Section 4 were used to create a FORTRAN computer code that solves for u, 

v, and w velocity fields, pressure field, and temperature field in three dimensions.  The 

code was used to solve these fields for each of the geometries shown in Figure 3.3 as 

Reynolds number was varied between 50 and 400.  Other values such as friction 

coefficient, mean temperature, and thermal resistance were calculated once the 

converged velocity, pressure, and temperature fields were obtained. 

6.1 Comparison with Experimental Data 

As stated in Section 1.2, one of the objectives of this work is to compare the 

apparent friction coefficient and thermal resistance values obtained from the 

computational results with available experimental data [3].  The geometry used to gather 

experimental data is shown in Figure 3.2, and the numerical computations used this same 

geometry.  Equations for apparent friction coefficient and outlet thermal resistance are 

given by Eqs. (5.2) and (5.6), respectively.  The equation for inlet thermal resistance is 

given by Eq. (6.1), where Tw,inlet is defined as the substrate temperature at y = H at the 

channel inlet.   

 
q

TT
R inletfinletw

inlett ′′
−

= ,,
,  (6.1) 

As the outlet thermal resistance is an indicator of thermal conductivity and 

convection coefficient, the inlet thermal resistance gives the same values on a different 
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scale.  For substrates with high thermal conductivity, Tw,inlet and Tw,outlet will have similar 

values, and the inlet and outlet thermal resistances will be similar.  Inlet and outlet 

thermal resistances will be dissimilar for substrates with low thermal conductivity.  

Local convection coefficients are larger at the channel inlet than at the channel outlet 

because of entry effects, and the inlet thermal resistance conveys information about the 

convection coefficient.  When more thermal energy is transferred to the fluid near the 

channel entrance, the substrate temperature near the channel entrance will decrease and 

the thermal resistance will be lower.  If less thermal energy is transferred to or from the 

fluid near the channel entrance, the convection coefficient will be lower, which will 

increase the substrate temperature near the channel entrance and, consequently, the 

thermal resistance will be higher. 

The comparison of apparent friction coefficient values between the present 

numerical study and the experimental work of Kawano et al. [3] is shown in Figure 6.1.  

The comparison shows good agreement between the experimental results and the present 

numerical computation when experimental uncertainty is considered.  The uncertainty 

range of these experimental data varies between 12% and 15%.  In the range of 

Reynolds number studied, the variation of apparent friction coefficient is linear.  This 

result differs from the fully developed friction factor results which are often used as a 

basis of comparison for laminar flows in microchannels.  For the geometry considered, 

the fully developed flow friction coefficient is 69.2 [26], which does not match the data 

for Reynolds number above 250.   
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The linear increase of apparent friction coefficient with increasing Reynolds 

number is explained by the increasing hydrodynamic entry length.  Throughout the entry 

region, the flow is not developed and velocity gradients are large, which lead to 

increased pressure drop.  When the entry region increases in length with increasing 

Reynolds number, a higher pressure drop will be evident within the channel.  The local 

friction coefficient values are equal to the fully developed flow friction coefficient 

values for all Reynolds numbers in the laminar regime.  The present numerical results 

are nearly identical to the numerical results of [21] and [33], for the same geometry and 

boundary conditions. 
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Figure 6.1.   Comparison of present computational results of apparent friction coefficient with the 
experimental data of Kawano et al. [3], α=0.317. 
 

Many experimental investigations of microchannels cite early transition to 

turbulence because of increasing friction coefficient with increasing Reynolds number.  

For the case of Reynolds number considered, the entrance length can be on the order of 

[3] 



63 

 

10-20% of the channel length [26].  For higher Reynolds numbers within the laminar 

regime, the entrance region may extend beyond the channel length.  The extension of the 

entrance region would bring about much higher friction coefficients than those predicted 

by fully-developed laminar flow correlations. 

Inlet and outlet convective thermal resistance are shown in Figure 6.2.  The 

numerical and experimental data for the outlet convective thermal resistance match quite 

well when uncertainties are considered.  The inlet convective thermal resistance values 

differ for low Reynolds number flows, and the numerical model under-predicts the 

thermal resistances obtained experimentally.  Qu et al. [33] suggest that this difference 

could be a result of heat loss to the upstream plenum because substrate temperatures are 

higher for low Reynolds number flows.  In addition to the friction coefficient data, the 

numerically obtained results for convective thermal resistance in this study match those 

obtained by [21] and [33] very closely.  The thermal resistance values obtained in the 

present study slightly over-predict those given by Fedorov et al. [21], whose results tend 

to fall in the ranges of the lower error bars shown in Figure 6.2a. 
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Figure 6.2.   Comparison of present computational results of convective thermal resistance with the 
experimental data of Kawano et al. [3], α=0.317 at (a) the channel exit and (b) the channel inlet. 
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6.2 Numerical Results for All Geometries 

As previously discussed, the velocity profile at the entrance is uniform, and it 

takes a finite length before the velocity profile becomes fully developed (not changing 

with length).  Figure 6.3 shows the developing velocity profiles for both the y- and z- 

cross sections at the channel midlines for a Reynolds number of 400 and aspect ratio of 

0.10.  The velocity profile appears flat in the y-direction for fully developed flow 

because the channel is ten times longer in the y-direction than in the z-direction.  Thus, 

the velocity profile is largely influenced by the narrow z-direction.  From Figure 6.3, one 

can see that the flow is hydrodynamically fully developed at approximately 11% of the 

channel length, or 1.1mm.  The solid region is shown in these figures to emphasize the 

fact that the solid region was included in the computational domain and to provide the 

reader with a sense of scale.   

As the apparent friction coefficient was compared with experimental data for an 

aspect ratio of 0.317 in Figure 6.1, the apparent friction coefficients for all aspect ratios 

considered in this study are given in Figure 6.4.  The friction coefficients for other aspect 

ratios have the same general trend as the case for 0.317 aspect ratio.  In Figure 6.4a, the 

slope of the fappRe vs. Re lines are nearly identical for each aspect ratio, and they only 

differ by translating to a higher fappRe value as the aspect ratio decreases.  This makes 

intuitive sense because a fluid in a channel of smaller aspect ratio will have higher 

velocity gradients than in channels with larger aspect ratios.  From Figure 6.4b, there is a 

smaller difference among fappRe values for all Reynolds numbers considered when the 

aspect ratio becomes smaller. 
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Figure 6.3.   Developing velocity profiles for Re=400 for α=0.317 for (a) y- and (b) z- cross sections. 
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Figure 6.4.   Apparent friction factor (a) versus Reynolds number for various aspect ratios (b) versus 
aspect ratio for various Reynolds numbers. 
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 As cited in Section 1.1, a motivation for this work is to serve as a predictor for 

flows in microchannels so that external systems may be designed for optimum 

performance.  In most microchannel experiments, a flow loop must be constructed to 

provide a constant temperature fluid to the microchannel device, which requires 

knowledge of the pressure drop across the microchannel array.  Although the 

microchannels are not long compared to macro-sized channels, the small hydraulic 

diameters cause short microchannels to have very large pressure drops for laminar flows. 

Using the data from the pressure fields, the pressure drop across a single channel 

was determined for each flow rate and geometry.  The flow rate per channel was 

multiplied by the number of channels in the array (110), and the system characteristic 

curves shown in Figure 6.5 were produced.  These characteristic curves could be used 

for selecting an appropriate pump for flows in the microchannel array. 

For a given flowrate, the 0.10 aspect ratio channel has a lower pressure drop 

compared to all other channels.  This is an important result because the 0.10 aspect ratio 

channel has the largest apparent friction coefficient but the lowest pressure drop for a 

given flow rate even though all channels have the same hydraulic diameter (Figure 6.4a 

and Figure 6.5).  The pressure drop information could also be computed from the fappRe 

data given in Figure 6.4 by using the relationship given in Eq. (5.2). 

Figure 6.6 shows values for convective thermal resistance at both the channel 

outlet and inlet for all Reynolds numbers and aspect ratios considered.  This figure 

serves as a useful tool for understanding the substrate temperatures as a function of 

channel geometry and water flow rate.  At low flow rates, substrate temperatures can 
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become very high as evidenced by the high values of thermal resistance at low Reynolds 

number and high aspect ratios.  In these results, thermal values for Re = 50 are not 

provided for aspect ratios 1.0, 0.75 and 0.50 because energy balance calculations 

indicated that the fluid would reach boiling temperatures.  Boiling of liquid flows in 

microchannels has been the topic of many investigations, but it is not considered in the 

present study. 

For high Reynolds numbers, the substrate temperatures become very close to the 

liquid inlet temperatures.  This allows us to extrapolate that the microchannels can 

dissipate heat loads larger than 90 W/cm2 for Reynolds number beyond 400 before 

substrate temperatures reach very high values. 
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Figure 6.5.   System characteristic curves for the entire array of 110 parallel microchannels. 
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Figure 6.6.   Comparison of convective thermal resistance values for all cases of aspect ratio vs. Reynolds 
number at (a) the channel exit and (b) the channel inlet. 
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 The mean fluid temperature is shown in Figure 6.7 as a function of channel 

length and Reynolds number for the aspect ratio of 0.50.  With the exception of the short 

thermal entry length, the flow is thermally fully developed for over 95% of the channel 

length for all Reynolds numbers considered.  Downstream of the entry length, the mean 

fluid temperature is a linear function of x, and values of the mean fluid temperature at 

the channel exit are consistent with those obtained by a system energy balance as given 

by Eq. (3.8).  In this study, the mean fluid temperature distribution for all aspect ratios 

can be approximated as linear between the inlet and the outlet temperature as predicted 

by Eq. (3.8). 
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Figure 6.7.   Mean fluid temperature distribution along channel length for Reynolds number ranging from 
80 to 400 and α=0.50.   
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 Figure 6.8 shows the maximum silicon substrate temperatures for each case of 

Reynolds number and aspect ratio.  This is an important consideration because the 

maximum substrate temperature occurs at the location of the heat source, which is the 

location of the integrated circuitry or a heater.  Knowledge of the maximum temperature 

allows the system designer to avoid high-temperature operating conditions and to 

calculate thermal stresses.  For small aspect ratios, the substrate temperature does not 

vary greatly as a function of Reynolds number.  Larger aspect ratio channels have high 

maximum substrate temperatures for low Reynolds numbers.  Increasing Reynolds 

number beyond 200 does not have a large effect on the maximum substrate temperature 

for any particular case of aspect ratio. 

 

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2

Aspect Ratio

M
ax

im
um

 S
ub

st
ra

te
 T

em
pe

ra
tu

re
 (º

C
) Re 50

Re 80

Re 150

Re 200

Re 250

Re 400

Re 300

Re 100

 
Figure 6.8.   Maximum silicon substrate temperature as a function of aspect ratio for Reynolds number 
ranging from 50 to 400. 
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 Temperature contour plots for slices within a 0.10 aspect ratio channel are given 

in Figure 6.9 and Figure 6.10 for a silicon substrate and a copper substrate, respectively.  

The contour plots are the only location that thermal results are displayed for a copper 

substrate.  Copper was considered because of its very high thermal conductivity and as a 

tool to illustrate the transfer of thermal energy within the solid.  Each of the slices 

through the fluid channel occurs at the location of the channel midplane. 

 The thermal boundary conditions implemented on the computational domain can 

be seen clearly for the Re = 100 case shown in Figure 6.9.  The y = 900μm boundary 

shows a temperature gradient that results from the constant heat flux boundary condition.  

The y = 0 boundary shows no temperature gradient, which is indicative of the thermally 

insulated boundary condition.  Fluid temperatures along the lower y-boundary of the 

channel (south wall) are lower than the substrate temperature.  This means that the 

thermal energy travels from the heat source to all sides of the fluid channel.  The 

temperature distributions show a large temperature gradient in the fluid along the lower 

y-boundary of the channel.  This means that a non-trivial amount of energy is transferred 

to the fluid along the lower y-wall.   

 The temperature distributions shown in Figure 6.10 indicate that there is better 

heat spreading as a result of the higher thermal conductivity.  The average substrate and 

fluid temperatures appear to be the same between the silicon and copper cases, but the 

temperature difference of the substrate between the outlet and the inlet is smaller for the 

copper case than for the silicon case.  The effect of this is that the inlet thermal 
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resistance is increased and the outlet thermal resistance is decreased for the copper 

substrate as compared to the silicon substrate.   

The temperature distribution of the liquid in the copper microchannel shows a 

lower temperature gradient in the y-direction than compared with the liquid in the silicon 

microchannel.  This is not a surprising result because the thermal energy spreads more 

widely in the copper substrate, and the solid region at the south end of the channel has 

attained a higher temperature by way of conduction.  The copper substrate allows for 

nearly identical temperature gradients of the fluid along the north and south walls, 

implying that the amount of heat transferred at the top and bottom walls are comparable 

to one another.  Also, because of the better heat spreading in the copper, the maximum 

substrate temperature is reduced. 

 The last objective of the current study is to analyze the effect of viscous heating.  

Since viscous heating terms include velocity gradients, high Reynolds number flows in 

geometries that cause large velocity gradients will more likely exhibit viscous heating 

than other cases.  These factors became the impetus for choosing Re = 400, α = 0.10, and 

α = 1.0 for the viscous heating study.  The mean fluid temperature as a function of 

channel length was calculated for each case.  Figure 6.11 compares the numerical results 

for the cases of viscous heating and non-viscous heating for the α = 0.10 case.  In this 

case, the mean fluid temperatures differ by only 1.76% at the channel exit when viewed 

relative to the inlet temperature. 
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Figure 6.9.   Temperature distributions along selected slices within channel of 0.10 aspect ratio, silicon substrate. 
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Figure 6.10. Temperature distributions along selected slices within channel of 0.10 aspect ratio, copper substrate. 
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Figure 6.11. Comparison of mean fluid temperature distributions with and without viscous heating 
considerations for Re=400 and α=0.10. 

 

Figure 6.12 shows the mean temperature as a function of channel length in a 

channel of α = 1.0 for the viscous heating and non-viscous heating cases.  The mean 

fluid temperatures of the viscous heating and non-viscous heating cases differed by 

0.98% when temperature difference between inlet and outlet was considered for each 

case.  From these results, it is evident that viscous heating is not an important 

consideration for channels considered in this study, but the effect of viscous heating may 

need to be considered for much longer channels or channels of very small hydraulic 

diameter or small aspect ratio.  Clearly, the channel with a higher aspect ratio exhibited a 

higher temperature rise than the channel of large aspect ratio.   
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Figure 6.12. Comparison of mean fluid temperature distributions with and without viscous heating 
considerations for Re=400 and α=1.0. 
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7. SUMMARY 

 A numerical study was executed which simulated three dimensional fluid flow 

and heat transfer in a repeating section of a microchannel array.  The conjugate nature of 

the heat transfer problem added complexity, and a thermally repeated boundary 

condition was implemented to accurately model the repeating nature of the geometry.  

The three dimensional Navier-Stokes and continuity equations were solved using the 

SIMPLE algorithm, and once a converged velocity field was obtained, the three-

dimensional convection-diffusion energy equations were simultaneously solved in both 

the solid and fluid regions.  Rectangular microchannels with a hydraulic diameter of 

86.58μm were studied as aspect ratios varied from 0.10 to 1.0 and Reynolds numbers 

ranged from 50 to 400.  The following conclusions were made: 

1. The continuum hypothesis holds for liquid flows in the channel sizes 

considered, and Navier-Stokes equations with no-slip boundary conditions 

can be applied to model the cases considered. 

2. In this study, the linearly increasing friction coefficient that was observed 

between Reynolds numbers 50 and 400 is a result of increased hydraulic 

entrance length. 

3. This model is a valid model for the 0.317 aspect ratio case because friction 

factor values and convective thermal resistance values closely matched 

experimental data [3].  As the convective nature of the problem is dependent 
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upon velocity fields, the closeness of the thermal resistance values to the 

experimental data lends credibility to the numerical model. 

4. It is assumed that thermohydraulic results for other aspect ratios are 

legitimate because hydraulic diameter was not changed between the case 

validated against experimental data and because the continuum assumption 

holds. 

5. Viscous heating need not be considered for the cases of geometry and 

Reynolds number considered in this study.  Only a channel with smaller 

cross-sectional dimensions, higher Reynolds number flows, or much longer 

length would require consideration of viscous heating. 

6. Increasing the thermal conductivity of the substrate allows for increased heat 

spreading, reduces the maximum substrate temperature, and equalizes the 

amount of heat transferred along the northern and southern channel walls. 

7. Mean fluid temperature along the channel length may be approximated from 

a standard energy balance for a single repeating channel geometry. 

8. For the same hydraulic diameter, inlet and outlet thermal resistances and 

friction coefficient values change very little for aspect ratios larger than 0.50.  

Values of inlet and outlet thermal resistance decrease for aspect ratios 

approaching 0.10.  Friction coefficient values monotonically increase for 

aspect ratios approaching 0.10. 

Recommendations for future work in this area include modeling turbulent 

behavior; incorporating variable fluid properties with temperature and simulating the 
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results using a supercomputer; implementing slip boundary conditions for modeling gas 

flows; modeling surface roughness; incorporating fluid/surface wetting functions into the 

momentum equations; and solving transient problems. 
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