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ABSTRACT 

 
Molecular Studies of Enhanced Apical Dominance of Phytochrome B Mutant Sorghum.  

(December 2006) 

Tesfamichael Hintsa Kebrom,   B.Sc., University of Asmara; 

M.Phil., University of Reading 

Co-Chairs of Advisory Committee: Dr. S. Finlayson  
                                                      Dr. J. Mullet 

 

Light is one of the environmental signals that regulate axillary shoot development.  

However, little is known about molecular and physiological mechanisms regulating the 

development of the axillary shoot in response to light signals.  Molecular events 

associated with the enhanced apical dominance of phytochrome B mutant sorghum 

(Sorghum bicolor) were analyzed to reveal processes mediating axillary shoot 

development in response to light.  The enhanced apical dominance of phyB-1 mutant 

sorghum is due to inhibition of bud outgrowth and is accompanied by upregulation of 

the dormancy-associated gene (SbDRM1) in the buds.  Increased expression of the 

Teosinte Branched1 (SbTB1) gene (encoding a putative transcription factor that 

represses bud outgrowth) suggests that the inhibition of bud outgrowth in phyB-1 

sorghum is due to the absence of active phyB to repress SbTB1.  The results were 

confirmed by growing wild type seedlings at high plant density or with supplemental far-

red (FR) light that induces enhanced apical dominance.  However, the SbTB1 gene is not 

involved in the inhibition of bud outgrowth induced by defoliation in wild type 
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seedlings.  The results indicate variations in molecular mechanisms among different 

signals inhibiting branching.  Increased expression of SbMAX2 (which encodes an F-box 

protein that represses bud outgrowth) in buds repressed by light and defoliation suggests 

common mechanisms at the downstream end of pathways inhibiting branching. 

 

The expression levels of several cell cycle-related genes including SbPCNA, SbHis4, 

SbCycD2, SbCycB and SbCDKB were down-regulated in the repressed buds of FR-

treated and defoliated seedlings indicating the suspension of cell division in those buds.  

However, these cell cycle-related genes were continuously expressed in the repressed 

buds of phyB-1, suggesting that inhibition of bud outgrowth in phyB-1 is not associated 

with down-regulation of cell cycle-related gene expression.  The down-regulation of cell 

cycle-related genes in the buds of FR-treated wild type seedlings indicates that other 

sensors, in addition to phyB, regulate bud outgrowth in response to FR enrichment.  The 

approaches used and results achieved will provide direction for future research on this 

important topic. 
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CHAPTER I  

INTRODUCTION 

 

Yield improvement of major cereal crops in the past was mainly achieved through 

indirect modification of plant architecture to maximize nitrogen use efficiency.  Dwarf 

wheat and other crops with reduced stature allow the use of higher rates of nitrogen 

fertilization with little problem of lodging.  Further improvement in yield is expected to 

be achieved by developing varieties with plant architecture that maximizes efficient 

utilization of other resources such as light and space, and by modifying partitioning of 

dry matter to reduce the allocation to non-productive tillers and branches.  This goal may 

be achieved in part through a better understanding of mechanisms of axillary shoot 

development in plants. 

 

Understanding the mechanisms regulating the development of axillary shoots will 

contribute to the improvement of other aspects of plant production such as regrowth of 

forage crops, ratooning of sugar cane and rice, propagation of plants by vegetative 

organs such as tubers, stems and roots, storage of tuber crops such as potato where 

sprouting during storage is a problem, and control of vegetatively propagated perennial 

weeds.  Furthermore, in the future, there could be a need for a shift from annual to 

                                                                                                                                           
This dissertation follows the style and format of Plant Physiology. 
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perennial crop production systems due to concerns about the use of agrochemicals and 

their effects on the environment, soil erosion, as well as the need to reduce the cost of 

annual sowing and cultivation (Moffat, 1996).  Development of perennial cereal crops 

will mainly depend on creating cultivars with adventitious or axillary buds that can 

initiate dormancy during unfavorable periods and regrow during favorable periods from 

dormant buds.  Therefore, a complete understanding of axillary shoot development will 

contribute to the modification of plant architecture to improve crop yield and many other 

aspects of crop production at present and in future agricultural systems. 

 

Axillary shoot development involves initiation of meristems in the axil of leaves to form 

buds and the subsequent outgrowth of these buds (Shimizu and Mori, 2001).  In species 

that do not normally produce shoot branches, or in which branching is limited, removal 

of the apex of the main shoot induces branching.  The phenomenon of inhibition of 

branching by the shoot apex in those species is known as apical dominance or correlative 

inhibition or paradormancy (reviewed in Cline, 1997).  In most species, application of 

the plant hormone auxin to the stump soon after decapitation inhibits branching 

indicating apical dominance is due to the inhibition of bud outgrowth by auxin 

synthesized in the shoot apex (Thimann and Skoog, 1933; Cline, 1996).  The mechanism 

of action of auxin in apical dominance was first suggested to be due to the direct 

inhibition of bud outgrowth by apically derived auxin reaching the buds (Skoog and 

Thimann, 1934).  Since it was later found that apically derived auxin does not enter the 

buds to inhibit bud outgrowth (Hall and Hillman, 1975; Morris, 1977), the mechanism of 
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action of auxin in apical dominance has been suggested to be through the regulation of 

other plant growth promoters or inhibitors such as cytokinins (CKs) or abscisic acid 

(ABA) (Stafstrom, 2000).     

 

It is well documented that the level of ABA in dormant buds is reduced after 

decapitation (Knox and Wareing, 1984; Gocal et al., 1991).  Application of auxin to the 

apical end of excised stem sections of ABA-insensitive mutants of Arabidopsis 

(Arabidopsis thaliana) inhibited bud outgrowth, suggesting that ABA may not be a 

second messenger for the inhibition of bud outgrowth by apically derived auxin 

(Chatfield et al., 2000).  However, there is evidence for CKs as second messengers for 

the inhibitory action of auxin on bud outgrowth.  Direct application of CK to buds 

promotes their outgrowth (Turnbull et al., 1997).  Decapitation significantly increases 

the level of CK in the xylem exudate and buds, whereas application of auxin to the 

decapitated shoot prevents an increase in the level of CK (Bangerth, 1994; Turnbull et 

al., 1997).  These results suggest direct or indirect involvement of CK in regulating shoot 

branching (Napoli et al., 1999).  Recent work indicated that decapitation of pea (Pisum 

sativum) upregulates the expression of a gene encoding adenosine phosphate-

isopentenyltransferase (IPT), and the level of CK, in the stem (Tanaka et al., 2006).  IPT 

is a key enzyme in the biosynthesis of CK.  Application of auxin to the stump down 

regulated the expression of the IPT gene and prevented an increase in the level of CK 

(Tanaka et al., 2006).  The authors concluded that apically derived auxin inhibits bud 

outgrowth by repressing the biosynthesis of CK in the stem.  However, other 
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experimental approaches such as branching mutant analysis and gene expression studies 

indicate that other signals are also involved in mediating the regulation of branching by 

auxin.   

 

Several mutants defective in branching have been identified in different species (Napoli 

et al., 1999; Ward and Leyser, 2004).  These mutants are defective either in forming 

axillary meristems or in controlling bud outgrowth.  Using these mutants, several genes 

specifically involved in the initiation of the axillary meristem or the outgrowth of 

axillary buds have been identified and cloned.  The LATERAL SUPPRESSOR genes of 

tomato (LS; Lycopersicon esculentum) and Arabidopsis (LAS) and the MONOCULM1 

gene of rice (MOC1; Oryza sativa), which is orthologous to LATERAL SUPPRESSOR, 

are among the key genes that are required for axillary meristem initiation (Schumacher 

et al., 1999; Greb et al., 2003; Li et al., 2003).  The MORE AXILLARY GROWTH (MAX) 

genes of Arabidopsis (Stirnberg et al., 2002; Sorefan et al., 2003; Booker et al., 2004; 

Booker et al., 2005), and the TEOSINTE BRANCHED1 (TB1) gene of maize (Doebley et 

al., 1997) are involved in regulating bud outgrowth.  The MAX and TB1 genes are 

inhibitors of bud outgrowth and loss of function in these genes leads to an increased 

branching phenotype. 

 

Four MAX genes has been identified (named MAX1 to MAX4) that are involved in the 

branching inhibiting MAX-related signal.  MAX1, MAX3 and MAX4 encode proteins 

likely involved in the synthesis of a novel carotenoid-derived hormone-like signal and 
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the product of MAX2 is likely involved in the perception of the signal (Booker et al., 

2005).  The putative MAX-related hormone has not been identified.  In addition to CK, 

the putative MAX-related hormone has been a candidate as a second messenger for the 

action of auxin in apical dominance (Leyser, 2005).  Recent reports suggest that the 

MAX pathway inhibits branching by controlling auxin transport (Lazar and Goodman, 

2006; Bennett et al., 2006).   

 

Ortholog of several of the MAX genes have been identified in other species including the 

RAMOSUS1 (RMS1) genes in pea (Foo et al., 2005), the DECREASED APICAL 

DOMINANCE1 (DAD1) gene in petunia (Petunia hybrida) (Snowden et al., 2005), and 

the DWARF3 (D3) and HIGH-TILLERING DWARF1 (HTD1) in rice (Ishikawa et al., 

2005; Zou et al., 2005).  The TB1 gene encodes a putative transcription factor that is 

involved in suppressing bud outgrowth (Doebley et al., 1997; Hubbard et al., 2002).  

TB1 ortholog have also been identified in rice (OsTB1) and several other monocots 

(Lukens and Doebley, 2001; Takeda et al., 2003).  These genes function in a similar 

manner suggesting the presence of conserved mechanisms regulating branching in 

diverse species.  However, there are also differences in the way some of these genes are 

regulated in different species.  For example, the RMS1 of pea and DAD1 of petunia are 

orthologous to MAX4 of Arabidopsis.  The expression of both RMS1 and DAD1 but not 

MAX4 is subject to feedback regulation (Foo et al., 2005; Snowden et al., 2005; 

Bainbridge et al., 2005). 
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To understand molecular mechanisms regulating axillary shoot development, gene 

expression changes associated with bud dormancy and outgrowth have been investigated 

(Stafstrom, 2000).  Genes upregulated in dormant buds and reduced by decapitation 

include the dormancy-associated genes, PsDRM1, PsDRM2, PsAD1, and PsAD2, 

identified in pea (Stafstrom et al., 1998b; Madoka and Mori, 2000).  However, the 

function of the products of these genes is not known.   

 

Since inhibition of bud outgrowth is due to suppression of cell division (Anderson et al., 

2001), patterns of expression of cell cycle-related genes have been investigated in order 

to identify how inhibitory signals may act on cell division to inhibit bud outgrowth.  The 

expression of several cell cycle-related genes including PCNA, Histones, CyclinB and 

CyclinD were found to be low in dormant buds and upregulated when buds are released 

from dormancy by decapitation (Devitt and Stafstrom, 1995; Shimizu and Mori, 1998).   

 

Although hormonal signals and molecular mechanisms regulating axillary shoot 

development in plants have been investigated for the past several decades, a complete 

understanding that enables modification of the branching habit of plants and 

improvements in their productivity is still lacking.  Furthermore, in addition to 

regulation by hormonal signals, shoot branching is also regulated by light signals (Cline, 

1991).  Plants may integrate light signals with hormonal signals to regulate branching.  

However, molecular mechanisms associated with the regulation of branching by light 
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signals have not been investigated.  The objective of this project is to investigate 

molecular events associated with the regulation of branching by light signals.   

 

The analysis of light signaling mutants defective in branching is one approach that can 

be used to study molecular mechanisms involved in the regulation of branching by light.  

Plants use several families of photoreceptors including phytochromes which absorb the 

red (R) and far-red (FR) light, and cryptochromes and phototropins which absorb UV-A 

or blue light, to monitor their environment and synchronize their growth and 

development to the prevailing environmental conditions (Fankhauser, 2001; Gyula et al., 

2003).   

 

The phytochrome family of photoreceptors regulates several developmental processes 

including seed germination, de-etiolation, vegetative development and flowering time 

(Fankhauser, 2001; Sawers et al., 2005).  Phytochrome (phy) is composed of a PHY 

gene-encoded apoprotein covalently attached to a linear tetrapyrrole chromophore 

molecule (Gyula et al., 2003).  The phytochrome apoprotein is encoded by five genes 

(PHYA-PHYE) in Arabidopsis and three genes (PHYA-PHYC) in cereals (Gyula et al., 

2003; Sawers et al., 2005).  The phytochromes exist in the active (Pfr) and inactive (Pr) 

forms that absorb the FR and R light, respectively.  Phytochromes are synthesized in the 

inactive Pr form and upon perceiving red light are converted into the active Pfr form.  

Conversely, FR light converts the Pfr form back into the red absorbing, inactive Pr form. 
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However, a biologically active signal is generated when the Pfr form of phyA absorbs 

FR light demonstrating that not all phytochromes are inactivated by FR light (Shinomura 

et al., 2000; Wang and Deng, 2003). 

 

Under daylight conditions where the R:FR ratio is around 1.15 (Franklin and Whitlam, 

2005), the proportion of Pfr:Pr is high and induces molecular and biochemical changes 

to coordinate normal developmental processes.  However, FR light reflected by 

neighboring plants lowers the proportion of Pfr:Pr and triggers the shade avoidance 

response including increased plant height, enhanced apical dominance and early 

flowering (Smith, 1982; Reed et al., 1993).  It is well established that the shade 

avoidance response is mediated mainly by phyB (Franklin and Whitelam, 2005).  PhyB 

mutants with enhanced apical dominance have been identified in several species 

including sorghum and Arabidopsis (Childs et al., 1992; Childs et al., 1997; Reed et al., 

1993).  Studying the molecular changes associated with the enhanced apical dominance 

of phyB mutants may give clues about mechanisms and signaling networks regulating 

branching in response to light and the involvement of hormonal signals in mediating the 

response.   

 

The phyB-1 sorghum fails to produce branches during the vegetative stage, and is taller 

and earlier maturing than the wild type (Fig. 1.1).  A frame shift mutation in the gene 

coding for the phyB apoprotein introduces a premature stop codon in the 3’ region of the 

PHYB gene that leads to lack of phyB in the phyB-1 mutant sorghum (Childs et al., 
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1997).  It may be hypothesized that the failure of the phyB-1 sorghum to produce 

branching is due to lack of active phyB to initiate a signal to up-regulate the expression 

of branching promoting genes or to down regulate branching inhibiting genes locally 

within the bud or from a distance.   

 

 

 

 

 

 

Figure 1.1. 40–d–old phytochrome B null mutant (phyB-1, left) and wild type (right) 

sorghum plants. 
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The molecular events associated with the enhanced apical dominance of phyB mutants 

has been investigated using the phytochrome B mutant (phyB-1, cv. 58M) and wild-type 

(cv. 100M) sorghum as a model system.  The strong apical dominance of phyB-1, early 

formation and ease of excising axillary buds are some of the advantages of using the 

phyB-1 and wild type sorghum system to study the regulation of branching by light 

signals.  In addition, a large number of sorghum seedlings can be grown in a small area 

and the dormancy and outgrowth of the bud in the axil of the first leaf (enabling 

comparison of buds at exactly the same position) can be studied within a short period 

(ten days after planting).  Furthermore, the availability of expressed sequence tags 

(ESTs) in the data base and high resolution genome map (Mullet et al., 2001; Pratt et al., 

2005) that can facilitate the identification and cloning of genes  makes sorghum an ideal 

plant for studying the regulation of shoot branching by light in monocots.  Recent work 

indicates there are conserved molecular mechanisms regulating branching in diverse 

species, including monocots and dicots (Li et al., 2003; Ishikawa et al., 2005).  

Conversely, although it is well known that application of auxin to the stump of 

decapitated plants restores apical dominance, greenhouse grown decapitated Arabidopsis 

plants did not respond to auxin (Cline, 1996).  Since there is great variation among 

plants in development, morphology, physiology and adaptation to the environment 

(Mullet et al., 2001), an in depth understanding of axillary shoot development and other 

plant developmental processes could be achieved using both monocots and dicots and 

comparative approaches.    
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The expression of several branching and cell cycle-related genes were examined in the 

phyB-1 and wild type sorghum axillary buds.  In chapter II, the regulation of two 

important branching related genes, the Teosinte Branched1 (TB1) and Dormancy 

associated genes (DRM1), by light signals perceived by phyB and their association with 

bud dormancy and outgrowth is reported.   

 

The mechanism of action of auxin in apical dominance has been suggested to be through 

the recently identified MAX-related signal (Lazar and Goodman, 2006; Bennett et al., 

2006).  Genes involved in the biosynthesis of the putative MAX-related hormone or the 

receptor/transduction of the signal could also be involved in the regulation of branching 

by light.  Therefore, expression changes of MAX gene homologs were analyzed in the 

phyB-1 and FR light-treated wild type seedlings.  In the past, axillary shoot development 

has been investigated using dicots such as pea and Arabidopsis, because of the ease of 

decapitation and grafting.  Since the shoot apical meristem of grasses such as sorghum 

during the vegetative stage is located at the base of the plant and is enclosed by several 

leaves, it is difficult to decapitate and compare gene expression changes associated with 

decapitation-induced and light-induced branching in the sorghum system.  However, 

defoliation of wild type sorghum seedlings at early stages of growth inhibits bud 

outgrowth.  Branching-related gene expression changes were studied in the axillary buds 

of defoliated seedlings to see if inhibition of bud outgrowth in response to light and 

defoliation are mediated by similar molecular events.  The results are reported in chapter 

III.   
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Apically derived auxin inhibits bud outgrowth by down regulating the expression of 

several cell cycle-related genes to inhibit cell division (Devitt and Stafstrom, 1995; 

Shimizu and Mori, 1998).  Expression changes of cell cycle-related genes were 

investigated in the repressed buds of phyB-1; FR-treated and defoliated sorghum 

seedlings.  The results are presented in chapter IV.  Finally, the results of expression 

analyses of branching and cell cycle-related genes associated with the regulation of bud 

outgrowth by light signals and defoliation is summarized in chapter V.
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CHAPTER II 

PHYTOCHROME B REPRESSES Teosinte Branched1 EXPRESSION 

AND INDUCES SORGHUM AXILLARY BUD OUTGROWTH IN 

RESPONSE TO LIGHT SIGNALS* 

 

INTRODUCTION 

 

The highly ordered arrangement of leaves and branches and the final shoot architecture 

are associated with a plant's developmental strategy to ensure its survival and 

productivity under continuously changing growing conditions.  A complex 

developmental program that integrates genetic mechanisms, physiological processes, and 

environmental signals controls the overall form of the plant.  The shoot architecture of 

crop plants has been modified during their domestication and improvement.  One of the 

great achievements in the history of crop improvement, "The Green Revolution," was 

due to dwarfing of wheat (Triticum aestivum) and other crops to increase nitrogen-use 

efficiency and reduce lodging.  A more complete understanding of the developmental 

programs that control shoot architecture will help to further improve resource-use 

efficiency and yield of crop plants.   

                                                                                                                                           
*Reprinted with permission from “Phytochrome B Represses Teosinte Branched1 Expression 
and Induces Sorghum Axillary Bud Outgrowth in Response to Light Signals” by Tesfamichael 
H. Kebrom, Byron L. Burson, and Scott A. Finlayson, 2006. Plant Physiol 140, 1109–1117. 
Copyright 2006 by American Society of Plant Biologists. 
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Shoot architecture is largely determined by the number of axillary shoots produced.  

Axillary shoot development begins with the initiation of an axillary meristem in the axil 

of a leaf to form a bud (for review, see Ward and Leyser, 2004; McSteen and Leyser, 

2005).  Then, depending on internal and environmental signals, the bud may continue 

growing to form an axillary shoot or enter into dormancy.  Different approaches have 

been used to study the regulation of axillary shoot development.  Early decapitation 

studies and application of plant hormones showed that auxin produced in the shoot apex 

inhibits the outgrowth of axillary buds (Thimann and Skoog, 1933).  Further research 

indicated that other plant hormones, such as cytokinins and abscisic acid, are also 

involved in regulating branching (for review, see Stafstrom, 2000; Shimizu and Mori, 

2001).   

 

Molecular and genetic approaches have been used to study the mechanisms of action of 

plant hormones and to identify genes involved in regulating branching.  Genes that 

control axillary meristem initiation have been identified in various species (Schumacher 

et al., 1999; Greb et al., 2003; Li et al., 2003).  Studies using branching mutants of 

Arabidopsis (Arabidopsis thaliana), pea (Pisum sativum), and petunia (Petunia hybrida) 

are revealing the mechanisms of action of complex signaling networks of plant hormones 

that regulate shoot branching (Leyser et al., 1993; Stirnberg et al., 1999; Booker et al., 

2005; Foo et al., 2005; Snowden et al., 2005).  Investigations using these mutants suggest 

the presence of a novel, as yet unidentified, plant hormone-like signal that integrates 

hormonal action during branching.   
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A genetic analysis of the morphological differences between maize (Zea mays subsp.  

mays) and its wild ancestor teosinte (Zea mays subsp.  parviglumis) led to the cloning of 

the Teosinte Branched1 (TB1) gene (Doebley et al., 1997).  The TB1 gene encodes a 

putative basic helix-loop-helix transcription factor that is involved in suppressing bud 

outgrowth (Doebley et al., 1997; Hubbard et al., 2002).  An orthologous gene to maize 

TB1 was cloned from rice (Oryza sativa; OsTB1) and functions in a manner similar to the 

maize TB1 (Takeda et al., 2003).  In both maize/teosinte and rice, TB1 is expressed 

predominantly in the young axillary bud.  Further studies of the functional properties of 

TB1 will provide insights regarding the regulation of shoot branching at the molecular 

level. 

 

Several genes that are specifically up-regulated or down-regulated during branching have 

been identified.  The dormancy-associated genes of pea, PsDRM1 (Stafstrom et al., 

1998b) and PsAD1 (Madoka and Mori, 2000), are among the genes identified in cDNA 

libraries from dormant axillary buds.  The mRNA abundance of PsDRM1 and PsAD1 in 

axillary buds declines after decapitation.  However, while the expression of these genes 

correlates strongly with bud dormancy, their functions are not known.   

 

It is well established that light quality (red:far red [R:FR]) is one of the environmental 

signals that regulate shoot branching (Casal et al., 1986; Wan and Sosebee, 1998).  

However, little information exists regarding the molecular mechanisms regulating shoot 

branching in response to light.  Light signals may interact with plant hormones to 
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regulate plant growth and development (Halliday and Fankhauser, 2003).  Recent 

findings indicate that light and auxin interact in the regulation of adventitious root 

formation in Arabidopsis (Sorin et al., 2005).  To fully understand the regulation of 

axillary shoot development, the interaction of light and hormonal and other 

environmental signals should be investigated.   

 

Plants use light signals perceived by photoreceptors to coordinate all stages of growth 

and development from germination to flowering.  The phytochrome family of 

photoreceptors is involved in deetiolation, vegetative development, and flowering time in 

both dicots and monocots (Mathews and Sharrock, 1996; Sawers et al., 2005).  Mutation 

in one of the family members, PHYTOCHROME B (PHYB), affects several 

developmental processes, including branching in sorghum (Sorghum bicolor) and 

Arabidopsis (Childs et al., 1992, 1997; Reed et al., 1993).   

 

We used the phyB null mutant sorghum (phyB-1) as a model for studying the regulation 

of branching by light.  The strong apical dominance of phyB-1, and the early formation 

and ease of excising axillary buds make sorghum useful for studying the role of light in 

axillary shoot development.  We asked whether light signals perceived by phyB control 

shoot branching by regulating the expression of branching genes previously identified in 

other species.  We characterized the enhanced apical dominance in phyB-1 sorghum and 

investigated the expression of branching-related genes, including the sorghum homologs 

of the TB1 (SbTB1) and dormancy-associated (SbDRM1) genes in phyB-1 and wild-type 
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axillary buds.  In this article, we report the regulation of expression of the sorghum 

SbTB1 and SbDRM1 genes by light signals perceived by phyB, and phyB's association 

with dormancy and outgrowth of axillary buds.   

 

RESULTS 

 

Enhanced Apical Dominance in phyB-1 Mutant Sorghum  

 

The phyB-1 mutant sorghum fails to produce branches during vegetative development, 

whereas the near-isogenic wild-type plants branch profusely.  The branching deficiency 

in phyB-1 could theoretically arise from either a defect in axillary meristem initiation or 

bud outgrowth.  We found that the defect occurs in bud outgrowth since equivalent buds 

are formed early in the development in both phyB-1 and wild-type sorghum (Fig. 2.1).  

The buds in the axil of the first leaf of both phyB-1 and the wild type grow at the same 

rate until 7 d after planting (DAP).  Then they begin to show different developmental 

fates (Fig. 2.2A).  While the buds of the wild type continue elongation, bud outgrowth is 

inhibited in phyB-1.  Axillary buds are formed at all nodes of the main shoot of phyB-1 

(data not shown).  These buds remain dormant and branching is observed only when the 

main shoot begins flowering.  The phyB-1 seedlings were taller than the wild type, 

showing enhanced growth of the main shoot as a result of constitutive shade avoidance 

(Fig. 2.2B). 
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Expression of SbTB1 in Different Organs of Sorghum Seedlings  

 

SbTB1 (accession no. AF322132) exists as a single copy in the sorghum genome with 

93.9% nucleotide identity with the maize TB1 gene (Lukens and Doebley, 2001).  The 

maize TB1 mRNA is 1.5 kb in size and accumulates in husks, axillary inflorescence 

primordia, and axillary meristems (Doebley et al., 1997; Hubbard et al., 2002).  OsTB1 is 

expressed in the basal part of the shoot apical meristem, in vascular tissue in the pith, and 

in the entire axillary bud (Takeda et al., 2003).  We investigated the abundance of SbTB1 

in different parts of sorghum seedlings.  The SbTB1 mRNA of about 1.7 kb in size was 

detected only in the buds (Fig. 2.3).   

 

 

 

Figure 2.1. Median longitudinal sections of 4-d-old sorghum shoots. Arrows indicate 

buds in the axil of the first leaves of phyB-1 (A) and wild-type (B) sorghum seedlings. 
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Figure 2.2. Bud length (A) and seedling height (B) of phyB-1 and wild-type 

sorghum. Inset shows bud lengths at 7 DAP, 8 DAP, and 9 DAP (not visible in the 

main figure). Data are mean ± SE; n = 10. 
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Expression of SbDRM1 in Different Organs of Sorghum Seedlings  

 

PsDRM1 is expressed in dormant axillary buds, and its expression is suppressed by 

decapitation and auxin (Stafstrom et al., 1998b; Stafstrom, 2000).  PsDRM1 is also 

expressed in mature stems and roots.  The Arabidopsis gene orthologous to PsDRM1, 

AtDRM1, has similar expression patterns to PsDRM1 (Stafstrom et al., 1998a; Tatematsu 

et al., 2005).  A BLAST search (TBLASTN; Altschul et al., 1991) identified a sorghum 

expressed sequence tag, (accession no. CN135114, hereafter called SbDRM1) encoding 

the entire SbDRM1 open reading frame with a deduced amino acid sequence 59% and 

53% identical to the PsDRM1  (accession no.AAB84193.1) and AtDRM1 (accession no. 

Figure 2.3. SbTB1 mRNA abundance in leaf, sheath, root, and bud of sorghum 

seedlings at 9 DAP. The sorghum ubiquitin gene (SbUBQ) was used as a loading 

control. 
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AAC26202) proteins, respectively (Fig. 2.4).  The amino acid sequence identity between 

PsDRM1 and AtDRM1 is 66% (Stafstrom et al., 1998a).  Northern-blot analysis showed 

that the SbDRM1 mRNA is about 1.15 kb in length.  SbDRM1 is expressed in leaves, 

sheaths, and roots of sorghum seedlings and at low levels in outgrowing buds (Fig. 2.5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Sequence similarity among sorghum, pea, and Arabidopsis dormancy-

associated proteins (SbDRM1, PsDRM1, and AtDRM1, respectively). 



 

 

22

 

 

 

Abundance of SbTB1 and SbDRM1 mRNA in phyB-1 and Wild-Type Axillary Buds  

 

The expression of the SbTB1 and SbDRM1 genes in sorghum axillary buds was 

correlated with the dormant state of the buds.  At 7 DAP and 9 DAP, SbTB1 mRNA was 

detected in the axillary buds of both phyB-1 and wild-type seedlings (Fig. 2.6A).  

However, SbTB1 abundance was more than 2-fold higher in the phyB-1 buds compared 

to the level in the wild type (Fig. 2.6B).  The expression pattern of SbDRM1 was 

different from that of SbTB1 mRNA.  At 7 DAP, when their size was comparable (Fig. 

2.2), SbDRM1 message is hardly detected in the buds of phyB-1 and the wild type (Fig. 

2.6A).  At 9 DAP, when the buds of the wild type were rapidly elongating while those of 

phyB-1 were suppressed, the mRNA level of SbDRM1 was more than 5-fold higher in 

the buds of phyB-1 than in the wild type (Fig. 2.6C).   

Lea
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Figure 2.5. SbDRM1 mRNA abundance in leaf, sheath, root, and bud of sorghum 

seedlings at 9 DAP. The sorghum ubiquitin gene (SbUBQ) was used as a loading 

control. 
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Figure 2.6. A, SbTB1 and SbDRM1 mRNA abundance in the buds from the first 

leaf axils of phyB-1 and wild-type sorghum seedlings. B and C, Relative 

quantitation of SbTB1 and SbDRM1 mRNA levels, respectively. The sorghum 

ubiquitin gene (SbUBQ) was used as a loading control. 
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SbTB1 and SbDRM1 mRNA Abundance in Axillary Buds of Wild-Type Seedlings 

Grown at High and Low Densities  

 

The enhanced apical dominance of phyB-1 sorghum is consistent with a constitutive 

shade avoidance response.  Shade avoidance responses are also observed in the natural 

environment when wild-type plants are grown at high density that lowers the R:FR.  In 

an attempt to simulate the constitutive shade avoidance response of phyB-1 sorghum in 

the wild type, wild-type seedlings were grown at high (3,000 seedlings m–2) and low 

(300 seedling m–2) plant densities.  In those seedlings grown at a high density, axillary 

bud outgrowth was suppressed at about 9 DAP (Fig. 2.7A).  While high density affected 

axillary bud elongation, the height of seedlings at both planting densities was the same 

during the measurement period (Fig. 2.7B).   

 

SbTB1 mRNA accumulation in the buds of wild-type seedlings grown at both plant 

densities decreased over time (Fig. 2.8).  The abundance of SbTB1 mRNA was higher in 

the axillary buds from high plant density compared to low plant density at both 7 DAP 

and 9 DAP (Fig. 2.8).  At 7 DAP, SbDRM1 mRNA abundance was only 2.2-fold higher 

in high density compared to low density (Fig. 2.9).  However, relative to wild type at 7 

DAP, the level of SbDRM1 mRNA at 9 DAP was increased to 18.6- and 3.7-fold at high 

and low plant densities, respectively.  At 9 DAP, SbDRM1 abundance was therefore 5-

fold higher in buds from high compared to low planting density.   
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Figure 2.7. Bud length (A) and seedling height (B) of wild-type sorghum seedlings 

grown at high and low plant densities. Data are mean 6 SE; n = 9 or 10. 
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Figure 2.8. A, Abundance of SbTB1 mRNA in axillary buds in the axil of the first 

leaves of wild-type seedlings grown at high and low densities at 7 DAP and 9 DAP. 

B, SbTB1 mRNA quantitation relative to buds of seedlings grown at low density at 7 

DAP. The sorghum ubiquitin gene (SbUBQ) was used as a loading control. 
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Figure 2.9. A, Abundance of SbDRM1 mRNA in axillary buds in the axil of the first 

leaves of wild-type seedlings grown at high and low densities at 7 DAP and 9 DAP. 

B, SbDRM1 mRNA quantitation relative to buds of seedlings grown at low density 

at 7 DAP. The sorghum ubiquitin gene (SbUBQ) was used as a loading control. 
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SbTB1 and SbDRM1 mRNA Abundance in Axillary Buds of Wild Type Grown with 

and without Supplemental FR  

 

Low R:FR reduces the proportion of the active form of phyB (Pfr), thereby triggering the 

shade avoidance response.  Wild-type seedlings were grown until 7 DAP, when bud 

length in the axil of the first leaf and seedling height were measured (control, 7 DAP).  

Then, starting at 7 DAP and continuing for the next 2 d, some of the seedlings were 

irradiated with FR light from the sides (FR, 9 DAP), while others continued growth 

without supplemental FR light (control, 9 DAP).  The supplemental FR light treatment 

suppressed the outgrowth of buds in the axil of the first leaf (Fig. 2.10A) and increased 

seedling height (Fig. 2.10B). 

 

The abundance of SbTB1 and SbDRM1 mRNAs reflects the enhanced apical dominance 

induced by low R:FR (Fig. 2.11A).  Compared to the abundance in the control at 7 DAP, 

the SbTB1 mRNA abundance at 9 DAP was slightly reduced in the control, whereas it 

was increased in the FR-treated seedlings.  The mRNA abundance of SbTB1 was 2.8-fold 

higher in the FR-treated seedlings compared to the control at 9 DAP (Fig. 2.11B).  The 

SbDRM1 mRNA level was almost 18-fold higher in axillary buds of seedlings treated 

with FR compared to control (Fig. 2.11B).   
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Figure 2.10. Effect of supplemental FR light on bud outgrowth (A) and 

seedling height (B) of wild-type sorghum. Data are mean 6 SE; n 5 7. 
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Figure 2.11. A, Abundance of SbTB1 and SbDRM1 mRNA in axillary buds of wild-

type seedlings grown with or without supplemental FR light. B, Relative quantitation 

of SbTB1 and SbDRM1 mRNA levels. The sorghum ubiquitin gene (SbUBQ) was used 

as a loading control. 
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DISCUSSION 

 

We investigated the regulation of branching by light signals perceived by phyB in the 

branching-deficient phyB-1 null mutant sorghum.  Mutants used previously to study the 

molecular mechanisms of branching are defective either in initiation of axillary 

meristems or outgrowth of buds (Napoli et al., 1999; Ward and Leyser, 2004).  Our 

results show that the initiation of axillary meristems and formation of buds occur 

normally in phyB-1; however, the outgrowth of those buds was inhibited, indicating that 

the role of light signals in branching is limited to bud dormancy and outgrowth.  Bud 

outgrowth was also inhibited in wild-type plants grown at high plant density or with 

supplemental FR light, demonstrating the regulation of axillary buds by environmental 

signals soon after their formation.   

 

Supplemental FR light treatment of wild-type seedlings, started at 7 DAP, inhibited the 

outgrowth of buds in the first leaf axil of all treated seedlings.  However, when FR 

treatment was started at 9 DAP, the buds in the first leaf axil of some seedlings were 

arrested, while in others they escaped the inhibitory signal and elongated (data not 

shown).  It is noteworthy that all the buds in the axil of the second leaves of those plants 

treated with FR at 9 DAP were arrested (data not shown).  The inconsistency in the 

response of buds in the axil of the first leaf to delayed FR light treatment was observed 

in repeated experiments.  The "escape" phenomenon may be similar to the regulation of 

bud dormancy and outgrowth by auxin (for review, see Cline, 1997), in which 
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decapitation-induced bud outgrowth can be suppressed by exogenous auxin early after 

decapitation but not later.  These results indicate the presence of a developmental 

window at which FR light and auxin can inhibit bud outgrowth.  The data raise the 

question of whether the effect of light on bud dormancy and outgrowth is through auxin, 

or whether both light and auxin act on a common target that regulates the process.   

 

Previous research has indicated that DRM1 expression correlates with bud dormancy, 

and we have used it here as an indicator of a bud's physiological status.  The inhibition of 

bud outgrowth in phyB-1 sorghum is reflected in the high level of SbDRM1 mRNA in 

these axillary buds (Fig. 2.6).  The results are confirmed by the high level of SbDRM1 

mRNA in the arrested buds of wild type grown at high plant density or with 

supplemental FR (Figs. 2.9 and 2.11).  There was a small increase in SbDRM1 mRNA at 

9 DAP compared to 7 DAP in wild type grown under standard conditions (Fig. 2.6) and 

in wild type grown at low densities (Fig. 2.9).  These results may seem contradictory to 

the typical correlation of DRM1 expression with dormancy but may indicate an increase 

in the proportion of nondividing cells in the rapidly elongating buds of the wild type.  

  

The pattern of SbDRM1 accumulation agrees with that observed in pea and Arabidopsis, 

implying that conserved mechanisms of dormancy and outgrowth may operate in both 

monocots and dicots—an observation also supported by the orthologous function of 

MAX-related genes in rice (Ishikawa et al., 2005).  Since auxin represses PsDRM1 in pea 

(Stafstrom, 2000), the suppression of SbDRM1 mRNA accumulation by light suggests 
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that similar dormancy mechanisms are induced by both auxin and light.  Phytochrome 

regulation of gene expression has been shown to be both auxin dependent and auxin 

independent (Tanaka et al., 2002).  Whether the suppression of SbDRM1 mRNA by light 

is auxin dependent or auxin independent needs to be investigated.  It is not known 

whether decapitation-induced and non-decapitation-induced bud outgrowth (i.e. via 

light) are regulated through the same pathway (Napoli et al., 1999).  Further studies on 

the regulation of expression of SbDRM1 mRNA and related genes by light signals will 

help resolve such questions.   

 

The TB1 gene was identified as one of five quantitative trait loci that distinguish the 

morphology of maize from its wild ancestor, teosinte (Doebley and Stec, 1991).  

Compared to teosinte, maize exhibits enhanced apical dominance.  Sequence comparison 

of the maize and teosinte TB1 alleles indicated no difference in the predicted coding 

region of the two alleles (Doebley et al., 1997); however, the expression of the maize 

TB1 was twice that of teosinte, suggesting differences in the regulation of expression of 

the gene (Doebley et al., 1997).  Increased expression of the TB1 gene in axillary organs 

was correlated with suppression of growth of those organs (Doebley et al., 1997; 

Hubbard et al., 2002).  Increased expression of OsTB1 was also found to suppress 

axillary bud outgrowth but not their formation (Takeda et al., 2003).  The elevated 

SbTB1 mRNA abundance in phyB-1 axillary buds compared to wild type and in wild 

type grown with low R:FR suggests that SbTB1 gene expression is regulated by light 
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signals perceived by phyB.  Therefore, phyB may exert its influence on branching in part 

through modulation of SbTB1 mRNA levels.   

 

Branching in maize is relatively insensitive to planting density; whereas branching in 

teosinte is reduced at high plant density and increases at low plant density.  Doebley et 

al. (1995) suggested that TB1 expression in maize is decoupled from regulation by 

environmental signals and is constitutively expressed, while teosinte TB1 is expressed 

under unfavorable growing conditions and repressed under favorable growing 

conditions.  Our results suggest that the regulation of TB1 expression in wild-type 

sorghum more closely resembles that proposed for teosinte, while the expression in 

phyB-1 sorghum more closely resembles that proposed for maize.   

 

It should be noted that the response of wild-type sorghum seedlings to high planting 

density was not the same as their response to low FR light treatment during the 

experimental period.  Although bud elongation was inhibited in both treatments, only FR 

induced an increase in seedling height, which is one of the typical shade avoidance 

responses.  The pattern of accumulation of SbDRM1 mRNA at 9 DAP at high planting 

density and in the FR-treated seedlings was similar in each case, indicating both 

treatments inhibited bud outgrowth through similar downstream mechanisms.  However, 

the level of SbTB1 mRNA at 9 DAP at high planting density was lower than at 7 DAP at 

both high and low planting densities (Fig. 2.8), while FR light treatment increased the 

level of SbTB1 mRNA at 9 DAP compared to the level at 7 DAP (Fig. 2.11).  Takeda et 
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al. (2003) reported that the branching habit of the fine culm 1 mutant rice, which contains 

a loss-of-function mutation of OsTB1, responds to planting density.  They suggested that 

the regulation of branching in rice in response to density is independent of OsTB1 but 

dependent on other factors.  Since high density did not affect plant height and the effect 

on SbTB1 expression is relatively small, it is unlikely that suppression of bud outgrowth 

in our experiment is mainly the result of a phyB-mediated shade avoidance response.  In 

addition to changes in light quality, other undetermined density-derived cues may also 

inhibit bud outgrowth at high planting density.   

 

SbTB1 mRNA is highest in the younger wild-type buds (7 DAP) and decreases with 

time, suggesting that early in development these buds acquire a signal that inhibits their 

outgrowth.  The fate of these buds, whether to continue growth or enter into dormancy, is 

determined at a later stage depending on the perception of light and possibly other 

signals required for their elongation.  The results imply that the absence of active phyB 

to suppress SbTB1 accumulation in the phyB-1 axillary buds leads to dormancy, while 

the suppression of SbTB1 accumulation in the wild-type axillary buds by active phyB 

leads to bud outgrowth.  Transgenic potato (Solanum tuberosum) plants overexpressing 

phyB produced more branches at high plant density (Boccalandro et al., 2003).  These 

results are consistent with the hypothesis that active phyB suppresses accumulation of 

the TB1 mRNA, thereby promoting bud outgrowth.  Recently, a potato gene (sttcp1) with 

a function similar to that of the maize TB1 gene was cloned (Faivre-Rampant et al., 
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2004).  It would be interesting to study the level of expression of the sttcp1 gene in the 

phyB-overexpressing and wild-type potato.   

 

Devlin et al. (2003) studied genome-wide gene expression changes in phyB mutant, phyA 

phyB double mutant, and wild-type Arabidopsis in response to shade and identified 301 

genes that demonstrated altered expression.  Some of these genes encode proteins that 

are known to function in light and hormone signaling, transcription regulation, and 

protein degradation.  In some developmental programs, phytochrome action involves a 

direct interaction with transcription factors to regulate the expression of light-responsive 

genes.  Phytochromes may also act through posttranslational regulation of the level of 

transcription factors by directed proteolysis to indirectly regulate gene expression (Quail, 

2002).  The mechanism by which phyB regulates SbTB1 abundance remains to be 

discovered.   

 

The TB1 gene belongs to the TCP family of transcription factors with a noncanonical 

basic helix-loop-helix domain that is predicted to function in DNA-binding and protein-

protein interactions (Cubas et al., 1999).  Previous studies indicated that the TCP proteins 

stimulate or repress the growth of an organ in which they are expressed by regulating the 

expression of several cell cycle-related genes (Kosugi and Ohashi, 1997, 2002; Gaudin et 

al., 2000; Tremousaygue et al., 2003; Li et al., 2005).  Since TB1 represses the growth of 

organs in which it is expressed, it may directly or indirectly repress growth by interfering 

with the progression of cell division.  We are investigating the expression of several cell 
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cycle genes, such as PCNA, ribosomal protein genes, Cyclins, and CDKs, in the phyB-1 

and wild-type sorghum axillary buds to elucidate the regulation of bud outgrowth by TB1 

in response to light.   

 

It is not yet understood whether hormonal signals interact with TB1 to suppress bud 

outgrowth (McSteen and Leyser, 2005).  We have identified several sorghum expressed 

sequence tags with homology to key genes involved in regulating hormonal signals 

during axillary shoot development, including MAX related (Booker et al., 2005) and 

AXR1 (Leyser et al., 1993; Stirnberg et al., 1999), and we are investigating their patterns 

of expression in the sorghum system to understand the complex signaling networks 

involved in regulating axillary shoot development.   

 

Tatematsu et al. (2005) identified cis-elements that regulate the expression of genes 

involved in axillary bud outgrowth in Arabidopsis by analyzing the transcriptome of 

axillary shoots collected from all positions.  Since axillary shoots at different phyllotactic 

positions are at different developmental stages, it is difficult to delineate the role of those 

elements at the different stages.  Using both the monocots such as sorghum where 

working with buds comparable in size and at similar positions is easier and dicots such 

as pea and Arabidopsis where decapitation, grafting, and genetic manipulation are easier, 

a more complete understanding of the regulation of plant architecture may be achieved.   
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MATERIALS AND METHODS 

 

Plant Materials and Growing Conditions  

 

Wild-type and phyB-1 mutant sorghum (Sorghum bicolor) seedlings were grown in a 

growth chamber with incandescent and fluorescent lamps, maintained at 31°C/22°C 

day/night temperatures with a 12-h photoperiod.  The photosynthetically active radiation 

was approximately 600 µmol m–2 s–1 and the R:FR 3.0.  Seeds were sown at a rate of 300 

m–2 on trays containing 7-cm-deep cells filled with growth medium prepared as 

described by Beall et al. (1991).  To study the effect of plant density, seeds were sown at 

a rate of 300 and 3,000 m–2 for the low and the high plant density, respectively.  

Seedlings near the perimeter of the trays were avoided during sampling.  To study the 

effect of shade signals (R:FR) on bud outgrowth, seedlings were grown in 50-mL tubes, 

one seedling per tube, and the tubes were supported on a rack arranged at a seedling 

density of 900 m–2.  At this rate, shading due to density was not observed as detected by 

measurement of bud elongation until 10 DAP (data not shown).  At 7 DAP, uniform 

seedlings were selected, divided into two groups, arranged on a rack at a seedling density 

of 300 seedlings m–2, and then one group was treated with supplemental FR (FR, 9 DAP) 

while the other group was grown as control (control, 9 DAP).  Supplemental FR was 

applied using FR light-emitting diode arrays directed from the sides starting at 7 DAP.  

FR-treated and control seedlings were grown in the same growth chamber under the 
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same conditions except that the FR-treated seedlings had additional FR light from the 

sides.   

 

Histological Studies  

 

Young elongating shoots of phyB-1 and the wild type were collected about 5 mm from 

the base of seedlings and fixed in FAA (70% ethanol, 37% formaldehyde-acetic acid, 

18:1:1) for at least 24 h, and then stored in 70% ethanol.  The young stems were 

dehydrated in a tertiary butyl alcohol series, embedded in Tissueprep (Fisher Scientific), 

sectioned at 15 µm with a rotary microtome, and placed on microscope slides that were 

kept at 40°C to 50°C for at least 24 h.  The slides were then stained in Safranin-O fast-

green series using an HMS series programmable slide stainer (Carl Zeiss).  Two drops of 

Permount mounting medium (Fisher Scientific) were placed on each slide and covered 

with a cover glass.  The slides were then observed with a bright-field Zeiss microscope.   

 

Bud Length and Seedling Height Measurement  

 

Subtending leaves were removed, and buds in the axil of the first leaf were excised and 

their lengths measured under a dissecting microscope using a micrometer.  A ruler was 

used to measure buds longer than 3 mm.  Seedling height was also measured as the 

height from the base of the shoot to the tip of the tallest leaf.   
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RNA Isolation and Northern Analysis  

 

For gene expression studies, seedlings were harvested, roots were washed, and buds in 

the axil of the first leaves were excised under a dissecting microscope.  The buds were 

immersed in lysis/binding solution (Ambion) on ice and were stored at –80°C until RNA 

extraction.  The roots of seedlings were kept moist during sampling.  Sampling was done 

between 11 AM to 2 PM during the day.  Total RNA was extracted using the Trizol method 

(Life Technologies), and then separated on a denaturing glyoxal agarose gel and 

transferred to a Hybond membrane (Amersham Biosciences).  Membranes were probed 

with SbTB1, SbDRM1, and SbUBQ (S. bicolor ubiquitin) genes.  Probes were prepared 

by PCR amplification from a cDNA prepared from sorghum axillary buds using primers 

for SbTB1, forward 5'-GGTGGTGGTTCAAATGGTTC-3' and reverse 5'-

TACAATGGCTCCTCAACACG-3'; for SbDRM1, forward 5'-

TGGTGGCTTTGTGAGTGAAG-3' and reverse 5'-TTATCAGCAACAGCGACAGC-

3'; and for SbUBQ, forward 5'-GGAAACATAGGGACGCTTCA-3' and reverse 

AAGGAGTCCACCCTTCACCT-3'.  Northern hybridization was done at 65°C and 

washed with 0.1x SSPE or SSC and 0.5x SDS.  Membranes were exposed to an imaging 

plate and analyzed using a phosphor imager.  After subtracting background, the target 

mRNA photostimulated luminescence of each sample was divided by the corresponding 

ubiquitin mRNA photostimulated luminescence.  The level of the control wild-type 

target mRNA at 7 DAP was adjusted to one, and comparable samples were adjusted by 

the same factor to provide relative abundance.  Northern analyses were done at least 



 

 

41

twice from buds collected from a minimum of 25 seedlings grown at different times, and 

representative results are presented. 
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CHAPTER III 

EXPRESSION OF Teosinte Branched1, MAX AND AUXIN 

TRANSPORTER GENES IN SORGHUM AXILLARY BUDS 

REPRESSED BY LIGHT SIGNALS AND DEFOLIATION 

 

INTRODUCTION 

 

Light regulates axillary shoot development by controlling bud outgrowth.  Previous 

studies showed that the inhibition of bud outgrowth in the phyB-1 mutant sorghum is 

associated with increased expression of the Teosinte Branched1 (SbTB1) and dormancy 

associated (SbDRM1) genes (Kebrom et al., 2006, chapter II).  The TB1 gene is a 

repressor of bud outgrowth (Hubbard et al., 2002; Takeda et al., 2003).  The results 

suggested that light signals regulate bud outgrowth by controlling the expression of the 

TB1 gene (Kebrom et al., 2006, chapter II).  However, axillary bud outgrowth is 

regulated by a complex signaling network that integrates environmental and endogenous 

signals and genetic mechanisms.  For a better understanding of the process regulating 

bud outgrowth by light, the interaction of light and other dormancy signals should be 

investigated.  This can be done by studying the known branching related genes and their 

possible roles in mediating light and other inhibitory signals.   

 

The analysis of branching mutants defective in controlling bud outgrowth has been one 

approach used to study the signaling networks involved (Napoli et al., 1999; Ward and 
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Leyser 2004).  Analyses of the Arabidopsis more axillary growth (max) mutants has 

provided evidence for the presence of a novel hormone-like signal that inhibits bud 

outgrowth (Booker et al., 2005).   

 

The putative hormone regulating bud outgrowth has not been identified. However, three 

genes (MAX1, MAX3 and MAX4) encoding proteins likely required for the synthesis of 

the signal and another gene, MAX2, encoding a likely signal transduction component, 

have been cloned (Stirnberg et al., 2002; Sorefan et al., 2003; Booker et al., 2004; 

Booker et al., 2005).  MAX1 encodes a protein that belongs to the cytochrome P450 

family; whereas, MAX3 and MAX4 encode different carotenoid-cleaving dioxygenases.  

Reciprocal grafting of scions and rootstocks of max1, max3 and max4 mutants indicated 

that MAX1 acts downstream of MAX3 and MAX4.  Based on the homology of MAX3 

and MAX4, it seems likely that the signal is derived from a carotenoid precursor 

(Sorefan et al., 2003; Booker et al., 2005).  The MAX2 gene encodes an F-box protein 

that may function in the ubiquitin-proteasome pathway (Stirnberg et al., 2002).  Other F-

box proteins have been demonstrated to participate in hormone signal transduction.  For 

example, TIR1 is now known to act as an auxin receptor (Dharmasiri et al., 2005; 

Kepinski and Leyser, 2005). 

 

Mutations in any one of the four MAX genes causes increased bud outgrowth, and buds 

of max mutants are resistant to auxin indicating that the MAX-related hormone is 

necessary for the inhibitory action of auxin (Leyser, 2005).  The increased branching 
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phenotype of max1, max3 and max4 shoots but not the max2 shoot can be reverted to 

wild type branching by grafting to wild type rootstock (Booker et al., 2005).  These 

results led to the conclusion that the carotenoid-derived signal is mobile, whereas signal 

transduction involving MAX2 acts in the shoot (Booker et al., 2005).  Increased 

branching mutants identified in pea, petunia and rice have also been found to have 

mutations in genes orthologous to the MAX genes of Arabidopsis, providing evidence 

that the MAX-related signal is common in higher plants (Sorefan et al., 2003; Snowden 

et al., 2005; Ishikawa et al., 2005; Zou et al., 2005).  However, expression of the MAX4 

orthologs of pea (RMS1) and petunia (DAD1), but not the MAX4 of Arabidopsis, are 

under feedback control suggesting differences among species the way the MAX-related 

signal may be regulated (Bainbridge et al., 2005; Foo et al., 2005; Snowden et al., 2005).   

 

Recent results indicate that the MAX-related signal inhibits branching by regulating 

auxin transport (Lazar and Goodman, 2006; Bennett et al., 2006).  Several auxin influx 

(AUX1) and efflux (PIN) carrier proteins facilitate the polar transport of auxin 

(Woodward and Bartel, 2005) which induces vascular tissue development (Berleth et al., 

2000).  Release of axillary shoots from correlative inhibition by decapitation of the main 

shoot is accompanied by rapid cambial development and vascular tissue differentiation; 

whereas, application of auxin to the stump inhibits cambial development (Morris, 1977).  

Therefore, the export of auxin from the bud may induce the formation of vascular tissue 

connections between the bud and the stem enabling bud outgrowth (Bennett et al., 2006).  

Expression of the AUX1 and PIN genes is higher in the bud and stem of max mutants 
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compared to wild type suggesting that the MAX-related signal controls auxin transport, 

and therefore, bud outgrowth, by directly or indirectly regulating the expression of the 

auxin transporter genes (Lazar and Goodman 2006; Bennett et al., 2006).  The MAX-

related signal may integrate different signals inhibiting bud outgrowth.  Therefore, 

expression analysis of the MAX and auxin transporter genes in the phyB-1 and wild type 

sorghum axillary buds will provide clues regarding the role of MAX-related signal in 

regulating axillary shoot development in response to light.   

 

Since the shoot apical meristem of sorghum is located at the base of the plant and is 

enclosed by leaves, it is not possible to conduct decapitation experiments in sorghum.  

This restricts our ability to compare molecular mechanisms regulating bud outgrowth in 

response to light and hormonal signals.  However, defoliation of sorghum seedlings at 

early stages of development inhibits bud outgrowth.   

 

In this study, the expression of the TB1, MAX and auxin transporter genes were 

investigated in sorghum axillary buds repressed by light signals and defoliation.  The 

results suggest that the TB1 gene functions in the regulation of bud outgrowth by light 

signals; whereas, the MAX2 gene is involved in regulating bud outgrowth by both light 

and defoliation.   
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RESULTS 

 

Response of Wild Type Seedlings to Defoliation 

 

Bud outgrowth in the axil of the first leaf of the phyB-1 mutant and the wild type 

sorghum seedlings treated with supplemental FR light starting at 7 DAP are inhibited at 

about 9 DAP (Kebrom et al., 2006, chapter II).  Defoliation of wild type seedlings 

starting at 7 DAP also inhibited the outgrowth of axillary buds in the axil of the first 

leaves very rapidly (Fig. 3.1).   
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Figure 3.1. The effect of defoliation of wild type sorghum seedlings, starting at 7 

DAP, on the outgrowth of buds in the axil of the first leaves. Data are mean ± SE; 

n=10. 
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Identification of Sorghum ESTs Homologous to the Arabidopsis MAX1 and MAX2 

 

A BLAST (TBLASTN; Altschul et al., 1991) search for sorghum ESTs homologous to 

the Arabidopsis MAX1 protein identified a 460 nucleotide long sorghum EST, accession 

no. BG049021.  The MAX1 sorghum EST homolog was translated in all possible reading 

frames using a translation tool available at http://ca.expasy.tools/dna.html.  Several open 

reading frames were identified.  The longest open reading frame (ORF) had no stop 

codons.  However, no protein in the data base is similar to this ORF.  The next longest 

ORF was 92 amino acids long and blasting this sequence identified cytochrome P450 

monoxygenases CYP711A (MAX1 like proteins) of several species.  The amino acid 

sequence identity between the sorghum ORF with Arabidopsis MAX1 and Medicago 

tranculata CYP711A is 63%.  The 460 nucleotide sorghum EST includes about 276 

nucleotides (92 amino acids) of coding region followed by a stop codon and an 

untranslated region.  The translated region aligns to the 3’ end of the Arabidopsis MAX1 

(accession no. NP_565617) and the homologous protein in Medicago (accession no. 

ABC59098) (Fig. 3.2).   

 

A similar search for a sorghum EST homologous to the MAX2 gene of Arabidopsis 

identified accession no. CD207478.  Translation of this EST resulted in one ORF of 

about 160 amino acids (which is a MAX2 like ORF).  BLASTP of the MAX2-like amino 

acid sequence identified the rice MAX2 homolog (accession no. BAD69289), the pea 

RAMOSUS4 (RMS4, accession no. ABD67495) and the Arabidopsis MAX2 (accession 
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no. NP_565979) proteins with 80%, 66% and 65% identity, respectively.  The MAX2 

protein of Arabidopsis is 58% and 47% identical to the pea and rice MAX2 homologs, 

respectively.  The sorghum MAX2-like translated region of the EST aligns to the 3’ 

region of the known MAX2 proteins (Figure 3.3).  The sorghum MAX1-like and MAX2-

like ESTs are referred to as SbMAX1 and SbMAX2, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Alignment of translated partial SbMAX1 cDNA sequence with the Arabidopsis 

and Medicago MAX1 amino acid sequences.   
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Figure 3.3. Alignment of translated partial SbMAX2 cDNA sequence with the 

Arabidopsis, pea and rice MAX2 amino acid sequences.   
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Identification of Auxin Transport Related Sorghum ESTs 

 

A 750 nucleotide long sorghum EST, accession no. CX622221, is homologous to the 

maize auxin influx carrier gene (AUX1, accession no. AJ011794).  The nucleotide 

identity between the sorghum EST and the AUX1 gene of maize is 86% and the amino 

acid identity between translated partial cDNA of the sorghum EST and the maize AUX1 

protein accession no. CAB65535 is 85% (Fig. 3.4).  The sorghum EST, accession no. 

CX622221, is referred to as SbAUX1.   

 

There are eight auxin efflux carrier genes (PIN1-PIN8) in Arabidopsis (Paponov et al., 

2005).  There are also several sorghum ESTs highly similar to PIN genes in Arabidopsis 

and other species.  The 595 nucleotide long sorghum EST, accession no.  CX620904, is 

homologous to the PIN1 gene in several species.  A translated partial cDNA of the 

sorghum EST is 96% and 83% identical to the PIN1 amino acid sequences of rice 

(accession no. Q5SMQ9) and Arabidopsis (accession no. Q9C6B8), respectively (Fig. 

3.5).  The sorghum EST, accession no.  CX620904, is referred to as SbPIN1.   
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Figure 3.4. Alignment of translated partial SbAUX1 cDNA sequence with the 

maize AUX1 amino acid sequence.   
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Figure 3.5. Alignment of translated partial SbPIN1 cDNA sequence with the rice and 

Arabidopsis PIN1 amino acid sequences.   
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SbDRM1 and SbTB1 mRNA Abundance in phyB-1, FR Light-Treated and 

Defoliated Seedlings of Sorghum 

 

The level of expression of the SbTB1 and SbDRM1 genes in the axillary buds of phyB-1 

and wild type, and wild type grown with supplemental FR light were previously 

investigated by Northern analysis (Kebrom et al., 2006, chapter II).  The levels of these 

genes were also investigated by qPCR here (Fig. 3.6 and Fig. 3.7).  Consistent with the 

results of the Northern analysis, the levels of these genes were higher in dormant buds 

compared to growing buds.  However the fold changes as determined by qPCR were 

higher than those determined by Northern blot analysis.  The mRNA abundance of 

SbDRM1 in the defoliated buds was higher than the control.  The fold change of 

SbDRM1 at 9 DAP in the phyB-1 vs. wild type, FR vs. control and defoliated vs. control 

was 15.3, 22.0, and 32.8, respectively.  Compared to growing buds of wild type or 

control, the SbTB1 mRNA abundance in the repressed buds of phyB-1 and FR light-

treated at 9 DAP was 6.0 and 2.9 fold higher, respectively.  However, the dormant state 

of the buds in the defoliated seedlings was not associated with an increase in the SbTB1 

gene (Fig. 3.7).  In fact, the level of SbTB1 in the buds from defoliated seedlings was 

repressed in a manner similar to the reduction of the level of expression in the buds of 

the control seedlings at 9 DAP. 
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Figure 3.6. Relative expression level of SbDRM1 in the buds from the first leaf axil 

of phyB-1 and wild type (A), FR-treated and control wild type (B) and defoliated 

and control wild type (C) sorghum seedlings. Bars are means ± SE of the mean, n=3 

biological replicates.  
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Figure 3.7. Relative expression level of SbTB1 in the buds from the first leaf axil of 

phyB-1 and wild type (A), FR-treated and control wild type (B) and defoliated and 

control wild type (C) sorghum seedlings. Bars are means ± SE of the mean, n=3 

biological replicates.  
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SbMAX1, SbMAX2, and Auxin Transporter mRNA Abundance in phyB-1, FR 

Ligh-Treated and Defoliated Seedlings of Sorghum 

 

The level of expression of SbMAX1 in the repressed buds of phyB-1 compared to the 

wild type was the same at 7 DAP but more than two fold higher at 9 DAP (Fig. 3.8).  

However, there was no difference in the level of SbMAX1 mRNA in the buds of the FR 

light-treated and defoliated seedlings compared to the control (Figs. 3.9 and 3.10).  

SbMAX2 expression was consistently more than two fold higher in the phyB-1 buds 

compared to that of the wild type at 9 DAP (Fig. 3.8).  The SbMAX2 expression was also 

more than two fold higher in the repressed buds of wild type seedlings treated with FR 

light and defoliation compared to that of the control (Figs. 3.9 and 3.10). 

 

The patterns of expression of the auxin transporter genes, SbAUX1 and SbPIN1, were 

similar.  The level of expression of both genes was higher in the phyB-1 buds compared 

to the wild type at both 7 DAP and 9 DAP (Fig. 3.8).  However, there was little 

difference in the level of expression of these genes in the buds of FR light-treated and 

defoliated wild type seedlings compared to the control (Figs 3.9 and 3.10).   
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Figure 3.8. Relative expression level of MAX and auxin transporter genes in the 

buds from the first leaf axil of phyB-1 and wild type sorghum seedlings. Bars are 

mean ± SE of the mean, n= 3 biological replicates. 
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Figure 3.9. Relative expression level of MAX and auxin transporter genes in the 

buds from the first leaf axil of FR-treated and control wild type sorghum seedlings. 

Bars are mean ± SE of the mean, n= 3 biological replicates. 
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Figure 3.10. Relative expression level of MAX and auxin transporter genes in the 

buds from the first leaf axil of defoliated and control wild type sorghum seedlings. 

Bars are mean ± SE of the mean, n= 3 biological replicates. 
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DISCUSSION  

 

Expression analysis of branching related genes in the phyB-1 sorghum axillary buds and 

buds inhibited by signals other than light can help identify genes as well as mechanisms 

specifically involved in regulating branching in response to light.  Previous studies 

showed that tillering of grasses can be stimulated or suppressed by defoliation (Murphy 

and Briske, 1992).  The responses to defoliation may depend on several factors including 

the developmental stage of the plant and the extent of defoliation (Murphy and Briske, 

1992; Zhang and Romo, 1995).  The effect of defoliation of wild type sorghum seedlings 

on bud outgrowth has been studied.  The results show that continuous defoliation 

starting at 7 DAP inhibits outgrowth of buds in the axil of the first leaves.  FR light 

treatment started at 7 DAP inhibits the outgrowth of buds in the axil of the first leaves 

and buds at the same position in the phyB-1 sorghum seedlings also stop growing after 7 

DAP.  Therefore, the phyB-1, FR light-treated and defoliated seedlings were used as a 

model system to analyze and compare molecular mechanisms regulating bud outgrowth 

in response to light and defoliation.   

 

Previous studies by Northern blot analysis showed that the inhibition of bud outgrowth 

in the phyB-1 and FR light-treated seedlings is associated with increased expression of 

the SbTB1 and SbDRM1 genes (Kebrom et al., 2006; chapter II).  Analysis of these 

genes by qPCR also showed similar results.  However the fold change was higher when 

assessed by qPCR compared to by Northern blotting.  The variation in the fold change 
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could be due to differences in the sensitivity of the methods used.  However, both 

Northern and qPCR analysis showed that the level of these genes was consistently higher 

in the repressed buds of phyB-1 and FR light-treated seedlings.   

 

The expression of the SbDRM1 gene was upregulated in the buds of defoliated seedlings 

indicating the induction of dormancy in those buds by defoliation.  The DRM1 gene is 

expressed in dormant buds of several dicot species such as pea and its expression is 

down regulated by decapitation (Stafstrom et al., 1998b; 2000).  The results from pea 

and sorghum suggest that the DRM1 gene is upregulated by inhibitory endogenous and 

environmental light signals and it is probably at the downstream end of pathways 

inhibitory to bud outgrowth. 

 

The level of expression of the SbTB1 gene in the buds of FR light-treated seedlings was 

2.9 fold higher than the level in the control at 9 DAP.  However, the level was not much 

higher than in the control at 7 DAP.  These results support the hypothesis that for 

continued outgrowth of buds after 7 DAP, the SbTB1 gene expression has to be 

repressed by phytochrome B.  However, the expression of the SbTB1 gene was repressed 

in the buds of defoliated seedling suggesting that inhibition of bud outgrowth by 

defoliation does not require SbTB1 (Fig. 3.7C).   

 

The MAX1 gene suppresses branching in Arabidopsis (Stirnberg et al., 2002; Booker et 

al., 2005).  The SbMAX1 gene is upregulated in the phyB-1 buds at 9 DAP.  The 
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association of the increased expression of the SbMAX1 gene with the entry into dormant 

state of the phyB-1 buds at 9 DAP is consistent with the function of the MAX1 gene, 

which is bud outgrowth inhibition.  However, the expression of the SbMAX1 gene was 

not increased in repressed buds of FR light-treated and defoliated seedlings.  The MAX1 

gene has been shown to act in the bud and stem to regulate bud outgrowth (Lazar and 

Goodman, 2006).  Therefore, more studies in different tissues are required to establish 

the role of MAX1 in the inhibition of bud outgrowth by light.   

 

Recent studies indicate that apically-derived auxin inhibits bud outgrowth by indirectly 

limiting the capacity of the buds to export auxin (Lazar and Goodman, 2006; Bennett et 

al., 2006).  The MAX-related signal regulates the transport of auxin in the stem and buds 

of Arabidopsis (Lazar and Goodman, 2006; Bennett et al., 2006).  It has been 

hypothesized that the MAX1-related signal positively regulates the expression of the 

flavonoid genes in the bud and stem, and that these flavonoids interfere with the 

transport of auxin from the buds into the stem (Lazar and Goodman, 2006).  In fact, the 

level of expression of flavonoid genes is higher in the repressed buds of wild type 

Arabidopsis compared to the outgrowing buds of the max1 mutant; whereas, the level of 

expression of auxin transporter genes is higher in the outgrowing max1 mutant bud 

compared to the wild type (Lazar and Goodman, 2006).  In this study, there was little 

difference in the level of expression of SbAUX1 and SbPIN1 in the repressed buds of FR 

light-treated and defoliated seedlings compared to control, suggesting that the inhibition 

of outgrowth of these buds was not associated with changes in the level of expression of 
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the auxin transporter genes (Figs. 3.9 and 3.10).  However, the expression of the 

SbAUX1 and SbPIN1 genes was upregulated in the dormant buds of phyB-1.  The level 

of the auxin transporter genes in phyB-1 is not consistent with the status of the buds.  In 

addition, with the increased expression level of the SbMAX1 gene at 9 DAP, the level of 

the auxin transporter genes in phyB-1 should have been downregulated (Fig. 3.8).  The 

higher level of expression of the AUX1 and PIN1 genes in the repressed phyB-1 buds 

compared to rapidly elongating wild type buds could be due to the presence of a 

feedback regulatory mechanism.  For example, several branching mutants (ramosus 

(rms)) characterized by an increased branching phenotype have been identified in pea 

(Beveridge, 2000).  The RMS1 gene was cloned and is orthologous to the MAX4 gene of 

Arabidopsis encoding a carotenoid cleavage dioxygenase (Sorefan et al., 2003).  The 

expression of the RMS1 gene is increased in several rms mutants (Foo et al., 2005).  

RMS1 inhibits bud outgrowth and the increased expression of the RMS1 gene in the rms 

mutants was proposed to be due to feedback upregulation in response to unregulated bud 

outgrowth in the rms mutants (Foo et al., 2005).  Branching is regulated by several 

factors.  Therefore, the unanticipated increase in the level of the auxin transporter genes 

in the dormant phyB-1 buds may be related to internal mechanisms within the phyB-1 

plant that attempt to maintain bud outgrowth in response to other growth promoting 

signals. 

 

The expression of the SbMAX2 gene was more than two fold higher in the repressed 

buds of phyB-1, FR light treated and defoliated seedlings, consistent with its function as 
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a repressor of bud outgrowth.  Its increased expression by those different inhibitory 

mechanisms supports the hypothesis that it functions at the downstream end of the bud 

outgrowth inhibitory pathway.  In fact, Arabidopsis MAX2 acts in the shoot and likely 

plays a role in the perception or signal transduction of the MAX-related signal (Booker et 

al., 2005).  The MAX2 gene encodes an F- box protein probably involved in 

ubiquitinating proteins for degradation by the 26S proteasome (Stirnberg et al., 2002).  

However, the target protein of MAX2 has not yet been identified.  Since the max2 

mutants are characterized by increased bud outgrowth, MAX2 may target a protein or 

proteins required for promoting bud outgrowth (Stirnberg et al., 2002).   

 

In conclusion, analyses of SbTB1 and SbMAX genes suggest that the SbTB1 gene is 

involved in repressing bud outgrowth in response to inhibitory light signals, whereas the 

SbMAX2 gene is involved in both light and defoliation.  The MAX2 gene could be 

involved in suppressing bud outgrowth in response to several growth inhibiting signals.  

The involvement of the MAX-related signal in the regulation of branching by light and 

defoliation needs further investigation.  Detailed knowledge of the function of the TB1 

and MAX2 genes as well as the MAX-related signal may aid in developing crops with 

branching habits that maximize yield.   
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MATERIALS AND METHODS 

 

Plant Materials and Growing Conditions 

 

Wild type and phyB-1 mutant sorghum (Sorghum bicolor) seedlings were grown in a 

growth chamber, in 50-mL tubes filled with a growth medium prepared as described by 

Beall et al. (1991).  One seedling was grown per tube and the tubes were supported on a 

rack arranged at a density of 300 m-2.  Seedlings were grown until 9 DAP and bud 

sampling were done at 7 DAP and 9 DAP.  For FR light treatment, wild type seedlings 

were treated with supplemental FR light directed from the sides using FR light-emitting 

diodes beginning 7 DAP as described in Kebrom et al. (2006).  The light sources, 

temperature, photoperiod, photosynthetically active radiation and R:FR conditions of the 

growth chamber  are also described in Kebrom et al. (2006) (chapter II).   

 

For defoliation experiments, wild type seedlings were grown in 50-mL tubes as given 

above.  At 7 DAP, some of the seedlings were harvested, buds in the axil of the first 

leaves were excised, and their length measured (Control 7 DAP).  Then, also at 7 DAP, 

uniformly growing seedlings were selected; all the leaf blades of half of the uniformly 

growing seedlings were removed continuously for the next two days (Defoliation 9 

DAP) and the other half continued growth as a control (Control 9 DAP).  At 9 DAP, 

buds in the axil of the first leaves of the defoliated and control seedlings were excised 

and their lengths were measured.  Bud length measurements were conducted under a 
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dissecting microscope using a micrometer.  Buds longer than 3 mm were measured using 

a ruler.   

 

RNA Isolation and Gene Expression Analysis 

 

For gene expression analysis, buds in the axil of the first leaves of different samples of 

sorghum seedlings were excised under a dissecting microscope, immersed in 

lysis/binding solution (Ambion) on ice and stored at -80oC until RNA extraction.  Total 

RNA extraction was done using the Trizol method (Invitrogen).  Total RNAs were 

treated with TURBO DNase (Ambion) or RQ1 RNase–free DNase (Promega) to remove 

DNA before first strand cDNA synthesis.  First strand cDNA synthesis was performed 

using SuperScript III reverse transcriptase kit (Invitrogen) and random hexamer primers 

from about 1.5 to 2.5 µg DNase treated total RNA in a 20 µl reaction (+RT).  A similar 

reaction was also prepared for every sample without adding SuperScript III reverse 

transcriptase as a negative control for DNA contamination (-RT).  The samples were 

treated with RNase H and the synthesized first strand cDNA (+RT) and –RT was diluted 

to 80 µl with sterile water.  Gene expression analysis was accomplished by quantitative 

PCR (qPCR).  In every 10 µl qPCR reaction, 0.5 µl of the 80 µl RT (+/-) product was 

used.   

 

qPCR was run on an ABI prism 7900HT Sequence Detection System (Applied 

Biosystems).  qPCR reactions were prepared using the SYBR Green JumpStart Taq 
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ReadyMix kit (Sigma-Aldrich).  About 250-300 µM of each gene specific primer pair 

was used per reaction (Table 3.1).  Both +RT and –RT were run at the same time.  The –

RT was run to check for any genomic DNA contamination due to incomplete digestion 

of DNA from total RNA prior to cDNA synthesis.  In most of the –RT reactions, 

amplification products were not detected indicating little genomic DNA contamination.  

The dissociation curves were also analyzed to make sure that there was no non-specific 

amplification product or primer-dimer formation.  The 18S ribosomal RNA (rRNA) was 

used as an internal control.   

 

The relative level of expression of each gene in different samples was determined from 

an average of three biological replicates.  The threshold cycle value (CT) from each 

biological sample was an average of two qPCR reactions run at the same time.  The 

difference between the two qPCR CT values is an indicator of pipetting error and a 

difference of more than 0.5 log warranted a repeated measurement.  The expression 

levels reported are relative to the level of the wild type at 7 DAP in the phyB-1/wild type 

or relative to the level of control at 7 DAP in the FR light or defoliation treatments.  The 

relative level of expression in a biological sample was calculated and then the average of 

three biological replicates was determined.  The relative expression level or fold change 

of a target gene in a biological sample was calculated using the following equation: 

 

2^-((CT target gene - CT 18S) of treatment) – ((CT target gene - CT 18S) of control) 
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Table 3.1.  Branching and auxin transporter gene-specific primers used in gene 

expression analysis by qPCR 

 
 

Gene 
 

Primer Pairs (Forward/Reverse, 5’…3’) 
 
SbDRM1 

 
CATGGGTGCCAACCTCTTC/ATCGATCTAACGGTGGTTGC 

 
SbTB1 

 
TGATGAGCACCTCTCCCTCT/ GAGCTCGAACCATTTGAACC 

 
SbMAX1 

 
GCTGCCATGTCGTAGTATCG/CGAGAGATCAGTTTCCACGA 

 
SbMAX2 

 
ATGGACGAAGAGCTTCCTGA/ATTATTGGCCTCCCCAAGAC 

 
SbAUX1 

 
CCTACCTCATCAGCGTCCTC/ CAAACCACTGGATGACATGG 

 
SbPIN4 

 
CCTTGTTTCTCGCTCAGTCC/ GCGCGCTACAACACTACTCC 

 
Sb18S 

 
ATTCTATGGGTGGTGGTGCAT/TCAAACTTCGCGGCCTAAA 
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CHAPTER IV 

CELL CYCLE-RELATED GENE EXPRESSION CHANGES IN 

SORGHUM AXILLARY BUDS REPRESSED BY LIGHT SIGNALS 

AND DEFOLIATION 

 

INTRODUCTION 

 

Following their formation, axillary buds may continue growth to form an axillary shoot 

or their growth may be arrested leading to dormancy.  Growth arrest of buds is typically 

due to blockage in the cell division cycle (Anderson et al., 2001).  Cell division is a 

complex process that involves a sequence of cell cycle phases of DNA duplication (S 

phase) and mitotic division (M phase) of a cell into two daughter cells.  The transition of 

a new daughter cell following M phase to S phase is separated by a gap (G1) phase 

during which a cell increases its size and synthesizes materials required for DNA 

replication.  It is also during G1 phase that a cell makes the decision to enter or exit the 

cell cycle depending on environmental and developmental signals (Shen, 2001).  The S 

phase is separated from the M phase by the G2 phase during which a cell checks for 

successful completion of the S phase.   

 

The progression of the cell cycle is controlled by the level and activity of cyclins and 

cyclin-dependent kinases (CDKs) as well as CDK activating and inhibiting proteins 
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(Reviewed in Dewitte and Murray, 2003).  However, entry into, or exit out of, the cell 

cycle is determined by environmental and hormonal signals that act on the cell cycle 

machinery by regulating the transcription and post-transcriptional modifications of cell-

cycle related genes and proteins (Jacobs, 1995; Stals and Inze, 2001; Inze, 2005).   

 

Previous studies showed that most cells in dormant buds are arrested at the G1 phase of 

the cell cycle (Devitt and Stafstrom, 1995; Shimizu and Mori, 1998).  The mRNA levels 

of several cell cycle-related genes, such as PCNA, Histone H4, CyclinD, CyclinB and 

CDK, are very low in dormant buds of pea (Devitt and Stafstrom, 1995; Shimizu and 

Mori, 1998).  Decapitation leads to upregulation of the cell cycle-related genes and 

induction of bud outgrowth.  The results indicate that apical dominance observed in 

intact pea plants results from the direct or indirect action of apically derived auxin on 

mechanisms regulating the expression of cell cycle-related genes in the buds.   

 

Axillary buds in the phyB-1 sorghum stop growing soon after their formation (chapter 

II).  Plant growth is due to both cell division and cell expansion (Hemerly et al., 1999; 

Ingram and Waites, 2006), but it is the production of cells by the process of cell division 

that maintains the growth of a plant (Mizukami, 2001).  Therefore, it may be 

hypothesized that suspension of growth of buds in the phyB-1 is due to inhibition of cell 

production.  Inhibition of bud outgrowth in the FR light-treated and defoliated wild type 

seedlings could also be due to inhibition of cell division.  However, the inhibition of bud 

outgrowth by light involves elevated expression of the TB1 gene, while the inhibition by 
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defoliation is not associated with similar changes (chapter III).  Therefore, the 

downstream targets or components of the cell cycle machinery regulated during 

inhibition of bud outgrowth by light and other signals could be different.  To gain clues 

about the downstream targets of light signals regulating bud outgrowth, expression of the 

cell cycle-related genes was analyzed in the repressed buds of phyB-1, FR light-treated 

and defoliated sorghum seedlings.  The results show little difference in the mRNA level 

of cell cycle-related genes in the repressed buds of phyB-1 compared to outgrowing buds 

of wild type sorghum seedlings.  However, the expression of the cell cycle-related genes 

was dramatically reduced in the repressed buds of FR-treated and defoliated sorghum 

seedlings.   

 

RESULTS  

 

Identification of Cell Cycle-Related Genes in Sorghum 

 

Several cell cycle-related ESTs of sorghum were identified by Blast searches.  There is 

high homology between the sorghum ESTs and maize or rice cell cycle related-genes.  

Since nucleotide identity is very high, only the accession no., nucleotide identity and E-

values are shown in Table 4.1.  The Proliferating Cell Nuclear Antigen (PCNA) and 

Histone H4 (His4) are required for DNA replication and modification during the S 

phase, respectively.  Since it is only expressed during the S phase, His4 is a marker for 

the S phase (Devitt and Stafstrom, 1995).  Cyclin D2 (CycD2) is a G1 cyclin and its 



 

 

72

expression in maize is stimulated by sugar and cytokinin (Gutierrez et al., 2005).  Cyclin 

B (CycB) is a mitotic cyclin and it is expressed during the G2 and M phase of the cell 

cycle (Dewitte and Murray, 2003).  Sorghum ESTs representing A and B type Cyclin 

Dependent Kinases (CDKs) were also identified.  The mRNA level of CDKA has been 

shown to be almost the same during the different phases of the cell cycle; however, 

CDKB is only expressed during the S, G2 and M phases (Dewitte and Murray, 2003).   

 

 

 

 

Table 4.1.  Accession no., length, % identity and E-value of sorghum cell cycle-

related genes 

Gene 

 

Sorghum EST 

accession no. 

length (nt) 

 

Homology (Species, 

accession no.) 

 

% identity,  

E-value 

 

SbHis4 

 

CF771582 

 

487 

 

Maize, M13370 

 

97%, 1e-121 

 

SbPCNA 

 

CN131224 

 

805 

 

Maize, X79065 

 

95%, 0.0 

 

SbCycD2 

 

BI140861 

 

565 

 

Maize, AF351189 

 

95%, 7e-133 

 

SbCycB 

 

CN128140 

 

785 

 

Maize, U10079 

 

89%, 5e-150 

 

SbCDKB 

 

BG487760 

 

562 

 

Rice, AB239918 

 

92%, 2e-108 
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The five cell cycle-related genes were chosen for analyses by qPCR because they 

represent the different phases.  In addition to indicating changes in their expression level 

in dormant and growing tissues, they may also show if dormant buds are blocked at a 

specific stage during the cell cycle by different treatments.  The genes described are also 

among those studied in growing and dormant buds of pea (Devitt and Stafstrom, 1995; 

Shimizu and Mori, 1998).  This allows a comparison of the changes in the level of 

expression of these genes in growing and dormant buds of sorghum and pea.   

 

Expression Level of Cell Cycle-Related Genes in the Repressed Buds of phyB-1, FR 

Light-Treated and Defoliated Seedlings of Sorghum 

 

Buds in the axil of the first leaves of phyB-1 and the wild type sorghum seedlings grew 

at the same rate until 7 DAP.  At 9 DAP, the buds in phyB-1 became dormant, while the 

buds in the wild type continue growing (chapter II).  At both 7 DAP and 9 DAP, there 

was little difference in the expression level of several cell cycle-related genes in the buds 

of phyB-1 and the wild type (Fig. 4.1).  At 7 DAP, the levels of most of the cell cycle-

related genes were slightly upregulated in the buds of phyB-1 compared to the level in 

the buds of the wild type seedlings.  The level of expression of the CycD2 gene was 

upregulated (2.3 fold higher) in the buds of the wild type seedlings at 9 DAP compared 

to the level at 7 DAP.  However, in phyB-1, the level of CycD2 at 9 DAP was only 

slightly higher compared to the level at 7 DAP.  In fact, when comparing the level of the 

cell cycle-related genes at 9 DAP between the repressed buds of phyB-1 and growing 
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buds of the wild type, only CycD2 showed an appreciable difference.  There was little 

difference in the level of expression of the other four genes in the buds. 

 

Buds in the axil of the first leaves of the wild type seedlings treated with FR light or thet 

were defoliated became dormant at about 9 DAP (chapters II and III).  The level of 

expression of the cell cycle-related genes was dramatically reduced in repressed buds of 

FR light-treated and defoliated seedlings (Fig. 4.2 and Fig. 4.3).  There was a greater 

reduction in the level of cell cycle-related mRNAs in the buds of defoliated seedlings 

compared to those treated with FR light.   

 
Gene expression changes over a longer period of growth were monitored in phyB-1 to 

determine if trends in expression were persistent.  The buds in the first leaf axil of phyB-

1 seedlings became dormant after 7 DAP (chapter II).  At 9 DAP, the level of expression 

of SbDRM1 was upregulated indicating the dormant status of the buds.  The expression 

level of the SbDRM1 gene remained high even after 9 DAP (Fig. 4.4A).  However, the 

levels of expression of most of the cell cycle-related genes were no reduced greatly even 

at 15 DAP (Fig. 4.4B).   
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Figure 4.1. Relative expression level of cell cycle-related genes in the buds from the 

first leaf axil of phyB-1 and wild type sorghum seedlings. Bars are mean ± SE of the 

mean, n= 3 biological replicates. 
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Figure 4.2. Relative expression level of cell cycle-related genes in the buds from 

the first leaf axil of FR light-treated and control sorghum seedlings. Bars are 

mean ± SE of the mean, n= 3 biological replicates. 
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Figure 4.3. Relative expression level of cell cycle-related genes in the buds from the 

first leaf axil of defoliated and control sorghum seedlings. Bars are mean ± SE of the 

mean, n= 3 biological replicates. 
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Figure 4.4. Relative expression level of the sorghum dormancy associated (DRM1) 

(A) and cell cycle-related (B) genes in the buds from the first leaf axil of phyB-1 

seedlings.  Results are from one biological sample. 
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DISCUSSION  

 

Bud outgrowth is inhibited in the phyB-1 mutant as well as in the FR light-treated and 

defoliated wild type seedlings of sorghum.  Suspension of growth in these buds is 

reflected by the high level of expression of the SbDRM1 gene, which is a maker for 

dormancy (chapters II and III).  Growth suspension or dormancy is due to inhibition of 

cell division (Anderson et al., 2001).  Signals inhibiting bud outgrowth may act on the 

components of the cell division machinery to stop cell division and hence prevent bud 

outgrowth.   

 

Expression analyses of several key cell division-related genes indicate that there are 

differences in the mechanisms by which bud outgrowth is inhibited by different signals.  

Although the buds of phyB-1 stop growing at about 9 DAP (chapter II), the level of 

expression of the cell cycle genes was not reduced (Fig. 4.1).  Conversely, inhibition of 

bud outgrowth induced by FR light and defoliation treatments was associated with 

dramatic reductions in the expression level of genes associated with the cell cycle (Figs. 

4.2 and 4.3).  Such down-regulation is similar to the results observed with decapitation 

experiments in pea (Devitt and Stafstrom, 1995; Shimizu and Mori, 1998).  They found 

that the level of expression of cell cycle-related genes is very low in the dormant buds of 

intact pea plants, and is upregulated when buds are induced to grow by decapitation.  To 

confirm that the cell cycle-related genes are continuously expressed in the phyB-1 buds, 

their expression was analyzed in the phyB-1 buds until 15 DAP (Fig. 4.4).  These results 
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demonstrate that the level of expression of the cell cycle-related genes, even at 15 DAP, 

changed only slightly from 7 DAP - a time before the buds became dormant.  The 

expression level of the DRM1 gene was high from 9 DAP and beyond, indicating that 

the dormant status of the buds during analyses period.  These results suggest that 

inhibition of bud outgrowth in the phyB-1 buds is not associated with suppression of the 

expression of cell cycle-related genes.  The slight upregulation of most cell cycle-related 

genes in the phyB-1 buds at 7 DAP may be related to the rate of growth of the buds.  

Prior to 7 DAP, the growth rate of phyB-1 buds is slightly higher than that of the wild 

type (data not shown).   

 

Expression analyses of branching-related genes showed that the suppression of bud 

outgrowth in the phyB-1 mutant sorghum is associated with high level expression of the 

TB1 gene in those buds (chapters II and III).  TB1 has been documented as a repressor of 

growth (Doebley et al., 1997; Hubbard et al., 2002; Takeda et al., 2003).  TB1 belongs to 

the TCP family of proteins identified in several plant species (Cubas et al., 1999; Cubas, 

2002).  There are two classes of TCP proteins (Class I and Class II).  The Class I 

proteins stimulate growth; whereas, those of Class II repress growth (Li et al., 2005).  

Several TCP proteins have been shown to function as transcription factors and act as 

enhancers or repressors of gene expression (Kosugi and Ohashi, 1997; Gaudin et al., 

2000; Kosugi and Ohashi, 2002; Li et al., 2005).  Several target genes of the TCP 

proteins have been identified and most are growth or cell cycle-related genes (Kosugi 

and Ohashi, 1997; Gaudin et al., 2000; Li et al., 2005). 
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Lukens and Doebley (1999) hypothesized that TB1 may inhibit the growth of an organ 

by suppressing cell division.  They analyzed the expression of the CyclinB gene in the 

ear primordia of maize plants containing TB1 alleles of teosinte (TB1-teosinte) or maize 

(TB1-maize).  The TB1-maize allele is expressed two fold higher than the TB1-teosinte 

allele.  Maize plants with the TB1-maize allele have ear primordia with only pistillate 

florets; whereas, those with the TB1-teosinte allele posses both staminate and pistillate 

florets (Doebley et al., 1997; Lukens and Doebley, 1999).  Higher expression of the TB1 

gene in ear primordia suppresses the growth of stamens and lodicules (Doebley et al., 

1997).  However, there was no significant difference in the level of expression of 

CyclinB between the ear primordia of maize plants with TB1-maize or TB1-teosinte 

allele (Lukens and Doebley, 1999).  The authors suggested the need for more studies to 

determine whether TB1 acts on cell division or some other mechanism that inhibits the 

growth of axillary organs.  Findings from this study indicate that the repression of bud 

outgrowth in the phyB-1 is associated with the failure to repress TB1 gene expression in 

the buds (chapters II and III).  Analyses of the expression of cell cycle-related genes, 

including the maize CyclinB homolog studied by Lukens and Doebley (1999), showed 

little difference in the repressed buds of phyB-1 and growing buds of the wild type 

seedlings (Fig. 4.1).  Therefore, the results reported here are consistent with those 

described in the TB1 studied in maize.  The lack of correlation between TB1 expression 

and repression of cell cycle-related genes suggest that TB1 may repress bud outgrowth 

by mechanisms unrelated to the regulation of these genes.  This hypothesis is further 

supported by the findings from the defoliation experiments.  Repression of bud 



 

 

82

outgrowth by defoliation is not associated with changes in the expression of the TB1 

gene (chapter III).  Inhibition of bud outgrowth by defoliation is associated with down-

regulation of the cell cycle-related genes.  These results suggest that molecular 

mechanisms regulating bud development by phyB may be mediated by TB1 and that bud 

dormancy is initiated or occurs with little change in the expression level of cell cycle-

related genes.  However, the mechanisms of repression of bud outgrowth in the phyB-1 

and TB1 mutants need further analyses to determine the downstream targets. 

 

Although the buds of phyB-1 become dormant at 9 DAP, when their length is about 1.5 

mm, they grow to a length of 5-10 mm by about one month after planting indicating that 

the buds of phyB-1 do not stop growing completely (data not shown).  In fact, by 

definition, dormancy is the absence of visible growth of an organ containing a meristem 

over a short period of time, but buds may continue growth at a very slow rate and visible 

changes in growth may be observed over a long period of time (Lang, 1987).  This 

increased length of the buds of phyB-1 observed over longer durations demonstrates that 

part of the bud is continuing cell division or elongation.  Therefore, continued expression 

of the cell cycle-related genes is not inconsistent with the developmental program of this 

structure.    

 

It is well established that the rate of cell division varies in the different zones of a shoot 

apical meristem (Reddy et al., 2004).  Cells in the peripheral zones of the apical 

meristem divide at a more rapid rate than those in the central zone (Reddy et al., 2004).  
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Therefore, the inhibition of bud outgrowth in phyB-1 could be due to inhibition of cell 

division in specific regions of the bud probably the peripheral zone or the zone from 

which primordia arise.  Transgenic tobacco plants expressing the CycD2 gene of 

Arabidopsis showed an increased rate of leaf initiation (Cockcroft et al., 2000).  The 

expression level of SbCycD2 in the wild type bud was enhanced at 9 DAP when the buds 

were rapidly elongating.  However, the level was not enhanced in the repressed phyB-1 

buds.  Thus, the suspension of growth in phyB-1 buds may be associated with the 

expression level of SbCycD2 in specific regions of the buds.  This could be analyzed by 

using in situ hybridization to investigate where SbTB1, SbDRM1, SbCycD2 as well as 

other genes are specifically expressed in the buds.   

 

It is interesting to observe that the expression level of the cell cycle-related genes in 

phyB-1, FR treated and defoliated seedlings at 9 DAP is correlated with the relative level 

of expression of the SbDRM1 gene (Table 4.2).  The level of SbDRM1 expression is 

highest in the buds of defoliated seedlings followed by FR treatment and lowest in phyB-

1.  The level of reduction of the cell cycle-related genes is also highest in the buds of 

defoliated seedlings followed by FR treatment and little changed in phyB-1.  The DRM1 

gene is a marker for dormancy and the high level of expression in the defoliated 

seedlings, along with dramatic reductions in the level of expression of cell cycle-related 

genes may indicate a stronger arrest or that more cells or regions of the bud are arrested.  

On the other hand, light signals may inhibit growth in specific regions of the bud or in 

specific cells.   
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Table 4.2.  Expression fold-changes of DRM1 and cell cycle-related genes 

in the buds of phyB-1, FR-treated and defoliated seedlings relative to wild 

type or control at 9 DAP. 

 

 

Gene 

 

phyB-1/wild-type 

 

FR/Control 

 

Defoliation/Control 

 

SbDRM1 

 

15.3 

 

22.0 

 

32.8 

 

SbPCNA 

 

-1.6 

 

-4.1 

 

-6.5 

 

SbHis4 

 

-1.4 

 

-14.1 

 

-26.8 

 

SbCycD2 

 

-2.0 

 

-4.5 

 

-8.3 

 

SbCycB 

 

1.1 

 

-6.8 

 

-43.8 

 

SbCDKB 

 

1.2 

 

-3.9 

 

-7.2 
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Inhibition of bud outgrowth in the wild type seedlings by FR treatment is associated with 

the reduction in the level of expression of the cell cycle-related genes.  These results are 

different from the results in the phyB-1 mutants.  The shade avoidance response is 

primarily mediated by phyB (Franklin and Whitelam, 2005).  However, the presence of a 

shade avoidance response in the phyB mutant of Arabidopsis at low R:FR indicates that 

other phytochromes are involved in the process (Sullivan and Deng, 2003; Franklin and 

Whitelam, 2005).  In fact, Arabidopsis phyA phyB double mutants are more elongated 

than the single phyB mutant (Johnson et al., 1994).  Gene expression changes in the buds 

of FR light-treated sorghum seedlings suggest that photoreceptors other than phyB are 

also involved in mediating the response of bud outgrowth to supplemental FR light.   

 

Continuous supplemental FR light induces a high irradiance response (HIR) which is 

mediated by phytochrome A (phyA) and affects many processes including altering the 

mRNA abundance of several genes, anthocyanin content, stem growth and floral 

development in different species (Casal, et al., 1998; Yanovsky et al., 1998).  Bean 

(Phaseolus vulgaris) plants grown in white light supplemented with FR light showed 

enhanced elongation of internodes due to both increased cell division and cell elongation 

(Beall et al., 1996).  Increased stem elongation is expected to be associated with 

increased sink strength that will divert resources into the growing stem at the expense of 

other structures, for example buds.  However, Beall et al. (1996) did not address the 

effect of supplemental FR light on bud outgrowth or branching.  The response of wild 

type seedlings to supplemental FR light includes increased seedling height which could 
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be due to both shade avoidance responses mediated by phyB and HIR mediated by 

phyA.  The expression patterns of several branching and cell cycle-related genes have 

shown that the inhibition of bud outgrowth by FR light similar to both the inhibition in 

phyB-1 and defoliation.  Repression of bud outgrowth by FR is similar to that observed 

in phyB-1 because in both cases TB1 gene expression is maintained at high level.  FR-

mediated inhibition of bud outgrowth also is similar with defoliation-induced bud 

outgrowth inhibition because of the reduction in the level of the cell cycle-related genes.  

Buds released from inhibitory signals may not continue growth due to resource 

limitations (McIntyre, 2001).  Growth inhibition following defoliation could be due to a 

drastic reduction in photosynthesis (Gautier et al., 1999; Schnyder and de Visser, 1999) 

and the inhibition of bud outgrowth by defoliation in the wild type sorghum seedlings is 

probably due to limitations in carbohydrate supply.  Increased growth of the main shoot 

in the FR-treated seedlings could also enhance the sink strength of the main shoot 

depleting carbohydrates which could have been used for bud outgrowth.  Therefore, the 

suppression of bud outgrowth by FR treatment may be due to the combined effects of 

inactivation of phyB, and associated growth suppression by TB1, and carbohydrate 

supply limitations due to enhanced growth of the main shoot.   

 

In conclusion, analyses of cell cycle-related gene expression changes in the repressed 

buds of phyB-1, FR-treated and defoliated sorghum seedlings revealed variations in 

molecular mechanisms regulating bud development in response to different signals.  

Variations in cell cycle-related gene expression in the phyB-1 and FR-treated buds 
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demonstrated the involvement of photoreceptors, other than phyB, in regulating 

branching in response to light signals and shows that the mechanisms of regulation vary 

depending on the photoreceptors.  Differences in the level of DRM1 and cell cycle-

related genes in the buds of phyB-1, FR-treated and defoliated seedlings also suggest 

variations in the targets of those different signals within the bud.   

 

MATERIALS AND METHODS 

 

The plant material, growing conditions, sampling and methods of analysis of gene 

expression by qPCR are describe in the materials and methods sections of chapters II 

and III.  The levels of expression of the cell cycle-related genes were analyzed in the 

buds of phyB-1 and FR light-treated and defoliated wild type seedlings.  In addition, the 

levels of expression of the cell cycle-related genes were analyzed in the buds in the axil 

of the first leaves of phyB-1 seedlings starting at 7 DAP and every other day until 15 

DAP.  The phyB-1 seedlings were grown in trays containing 7-cm-deep cells, and the 

growing medium and growth conditions were as described in the materials and methods 

section of chapter II.  The gene-specific primers of cell cycle-related genes used in qPCR 

analyses are shown in Table 4.3.  18S ribosomal RNA was used as an internal control.   
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Table 4.3.  Cell cycle-related gene-specific primers used in gene expression 

analyses by qPCR 

 
 

Gene 

 

Primer Pairs (Forward/Reverse, 5’…3’) 

 

SbHIS4 

 

GACAACATCCAGGGCATCA/ GCGGGTCTCCTCGTAGATG 

 

SbPCNA 

 

TCCACCTCTGGAGAAATTGG/AACCGGCTCTTGCATCTCTA 

 

SbCycD2 

 

TTACAATTTCGCACCGTTGA/GCTGAGTCATCCAAGCTCTGT

 

SbCycB 

 

TCAAGCATCACACAGGCTTC/AACCCTCAGCTTGCTCTCAG 

 

SbCDKB 

 

GGTGGCGCTGAAGAAGAC/ATGGAGTGGGAGAGGAGGTT 

 

Sb18S 

 

ATTCTATGGGTGGTGGTGCAT/TCAAACTTCGCGGCCTAAA 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Shoot branching is an important agronomic trait that determines resource use efficiency 

and yield of crop plants.  In-depth knowledge of the development of branches will help 

in modifying the shoot architecture of crops to maximize yield.  The development of 

branches has been investigated systematically for more than 70 years.  It involves the 

initiation of an axillary meristem and the outgrowth of buds and is regulated by complex 

interactions among several environmental and hormonal signals, and genetic 

mechanisms.  Although environmental signals are key determinants of the development 

of an axillary shoot, apart from their effects on the number of branches produced by a 

plant, little has been done to understand how these signals regulate branching at the 

molecular level.  The efforts of past studies have concentrated on molecular mechanisms 

regulating branching in response to hormonal signals and regulation by genetic 

mechanisms.  Without a complete understanding of the regulation of branching by 

environmental, hormonal, and genetic factors and their interactions, yield improvement 

by manipulating the branching habit of plants may not be achieved easily.  One of the 

most important environmental factors that regulate branching is light.  The objective of 

this project was to investigate molecular mechanisms associated with the regulation of 

branching by light signals.   
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Mutant analysis has been one of the approaches used to study molecular mechanisms 

regulating plant developmental processes.  The enhanced apical dominance of 

phytochrome B null mutant sorghum (phyB-1) as a model system was used for this 

study.  Analysis of the phyB-1 mutant sorghum indicated that buds are formed normally 

and that the enhanced apical dominance was due to inhibition of bud outgrowth.  

Therefore, the phyB-1 mutant sorghum is useful for analyzing the regulation of bud 

outgrowth by light signals.   

 

It is well established that high planting density or supplemental FR light treatments 

inhibit bud outgrowth.  While buds in the phyB-1 sorghum remain dormant during the 

vegetative stage, buds in the wild type outgrow and produce branches. The enhanced 

apical dominance of phyB-1 was simulated in the wild type by growing wild type 

seedlings at high planting density or with supplemental FR light to compare with the 

inhibition of bud outgrowth in phyB-1. 

 

One of the approaches used to study branching in dicots was decapitation; however, it is 

not possible to decapitate sorghum seedlings.  Therefore, defoliation of wild type 

sorghum seedlings was employed to compare molecular changes associated with the 

regulation of branching by light with other signals.  Defoliation of wild type seedlings 

inhibited bud outgrowth.  However, the mechanism by which defoliation affects bud 

outgrowth is not known.  Therefore, in this study, phyB-1, high planting density, 
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supplemental FR light, and defoliation were used to investigate molecular mechanisms 

regulating bud outgrowth in response to light signals.   

 

Characterization of enhanced apical dominance of phyB-1 showed that the buds in the 

first leaf axil of the phyB-1 mutant sorghum grow until 7 DAP and are comparable in 

size with the wild type buds at the same position.  However, buds in phyB-1 become 

dormant by 9 DAP; whereas, buds in the wild type continue growth.  By treating wild 

type seedlings with FR light or defoliation at 7 DAP, it was possible to inhibit bud 

outgrowth at 9 DAP.  A plant density of 3000 seedlings m2 inhibited bud outgrowth at 

about 9 DAP, thus establishing a time point for studying bud outgrowth in phyB-1 

mutant and the wild type seedlings grown at high planting density, treated with FR light 

and defoliation.   

 

Direct assessment of dormant vs. growing buds requires measuring bud elongation over 

relatively long period of time.  However, it was found that expression of the sorghum 

DRM1 gene correlated with growth status and it was therefore possible to determine if 

the buds were growing or dormant at a single time point by molecular rather than 

morphological means.  Therefore, one of the achievements of this project was the 

establishment of a model system and sampling times that will help study buds just before 

and after their fate is determined in response to inhibitory signals.  Additionally, the 

identification of the DRM1 gene in sorghum and establishing it as a molecular marker 
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for determining the growing/dormant status of buds will serve as a tool useful for 

studying the process.   

 

Using this established sorghum system as a model, the expression of several branching 

and cell cycle-related genes was investigated.  One of the most important discoveries of 

was the association of the branching inhibiting gene, TB1, with the enhanced apical 

dominance of the phyB-1 mutant and its specific involvement in the inhibition of bud 

outgrowth by light signals.  Based on the results of the expression analyses of the TB1 

gene in the different systems, a working hypothesis that “phytochrome B represses TB1 

gene expression to induce bud outgrowth” was developed, providing direction for future 

research.  TB1 is one of the genes that contributed to the domestication of maize from its 

wild ancestor teosinte (Doebley et al., 1995).  A detailed understanding of the regulation 

of TB1 gene expression could help in developing cultivars with an architecture that 

maximizes yield.   

 

Recent studies indicate that the MAX-related signal is required for the inhibition of bud 

outgrowth by auxin (Leyser, 2005).  It is not known if the MAX-related signal also 

mediates other signals which inhibit branching.  Among the MAX genes, MAX2 encodes 

an F-box protein that may function in the perception or signal transduction of the MAX-

related signal (Stirnberg et al., 2002).  Expression analyses in the sorghum system 

showed that suppression of bud outgrowth by light or defoliation is associated with 

increased expression of the MAX2 gene.  The results suggest that the MAX2 gene acts 
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downstream of several signals inhibiting branching.  Additional studies are needed to 

identify targets of MAX2 as well as the role of the putative MAX-related hormone or 

signal in the regulation of bud outgrowth by light and other factors.   

 

Expression analyses of cell cycle-related genes revealed interesting results that will 

contribute to studies in phytochrome regulation of growth in general and bud outgrowth 

in particular.  The suppression of bud outgrowth in the phyB-1 sorghum is not associated 

with changes in the expression level of several cell cycle-related genes.  However, the 

upregulation of the CycD2 gene in the growing buds of the wild type seedlings, but not 

in the dormant buds of phyB-1, indicate that the CycD2 gene could be a target for the 

regulation of bud outgrowth by light signals perceived by phyB.   

 

The high level of expression of the DRM1 gene accompanied by dramatic reduction in 

the expression level of the cell cycle-related genes in the buds of defoliated seedlings 

compared to phyB-1 indicate variations in the type of inhibition of those buds.  These 

results raise the question of whether there is variation in the regions within the buds 

targeted by different inhibitory signals.  For example, leaf primordia vs. meristem or 

peripheral vs. central zones of a meristem.  Further studies may reveal interesting 

biological processes associated with the suppression of bud outgrowth by light and other 

signals and help in identifying downstream targets for manipulating the branching habits 

of crops.   
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Another interesting finding concerns the molecular changes associated with the 

inhibition of bud outgrowth by FR treatment and high planting density.  Although past 

studies have indicated that the inhibition of branching at high planting density or by FR 

light enrichment to be due to the shade avoidance response, similar to the constitutive 

shade avoidance phenotype of the phyB-1 mutant, results of this study suggest the 

involvement of additional mechanisms.  For example, the expression level of cell cycle-

related genes is down-regulated in FR-treated but not in phyB-1 buds and the expression 

level of TB1 is higher in phyB-1 buds compared with the buds of the wild type seedlings 

grown at high plant density or with supplemental FR light.  Further study may help 

identify other density-derived and FR light-induced mechanisms that inhibit bud 

outgrowth. 

 

Although the objective of the defoliation treatment was to compare the molecular 

changes associated with the repression of bud outgrowth by light and signals other than 

light, it opened an opportunity for future research.  Recovery from defoliation is one of 

the important aspects in grazing or range land management and many other aspects of 

crop production.  The effect of defoliation on tiller or branch growth has been 

investigated only at the whole plant level.  Findings from this study demonstrate that it is 

worthwhile to explore signal transduction and response-regulation associated with the 

inhibition of bud outgrowth by defoliation.  Such investigations could help in developing 

management strategies and/or new cultivars (using molecular tools) that will respond to 

defoliation as desired.   
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This study is the first to investigate the molecular changes associated with repression of 

bud outgrowth by light signals.  The study benefited enormously from the availability of 

a well studied and characterized phyB mutant sorghum with enhanced apical dominance 

(Pao and Morgan, 1986; Childs et al., 1991, 1997; Foster et al., 1994; Finlayson et al., 

1999) and sorghum ESTs available in the data base (Mullet et al., 2001; Pratt et al., 

2005).  The findings and approaches used will contribute significantly toward the 

complete understanding of the regulation of development of plant architecture by light 

and other signals. 
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