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ABSTRACT

Direct Tensor Expression by Eulerian Approach for Constitutive Relations

based on Strain Invariants in Transversely Isotropic Green Elasticity:

Finite Extension and Torsion. (December 2006)

Min Jae Song, B.S. Hanyang University

Chair of Advisory Committee: Dr. K.R.Rajagopal

It has been proven by J.C.Criscione that constitutive relations(mixed approach) based

on a set of five strain invariants (β1, β2, β3,β4, β5) are useful and stable for experi-

mentally determining response terms for transversely isotropic material. On the other

hand, Rivlin’s classical model is an unsuitable choice for determining response terms

due to the co-alignment of the five invariants (I1, I2, I3, I4, I5). Despite this, however,

a mixed (Lagrangian and Eulerian) approach causes unnecessary computational time

and requires intricate calculation in the constitutive relation. Through changing the

way to approach the derivation of a constitutive relation, we have verified that using

an Eulerian approach causes shorter computational time and simpler calculation than

using a mixed approach does. We applied this approach to a boundary value problem

under specific deformation, i.e. finite extension and torsion to a fiber reinforced cir-

cular cylinder. The results under this deformation show that the computational time

by Eulerian is less than half of the time by mixed. The main reason for the difference

is that we have to determine two unit vectors on the cross fiber direction from the

right Cauchy Green deformation tensor at every radius of the cylinder when we use a

mixed approach. On the contrary, we directly use the left Cauchy Green deformation

tensor in the constitutive relation by the Eulerian approach without defining the two

cross fiber vectors. Moreover, the computational time by the Eulerian approach is
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not influenced by the degree of deformation even in the case of computational time

by the Eulerian approach, possibly becoming the same as the computational time by

the mixed approach. This is from the theoretical thought that the mixed approach

is almost the same as the Eulerian approach under small deformation. This new

constitutive relation by Eulerian approach will have more advantages with regard

to saving computational time as the deformation gets more complicated. Therefore,

since the Eulerain approach effectively shortens computational time, this may enhance

the computational tools required to approach the problems with greater degrees of

anisotropy and viscoelasticity.
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CHAPTER I

INTRODUCTION

Many materials which exhibit isotropic or anisotropic behavior have been studied

with strain energy function based on invariants, which are kinematic scalars that

are invariant under permissible symmetry transformation, in Green(hyper) Elasticity.

Through many years, I1, I2 . . . of invariants have been chosen, but it was shown by

J.C.Criscione that these invariants were unsuitable choices for experimental analysis

due to co-alignment. Though these do not seem to be theoretically inaccurate, a small

experimental error causes significant error in response functions, and hence we can

say the invariants were poorly chosen for experimental determination of constitutive

relation.Before considering anisotropy, it is helpful to consider isotropy because it is

a basic way to understand material symmetry.

A. Isotropy

Isotropic material has the same responses for all direction at a point belonging to

the body. In isotropic material, the functional form of strain energy is based on 3

invariants, which is calculated from characteristic equation for Right Cauchy Green

deformation tensor(C). Corresponding to these three invariants (I1 ≡ tr(C), I2 ≡
1
2
((tr(C))2 − tr(C2)), I3 ≡ det(C)), constitutive relation was modeled as[11]

T =
2

I
1

2

3

(

(
∂W

∂I1
+ I1

∂W

∂I2
)B − ∂W

∂I2
B2 + I3

∂W

∂I3
I
)

(1.1)

The journal model is IEEE Transactions on Automatic Control.
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For incompressible material,

T =
2

I
1

2

3

(

(
∂W

∂I1
+ I1

∂W

∂I2
)B − ∂W

∂I2
B2
)

− pI (1.2)

Finite deformation of isotropic materials was studied by R.S.Rivlin and D.W.Saunders[3].

They showed a way to find response functions(∂W
∂I1

,∂W
∂I2

)1 by biaxial testing of highly

incompressible elastic materials. The choice of invariants, however, is suitable for

only rubber like materials where I1, I2> 5 and then only for shearing type deforma-

tions which are not axially symmetric.[5] Because of co-alignment of invariants ,the

response terms are largely perturbed by a small experimental measurement error. In

[5], in order to show co-alignment of invariants, “covariance” was defined between

two tensors such that,

RC(A1,A2) =
abs(tr(AT

1 A2))

|A1||A2|
(1.3)

The range of this covariance is from zero to one, and two tensors are said to be co-

linear or orthogonal, if covariance is one or zero. By this covariance, it has been shown

that error is magnified by the meaningful factor(1 − RC(dev(B), dev(B−1))2)−1/22.

Thus, if covariance is one, error will go to infinity. In fact, from[5], RC(dev(B), dev(B−1))

for biaxial stretch is very high (0.6 ∼ 1.0), so small experimental error causes signifi-

cant error for response terms.

To solve the problem in co-alignment, the idea of Hencky(Natural) Strain(ln(V))

was used and choice of three invariants(K1 ≡ tr(η),K2 ≡ |dev(η)|,andK3 ≡ 3
√

6det(Φ))3

1W is strain energy function in terms of I1 and I2.
2dev(B) = B − 1

3
tr(B)I

3η = ln(V) and Φ = dev(η)
K2
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proved mutual orthogonality.[1] And constitutive relation was modeled as [1],[6]

T =
1

J

∂W

∂K1
I +

1

J

∂W

∂K2
udev(lnV) − 3

J

∂W

∂K3

√

1 −K2
3

K2
cudev(lnV)4 (1.4)

Moreover, direct tensor expression for natural strain showed fast and accurate ap-

proach to exact natural strain for many tests.[6]

B. Transverse Isotropy

In a study for transversely isotropic behavior which is the simplest anisotropic be-

havior, and for transversely isotropic material, which has preferred direction and

responses that are independent on rotation by preferred direction5, Spencer showed

that strain energy depends on preferred fiber direction in reference configuration and

right Cauchy Green deformation tensor(C).[2] Thus, strain energy function was de-

fined as W(I1,I2,. . . ,I5) corresponding to five invariants 6. Moreover, constitutive

relation was determined as

T =
1

J

5
∑

i=1

∂W

∂Ii
Ãi, T = −pI +

5
∑

i=2

∂W

∂Ii
Ãi (1.5)

4

udev(A) = (
√

dev(A) : dev(A))−1dev(A)

cudev(A) =
√

6I+9
√

6det(udev(A))udev(A)−3
√

6udev
2

(A)

3
√

1−54(det(udev(A)))2

5This explanation, in fact, is for rotationally transversely isotropic material. The
meaning of general transversely isotropic material is that, in addition to rotational
transverse isotropy, if body is changed as the front parts to the rear parts along
the preferred direction, the body still has same responses which are independent on
rotation by the preferred axis.(i.e., reflection with mirror plane normal to axis.)

6I1 ≡ tr(C), I2 ≡ 1
2
((tr(C))2 − tr(C2)), I3 ≡ det(C), I4 ≡ M · CM , and I5 ≡

M · C2M
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Ã1 = 2B

Ã2 = 2(I1B − B2)

Ã3 = 2I3I

Ã4 = 2I4m ⊗m

Ã5 = 2I4(Bm⊗ m + m⊗ Bm)

(1.6)

If we put Ãi to both right and left sides in this constitutive relation, and then we

obtain matrix system such as

[tr(TT Ãi)]5×1 = [tr(Ã
T

j Ãi)]5×5[
∂W

∂Ij
]5×1 (1.7)

Because this system has high condition number7, small measurement error in stress

will make huge error of response terms. Furthermore, in order to determine functional

form of strain energy by test, we fix four of five invariants, but even simple uniaxial

test perturbs four of five invariants. In order to solve the problem in co-alignment

of invariants[5], the strain energy function was redetermined in chapter 3.C based on

five strain invariants in chapter 3.B, which are first one is related to incompressibility,

the second one is fiber stretch, the third one is stretch on cross fiber directions, the

fourth one is shear along fiber direction, and the fifth one is relation between cross fiber

stretch and along fiber shear. And based on these invariants, functional form of strain

energy was determined as polynomial form (3.21). From constitutive relation(3.31),

Ai have been verified to be orthogonal to each other, and using these five invariants

have been shown to have an advantage of experimental relevance whereas W, which

is function of I1,I2,. . . ,I5, doesn’t.[4]

7Condition number is to provide sensitivity of perturbation of a matrix system,
which is expressed as k = ‖A‖‖A−1‖
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C. Orthotropy

Orthotropic material is macroscopically considered as having a large number of lam-

inae which are stacked with the fiber aligned in two different directions, that is,

a laminate has two preferred directions.(M1,M2)[2] Strain invariants are based on

seven invariants such as W = W(I1, I2, I3, I4, I5, I6, I7)
8. Based on these, constitutive

relation was determined as[8]

T =
1

J

7
∑

i=1

∂W

∂Ii
Âi, T = −pI +

7
∑

i=2

∂W

∂Ii
Âi (1.8)

Â1 = 2B, Â2 = 2(I1B − B2), Â3 = 2I3I

Â4 = 2I4m1 ⊗m1, Â5 = 2I4(Bm1 ⊗m1 + m1 ⊗ Bm1)

Â6 = 2I6m2 ⊗m2, Â7 = 2I6(Bm2 ⊗m2 + m2 ⊗ Bm2)

(1.9)

In this case, similarly because of co-alignments of invariants, significant error of re-

sponse terms occurs for experimental analysis. In order to minimize “covariance”(co-

alignment), six strain invariants were introduced as

α1 = ln J, α2 = ln(λ
3

2

M), α3 = ln(ζ2)

α4 = φMS, α5 = φMN , α6 = φSN

W = W(α1, α2, α3, α4, α5, α6)

(1.10)

α1,2,3 are related to normal strain and α4,5,6 are related to shear strain. Also consti-

tutive relation is

T =
1

J

6
∑

i=1

∂W

∂αi
Ǎi, T = −pI +

6
∑

i=2

∂W

∂αi
Ǎi (1.11)

Ǎ1 = I, Ǎ2 = m ⊗m − 1

2
(n⊗ n + s ⊗ s) (1.12)

8I6 = M2 ·CM2, I7 = M2 · C2M2
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Ǎ3 = n ⊗ n + s⊗ s, Ǎ4 = λ
− 3

2

M ζ−1(m ⊗ s + s⊗ m) (1.13)

Ǎ5 = λ
− 3

2

M (α6ζ
−1(m⊗ s + s ⊗m) + ζ(m⊗ n + n ⊗m)) (1.14)

Ǎ6 = ζ2(s⊗ n + n⊗ s) (1.15)

For orthonormal vectors in reference configuration, M is on fiber direction, N is nor-

mal to the laminate, and S is orthogonal to M in the laminate plane. Corresponding

to these three vectors, n, m, and s are orthonormal vectors in current configuration.

This have been shown that Ǎi are mutually orthogonal, so it is better choice than

(1.9) for experimentally determining response terms.

D. Purpose of this study

In these types of material symmetry, we focus on transverse isotropy because, as

the case of isotropy, for transversely isotropic behavior, constitutive relation need

to be changed to constitutive relation by Eulerian approach. Of course, the refor-

mulated constitutive relation(3.31) of x-iso behavior with strain invariants was well

posed , but, due to this becoming complicated for inhomogeneous deformation such

as torsion, we expect changing constitutive relation by Eulerian approach will be

much better than using(3.31). Thus, first purpose of this study is to find constitu-

tive relation by Eulerian approach, which is calculated from the constitutive relation

by mixed(Lagrangian-Eulerian)(3.31) approach, for transversely isotropic behavior

based on five strain invariants set. The second purpose is to compare computational

time(Matlab) for using both constitutive relations under finite extension and torsion

to fiber reinforced circular cylinder. This new method of approach will possibly cause

shortening in computational time.
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CHAPTER II

CONTINUUM MECHANICS

A. Basic Kinematics

A body is said to be a continuum if every particle belonging to the body(the set

of particles of interest) has a neighborhood such that all the particles in the neigh-

borhood belonging to the body. By an abstract body(B), placer κ maps to three

dimensional Euclidean space as one to one. The κR(B) indicates referential configu-

ration, which is usually at time(t = 0), and the κt(B) indicates current configuration,

which is usually at time(t = t1).

Fig. 1. Schematic illustration of reference configuration and current configuration

Since the placers are one to one, this mapping can be defined such that a posi-

tion X in the reference configuration(κR(B)) is mapped to position x in current

configuration(κt(B)), and this mapping also can be called motion of the body.

In the Fig.1, X serves as indicating which particle of B, which means attention is con-

centrated on what is happening at a particle and in a neighborhood, and x serves as

identifying the location which is occupied by different particle in time, which means

we are interested in what is happening in location. Thus, in the former case, we call it
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“Lagrangian or referential approach” and the latter case is called “Eulerian or spatial

approach”. In addition, if the way to the solution has both approaches, we call it

“Mixed approach”.

In order to understand how these two configuration are related to each other, we need

to see below.

Fig. 2. Local deformation gradient tensor

Since x = χ(X, t), we can find relation, by Taylor Expansion, such as dx = ∂χ
∂X
dX.

From this relation, we define F = ∂χ
∂X

called “Local Deformation Gradient Tensor”.

The reason to call “local” is this relation is only for very small range of one par-

ticle such as neighborhood, but usually it is called “Deformation Gradient”. This

deformation gradient is the second order tensor to transform a infinitesimal vector in

κR(B) to a infinitesimal vector in κt(B), and two point tensor because bases of F are

in both κR(B) and κt(B).

Let us assume there are three different infinitesimal vectors in κR(B), and, corre-

sponding to those three vectors, there are three infinitesimal vectors in κt(B).

From dv = dx1 · dx2 × dx3 = det(F)dV , det(F) is known as volume change. Thus,

det(F) becomes 1 for incompressible material or under an isochoric motion. If we let

dA an infinitesimal surface area with normal unit vector N in κR(B) and da an in-

finitesimal surface area with normal unit vector n in κt(t), we have a relation between
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Fig. 3. Volume change in κR(B) and κt(B)

surface areas such that,

nda = det(F)F−TNdA (2.1)

which is called Nanson’s Realtion[7]. From Fig. 3, Nanson’s relation maps an area

and normal vector from κR(B) to κt(B).

Now, from Fig.2, it can be shown that there is a rigid body motion 1 between dx and

dX, and, if F is non singular, then this deformation gradient tensor can be expressed

as,

F = RU = VR 2 (2.2)

which is called “Polar Decomposition”. This equation expresses that RU is described

as stretch first and then rotation whereas VR indicates rotation first and stretch.

From (2.2),

C := FTF = U2 (2.3)

B := FFT = V2 (2.4)

1Rigid body motion means distance between two points belonging to a body is
always same through deformation.

2R is Orthogonal transformation and rotation tensor. U and V are stretch tensors
which are positive definite.
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wherein, C is called “The Right Cauchy-Green deformation tensor”, and B is called

“The Right Cauchy-Green deformation tensor”. From this equations, Green-St.Venant

strain tensor E and Almansi-Hamel strain tensor e have been defined as

E :=
1

2
(C − I) (2.5)

e :=
1

2
(I − B−1) (2.6)

In these relations, we know U is rotation invariant and V depends on rotation, and B

and C can be shown to be symmetric tensors. It follows U andV are also symmetric.

Because a symmetric tensor in 3 − D has 3 real principal values(eigenvalues) and

orthogonal principal directions(eigenvectors), from definition of eigenvalues(λ) and

eigenvectors(v) such as

(U − λI)v = 0 (2.7)

we get characteristic equation for U by det((U − λI)) = 0 as

λ3 − I1λ
2 + I2λ− I3 = 0 (2.8)

I1 = tr(U), I2 =
1

2
[(tr(U))2 − tr(U2)], I3 = det(U) (2.9)

I1, I2, and I3 are called “Principal invariants of U”, which are independent on change

of coordinate system. Let us consider three principal values as λe(major axis such as

the most stretch direction), λq, λc(minor axis such as the least stretch direction))3.

Also, corresponding to the three principal values, we denote three principal directions

as Ae,q,c in κR(B) and ae,q,c in κt(B). Thus, U and V have the same principal values,

but different principal directions. In addition, U and C have the same principal

directions but different principal values such as square root of it. The below figure is

easy to understand the different between U, V, C, and B. One can say U and C are

3Sometimes λe=λq=λc happens, so we consider λe ≥ λq ≥ λc
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living in reference configuration whereas V and B are living in current configuration

because of principal directions.

Fig. 4. Motions by polar decomposition (Every configuration represents infinitely small

part in the body.)

We can easily express with Tensor expression from Fig 4., in a summary as

U = λeAe ⊗Ae + λqAq ⊗Aq + λcAc ⊗ Ac (2.10)

C = λ2
eAe ⊗Ae + λ2

qAq ⊗ Aq + λ2
cAc ⊗ Ac (2.11)

V = λeae ⊗ ae + λqaq ⊗ aq + λcac ⊗ ac (2.12)

B = λ2
eae ⊗ ae + λ2

qaq ⊗ aq + λ2
cac ⊗ ac (2.13)

F = λeae ⊗ Ae + λqaq ⊗ Aq + λcac ⊗ Ac (2.14)

E =
1

2
[(λ2

e − 1)Ae ⊗Ae + (λ2
q − 1)Aq ⊗Aq + (λ2

c − 1)Ac ⊗ Ac] (2.15)

e =
1

2
[(1 − λ−2

e )ae ⊗ ae + (1 − λ−2
q )aq ⊗ aq + (1 − λ−2

c )ac ⊗ ac] (2.16)

Thus, we call B, V, and ae,q,c “Eulerian Description”, and C, U, and Ae,q,c “La-

grangian Description”.
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B. Balance Laws

1. Balance of Mass

Let Pt a part of current configuration corresponding to PR in κR(B), and balance of

mass tells,
∫

PR

ρRdV =
∫

Pt

ρdv 4 (2.17)

From dv = det(F)dV , we can rewrite this as,

∫

Pt

ρdv =
∫

PR

ρdet(F)dV (2.18)

Since PR is arbitrary and integrand is continuous, it follows that,

∫

PR

(ρR − ρdet(F))dV = 0 (2.19)

⇒ ρR = ρdet(F) (2.20)

2. Balance of Linear Momentum

On the boundary of Pt, we have tractions(t) and body force(b). Balance of linear

momentum states
∫

∂Pt

tda+
∫

Pt

ρbdv =
d

dt

∫

Pt

ρvdv (2.21)

This shows that time rate of change of the linear momentum of Pt equals to summation

of forces on the boundary and forces due to specific body force. By Gauss-Green

Divergence theorem5 and relation between stress tensor(T) and traction vector(t)6,

4ρR and ρ denote density in κR(B) and κt(B)
5If F is a continuously differentiable vector field defined on a neighborhood of V,

then we have
∫

v div(F )dv =
∫

∂v F · nda
6t = TTn
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it follows

∫

Pt

div(TT )dv +
∫

Pt

ρbdv =
d

dt

∫

Pt

ρvdv (2.22)

∫

Pt

[div(TT ) + ρb]dv =
∫

Pt

ρ
dv

dt
dv (2.23)

⇒ div(TT ) + ρb = ρ
dv

dt
(2.24)

3. Balance of Angular Momentum

The density of Angular momentum is defined as x×ρv in unit volume, so total angular

momentum is
∫

∂Pt

x× tda+
∫

Pt

x× ρbdv =
d

dt

∫

Pt

x× ρvdv (2.25)

By balance of linear momentum, this shows that stress tensor is symmetric as T =

TT .(To see in detail, see [10].)

4. Equilibrium Equation

Result equations from (2.17) through (2.25) are called “Equilibrium Equations” as

div(T) + ρb = ρ
dv

dt
(2.26)

In cartesian coordinate system and cylindrical coordinate system, it can be shown in

elastostatic state as
∂Txx

∂x
+ ∂Txy

∂y
+ ∂Txz

∂z
+ ρbx = 0

∂Tyx

∂x
+ ∂Tyy

∂y
+ ∂Tyz

∂z
+ ρby = 0

∂Tzx

∂x
+ ∂Tzy

∂y
+ ∂Tzz

∂z
+ ρbz = 0

(2.27)

∂Trr

∂r
+ 1

r
∂Tθr

∂θ
+ ∂Tzr

∂z
+ 1

r
(Trr − Tθθ) + ρbr = 0

∂Trθ

∂r
+ 1

r
∂Tθθ

∂θ
+ ∂Tzθ

∂z
+ 2Trθ

r
+ ρbθ = 0

∂Trz

∂r
+ 1

r
∂Tθz

∂θ
+ ∂Tzz

∂z
+ Trz

r
+ ρbz = 0

(2.28)
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C. Constitutive Relations and Strain Energy Functions in Green Elasticity

We associate the notion of stored energy(W) with the solid and assume that W de-

pends on only deformation gradient tensor F.Let us consider spherical neighborhood

with radius(r) in a body as Fig. 5.

Fig. 5. Spherical neighborhood. da is infinitesimal surface area on boundary of sphere

with unit normal vector(n). ei are bases, and t denotes applied surface traction

(TTn=Tn).x is position vector.

Let us consider a velocity vector as ẋ, and, without body force, power(Ω̇), which is

derivative work with respect to time can be expressed as rate of which work is done

the boundary of sphere due to t.

Ω̇ =
∫

∂Pt

Tn · ẋda (2.29)

By Taylor expansion,

Tij = Tij|x=0 +
∂Tij

∂x1
|x=0x1 +

∂Tij

∂x2
|x=0x2 +

∂Tij

∂x3
|x=0x3 + h.o.t (2.30)

ẋi = ẋi|x=0 +
∂ẋi

∂x1
|x=0x1 +

ẋi

∂x2
|x=0x2 +

∂ẋi

∂x3
|x=0x3 + h.o.t (2.31)

By (2.30) and (2.31), (2.29) is found with spherical integration.

Ω̇ =
∫ 2π

0

∫ π

0
[(T11n1 + T12n2 + T13n3)ẋ1 + +(T21n1 + T22n2 +

+ T23n3)ẋ2 + (T31n1 + T32n2 + T33n3)ẋ3]R
2 sinφdφdθ (2.32)



15

It follows that7

Ω̇ =
4

3
πR3[T : ḞF−1] (2.33)

⇒ Ẇ =
Ω̇

volume(κR(B))
= T : ḞF−1 (2.34)

By (2.2), (2.3), and separation of dFFT with symmetric and Skew-symmetric part, it

follows,

dW = (detF)F−1TFF−T : dE ⇒ dW = S : dE 8 (2.35)

Now, we can see strain energy is composed of components of E, and, finally, we get

T =
1

detF
F
∂W

∂E
FT (2.36)

T = −pI +
1

detF
F
∂W

∂E
FT (2.37)

It essentially tells us T and W are functions of F. p is Lagrangian multiplier, so

(2.37) is used under isochoric motion. For isotropic material, Spencer showed strain

energy depends on C, which is right-Cauchy Green Deformation Tensor. And strain

energy is composed of three invariants which is found from characteristic equation for

C.[2]

W = W(I 1, I 2, I 3) (2.38)

I 1 = tr(C), I 2 =
1

2
[(trC)2 − tr(C2)], I 3 = det(C) (2.39)

For transversely isotropic material, strain energy function can be expressed as .[2]

W = W(I 1, I 2, I 3, I 4, I 5) (2.40)

I 4 = M · CM, I 5 = M · C2M (2.41)

7“:” denotes A : B = AijBij (i, j = 1, 2, 3), and R is radius in κR(B)
8S is called “Second Piola-Kirchhoff stress tensor”, which is existing in κR(B)
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However, as we see in Chapter I, even if theses invariants are well-posed in theoret-

ical approach, they are not smart choices of invariants for experimentally determin-

ing response terms because of co-alignment of invariants. Thus, we use these basic

conceptions, and ,in this study which is considered as a transversely isotropic mate-

rial, we will use five strain invariants such as W = W(β1, β2, β3, β4, β5) under finite

deformation.[4]

D. Frame Indifference

We usually see events in a body from different coordinate systems. Thus, it is possible

what happens under deformation depends on each frame. There is a translation(c(t))

and rotation(Q(t)) between two frame. Let two positions for each frames denoted by

x∗ and x.

x∗ = c(t) +Q(t)(x − 0) (2.42)

Using (2.42), Scalar(a), vector(a), and tenors(A) are said to be frame indifferent if

a∗ = a, a∗ = Qa,A∗ = QAQT (2.43)

Also, if Q doesn’t depend on time(t), these are said to be Galilean Invariants.

Frame indifference is more restrictive than Galilean invariant. And, as a matter

of fact, Galilean invariance is enough to explain the relation between frames. For

displacement(u) and F, we can easily find u is Galilean invariant, but F is not such

as,

u∗ = Qu, F∗ = QF (2.44)

It follows that

C∗ = C, B∗ = QBQT (2.45)
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From (2.44), Cauchy stress tensor(T) is Galilean invariant such as T∗ = QTQT We

have already known T = f(F), and, from this relation and (2.2),9

T∗ = f(QF) = f(U) = RTf(RU)R (2.46)

⇒ T = f(RU) = Rf(U)RT (2.47)

This is the most general restriction for Cauchy stress, and, in fact, we really didn’t

use frame indifference in generality. All we used is restriction for Galilean Invariance.

In this case, even if Q depends on time(t), Cauchy Stress(t) is frame indifferent as

well as Galilean invariant.

9we pick Q = RT because R ∈ Ortho+
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CHAPTER III

FINITE ELASTICITY

In this chapter, we see constitutive by Mixed and Eulerian approach for transversely

isotropic material under finite extension and torsion to fiber reinforced circular cylin-

der. This theoretical approach is based on assumptions that, first, fibers are axial

symmetrically arranged and continuously distributed in the body, and, second, this

material is macroscopically considered as a transversely isotropic material and an

incompressible material.

A. Kinematics

Under finite extension and torsion, let original domain defined by R ∈ [0, Rout],

Θ ∈ [0, 2π], and Z ∈ [0, H ]. In finite extension, (R,Θ, Z) denotes a position in

reference configuration, and, corresponding to this position, [r′, θ′, z′] denotes the

position after the deformation. The mapping in cylindrical coordinate system is,

r′ = r′(R), θ′ = Θ, z′ = ΛZ (3.1)

In cylindrical coordinate system, deformation gradient tensor can be expressed as

Fextension =

















∂r′

∂R
1
R

∂r′

∂Θ
∂r′

∂Z

r′ ∂θ′

∂R
r′

R
∂θ′

∂Θ
r′ ∂θ′

∂Z

∂z′

∂R
1
R

∂z′

∂Θ
∂z′

∂Z

















=

















∂r′

∂R
0 0

0 r′

R
0

0 0 Λ

















(3.2)

For incompressible material, det(F) = 1, which follows,

Λ
r′

R

∂r′

∂R
= 1 ⇒ r′ = R

1√
Λ

(3.3)
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Fextension =

















1√
Λ

0 0

0 1√
Λ

0

0 0 Λ

















(3.4)

For the second deformation, which is torsion(twist per unit lengthγ′), mapping is

r = r(r′), θ = θ′ + γ′z′, z = z′ (3.5)

Ftorsion =

















∂r
∂r′

1
r′

∂r
∂θ′

∂r
∂z′

r ∂θ
∂r′

r
r′

∂θ
∂θ′

r ∂θ
∂z′

∂z
∂r′

1
r′

∂z
∂θ′

∂z
∂z′

















=

















∂r
∂r′

0 0

0 r
r′

rγ′

0 0 1

















(3.6)

Similarly, by incompressibility and (3.3),

r

r′
∂r

∂r′
= 1 ⇒ ∂r

∂r′
= 1(r > 0, r′ > 0) (3.7)

Ftorsion =

















1 0 0

0 1 rγ′

0 0 1

















(3.8)

Finally, total deformation gradient for first extension and second torsion,

F =

















1√
Λ

0 0

0 1√
Λ

Λγ′r

0 0 Λ

















(3.9)

From (2.3) and (2.4),

C =

















1
Λ

0 0

0 1
Λ

√
Λγ′r

0
√

Λγ′r Λ2(γ′2r2 + 1)

















, B =

















1
Λ

0 0

0 1
Λ

+ Λ2γ′2r2 Λ2γ′r

0 Λ2γ′r Λ2

















(3.10)
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Let M and m denotes unit vector on preferred direction(fiber direction) in κR(B) and

κt(B), and N1 and N2 are unit vectors on cross fiber directions in κR(B).(Similarly,

n1, n2∈κt(B)) Relationship between κR(B) and κt(B) can be expressed by F as

m = (M · CM)−
1

2FM (3.11)

n1 =
F−TN1
∥

∥

∥

∥

F−TN1

∥

∥

∥

∥

, n2 =
F−TN2
∥

∥

∥

∥

F−TN2

∥

∥

∥

∥

(3.12)

Because there must be at least two perpendicular planes including M, we can use

Nanson’s relation(2.1), (3.12) is relation between N and n by it, and there are some

conditions for this relation.

M · N1 = M · N2 = N1 · N2 = 0 (3.13)

N1 · C−1N2 = 0, N1 · C−1N1 ≤ N2 · C−1N2 (3.14)

From (3.14), we can see the surface area with normal vector(N1) is smaller than one

with normal vector(N2), which means n1 has maximum spaces in κt(B) whereas n2

has minimum spaces. Thus we can say N1 is unit vector on the most stretch direc-

tion and N2 is unit vector on the least stretch direction in κR(B). To find these two

vectors, as (2.11), we use C2D on N1N2 plane, and find eigenvectors of C2D as N1

and N2.

Using these relation, we find each components of stress tensor from constitutive re-

lation, which will be showed on Section C and D, and the equilibrium equations in

cylindrical coordinate system(2.28)[7] such that

∫ dTrr

dr
dr =

∫

(Trr − Tθθ)
1

r
dr (3.15)
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For axial load(Fz) and moment(Mz),

Fz = 2π
∫ Rout

0
Tzzrdr, Mz = 2π

∫ Rout

0
Tzθr

2dr (3.16)

In axial load, we can express this as

Fz = 2π
∫ Rout

0
Tzzrdr + 2π

∫ Rout

0
Trrrdr − 2π

∫ Rout

0
Trrrdr (3.17)

By (2.28),

2π
∫ Rout

0
Trrrdr = πR2

outTrr|Rout
− π

∫ Rout

0
Tθθrdr + π

∫ Rout

0
Trrrdr (3.18)

It immediately follows,

Fz = π
∫ Rout

0
(2Tzz −Tθθ − Trr)rdr

1 (3.19)

This equation will be used in computation because we don’t have to consider La-

grangian Multiplier(p).2

B. Strain Invariants

Five strain invariants were defined, each with physical meaning [4],

β1 = ln(J)

β2 = ln(λ
3

2

M)

β3 = ln(ξ2)

β4 = ψ

β5 = cos2 γ − sin2 γ

(3.20)

1Boundary condition tells us stress free on lateral surface, so Trr|Rout
= 0

2For incompressibility, constitutive relation is expressed as T = −pI+Σ5
i=2

∂W
∂βi

Ai
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The first strain invariant β1 is dilatation part which causes volume change and others

are distortional parts without volume changes. In detail, the second strain invariant

β2 is a stretch ratio (λM ) on the fiber direction, which means distortional fiber

strestch, and the third β3 is a pure shear (ξ) on the cross fiber directions. The fourth

β4 is a (ψ)shear on along-fiber direction, and finally β5 indicates direction of simple

shear related to cross fiber shear axis. (γ is an angle between the line where the

plane of simple shear along fiber direction intersects cross fiber section and maximum

stretch direction on the cross fiber section.)

C. Strain Energy Function

Functional form of strain energy was determined as polynomial form after considering

cases of vanishing pure shear on cross fiber directions and simple shear along fiber

direction as [4]

W =

























W0 − q1β1 + q2β2 + 1
2
g1β

2
1 + 1

2
g2β

2
2 + g12β1β2 + H0(β1, β2)

+β2
3(

1
2
g3 + H3(β1, β2, β3))

+β2
4 [

1
2
g4 + H4(β1, β2, β4) + β3β5H5(β1, β2, β4)

+β2
3H6(β1, β2, β3, β4, β5)]

























(3.21)

The functions Hi are high order functions based on strain invariants, and W0 is

strain energy in reference configuration, which is caused by prestresses. When defor-

mation gradient equals to one, only the first derivative of β1 and β2 are non-vanishing.

Thus, q1 indicates the pressure in reference configuration, and q2 indicates distortional

part without volume change in reference configuration. These are also made by pre-

stresses(residual stress).

In this study, we consider stress free in reference configuration and incompressible

material, which means W0, q1, q2, and β1 are removed. Moreover, in order to pick
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the simplest strain energy function to determine response terms, we ignore all higher

order terms Hi. Finally, we obtain

W =
1

2
g2β

2
2 +

1

2
g3β

2
3 +

1

2
g4β

2
4 (3.22)

g2 = 4g3 = 4g4 (3.23)

This strain energy function can be applied to muscle tissue, which means fiber direc-

tion is four times stiffer than other directions such as cross fiber directions.

D. Mixed Approach

The reason to be called “Mixed” is that, even if this expression of constitutive relation

is Eulerian, the way to approach is first finding N1 and N2, which means Lagrangian

approach, and the way to apply these to constitutive relation based on m and n1,2 is

Eulerian approach. Thus we call it “Mixed”.

1. Strain Invariants

Once we find N1 and N2, strain invariants, which were introduced in Chapter III,

section B, can be expressed as,[4]

β1 = ln J = ln(det(C
1

2 )) (3.24)

β2 = ln(λM) = ln(J−1/3(M · CM)(1/2)) (3.25)

β3 = ln ξ = ln

(

(

N2 · C−1N2

N1 · C−1N1

) 1

4

)

(3.26)

β4 = ψ =
(

M · C2M

(M · CM)2
− 1

) 1

2

(3.27)

β5 = cos2 γ − sin2 γ =
(N1 ·CM)2 − (N2 · CM)2

(N1 · CM)2 + (N2 · CM)2
(3.28)
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2. Constitutive Relation

T =
1

J

5
∑

i=1

∂W

∂βi
Ai (3.29)

For incompressible material,

T = −pI +
5
∑

i=2

∂W

∂βi
Ai (3.30)

A1 = I

A2 = m⊗m− 1
2
(I −m⊗m)

A3 = n1 ⊗ n1 − n2 ⊗ n2

A4 = λ
− 3

2

M [ξ cos γ(m⊗ n1 + n1 ⊗m) + ξ−1 sin γ(m⊗ n2 + n2 ⊗m)]

A5 = 4 cos γ sinγ

λ
3

2

M
β4









ξ sin γ(m⊗ n1 + n1 ⊗m) − ξ−1 cos γ(m⊗ n2 + n2 ⊗m)

+λ
3

2 (ξ2 − ξ−2)−1(n2 ⊗ n1 + n1 ⊗ n2)









(3.31)

To prove the stress from this constitutive relation as Galilean Invariant or frame

indifferent, as Chapter II, let us denote Q is rotation tensor between frames. Using

(3.11) by F∗ = QF,

m∗ = (M · CM)−
1

2 F∗M = (M ·CM)−
1

2QTFM (3.32)

It follows m = Qm∗, and from (3.12),

n∗ =
(QTF)−TN
∥

∥

∥

∥

(QTF)−TN

∥

∥

∥

∥

=
QTF)−TN
∥

∥

∥

∥

QTF−TN

∥

∥

∥

∥

(3.33)

It shows n∗
1,2 = Qn1,2

3. Thus all these vectors are Galilean Invariants as well as

frame indifference. Because this constitutive relation is composed of m and n1,2, it

3Denominator is magnitude of vector, so magnitude of vector doesn’t depend on
rigid body motion
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is obvious that stress(T∗) should be QTQT . Moreover, Ai have been verified to be

mutually orthogonal.[4]

3. Computational Method - Matlab

1. From the motion, find deformation gradient and left and right Cauchy Green de-

formation tensors in terms of radius.

2. Use the loop for radius with step size.

(1) Recalculate F, C, and B at every step size of radius, which must have components

as numbers because, in order to find N1 and N2, we have to compare the magnitude

of two eigenvalues of C2D.(See 3.A)

(2) After finding C2D on RΘ-plane4, compare magnitude of two eigenvalues. Corre-

sponding to the larger eigenvalue, the eigenvector is considered as N1, and another

one is N2.

(3) Once we find N1 and N2
5, now use originally found F, C, and B because , later,

in applying to constitutive relation, we should prevent from error “divided by zero”.

And using (3.23) through (3.27), find five strain invariants.

(4) Find components of stress(T) from constitutive relation(3.29) and by equilibrium

equation in terms of radius(r). At this point we need to store all results from each

radius step size which have to be called at every step size of another loop inside of

main loop for trapezoidal rule. And then plot Tzz and Tzθ to confirm the results.

3. Find axial load and moment by trapezoidal rule.(3.16,19) To compare the com-

putational time, ways to find results have to be same, so Matlab code is needed to

4Under finite extension and torsion to circular cylinder, N1N2 plane is on RΘ-
plane

5In fact, N1 and N2 don’t depend on radius under this specific deformation, but
we need to make this for general cases.
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be showed. And for better way to under standing, the source code is provided as

Appendix.A.

E. Eulerian Approach

1. Strain Invariants

β1 through β5 have been expressed in terms of I1,2,3,4,5[4] because it is easier way to

find strain invariants by m and B.

β1 =
(ln I3)

2
(3.34)

β2 = (3 ln I4 − ln I3) (3.35)

β3 = ln
(

(I4I1 − I5

2
√

I3I4

)

+

√

(I4I1 − I5

2
√

I3I4

)2 − 1
)

(3.36)

β4 =

√

I5

I24
− 1 (3.37)

β5 =
I1I4I5 + I1I

3
4 + 2I3I4 − I25 − 2I2I

2
4 − I5I

2
4

(I5 − I24)
√

I21I
2
4 + I25 − 2I1I4I5 − 4I3I4

(3.38)

From deformation gradient tensor and right-left Cauchy Green deformation tensors

based on M, N1, N2, m, n1, and n2 such as

F = J
1

3

















ξλ
− 1

2

M 0 0

0 ξ−1λ
− 1

2

M 0

λMψ cos γ λMψ sin γ λM

















(3.39)

C = FTF = J
2

3

















ξ2λ−1
M + λ2

Mψ
2 cos2 γ λ2

Mψ
2 cos γ sin γ λ2

Mψ cos γ

λ2
Mψ

2 cos γ sin γ ξ−2λ−1
M + λ2

Mψ
2 sin2 γ λ2

Mψ sin γ

λ2
Mψ cos γ λ2

Mψ sin γ λ2
M

















(3.40)
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B = FFT = J
2

3

















ξ2λ−1
M 0 λ

1

2

Mξψ cos γ

0 ξ−2λ−1
M λ

1

2

Mξ
−1ψ sin γ

λ
1

2

Mξψ cos γ λ
1

2

Mξ
−1ψ sin γ λ2

M(ψ2 + 1)

















(3.41)

B−1 = (F−1)TF−1

= J− 2

3

















ξ−2λM + λMξ
−2ψ2 cos2 γ λMψ

2 cos γ sin γ −λ−
1

2

M ξ−1ψ cos γ

λMψ
2 cos γ sin γ ξ2λM + λMξ

2ψ2 sin2 γ −λ−
1

2

M ξψ sin γ

−λ−
1

2

M ξ−1ψ cos γ −λ−
1

2

M ξψ sin γ λ−2
M

















(3.42)

I1,2,3,4,5 can be expressed as

I1 = tr(B) (3.43)

I2 = (detB)(trB−1) (3.44)

I3 = detB (3.45)

I4 = (m · B−1m)−1 (3.46)

I5 =
m · Bm

m · B−1m
(3.47)

Finally, it follows

β1 =
1

2
ln(detB)

β2 = −1

2
β1 −

3

4
ln(m · B−1m)

β3 = ln
(

trB− m · Bm

2(detB)
1

2 (m · B−1m)
1

2

+

√

√

√

√

(trB −m · Bm)2

4(detB)(m ·B−1m)
− 1

)

β4 =
√

(m · Bm)(m · B−1m) − 1

β5 =
(trB −m · Bm)(m · Bm + (m ·B−1m)−1) − 2detB(trB−1 − m · B−1m)

(m · Bm− (m · B−1m)−1)
√

(trB− m ·Bm)2 − 4detB(m ·B−1m)
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2. Constitutive Relation

T =
1

J

5
∑

i=1

∂W

∂βi
Ai (3.48)

T = −pI +
5
∑

i=2

∂W

∂βi
Ai (3.49)

A1 = I

A2 = m⊗m− 1
2
(I −m⊗m)

A3 = λM

ξ2−ξ−2









2J− 2

3 B − 2J− 2

3 (m ⊗ Bm + Bm ⊗ m) + 2λ2
M(β2

4 + 1)m⊗ m

−λ−1
M (ξ2 + ξ−2)(I −m ⊗m)









A4 = J− 2

3λ−2
M β−1

4 (m ⊗ Bm + Bm⊗ m) − 2(β4 + β−1
4 )m ⊗m

A5 =

4
λM β2

4
(ξ2−ξ−2)

















J− 2

3 B−1 + λ2
MJ

− 2

3B − J− 2

3 (λ2
M − λ−1

M (ξ2 sin2 γ + ξ−2 cos2 γ))

(m ⊗Bm + Bm ⊗m) − λM(ξ2 + ξ−2)(I − m⊗ m)

+[λ4
M(β2

4 + 1) − 2λM(β2
4 + 1)(ξ2 sin2 γ + ξ−2 cos2 γ) − λ−2

M ]m⊗ m

















+ 4
λM (ξ2−ξ−2)2

















(ξ2 sin2 γ − ξ−2 cos2 γ)









λ2
MJ

− 2

3 (B − m⊗ Bm− Bm ⊗ m)

+λ4
M(β2

4 + 1)m⊗ m









−λM (ξ4 sin2 γ − ξ−4 cos2 γ)(I− m⊗ m)

















(3.50)

For Galilean Invariance or frame indifference, as we showed before, m∗ = Qm, and

left Cauchy Green deformation tensor(B) is also Galilean invariant as well as frame

indifferent.

B∗ = F∗F∗T = QF(QF)T = QBQT (3.51)

Thus it should be true that stress tensor from these relations is Galilean invariant as

well as frame indifference because these equations are based on m and B.
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3. Computational Method - Matlab

1. From the motion, find deformation gradient and left and right Cauchy Green

deformation tensors in terms of radius.

2. Once we find B and m, find five strain invariants.

3. Find components of stress(T) from constitutive relation(3.29) and by equilibrium

equation in terms of radius(r) by trapezoidal rule with same step size as mixed.

4. Find axial load and moment by direct integration.6

6To see in detail, see Appendix.B
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CHAPTER IV

RESULTS

A. Computational Time

Fig. 6. Stresses. Units of the component of stress and radius are [N/m2] and [m]

Table I. MATLAB profile report: Summary

In Fig.6, as a matter of course, results from both computations must be same

under stretch ratio(2.00) and twist per unit length(2.00), but computational time is

different in Table I. Computational time for Eulerian approach is less than half of

the time for Mixed approach. The reason that, as you read before, computation for

mixed has main loop with step size of radius from first to the end. Moreover, inside of
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loop, we have to use “if” statement to distinct the larger eigenvalue of C2D. On the

other hands, Eulerian approach doesn’t need any “if” statement and we don’t have

to find N1 and N2. All equations are in terms of radius and, using these functions,

we can directly find components of stress as functions of radius. If we use smaller

step size than this for accuracy, based on this matlab code, computation for mixed

faces to limitation of personal computer as “too large integer” where as computation

for Eulerian does not. Of course, it depends on how making code efficiently, but

algorithms for these computations doesn’t change, so it is obvious that Eulerian

approach is much better than Mixed approach. Furthermore, because deformation in

reality is much more complicated than simple extension and torsion, time difference

will be much larger.

B. Small Deformation and Large Deformation

One might think that, on small deformation, computational time for mixed will be

getting close to computational time for Eulerian. Theoretically, it is correct because

Lagrangian approach is almost same as Eulerain approach, which means there is

almost no distinction between Mixed and Eulerain description. So, in Table II, we

Table II. Computational time for small and large deformation

used two computations under small deformation (stretch = 1.02, twist = 0.02) and

large deformation (stretch = 2.00, twist = 2.00). As you see, small deformation
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doesn’t influence computational time because computational time depends on the

number of functions, length of equations, and step size of radius. The reason that

there are small time differences such as 90s for mixed and 40s for Eulerain is because

of length difference between the results from constitutive relations. In other words,

because the results have to be used at every step size of radius inside of trapezoidal

rule, a little different length, which is caused by change of parameters, of the results

makes that time different.
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CHAPTER V

CONCLUSION AND FUTURE WORK

Constitutive relations on five strain invariants by mixed approach has been already

shown to have experimental advantages.[4] The constitutive relation by Eulerain ap-

proach can be applied to experimental analysis. Because five strain invariants(β1,2,3,4,5)

are good for experimentally determining response terms, it is quite necessary to com-

pare constitutive relation by Eulerian approach with Rivlin’s model for data reduc-

tion. For the future work, this constitutive relations by the Eulerian approach is only

useful for determining response terms by homogeneous deformations, so it will be

necessary to develop this model in order to determine the response terms by inhomo-

geneous deformations.

The goal of this research is to extend this concept to biological tissues such as my-

ocardium and vascular tissues. In order to do this, we need to apply this to stronger

anisotropy such as orthotropy. In orthotropic material, six strain invariants have been

already introduced by J.C.Criscione for cardiac tissue.[8] Through changing this elas-

ticity to viscoelasticity, we can get more accurate solution for the analysis of heart.

Therefore, it is necessary to find new constitutive models in general anisotropic and

inhomogeneous material for modeling all kinds of biological tissues. This research

will cause significant contribution to modeling in biomechanics.
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APPENDIX A

SOURCE CODE FOR MIXED APPROACH IN MATLAB

% Extens ion and Tors ion to f i b e r r e i n f o r c e d cy l i nd e r
% Cy l i n d r i c a l Coordinate System
c l e a r a l l
p r o f i l e on
ro = 3∗10ˆ(−3); %outer r ad iu s [m]
r = sym( ’ r ’ , ’ p o s i t i v e ’ ) ;
%r=rad ius ,

format shor t e
gam = 0 . 0 2 ; %0.02 tw i s t per un it l ength
s t r e t c h = 1 . 0 2 ; %1.02 s t r e t c h o f ex ten s ion
M = [ 0 ; 0 ; 1 ] ; %f i b e r d i r e c t i o n in r e f e r e n c e con f i gu r a t i on
i 1 = 5∗10ˆ( −6);
i 2 = 2∗10ˆ( −5);
k=1;
Fd = [1/ sq r t ( s t r e t c h ) 0 0 ;0 1/ sq r t ( s t r e t c h ) gam∗ r∗ s t r e t c h ; 0 0

s t r e t c h ] ; %deformation grad i en t ten sor
C = Fd ’ ∗ Fd ;
B = Fd ∗ Fd ’ ;
C i = inv (C) ;
f o r re = 0 : i 1 : ro

re
Fd v = [1/ sq r t ( s t r e t c h ) 0 0 ;0 1/ sq r t ( s t r e t c h ) gam∗ re ∗ s t r e t c h

; 0 0 s t r e t c h ] ; %deformation grad i en t ten sor
C v = Fd v ’ ∗ Fd v ;
B v = Fd v ∗ Fd v ’ ;
C v 2D = [ C v (1 ,1 ) C v ( 1 , 2 ) ; C v (2 ,1 ) C v ( 2 , 2 ) ] ;
[V,E] = e i g (C v 2D ) ;
i f E(1 ,1 ) >= E(2 ,2 )

N 1 = [V( 1 , 1 ) ;V( 2 , 1 ) ; 0 ] ;
% Largest s t r e t c h on the c r o s s f i b e r d i r e c t i o n in r e f .
N 2 = [V( 1 , 2 ) ;V( 2 , 2 ) ; 0 ] ;
% Smal les t s t r e t c h on the c r o s s f i b e r d i r e c t i o n in r e f .

e l s e i f E(1 ,1 ) < E(2 ,2 )
N 2 = [V( 1 , 1 ) ;V( 2 , 1 ) ; 0 ] ;
N 1 = [V( 1 , 2 ) ;V( 2 , 2 ) ; 0 ] ;

end
m = ( dot (M, C∗M))ˆ( −0.5)∗(Fd∗M) ; % f i b e r Di r ec t i on in cur .
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n 1 1 = ( inv (Fd ’ )∗ N 1 ) ;
n 1 = n 1 1 / sq r t ( n 1 1 (1 ,1 )ˆ2 + n 1 1 (2 ,1 )ˆ2 + n 1 1 ( 3 , 1 ) ˆ 2 ) ;
n 2 1 = ( inv (Fd ’ )∗ N 2 ) ;
n 2 = n 2 1 / sq r t ( n 2 1 (1 ,1 )ˆ2 + n 2 1 (2 ,1 )ˆ2 + n 2 1 ( 3 , 1 ) ˆ 2 ) ;

lamda =(dot (M,C∗M))ˆ0.5 ;% s t r e t c h in t o r s i o n
zeta = ( dot (N 2 , C i ∗N 2)/ dot (N 1 , C i ∗N 1 ) ) ˆ ( 1 / 4 ) ;
%pure shear on the c r o s s f i b e r d i r e c t i o n
s a i = sq r t ( ( dot (M,Cˆ2∗M)/( ( dot (M,C∗M))ˆ2)) −1) ;
%s imple shear along f i b e r d i r e c t i o n
gem = 0.5∗ acos ( ( ( dot (N 1 ,C∗M))ˆ2−( dot (N 2 ,C∗M))ˆ2 )

/( ( dot (N 1 ,C∗M))ˆ2+( dot (N 2 ,C∗M) ) ˆ 2 ) ) ;
%r e l a t i o n between s imple shear and r o s s f i b e r shear
%s t r a i n Inva r i an t s
beta 2 = log ( lamda ˆ ( 3 / 2 ) ) ;
beta 3 = log ( zeta ˆ2 ) ;
beta 4 = s a i ;
beta 5 = cos (2∗gem ) ;

f o r i = 1 :3
f o r j = 1 :3

m m( i , j ) = m( i , 1 )∗m( j ,1) ;% m tensor m
n 11 ( i , j ) = n 1 ( i , 1 )∗ n 1 ( j ,1) ;% n 1 ten sor n 1
n 22 ( i , j ) = n 2 ( i , 1 )∗ n 2 ( j ,1) ;% n 2 ten sor n 2
mn 1( i , j ) = m( i , 1 )∗ n 1 ( j ,1) ;% m tensor n 1
mn 2( i , j ) = m( i , 1 )∗ n 2 ( j ,1) ;% m tensor n 2
n 12 ( i , j ) = n 1 ( i , 1 )∗ n 2 ( j ,1) ;% n 1 ten sor n 2

end
end
n 1m = mn 1 ’ ;
n 2m = mn 2 ’ ;
n 21 = n 12 ’ ;

co = cos (gem ) ;
s i = s i n (gem ) ;
%Cons t i tu t ive Relat ion
A 2 = m m − 0 . 5∗ ( eye (3)−m m) ;
A 3 = n 11−n 22 ;
A 4 = lamdaˆ(−3/2)∗(( zeta ∗ co ∗(mn 1+n 1m )) +

( zeta ˆ(−1)∗ s i ∗(mn 2+n 2m ) ) ) ;
A 5 = (4∗ co∗ s i )/ ( lamda ˆ(3/2)∗ s a i ) ∗ ( ( ( zeta ∗ s i ∗(mn 1+n 1m ))

− ( zeta ˆ(−1)∗ co ∗(mn 2+n 2m ) ) ) + ( ( lamda ˆ(3/2)∗ s a i )
∗ ( ( zeta ˆ2− zeta ˆ(−2))ˆ(−1))∗( n 21+n 12 ) ) ) ;

%L inear i z ed e l a s t i c i t y without p r e s t r e s s in r e f e r e n c e con f .
%W=400 beta 2 ˆ2+100 beta 3 ˆ2+100 beta 4 ˆ2
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W 2 = 800∗ beta 2 ;
W 3 = 200∗ beta 3 ;
W 4 = 200∗ beta 4 ;
W 5 = 0 ;
Tp{k} = W 2∗A 2 + W 3∗A 3 + W 4∗A 4 + W 5∗A 5 ; %T+pI
s 1 ( k ) =(Tp{k } (1 , 1 ) − Tp{k } (2 , 2 ) )/ r ;

i f rem( re , i 2 ) == 0
i f r e ==0

Tp 1 = s imp l i f y (Tp{k } ) ;
P = subs (Tp 1 (1 , 1 ) , r , r e ) ;
Trr = subs (Tp 1 (1 , 1 ) , r , r e )−P;
Tzz = subs (Tp 1 (3 , 3 ) , r , r e )−P;
subp lot (1 ,2 , 1 )
p lo t ( re , Tzz , ’ . ’ ) , t i t l e ( ’ T z z vs Radius ’ )
, x l ab e l ( ’ Radius ’ ) , y l ab e l ( ’ T z z ’ )
hold on
Tzt = subs (Tp 1 (3 , 2 ) , r , 0 ) ;
subp lot (1 ,2 , 2 )
p lo t ( re , Tzt , ’ . ’ ) , t i t l e ( ’ T z t vs Radius ’ )
, x l ab e l ( ’ Radius ’ ) , y l ab e l ( ’ T z t ’ )
hold on

e l s e
i 4 = 1 ;
s 3 = 0 ;
f o r r s = 0 : i 1 : re−i 1

i f r s == 0
s 2 = (0 + subs ( s 1 ( i 4 +1) , r , r s+i 1 ) )∗ i 1 /2 ;
s 3 = s 3 + s 2 ;

e l s e
s 2 = ( subs ( s 1 ( i 4 ) , r , r s )

+ subs ( s 1 ( i 4 +1) , r , r s+i 1 ) )∗ i 1 /2 ;
s 3 = s 3 + s 2 ;

end
i 4 = i 4 +1;

end
P = subs (Tp{k } (1 , 1 ) , r , r e ) + s 3 ;
Trr = subs (Tp{k } (1 , 1 ) , r , r e ) − P;
Tzz = subs (Tp{k } (3 , 3 ) , r , r e ) − P;
subp lot (1 ,2 , 1 )
p lo t ( re , Tzz , ’ . ’ )
hold on
Tzt = subs (Tp{k } (3 , 2 ) , r , r e ) ;
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subp lot (1 ,2 , 2 )
p lo t ( re , Tzt , ’ . ’ )
hold on

end
end
k= k+1;

end
hold o f f
% To f i nd ax i a l load and Moment
k 1 =1;
F z = 0 ;
M z = 0 ;
f o r rp =0: i 1 : ro−i 1

rp
f 1 1=s imp l i f y ( r ∗(2∗Tp{k 1 }(3 ,3)−Tp{k 1 }(1 ,1)−Tp{k 1 } ( 2 , 2 ) ) ) ;
g 1 1=s imp l i f y (Tp{k 1 } (2 , 3 )∗ r ˆ2 ) ;
f 1 2=s imp l i f y ( r ∗(2∗Tp{k 1+1}(3 ,3)−Tp{k 1 +1}(1 ,1)−Tp{k 1 +1} (2 , 2 ) ) ) ;
g 1 2=s imp l i f y (Tp{k 1 +1}(2 ,3)∗ r ˆ2 ) ;
f 1 =(subs ( f 1 1 , r , rp)+subs ( f 1 2 , r , rp+i 1 ) )∗ i 1 /2 ;
F z=F z + f 1 ;
g 1=(subs ( g 1 1 , r , rp)+subs ( g 1 2 , r , rp+i 1 ) )∗ i 1 /2 ;
M z=M z + g 1 ;
k 1=k 1 +1;

end
F z f = pi ∗F z ;
M z f = 2∗ p i ∗M z ;
F z f
M z f
p r o f i l e r epor t
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APPENDIX B

SOURCE CODE FOR EULERIAN APPROACH IN MATLAB

% By us ing s t r a i n i nva r i an t s e t with B,m
% Cy l i n d r i c a l Coordinate System
c l e a r a l l
p r o f i l e on
ro = 3∗10ˆ(−3); %outer r ad iu s [ cm ]
r = sym( ’ r ’ , ’ p o s i t i v e ’ ) ;
%r=rad ius , p=Lagrangean mu l t i p l i e r
format shor t e
gam = 2 . 0 0 ; %0.02 tw i s t per un it l ength
s t r e t c h = 2 . 0 0 ; %1.02 s t r e t c h o f ex ten s ion
M = [ 0 ; 0 ; 1 ] ; %f i b e r d i r e c t i o n in r e f e r e n c e con f i gu r a t i on
Fd = [1/ sq r t ( s t r e t c h ) 0 0 ;0 1/ sq r t ( s t r e t c h ) gam∗ r∗ s t r e t c h

; 0 0 s t r e t c h ] ; %deformation grad i en t ten sor
B = Fd ∗ Fd ’ ;
C = Fd ’∗ Fd ;
B i = inv (B) ;
m = ( dot (M, C∗M))ˆ( −0.5)∗(Fd∗M) ; % f i b e r Di r ec t i on in cur .
lamda =(dot (M,C∗M))ˆ0.5 ;% s t r e t c h=1 in t o r s i o n
%s t r a i n Inva r i an t s
beta 2 = log ( ( lamda ) ˆ ( 3 / 2 ) ) ;
b e ta 3 1 = ( ( t r a c e (B)−dot (m,B∗m))/ (2∗ ( dot (m, B i ∗m) ) ˆ ( 1 / 2 ) ) )

+sq r t ( ( ( ( t r a c e (B)−dot (m,B∗m))ˆ2 )/ (4∗ ( dot (m, B i ∗m))) ) −1) ;
beta 3 = s imp l i f y ( l og ( beta 3 1 ) ) ;
beta 4 = s imp l i f y ( s q r t ( ( dot (m,B∗m)∗ dot (m, B i ∗m)) −1)) ;
beta 5 = s imp l i f y ( ( ( t r a c e (B)−dot (m,B∗m))∗ ( dot (m,B∗m)

+(dot (m, B i ∗m))ˆ(−1))−2∗( t r a c e ( B i)−dot (m, B i ∗m) ) )
/( ( dot (m,B∗m)−(dot (m, B i ∗m))ˆ( −1))∗ s q r t ( ( t r a c e (B)
−dot (m,B∗m))ˆ2 − 4∗( dot (m, B i ∗m) ) ) ) ) ;

zeta = sq r t ( beta 3 1 );% pure shear on the c r o s s f i b e r d i r e c t i o n
s a i = beta 4 ;%s imple shear along f i b e r d i r e c t i o n
gem = 0.5∗ acos ( beta 5 ) ;
%r e l a t i o n between s imple shear and c r o s s f i b e r shear
B m = B∗m;
B im = B i ∗m;
f o r i =1:3

f o r j =1:3
m m( i , j ) = m( i , 1 )∗m( j , 1 ) ;
m Bm( i , j ) = m( i , 1 )∗B m( j , 1 ) ;



41

Bm m( i , j ) = B m( i , 1 )∗m( j , 1 ) ;
end

end

co = cos (gem ) ;
s i = s i n (gem ) ;

%Cons t i tu t ive Relat ion

A 2=s imp l i f y (m m − 0 . 5∗ ( eye (3)−m m) ) ;
A 3=s imp l i f y ( lamda /( zeta ˆ2− zeta ˆ(−2))∗(2∗B−2∗(m Bm+Bm m)

+2∗lamda ˆ2∗( s a i ˆ2+1)∗m m−(1/ lamda )∗ ( zeta ˆ2+zeta ˆ(−2))
∗( eye (3)−m m) ) ) ;

A 4=s imp l i f y ( lamdaˆ(−2)∗ s a i ˆ(−1)∗(m Bm+Bm m)
− 2∗( s a i+s a i ˆ(−1))∗m m) ;

A 5=s imp l i f y ( ( 4/ ( lamda∗ s a i ˆ2∗( zeta ˆ2− zeta ˆ( −2)))) ∗ ( B i
+ lamdaˆ2∗B − ( lamdaˆ2−lamdaˆ(−1)∗( zeta ˆ2∗( s i )ˆ2
+zeta ˆ(−2)∗( co ) ˆ2 ) )∗ (m Bm+Bm m) − lamda ∗( zeta ˆ2
+zeta ˆ(−2))∗( eye (3)−m m) + ( lamda ˆ4∗( s a i ˆ2+1)−2∗ lamda
∗( s a i ˆ2+1)∗( zeta ˆ2∗( s i )ˆ2+ zeta ˆ(−2)∗( co )ˆ2)− lamdaˆ(−2))
∗m m)+(4/( lamda ∗( zeta ˆ2 − zeta ˆ( −2))ˆ2)) ∗ ( ( ( zeta ˆ2
∗( s i )ˆ2 −zeta ˆ(−2)∗( co )ˆ2)∗ ( lamda ˆ2∗(B−m Bm−Bm m)
+ lamda ˆ4∗( s a i ˆ2+1)∗m m)) − lamda ∗( zeta ˆ4∗( s i )ˆ2
−zeta ˆ(−4)∗( co )ˆ2)∗ ( eye (3)−m m) ) ) ;

%L inear i z ed e l a s t i c i t y without p r e s t r e s s in r e f e r e n c e con f .
%W=400beta 2 ˆ2+100 beta 3 ˆ2+100 beta 4 ˆ2
W 2 = 800∗ beta 2 ;
W 3 = 200∗ beta 3 ;
W 4 = 200∗ beta 4 ;
W 5 = 0 ;
Tp = W 2∗A 2 + W 3∗A 3 + W 4∗A 4 + W 5∗A 5 ; %T+pI
s 1 =(Tp(1 ,1 ) − Tp(2 , 2 ) ) / r ;

i = 5∗10ˆ( −6);
f o r re = 0:2∗10ˆ( −5): ro

i f r e == 0
Tp 1 = s imp l i f y (Tp ) ;
P = subs (Tp 1 (1 , 1 ) , r , 0 ) ;
Trr = subs (Tp 1 (1 , 1 ) , r ,0)−P;
Tzz = subs (Tp 1 (3 , 3 ) , r ,0)−P;
subp lot (1 ,2 , 1 )
p lo t ( re , Tzz , ’ . ’ ) , t i t l e ( ’ T z z vs Radius ’ )
, x l ab e l ( ’ Radius ’ ) , y l ab e l ( ’ T z z ’ )
hold on
Tzt = subs (Tp 1 (3 , 2 ) , r , 0 ) ;
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subp lot (1 ,2 , 2 )
p lo t ( re , Tzt , ’ . ’ ) , t i t l e ( ’ T z t vs Radius ’ )
, x l ab e l ( ’ Radius ’ ) , y l ab e l ( ’ T z t ’ )
hold on

e l s e
s 3 = 0 ;
f o r r s = 0 : i : ( re−i )

i f r s ==0
s 2 = (0 + subs ( s 1 , r , r s+i ) )∗ i /2 ;
s 3 = s 3 + s 2 ;

e l s e
s 2 = ( subs ( s 1 , r , r s ) + subs ( s 1 , r , r s+i ) )∗ i /2 ;
s 3 = s 3 + s 2 ;

end
end
P = subs (Tp(1 , 1 ) , r , r e ) + s 3 ;
Trr = subs (Tp(1 , 1 ) , r , r e ) − P;
Tzz = subs (Tp(3 , 3 ) , r , r e ) − P;
subp lot (1 ,2 , 1 )
p lo t ( re , Tzz , ’ . ’ )
hold on
Tzt = subs (Tp(3 , 2 ) , r , r e ) ;
subp lot (1 ,2 , 2 )
p lo t ( re , Tzt , ’ . ’ )
hold on

end
re

end
hold o f f

% To f i nd ax i a l load and Moment
f 1 = s imp l i f y ( r ∗(2∗Tp(3 ,3 ) − Tp(1 ,1 ) − Tp( 2 , 2 ) ) ) ;
g 1 = s imp l i f y (Tp(2 ,3 )∗ r ˆ2 ) ;
f = s imp l i f y ( i n t ( f 1 , r ) ) ;
g = s imp l i f y ( i n t ( g 1 , r ) ) ;
F z = pi ∗( subs ( f , r , ro)−subs ( f , r , 0 ) )
M z = 2∗ p i ∗( subs ( g , r , ro)−subs ( g , r , 0 ) )
p r o f i l e r epor t
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