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ABSTRACT

Bayesian Learning in Bioinformatics. (August 2007)

David L. Gold, B.A., The University of Texas;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Bani Mallick

Life sciences research is advancing in breadth and scope, affecting many areas of life

including medical care and government policy. The field of Bioinformatics, in par-

ticular, is growing very rapidly with the help of computer science, statistics, applied

mathematics, and engineering. New high-throughput technologies are making it pos-

sible to measure genomic variation across phenotypes in organisms at costs that were

once inconceivable. In conjunction, and partly as a consequence, massive amounts

of information about the genomes of many organisms are becoming accessible in the

public domain. Some of the important and exciting questions in the post-genomics

era are how to integrate all of the information available from diverse sources.

Learning in complex systems biology requires that information be shared in a natural

and interpretable way, to integrate knowledge and data. The statistical sciences can

support the advancement of learning in Bioinformatics in many ways, not the least

of which is by developing methodologies that can support the synchronization of ef-

forts across sciences, offering real-time learning tools that can be shared across many

fields from basic science to the clinical applications. This research is an introduc-

tion to several current research problems in Bioinformatics that addresses integration

of information, and discusses statistical methodologies from the Bayesian school of

thought that may be applied.
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Bayesian statistical methodologies are proposed to integrate biological knowledge and

improve statistical inference for three relevant Bioinformatics applications: gene ex-

pression arrays, BAC and aCGH arrays, and real-time gene expression experiments.

A unified Bayesian model is proposed to perform detection of genes and gene classes,

defined from historical pathways, with gene expression arrays. A novel Bayesian sta-

tistical method is proposed to infer chromosomal copy number aberrations in clinical

populations with BAC or aCGH experiments. A theoretical model is proposed, moti-

vated from historical work in mathematical biology, for inference with real-time gene

expression experiments, and fit with Bayesian methods. Simulation and case studies

show that Bayesian methodologies show great promise to improve the way we learn

with high-throughput Bioinformatics experiments.
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CHAPTER I

INTRODUCTION

Life sciences research is advancing in breadth and scope, affecting many areas of life

including medical care and government policy. The field of Bioinformatics in par-

ticular is growing very rapidly with the help of computer science, statistics, applied

mathematics, and medical engineering. New high-throughput technologies are mak-

ing it possible to measure variation in and across genomes as previously unheard of

cost. In conjunction, and partly as a consequence, massive amounts of information

about the genomes of many organisms are becoming accessible in the public domain.

One of a host of very important and exciting questions in the post-genomic era is how

to integrate all of the information available from so many diverse sources.

Learning in complex systems biology requires that information be shared in a natural

and interpretable way, to integrate knowledge and data. The statistical sciences can

support the advancement of learning in Bioinformatics in many ways, not the least

of which is by developing methodologies to support synchronization of efforts across

sciences, offering real-time learning tools that can be shared across many fields from

basic science to clinical applications. This research offers an introduction to several

current research problems in Bioinformatics dealing with integration of information

with discussion of Bayesian statistical methodologies that show promising solutions.

In the early days of Bioinformatics, much of the work concentrated on string process-

This dissertation follows the style of the Journal of the Royal Statistical Society.
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ing, sequencing the genomes of many organisms. With the completion of sequencing

of many genomes, including the human genome, and vast advances in the breadth

and quality of high-throughput experiments, attention has turned to phenotyping

and genotyping studies, largely in support of the clinical science. One such class of

experiments, called microarray mRNA expression experiments, includes a very gen-

eral class of high-throughput experiments designed to measure variation in mRNA

transcripts. More generally, microarray experiments may be used to detect variation

in DNA and proteins as well. High-throughput genomics technologies may be charac-

terized as large and relatively inexpensive experiments designed for exploring genomic

variation; large in the sense that thousands of genes, perhaps entire genomes, may

be measured simultaneously and inexpensive in the sense that the relative cost on a

per-gene basis is vastly reduced to a fraction of the cost of measuring the individual

genes directly. One disadvantage of high-throughput experiments is that the experi-

mental conditions are suboptimal for all genes. Nevertheless, the efficiency and cost

of the experiments offer advantageous opportunities to learn about and explore new

possibilities in genomics.

A growing vision in the medical community is customized medicine, or personalized

medicine, making direct use of a patient’s unique genomic signature. The concept is

not new, as clinicians use a great amount of information about a patient to make a

diagnoses and prognoses. What is new, is the benefit of using one’s entire genomic

disease profile, possibly with high-throughput experimental results. In order to make

personalized medicine a reality, with the use of high-throughput technologies, the

quality of both the experiments, and the data analysis must improve. Analyzing high-

throughput genomics data is complicated by the overwhelming number of variables

(gene, transcripts, or proteins) that need to be understood, along with the potential
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relationships between them. It is typically nontrivial to learn about gene interactions

in array studies, as these are often underpowered for such purposes. Typically, the

designs include a few factors, such as tissues or treatments, for which expression is

observed. A basic understanding of the molecular pathology of disease is essential for

Bioinformatics analysis, but even more prior biological knowledge is required for an

understanding of genes involved.

Bayesian statistics is a growing field, recognized in the applied life science and clinical

research literature for its very flexible learning approach, which allows for integration

of historical information with data. The makes Bayesian statistics attractive to bi-

ologists, who depend on historical information to make conclusions about complex

organisms. The Bayesian paradigm is also more intuitive than frequentist statistics,

relying on basic probability concepts to make conclusions, rather than p-values. This

makes it attractive in large Bioinformatics studies, often requiring expertise across

disciplines.

In this three part dissertation, each chapter focuses on an area of specific research

aimed at improving learning in high-throughput Bioinformatics. Chapter II is devoted

to gene detection with microarray expression experiments. Microarray experiments

generate an exhaustive quantity of data for thousands of genes. Identifying effective

targets for treatment in high-throughput experiments is typically complicated by the

uncertainty in the collections of dependent genes that are responsible for events like

cancer. Higher-level information about the genes, concerning gene classes, may be

defined from historical pathways. The utility of historical pathways for microarray

analysis is investigated in a Bayesian paradigm, called Bayesian Learning for Microar-

rays (BLM). The Bayesian approach is ideal for investigating the utility of historical
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knowledge, as the strength of the prior information on the results may be gauged and

controlled. In Chapter III, a novel method is proposed for modeling cytogentics with

BAC arrays and aCGH. One difficulty in modeling high-throughput human chromo-

somal data is that genetic instability can be subject specific and therefore disease

populations are heterogeneous. A Bayesian Change Point Analysis (BCPA) model is

developed for high-throughput aCGH experiments. The method very flexibly allows

one to model dependencies between inhomogeneous samples. Chapter IV delves into

a new area of research, experiments that offer real-time profiles of gene expression in

living cells. Experimental designs of microarrays are limited, lacking to the temporal

resolution necessary in order to make detailed inferences about interactions between

genes and extracellular events. New opportunities for discovery are possible. Statis-

tical inference is challenging at many levels. There is uncertainty in the historical

gene pathways, and the theoretical models proposed in the literature are not tailored

for these experiments. A class of theoretical models are offered for inference. Exper-

imental design issues and modeling assumptions are thoroughly discussed. Posterior

inference is conducted with a case study of the publicly available S.O.S. data.
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CHAPTER II

BAYESIAN LEARNING FOR MICROARRAYS

II.1. Introduction

Clinical researchers are greatly interested in discovering gene classes, collections of

interacting genes, that are associated with disease. Many investigators believe that

events such as disease onset are manifestations of highly evolved and complex chains of

molecular interactions. Gene expression is linked in multifaceted biochemical path-

ways varying according to temporal sequences, prearranged by a genetic program.

The molecular precursors to human disease are especially difficult to determine after

the necessary changes for onset have been made, i.e. after transformation. It is ad-

vantageous to be able to interpret gene-wise events in a higher-level sense concerning

gene pathways. Collective inference on genes and classes of dependent genes, defined

from say historical pathways, provides investigators with an additional level of infor-

mation about the underlying biology driving morphological changes, while accounting

for the uncertainty in both.

The uncertainty in gene pathways responsible for disease typically complicates de-

tection of effective targets for medical treatment. Rather than pathways, microarray

technologies measure gene specific events. The enormity of the data, as measured

by the number of genes on a microarray (typically in the thousands) relative to the

number of arrays (typically less than 100), requires special methodologies for statis-

tical analysis in order to draw logical conclusions about the genes. It is unrealistic

to expect to determine the dependencies between all of the genes in a microarray
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experiment, given the typical sample sizes. Use of historical pathways may serve as

a vantage point to initiate the learning process.

We investigate a fully Bayesian method called Bayesian Learning for Microarrays, to

detect changes in genes and gene classes defined from historical pathways. BLM is

a unified approach that may serve to account for the uncertainty in genes and gene

classes collectively. BLM allows flexibility to incorporate historical pathway knowl-

edge to the extent of one’s beliefs, and explicitly define gene-wise dependencies. The

Bayesian approach is also ideal for investigating the utility of the historical pathway

knowledge with prior sensitivity analysis. Examples with simulated data and case

studies with public array data sets are used to demonstrate the utility of BLM for

microarray analysis.

II.2. High-throughput Gene Expression Experiments

While DNA contains the blue print for life, differences between tissues are manifes-

tations of the ways in which genes are expressed. DNA is related to proteins, the

cellular machinery responsible for cellular events, through the processes of transcrip-

tion and translation. DNA sequences along chromosomes contain the information

needed to synthesize peptide chains, i.e. proteins, but that information is not utilized

until it is communicated. Segments of DNA are initially transcribed to messenger

RNA (mRNA), shorter transcripts containing copies of the genetic code that can

leave the nucleus. The result of transcription is also known as gene expression. Once

in the cytoplasm, mRNA transcripts can be translated to proteins with the help of

ribosomes. Ribosomes attach to the mRNA and following the information contained

therein, order to assemble peptide chains (Figure 1).
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Fig. 1 Transcription and translation - mRNA leaves the nucleus and is translated to a peptide chain by a

ribosome.

Figure 2 shows a diagram of a gene expression microarray experiment. Samples of

mRNA are collected from different specimens. The mRNA is reverse transcribed to

more stable clone DNA (cDNA), and dye labeled. For example, in a cancer study,

normal tissue may be labeled with Cy5 and cancer tissue with Cy3. The dyes are

actually small molecules attached to the cytosine bases along the cDNA during the

sample processing. On the array surface, spots are positioned, each corresponding to

a single gene. At each spot, homogeneous DNA sequences are demobilized at one end

to the array surface by a ligand. The labeled cDNA from each sample is allowed time

to permeate the array. The labeled cDNA sequences have a natural affinity to bind to

their complementary sequences on the array, a process called hybridization. A laser

is shined over each spot and the excitation causes the respective dye materials to

emit different wavelength. Cy3 emits green light and Cy5 red light, as interpreted by

the human retina. Spots with more (or less) hybridization should emit more (or less)

relative fluorescent light between the channels. The slides are scanned for each dye
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Fig. 2 Two-channel microarray experiment

and gray scale images are produced. The images are quantified, i.e. the relative pixel

strengths with in each spot between the dyes are summarized numerically. There

are many more steps involved in conducting a microarray experiment, from sample

processing to image acquisition, contributing to experimental confounding variation

(see: Yang and Speed, 2002).

II.2.1. Preprocessing Microarray Data

Microarrays are known to exhibit sources of variation attributable to the many tech-

nological steps involved in manufacturing an experiment (Bolstad et al. , 2003).

A complete discussion of microarray data cleaning and preprocessing is beyond the

scope of this text, taking us away from the current topics of interest. A brief sum-
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mary includes methods to account and adjust for variation accumulated during the

experimental procedures, unrelated to biology. For example, spatial variation on the

chip, or variation between chips, if unaccounted for, may lead to faulty conclusions.

Moreover, variation in experiments within labs on different days, and between labs

has also been noted in the literature as distorting conclusions (Conlon et al., 2006).

The methods and procedures for preprocessing are platform and technology depen-

dent. In many cases, special steps are needed to adjust for lab-specific effects. For

more discussion see work by Geller et al. (2003), Bolstad et al. (2003), Gold et al.

(2005), and Lewin et al. (2005).

II.2.2. Historical Pathways

Prior information may serve as a useful vantage point to initiate learning about dis-

regulation in gene pathways in microarray experiments. The biological motivation

is that genes are known to be dependent, and it makes sense to start with histor-

ically documented relations. Public domain access to information about genes and

the genomes of many organisms is rapidly advancing. This is partly a consequence of

high-throughput technologies. Pathguide, www.pathguide.org, maintains an exten-

sive list of online gene database resource tools. Some of the more popular resources

for the human genome are Gene Ontology (GO), the Kyoto Encyclopedia of Genes

and Genomes (KEGG), and BioCarta. There is currently little uniformity in the

way information is reported in each database. Integrating information between the

databases requires good understanding of the database formats. For example, GO

maintains and updates a public database with a mapping from the known genes to a

highly structured vocabulary describing the biological processes, molecular functions,

and cellular locations of gene products. Each gene annotation in GO is accompanied
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by an evidence code, indicating how the information was curated. Pathway databases

such as BioCarta provide symbolic reproductions of known protein interactions in the

form of metabolic pathway maps. Efforts are underway to design semantic solutions

that will integrate all of this information.

Despite the massive amount of prior information available, there is still much un-

certainty attached to gene pathways. The rich class of known protein interactions

represents only a fraction of the plausible relationships operating in living cells. A

practical concern is that no one technology measures all of the different types of inter-

actions needed to learn a complete pathway. The key issue in gene expression studies

is that detection of biology pathways is typically hindered by underpowered study

designs. Historical pathways may help to complete the picture.

Incorporating historical pathways into an array analysis explicitly is a goal that many

share in Bioinformatics, although there are drawbacks. The prior information of many

genomes is incomplete with poor coverage of the genes. In some cases the prior in-

formation is of dubious quality, or the pathway dependencies only are known to exist

under a specific set of circumstances. Some sources of prior information may be more

useful than others for array analysis. One form of prior information that has obvious

benefits includes information about operon classes of genes. Genes in the same operon

class have the same consensus upstream binding motif, and therefore are regulated

by the same transcription factor (TF). When a TF binds to the promoter region of

a gene, expression is initialized. In expression array experiments, this is an obvious

source of historical information that would seem useful, as expression is what is being

measured. TF databases exist for some organisms, such as yeast and e-coli. A goal is

to make collective inference on genes and gene classes, defined from historical path-
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Table 1. Counts by class and differential expression
Genes in Class b Not in Class b Total

Genes Changed n11 n11 n1·

Genes Not Changed n21 n22 n2·

Total n·1 n·2 n··

ways, while accounting for the uncertainty in both, by integrating historical pathways

explicitly into the analysis.

II.2.3. Gene Class Detection

There is a growing body of evidence to suggest that known gene regulatory factors

can explain variation on arrays (Tamada et al., 2003; Allocco et al., 2004; Bharjwaj et

al., 2005; Nagaraj et al., 2004), although these results are premature. Nevertheless,

this is important empirical evidence, as it demonstrates that some known sources of

biological dependency between genes can be detected in array studies, overcoming

the high levels of noise attributable to other sources (Bolstad et al., 2003).

Enrichment analysis (EA) is a conventional approach for gene class inference. EA

involves determining if a gene class is ‘enriched’ for changed genes, disproportion-

ately to the overall fraction of genes showing change. Given a set of k statistically

interesting genes, and biological class annotations, 2 × 2 tables are constructed for

each class, as in Table 1. The count n11 is the number of genes changing in class b.

One-sided Fisher Exact tests for each class are performed to determine if n11 is sta-

tistically larger than expected, i.e. than in relative proportion to the genes changing

overall. If so, the class is deemed interesting. Curtis et al. (2005) reviewed heuristic

approaches for inference on GO categories, such as Enrichment Analysis and Gene

Set Enrichment Analysis, given the results of univariate gene detection analysis (Gold
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et al., 2007).

Barry et al. (2005) detailed a method to make inferences on a priori gene cate-

gory assignments by permutation testing, to produce false discovery rates of expres-

sion change for each category. Battacharjee et al. (2004) developed an hierarchical

Bayesian method to study gene expression across organs, allowing for uncertainty

in gene detection and enrichment of GO categories. Van Der Laan et al. (2001)

used a parametric bootstrap to perform gene subset selection accounting for covari-

ance between the genes. Dobra et al. (2004) developed a method to learn about

gene pathways graphs which can include prior information. Lu et al. (2005) lists

a systematic approach to multivariate gene detection with Hotelling’s T 2 statistic.

Pan (2006) performed stratified gene detection given GO biological process annota-

tions. Zou and Hastie (2005) developed Elastic Nets, similar to LASSO, for variable

selection and inference of gene pathways. Liao et al. (2007) developed Network

Component Analysis for learning about gene pathway structure in multivariate data.

A very specific application is offered in Sun et al. (2006), demonstrating a novel

Bayesian approach to integrate data on transcriptional binding affinity with expres-

sion array data. Moloshok et al. (2002) performed Bayesian Decomposition, a pattern

recognition algorithm that allows genes to cluster, and borrow strength, in multiple

expression patterns associated with historical pathways. Historical pathway informa-

tion is integrated into the analysis by defining a priori expression patterns that the

genes that are likely to show across the samples. The prior distribution specifies the

probability that each gene will show one or more of the patterns. This method can

be awkward to employ, as one must translate the historical pathway information into

expression patterns. Parmigiani et al. (2002) employed gene-wise borrowing to learn

about tumor subclasses in cancer. They define a mixture model to classify each gene
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in each tumor sample as normally expressed, up, or down regulated. The gene specific

parameters are allowed to borrow strength across the whole genome. They did not

use prior information, although it would not be difficult to extend their model to use

prior information.

The problems with many of the aforementioned methods is that inference is limited

to the genes or the pathways, but not to both. Historical pathways are typically not

integrated explicitly into the analysis, and conclusions concerning pathways are made

apart from the individual genes. For example, in EA, a heuristic approach is taken

by first selecting a list genes for a contrast of interest and then given the list, then

choosing a set of pathways. Historical pathways are ignored during gene detection.

Integrating historical pathways with array data is a part of learning, something inves-

tigators do naturally. A Bayesian hierarchical linear model is introduced, Bayesian

Learning for Microarrays (BLM), to flexibly allow for many sources of uncertainty

and integrate prior information of gene biology, to the extent that it fits with one’s

beliefs. The advantages can be applied in many settings, to integrate information

from many sources, while accounting for the fundamental limitations of the data,

namely high noise. The Bayesian approach offers: (1) results that are interpretable

in a higher-level sense concerning pathways or regulatory processes, (2) pooling in-

formation between genes to improve detection and (3) computational methods that,

despite practical concerns, are quite achievable for routine analysis. We show that a

fully Bayesian construction with prior information, is feasible and practical for regular

high-throughput genomics analysis.
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II.3. Bayesian Learning for Microarrays

The Bayesian Learning for Microarray (BLM) class of models are a series of extensions

of the multistage-linear model, designed to model dependency in gene expression from

historical pathways. Dependence is induced through a hierarchical structure, allowing

class-level, or in terms of gene pathways, higher-level inference. The basic model is

outlined for the case that the historical pathway information is assumed to be com-

plete. Extensions of the basic model are presented, allowing for more uncertainty in

the historical information.

II.3.1. BLM1

In this section, we develop the model assuming that the gene classes are defined from

complete historical pathway information. Suppose we have microarray measurements

of normalized log transformed gene expression for i = 1, ..., N genes, across j = 1, ..., J

treatment groups or experimental factors, and k = 1, ...,K; replicate arrays for each

treatment. Also, assume that we have available information about p historical gene

pathways. Denoted the normalized log transformed fluorescent intensity for gene i in

group j and replicate k as Yijk and let X be an experimental design matrix for one

gene. The Bayesian multistage linear model, called Bayesian Learning for Microarrays

1 (BLM1), takes the J · K dimensional vector of gene expression measurements for

gene i, Yi = (Yi11, Yi12, ..., YiJK)T as iid normal
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Yi ∼ N
(

Xβi, σ
2
i IJ ·K

)

βij ∼ N
(

Ziθj, ωσ
2
i

)

σ2
i ∼ IG

(γ1i

2
,
γ2i

2

)

θcj ∼ N (θ0,Ω0) (2.1)

with mean vector Xβi, and diagonal covariance matrix σ2
i IJ ·K , for the J ·K identity

matrix IJ ·K . The (J ·K)×J known full rank design matrix X includes as columns the

J experimental factor or treatment covariates. The coefficients βij’s are assumed to

be unknown and modeled as a priori iid normal with mean depending linearly on the

p dimensional hyperparameter vector θj = (θj1, ..., θjp)
T through the inner product

with the ith row of the N × p dimensional connectivity matrix Z, denoted Zi. We

explicitly take as given, that for a collection of p historical pathways, p gene ‘classes’

may be defined. The connectivity matrix Z incorporates this information into our

model. Z is defined such that Zic = 0 if there is no historical evidence that gene i is a

member of pathway c, and Zic 6= 0 otherwise. For example, one may define Zic = 1 if

gene i is known to be up-regulated in pathway c, Zic = −1 if gene i is down-regulated

and Zic = 0 otherwise. The p dimensional hyperparamter vector θj = (θj1, ..., θjp)
T

is included as a latent variable, to impose hierarchical dependence between the βij’s

across the genes. The unknown latent hyperparamters θcj’s are assumed to be iid

normal with mean θ0 and variance Ω0. In this framework, the hyperprior parameter

θo is a prior guess at the level of change expected on average across the genes. Unlike

covariance estimation, there is no sample-size limitation to the number of dependen-

cies that may be defined between the genes within a class, and a gene may be a

member of more than one class. All that we require is that Z be full rank. For now
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we assume that Z is fully known. This assumption is relaxed in the following sections.

One can vary the level of borrowing between the genes by the global parameter ω.

The prior weight ω in (2.1) is essentially the desired prior inverse sample size. Increas-

ing ω places more weight on the data. Decreasing ω will increase borrowing between

genes, reducing the posterior variance in β while increasing the bias. Striking an

effective balance between bias and variance can facilitate improvements in sensitivity

and specificity for detection. An intuitive way of thinking about the model, is as a

multi-stage linear model, where we are regressing Y on the the design matrix X at

the first stage, and at the second stage we are regressing the unknown coefficients β

on the annotations.

Box 1.1. Summary of N × p connectivity matrix Z

• ith row of Z links the treatment effects, βi, in gene i to the hyperparameter

vector θj

• cth column of Z links θj to the j = 1, ..., J treatment effects across all genes

(weighted by Z)

• The relative direction of change in log gene expression gene depends on sign of

Z

• Magnitude of Z accounts for strength of association

• Averaging of probes mapping to same gene is natural through Z

An extension of the above model, leading more conveniently to inference on the gene



17

classes, treats θjc as arising from a mixture,

Yi ∼ N
(

Xβi, σ
2
i

)

βij ∼ N
(

Ziθj, ωσ
2
i

)

σ2
i ∼ IG

(γ1i

2
,
γ2i

2

)

θjc ∼ πθjc
N (θ0,Ω0) · I(θjc > 0) + (1 − πθjc

) · 1{0}

πθjc
∼ Beta(υ1jc, υ2jc), (2.2)

where πθjc
is the probability that Ho: pathway c given treatment j is unactivated.

Bayesian false discovery rate estimation (bFDR) is one approach to make inference

on genes or gene classes in (2.2). More on this is discussed in Section 3.5.

II.3.2. BLM2

In models (2.1) and (2.2) Z is assumed fully known. However, with some sources

of prior information there remains uncertainty as to the relative direction of change

in gene expression between experimental treatment conditions, and consequently un-

certainty in the sign of Zic. This is the case for example with GO annotations, as

there is little information to suggest up or down regulation of gene expression given

an experimental stimulus, and consequently a positive or negative sign on Zic. In this

situation, gene-pathway associations may be represented in Z in dichotomous form,

Zic ∈ {0, 1}, or as weights representing the degree of belief that a particular gene is

involved in a given pathway or process, e.g. based on evidence codes provided by GO.

The extended model with a truncated normal prior for θj, added as an identifiability

constraint, is



18

Yi ∼ N
(

Xβi, σ
2
i

)

βij ∼ πijN
(

Ziθj, ωσ
2
i

)

+ (1 − πij)N
(

−Ziθj, ωσ
2
i

)

σ2
i ∼ IG

(γ1i

2
,
γ2i

2

)

πij ∼ Beta(ν1ij, ν2ij)

θjc ∼ N (θ0,Ω0) · I(θjc > 0). (2.3)

The treatment effects, βij’s, are modeled as arising from a mixture with mean al-

ternating in sign between the components. This model is useful for learning about

changes in genes within gene classes defined from historical pathways for which little

information is available concerning the direction of fold change in gene expression

given an experimental stimulus. The corresponding mixture model in θ is

Yi ∼ N
(

Xβi, σ
2
i

)

βij ∼ πijN
(

Ziθj, ωσ
2
i

)

+ (1 − πij)N
(

−Ziθj, ωσ
2
i

)

σ2
i ∼ IG

(γ1i

2
,
γ2i

2

)

πij ∼ Beta(ν1ij, ν2ij)

θjc ∼ πθjc
N (θ0,Ω0) · I(θjc > 0) + (1 − πθjc

) · 1{0}

πθjc
∼ Beta(υ1jc, υ2jc). (2.4)



19

II.3.3. BLM3

BLM1 and BLM2 treat the genes within a class as dependent, i.e. the whole class

of genes is either activated or deactivated in tandem. This assumption is unrealistic

in the following sense. In complex organisms, with incomplete pathway information,

some genes might be observed to change in an important pathway, although it is

unrealistic to expect all the genes to show the same activity. The changes observed

do not verify or nullify the a priori gene dependencies. The observed changes must,

very rationally argued, be accepted as uniquely observed given the specific treatment

conditions studied, and not expected to generalize without further evidence. Models

BLM1 and BLM2 enforce dependency between all the genes in a respective class,

regardless of whether or not every gene actually exhibits treatment effect(s). This

is fine if there is very strong prior information to suggest that the genes are linked,

i.e. strong dependency. This may be the case, for example in lower organisms when

studying transcriptional regulation. In the broader class of experiments, with weaker

forms of evidence about gene dependence, the net effect of strictly imposing hierar-

chical dependence is to shrink genes effects that are essentially zero away from zero,

and gene effects that are non-zero toward zero. It seems counterintuitive to borrow

strength between genes, some of which are changing and others that are not. BLM1

and BLM2 offer advantages, but nevertheless drawbacks as well, bringing us to the

next extension. A new random variable is introduced, Ψij ∈ {1, 2, 3}, to account for

the states of genes expression. In the following model,
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Yi|Xβi, σ
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i ∼ N
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Xβi, σ
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)

βij|Ψij, Zθj, ωσ
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i ) Ψij = 1

1{βij=0} Ψij = 2
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2
i ) Ψij = 3

π(Ψij) ∼ Multinom(3; p1, p2, p3)

p ∼ Dir(c, A)

σ2
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(γ1i
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γ2i

2

)

θjc ∼ N (θ0,Ω0cj) · I(θjc > 0). (2.5)

Ψij = 1 if gene i is down-regulated given treatment j, Ψij = 2 if gene i is unchanged

and Ψij = 3 is expression in gene i is increased. Borrowing strength is conditional

upon detection. The treatment effects βij depend on Z only if differential expression is

detected. If a gene has no treatment effect, then the model does not borrow over that

gene. In that sense, the elements of the posterior connectivity matrix are implicitly

updated as zeros in the case that a gene is not found to change. We are in essence

defining a new random variable Z ′ and allowing

Z ′
ic =































−1 p1

0 p2

1 p3

,

for all classes c, updating the respective probabilities p given the data. The motiva-

tion for this innovation is that in factorial designs it is possible to learn under which

conditions genes in a historical pathway interact, although the entire pathway may

not be activated/deactivated. The pathway may be disrupted. This level of uncer-
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tainty has not been exploited in gene expression inference. We take caution, as this

feature of the model does not imply unchanged genes are un-associated with mem-

bers of their class. High-throughput study designs are incomplete. It is unrealistic to

expect to obtain a complete and general picture of the connectivity matrix.

Here is makes sense to model θj with an informative prior, as it accounts for the event

that a gene has actually changed. In this regard, the posterior will of course depend

on the number of genes changed. In order to maintain prior ‘strength’ for sharing,

the prior variance of θ may be inversely weighted by the number of β’s 6= 0. For

example, one may set θ0 = 1 corresponding to prior belief that a 2-fold change is a

priori real, and set

Ωocj = σ2
θ ×

1
∑n

i∈Ac
1βij 6=0

(2.6)

where σ2
θ is based on a prior belief of the support of θ when just one gene has

changed, and Ac is the index set of genes annotated with class c = 1, ..., p. It

may be advantageous to select a region of high support where it is strongly be-

lieved that effects are real. For example, setting σ2
θ = .252 produces a prior such that

Φ(log2(1.5); 1, .252) = 0.0465, putting little prior mass on fold changes less than 1.5.

Information within classes is shared in a natural way between genes. This is the model

chosen for the general analysis, letting us borrow information between the genes that

are changing while discriminating from those that are not changing. Only genes in

the same class borrow information. This may be useful when a small group of genes

within the same biological class are changing but at levels too low to be detected

individually.
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The concept of using a connectivity matrix Z to model gene dependency is not new,

Liao et al. (2007). BLM extends the idea, in a Bayesian framework, by allowing for

uncertainty in Z. BLM shares similarities with Bayesian Decomposition of Moloshok

et al. (2002). Like Bayesian Decomposition, the genes are allowed to borrow with

prior information, but only in fixed experimental groups. Bayesian Decomposition

can discover expression patterns. This is very powerful for grouping genes in, for in-

stance, time course array studies. BLM is not designed to detect patterns, but rather

gene classes given fixed experimental covariates. Another major difference in BLM

is the way in which is accounts for the uncertainty in historical pathways, either in

the direction of fold change, or the event that a gene is differentially expressed. BLM

allows genes to flexibly share information in experimental groups when differentially

expressed, rather than limited to distinct patterns. Both methods can powerfully de-

tect changes in gene classes through borrowing, although they have different strengths

and weaknesses. BLM is more flexible in the way it allows genes in the same class to

borrow information across experimental groups, whereas Bayesian Decomposition is

more flexible in the patterns that it may detect. BLM3 also shares similarities with

the mixture model of Parmigiani et al. (2002). They let genes borrow information at

the whole genenomic level to detect tumor subclasses, but did not make use of prior

information. It would not be difficult to extend their model to include prior informa-

tion. If one is willing to define each tumor sample as a unique experimental factor,

then their model can be viewed as an adaptation of BLM3 without prior information.
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II.3.4. Posterior Computation

Gibbs sampling (Geman and Geman, 1984) for hierarchical mixture models is de-

scribed in Gelman et al. (2004). Block sampling, Wilkenson et al. (2002), is helpful

for posterior sampling when the number of genes is large. The data augmentation

approach of Hodges (1998) is convenient if the number of genes is moderate. Lindley

and Smith (1972) derived the marginal posterior distributions for the 3rd stage pa-

rameters, θ’s, integrating out the β’s and Bayes Factor can be applied as discussed

in Raftery et al. (1997). George and McCulloch (1993) discuss variable selection.

Simulations and model fitting were performed with R scripts. The full conditionals

are listed in the Appendix.

II.3.5. False Discovery Analysis

Consider the model in BLM1 (2.1) and let the null hypothesis be for change in gene

i and treatment effect j be H
(ij)
0 : βij = 0 and the alternative H

(ij)
a : βij 6= 0. Define

the posterior rejection region as

P (|βij | > γ | y) > (1 − α),

for some user specified γ and α. Let the variable r
(ij)
γ (y) = 1 if H

(ij)
a is chosen, i.e.

βij selected for change, and r
(ij)
γ (y) = 0 otherwise. In order to estimate the FDR(γ),

a measure is needed of the posterior probability P (βij > γ|y), in the case that H
(ij)
0

is true, or in the Bayesian framework, a measure of P (H
(ij)
0 |r(ij)

γ (y) = 1, y).

In the typical setting, inference on the gene ‘classes’ involves making probability

statements on the θjc’s, i.e. P (δ1 < θjc < δ2). Posterior inference on θ in the case of
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BLM2 (2.3) is complicated by the modeling constraint that θ > 0. An approach to

determine if a process or pathway is interesting, is to compare the posterior distribu-

tion of θ actually observed, with what would have been observed if none of the genes

in the class had changed. There are a number of ways discussed in the literature

to accomplish this, such as bootstrap resampling or model simulation (Tadesse et

al., 2004). For example, one may fit model (2.1) to derive posterior samples of the

gene-wise parameter effects, βi2’s and θjc’s, by Gibbs sampling. In a repeat analysis,

the model is fit to a simulated data set of a transformed response, e.g. subtracting

the fitted treatment effects β
(t)
i2 from yi, ỹi = Yi − XTβ(t), for each Gibbs replicate

t, to generate new posteriors for the θ̃jc’s with the estimated cancer effects removed,

πo(θ̃jc|Data). Simulations reveal that this approach can approximate the null case

quite reasonably, see Figure 3.

Consider the gene classes c = 1, ...,M and suppose that a class c is selected for change

if

P (|θc| > γ | y) > (1 − α),

for different user specified γ’s, and α presumed fixed. Let the variable rc
γ(y) = 1 if

class c is selected and rc
γ(y) = 0 otherwise. Under the null hypothesis H

(c)
0 in BLM1,

none of the genes in pathway b are differentially expressed. The alternative hypothesis

is that all genes show at least some differential expression. In the case that the H
(c)
0

is true, the posterior mode of (θc|H(c)
0 , y) will be at (or in practice very near) 0. For

those classes for which the H
(c)
0 is rejected, one can determine
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Fig. 3 Simulated posterior results, kernel fits to 1000 Gibbs samples, (−−−) null, (· · · ) simulated null and

(—) true differences, for (a) n = 10 and (b) n = 25 genes. Expression values were simulated with 8

normals as iid N(9, 1) and 9 cancers as iid N(9 + δ, 1) for δ iid N(0, 1).
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P (|θc − m̃c| > γ | y),

for m̃, the mode of θ|y. The False Discovery Rate (FDR) is defined as

FDR(γ) =

∑

c P (|θc − m̃c| > γ | rc
γ(y) = 1, y) · rc

γ(y)
∑

c r
c
γ(y)

, (2.7)

the posterior probability that |θc| is greater than γ, given H
(c)
0 . The True Negative

Rate (TNR) is defined as

TNR(γ) =

∑

c P (|θc − m̃c| < γ | rc
γ(y) = 0, y) · (1 − rc

γ(y))
∑

c(1 − rc
γ(y))

. (2.8)

Both the FDR and the TNR yield information about the respective decision rules. In

order to achieve a given FDR(γ), γ may be selected, and a respective list of pathways

chosen. Choices of γ that are very conservative, i.e. very large in this case, tend to

yield low FDR’s and high TNR’s. For practical purposes, a particular value of γ may

be choose to yield an acceptable combination of the FDR and TNR pair. Consider-

ation of both rates is feasible, and straightforward to estimate in a Bayesian paradigm.

Notice though, that the FDR is a mean, a rate over different gene classes. The rate

can vary, although this variability is often ignored or not mentioned in the literature.

A more amenable solution for gene class detection may be to consider the entire

distribution of

P (|θc − m̃c| > γ | y),
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for example the standard deviation and the percentiles, over all classes c = 1, ...,M .

Dividing the standard deviation by the appropriate number of classes, for each γ,

yields an approximate confidence region. The local FDR for gene class c, lFDRc, is

defined as

lFDRc = FDR(γ∗) for γ∗ = argmaxγr
c
γ(y) = 1. (2.9)

which may be reported for each class, with error bounds.

Suppose that we model θ by (2.2) as arising from a mixture of a truncated normal

and a point mass at 0. An approach for FDR estimation attributable to Whittemore

(2006), described as the Bayesian FDR (bFDR), is defined as

bFDR(γ) =

∑

c P (Hc
0|rc

γ(y) = 1, y) · rc
γ(y)

∑

c r
c
γ(y)

. (2.10)

This definition of FDR integrates the posterior probability of Hc
0 over all gene classes

that test positive for change.

In the case of BLM3, there is uncertainty as to which genes, if any, changed within a

class, as there is no strict requirement that all of the genes changed in a class, even if

a pathway is activated/deactivated. Consider the gene-wise rejection rule rγ
ij(y) = 1

if max{Pr(βij > 0|y), P r(βij < 0|y)} > γ for γ ∈ [0, 1]. An estimate of the FDRij(γ)

for gene i given treatment j, according to the rejection region specified by γ, is

FDRij(γ) =

∑

i P (βij = 0 | rγ
i (y) = 1) · rγ

i (y)
∑

i r
γ
i (y)

. (2.11)

This definition of FDR integrates the false positive rate over the posterior parameter
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space of genes that test positive for change. An estimate of the local FDR, lFDRij

for gene i and treatment is

lFDRij = FDR(max{Pr(βij > 0 | y), P r(βij < 0 | y)}). (2.12)

Also of interest may be some percentile p of P (βi = 0|rγ
i (y) = 1) over {i : rγ

i (y) = 1}

or the standard deviation. These quantities are straight-forward and not cumbersome

to compute in the Bayesian paradigm. The TNR is computed similarly. The choice

of γ may be selected striking a desired balance between FDR and TNR.

Suppose one wishes to make inference on gene class c, under the modeling assump-

tions of BLM3. There are many considerations when selecting a class in this context,

and the decision of how to proceed will guided by investigators’ needs. One recom-

mendation is to consider classes of genes such that the % of genes discovered for

change is high, at some pre-specified FDR. According to the null hypothesis, H
(c)
0 :

none of the genes in class c are differentially expression, while under the alternative

hypothesis, H
(c)
1 : at least some genes are differentially expressed. In each class c the

posterior probability of the number of genes, nc, showing differential expression, may

be used to define the rejection rule, rc
γ(Y ) = 1 for

π(n(c) ≥ nγ | Y ) ≥ (1 − α)

and fail to reject otherwise. This approach has been considered for gene subset

selection (Bhattacharjee et al., 2004). For the rejected pathways, the probability of

a false positive may be estimated by
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FDRc(γ) = π(n
(c)
0 ≥ nγ | Y ) (2.13)

where the posterior of n
(c)
0 is derived by repeating the modeling on a transformed

data set, with the gene-wise effects for treatment removed. There are a number of

different approaches proposed in the literature for simulating from the null distribu-

tion, by simulation modeling (Tadesse, 2004) or by bootstrap (Van der Laan M. and

Bryan, 2001) versions of the data. These methods make certain assumption about

the distribution of the data which may not always be realistic. An alternative, which

in some situations may be more robust is the plug in estimator, described below,

where gene wise effects, estimated by least squares ANOVA or by simple averages,

are subtracted from the treatment groups in order to remove treatment differences

from the data. In small data sets, the plug in approach can bias the FDR up, due to

over fitting, which will induce small changes between the groups, although in practice

the residual variation from the estimated treatment effects will often be overwhelmed

by the effects of noise and outliers in the data.

In the context of BLM1 and BLM2, the hierarchical parameter θ embodies infor-

mation which serves to inform us about changes within the respective gene classes.

Collective inference on the genes and pathways with BLM3 is possible by considering

first inference on θ followed by gene selection. The hierarchical approach to learning

is a reasonable course. Alternatively, the joint posterior of (nc, β1j, β2j, ...|y) may be

considered. Gene classes and genes may be selected collectively according to the joint

posterior, defined by a threshold. A disadvantage to this approach is that it selects

genes in classes with a high proportion of genes changing. Many investigators will

find this disturbing. It is not considered further here, although such an approach may
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supplement to one-at-a-time gene analysis.

II.4. Simulation Studies

In order to compare the effectiveness of the model to borrow strength, simulation

studies were conducted under different conditions. Several simulation studies were

conducted as part of a broader effort to understand the operating characteristics of

models BLM1, BLM2 and BLM3. Intuitively, borrowing strength should increase the

power to detect real differences in the data, reducing the threshold for detecting small

but consistent changes. In practice, the benefits can be minimal depending on the

sample and gene class sizes.

In the first simulation, data was generated for n = 25, 50 and 100 genes and m = 17

samples, with m0 = 8 simulated normal samples and m1 = 9 simulated disease sam-

ples. The data was simulated from a Yij ∼ N(µij , 1) iid distribution, with µi1 = 0

for i = 1, ..., n and µi2 = δ for δ = .58, .75 and 1. The results were compared for

different levels of borrowing, ω = 1, 10. At each iteration, the posterior probability

of β > 0, the coefficient responsible for change, was averaged across the genes. This

was repeated 100 times. The simulations were run with R scripts in parallel on a Dell

8200 server with dual core Intel Xeon processors, in under 24 hours.

Table 2 shows the results for BLM1. Notice that the rates of detection increase as

delta increases and ω falls and the level of borrowing increases. The effect of increas-

ing the sample size is largely to increase the precision.

In Table 3 the FDR’s and FNR’s are displayed, estimated as the average rates
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Table 2. Simulation BLM1 (2.1), P (β > 0|y) mean and sd

ω = 10
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.7993 (0.0420) 0.8677 (0.0349) 0.9313 (0.0212)
50 0.8069 (0.0318) 0.8682 (0.0252) 0.9306 (0.0154)
100 0.8051 (0.0208) 0.8697 (0.0172) 0.9288 (0.0116)

ω = 1
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.8460 (0.0411) 0.8991 (0.0279) 0.9593 (0.0160)
50 0.8420 (0.0297) 0.9044 (0.0223) 0.9578 (0.0128)
100 0.8454 (0.0199) 0.9041 (0.0147) 0.9581 (0.0083)

n p-value
50 0.1470 (0.2603) 0.0847 (0.1948) 0.0337 (0.1101)

Table 3. Simulation BLM1 (2.1), FDR/FNR

ω = 10
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.0355/0.6787 0.0321/0.7052 0.0214/0.7465
50 0.0348/0.6601 0.0296/0.7094 0.0224/0.7618
100 0.0358/0.6666 0.0299/0.7055 0.0218/0.7589

ω = 1
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.0377/0.7060 0.0314/0.7517 0.0184/0.7983
50 0.0362/0.7143 0.0290/0.7408 0.0189/0.7909
100 0.0368/0.7126 0.0293/0.7500 0.0189/0.7965

across 100 simulated data sets. Of course in this simulation, all of the genes change,

so FDR’s closer to zero and FNR’s near 1 are better. As one would hope, the effect

of increasing the level of borrowing is to reduce the FDR, while increasing the FNR.

The simulation was repeated for BLM2 (2.3), with δ alternating in sign independently

at random with probability 1/2 for each gene. The results are summarized in Tables

4 and 5. Detection rates do increase with borrowing, although there is not a clear

advantage in producing improved FDR’s and FNR’s with borrowing, until ω is re-

duced to 0.25. The additional level of uncertainty, i.e. in the sign of Z, does lead

to additional variability in the results, which are manifested in the FDR’s and FNR’s.
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Table 4. Simulation BLM2 (2.3), P (β > 0|y) mean and sd

ω = 10
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.8043 (0.0425) 0.8577 (0.0386) 0.9273 (0.0226)
50 0.7951 (0.0283) 0.8652 (0.0244) 0.9234 (0.0193)
100 0.8005 (0.0241) 0.8597 (0.0186) 0.9245 (0.0136)

ω = 1
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.7964 (0.0529) 0.8571 (0.0405) 0.9228 (0.0271)
50 0.8055 (0.0248) 0.8656 (0.0255) 0.9268 (0.0147)
100 0.7987 (0.0208) 0.8630 (0.0177) 0.9265 (0.0118)

ω = .25
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.7983 (0.0448) 0.8833 (0.0373) 0.9592 (0.0173)
50 0.8030 (0.0320) 0.8816 (0.0263) 0.9587 (0.0140)
100 0.8027 (0.0223) 0.8875 (0.0188) 0.9599 (0.0106)

n p-value
50 0.2873 (0.5130) 0.1690 (0.3879) 0.0672 (0.2208)

Table 5. Simulation BLM2 (2.3), FDR/FNR

ω = 10
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.0353/0.7292 0.0305/0.7459 0.0233/0.7720
50 0.0352/0.7278 0.0300/0.7418 0.0237/0.7646
100 0.0365/0.7312 0.0305/0.7485 0.0225/0.7682

ω = 1
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.0348/0.7321 0.0301/0.7471 0.0225/0.7701
50 0.0362/0.7347 0.0301/0.7496 0.0234/0.76954
100 0.0368/0.7304 0.0306/0.7457 0.0229/0.7755

ω = .25
n δ = 0.58 δ = 0.75 δ = 1.00
25 0.0474/0.7354 0.0360/0.7610 0.0175/0.7899
50 0.0499/0.7409 0.0348/0.7623 0.0173/0.7835
100 0.0490/0.7438 0.0345/0.7644 0.0169/0.7880
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Fig. 4 ROC curve BLM3: + ω = 1, · · · ω = 10, −−− ω = 100.

In order to assess BLM3, data was generated for n = 50 genes and m = 17 samples,

and two types, with m0 = 8 simulated normal samples and m1 = 9 simulated disease

samples. The data was simulated as iid normal Yij ∼ N(µij , .252) with µi1 = 0 for

i = 1, ..., 50 and µi2 = 0 for i = 1, ..., 25 and µi2 = i/50 for i = 26, ..., 50. The results

for model (2.5) were compared for different levels of borrowing strength through the

parameter ω = 1, 10 and 100. The results are summarized in Figure 4, by ROC

curves, averaged over 100 iterations.

The results show that a certain level of borrowing does lead to better estimation. For

ω = 1 perfect specificity was achieved in all 100 simulations, although the sensitivity

varied. For ω = 10 and 100, the ROC curve does rise as the Specificity improves.

The Sensitivity appears to taper out to 80% for ω = 10. Notice that at lower ω, the
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same level of sensitivity can be achieved at an improved specificity. Each ω ultimately

can achieve the same sensitivity at near 80%, although the effect of borrowing is to

improve the specificity.

II.5. Yeast Time Course Data

This microarray study was conducted by Klevecz et al. (2004) with Affymetrix S98

Arrays gene expression arrays. Oscillations in transcription were monitored through

3 complete cycles of respiration and reduction by dissolved oxygen (DO). Every 4

minutes RNA samples were collected and hybridized to arrays. Two striking global

patterns in gene expression were observed, a shift in expression between time points

1-10 and 11-32, and a periodic trend resembling a sine wave. The data was originally

preprocessed by Affymetrix Microarray Analysis Suite 5.0 (MAS 5.0). The MAS 5.0

expression values were obtained, and transformed by the base 2 logarithm. The data

may be found at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2583. Gene

classes were obtained from the Yeastract public database, according to transcription

factor (TF), http://www.yeastract.com. Seventeen gene classes were obtained, ac-

cording to the consensus motifs of 17 TF’s, the smallest class including 5 genes and

the largest 222 genes.

A post-hoc analysis was carried out. BLM2 (2.3) and (2.4) were fit to each TF gene

class independently. A design matrix was constructed including two terms, account-

ing for a shift in expression at time point 10, and the sine wave. The FDR was

estimated for each class variable θc, for c = 1, ..., 17, from the results. The rejection

rule rcj
γ (y) = 1 for each TF c and factor j was defined as P (θcj > γ | y) > 0.90.

The lFDR is reported for each TF class, along with the lTNR. The results are
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Table 6. BLM2 (2.3) ω = 10, FDR/TNR

TF Shift Sine Wave

1. Dal82 1/0.1976 1/0.1866
2. FLO8 0.922/0.3524 0.9205/0.3015
3. GAT1 1/0.1976 1/0.1866
4. HAA1 0.922/0.3524 0.9205/0.3015
5. HAP2 1/0.1976 1/0.1866
6. HPC2 1/0.1976 1/0.1866
7. MOT3 1/0.1976 1/0.1866
8. NDT80 1/0.1976 1/0.1866
9. NRG1 1/0.1976 1/0.1866

10. PHO4 1/0.1976 0.9205/0.3015
11. RDR1 1/0.1976 1/0.1866
12. SMP1 1/0.1976 0.9205/0.3015
13. THI2 1/0.1976 1/0.1866
14. CBF1 1/0.1976 1/0.1866
15. GCR2 1/0.1976 1/0.1866
16. HAP5 1/0.1976 1/0.1866
17. MET31 1/0.1976 0.9205/0.3015

Table 7. BLM2 (2.3) ω = 1, FDR/TNR

TF Shift Sine Wave

1. Dal82 0.8642/0.1354 0.9359/0.1465
2. FLO8 0.7051/0.2032 0.9011/0.2532
3. GAT1 0.5385/0.2608 0.9359/0.1465
4. HAA1 0.2871/0.3843 0.9151/0.2198
5. HAP2 0.0206/0.7952 0.9574/0.1177
6. HPC2 0.8642/0.1354 0.9359/0.1465
7. MOT3 0.7051/0.2032 0.9359/0.1465
8. NDT80 0.0553/0.6488 0.9574/0.1177
9. NRG1 0.1758/0.4496 0.9574/0.1177

10. PHO4 0.9320/0.1199 0.9151/0.2198
11. RDR1 0.7793/0.1905 0.9574/0.1177
12. SMP1 0.0170/0.8874 0.9151/0.2198
13. THI2 0.0013/0.9030 0.9359/0.1465
14. CBF1 0.0188/0.8566 0.9574/0.1177
15. GCR2 0.0206/0.7952 0.9574/0.1177
16. HAP5 0.5385/0.2608 0.9574/0.1177
17. MET31 0.7051/0.2032 0.9359/0.1465
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summarized in Tables 6−7 by class labeled according to respective TF, for ω = 1, 10.

Notice that for ω = 10, none of the TF classes are detected for change, for either

factor. When ω = 1 is employed, gene classes defined for TF’s HAP2, SIMP1, THI2,

CBF1 are GCR2 are discovered for change as a class by the shift term at the FDR

= .05 level.

The results for BLM2 (2.4), treating θ as arising from a mixture are displayed in

Tables 8−9. The effect of increasing the level of borrowing is to increase the de-

tection rates for similar gene classes. The rejection rule for each TF c and factor

j, rcj
γ (y) = 1, is P (θcj > 0|Y ) >= γ. The local bFDR rate reported below is

minγ(FDR(γ)|rjc
γ (y) = 1). The local bFNR rate is also reported.

As with BLM2 (2.3), inference on the TF classes improves for an increase in borrow-

ing between the genes. For ω = 1 and bFDR ≤= .05, the following TF gene classes

are detected: HAP2, NDT80, NRG1, THI2, CBF1 and GCR2. The analysis is not

without limitations. Only genes for which information is available are included in the

analysis. There may be genes in transcriptional pathways that exhibit periodicity

attributable to DO levels. It would be a mistake to make stronger conclusions than

warranted, beyond the information given.

II.6. Renal Cell Carcinoma

In the next application, we turn to a microarray study of Renal clear cell carcinoma

(RCC). Let us begin with some background of RCC. RCC is a deadly and com-

plex disease. The American Cancer Society expects about 38,890 newly diagnosed
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Table 8. BLM2 (2.4) ω = 10, FDR/TNR

TF Shift Sin Wave

1. Dal82 0.5215/0.4427 0.4836/0.4913
2. FLO8 0.5178/0.4659 0.4836/0.4913
3. GAT1 0.5073/0.4741 0.4715/0.5005
4. HAA1 0.5178/0.4659 0.4337/0.5121
5. HAP2 0.5073/0.4741 0.4609/0.5042
6. HPC2 0.5178/0.4659 0.4715/0.5005
7. MOT3 0.5178/0.4659 0.4836/0.4913
8. NDT80 0.5073/0.4741 0.4545/0.5097
9. NRG1 0.5178/0.4659 0.4147/0.558

10. PHO4 0.5193/0.4508 0.4715/0.5005
11. RDR1 0.5073/0.4741 0.4545/0.5097
12. SMP1 0.5073/0.4741 0.4759/0.4941
13. THI2 0.5012/— 0.4759/0.4941
14. CBF1 0.5012/— 0.4836/0.4913
15. GCR2 0.5012/— 0.4609/0.5042
16. HAP5 0.5178/0.4659 0.4715/0.5005
17. MET31 0.5178/0.4659 0.4545/0.5097

Table 9. BLM2 (2.4) ω = 1, FDR/TNR

TF Shift Sine Wave

1. Dal82 0.241/0.5041 0.398/0.5443
2. FLO8 0.2565/0.4985 0.398/0.5443
3. GAT1 0.174/0.5598 0.3901/0.5475
4. HAA1 0.1923/0.5493 0.3563/0.5755
5. HAP2 0.0057/0.7131 0.3436/0.5796
6. HPC2 0.2236/0.5231 0.33/0.5891
7. MOT3 0.2085/0.5379 0.4055/0.5385
8. NDT80 0.0057/0.7131 0.3193/0.5914
9. NRG1 0.0408/0.6204 0.3645/0.5677

10. PHO4 0.2716/0.4863 0.4055/0.5385
11. RDR1 0.1316/0.5818 0.3859/0.558
12. SMP1 0.0759/0.6025 0.3859/0.558
13. THI2 0.0126/0.6475 0.3859/0.558
14. CBF1 0.0088/0.6929 0.3645/0.5677
15. GCR2 0.0088/0.6929 0.336/0.5844
16. HAP5 0.1068/0.5914 0.3859/0.558
17. MET31 0.1536/0.5709 0.3563/0.575
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cases of renal clear cell carcinoma (RCC) this year, with approximately 12,840 of

these cases expected to end in death. Surgery is currently the primary treatment

for RCC as many existing therapies have poor prognosis. There is a critical need

for improved clinical investigations into therapies for renal cell carcinoma. Attempts

to combat RCC would benefit greatly from improvements to the list of candidate

genes associated with the disease. Many past microarray studies have failed to iden-

tify effective targets for treatment, although more promising results were shown by

Lenburg et al. (2003), who compared normal renal to renal tumor gene expression on

Affymetrix U133 chips. Identifying effective targets for treatment in high-throughput

experiments such as Lenburg et al. microarray study is typically complicated by the

uncertainty in the gene regulatory pathways, i.e. collections of genes that interact,

responsible for cancer.

Lenburg et al. (2003) compared the results from their own analysis with seven pre-

vious microarray experiments to identify gene candidates associated with the multi-

step process of renal carcinogenesis. The original analysis included univariate gene

detection. The authors identified 1,234 genes changing by > 3 fold. Among the up

regulated genes, more than expected were found to be associated with functional gene

classes: hypoxia, angiogenesis, necrosis factor, apoptosis, interferon, drug resistance

and metastasis, by Fishers Exact Test. While offering notable results, their analysis

did not make explicit use of historical pathways associated with tumorgenesis.

The MAS 5.0 expression values were obtained for the 17 patient samples available

from the authors’ supplementary website. The data for all samples on array were

included in the analysis, normalized by setting the mean to 500 on each array as

described in Lenburg et al., truncating expression values below by 1 and taking the
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Fig. 5 Histogram of F statistics and (—) null, for testing variation due to patient.

base 2 logarithm. The original design was match paired, although one of the normal

samples was discarded for poor quality. Likelihood ratio tests were performed on the

log ratios, testing the variation by patient account for normal cancer differences. The

distribution of the F statistics matched the theoretical null, see Figure 5.

Biocarta pathway annotations were obtained from the Database for Annotation,

Visualization, and Integrated Discovery: DAVID (Dennis et al., 2003), downloaded

in September of 2006. The gene classes were defined from pathways of between 20-100

probes, 199 in total, as the smaller gene classes have relatively low detection power.

To account for multiple probe sets mapping to the same Unigene cluster, these probes

were equally down weighted by the terms in the adjacency matrix Z.

Gene expression was modeled by BLM3 for each Biocarta pathway separately. This

seemed reasonable, and efficient, as few pathways shared many genes. Across the
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arrays, the trend in the sample standard deviations of the respective probes was fit

against their means with a regression spline. The fitted mean and standard devia-

tion values were input as prior parameters for the intercept and scale in BLM3 in an

Empirical Bayes manner. The effective prior sample size was n = 5. The FDR for

each pathway was derived by reestimating the percent of genes changing, by (2.14),

after removing the treatment effects with a plug in estimator. FDR’s were derived

for each Biocarta pathway with W = 10, 1. The FDR’s are plotted against the γ

cutoff regions for W = 1 in Figure 6. Notice the bands positioned at the 90% intervals

about the FDR’s.

For larger FDR’s, the bands are wide apart, at FDR = 1% (0, 7%) and at FDR

= 5%, (0,30.12%) . The wide bounds on the FDR tend to be overlooked, although

here it is quite apparent that the bounds are informative. Due to the wide bounds
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Table 10. BLM3 ω = 10, FDR ≤ .0001
Biocarta Pathway

1. The 4-1BB-dependent immune response
2. Oxidative Stress Induced Gene Expression Via Nrf2
3. ATM Signaling Pathway
4. CBL mediated ligand-induced downregulation of EGF receptors
5. Cadmium induces DNA synthesis and proliferation in macrophages
6. Repression of Pain Sensation by the Transcriptional Regulator DREAM
7. Erythropoietin mediated neuroprotection through NF-kB
8. METS affect on Macrophage Differentiation
9. Free Radical Induced Apoptosis
10. Inhibition of Cellular Proliferation by Gleevec
11. Adhesion and Diapedesis of Granulocytes
12. Segmentation Clock
13. IGF-1 Signaling Pathway
14. Insulin Signaling Pathway
15. Internal Ribosome entry pathway
16. Adhesion and Diapedesis of Lymphocytes
17. Role of MEF2D in T-cell Apoptosis
18. Acetylation and Deacetylation of RelA in The Nucleus
19. TNF/Stress Related Signaling
20. TPO Signaling Pathway

on the FDR’s, gene classes were selected meeting FDR ≤ 0.0001. A smaller value

of ω produced more pathways for change: 20 for ω = 10 and 37 for ω = 1. These are

listed in Tables 10−11. If in fact the algorithm is operating as the simulation study

in Section 3.6 suggests, increasing borrowing improves specificity and sensitivity.

Among the signaling pathways detected as significant are those associated with genes

CXCR4, D4-GDI, EGF, EPO, IGF-1, IL1R, IL 6, PDGF, T cell receptors and TNF.

Many of these genes have been implicated or are known to be associated with cancer.

For example, CXCR4 has been shown to have a pivotal role in cancer (Schrader et al.,

2002; Arya et al., 2007), D4-GDI is a Rho GDP inhibitor, regulating breast cancer

cell invasive activities (Zhang and Zhang 2006). EGF is known to regulate growth

and metastasis in tumors and PDGF regulates autocrine stimulation of cancer cells

(George, 2003). EPO promotes red blood cell formation, and is commonly given to

cancer patients to relieve fatigue (Brower 2006). Some pathways detected are as-
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Table 11. BLM3 ω = 1, FDR ≤ .0001
Biocarta Pathway

1. The 4-1BB-dependent immune response
2. Agrin in Postsynaptic Differentiation
3. Effects of calcineurin in Keratinocyte Differentiation
4. CBL mediated ligand-induced downregulation of EGF receptors
5. CD40L Signaling Pathway
6. Cadmium induces DNA synthesis and proliferation in macrophages
7. Cyclins and Cell Cycle Regulation
8. CXCR4 Signaling Pathway
9. D4-GDI Signaling Pathway
10. The role of FYVE-finger proteins in vesicle transport
11. EGF Signaling Pathway
12. Eukaryotic protein translation
13. EPO Signaling Pathway
14. METS affect on Macrophage Differentiation
15. Ghrelin
16. Segmentation Clock
17. Hypoxia-Inducible Factor in the Cardiovascular System
18. IGF-1 Signaling Pathway
19. Signal transduction through IL1R
20. IL 6 signaling pathway
21. Keratinocyte Differentiation
22. The IGF-1 Receptor and Longevity
23. Endocytotic role of NDK
24. Ras-Independent pathway in NK cell-mediated cytotoxicity
25. NFkB activation by Nontypeable Hemophilus influenzae
26. PDGF Signaling Pathway
27. Phosphoinositides and their downstream targets
28. Influence of Ras and Rho proteins on G1 to S Transition
29. Bone Remodelling
30. Acetylation and Deacetylation of RelA in The Nucleus
31. Sprouty regulation of tyrosine kinase signals
32. Stathmin and breast cancer resistance to antimicrotubule agents
33. TNF/Stress Related Signaling
34. T Cell Receptor Signaling Pathway
35. TNFR2 Signaling Pathway
36. Toll-Like Receptor Pathway
37. Control of Gene Expression by Vitamin D Receptor
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sociated with genes known to be involved in other cancers were discovered, NFkB,

RAS, as well as proliferation in macrophages. Interestingly, phosphoinositides have

been studied in conjunction with progression of invasive cancers (Bertagnolo et al.

2007). Some of the detected pathways are associated with cell differentiation, such as

Agrin in Postsynaptic Differentiation, Keratinocyte Differentiation, and METS affect

on Macrophage Differentiation. Other pathways of interest are related to cell cycle

or cell cycle transition.

We would like to know if BLM detects alterations in gene classes, defined from histor-

ical pathways, associated with renal carcinoma, that EA missed. Lenburg’s analysis

was repeated with EA, following Lenburg’s approach for gene detection, first filtering

out probe sets called absent by MAS 5.0, and calling a gene changed if: (1) all probe

sets mapping to the gene had a geometric mean of two sample t-test p-values < 0.03,

consistent with their 10 FDR calculation, and (2) a geometric mean of fold change

> 3 or < 1/3. Fisher’s Exact Test was calculated on the detected gene counts for

each Biocarta pathway. The distribution of Fisher p-values was fit with SPLOSH

of Pounds and Cheng (2004) to estimate FDR’s. None of the FDR’s estimated from

EA achieved the strict 0.0001 threshold for BLM. EA are listed in Table 12, ordered

by FDR, for Biocarta Pathways with EA FDR’s ≤ 0.01.

Ten pathways were detected for change by EA. Among these, there are some in-

teresting pathways, related to surface adhesion, apoptosis and signaling. Only one

is common to the list found by BLM3, D4-GDI Signaling Pathway, although several

have processes in common related to hypoxia and EGF. Caspase activity in Apoptosis

looks interesting, as well as Lymphocyte Cell Surface Molecules.
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Table 12. Results EA, FDR ≤ .01
Biocarta Pathway

1. Neuroregulin receptor degredation protein-1 Controls
ErbB3 receptor recycling 0.0010

2. Actions of Nitric Oxide in the Heart 0.0011
3. Nuclear Receptors in Lipid Metabolism and Toxicity 0.0017
4. Caspase Cascade in Apoptosis 0.0028
5. Catabolic Pathways for Arginine 0.0029
6. D4-GDI Signaling Pathway 0.0040
7. Hypoxia and p53 in the Cardiovascular system 0.0049
8. B Lymphocyte Cell Surface Molecules 0.0057
9. Role of EGF Receptor Transactivation by GPCRs in 0.0057

Cardiac Hypertrophy
10. Dendritic cells in regulating TH1 and TH2 Development 0.0097

II.7. Discussion

The problem gene class detection in noisy expression array high-throughput data was

addressed with a Bayesian model, BLM, allowing for uncertainty at many levels with

the ability to borrow information across the genes. The problem of detecting gene

classes is very complex. BLM is flexible enough for many practical uses. In the case

studies offered, as in simulation, borrowing of information was demonstrated to im-

prove sensitivity and specificity. Rather than regressing genes on genes, which would

increasing the number of parameters, a hierarchical scheme was adopted to impose

gene-gene dependency, and borrow strength. This has the effect of reducing the ef-

fective degrees of freedom in the model (Spiegelhalter et al., 2002) and the overall

variation.

Several extensions of previously proposed methods designed to integrate prior infor-

mation are offered here. The assumption that the connectivity matrix Z is fully

known, Liao et al. (2007), is relaxed in a Bayesian framework by allowing for uncer-

tainty in Z. In the special case that a complete pathway is expected to be activated,

i.e. all of the genes show change, then accounting for the uncertainty in direction of
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change with BLM2 may be sufficient. This assumption is relaxed further in BLM3,

by allowing a subset of members of a gene class to change in an experiment. Like

Bayesian Decomposition, BLM allows genes to share information, although BLM can-

not discover new patterns. In the case that an experiment is run with well defined,

fixed experimental factors, BLM is more flexible in how it lets genes in the same class

share information. The mixture model of Parmigiani et al. (2002) also allows genes

to borrow information, at the genomic level. It can be viewed as an adaptation of

BLM3 without prior information. Also, BLM lends well to FDR and TNR analy-

sis. The FDR is a rate, and as such tends to underestimate the variability in false

detection for choosing genes or gene classes, as it is averaged across the genes. In

advanced applications with RCC we observed this variability, knowledge of which was

informative for selecting a threshold.

The main focus of attention here was on detecting historical pathways. We were inter-

ested in how historical information could improve feature selection, and how to make

inferences on a priori gene classes. The heuristic approach is to consider gene and

gene class selection separately. This is a reasonable approach to take, and in practice

can work well. We propose a more flexible framework, to make explicit use of histori-

cal pathways. The methods offered here, although displaying some clear advantages,

should not be regarded as replacing but rather supplementing a one-at-a-time gene

analysis. In the simulations and case studies here, BLM was run in R on a Dell 8200

server with dual core Intel Xeon processors. Posterior simulation was completed in a

reasonable amount of time, and could be implemented during regular analysis.

Pooling information between genes allows BLM to detect gene classes for treatment

effects on arrays that traditionally may be considered uninteresting. Overall, it gives
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the biologist focus and direction toward historical pathways and genes targets. Often

during analysis, the focus is on the number of genes or size of changes within a path-

way or ontology. However, in molecular biology, even when only one gene is changed,

the knowledge of that gene (its function and its weight of importance within a spe-

cific pathway) is just as significant. These results suggest that there might be more

to learn from high-throughput experiments than we might have expected, if we are

careful to consider the fundamental limitations in the data and historical knowledge.
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CHAPTER III

BAYESIAN CHANGE POINT ANALYSIS FOR BAC AND ACGH

HIGH-THROUGHPUT ARRAYS

III.1. Introduction

Cytogenetics, the study of chromosome structure and anomaly, has long been rec-

ognized as important to the study of tumor development (Lengauer et al., 1998).

Chromosomal aberrations are characterized, at least in cancer, as chromosomal rear-

rangements, deletions, or amplifications selected over time that can evolve throughout

tumor progression and or invasion. A variety of chromosomal rearrangements have

been linked to cancer in patient populations, that might otherwise have been thought

of as the same pathological disorder. Cataloging genetic aberrations in and between

unhealthy subjects is a goal of personalized medicine, and is considered critical for

developing strategies to treat highly diverse forms of cancers.

The mechanisms that govern chromosomal aberration are not well understood and

new high-throughput technologies are helping to improve our understanding of the

associations between chromosome structure and disease. One difficulty in modeling

high-throughput human chromosomal data is that abnormalities can be subject spe-

cific and therefore disease populations are heterogeneous. Improvements to medical

diagnostic and prognostic decision making, through informatics obtained at the whole

genome level, would enable medicine to take this next step forward. At least this is

the contention driving much of the latest research in high-throughput cytogenetics.
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A Bayesian Change Point Analysis (BCPA) model is developed for borrowing strength

and accounting for change point uncertainty in high-throughput aCGH experiments

of heterogeneous patient populations. In simulation, BCPA shows a marginal trade

off in sensitivity/specificity relative to the current standard for segmentation mod-

eling, for detecting copy number changes across heterogeneous disease populations.

The model is applied to Wilms Tumor BAC array data.

III.1.1. Advances in Cytogenetics

Advances in basic medical and clinical technologies are improving our understanding

of the links between chromosomes and disease. Early work to catalog chromosomal

aberration in disease used a method called karyotyping, made possible by staining and

photographic techniques that allowed visualization of chromosome aberrations at low

resolution. Later advances, such as Spectral Karyotyping (SKY) and Multiplex Fluo-

rescence In Situ Hybridization (m-Fish), made it possible to visualize of all the chro-

mosomes simultaneously in a different fluorescent color. The latest high-throughput

methods, such as bacterial artificial chromosome (BAC) and oligonucleaotide array

experiments, improved the resolution at which aberrations can be detected along

the chromosome. BAC arrays were developed first, with much longer sequences than

aCGH experiments. Since aCGH works with much shorter probe sequences than BAC

arrays, the locations of chromosomal aberrations linked to disease can be detected

with much better precision. The aCGH platform has been described in the literature

as high-resolution for measuring regions of chromosomal copy gain or loss (Albertson

et al. 2003). BAC and aCGH experiments tend to be similar in nature to two color

fluorescent expression experiments, although the essential features involve detecting

relative DNA copy gain or loss rather than relative changes in RNA expression. Self-
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self aCGH designs to detect low-level genomic alterations have achieved as much as

±copy number gain of 2Mb resolution (Bilke et al., 2005).

Box 2.1. Summary of high-throughput cytogenetics

• aCGH and BAC arrays are essentially two channel microarrays.

• The probes correspond to fixed locations along the chromosomes.

• DNA rather than RNA is collected and hybridized to the chips.

• aCGH and BAC arrays suffer from similar problems as expression arrays, e.g.

dye bias, normalization, etc..

III.1.2. Historical Information

There is a unique body of verifiable prior information available on the human cy-

togenetics of many diseases. This information can be in the form of known ploidy,

i.e. number of chromosome copies, or even more detailed information about copy

gains or losses in specific regions, e.g. by karyotyping (Camps et al., 2004). The

Mitelman Molecular Biology and Clinical (MBC) Associations Searcher, maintained

at the National Center for Biotechnology Information, is an expanding resource that

allows investigators to record and publicly retrieve cytogenetic data on individuals

with a range of diseases, so that specific genetic disorders are available for medical

practitioners and pathologists. Other public databases are listed in Box 2.2.
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Box 2.2. Public domain databases

• Mitelman Database (http://cgap.nci.nih.gov/Chromosomes/Mitelman)

• SKY/M-FISH & CGH Data (http://www.ncbi.nlm.nih.gov/sky/)

• Chromosomal Variation in Man (http://jws-edck.wiley.com:8096/)

• Atlas of Genetics and Cytogenetics in Oncology and Haematology

(http://atlasgeneticsoncology.org/)

III.1.3. Analyzing BAC and aCGH Data

A number of different and sophisticated approaches have been proposed for analyzing

BAC and aCGH data. Hidden Markov Models (HMM) were proposed (Fridlyand et

al., 2004) to exploit positional dependencies in clones along the chromosomal arms.

A deficiency of the HMM, is that the distance between probes, within a chromosome,

can vary and thus the stationarity assumption is violated. This tends to be a mild

violation in practice, as the distances between the probes is generally approximately

equal. More recently, a Bayesian version of HMM was introduced to make use of some

of the reasonable assumptions about gain and loss (Guha, 2005). Another class of

estimators treats identifying regions of gain or loss as a change point problem: Lasso

(Picard et al., 2005; Huang et al., 2005), Gain and Loss Analysis of DNA (GLAD)

(Hupe et al., 2004) a Gaussian model based approach, and Circular Binary Segmen-

tation (CBS) a nonparametric change point estimator (Olshen et al., 2004). There is

evidence that CBS can achieve higher sensitivity and specificity than HMM (Willen-

brock and Fridlyand, 2005).
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The historical methods suffer in that the results do not lend to obvious solutions for

inferring aberrations. For example, CBS locates change points, given a user specified

α-level for testing, although does not offer inference procedures for determining if a

discovered segment has a gain or loss in copy number. Inference must be performed

after the change points are determined. Other approaches, such as clustering (Wang

et al., 2005) and wavelets (Hsu et al., 2005), have been proposed and compared al-

though it is difficult to draw conclusions, since these methods do not offer standard

ways to make statistical statements of significance (Lai et al., 2005).

The main motivation for extending the basic concepts of GLAD, CBS or Lasso is

to improve estimation of the rate of chromosomal aberration across heterogeneous

patient populations. In diverse patient populations, the event and domain of a copy

gain or deletion along a chromosome can vary between patients. Consider for exam-

ple the simple case of two samples, depicted in Figure 7. Copy gain is illustrated

along the chromosome in sample 1 between change points a1 and a2 and in sample 2

between change points b1 and b2. The common sub-region where both samples have

a copy gain is shaded. Quantifying the probability of chromosomal amplification or

deletion in common sub-regions of diverse patient populations can inform investiga-

tors of locations of conserved bio-markers.

Previously described methods do not allow borrowing of information across samples,

nor offer holistic solutions for combining results in order to derive population level

inferences. In populations where much is known about the locations of chromosomal

aberrations, prior information, it is argued, should be useful for analysis. Such infor-

mation must be integrated carefully though, into the analysis, as the change points
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Fig. 7 Illustration of region of common gain, with uncommon change points.

and states differ between samples (Gelfand et al., 1992). The goal of Bayesian Change

Point Analysis (BCPA) is to provide a method capable of powerfully detecting un-

usual and sometimes subtle changes in the genome across diverse patient populations.

This involves from a Bayesian point of view: (1) sharing information across samples

in regions of common gain/loss, (2) accounting for uncertainty about the degree of

similarity between patients, (3) integrating prior sources of information in the anal-

ysis, and (4) producing results easily interpreted by biologists. We describe BCPA

in detail in Section 2. In section 3 we discuss posterior simulation. The results of

sensitivity analysis with simulations, and application to a Wilm’s Tumor dataset are

provided in Section 4. In Section 5 we make concluding remarks, and give some future

directions for BCPA.

III.2. Bayesian Change Point Analysis

BACs corresponds to DNA sequence of between 200,000−300,000 base pairs at known

position along a chromosome. In disease samples, the chromosomes can carry extra
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copies of certain BAC sequences that have been repeated, called copy gain or amplifi-

cation, or deletions of the sequences, called copy loss. Human BAC array experiments

are essentially two channel fluorescent microarray experiments, that are designed to

measure chromosomal copy number variation by the relative fluorescent intensity be-

tween the channels. Typically, these experiments involve competitive hybridization

of cy5 labeled normal sample in the control channel and cy3 labeled disease or tu-

mor tissue in the experimental channel. Unlike expression arrays the samples are

derived from DNA rather than mRNA. Like expression arrays, BAC arrays suffer

from technological variation (Bolstad et al. 2003). For now, we assume that we have

measurements from BAC arrays that have been normalized and log transformed. The

methods outlined here may also be applied to the results of an aCGH experiment,

the major difference being that the sequences, oligonucleotides, are much shorter than

BACs, providing better resolution of the chromosome.

Before we discuss the model we need some notation. Let the regions of normal

chromosomal copy number, and copy gain or loss, be referred to as segments along

the chromosome. For modeling sake, the segments are assumed to be partitioned

by change points. By definition the BACs within a contiguous segment have the

same copy number. Let the BACs on an array be ordered by chromosomal position

i = 1, ..., N from one end of the chromosome to the other, and let ξhi’s indicate the

segment k of each BAC i in sample h = 1, ..., H. The ξhi’s are defined as

ξhi =

Mh
∑

k=1

k · I (ah,k−1 < i ≤ ah,k)

given change points ahk and segments k = 1, ...,Mh, where I(·) is the indicator func-

tion equal to 1 if the expression in the brackets is true and zero otherwise. The
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variable ξhi = k tells us that in sample h, position i belongs to the k-th segment.

Thus we allow the change points and number of change points to differ between sam-

ples. Since we want to borrow strength across samples, we introduce an additional

variable to indicate membership of each position i to the common sub-regions across

all samples. For sub-regions k̃ = 1, ..., M̃ , we define ξ̃i analogously as

ξ̃hi =
M̃
∑

k=1

k · I (ãk−1 < i ≤ ãk)

where the ãk are the unique and ordered breakpoints across all samples. The moti-

vation for including ãk in the analysis will be come clearer ahead.

III.2.1. Likelihood

The normalized log 2 transformed fluorescent ratio in sample h at position i is denoted

Yhi. Given the segment membership of position i, as indicated by ξhi = k, is iid

Gaussian

Yhi|µhk, σ
2
hk, ξhi = k ∼ N

(

µhk, σ
2
hk

)

(3.1)

with mean µhk and variance σ2
hk. Note that the segment means and variances are

allowed to differ between samples. The prior distribution of the variance is Inverse

Gamma.

σ2
hk ∼ IG

(

γ

2
,
γσ2

o

2

)

(3.2)

where σ2
o is a prior guess of the variance and the prior effective sample size γ.
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III.2.2. Prior Mean

The prior for µhk depends on the state s of segment k, for three possible copy number

states: s = 1 for copy number loss, s = 2 for normal copy and s = 3 for copy number

gain. State is assigned by the discrete random variable ψhk = s, discussed in more

detail below. Given ψhk = s, µhk is distributed as

µhk|σ2
hk,W, nhk, ψhk = s ∝ exp







− 1

2Wσ2
hk





∑

k̃∈Ahk

nhk̃(µhk − θs,k̃)
2











(3.3)

for the set Ahk = {k̃ : I(ξhi = k ∩ ξ̃hi = k̃) = 1} where nhk̃ is the number of BACs

in the k̃th subsegment of segment k in sample h. The hyperparameters θs,k̃, defined

below, are the mean levels in the subregions, k̃ = 1, ..., M̃ . Notice that the variance

σ2
hk is weighted by a global parameter W . The global tuning parameter W controls

the level of borrowing between the samples. The discrete random variable ψhk = s

may also be expressed in an alternative form as a function, ψhk = ψh(ξi = k) = s, to

indicate that for all positions i belonging to the k-th segment, the state equals s. We

use this alternative notation below. The prior density of µhk|· may conveniently be

rexpressed as

µhk|σ2
hk,W, nhk, ψhk = s ∼ N

(

ηhks,
W · σ2

hk

nhk

)

(3.4)

with

ηhks =

∑

I (ψhk = s) I (ak−1 < ãk̃ ≤ ak) θsk̃
∑

I (ψhk = s) I (ak−1 < ãk̃ ≤ ak)
(3.5)

a weighted average of the sub-region means, with weights proportional to the sub-
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region sizes, nhk̃. This form is useful for posterior sampling, described in the next

section. In order to borrow strength across the samples, the prior mean ηhks of µhk

is constructed as a linear function of hierarchical parameters θsk̃, indexed by state s

and sub-region k̃ across the population.

III.2.3. Hyper-prior Mean

The hierarchical population parameters θhk̃’s in each sub-region k̃ and state s = 1

(deletion), s = 2 (normal copy) and s = 3 (amplification), account for the mean copy

levels across the whole population. The prior densities for the θ’s are, in the event of

no prior information, are taken as improper

π(θ1k̃) ≡ 1{θ
1k̃

<0}

π(θ2k̃) ≡ 1{0}

π(θ3k̃) ≡ 1{θ
3k̃

>0} (3.6)

where 10 is a point mass at 0, indicating no change in the log ratios for normal copy

state. This results in a posterior distribution for the hyper-mean copy level that is in

the form of an truncated normal distribution. In the event that prior information is

available, the priors are taken to be truncated normals

π(θ1k̃) ≡ N(θ1k̃, τ) · I(θ1k̃ < 0)

π(θ2k̃) ≡ 1{0}

π(θ3k̃) ≡ N(θ3k̃, τ) · I(θ3k̃ > 0). (3.7)
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III.2.4. Hidden States

In reality, along a chromosomal segment within a cell from one sample there are a

finite set of possible copy states corresponding to deletions, normal copy number or

multiple amplifications. The exact levels of copy number are obscured in aCGH ex-

periments, as heterogeneous cell mixtures from diseased tissue within same patient

are hybridized to the experimental channel. Copy number can vary in diseased cells,

and typically diseased tissue includes normal cells in varying proportions.

According to the model, we have 3 states: s = 1 for a copy loss, s = 2 for normal

copy number, and s = 3 for a copy gain. The discrete random variable ψhk = s

assigns each segment k in sample h, and consequently any sub-regions overlapped by

the segment, to a copy state. The prior distribution of the random variable ψhk = s

is assumed to be multinomial.

Posterior inference on the ψhk’s across all of the samples can provide investigators

with information regarding regions of common deletion or amplification. Inference

across samples between sub-regions can provide investigators with clues about asso-

ciations between conserved chromosomal deletions or amplifications and ultimately

to molecular sub-types of disease.

III.2.5. Change Points

The number of segments, one plus the number of change points, is assigned a trun-

cated Poisson prior Mh|N ∼ Poiss(Mh|βh) · I(Mh < N), truncated to be less than

or equal to the number of positions N . As of yet, little biological evidence sug-

gests a strategy for specifying joint priors on the change points between samples. Ad
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Fig. 8 Graphical model

hoc procedures for specifying informative joint priors for the break points deserves

investigation. At present, all change point configurations are assigned uniform non-

informative priors.

III.2.6. Graphical Summary

BCPA is depicted graphically in Figure 8. The observed log ratio Yhi is assigned to

segment k, by the indicator ξhi = k, with mean µhk and variance σ2
hk. The state of

segment k in sample h is assigned by the discrete random variable ψhk. The mean

of µhk is a weighted average of hyperparameters θsk̃, over the population level sub-

regions, k̃’s, intersecting with segment k in sample h.

III.2.7. Posterior Simulation

The most difficult issue for fitting BCPA is developing a suitable strategy to account

for uncertainty due to the change points. Given the discrete nature of the change point

configurations, convergence can be very slow with adaptive methods. We return to
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this issue, but for now consider the change point configuration as given. This allows us

to proceed with Gibbs sampling as follows: first the segment variances and means are

sampled, followed by the copy states, and lastly the sub-region population means, θ’s.

III.2.8. Sampling Prior Means Variance

Given a change point configuration, the conjugacy of the model allows direct Gibbs

sampling of all of the parameters. The full conditionals are listed in Appendix B.

III.2.9. Change Point Search Strategy

Several search strategies are offered to account for uncertainty in the chromosomal

change point parameters. The reason for this is that the space of all possible change

points is very large. Computationally, is would be very expensive to obtain the poste-

rior densities for all possible combination of change points. Following these strategies,

one can explore the marginal posterior probabilities for different change points of high

posterior density. Let us begin by defining the change point configuration as the set

ξ = {ξh : h = 1, ..., H}. Suppose that we obtain a starting configuration ξ
o

from

some reasonable software. The way in which one will want to move from ξ
o
, to a new

configuration, or between configurations, will depend on the data and the problem.

In cases where the data can be very noisy, and one may want to jitter to the change

points. In other cases, it may be enough to consider adding or deleting starting change

points either systematically or at random. This strategy is summarized in Box 2.3.
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Box 2.3. Accounting for uncertainty in change points

1. Choose reasonable starting configuration, ξ
o

2. Choose a move to a new configuration ξ
c

for c = 1, ..., C

3. Gibbs sampling of the full conditional posteriors given ξ
c

4. Estimate the unnormalized marginal posterior of ξ, π̃
(

ξ
c
|Data

)

by Monte Carlo Integration

5. Numerically integrate quantities of interest over ξ
c
, for c = 1, ..., C

The unnormalized marginal posterior distribution of change point configuration ξ
c
for

configurations c = 1, ..., C, underscored to denote the variable class, may be estimated

to a desired level of accuracy by Monte Carlo integration from the t = 1, ..., T Gibbs

samples as

p̃
(

ξ
c
|Data

)

∝
T
∑

t=1

p̃
(

ξ
c
, µ(t)

c
, σ2(t)

c , ψ(t)

c
, θ(t)

c |Data
)

. (3.8)

Here the model parameters are indexed by c, to denote dependence on ξ
c
. One could

apply bootstrap resampling to obtain further samples, or use the p̃
(

ξ
c
|Data

)

’s to ob-

tain posterior moments of other parameters in the model, accounting for uncertainty

due to the change points. For example, suppose one is interested in learning about

the state s of sample h at position i and let (ψ̄ch(ξci)|Data) be the conditional pos-

terior mean state in sample h at position i over Gibbs samples t = 1, ..., T , given ξc.

The conditional posterior mean of state, given all of the change point configurations

considered, is estimated by
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¯̄ψhi =

∑C

c=1 ψ̄ch(ξci)π̃(ξc|Data)
∑C

c=1 π̃(ξc|Data)
. (3.9)

In order to survey the change point configurations, several search strategies are pro-

posed. These may serve different purposes, depending on the problems and data

sets. Search Strategy I is largely concerned with accounting for uncertainty in the

locations of the change points. Search Strategies II and III are concerned with intel-

ligently ways to search for plausible change point configurations.

• Search Strategy I

An initial change point configuration ξ
o

is selected from a reasonable software. The

change points are jittered, added or deleted at random at each iteration by user de-

fined probabilities. A sensitivity analysis can be conducted to assess the uncertainty

in selecting the right change points.

• Search Strategy II

Reproducible approaches for searching intelligently through combinations of change

points efficiently are needed. One such approach relies on spatial hierarchical clus-

tering. All of the BACs in each sample are initially clustered, by chromosome, with

spatial hierarchical clustering. The only distinction between spatial hierarchical clus-

tering and hierarchical clustering is that only clusters that are spatially adjacent

may be combined. Once the samples are clustered, the heights Hd at each node d

of respective dendrograms where a merge was performed, are combined and sorted

in descending order, H(1),H(2), ...,H(D). A starting maximum and ending minimum

height are preselected from the sorted list, based on the number of initial and final

groupings desired. The first change point configuration ξ
1

is assembled by selecting
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only those clusters separated by at least the the distance specified by the maximum

height, H(1). The next configuration ξ
2

is assembled to include all of the clusters

separated by at least the distance specified by the next biggest height, H(2), and so

on. In this way, the sample partitions are explored according to the relative order of

the clusters, measured by the distance between clusters. Samples with less noise and

more signal are partitioned earlier than samples with more noise.

• Search Strategy III

The BACs in each sample are clustered by recursive binary partitioning with a two

sample t-statistic. In the first iteration, one change point is selected, dividing sample

h into two segments, at the location corresponding to the smallest p-value for a two-

sided t-test of the means between the segments. At each subsequent iteration, a new

change point is selected, given the change points already selected, again at the loca-

tion corresponding to the smallest p-value. This is repeated until sample h is divided

into a user defined maximum number of segments. This approach is similar to CBS,

actually a special case of CBS. In every sample, the Bayesian Information Criterion

is computed for zero change points (Mh = 1), one change point (Mh = 2), etc., and

the score, SMh = BICMh/max(BICMh) is computed. All of the scores across all

sample are combined in a vector and sorted. The first change point configuration ξ
1

is assembled by selecting the change points in every sample meeting the best score

overall, in this case with a value of 1. The process is repeated for all unique scores. In

this way, attention is concentrated around the best change point configurations first.

In Search Strategy I, it is reasonable to report the mean of the marginal posterior

results over the perturbed change point configurations, as the goal is to account for

the uncertainty in identifying the right change points. In Search Strategies II and III
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the goal is to choose, in a sense, the best prior model defined by the change point

configuration with the highest marginal posterior density. These search strategies

do not necessarily search more thoroughly through the higher dimensional spaces,

i.e. with more segments. Averages of the marginal posterior results will be biased,

under weighting the configurations with higher dimensionality, if these spaces are

not searched in proportion to their size relative to the lower dimensional spaces.

Therefore, in Search Strategies II and III, it better to choose the best change point

configuration, and given that configuration, report posterior summaries of interest.

These search strategies use the data to obtain configurations, and then evaluate the

configurations with the posteriors. The data is used twice. More accurately, this is

an Empirical Bayes analysis rather than a fully Bayesian analysis.

III.3. Simulation Studies

III.3.1. Simulation Study 1

Random chromosomes were simulated with the SegMix simulation model (Gaile et

al., 2006) in R. Abnormal segments are specified by user choice of the: (1) segment

midpoint, (2) segment half width, randomly generated by a Poisson distribution, (3)

segment mean copy level, which may be further perturbed by a user specified noise

parameter and (4) probability of realizing an abnormal copy number in the segment,

in each sample across the population. Noise about the segments is Gaussian N(0, σ2),

with variance controlled by the user.

H = 20 random chromosomes were generated, of N = 150 equally spaced BACs,
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with standard deviation σ = 0.10. Copy gains were specified at midpoints 50 and

95, and a loss at 135, with segment half-widths randomly generated from a Poisson

distribution with mean 20, 10, and 5 respectively. The mean level for copy gain was

set to µ = 0.30, and for loss set to µ = −.50. The rate of abnormal copy number was

set to 0.90 for all aberrant segments.

Figure 9 shows the posterior means with 0.90 C.I.’s from BCPA to 4 of the 20 sim-

ulated chromosomes, given change points fit by DNACopy, the R library implemen-

tation of CBS (http://lib.stat.cmu.edu/R/CRAN/). DNACopy fits change points

based on a user specified α-level threshold testing the likelihood ratio of recursively

defined change point configurations, chosen in a binary fashion (Olshen et al. 2004).

We set α = 0.01.

In Figure 9, the credible bounds for the segment means reflect not only sample size

variation, but also the uncertainty in copy number state. Overall, the change points

fit by DNACopy for this simulated dataset were quite reasonable.

We performed sensitivity analysis to learn about change point uncertainty by perturb-

ing the change points fit by DNACopy. We jittered the starting configuration 9,999

times according to the distribution proportional to exp|x − âhk|ν × I(b̂h(k−1) < x ≤

b̂h(k)) for starting change points: âhk’s, and midpoints between the cuts: b̂hk’s. We

sampled 2,999 configurations independently with ν = 2, 3000 with ν = 1, and 4000

with ν = .75. For each configuration, 500 Gibbs samples were generated with C++

scripts on a Dell 8200 with dual core Intel Xeon processors. The total simulation,

including all 10,000 configurations took under 48 hours. Figure 10 shows the resulting

posterior probability of amplification/deletion by position with global parameter W
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= 10, marginalizing over the uncertainty in the change points by (3.14) in Section 3.

Accounting for the uncertainty in the exact locations of the change points induced

little additional variability in the marginal posteriors of copy state. Similar results

were observed with W = 5.

In order to inspect the behavior of posterior probabilities of amplification/deletion

when a true change point is missed, we deleted the starting change points indepen-

dently with probabilities .1, .2 and .5 and repeated the process 10,000 times. Deleting

a true change point with probability .5 is extreme. We did so to get an idea of what

would happen in such a heinous case. Figure 11 shows an increase in the variabil-

ity in the posterior probability of amplification/deletion by position if an important

change point is omitted. The additional variability is concentrated in the troughs

between regions of common copy amplification/deletion. These results were fit with

W = 10 although similar results were observed with W = 5. Figure 12 shows the

results of adding change points at random to the starting values, again for 10,000 it-

erations. Marginalizing over the uncertainty in the additional change points induced

little variability in the posterior probability of amplification/deletion. Based on our

simulations, we believe that it is better to err on the side of too many starting change

points rather than too few.

In order to assess the utility in borrowing strength, we decreased the simulated seg-

ment means µhk’s for amplification or deletion in the previous example to ±0.10, and

again fit starting breakpoints with DNACopy, but this time with a more liberal choice

for α = 0.10. It should be noted that the realized copy level change is below most

detection criteria, especially viewed in the context of the commonly accepted rule of

thumb of .225 (Nakao et al., 2004).
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Fig. 10 Posterior copy gain/loss with change points jittered at random, 10,000 iterations: (−) starting configuration, (- -) ν = 2, (- -) ν = 1 and (· · · )

ν = .75.
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Fig. 11 Posterior copy gain/loss, change points deleted at random, 10,000 iterations: (−) starting configuration, (- -) deletion probability .1, (grey · · · )

.2 and (· · · ) .5.
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Fig. 12 Posterior copy gain/loss, change points added at random, 10,000 iterations: (−) starting configuration, (- -) addition probability .1, (grey · · · )

.2 and (· · · ) .5.
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Figure 13 shows the posterior probability of amplification or deletion at each position

for W = 10, 5, and 1, marginalized over 10,000 iteration of jittered starting change

points. Here the low but consistent true levels of change, and domains of aberrant

segments, are virtually undetectable by eye. We suspected that jittering the starting

change points in this example might have a more profound effect, as it is very diffi-

cult for any algorithm to find change points accurately at such low levels of signal to

noise. The real question is whether BCPA discovered biology. Fortunately, borrowing

strength across the samples increases the chance of discovering regions of common

copy gain/loss. Noticeably the posterior probabilities of gain/loss are less than 0.85.

More samples are needed for better accuracy.

III.3.2. Simulation Study 2

A similar simulation was repeated in order to compare the sensitivity and specificity

of BCPA, with borrowing, against CBS using a t-test rule. Simulated samples from

SegMix were generated, H = 100 random chromosomes of N = 200 equally spaced

BACS with standard deviation σ = 0.10. Copy gains were specified at midpoints 30

and 95 and 155 with Poisson half-width means of 5, 20 and 15, and segment means

of µ = 0.25,−0.15, 0.10. The rate of abnormal copy number was set to 90% for all

aberrant segments. For each of ten simulated data sets, BCPA was run, at W =

1, using Search Strategy III. The search was conducted in R, and the change point

configurations were piped to C++ where Gibbs sampling was conducted. Parallel

simulations were run on a Dell 8200 with dual core Intel Xeon processors, taking

under 24 hours per data set. The results were compared with CBS, run at α = 0.10.

The sensitivity and specificity were compared across all samples, between methods,
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Fig. 13 Posterior copy gain/loss, reduced aberrant segment means, µhk = ±0.10: (−) W = 10, (- -) W = 5 and (· · · ) W = 1.
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for identifying locations within aberrant segments.

In each sample, a position was called aberrant by BCPA if the posterior probability

of an aberrancy exceeded the threshold γ∗, and in CBS if the t-test p-value of the

respective segment of which the BAC is member is at or below p∗. The results are

summarized in ROC curves.

Figure 14 shows the Sensitivity/(1- Specificity) trade off for both BCP and CBS with

one of the ten simulated data sets. Both methods did very well with the data sets,

although BCPA showed a trade off in higher sensitivity. At (1-Specificity) = 0.1, the

Sensitivity was compared between both methods. BCPA showed consistently higher
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sensitivity, on average 3% higher, with a one way t-test p-value of 2.995e-05. CBS did

well at detecting the bigger aberrations, with midpoints 30 and 95, although with a

strict α = .01 level failed to identify the weak aberration at location 155. At a α = .1

level, CBS did detect breaks near 155 but had a difficulty locating the segment end

points.

III.4. Wilms Tumor BAC Arrays

Wilms tumor BAC arrays, H = 164, from a Wilms Tumor experiment run at Roswell

Park Cancer Institute were analyzed with BCPA, with attention on chromosome 1

(Natrajan et al., 2006). As in the simulations, CBS was compared with BCPA.

MCMC samples were generated in C++ scripts on a Dell 8200 with dual core Intel

Xeon processors. Each configurations took on average under five minutes. BCPA was

fit with the change points corresponding to the best BIC score as described above,

for at most ten segments/sample, at W = 100, 10 and 1. The effective prior sample

size for the variation was set to a a non-informative level of n0 = 10. The prior for θ

was modified to allow for a small margin about 0, (−0.05, 0.05) in the normal copy

state, rather than the strict mass at 0.

π(θ1k̃) ≡ N(θ1k̃, τ) · I(θ1k̃ < −δ)

π(θ2k̃) ≡ N(θ2k̃, τ) · I(−δ < θ2k̃ < δ)

π(θ3k̃) ≡ N(θ3k̃, τ) · I(θ3k̃ > δ) (3.10)

In large part, the posterior effect is to select the no copy state more often for small de-

viations observed in the means about 0. The parameter δ was chosen to be 0.05. The



74

reason for this modification was to account for centering error in the normalization.

This modification will be studied with future data sets, utilizing better normalization

strategies, but for now the data is taken as given.

Figures 15−17 show the posterior state, median with 50% C.I.’s, as measured across

all H = 164 Wilm’s Tumor samples, for W = 100, 10 and 1. The 50% C.I.’s clearly

shrink with borrowing, although notice the difference in resolution concerning the

peaks and valleys in the median state between W ’s. At W = 10 there may be

more information conveyed about local ’hot spots’ in the population in contrast to

W = 100. This must be validated. In Figures 18−19, the posterior probabilities of

gain and loss have tighter intervals as well, as borrowing is increased. There is clearly

an advantage for making population level inferences concerning state changes with

reduced variability. This benefit is realized at the sample level also. The posterior

distribution of copy state may be used to assess not only significant changes within

samples, but also a level of uncertainty is attached to those conclusions, i.e. the entire

posterior distribution of the state φ at each BAC is available. As the distribution of

ψ narrows, an overall trend is resolved. It is reassuring that this trend is similar for

all three values of W .

Contrast these results with the expected states discovered by CBS. Here, CBS was

fit with a liberal α = 0.01. In many of the samples this resulted in more than ten

segments. Smaller levels of α were tried, with similar results. A segment was called a

copy gain/loss within a sample if the two-sample t-test had a p-value less than 0.0001,

and the mean was positive/negative. The frequency over all samples was estimated

by averaging across each BAC. The trend in the expected state is similar, in the first

half of the data the loss is about 10%, and in the last half the gain is at about 40%.
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Although the trend in the frequency of the state computed from CBS is much noisier,

Figure 20. CBS may be more sensitive to smaller changes along the chromosome.

This deserves to be validated. Note that other p-value cutoffs were tried with similar

results. Admittedly, the results here are based on an attempt to produce the very

best of each algorithm. Optimizing each algorithm entails possible error.

III.5. Discussion

BCPA was successfully developed, and compared against the current segmentation

standard, CBS, for analysis of BAC and aCGH arrays. We demonstrate that a

Bayesian approach for learning about chromosomal copy gain and loss is feasible

up to a change point strategy. Uncertainty due to the change points is a source of

variability that has received little attention in the literature. Our simulations suggest

that software such as DNACopy offer quite reasonable starting values, as long as the

starting values are chosen liberally. Missing real change points can increase variabil-

ity and reduce power. Our strategy is to account for the uncertainty in the change

points by marginalization. This offers a feasible approach to increase the power for

detecting chromosomal copy gain and loss in heterogeneous patient populations.

Our simulations suggest a marginal though significant trade off in sensitivity with

BCPA. The simulated data was not difficult to classify, as both methods did very

well, and BCPA is computationally intensive. The larger simulations, run in C++

on a Dell 8200 with dual core Intel Xeon processors took under 48 hours. While the

marginal gain does not appear worth the cost in time, there are many examples of

Bayesian methods that perform competitively with the best Frequentist method, in

the absence of prior information.
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An important next step is to consider the utility of prior information. In many

cases, the ploidy of a cell type is partially known or may be obtained. Karyotyping

may serve to inform the high-resolution experimental analyses. Exploiting this prior

knowledge may help build more intelligent models for detecting copy gain or loss on

aCGH allowing for replicates and normal controls. Future work includes summarizing

the benefits to using prior information for aCGH analysis.

Bayesian modeling does offer the potential to improve probability estimates of the

rate of chromosomal instability in heterogeneous disease populations. While our mod-

eling approach is general enough to handle many scenarios, it comes with trade offs.

These models require skill in prior specification and also computational efficiency.

Competitive models can adapt. BCPA shows promise as a useful and novel approach

for BAC and aCGH analysis.
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CHAPTER IV

BAYESIAN DYNAMIC NETWORK INFERENCE WITH REAL-TIME GENE

EXPRESSION

IV.1. Introduction

The dynamics of gene regulation are fundamental to Genomics and Bioinformatics.

Understanding the pathology of cells requires a thorough understanding of the order

of molecular reactions that alter cellular states. Microarrays, the evolutionary tool to

measure changes in gene expression, offer insight into the variation in gene expression.

The problem with microarrays is that the experimental designs are limited, lacking

the temporal resolution necessary to make detailed inferences about interactions be-

tween genes. Moreover, inferences are based on samples extracted from ex-vivo cells.

The latest experiments, using green fluorescent proteins (GFP)s, offer finer temporal

resolution of gene expression in live cells. These experiments are more suitable for

learning about pathways, providing real-time data in live cells.

Regulation of gene expression is a dynamic and complex process, evolving under many

pressures, one of which is the competitive pressure for survival. The state of a cell is

the result of a collective sequence of programmed molecular reactions. A chronic dis-

ease state, for example, is the result of a chain of events that lead to an un-sustainable

course for the organism. How are genes related temporally? How do collections of

genes react to stimuli over time? These are some of the questions behind much of the

interest in gene pathways.
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Medical research is fueled with great interest in molecular pathogenesis. Prognosis of-

ten worsens as disease progresses, and therefore early detection is crucial for successful

therapy. Our understanding of the processes by which healthy cells are transformed

to unhealthy states, may better inform our ability to formulate therapies for clinical

research. Such investigation naturally leads to further hypotheses, such as how genes

respond to treatments. The relevance is that pathogenesis, treatments and gene in-

teractions, all share a temporal component that is poorly understood. Knowledge of

underlying key mechanisms that sequentially alter the dynamics in gene expression,

it is widely believed, would improve chances for early detection and better inform

treatment options.

Pathogenesis in living organisms is not always characterized as an instantaneous pro-

cess, although within a single cell, the final events that lead to the irreversible stages

of a chronic disease can be sudden. One way to think about progression, is modula-

tion in the structural dynamics relating the genes. For example, consider the special

case of a Linear Gaussian Switching State Space model

Xt = AtXt−1 +Wt

Yt = BXt + Et (4.1)

where Wt ∼ N(0,Ω), Et ∼ N(0,Σ) and

At =















Ao t ≤ t0

A1 t > t0

.

In the above model, the observed variable Yt, representing gene expression, depends

on the (continuous) state of the network, Xt, through the matrix B. The state at
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Fig. 21 State progression model - following a shock, genes progress from the pre-treatment steady state to

a transitory state until the post-treatment steady state is reached.

time t, Xt, depends on the state at time t − 1 through the transition matrix At,

that depends on whether t0 is reached. Time t0 may be thought of as the time of

modulation, or in medical terms, if disease onset is the focus, pathogenesis.

IV.1.1. The State Progression Model

Figure 21 depicts progression of a cell, or population of cells, from a pre-shock steady

state through a transitory state to a post-shock steady state (Grodins, 1963). In the

transitory state, there are several possibilities for the morphology of the system. One

is that the nature in the way the genes are related, is modified. This is possible due

to, for example, a physical mutation of the organism’s DNA. Another possibility is

that the physical architecture of the system remains intact, although the expression

levels of some genes are intensified and others suppressed, in reaction to the shock. A

third possibility is that the both the physical architecture of the system and gene ex-

pression are modified. In the last post-treatment state, the organisms has surpassed

the transition and has reached a post-shock steady state which may be different from

the pre-shock steady state.

Some relevant questions are how to characterize differences between the pre- and
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post-shock steady states. Another question relevant for transition is what control

steps were achieved to guide the system towards and through the transitory state?

Specifically in health related research, modulation of the structural dynamics relating

genes is of great interest, as it may lead to discoveries of new therapies that can turn

chronic diseases into acute disorders.

A class of theoretical models is proposed to perform inference with GFP experimental

data. The theory is motivated by historical work from mathematical biology. Exper-

imental design issues and modeling assumptions are thoroughly discussed. Posterior

inference is conducted with a case study of the publicly available S.O.S. gene network

data (Friedman et al., 2005). Several modeling extensions are discussed and model

comparison is performed in a Bayesian framework.

IV.1.2. Real-Time Gene Expression Experiments

New experiments are making it possible to control and monitor gene expression in

live cells in real time. Reporter cells are cloned with a sequence that includes the

upstream promoter motif of a gene of interest. However, the down stream protein

sequence is replaced by the code for green fluorescent protein. When the gene is

promoted, e.g. in response to an experimental factor or treatment, the gene encoding

GFP is also promoted. GFP is monitored real-time, while in production. Fluores-

cence acts as a surrogate for expression (Ronen et al., (2002); Zaslaver et al., 2004).

Although GFP has been used for some time, clone libraries are just beginning to un-

dergo rapid expansion suitable for high-throughput experimentation (Zaslaver et al.

2006). The latest approaches make it possible to monitor more proteins in ever big-
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ger experiments. These experiments are not on the scale of microarray experiments,

perhaps on the order of at most 100 genes.

Living cell arrays (LCAs), a relatively new technology (King et al., 2006), make it

possible to study how genes behave and interact over time at much higher resolu-

tion than expression array experiments, with the benefit of a reduction in cost over

alternative experiments. The array is fabricated into 100 cell chambers connected

by microfluidic channels in a grid. Each chamber on the array contains a sample of

reporter clonal cells, designed to monitor the expression of a unique gene by transfec-

tion with a reporter DNA plasmid encoding a protein that can easily be measured,

i.e. green fluorescent protein. Micofluid channels on the array control extracellular

stimuli delivered into each chamber. Once in a chamber, the stimuli can bind to cell

surface receptors, signaling transcription factor proteins to travel into the cell nucleus

and bind to promoter regions of the genes with the consensus promoter motif. Tran-

scription of genes in the respective signaling pathway are activated. The reporter

DNA plasmid encoding GFP is transcribed. Microscopic images are recorded at fixed

time points over the array. Expression is monitored at fine temporal resolution in

living cell arrays.

During an experiment, a homogeneous sample of approximately 100-200 cells is seeded

into each chamber, depending on the cells, from a cell line transfected with a sequence

which includes the upstream promoter sequence of a gene of interest, and a coding

sequence for green fluorescent protein (GFP). Extracellular stimuli can be seeded into

the chambers through microfluidic channels. Promotion of each gene of interest is re-

ported by the respective GFP, which emits a fluorescence when irradiated. The data

is collected by photographing the cell chambers at time intervals, and quantifying the
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relative fluorescent signal in the chambers. These quantifications offer real-time gene

expression profiles in live cells at the cell and chamber level.

IV.1.3. Analysis of Dynamic Gene Expression

Much interest is centered around gene network modeling, as high-throughput experi-

ments and expansion of pathway databases are making it ever more possible. Models

that can explain variation in the structural dynamics of gene expression could po-

tentially help us understand how gene products work together to maintain order in

the cells and how deviations from that order lead to pathological states. Real time

gene expression experiments provide a glimpse into the complicated fabric of dynamic

molecular systems. Microarray experiments are limited in that temporal resolution,

as even in fine temporal sampling at best the samples contain mixtures of ex-vivo

cells. Unlike expression data, GFP reporter experiments provide much finer resolu-

tion, to evaluate the non-linear relationships between the genes.

Graph theory is central to many of the concepts for modeling networks. Lauritzen

(2002) reviews directed acyclic graphs (DAGs). A key feature of gene network mod-

eling is the translation of graphs to models and the inverse problem of deriving a

graph from a a model. Much of the gene network methodology developed recently

centers on estimating simultaneous systems of equations. Consider the case where the

measured gene expression values are assumed to be linearly related. A matrix of gene

expression values Y, arranged by sample in the columns and genes in the rows, follows

the form Y = BY + E for a known connectivity matrix B and E ∼ MNV (0,Σ).

It follows that Y ∼ MNV (0, UTΣU) for U = (I − B)−1. Methods for estimating B

from data, and theoretical results discussing consistency, were offered by Liao et al.
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(2003). A very useful model for this construct is the Conditional Gaussian Autore-

gressive (CAR) model. In the context of static time microarray experiments Y is a

matrix of observed gene expression values, with columns Yi distributed as

Yi|Y−i, θ, w, d ∼ N

(

θi + w−1
i

∑

j 6=i

aij(Yj − θj), d
2
i

)

(4.2)

A symmetry condition is imposed, requiring that aijd
2
i = ajid

2
j . When the symmetry

condition is satisfied and conditional variances are equal to d2
i = σ2/wi, by factoriza-

tion we have that

Y ∼ N
(

θ, σ2(W − A)−1
)

(4.3)

where A = [aijI(i 6= j)] and W = diag(w1, ..., wn).

These models may be made dynamic by allowing for a temporal aspect, allowing one

or more of the model parameters to vary with time. In a Markov scheme,

P (θt|θt−1, θt−2, ..., θ1) = P (θt|θt−1) (4.4)

the conditional probability of observing θt at time t, only depends on θt−1. The

Markov assumption is very flexible and popular for its simplicity, although not al-

ways appropriate for network modeling. Semi-Markov models, allowing for a duration

effect, may be more realistic. For example, the conditional distribution of θt depends

not only on θt−1, but also on the length of time θt−1 has been in state A. Zoa (2005)
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extended the simultaneous linear system to a more general non-linear system, for

learning gene pathways from array data. Tamada (2002) demonstrated the utility

of prior information in fitting nonlinear systems of equations to yeast array data, in

a heuristic scheme. Dobra et al. (2006) developed methodology for learning sparse

graphical networks from expression data. Perrin (2003) describes linear State Space

Modeling of time series gene expression data.

Much of the past statistical work for modeling gene networks was designed for mod-

eling gene expression from microarray data with relatively poor temporal resolution.

Dojer et al. (2006) derived a method of differential equation modeling, with posterior

scoring of gene networks flexible enough to include information on known transcrip-

tion factors and protein degradation. Zhoa et al. (2006) offers a flexible modeling

scheme for modeling gene networks with minimum description length scoring. In the

Bayesian framework, Geweke and Tanizaki (2001) discuss MCMC methods for fitting

a general class of non-linear state space models and Roberts et al. (2000) for fitting

Hidden Markov Models with Reversible Jump MCMC. Ghahramani (1997) has a full

review of Bayesian Dynamic networks. This work was certainly groundbreaking, and

offered important advances, although for modeling gene expression levels as measured

with the kind of temporal resolution capable with GFP’s, more flexible models, and

better assumptions are required.

IV.1.4. Real-time Gene Expression Analysis

Gene network modeling requires greater biological background, than say in bio-marker

discovery with microarrays. Since LCA’s are relatively new experiments, there is lim-

ited statistical understanding for modeling the fine temporal resolution and subtle
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gene interactions. One of the fundamental differences of microarray results is that

with fine temporal resolution, more background information is needed to inform about

the plausible biological sequence of events, to draw valid modeling assumptions. In

many systems, even the best understood, there is uncertainty attached to the se-

quences of genomic events, i.e. gene A regulates gene B, followed by gene C, and

so on. Modeling assumptions also rest on the negative feedback between genes and

their own protein products, i.e. negative feedback loops over time. Understanding of

positive and negative feed-back loops is incomplete, although these are thought to be

essential in order for cells to achieve steady states. Plausible modeling assumptions

gene-gene interrelationships and loops are not established yet, due to uncertainties

about the biology and even limitations of the experiments.

Chen et al. (1999) reviewed a class of models treating a gene network as a system of

differential equations. Chen et al. discussed modeling RNA and protein concurrently.

In the present context, both are not observed, however, some of the basic feature of

the Langevin Equations (Coffey et al., 1996), i.e. first order differential equations

discussed below, will be useful. It is helpful to familiarize with biological concepts in

modeling at the subcellular level. Thorough reviews of mathematical models devel-

oped for molecular and cellular biology are presented in Segel (1980), and Wu (2001),

and Schneider et al. (1975). A basic understanding of control theory (Grodins, 1963)

is also useful as many of the concepts in modeling biological systems at the subcellu-

lar level have been adopted from control theory. Detailed development of statistical

approaches for modeling gene expression dynamics were discussed by Ronen et al.

(2002). These methods suffer from a number of shortcomings, at one end a lack of

interpretation, and at the other end, under-fitting the data.
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A class models is needed to link the dynamic dependencies between the genes: (1)

that makes biological sense, (2) that makes modeling sense and (3) can provide results

interpretable for inference about the genes. Each component of the three fold goal

is essential, as we must be able to interpret the results. Otherwise, we cannot make

inferences. Therefore, if we cannot make sense of the data, then we cannot perform

network inference. Nonetheless, some of the methods that have been used to model

gene expression networks with microarray data may prove helpful, if not of direct use.

The information provided by LCA’s combined with historical pathways offers hope

for learning about real-time gene regulation.

Modeling dynamic gene expression presents many statistical challenges. Some chal-

lenges that are quite relevant here are related to: (1) experimental design, (2) nor-

malization, (3) modeling assumptions and inference. Gene expression dynamics have

been characterized in other fields, and as such may serve as prior information for

modeling LCA’s. Defining the relationships among genes will be an ongoing problem

and will require help from biologists, in order to formulate modeling assumptions.

We are interested in inference, and as such there may be no best way in general to

summarize LCA results, although strategies may be implemented and studied to do

well. Inevitably, the design of the experiments will determine the fate of the research.

As such, the unknown sources of major technical variation will need become the focus

of attention, in order to improve the designs. The basic science of these experiments

and designs need to develop before we can better handle the tougher questions. For

now many of the relevant questions for statistical research are related to the sources

of variation in the experiments.
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IV.1.5. Historical Pathways

Flexible modeling strategies are required for LCA’s, in order to account for uncer-

tainty in the prior information as well as the data. The prior information is available

in the peer reviewed articles, but also in the public domain in pathway databases

(www.pathguide.org). The pathways are commonly illustrated on line by static car-

toon like figures depicting the temporal relationships between the genes (nodes) by

directed arrows (interactions). It is unlikely that a model will ever be specified per-

fectly, despite the wealth of information available about many genomes, due to the

plenitude of molecular interactions that are possible in living organisms, many of

which are at best partially understood and still, and quite complex. In practice, it is

likely that at least some of the pathway information will be incomplete. How to model

incomplete pathways with incomplete information are relevant statistical questions.

IV.2. Experimental Design

As a consequence of the experimental design, reporter genes are measured separately.

It is unrealistic to expect to obtain reporter expressions from may different genes

in the same cell. It is possible to conduct an experiment with multiple reporters

using different dyes, although dye effects and biases may distort conclusions. The

consequences of this design feature, for learning about expression profiles, are that

certain changes, dominant trends, might be resolved by known or learned gene-gene

dependencies, although more specific features may not be explained.

An additional consequence of the design is that genes observed in the same replicate

experiment may have very little within experiment correlation. Consider two depen-

dent genes, gene A and gene B. Measurements on A may be no more temporally
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related to gene B if measured in the same experimental replicate, than in another

experimental replicate. This suggests that averaging of the gene expression profiles

across experiments may improve inferences, if little is lost by modeling across exper-

iment. For the time being, we are mainly interested in the dominant features in the

profiles that characterize broad changes associated with biological factors of interest

and so averaging replicates appears sensible.

Another important aspect of the experiment is the temporal design. Consider an

experiment that introduces an extra-cellular stimuli at time t0, at the outset of the

experiment. Time elapses until time t1 and GFP reporters are measured. If the

scientific question involves comparing the pre-stimulus steady state to the transitory

state and further to the post-stimulus steady state, then obviously the design is inad-

equate. A more suitable design would measures GFP for a time lapse from t−δ to t0

before the stimulus is introduced. Comparing the variability in gene expression be-

tween phases, pre-stimulus, transition and post-stimulus is a worthwhile goal as each

may offer some new insight into the mechanisms important to morphology in the cell.

Good principles of experimental design are essential in order to overcome confounding.

IV.3. Normalization

GFP is monitored in each respective cell, in each respective chamber or well. In order

to measure trends across genes, fluorescent levels must be averaged across cells in

a well. A sensible approach outlined by Friedman et al. (2005) is to approximate

promoter activity by weighting fluorescent signal by cell volume. Standard imaging

software may be used for this. In practice, since the levels can vary between exper-

iments, there is a need to standardize. A straightforward approach adopted for the
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work presented here is to normalize all of the profiles in each replicate experiment to

have min = 0 and max = 1. This crude measure puts all of the experiments on equal

footing. This delicate aspect needs to be investigated, as changes in the normalization

may alter inferences and conclusions.

IV.4. The Transition State Model

A class of dynamic network models is proposed, to flexibly allow for inference at many

levels in a temporal gene expression experiment. A clear advantage of modeling in

a Bayesian framework is the flexibility to perform posterior inference accounting for

all of the uncertainty. Frequentist nonlinear modeling comes with its own special nu-

ances, one of them being that the inferences are based on normal approximations. In

high dimensions, this can lead to faulty conclusions. This is a more critical issue here

as there are sharp nonlinear changes in the data that need to be modeled. Although

not all features can be modeled, given the incomplete information, the dominant in-

teractions, that stand out abruptly, are of specific interest. At this early stage of

modeling, it is useful to work with well known pathways for model validation. In this

complex framework, potential confounding and modeling uncertainty will limit our

understanding.

Let yi(t) be the level of GFP measured by a reporter of gene expression for gene i

at time t. It is assumed that yi(t) ∼ N(µi(t), σ
2
i ) is iid Gaussian with mean µi(t)

depending on time. In the presence a promoter gene j, with mean expression level

µj(t) at time t, the partial derivative of µi(t) with respect to time is assumed to be

of the form
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∂µi(t)

∂t
= Vifi(µj(t)) − Uiµi(t) (4.5)

where the coefficient Ui > 0 accounts for the degradation in expression as the abun-

dance, µi(t), rises. Negative auto-feedback is well documented in biology. There are

many examples of a gene product forming a dimer that negatively auto-regulates its

own production. Vi > 0 governs the relationships between change in the expected

gene expression in gene i and fi(µj(t)). The set of first order differential equations

governed by (4.5) is known as the Langevin Equations, studied by Langevin in con-

junction with particle physics (Coffey et al., 2004). The fundamental Langevin model

is adopted here (Chen et al., 1999) for modeling dynamic gene expression.

In molecular biology the choices for fi(·) suggested are fi(µj(t)) = µj(t)/(Ki + µj(t))

and fi(µj(t)) = µj(t)
a/(Ki +µj(t)

a), a > 0 (Ronen et al. 2002; Chen et al. 1999; Wu

1999). The choice adopted here is linear fi(µj(t)) = µj(t). The solution to (4.5) with

a linear link is

µi(t) = ce−Ui + Vi

∫ t

0

µj(s)ds (4.6)

where the constant c is determined by the initial conditions at t = 0: µi(0) and µj(0).

The development of the proposed model is motivated with the publicly available

case study example taken from the S.O.S. gene network experiment (Friedman et al.,

2001). We will discuss the experiment in more detail in the case study section, but

for now consider Figure 22, of the temporal profile of the recA gene in the S.O.S.

gene network experiment. At time t0 a treatment is introduced. Notice in the figure
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Fig. 22 Temporal profiles in S.O.S. genes

that the expression initially accelerates upwards and then declines. This profile is

reminiscent of the temporal profiles commonly seen in GFP experiments (King et al.,

2006).

The class of models for capturing trends in expression during the transition state, in

response to a stimulus, as

µi(t) = (ai + bi(t))λ
t
i (4.7)

for 0 < λi < 1 and −∞ < ai, bi(t) < ∞. The partial derivative of µi(t) with respect
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to time is

∂µi(t)

∂t
=
∂bi(t)

∂t
λt

i + (ai + bi(t))log(λi)λ
t
i. (4.8)

Notice that by combining (4.8) and (4.9) we have

∂µi(t)

∂t
=
∂bi(t)

∂t
λt

i + µi(t)log(λi). (4.9)

where the second term preserve the negative relationships between changes in gene

expression and expression level. The coefficient log(λi) < 0 acts as a degradation con-

stant. This model has the form of the Langevin equation (4.5). The function bi(t) of

time represents the trend in expression due to the integration of promoter/suppressor

activity. Different functional forms for bi(t) are considered. In the case that gene i

has one promoter element, expressed at a constant level, it is assumed that the form

of bi(t) is

∂bi(t)

∂t
= bi, (4.10)

This model has the form

µi(t) = (ai + bit)λ
t
i (4.11)

with partial derivative in time

∂µi(t)

∂t
= biλ

t
i + µi(t)log(λi). (4.12)
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The effect of increasing bi is to increase the initial slope by which gene expression

is promoted. Changes in expression are related to bi damped over time by the term

λt
i. Assuming that the promoter element is maintained at a constant level, this is

a reasonable assumption and will serve a practical purpose in many experiments, in

which the actual level of the promoter element is not observed. The term ∂b(t)
∂t

may

supply surrogate information for an unobserved regulator, as incomplete information

about pathways is likely to be common in many such experiments. In the case that

the actual level of the promoter element is not observed, the linear term is an esti-

mate of the average increase in gene i due to regulation. The assumption modeled

is that the average level of change serves as a reasonable estimator for the true un-

observed change. Model (4.11) is plotted for different values of a, b, and λ in Figure 23.

In the above expression, ∂µi(t)
∂t

→ 0 as t → ∞. In the S.O.S. data, Figure 22, there

is a sharp decline in promotion up to a knee, followed by gradual linear evacuation.

During the subsequent gradual evacuation period, periodicity is observed. The initial

shock that increased gene expression, it is hypothesized, forced all of the cells’ cycles

to be synchronized. After the dominant effects of the treatment were realized, the

cells resumed their respective cycles. Including a term in (4.9), in the form of an

intercept, αi > 0, can account for the subsequent gradual linear decay, where in this

case

∂µi(t)

∂t
= biλ

t
i + µi(t)log(λi) − αi (4.13)

the slope of expression during evacuation is −αi.
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Fig. 23 Model (4.12): (I) a = 1, b =2 , λ = 0.70, (II) a =1 , b = 1.5, λ = 0.50, (III) a = 1, b = 1.5, λ = 0.95, (IV) a = -1, b = 3, λ = 0.80.



101

IV.4.1. Promoter and Suppressor Activity

Suppose that a promoter gene k and repressor gene j expression are observed in

conjunction with gene i. The term ∂bi(t)
∂t

is assumed to be linear in

∂bi(t)

∂t
= βikµk(t) − βijµj(t) (4.14)

µk(t) and µk(t). The term bi(t) is

bi(t) = βik

∫ t

0

µk(s)ds− βij

∫ t

0

µj(s)ds (4.15)

Based on the additional information provided by promoter gene k and repressor gene

j, the functional form of ∂µi(t)
∂t

is assumed to be

∂µi(t)

∂t
= (βikµk(t) − βijµj(t))λ

t
i + µi(t)log(λi) − αi (4.16)

This form implies that the change in expression in gene i due to degradation is linear

in µi(t), while the change due to promotion or repression is non-linear due to the

decay in effect through λt. The above assumptions require the sign of the slope to be

inversely related to the level of gene expression.

A practical concern is that over time gene expression exhibits temporal periodicity,

as seen with actual data, Figure 22. Periodic functions are a common phenomena

in may processes where a forcing function can explain oscillations (Grodins, 1963).

In this case the cells may be trying to achieve homeostasis, or some other state in

response to a shock. The mean is adapted to include the function θi(t), assumed to

be a mixture of sin waves of different amplitude, scale and an unknown number of
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components S.

θi(t) =
S
∑

s=1

hssin(fis(t)) (4.17)

The partial derivative of µi(t) with respect to time is

∂µi(t)

∂t
=
∂b1i(t)

∂t
λt

i + µi(t)log(λi) − αi +
∂θ(t)

∂t
. (4.18)

Under the assumption that θ(t) is assumed to be a mixture of sine waves, the deriva-

tive is a mixture of cosine waves

∂θ(t)

∂t
=

S
∑

s=1

hs

∂fs(t)

∂t
· cos(fs(t)). (4.19)

A reasonable deduction is that

∂θi(t)

∂t
≈ βθi

θi(t− ∆i) (4.20)

for some ∆i ≥ 1.

IV.4.2. Delay Differential Equations

The effects of promotion and repression may not be immediately observed, as in

the theoretical model. In fact, delay in physical systems is a commonly observed

phenomenon (Segel, 1984; Rosenfeld and Alon, 2003; Bellen and Zennaro, 2003). In

the case of one promoter gene, gene k, the model re-expressed with a term for time

delay
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∂µi(t)

∂t
= βikµk(t− δik)λ

t
i + µi(t)log(λi) − αi +

∂θi(t)

∂t
, (4.21)

0 < δik < Mik. The decision to include a delay of course depends on the biol-

ogy, and the experimental lapse between the time points. In experiments with small

gaps between measurements, it may be considered quite reasonable to include a term

for delay, although in other settings unsatisfactory. Reasonable constraints must be

placed on delta, based on prior biological knowledge, for model identifiability.

IV.5. The S.O.S. Gene Network

The S.O.S. real time gene expression study (Friedman et al., 2005) was conducted on

a homemade microscope. Reporter e-coli cells were grown. Eight genes were moni-

tored under two conditions, UV radiation low and high. Two replicate experiments

were conducted for each UV level. Prior information on the S.O.S. gene network was

obtained from Ronen et al. (2002), see Figure 24.

DNA damage induces an increase in expression and product of the recA gene, which

cleaves to and suppresses lexA. In normal steady state, the lexA gene represses expres-

sion of downstream genes umuDC, urvA, urvD, uvrY, ruvA and polB. Increases in

recA suppress lexA, allowing these genes to be expressed and carry out a programmed

DNA damage response. Notice in the graph that no information is available on for

promotion, only the repression.
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Fig. 24 S.O.S. gene network

IV.5.1. Model Fitting

A series of modeling assumptions were used to fit the S.O.S. data of Friedman et al.

(2005), in a case study of model performance. Constrained priors are defined for all

of the parameters. The constraints embody prior information about the relationships

between the genes, i.e. relative influence such as promotion or degradation. The

goal is to make inference concerning the relationships between the genes given prior

assumptions about their relationships.

The differences di(t),

di(t) =
yi(t+ 1) − yi(t− 1)

2
(4.22)

are modeled by Euler’s method as

di(t) ∼ N

(

∂µi(t)

∂t
, σ2

i

)

(4.23)
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where

∂µi(t)

∂t
= (bi − βijyj(t− δij))λ

t
i

+µi(t)log(λi) − αi +
∂θ(t)

∂t
. (4.24)

The priors were specified as

σ2
i ∼ InverseGamma(0.0001, 0.0001)

αi ∼ Uniform(0, 1)

βik ∼ Uniform(0, 3)

βij ∼ Uniform(0, 3)

λi ∼ Uniform(0, 1)

δik ∼ DiscreteUniform(0, 10)

δij ∼ DiscreteUniform(0, 10). (4.25)

The constraints were discovered by trial and error. The parameters are updated by

Metropolis in Gibbs, evaluating each MH step by nMH = 50 iterations.

Fitting the periodicity in the data is complicated by the irregularity of the oscillations.

A model was fit first to yi(t), in an MCMC framework. Residuals obtained at each

iteration r
(b)
i (t) = Yi(t) − µ

(b)
i (t) for b = 1, ..., B. The residuals, r

(b)
i (t − 2), included

as linear regressors in fit to di(t) lagged by one time unit of two minutes. Figures

25−26 show the numerical derivative of recA and lexA, over an interpolated version

of di(t). The overlay are the residuals r̂i(t− 1), derived from a spline regression fit to

an interpolated version of the original data, yi(t). The residuals are rescaled to −.5.
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Fig. 25 Numerical derivative of recA (interpolated). Overlaid are rescaled and lagged residuals fit to pro-
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Fig. 26 Numerical derivative of lexA (interpolated). Overlaid are rescaled and lagged residuals fit to pro-

moter activity.
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Fig. 27 1st difference recA, UV = low, fitted and 90% C.I.

IV.5.2. S.O.S. Results

Model (4.13) was to fit the observed differences in recA, di(t), averaged across both

experiments with low UV radiation. A constant term was included for promotion

activity b and a negative regression coefficient −β was fit to the lexA series, allowing

for a temporal delay. The fit was repeated for recA, averaged over both UV high

experiments.

Figure 27 shows the fitted means with 90% credible intervals to recA with UV-Low.

Notice that overall, the model is capturing the trend in the changes in promoter ac-

tivity, although there is unaccounted for periodicity resembling irregular oscillations.

Figure 28 shows the fitted posteriors for coefficients a, b, λ and β.
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Fig. 28 recA, UV = low, posterior (i) α, (ii) b, (iii) λ, (iv) β.
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Fig. 29 1st difference recA, UV = high, fitted and 90% C.I.
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Fig. 30 recA, UV = high, posterior (i) α, (ii) b, (iii) λ, (iv) β.

Figures 29−30 show the posterior fits to recA for the UV high experiments. Notice

that the parameter b accounting for an increase in promoter activity is shifted up

in distribution with UV = High. The parameter accounting for the inhibition due

to lexA promoter activity, appears to have a tighter posterior and a reduced center.

The posteriors for a and λ are similar in both sets of experiments. Several important

inferences are drawn. The level of decay in promoter activity due to recA levels is

fairly constant in both sets of experiments, as seen in the posteriors for λ.

One of the critical questions is whether or not the interactions between lexA and

treatment are real or the result of unaccounted for periodicity. The success of this

approach rests on our ability to accurately fit and remove the residuals of yi(t). Fig-

ures 31−32 show the fit to the 1st difference in umuDC and urvD, di(t), averaged
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Fig. 31 1st difference umuDC, UV = low
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Fig. 32 1st difference urvD, UV = low



111

across replicate experiments allowing for periodicity.

It appears that the trend in umuDC is ft reasonably well from these figures, both due

to treatment and internal oscillatory behavior. The assumption that the periodicity

is analogous to a sum of sin waves appears sensible. It may even be argued based on

these figures that the residuals be lagged by more than one time unit, or place a prior

on the lag. There are several important reasons why including the terms for periodic-

ity in the model in this way. The results may vary due to unexplained variation, and

therefore we would like to compare the results with and without accounting for period-

icity in the differences. The periodicity is a function of the cells in the well, unrelated

to the cells in the inhibitor gene, lexA, for instance, and therefore should depend on

only the respective gene being modeled. The last reason is that once the effect of the

treatment subsides, the cells go out of phase with one another, and difference in the

cell cycles appear, as the trend in periodicity in internal promoter activity dominates.

Figures 33−34 shows the posteriors distributions for recA and umuDC, at UV =

LLow, with and without accounting for periodicity. Figures 35−36 show the QQ-

normal plots of the residuals fitting recA with and without accounting for periodicity.

In recA the distribution for βi attributable to the inhibition by lexA is shifted down

slightly in distribution, while the effect of degradation λi is somewhat higher. If these

results are accurate, then accounting for periodicity can make a difference for infer-

ence.

In order to make stronger inferences on the parameters, constrained models were fit

to each of the genes, accounting for delayed inhibition from lexA and periodicity. In

model 1 the parameters are assumed to be the same at both levels of UV radiation. In
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Fig. 33 recA (—) no periodicity and (- -) periodicity, UV = low: (i) a, (ii) b, (iii) λ, (iv) β.
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Fig. 34 umuDC (—) no periodicity and (- -) periodicity, UV = low: (i) a, (ii) b, (iii) λ, (iv) β.
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Table 13. Summary of fit, log marginal posterior
Model 1 Model 2 Model 3

1. recA 97.33 112.48 135.19
2. umuDC 66.60 83.55 100.65
3. urvD 66.49 74.85 88.93

model 2, the terms for inhibition and degradation, β and λ, were restricted to be the

same between UV-levels. Model 3 is the unconstrained model, fit separately between

UV levels. The log of the marginal posterior fits to d(t), obtained by MC integration,

are shown in Table 13 for genes recA, umuDC, and urvD. There is strong evidence in

favor of the unconstrained model, consistent with the historical S.O.S. gene pathway

that depicts structural dynamics between all of the genes.

Summaries of the posterior densities, from the unconstrained model, accounting for

periodicity and allowing for a delay in inhibition, are listed in Table 14. For each

gene, 10,000 MCMC samples were generated in under ten minutes in R on a Dell

8200 with dual core Intel Xeon processors. There is a sharp contrast in promoter

activity between UV levels in many of the genes. The effect of inhibition by lexA, as

measured in the posterior density of βi, is slightly less pronounced upon recA moving

from low to high UV, while the time delay for inhibition is shorter. The inhibition

effect of lexA on umuDC is not observed to be significantly different between UV

levels, although the time delay is on average shorter, 18 minutes versus 8, between

UV levels. The effect of lexA on urvD can be much stronger for high UV, as observed

in the longer posterior right tail for β, and much stronger for urvA as well. This is an

important result, consistent with the empirical evidence of a need for a time lag term

in dynamic models of gene expression. Generally the term for degradation λ showed

a very tight distribution, similar between UV radiation levels. This is reassuring as
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Table 14. Fitted posterior, median and 90% C.I.
recA UV Low UV High

b 0.3372 (0.2939,0.3809) 0.5406 (0.4875,0.5946)
λ 0.7973 (0.7797,0.8239) 0.7820 (0.7492,0.8065)
β 0.6346 (0.4187,0.8325) 0.3990 (0.2823,0.5057)
δ 12 (10,12) 6 (6,8)

umuDC UV Low UV High
b 0.2435 (0.1617,0.3295) 0.5520 (0.4738,0.6348)
λ 0.8683 (0.8322,0.9044) 0.7495 (0.7125,0.7907)
β 0.4826 (0.1874,0.9717) 0.4805 (0.2117,2.5519)
δ 18 (12,20) 8 (6,18)

urvD UV Low UV High
b 0.4619 (0.3458,0.6048) 0.3465 (0.1595,0.5694)
λ 0.7894 (0.715,0.85) 0.7012 (0.4621,0.8568)
β 0.6064 (0.4386,0.8393) 0.7412 (0.3073,2.5142)
δ 4 (4,4) 4 (4,16)

uvrA UV Low UV High
b 0.5754 (0.5242,0.6274) 0.5903 (0.5283,0.6534)
λ 0.7309 (0.7124,0.7461) 0.789 (0.7694,0.8085)
β 1.2918 (0.8918,2.2655) 0.6994 (0.6178,0.7812)
δ 12 (12,14) 6 (6,6)

lexA UV Low UV High
b 0.6026 (0.5397,0.6763) 0.6885 (0.6197,0.751)
λ 0.7862 (0.7459,0.8105) 0.7521 (0.731,0.779)
β 0.5343 (0.436,0.6554) 0.6013 (0.4781,0.7166)
δ 6 (6,8) 6 (4,6)

uvrY UV Low UV High
b 0.2062 (0.0238,0.5772) 1.1318 (0.0935,2.522
λ 0.6718 (0.6321,0.7219) 0.2049 (0.0412,0.5485)
β 2.4348 (1.7974,2.9089) 1.4261 (0.1549,2.8243)
δ 0 (0,0) 0 (0,0)

ruvA UV Low UV High
b 0.1884 (0.0211,0.6372) 0.3198 (0.0514,1.1193)
λ 0.362 (0.2711,0.5043) 0.4761 (0.0474,0.7916)
β 2.6834 (1.3452,2.968) 1.4111 (0.1561,2.8347)
δ 0 (0,8) 12 (0,20)

polB UV Low UV High
b 0.1674 (0.0652,0.2668) 0.2096 (0.1225,0.3038)
λ 0.8488 (0.7707,0.9576) 0.8301 (0.7835,0.8773)
β 0.8067 (0.2987,1.9481) 0.9377 (0.4064,2.0766)
δ 10 (8,12) 18 (16,20)
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we did not expect the effect of degradation to depend on UV level. The lexA gene

appears to be inhibited more by recA at high UV radiation. The effects are not sig-

nificant, as the posterior overlap substantially. For genes uvrY, ruvA and polB there

appear to be UV-level effects in promotion.

IV.6. Discussion

A Bayesian model is proposed for inference with real-time gene expression data. The

model was fit with MCMC methods in relatively short time with R scripts run in

parallel on a Dell 8200 with dual core Intel Xeon processors. In the S.O.S. gene net-

work data, the models offered generally were shown to capture the dynamic trends in

gene expression over time. Treatment effects appear likely, although the benefit of ac-

counting for internal periodicity within each respective reporter gene-cellular culture,

is not yet clear. Interactions are present between lexA and treatment in several of

the genes. Including time lag effects demonstrated superior data fitting overall, and

as shown in the results tends to be significantly different from 0. Treatment effects

and gene interactions were not starkly different accounting for periodicity, although

under fitting was reduced dramatically.

Future directions include model validation studies. The results here may inform fu-

ture experimental designs. Design issues are far from worked out, and will be the

topic of future discussion for some time. The work here focused exclusively on fitting

the theoretical dynamic models to each responder gene independently of the rest of

the genes. Another future goal is to fit complete networks with the Bayesian model,

in order to learn collectively of potential interactions between the genes and effects

of interest.
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In summary, theoretical models like the one proposed here offer great utility for learn-

ing in systems biology. As basic biological science advances, methodologies will be

needed to discern the results and inform conclusions. Interpretable models do not

always fit the data the best, although offer the clear advantage of producing results

amenable to inference. Future studies will serve to validate and evolve theoretical

models useful for GFP experiments.



118

CHAPTER V

SUMMARY AND CONCLUSIONS

As Bioinformatics experiments become more sophisticated, modeling assumptions

will no doubt require change, affecting modeling strategy and choice. This is a very

serious challenge for systems biology research, as the field is evolving so rapidly.

Bayesian statistics offers many advantages for systems biology research. The flexibil-

ity of Bayesian methodologies alone, as demonstrated with the simulations and case

studies offered here, show tremendous advantages for assessing the utility of prior

information and modeling assumptions, in a framework that allows us to account for

more uncertainty.

As we observed, the problem of detection of significant gene classes, defined from

historical pathways, with noisy expression array data is complicated at many levels.

At a theoretical level, the number of dependencies that may be modeled directly be-

tween genes is limited by sample size requirements. At the practical level there is

uncertainty in the historical pathways. BLM allows for uncertainty at many levels,

with the ability to borrow information across the genes in a class without sample size

limitations. In the simulation and case studies, borrowing demonstrated improved

sensitivity and specificity. A limitation of borrowing in this context is the question of

how much to borrow. Sensitivity analysis was offered to better understand the role

of borrowing between genes. Preliminary evidence with simulation and public data

demonstrates a promising advantage for integrating historical pathway knowledge ex-

plicitely into microarray analysis.
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A Bayesian change point model was proposed for learning about chromosomal aberra-

tion in heterogeneous patient populations. It was shown that the Bayesian approach

is feasible, up to a needed strategy for exploring the posterior space of change point

configurations. Borrowing information does improve probability estimates of the rates

of chromosomal instability, through a variance reduction. We learned about the ef-

fect of missing real change points, and robustness of over-specification of the change

points. In simulation, BCPA demonstrated a marginal though significant trade off in

sensitivity with CBS.

Real-time gene expression experiments were introduced, offering the potential for

learning the structural dynamics in gene expression. This technology is still in its in-

fancy, and making sense of the experiments will require a broad set of skills. There is

much uncertainty surrounding real-time gene expression experiments. Experimental

design issues were discussed, as well as normalization. A mathematical model was

introduced and inference performed in a Bayesian framework. In case study with

the S.O.S. gene data (Friedman et al., 2005), the model fit the temporal variation in

the gene expression well and inferred treatment effects and gene interactions. Future

model validation is needed, although the model appears promising.

In summary, theoretical models like the one proposed here offer great utility for learn-

ing in systems biology. As basic biological science advances, methodologies will be

needed to discern the results and inform conclusions. Interpretable models do not al-

ways fit the data the best, although offer the clear advantage of producing inferences.

Future studies will serve to validate the models. Data mining in high-throughput ex-

perimental results is a messy task, but the unique structure of the biological systems
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we are interested in, we argue, can and should inform our search. Bioinformatics

is challenged to integrate diverse sources of information, and provide the semantics

where none exist for analysis. The Bayesian learning paradigm is a natural one in

this context, to critically assess information for its utility and improve the power to

learn in heterogeneous disease populations.
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APPENDIX A

As discussed in Chapter II, the full conditional posterior distributions for BLM with

extentions are offered here. In order to avoid redundancy, only the posterior distri-

butions that are different between the respective extentions are listed. Let us begin

with the the original form, BLM1. In the original form, Z is assumed completely

known. In this case, the conditional posteriors of σ2
i and βi for i = 1, ..., n are

σ
2(t)
i |θ(t−1), β(t−1), Y ∼ IG(γ∗1i, γ

∗
2i) (A.1)

for,

γ∗1i =
γ1i+ J ·K

2

γ∗1i =
γ2i+

∑

jk

(

Yijk −Xjkβ
(t−1)
ij

)2

+ ω−1
∑

j

(

β
(t−1)
ij − Ziθ

(t−1)
j

)2

2
(A.2)

and,

β
(t)
i |θ(t−1), σ

2(t)
i , Y ∼ N(β∗

i ,Σ
∗
i ) (A.3)

for,

Σ∗
i = σ

2(t)
i

(

X ′X + ω−1
)−1

β∗
i =

(

X ′X + ω−1
)−1 (

X ′Yi + ω−1Ziθ
(t−1)

)

. (A.4)
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Define the matrix T at iteration t as T (t) = diag(ωσ
2(t)
1 , ωσ

2(t)
2 , ...)−1. The parameter

vectors θj, for j = 1, ..., J , are updated at iteration t as

θ
(t)
j |β(t), T (t), Y ∼ N

(

θ∗j ,Ω
∗
j

)

(A.5)

for,

Ω∗
j =

(

Z ′T (t)Z + Ω−1
o

)−1

θ∗j =
(

Z ′T (t)Z + Ω−1
o

)−1
(

Z ′T (t)β
(t)
j + Ω−1

o θo

)

. (A.6)

For the case of uncertainty on the sign of Z, BLM2, Gibbs sampling proceeds as

above, except with the inclusion of auxiliary variables ξi, for i = 1, ..., n. Without

loss of generality let J = 2 indicating just one treatment effect versus a control. For

genes i = 1, ..., n at replication t the ξi’s are updated, and subsequently the mixture

weights, as

P
(t)
i =

π
(t−1)
i N

(

β
(t−1)
i |Ziθ

(t−1)
i , Y

)

π
(t−1)
i N

(

β
(t−1)
i |Ziθ

(t−1)
i , Y

)

+
(

1 − π
(t−1)
i

)

N
(

−β(t−1)
i |Ziθ

(t−1)
i , Y

)

ξ
(t)
i |P, Y ∼ Bern

(

P
(t)
i

)

π
(t−1)
i |ξ, Y ∼ Beta

(

ν1 + ξ
(t)
i , ν2 + (1 − ξ

(t)
i )
)

. (A.7)

A new variable qi, defined as sign(Zi), is updated automatically at iteration t as

q
(t)
i = 2ξ

(t)
i − 1. The parameters σ2

i , βi and θj may now be updated conditionally as

σ
2(t)
i |θ(t−1), β(t−1), Y ∼ IG(γ∗1i, γ

∗
2i) (A.8)
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for,

γ∗1i =
γ1i+m ·K

2

γ∗2i =
γ2i+

∑

jk

(

Yijk −Xjkβ
(t−1)
ij

)2

+ ω−1
∑

j

(

β
(t−1)
ij − q

(t)
i Ziθ

(t−1)
j

)2

2
(A.9)

and

β
(t)
i |θ(t−1), σ

2(t)
i , Y ∼ N(β∗

i ,Σ
∗
i ) (A.10)

for,

Σ∗
i = σ

2(t)
i

(

X ′X + ω−1
)−1

β∗
i =

(

X ′X + ω−1
)−1
(

X ′Yi + ω−1q
(t)
i Ziθ

(t−1)
)

(A.11)

and

θ
(t)
j |β(t), T (t), Y ∼ N

(

θ∗j ,Ω
∗
j

)

(A.12)

Ω∗
j =

(

Z ′T (t)Z + Ω−1
o

)−1

θ∗j =
(

Z ′T (t)Z + Ω−1
o

)−1
(

Z ′T (t)Q(t)iβ
(t)
j − η

)

(A.13)

where Q(t)i = diag{q(t)}.

In the final extension, BLM3, an additional variable selection step is included. The
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coefficients, βijk are assumed follow one of 3 states, a normal distribution with mean

Ziθ, a point mass at 0 or a normal distribution with mean −Ziθ. The states variables

Ψih and mixture weights pih, for h = 1, 2, 3, are updated as

P
(t)
i1 ∝

∏

k

N(Yijk;XB
(t)
ij , σ

(t)2
i ) ·N(B

(t)
ij ;Ziθ

(t)
ij , ωσ

(t)2
i )

P
(t)
i2 ∝

∏

k

N(Yijk; 0, σ
(t)2
i )

P
(t)
i3 ∝

∏

k

N(Yijk;XB
(t)
ij , σ

(t)2
i ) ·N(B

(t)
ij ;−Ziθ

(t)
ij , ωσ

(t)2
i )

ψ
(t)
i |P, Y ∼ Multi

(

3;P
(t)
i

)

p
(t−1)
i |ψi, Y ∼ Dir

(

cA+R(t)i)
)

. (A.14)

for R
(t)
i , a vector of dimension 3, with R

(t)
ih = 1 where ψ

(t)
i = h, and R

(t)
ih′ = 0 all

h′ 6= h. The conditional posteriors are updated similarly as before, except in this case

β
(t)
ij = 0 if ψ

(t)
i = 2.
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APPENDIX B

As described in Chapter II, the full conditional posterior distributions for the means,

variances and hyper means are listed here. Given a change point configuration, de-

noted ξ, the full conditional posterior distribution of the variance parameters σ2
hk, for

h = 1, ..., H and k = 1, ...,Mh, are updated at iteration t as

σ
2(t)
hk |· ∼ 1/Gamma (γ∗1hk, γ

∗
2hk) (B.1)

γ∗1hk =
1

2
(γ1 + nhk + 1)

γ∗2hk =
1

2

(

γ2 +
∑

i

I (ξhi = k)
(

Yhi − µ
(t−1)
hk

)2

+W−1
(

µ
(t−1)
hk − η

(t−1)
hks

)2
)

(B.2)

The full conditional posterior distribution for the means µhk’s, are updated at iteration

t by

µ
(t)
hk|· ∼ N

(

µ∗
hk, σ

2∗
hk

)

(B.3)

for

µ∗
hk =

W · Ȳhk + η
(t−1)
hks

W + 1

σ2∗
hk =

W

1 +W
· σ

2(t)
hk

nhk

, (B.4)
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where

η
(t−1)
hks =

∑M̃

k̃=1 nhk̃θ
(t−1)

sk̃

nhk

. (B.5)

The state parameters, ψhk’s, are updated at iteration t as

P (ψ
(t)
hk = 1) =

F
(t)
hk (0)

1 + f
(t)
hk (0)

P (ψ
(t)
hk = 2) =

f
(t)
hk (0)

1 + f
(t)
hk (0)

P (ψ
(t)
hk = 3) =

1 − F
(t)
hk (0)

1 + f
(t)
hk (0)

(B.6)

where F
(t)
hk (0) and f

(t)
hk (0) are the CDF and PDF of the normal distribution evaluated

at 0, with mean and variance
(

µ
(t)
hk,W · σ2(t)

hk /nhk

)

.

The population wide sub-region level means θ’s are updated conditionally as

θ
(t)

1k̃
∼ N

(

φ
(t)

1k̃

ν
(t)

1k̃

,
1

ν
(t)

1k̃

)

· I
(

θ
(t)

1k̃
< 0
)

θ
(t)
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∼ N
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φ
(t)

3k̃
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(t)

3k̃

,
1

ν
(t)
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· I
(

θ
(t)

1k̃
> 0
)

(B.7)

where,

ν
(t)

1k̃
=

∑

hi

I
(

ψh(ξhi = k ∩ ξ̃i = k̃) = 1
)

/
(

W · σ2(t)
hk

)

φ
(t)

1k̃
=

∑

hi

I
(

ψh(ξhi = k ∩ ξ̃i = k̃) = 1
)

· µ(t)
hk/
(

W · σ2(t)
hk

)

(B.8)

and
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ν
(t)

3k̃
=
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I
(

ψh(ξhi = k ∩ ξ̃i = k̃) = 3
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/
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W · σ2(t)
hk

)

φ
(t)

3k̃
=

∑

hi

I
(

ψh(ξhi = k ∩ ξ̃i = k̃) = 3
)

· µ(t)
hk/
(

W · σ2(t)
hk

)

. (B.9)



134

VITA

DAVID L. GOLD

Department of Statistics

Texas A&M University

3143 TAMU

College Station, TX 77843-3143

c/o Bani Mallick, Ph.D.

EDUCATION

2007 Ph.D. Statistics, Texas A&M University

2000 Master of Science, Statistics, Texas A&M University

1996 Bachelor of Arts, Economics, The University of Texas at Austin

RESEARCH INTERESTS

Methodology: Bayesian Hierarchical Modeling, Model Validation, Statistical Data

Mining Applications: High-throughput Genomics and Clinical Diagnostics


