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ABSTRACT 
 

Electrical Properties of Quench-Condensed Thin Film. (August 2007) 

Kyoungjin Lee, B.S., Korea Military Academy 

Chair of Advisory Committee: Dr. Winfried Teizer 

 

     Electrical properties of thin film have been an issue of interest for a long time and 

there are many applications in contemporary industry. Interesting characteristics, such as a 

metal-insulator transition and superconductivity, were investigated and applied to 

manufacturing of various electrical devices. In this line of study, many experimental 

techniques have been introduced for precise measurement of the properties of thin film. 

Quench-condensation is one of the important techniques in the research of thin films. 

     To facilitate this research, we built a quench-condensation apparatus which can be 

used for a variety of experiments. The apparatus was designed for the fabrication of ultra-

thin film and the in-situ measurement at low temperature. The apparatus was shown to 

operate well for the fabrication of thin films while monitoring the growth in-situ. As a part 

of the preliminary research, we measured the electrical properties of aluminum thin films at 

liquid nitrogen temperature by using this apparatus. An investigation of the thickness 

dependent conduction properties was successively performed in-situ. Experimental data 

showed agreement with theory, in particular the electrical conduction model of Neugebaur 

and Webb. 
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CHAPTER I  
 

INTRODUCTION 
  

1.1 Motivation 

Materials have some interesting characteristics when they are in 2D thin film form, for 

example, they can show a thickness or magnetic field driven metal-insulator transitions [1, 

2] or superconductivity in the 2D regime [3, 4]. It is essential to use some special 

techniques for such an experiment. For that reason, we designed and constructed an 

experimental apparatus that can make high quality samples, using quench condensation. 

 

1.2 Research Objective 

The objective of this project is to measure the electrical conductivity of 2 dimensional 

(2D) aluminum and nickel thin films deposited at low temperature using a home-built 

quench-condensation apparatus. 2D thin films have been of great interest for several 

decades and many theoretical models have been proposed [5~11]. In most experiments 

metallic films are evaporated at room temperature and then cooled on a substrate [12~14]. 

We made an apparatus that can be immersed into liquid helium and then perform 

evaporations at low temperature. We have performed an in-situ experiment with this newly 

designed apparatus on the 2D conductivity of thin films. 

 

 
 

              
This thesis follows the style of Physical Review Letters. 
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CHAPTER II  
 

BACKGROUND 
 

Materials have many interesting properties when they are in form of a very thin film. 

They have distinguishable physical characteristics and significantly different electrical 

properties depending on the growth process [14~16]. Many physical models have been 

proposed to describe the relation between physical characteristics and electrical properties 

[5~11]. Typically, they can be categorized into classical and quantum mechanical models. 

For thin films with large grains the electrical conduction can be explained by thermal 

activation and tunneling effects [14]. On the other hand, for ultra thin films with small 

granular grains, experimental results show anomalous behavior that is not expected from 

classical models [3]. In this chapter, we will focus on understanding the electrical properties 

and the growth process of thin films. Furthermore, we will introduce the basic techniques of 

thin film fabrication for understanding the importance of our experimental technique, which 

is applied to get the expected experiment results on the electrical properties of thin films. 

 

2.1 Thermal Evaporation 

Thermal evaporation is the simplest deposition technique to deposit various materials 

by a physical deposition process. Materials are heated to evaporate by applying a high 

electric current and then deposited onto a substrate to form a thin film. The evaporation 

occurs in a high vacuum where the mean free path of the incident atoms is much longer 

than the distance from the evaporation source to the substrate. Therefore, evaporated atoms 

are incident by ballistic motion and then deposit onto the exposed surface of a substrate 
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forming a thin film. 
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Figure 2.1 Schematic design of typical thermal evaporator 

 

    Figure 2.1 shows the schematic design of a typical thermal evaporator. The thermal 

evaporator consists of a vacuum chamber, pumping system, evaporation source, and 

monitoring equipment. For a typical thermal evaporator, at room temperature, a glass or 

stainless steel bell jar is commonly used as a vacuum chamber. The vacuum chamber is 

sealed to a stainless steel base plate with a rubber gasket. It is very important to maintain 

the condition of a high vacuum during the evaporation process since it critically affects the 

quality of the thin film by contamination, oxidization, reaction, and so on. Furthermore, 

atmospheric pressure also causes a change of the phase transition temperature. As the 

pressure is reduced, materials undergo a phase transition from solid to gaseous state at 

lower temperature. Such a phase transition allows more materials to evaporate, particularly 

if it has a high melting point. As an example, to evaporate nickel, we should increase its 

temperature up to 1525˚K at 10-4torr. On the other hand, only 1200˚K is enough for an 
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evaporation at 10-8torr. Both rough pumps and high vacuum pumps form the basic pumping 

system to produce a high vacuum inside the chamber. A rough pump is capable of reaching 

a pressure of at most P=10-4torr, while a high vacuum pump reaches P=10-6~10-8 torr. 

Generally, a diffusion pump, a turbo molecular pump or a cryopump is used for high 

vacuum pumping. Materials to be evaporated (evaporant) are held by evaporation sources, 

like a crucible, boat or wire coil. Tungsten wire is commonly used as an evaporation source 

for materials like aluminum, nickel, chromium, gold, lead, and so on. A quartz crystal 

microbalance (QCM) is used to measure the thickness of the sample and an ion gauge 

monitors the vacuum. Additional monitoring equipment can be added depending on 

experimental purposes. 

 

2.2 Quench Condensation 

The technique of quench-condensation has been developed to evaporate a thin film 

of some reactive materials in an ultra-high vacuum which are subsequently cooled down to 

a temperature of liquid helium (~4.2°K). In this technique, while monitoring the film’s 

thickness and resistance, various thicknesses of thin films are grown by sequential 

evaporation onto a cryogenic substrate without breaking the ultra-high vacuum conditions 

[17]. This method makes it possible, for example, to experimentally measure a metal-

insulator transition in a thin film, which has two dimensional resistance and thickness 

dependence. In addition, this technique can be applied to producing a thin film with very 

high quality [17, 18]. Figure 2.2 shows the general design of a quench condensation system. 

This system has cold substrates that are maintained at 4.2K for rapid quenching of the 
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evaporant. Generally the evaporation source is installed at T > 4.2K, while the path between 

the substrate and the source is blocked by a shutter. 
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(4.2°K)

 Above 4.2°K

Cold substrate 

Shutter

Evaporation source

 

 

 

 

 

 

 

Figure 2.2 Schematic design of quench condensation system 

 

2.3 Growth Process of a Thin Film 

2.3.1 Introduction 

In order to obtain thin films with prescribed physical characteristics, it is required to 

understand the physical mechanism of its deposition process. Thin film deposition is a 

multi-phenomenon process. While atoms are kinetically colliding with the substrate, one 

can observe phenomena such as physical adsorption and nucleation, growing, ripening, and 

so on. Atoms sometimes nucleate at the surface of a substrate and then form a cluster that 

makes a discontinuous film by forming what is called islands. Clusters are developed and 

increase in area until they form a continuous film. Figure 2.3 is a transmission electron 

micrographs of ultra-thin Au film, which shows progression from discontinuous to network 

stages [14].  
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Figure 2.3 Electron micrographs of thin Au films. 
Deposited at 0.5Å/sec. Thickness are (a) 10 Å, (b) 40Å, (c) 60 Å, (d) 150 Å 

[From L. L. Kazmerski and D. M. Racine, J Appl Phys, vol. 46, 791 (1975)][14] 
 

2.3.2 Adsorption 

Atoms do not always stick to the surface of a substrate but they scatter or re-

evaporate if a atom has comparatively large kinetic energy [15, 19]. Evaporated atoms 

interacts with other incident atoms while exchanging energy with the substrate until they 

are condensed on the surface. Ideally, the atom should suddenly lose enough energy after a 

collision to stay on the surface of the substrate. Figure 2.4 shows the relation between the 

kinetic energy of an evaporated atom and the potential energy on the surface of the 

substrate. The potential energy is a synthesized effect that includes the interaction energies 

of atom-atom and atom-substrate, as seen in Figure 2.4. When a atom loses its energy from 

A to B then it scatters. On the other hand, when a atom loses its energy from A to C or D 

then is can stay on the surface of the substrate. Quench condensation can take place when 

an atom loses its energy from A to D. Of course, the reversed process also happens from C 
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to B by re-evaporation that will be mentioned in the next section. This is summarized in 

Table 2.1. 

 

A, B : Scattering 

C : Adsorption (But move on a surface)

D : Condensation 

Kinetic energy of a atom 
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Atoms of substrate 

Clusters on a surface Molecule on a surface 

 

 

 

 

 

 

Figure 2.4 Potential energy versus distance from the surface of substrate (up) 
and interactions between atoms (down) 
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Table 2.1 Activity of an evaporated atom depend on its kinetic energy 
 

Process Action Energy Remarks 

A → B Scattering K > U Prominent for laser ablation 

A → C K < U General evaporation 

A → D 
Adsorption 

K << U Quench-condensation 

C → B Re-evaporation K > U Escape form the surface 
   

2.3.3 Nucleation 

An incident atom can undergo a mass transport process after colliding with the 

surface of the substrate [15, 20]. Incident atoms form small grains by nucleation with other 

atoms. But some atoms do not participate in formation of grains but instead transport their 

mass by dissolution into the substrate, capturing at a defect site, re-evaporation. Nucleation 

is an isothermal phase transition from the vapor state to condensed state. Grains are 

statistically distributed over the substrate surface and grow in size to form clusters. 

 

2.3.4 Growing 

Clusters migrate themselves over the surface and interact with other clusters. 

Clusters grow and merge with other clusters by either liquid or solid like adhesion. This can 

be explained with their surface energy [14, 15]. Small particles have large surface energy 

because they have large surface area to volume ratio. Intrinsically, a system follows a 

physical process to reduce the total surface energy. The total surface energy of the system 

decreases when small clusters coalesce into larger clusters. After merging, the surface 
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energy is decreased due to the new surface area being less than the summed surface area of 

two. Figure 2.5 shows a schematic of this process. During this process, clusters grow and 

coalesce to form islands on thin film surface and then these Islands continue to coalesce 

until form a continuous film. 

 

A 
B 

C 

Substrate 

Substrate 

Cluster 

Cluster Cluster 

Figure 2.5 Schematic of coalescence process (SA + SB > SC) 

 

 

 

 

 

 

 

 

 
 

2.3.5 Ripening 

A film initially grows in clusters but it starts ripening when it stops to form new 

islands. This happens when the evaporation rate is sufficiently low or evaporation is 

stopped. Ripening is the process that small clusters start to disappear to minimize the 

surface energy of a thin film by a similar mechanism to coalescence of clusters [15, 21]. 

The thin film reduces the surface energy by interaction of islands. During the ripening 

clusters undergo surface diffusion and coalescence to reduce the surface energy of thin film. 

Small clusters shrink and their number is reduced during the ripening. On the other hand, 
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the large clusters increase and grow by coalescing with small clusters. Figure 2.6 shows 

AFM images of PbSe which shows this process [21]. 

  

(b)(a) 

  

(d)(c) 

 

 

Figure 2.6 AFM Images of PbSe dots which shows ripening process 
(Plots show density of dots and Gaussian distribution of height) 

[From A. Raab and G. Springholz, App. Phys. Lett. 77, 2991 (2000)] [21] 

 

2.3.6 Considerations on Thin Film Deposition 

The films typically become continuous at average thickness that depends on many 

experimental conditions. As we have seen at the growing process of thin films, there are 

many factors that should be considered for thin film deposition. Typical considerations are: 
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the evaporation rate and the temperature of substrate, the type of material to be evaporated 

(evaporant) and substrate, and so on. The island size significantly depends on the 

evaporation rate and the temperature of substrate. Thin films have larger island size for 

higher evaporation rates or substrate temperatures since the surface mobility of clusters is 

enhanced with increasing surface energy [16]. The specific of evaporant also affects the 

deposition of a thin film. As a good example, gold has poor adhesion compared to other 

materials so it is difficult to form a thin film on silicon or a glass substrate. Therefore, we 

should pre-evaporate germanium, chromium or titanium to form a gold thin film on the 

substrate. Besides, the nature of substrate also affects the thin film deposition since it has 

varying topology and the adhesion depends on its character. Porousness and adhesion of the 

substrate affects the saturation and nucleation of atoms that affects the island size of thin 

film. Roughness and defects of the surface affects the uniformity of a thin film. Chemical 

stability and impurities of the substrate also affects the properties of a thin film [16]. 

 

2.4 Electrical Properties of Thin Films 

2.4.1 Introduction 

  A material has many interesting properties when it is in form of a thin film. A metal 

can have nonmetallic properties in form of a very thin film [22]. On the other hand, an 

insulator can have metallic properties when it is in form of a thin film in some unique 

circumstances [23]. Besides, thin films of magnetic materials can show a metal-insulator 

transition when tuned by a magnetic field [1, 2]. A superconducting thin films like Pb, Al, 

Sn has nonmetallic property when it is very thin and then it transforms to a superconductor 
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when grown to be thicker [22]. VO2 shows a transition of its electronic properties from 

insulating to metallic [23]. GdxSi1-x and Ni shows a magnetic field driven metal-insulator 

transition by application of a magnetic field [1~2]. Indeed, the electrical properties of a thin 

film are unique and sometimes quite different from materials in bulk condition. As we have 

seen at the thin film growth process, discontinuous growth of a thin film is a very important 

feature and we will use this as a starting point to explain the electric transport properties of 

a thin film. 

 

2.4.2 Basic Models 

In general, physical models for the electronic properties of a thin film can be 

categorized into two different ways by their physical condition. One is for a thin film 

forming islands, whose electronic properties are commonly explained by thermal activation 

and tunneling effects between the islands [5]. Another is for superconducting thin films, for 

which more quantum mechanical models are required to explain the electronic properties [3, 

4]. 

Neugebauer and Webb proposed a simple model that explains conductivity of thin 

films with islands [5]. The model includes the electron transfer by the thermonic emission 

and the tunneling current between islands on a thin film. The model assumes that the 

thermonic emission dominates the transport mechanism when the separation of the islands 

is large. On the other hand, the tunneling current exceeds the thermonic current if the 

separation is small enough. For the thin film which is consisting of a planar array of many 

small, discrete metal islands of linear dimension r, separated by average distance d (inter 
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island separation) the number of charged islands is described as 

kTNen
ε−

=                              (1) 

where N is the total number of islands in the film and ε is the effective activation energy 

which is ε≈q2/r. q is the charge of a carrier (electron). The tunneling probability of an 

electron from one negatively charged island (i) to the neighboring islands (f) is 

                        (2) ∫
∞

∞−
−∝ εdfDfP ji )1(

where f is the Fermi function and D is the transmission coefficient. Figure 2.7 shows a 

conduction mechanism of thin film. 

 

d 

r 

i f 

Substrate 

Island 
h 

 

 

(a) Islands on a substrate 

 

f i h 

ε =0 

Potential barrier 

 

 

 

(b) Schematic of the conduction mechanism by Neugebauer and Webb [5] 

Figure 2.7 Conduction mechanism of thin film 
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The conductivity is described as 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∝

kT
r

q
Dqd

r

2

22 exp1σ                         (3) 

where D is the transmission coefficient, r is the effective island size and d is the distance 

between islands (inter island separation). 

     Figure 2.8 shows the experimental result of Kazmerski and Racine which 

investigated the conduction mechanism of ultra-thin (10~100Å) metalic films [14].  

 

       
Figure 2.8 Experimental result of Kazmerski and Racine [14] 

[From L. L. Kazmerski and D. M. Racine, J Appl Phys, vol. 46, 791 (1975)][14] 
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The experimental result shows agreement with the model of Neugebauer and Webb which 

predicts a linear dependence of the logarithmic scale of conductivity (lnσ). 

     Another model, which was experimentally proven by A. Frydman and R.C. Dynes, 

explains the superconducting transition based on its critical behavior [3, 4]. For quench-

condensed granular thin films, the sheet resistance versus temperature for T<Tc follows and 

exponential behavior and can be expressed in the following way. 

                                0
0

TTeRR =                               (4) 

where Ro is the value of the resistance obtained by extrapolating the R-T curves to T=0 and 

T0 is its temperature. Though the cause for this dependence is not fully understood, it turns 

out to be universal for two-dimensional (2D) granular superconducting thin films. In this 

model, the equation does not depend on the nature of the superconducting grains but only 

on the geometrical arrangement of the grains which is affected by the specifics of the thin 

film deposition. 

 

2.4.3 Metal-Insulator Transition in a Thin Film 

   The electrical conductivity of a material can be changed from metal to insulator or 

vice versa by its physical condition. This transition is well known as metal-insulator 

transition and has been studied for a long time [24~31]. Scientists tried to understand its 

physical principles by studying some transitions from metal to insulator after Wilson gave a 

description of the difference between metals and insulators in 1931 [24]. The area of 

research has been broadened by development of experimental techniques and subsequently 
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topics such as a magnetic field driven metal-insulator transition [1, 2], hole driven metal-

insulator transition [23] were studied. 

     A Metal-insulator transition is a typical quantum phase transition which is 

generally described at T=0K while it is modified due to its temperature dependence at 

T≠0K [25]. We cannot clearly define the transition at T≠0K because it’s boundaries are 

broadened by finite temperature. In this case, we cannot clearly define its metallic and 

insulating behaviors but materials can be described as a good or bad conductor (Figure 2.9). 
 

T  

Semi-conductorSemi-metal 

Good conductor Bad conductor 

 

 

 

 

 

 
Insulator Metal  

Figure 2.9 Metal-insulator transition as quantum phase transition 
       χ : External parameters like magnetic field and film thickness, and so on 

 

     For disordered 2D thin films, metallic and insulating behaviors can be defined 

through the temperature dependence of the electrical conductivity σ [1, 2]. If 

σ0≡σ(T→0)>0 we designate this as metallic while we define insulating as σ0≡σ(T→0)=0. 

The electrical conductivity σ is described as 

                       TTT ×+×+= 2
21

10)( σσσσ                      (5) 

where σ0 is conductivity at T=0°K, σ1×T1/2 is the first–order correction due to Coulomb 

interaction and σ2×T is a corrections due to quantum back-scattering effect [1, 2]. 
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CHAPTER III 
 

QUENCH-CONDENSATION APPARATUS 
 

  As we discussed in the previous chapter, two-dimensional (2D) thin films were known 

to show very unique electrical properties that were successfully described based on 

quantum mechanical models. Until now, several methods have been used to deposit thin 

films at room temperature but these techniques were not enough to investigate the 2D 

electrical properties. In this case, samples were dominated by bulk properties including the 

thermal activation. On the other hand, the quench-condensation technique enabled the 

investigation of 2D thin film. We designed and built a very simple apparatus that can be 

immersed into liquid helium and then perform quench-condensation with in-situ 

measurement at low temperature. 

 

3.1 Design Overview 

Figure 3.1 shows the exterior view of an insertable cryostat and our apparatus. Our 

apparatus looks like a small cryostat for a storage dewar that is constructed for saving time 

and money. This types of apparatus allows quick turn around times, typically, a sample can 

be mounted and is ready to be measured in a few hours. In case of our apparatus, it has been 

designed not only for the measurement but also for the fabrication of a sample. Therefore it 

is adaptable to many applications and very convenient to use. Besides, the most important 

advantage of this particular design is that it enables the quench-condensation of thin film 

with in-situ measurement. 
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Figure 3.1 Exterior view of an insertable cryostat (left) and 
our quench-condensation apparatus (right) 
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Figure 3.2 Schematics of our quench-condensation apparatus 
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Figure 3.2 shows the schematic design of our apparatus. This small quench 

condensation apparatus (SQCA) consists of a small chamber with a evaporation source 

components (the lower plate) and cold substrate components (the upper plate), two tubes 

with a flange holder, a pumping valve, a wire connector and a shutter actuation handle. The 

obvious constraint in this design is the dimension of the 4He dewar that has a magnet at the 

bottom. The neck of our 4He dewar is 3.4 inches in diameter. The distance from the top of 

the neck to the magnet is 117cm and the bottom of the dewar is 155cm as described at 

Figure 3.3. This distance from the top of the neck to the magnet determined the length of 

pumping lines and the diameter of the neck determined the size of flanges on the vacuum 

chamber. 
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Figure 3.3 The exterior view and schematic dimensions of 4He dewar 
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3.2 Construction Details 

The evaporation chamber is made of stainless steel with diameter of 4.8cm and 

length of around 15.2 cm. The length of the evaporation chamber is determined to maintain 

a moderate evaporation rate while protecting the system from the heat radiation. Excessive 

length results in a poor evaporation rate and too short a length results in too much heat 

radiation on to the substrate that is undesirable for the thin film quality [32]. It is important 

to note that stainless steel was used for most parts of our apparatus, since the small thermal 

conductivity of stainless steel at low temperature ensures the successful operation although 

it is hard to machine in cryogenic instrument manufacture. For building a high vacuum 

instrument, it is useful that stainless steel has little outgasing and no diffusion of gas. At 

each end of the chamber, there are two flanges, which connect the upper and lower plate to 

mount the substrate and evaporation source, respectively. Flanges are designed for Indium 

O-rings and connected to the chamber by welding. Welding is one of the most reliable 

methods to combine two pieces of stainless steel. When connected by welding, the 

materials are homogeneous and less subject to stress from differential thermal contraction 

[33, 34]. Figure 3.4 shows a cross section of an Indium O-ring flange and view of flanges 

from above. An Indium O-ring uses simply thin indium wire wrapped in a circle with the 

ends twisted together. An Indium O-ring seal is easy to machine compared with that of 

copper or rubber seal, since it does not need an O-ring groove. One side of the flange can 

be easily sealed by an Indium O-ring. 
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Indium 
wire 

 

 

 

Figure 3.4 Indium O-ring flange 

An Indium O-ring seal is reliable for a cryogenic seal unlike a rubber O-ring seal since 

rubber is no longer elastomeric[33] at low temperature. However one should be careful to 

use the Indium sealed apparatus for evaporation at room temperature as Indium melts at 

high temperature around 430K. This apparatus should be used only for certain materials 

that have low melting point when it is applied to room temperature evaporation. For 

example, aluminum can be evaporated at room temperature with the Indium O-ring sealed 

apparatus, while nickel cannot. Certainly, this is not a problem when using quench-

condensation because the flange always remains at low temperature in that case. 8 holes for 

assembly and 4 holes for wire paths are drilled into the flange. 2 more holes are drilled into 

the flanges of the upper and lower plate in order to readily allow detachment after usage. 

     The upper plate with flange is connected to two tubes by welding as can be seen in 

Figure 3.2. We used thin-walled stainless steel tube because of its low thermal conductivity 

and high strength. One of the tubes is for the path of the shutter actuation rod and another is 

for the pumping line. Wires for measurement also pass through the pumping line. Figure 

3.5 shows components of the upper plate. A substrate was placed on a 3.31cm-diameter 

circular shape substrate mounting plate that is directly connected to the upper plate with 
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small spacer rod. We used OFHC copper for these parts because it is an excellent conductor 

and good for vacuum instrumentation. The substrate maintains a temperature of 4K because 

of this direct thermal connection to the chamber wall. A Cernox CX-1050 thin film 

resistance sensor is mounted on the backside of the substrate mounting plate. A Quartz 

Crystal Microbalance sensor (QCM) of 5MHz is attached at a small OFHC copper plate 

that is mounted on the substrate mounting plate. For protection, the QCM is radiation 

shielded with 4 copper baffles and a stainless steel box. A shadow mask is attached to the 

substrate by 0-80 screws and spacers. A shutter is made of stainless steel and attached to the 

shutter actuation rod by welding. The rod is made of stainless steel tube that is sealed into 

an other tube. 16 wires are connected to the substrate by two detachable 16-pin sockets. 
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(with radiation shields) 

Pumping & Wire tube 
Tube for shutter 
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Figure 3.5 Upper plate components 
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 Figure 3.6 shows the lower plate components. 4 electrical feedthroughs are welded 

to the lower plate for evaporation source holder. We used ISI 30 Amps high vacuum 

electrical feedthrough that consists of a copper electrode and alumina ceramic insulated 

stainless steel body. We connected evaporation filament to the electrodes by using 

commercial inline power connectors. It was possible to evaporate several different 

materials at the same time or sequentially by using 4 electrodes. An OFHC copper thermal 

radiation jacket is mounted to the lower plate to suppress thermal radiation from the 

evaporation source to the wall of the chamber.  

 

Evaporation filament 

Inline power connector

Radiation jacket 

Electrical feedthrough

Lower plate 

 

 

 

 

Figure 3.6 Lower plate components 

      A selection of correct wire is very important for cryogenic apparatus. We should 

reduce the heat flow into the apparatus while keeping good electronic conductivity. We 

used fine Manganin wires that have low thermal conductivity with appropriate resistivity of 

around 43~48 μΩ/cm at 4.2 ~295K. Wires are connected from the ISI Copper Flange multi-

pin electronic feedthrough at the top of the tube to the electronic components at the lower 

plate (See Figure 3.7). 16 Manganin wires are used for measurement and heating, 4 wires 

are used for a thermometer. Suppressing noise is especially important for a sensitive 
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measurement with high frequency. We used coaxial wires for the QCM to suppress noise 

during its sensitive measurement. Other wires are twisted in pairs to reduce noise. 

Figure 3.7 shows the components on top of the SQCA. A MDC rotary motion 

feedthrough provides the control of shutter. Typical vacuum valve is used for pumping 

connection. Two copper gasket flanges are used for motion and electronic feedthrough that 

are attached on top of the tubes. 

 

     

Tubes for 

pumping connection 

(Valve is connected) 

Shutter actuation handle 

(Electric Feedthrough) 

Wire connector 

(Rotary motion feedthrough  )

 

Figure 3.7 Components on top of SQCA 
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CHAPTER IV 
 

EXPERIMENTAL ISSUES 
 

The electrical properties of quench condensed thin films were compared with other 

samples that are evaporated at liquid nitrogen and room temperature. Quench condensation 

is achieved with the home-built quench condensation apparatus by immersing it into 4He. 

The same apparatus was also used to perform the evaporation at nitrogen. On the other 

hand, the room temperature evaporations were done with a commercial thermal evaporator. 

All evaporations and measurements were performed in-situ except for those at room 

temperature. By using a superconducting magnet mounted in the 4He dewar, the magnetic 

properties of samples can be measured. Figure 4.1 shows the schematic of experimental 

procedure. 

 

4.1 Experimental Set-up and Procedure 

4.1.1 Room Temperature Evaporation 

Thin films were evaporated at room temperature with NRC 3114 commercial 

thermal evaporator. We deposited aluminum and nickel thin films in a form of bar with 

shadow mask. A commercial tungsten basket was used for the evaporation source. The 

evaporation rate was set to around 1Å/sec and vacuum pressure was maintained no more 

than 4.0×10-6 torr. We measured the conductivity of samples with the quench condensation 

apparatus at room and liquid nitrogen temperature, respectively. 
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Figure 4.1 Schematic of experimental procedure 

 

4.1.2 Evaporation at Liquid Nitrogen 

     The substrate was prepared for in-situ measurements. Before producing a high 

vacuum, the vacuum chamber was leak-tested with an Alcatel ASM 142 leak detector. The 

chamber was evacuated by using a defunct MS-9 Veeco leak detector which has a rough 

and a diffusion pump. To protect the vacuum system, two successive pumping steps were 

performed to reach no more than ~10-2 torr at first with the rough pump and then a typical 

limit of 10-6 torr with a diffusion pump respectively. 

 



 28

     The electronic apparatus was connected to the quench-condensation apparatus 

before being immersed into a dewar. Two differential preamplifier (PARTM MODEL 116, 

117) and two multimeter (HEWLETT PACKARD 3457A, 3478A) were used for the 4-wire 

measurement of the sample and thermometer (Cernox CX-1050 thin film resistance sensor). 

A precision voltmeter (Guideline 9578) was used as an auxiliary apparatus for the 

measurement. A universal counter (HP 5315A) was used to measure the frequency of QCM 

for monitoring the thickness of the sample. A stabilized power supply (FARNELL 

INSTRUMENT L30-2) and a home made QCM oscillator were used to generate 

oscillations on the QCM. The frequency of the QCM and the initial resistance of 

thermometer were measured before immersing the apparatus into the dewar. 

 The vacuum pump was disconnected before immerse the apparatus into liquid nitrogen. 

The apparatus was cooled down to 77K over a period of ~20 minute to protect the 

electronic feedthrough at the bottom of vacuum chamber. An evaporation was performed by 

heating the evaporation source with a DC Power Supply (HP 6274B, maximum 60V and 

15A). The sample was measured in-situ and then the sequential process of evaporation and 

measurement was repeated. 

 

4.1.3 Quench-Condensation (at 4He) 

   For a quench-condensation, there are additional processes required for evaporation. 

All of the processes were the same compared to liquid nitrogen temperature evaporation 

until immersing the apparatus into the dewar. However, the main difference is that, inside 

the dewar, the liquid nitrogen has been replaced by 4He. After the dewar was cooed down to 
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77K, liquid nitrogen was removed by producing a pressure in the dewar with nitrogen gas 

and then 4He was transferred. During this process, the 4He level was monitored by 

measuring the resistance of superconducting wire installed inside of the dewar. A sample 

was evaporated when the apparatus reached the temperature of 4.2K. The measurement of 

its electrical properties was performed. In addition, the magnetic properties of the sample 

were measured by using a superconducting magnet which is installed at the bottom of the 

dewar. 

 

4.2 Evaporation Source 

    It is very important choosing a suitable evaporation source to produce a high quality 

sample. To provide good conditions for evaporation, the source must support a material to 

evaporate at high temperature without allowing a chemical reaction or significant alloying 

between them. The appropriate value of electric current plays a critical role for the success 

of an evaporation. It determines the evaporation rate which affects the quality of the sample. 

Furthermore, the evaporation is influenced by both the shape and amount of material. 

There are different types of evaporation sources for various purposes in thermal 

evaporation. Typical evaporation sources are made of the tungsten (W), tantalum (Ta), 

molybdenum (Mo) or carbon (C). Tungsten is the most typical source for thermal 

evaporation since it has the highest melting point (3695K) and the lowest vapor pressure 

[15]. This source, which has a low thermal expansion rate at high temperature, does not 

easily oxidize or alloy with other materials. Its resistivity is not larger than that of other 

evaporation sources, but increases with temperature. At room temperature, its resistivity is 
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about 5.65 μΩ/cm where as it is 24.93 μΩ/cm at 1000K. 

As mentioned before, the geometrical form of an evaporation source affects the 

evaporation process. The typical form is a basket, wire coil, boat, crucible, and so on. The 

basket is commonly used to evaporate two different kinds of materials, which are non-

adhesive in solid state and adhesive in liquid state. For evaporating non-adhesive materials 

or expansive materials, the boat is recommended. The crucible is for large quantities or 

powder types of material. In our study, we used hand made tungsten wire filaments as an 

evaporation source to evaporate aluminum since the filament shape is easier to make than a 

basket shape. Figure 4.2 shows commercial wires and hand made tungsten filament. 

Commercial tungsten baskets or coils did not meet the requirements of the quench 

condensation because it needed too much electric current to evaporate materials. The 

disadvantage of high current applied comes from the fact that the wire heated by high 

electric current boils off the liquid helium too fast. 

 

 

 

        

 
Figure 4.2 Commercial (left) and hand made (right) 

 

   To produce a high quality sample, the amount of applied electrical current becomes 

an important factor since it determines the evaporation rate. We compared evaporation 

conditions as adjusting electrical current at room temperature with commercial thermal 
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evaporator. This test allows us to learn how much current is needed for evaporation with the 

quench-condensation apparatus. Aluminum has been melted for 30 seconds when we 

applied electrical current of 30A with commercial evaporator. It was completely melted 

several seconds after the start and the evaporation rate was very large (~20 Hz/sec). 

Aluminum has started to melt in ~3 minutes with 20A and it completely melted in 30 

seconds after start to melt. The evaporation rate was about 6Hz/sec. It takes a long time 

(7~8 minutes) at 15A. It did not thoroughly melt before the evaporation. The aluminum 

started to evaporate even if it was not thoroughly melted but just partly melted at its 

surface. The evaporation rate was about 1~2 Hz/sec. Aluminum did not melt even after 

more than 20 minutes and did not evaporated for less than 15A. The frequency of the QCM 

has been increased due to the thermal radiation of the evaporation source heated for a long 

period. The resonance frequency of the QCM was very unstable and finally it started to 

fluctuate after 20 minutes. The resonance frequency of the QCM has increased more than 

20 Hz and fluctuated between 10Hz of different values. Table 4.1 shows the instability of 

the resonance frequency of QCM. 

 

Table 4.1 The resonance frequency of QCM for the current of less than 15A 
 

Initial value After 5 minutes After 10 minutes After 15 minutes 16~20 minutes 

4.984625 MHz 4.984627 MHz 4.984630 MHz 4.984634 MHz 
4.984636~45 MHz 

(Fluctuating) 
  

     Figure 4.3 shows the condition of evaporant after this evaporation test. The 

evaporation source at the bottom of the Figure 4.3 is the result of not enough current supply. 
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Figure 4.3 Evaporation source after evaporation 

 

Consequently, the electric current should meet a required amount to get an appropriate 

evaporation rate. The electric current that is required to heat the evaporant can be obtained 

by a simple equation. 

RIP 2=                                  (6) 

It is not difficult to get the resistance (R) of the evaporation source if we use some 

instruments to measure its resistance. But we need to consider several factors to get the 

power (P) because various thermal effects take place during the evaporation process [15]. 

The power should be enough to support the heat of melting and the heat of vaporization, the 

loss of thermal energy by conduction and radiation to the surroundings, the kinetic energy 

for the evaporated atoms.  

     The heat required to raise the temperature of the evaporant can be calculated from the 

simple equation. 

dTCmQ
eT

Ti
epee ∫ −=                                (7) 

whrer me is the mass, Cp-e is the specific heat of the material to be evaporated and Te is the 
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temperature at the melting point, Ti is the initial temperature of the material. 

     The heat for the evaporation source is can be obtained from a similar equation 

                                      (8) ∫ −=
e

i

T

T
spss dTCmQ

where ms is the mass and Cp-s is the specific heat of the evaporation source. 

     The latent heat(Ql) is also required so the total required heat can be obtained by 

       lesetot QmQQQ ++=                             (9) 

We can get the power from these equations with the assumption of that there are no loss of 

heats by conduction and radiation. 

      
TR

Q
R
PI tot

Δ
==                                (10) 

where ΔT is the time to evaporate all materials to be evaporated. But this is not an exact 

current for the evaporation because we neglected the loss of heats. We can roughly derive 

the equation for the heat loss by conduction from Fourier’s law. 

      ∫ ⋅Δ−=
∂
∂

s

c dSTk
t

Q
                             (11) 

where Qc is the amount of heat conducted, t is the time taken, k is the conductivity of 

materials, S is the surface through which the heat is flowing. 

We can rewrite this as 

dx
dTkAQc 2−=                                 (12) 

where A is the cross sectional area of the electrodes holding the evaporation source. 

     The loss of heat by the thermal radiation also needs to be calculated and it can be 

done by the Stefan Boltzmann’s Law 
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4TSW ⋅⋅=σ                                 (13) 

If we assume that the temperature of the evaporation source is uniform then the thermal 

radiation can be roughly calculated as 

)( 0
4 TTlAW ss −= σ                             (14) 

where As is the cross sectional area and l is the length, Ts is the temperature of the 

evaporation source. 

    The total power required for evaporation can be obtained from equations (9, 12, 13) 

 WQ
t

QP c
tot

tot ++
Δ

=                             (15) 

The electric current that is required is 

R
PI tot=                                  (16) 
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4.3 Thickness Measurement       

The QCM (quartz crystal microbalance) is one of the famous devices on thin film 

technology based on the piezoelectric effect. The piezoelectric effect of quartz has been 

discovered by Jacques Curie and Pierre Curie in 1880. The quartz crystal has some strain 

when certain electrical voltages are applied. The direction of the strain depends on the 

electrical voltage direction. Due to this effect, the quartz vibrates when applying an 

alternating current. This vibration creates a transverse wave, which gives the characteristic 

resonance frequency of the crystal. The QCM has been used for a long time in many 

research areas, especially for the measurement of mass change because of its precision and 

sensitivity of frequency. As one of the applications, a QCM can calibrate the mass which is 

deposited on the surface of the quartz crystal during the evaporation process in thin film 

production. It is used not only for thin film technology but also for various research area 

such as virus detection in biomedical experiments, chemical experiments, and so on. We 

used the 5MHz QCM to measure the thickness of a sample for this experiment. Figure 4.4 

shows a photo and a schematic view of a QCM.  

 

 

 

 

 

 
Electrodes

Quartz Crystal

 

 
Figure 4.4 Quartz crystal microbalance (QCM) 
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It was difficult to control the QCM during the quench condensation experiment due 

to the required conditions of a low temperature experiment. When considering heat flows of 

the system, it is important to minimize the effect of temperature in order to obtain a stable 

resonance frequency. At the beginning of this experiment, the frequency of the QCM was 

fluctuated with the increase of temperature since there was no protection of the QCM from 

the heat radiation of an evaporation source. The temperature difference between the crystal 

and electrodes holding the crystal makes the QCM unstable in terms of the resonance 

frequency [35]. The heat radiation of the evaporation source rapidly increases the 

temperature of the electrodes that are made of conductors such as gold, silver, and so on. 

We could have reduced the unstableness of the resonance frequency by making a thermal 

shield to protect electrodes. Thermal shielded electrodes enhance the stability of the 

resonance frequency. Figure 4.5 shows photos of the QCM, one is unshielded and another is 

shielded. We used 4 copper baffles and a stainless box for shielding since more baffles are 

effective to reduce the thermal radiation. 

 
 

           

 
Figure 4.5 Radiation shield for QCM 
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     After the QCM was immersed into liquid nitrogen, by cooling down the system, the 

resonance frequency decreases due to the change of elasticity and size of a crystal. The 

range of resonance frequency covers from 4.987MHz to 4.992MHz as shown in Figure 4.6. 
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Figure 4.6 Resonance frequency versus temperature of QCM at liquid nitrogen 
 

In general, the QCM shows a stable profile of resonance frequency when it reaches the 

equilibrium temperature with surroundings. It takes more than one hour to reach the 

equilibrium state at liquid nitrogen as shown in Figure 4.7.  
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Figure 4.7 Resonance frequency versus time of QCM at liquid nitrogen 
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As soon as the evaporation source becomes heated up, however, the frequency starts 

to increase. At liquid nitrogen temperature of 77K, the sensitive behavior of the resonance 

frequency was unexpectedly observed in terms of changing temperature. A sudden increase 

of the resonance frequency of QCM was measured. A thermal shield helped to reduce such 

an increase of the resonance frequency, but it was not enough to remove the thermal effect 

completely at liquid nitrogen. For a large cryogenic apparatus, a commercial QCM is used 

since the QCM is stabilized at low temperature by controlling its temperature with heating 

wire. However, it was difficult to install this QCM in our apparatus since it takes a 

comparatively large space, which is not good in a compact system. Therefore, we could not 

use the QCM to measure the evaporation rate. We controlled the evaporation rate by 

measuring the resistivity of a sample as the material is deposited onto the surface. We have 

used an in-situ technique that is described in the sample preparation part (Section 4.4) of 

this thesis. The current required for evaporation was obtained form the equation (12) in the 

evaporation source part (Section 4.2). 

     The thickness of the evaporated sample was measured by comparing the resonance 

frequency of the QCM before and after evaporation. The resonance frequency was 

transformed to the thickness of sample by means of the Sauerbrey equation. 

 
qqA

mf
f

μρ

2
02Δ

−=Δ                                 (17) 

where f0 is the resonance frequency of the QCM and A is the active area of the crystal 

between electrodes that are same as the hole area of the thermal shield in this system. ρq is 

the density of quartz (ρq =2.648 g/cm3 ) and μq is the shear modulus of quartz 
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(μq=2.94731011 g/cm3S2) 

The mass of deposited materials can be expected from the equation (17) as 

 2
0

5103.4
f

fAm Δ
×≈Δ                                 (18) 

Our QCM has a resonance frequency of 5MHz and the active area of the crystal is 0.25cm2. 

So the mass change for 1Hz of frequency change is 4.3×10-9g. The thickness of deposited 

material can be calculated from the following relationship 

 
mmA

mt
ρρ
1107.1 8 ××=

Δ
= −                                 (19) 

where ρm is the density of the deposited material. When changing the thickness by (a 

increase of) 1Å, decrease of the resonance frequency for aluminum (ρ = 2.7 g.cm-3) is 

1.58Hz/Å and for nickel (ρ = 8.908 g.cm-3) is 5.26 Hz/Å. It is noted that there is 1.3 cm of 

gap between the QCM and the substrate of our instrument, which may cause errors in our 

measurements. The correction can be made by using the density of the deposition flux. 

Assuming that sample is evaporated isotropically from the evaporation source, there is the 

relation 

                            (20) 2211
22 44 mRmR Δ=Δ ππ

where Δm1 is the mass change of QCM and Δm2 is the adjusted mass change. 

  2
2

2
1

12 R
Rmm Δ=Δ                              (21) 

The corrected thickness can be extracted form the equations (19) and (21) as follows 

m

t
ρ
1101.1 8 ××= −                                  (22) 

As a result, with increasing thickness of 1Å, decrease of the resonance frequency for 

aluminum is 2.4Hz/Å and for nickel is 8.0Hz/Å.
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4.4 Sample Measurement 

     We measured the thickness dependent conductivity by means of quench-condensation. 

We did 4-wire measurements for samples that are evaporated on glass or silicon substrate. 

The measurements are performed in-situ at ultra-high vacuum condition. Sequential 

evaporation was performed after measuring the conductivity of a sample at a thickness. The 

process is repeated until the thin film shows metallic properties. 

     For measurement of the thickness dependent conductivity, an in-situ experimental 

technique is much more convenient than ex-situ technique. The reason is that the ex-situ 

technique requires the fabrication of many samples with different thickness for measuring 

the thickness-dependency of conductivity. Beside, it is almost impossible to measure the 

electrical property of ultra thin film by using ex-situ technique because the sample loses its 

electrical property when ultra thin films are exposed to air. Ex-situ, grains of the thin film 

start to coalesce and form large islands which are disconnected by heating to room 

temperature, and then the conductivity reduces to zero. Thin films start to oxidize as well if 

exposed to the air. Thus, ex-situ treatment causes irreversible changes in the topology of 

ultra thin films and significantly changes their electrical property. On the other hand, it was 

convenient for us to measure the thickness-dependent conductivity of ultra thin films with 

in-situ experiment. For in-situ treatment, the sample does not experience any critical change 

of electrical property. 

     We prepared 4 thin gold contacts on a substrate for in-situ measurement by using a 

commercial thermal evaporator. 3nm of germanium was deposited on silicon or glass 

substrate and then 20nm of gold was deposited by using shadow mask. Germanium was 
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evaporated because gold does not readily adhere on the silicon or glass substrate. We used 

two kinds of substrates (silicon and glass) because the thin film has different electrical 

property depending on the choice of substrate. The uniformity of the thin film, depending 

on the nature of substrate, results in the modification of electrical property by different 

choices of substrate. The thin film has different grain sizes, which causes the different 

electrical properties of the thin film. Wires are connected to gold contacts before evacuating 

the chamber and then a shadow mask was mounted on the substrate to make a sample in the 

form of a bar. 

     Initially a film is evaporated until the conduction is measured. We performed 2-wire 

measurements with a precision voltmeter until measuring the initial conduction, and then 

performed a 4-wire measurement. The order of measurement is important to check whether 

or not the sample initially has infinite resistance that would impose an overload for 

differential preamplifier. During evaporation, the temperature of the substrate increased by 

~10K. Measurement of resistance was performed while cooling down the sample to its 

initial temperature, and then an evaporation was performed again after the sample had 

uniform resistance. We repeated the sequential process until the thin film had a certain 

resistance. Figure 4.8 shows schematics of the process. 

     Resistivity and conductivity are calculated from the resistance that is measured by the 

4-wire measurement. Sheet resistance is also calculated from this. Resistivity is 

       
l

dwR=ρ                                   (23) 
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where ρ is resistivity, and R is resistance, d is the thickness of the thin film, and w is the 

width and l is the length of thin film. Conductivity is σ = 1/ρ and sheet resistant is Rs = ρ /d. 
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Figure 4.8 Sample preparation and measurement process
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CHAPTER V 
 

EXPERIMENTAL RESULTS AND DISCUSSION 
 

5.1 Experimental Results 

5.1.1 Evaporation of Aluminum at Liquid Nitrogen 

     Aluminum thin films were deposited onto a silicon substrate and a glass substrate at 

77°K. Sequential evaporations and in-situ measurements were performed with the quench 

condensation apparatus. The temperature of the substrate was maintained at 77K before and 

after the evaporation but it rose to ∼86K during the evaporation. A vacuum was always 

maintained during the experiment. 

     Initially, we evaporated aluminum onto a silicon substrate until we measured a finite 

conductivity of the thin film. The resistance of the thin film was 1385kΩ at 82.4K but it 

rapidly increased with time until 1437 kΩ and then its conduction disappeared (Figure 5.1). 
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Figure 5.1 Resistance versus temperature for 1st evaporation 
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After the second evaporation, we did 7 sequential evaporations and in-situ measurements. 

Figure 5.2 presents these data for films of various thicknesses for the temperature range 

77<T<86K. The notations in the figure show the varying thicknesses which increase from 

d1 to d7 (d1 is the thickness for the 2nd evaporation while d7 is for the 8th). This figure 

shows conductivity (σ/σ0) dependent upon inverse temperature in analogy with the result of 

Kazmerski and Racine for Au thin films [14]. The temperature dependent variation of 

conductivity (σ/σ0) decreased for thicker films.  
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Figure 5.2 The increasing rate of conductivity to depend on inverse temperature 
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Figure 5.3 Resistance versus inverse temperature for d1 (left) and d6 (right) 
 

Figure 5.3 shows the temperature dependence of resistances for thickness d1 (thickness for 

the 2nd evaporation) and d6 (thickness for the 7th evaporation). The resistance increased 

when cooling the sample for the thicknesses of d1~d5 while it decreased for the thicknesses 

of d6~d7. Figure 5.4 shows the natural logarithm of resistance (lnR) for thickness d1 and d6. 

This figure shows lnR to depend linearly on inverse temperature (1/T) that is the result 

predicted by the Neugebauer and Webb conduction model [5]. In order to conclusively 

decide on the lnR dependence a wider range of T should be measured. 
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Figure 5.4 Logarithmic resistance (lnR) versus inverse temperature for d1 and d6 
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Other results for thickness of d2~d6 are exhibited in Figure 5.5 and Figure 5.6. The 

resistance and lnR to depend on inverse temperature are showed for each thickness. 
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Figure 5.5 Resistance and lnR versus inverse temperature for d2 (a) ~ d3 (d) 
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Figure 5.6 Resistance and lnR versus inverse temperature for d4 (e) ~ d6 (j) 
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     For a thin film on a glass substrate, the initial resistance we measured was much 

bigger than the deposition on a silicon substrate. As Figure 5.7 shows, we measured 73MΩ 

as an initial resistance with an underlying glass substrate which is much bigger than 

1385kΩ in case of an underlying silicon substrate at Figure 5.1. The resistance initially had 

increased depended on temperature but it continued to increase after the sample was cooled 

to 77K. As Figure 5.7 shows, the resistance was increasing for more than 1 hour. 
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Figure 5.7 Resistance versus time for d1 (left) and d2 (right), is deposited on a glass 
 
 

Figure 5.8 shows an abrupt increase of the resistance after following the linear dependence 

of logarithmic scale of the resistance (lnR) on 1/T between the dotted lines of Figure 5.9. 

The temperature dependent increase of resistance becomes smaller as the film thickness 

was increased. 
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Figure 5.8 Resistance versus temperature for d1 (left) and d2 (right) 
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5.2 Discussion 

5.2.1 Linear dependence of lnR and lnσ on 1/T 

     As we introduced in Chapter II (Background), the model of Neugebauer and Webb 

[5] agree very well with experimental results. In this model, the conductivity of thin film 

was explained by tunneling between islands. The conductivity is given by the equation (3) 

in chapter 2. 
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⎞

⎜
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22 exp1σ                         (3) 

From this, we can predict the linear dependence of the logarithmic conductivity on inverse 

temperature as 

                                 
T
1ln −∝σ                           (24) 

The resistance has relations as 

     
σ

ρ 1
∝∝R                            (25) 

and 
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Due to this equation, the logarithmic conductivity depends on inverse temperature 

  
T

R 1ln ∝                             (27) 

The experimental data shows the linear dependence of lnR on inverse temperature except 

for some abrupt increase for the deposition on a glass substrate. The slope of the linear 

dependence of conductivity (σ/σ0) on temperature was varying with thickness as shown at 
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Figure 5.2. This can be expected from the equation (26) by modify some parameters as 

 ( )BdrkT
A

r
dC −= εσ exp)(                     (28) 

where A is a function of e2 and ε is an effective dielectric constant of the media between 

islands. C and B are constant which depend on the potential (V) of the tunneling barrier (C, 

B ∝ qV). Due to equation (28), the slope of the plots in Figure 5.2 is decreasing with the 

thickness of the sample since the exponential terms of the equation becomes constant by 

increase of the effective island size r during the growth of the sample. As Figure 5.3 and 5.4 

show, the resistance also depends almost linearly on inverse temperature. This is due to the 

fact that the temperature range (77 < T < 86K) was too narrow to show the obvious 

logarithmic curvature. The preciseness of the temperature calibration can also affect the 

curvature. 

 

5.2.2 Initial Value of the Resistance 

     As Figure 5.1 and 5.7 show, the initial resistance of the deposition on a glass 

substrate was different from the deposition on a silicon substrate. This can be explained in 

several ways depending on substrates as the saturation ratio, the surface roughness, and 

electrical effect of silicon substrate. 

 (a) Surface roughness 

     The surface roughness of a substrate results in different growth conditions of a thin 

film. Since the surface of a silicon substrate is comparatively smooth and uniform the 

aluminum forms a uniform thin film on the silicon substrate. On the other hand, the glass 

substrate has a comparatively rough surface unless it has been polished to be smooth. Thus 
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the aluminum forms a rough thin film on the glass substrate. This should increase the inter 

island separation (d) and finally increase the resistance of thin film.      

(b) Electrical effect of silicon substrate 

     The silicon has some conductivity (being a semiconductor) while the glass has very 

poor conductivity, being an insulator. It is possible that the SiO2 layer of the silicon 

substrate was saturated with aluminum during the deposition and formed some mixed layer 

on the boundary between the thin film and the substrate. This effect is a task of future work 

and will not be discussed in detail. If the aluminum is mixed with the SiO2 layer on the 

boundary by saturation then it can affect the conductivity of thin film. The tunneling area 

can be changed by variation of the dielectric constant between the grains of the thin film. 

More over, the conductivity can be increased by the addition of surface impurities after the 

aluminum is mixing with the silicon at the boundary of substrate [36]. 

 

5.2.3 Abrupt Increase of the Resistance 

     As Figure 5.8 shows, an abrupt increase of the resistance during the deposition of 

aluminum on the glass substrate. This can be explained by the contamination of the ultra-

thin film and substrate through the adsorption of oxygen at the film surface [14, 36]. 

Fehlner has described the increase of resistance of zirconium films [37] by oxidation. At a 

pressure of 10-7 torr, which is lower than the pressure of our experiment when evaporating 

aluminum at liquid nitrogen, the oxygen formed a monolayer on the island of the thin film 

and then it increased the resistance sharply. Kazmerski and Racine had a similar 

experimental result and explained this with the varying of the effective tunneling distance, 
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which is the same as the inter island separation (d), due to the adsorption of oxygen [14]. 

As Figure 5.10 shows, oxygen forms a thin monolayer of Al2O3 on the island which 

increases the resistance of the thin film by increasing the tunneling barrier between islands. 

 

 
Increased energy
after oxidation  Oxidized monolayer

Substrate 

 

 

 

Initial energy 

Figure 5.10 Increase of the tunneling barrier by oxidation of thin film 

 

Lazarov and St. Manev have found oxygen absorption by a discontinuous gallium thin film 

at 77K.  

     It is likely that the abrupt increase of resistance of our experimental data is due to the 

oxidation of the aluminum thin film. During the deposition of aluminum on the glass 

substrate, the vacuum level of the chamber was less than 10-6 and the thin film was left for a 

long time (t > 1hour) after evaporation. This was a comparatively long time and aluminum 

is comparatively easy to oxidize. Some outgassing may also be produced during the 

measurement and then the thin film was oxidized. 

     It is important to notice that the evaporation at liquid nitrogen is not appropriate for 

sequential in-situ experiments on aluminum unless the turn-around time of evaporations 

and measurements is very quick. This may similar for the evaporation of nickel. Even if we 
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can get a better quality of thin film from the evaporation at liquid nitrogen than from the 

evaporation at room temperature, the quality is limited to a certain level. On the other hand, 

the oxidation of a thin film is significantly reduces when quench-condensing at liquid 

helium since the system maintains an ultra-high vacuum by cryopumping of the apparatus. 
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CHAPTER VI 
 

CONCLUSION 
 
 

The growth process and the electrical properties of a thin film were investigated by 

using the newly designed apparatus at liquid nitrogen. Especially the dependence of non-

metallic behaviors was investigated by means of the in-situ measurement. The apparatus 

has potential to be used for many experiments in the future. Due to its ability to perform in-

situ experiment at low temperature, it was convenient for experimental results on ultra-thin 

films.  

The temperature was too high to quickly quench-condense the evaporated materials 

on the substrate to form a uniform thin film. The vacuum pressure produced by 

cryopumping of liquid nitrogen and room temperature pumping with the diffusion pump 

was not enough to completely protect the sample from the oxidation during the sequential 

evaporations.  

Some additional experiments will need to be performed until this experimental 

technique is optimized. In the future work, we will investigate the electrical properties of 

thin films at liquid helium by applying the quench-condensation technique to fabricate 

nickel thin film. Once successful, we will continue to investigate the magnetic field driven 

metal-insulator transition. 
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