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ABSTRACT 
 
 

Suspended Sediment Transport in the Ganges-Brahmaputra River System, Bangladesh. 

(August 2007) 

Stephanie Kimberly Rice, B.S., The University of Mississippi 

 Co-Chairs of Advisory Committee:  Dr. Beth L. Mullenbach 
   Dr. Wilford D. Gardner 

 
 
 

An examination of suspended sediment concentrations throughout the Ganges-

Brahmaputra River System was conducted to assess the spatial variability of river 

sediment in the world’s largest sediment dispersal system. During the high-discharge 

monsoon season, suspended sediment concentrations vary widely throughout different 

geomorphological classes of rivers (main river channels, tributaries, and distributaries).  

An analysis of the sediment loads in these classes indicates that 7% of the  suspended 

load in the system is diverted from the Ganges and Ganges-Brahmaputra rivers into 

southern distributaries.  Suspended sediment concentrations are also used to calculate 

annual suspended sediment loads of the main river channels.  These calculations show 

that the Ganges carries 262 million tons/year and the Brahmaputra carries 387 million 

tons/year.  These calculations are lower than published values because of either 

interannual variability and/or sampling artifacts and assumptions in the homogeneity of 

flow and sediment concentration.  The conjoined Ganges-Brahmaputra River carries 530 

million tons annually, or only 80% of the sum of the loads that the Ganges and 

Brahmaputra rivers carry upstream of the confluence.  The remaining 20% of sediment 

is diverted from the main river by the distributaries and deposited along the main river 

channel during overbank flooding. 

Suspended sediment concentration is also examined in the north-south oriented 

tidal channels on the Bay of Bengal to determine whether sediment is delivered to the 

channels by one of two pathways: (1) sediment is discharged into the Bay of Bengal by 
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the main river channel, carried west by coastal currents, and advected northward into the 

channels by tidal currents or (2) diverted from the main river bed through the 

distributaries, migrating southward into the tidal channels.  Suspended sediment 

concentration and salinity data are inconclusive in determining sediment source.  

Beryllium-7 radioisotope data indicate that newly transported sediment is present in the 

tidal channels and offshore despite values in the Ganges and Ganges-Brahmaputra rivers 

being below detection.  Sampling artifacts are likely caused by the below detection 

readings in the Ganges and Ganges-Brahmaputra rivers.  Newly transported sediment is 

observed in a distributary south of the Ganges River and indicates that sediment is 

actively being transported to the distributary region. 
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CHAPTER I 

INTRODUCTION 

 

The Ganges-Brahmaputra River System (Fig. 1.1) carries the world’s highest annual 

sediment load at one billion tons (Milliman and Meade, 1983; Milliman and Syvitski, 

1992), and yet because of its remote location, research on sediment transport and 

accumulation in the delta has been limited (Barua et al., 1994; Goodbred and Kuehl, 

1999).  The rivers drain the Himalaya Mountains and flow through the Bengal Basin 

before debouching into the Bay of Bengal.  Seasonal overbank flooding (Allison et al., 

1998a) and high flood stages (Coleman, 1969) result from annual monsoons, which have 

a primary impact on river flow and sediment discharge; 80% of the annual water 

discharge and 95% of the annual sediment load is debouched during the four summer 

monsoon months (Goodbred, 2003). 

 The combination of the rivers' high sediment load, annual overbank flooding, and 

subsiding sub-aerial basin (Coleman, 1969), has created a 16 km thick fluvio-deltaic 

sediment layer in the Bengal Basin since the Paleogene (Allison, 1998a).  Previous work 

has been conducted in the region to create annual sediment budgets.  Approximately one 

third of the annual sediment load is deposited in the river flood-plain (Goodbred and 

Kuehl, 1998; Goodbred and Kuehl, 1999), 21% is deposited in the topset beds of the 

subaqueous delta (Michels et al., 2003), 20% contributes to subaqueous delta 

progradation in the foreset beds (Michels et al., 1998), and 25% is transported to the 

Swatch of No Ground Canyon which incises the sub-aqueous delta (Goodbred and 

Kuehl, 1999).  An additional 1-2% of the annual sediment load contributes to the 

prograding subaerial delta (Allison, 1998b).  In order to create a first order sediment 

budget, however, a reliable annual discharge must be accepted.   

 Several studies (Coleman, 1969; Holeman, 1968; Milliman and Meade, 1983)  
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Figure 1.1.  Main rivers of Bangladesh.  The three prominent rivers of Bangladesh are 
shown, including their flow through their drainage basins.  The Ganges-Brahmaputra 
River refers to the conjoined river south of the Ganges and Brahmaputra rivers’ 
confluence. 
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have estimated the suspended sediment loads of the Ganges River (485-1600 million 

tons per year) and the Brahmaputra River (617-1157 million tons per year); however, 

these estimates are often based on data obtained from only one gauging station and the 

data vary depending on whether it was collected during the wet or dry season.  The 

Ganges-Brahmaputra River System is also highly complex with tributaries and 

distributaries bifurcating the entire country of Bangladesh.  Consequently it is difficult to 

compile comprehensive synchronous suspended sediment data.  Although the suspended 

sediment load is known to vary over short time-scales (wet and dry seasons within one 

year), the spatial variation has not been studied.      

The sediment loads of the two main rivers in the system are often calculated with 

data collected at one gauging station along each river; however, continually using these 

point locations could produce unrepresentative sediment estimates, as sediment could be 

diverted upstream and contributed downstream of the data collection site.  Because no 

data exist about the amount of sediment that is missed in estimates calculated from the 

typical river gauging stations, it is unknown whether the discharge amounts in the wide-

range of estimates are correct.  By analyzing the river system by looking at classes of 

rivers, it will be examined whether existing sediment budgets are inadequately 

estimating the sediment loads of the rivers. 

 

1.1 PROJECT SUMMARY  

In this study, a system-wide analysis of river-transported suspended sediment is 

conducted to characterize the individual river’s suspended sediment load (defined as the 

mass of sediment transported per unit of time) with the morphological features during 

high sediment discharge.  Sampled rivers and channels are divided into 

geomorphological classes (main river channel, tributary, distributary, tidal channel) and 

the suspended sediment concentrations are used to assess the suspended load of each 

class.  Sediment discharge estimates are calculated to determine each group’s 

contribution to the suspended load of the entire river system.   



4 

 To compare the suspended sediment loads of rivers by geomorphological 

classification, the river sampling sites are divided into groups according to their role in 

the drainage system.  The classifications include main river channels, tributaries, 

distributaries, and tidal channels, as shown in Fig. 1.2.  For the purpose of classification, 

the geomorphological classes will be defined as follows: “Main river channels” include 

samples taken from the three major rivers—the Ganges, Brahmaputra, and Meghna 

rivers. The classification “distributary” (shown in green in Fig. 1.2) includes all rivers 

where water flows from a main river channel into the Bay of Bengal. The classification 

“tributary” (shown in yellow in Fig. 1.2) includes all rivers which flow into a main river 

channel; the source of these rivers’ water is often a small watershed within the region.  

“Tidal channel” is the last classification (shown in pink in Fig. 1.2) and includes the 

lowest reaches of the river system, which will be analyzed separately.  The boundary for 

the tidal channel region of the river system is defined as the limit of saline water 

intrusion in the area, which is documented at 100 km (Allison, 1998b). 

 It is hypothesized that the suspended sediment concentrations will vary 

dramatically throughout the entire river system, despite the overall load being high.  If 

the suspended load of the rivers vary spatially throughout the system, this may help 

explain the discrepancy between estimates of the Ganges and Brahmaputra rivers’ 

annual sediment loads within the literature  

Additionally, the sediment source in the lower delta plain of the river system has 

been studied, but remains unidentified.  Two pathways exist for sediment to reach the 

tidal channels (Fig. 1.3): (1) delivery of sediment from distributaries that drain the 

northern Ganges River and discharge into the lower tidal channels, and (2) Ganges-

Brahmaputra River sediment that has been discharged at the main river channel, carried 

west by coastal currents, and directed into the tidal channels by tidal currents.  Previous 

work analyzing sediment accumulation in the tidal channels (Allison and Kepple, 2001) 

supports the hypothesis that sediment is discharged into the Bay of Bengal at the 

Ganges-Brahmaputra River mouth and carried to the tidal channels by coastal and tidal 

currents.   
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Figure 1.2.  Map showing the geomorphological classes.  Classes are determined for 
whether water flows from a drainage basin into a main river channel (tributaries) or from 
a main river channel into the Bay of Bengal (distributaries).  The tidal channels class 
identifies channels in the southern region where saline water intrudes during the tidal 
cycle. 
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Figure 1.3.  Possible transport pathways for sediment in the tidal channels.  Sediment in 
the tidal channels is transported by one of two ways: (1) through the distributaries which 
branch from the main channel (black arrows) or (2) through the main river channel, and 
then discharged at the river mouth, carried west by coastal currents and advected into the 
tidal channels by tidal currents (red arrows). 
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In this study, suspended sediment in the tidal channels is used to support 

previous work on the source of sediment in the tidal channels.  Sediment 

characteristics—suspended sediment concentrations and salinity—are used to analyze 

tidal channel conditions over one tidal cycle.  Radioisotope data from the suspended 

sediment in the tidal channel are utilized to determine the source of sediment in the tidal 

channels.  Beryllium-7 is a particle-reactive cosmogenic radioisotope that has a short 

half-life (53.3 days) and is assumed to settle through dry and wet deposition uniformly 

on land (Bettoli et al., 1995).  The isotope is washed into rivers by precipitation and 

adheres to particles, creating a radioisotope clock of transport from the sediment source 

(Dibb and Rice, 1989). Based on the 7Be half-life, its presence indicates sediments have 

been transported in the past three to four months. 

It is hypothesized that the faster transport pathway is for sediment to remain in 

the main channel, be discharged at the river mouth, and carried west by coastal currents.  

Although this pathway may be a longer distance, it travels along this pathway more 

rapidly, and therefore has a shorter delivery time and higher 7Be concentrations.  

Conversely, it is hypothesized that it takes more time to transport sediments from the 

main channel through the distributaries to the tidal channels.  Although this route 

appears to be a shorter distance, the pathway is less direct as sediment must be 

transported through a complex series of branching and dividing channels.  Additionally, 

river velocities are lower in the distributaries than in the main river channel. 

If 7Be is found in the tidal channels, it indicates recently transported sediment is 

present in the most southern area of the river system. This would indicate that the 

sediment has been transported within 4-5 half-lives, possibly through the faster pathway, 

along the main river channel and carried to the tidal channels by coastal and tidal 

currents.  If 7Be is not found in the tidal channel sediments, it indicates the sediment is 

older and may have been resuspended from the tidal channel floor or taken a longer 

route to the tidal channels, during which time the 7Be has decayed below detection 

levels.    
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1.2 OBJECTIVES 

This research examines sediment transport in the Ganges-Brahmaputra River System 

with the following specific objectives: 

(1) Relate the river sediment loads to the river’s morphological classification.  

Suspended sediment concentrations of individual rivers are compared within and 

between morphological classes. Details regarding individual river’s sources and flow 

patterns are used to explain suspended sediment concentration patterns and anomalies 

within classes, as well as determine differences between morphological groups. The 

suspended sediment concentrations within river classes are used to calculate each class’ 

percentage discharge of the suspended load of the entire system.   

 (2) Identify the source of suspended sediment in the tidal-channels of the lower 

delta system. Suspended sediment concentrations and 7Be isotope data will be used to 

identify the source of sediment to the tidal channels.  Tidal channel suspended sediment 

concentration and salinity will be compared to tide records for the sampling day to 

determine a graphical relation with the flood stage.  Additionally, if radiometrically 

young sediment is found in the tidal channels, then the sediment source is hypothesized 

to be from the offshore sediment plume from the main river channel mouth, as this 

pathway provides the faster sediment transport route. 
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CHAPTER II 

REGIONAL DESCRIPTION 

 

2.1 BENGAL BASIN  

The Bengal Basin is dramatically shaped by the uplifting Himalayan Mountains, which 

bound the region to the north.  Formed by the mid-Oligocene collision between the 

Indian and Asian continental masses, the Himalayan and Indo-Burman Range (located to 

the east) began to uplift by the mid-Miocene (Curray et al., 1982).  A subsiding region 

along the southern edge of the Himalayas became the repository for clastic material 

eroded from the steepening mountain range.  This area became the present-day Bengal 

Basin, which continues to subside and collect large volumes of sediment from the 

Himalayan Mountains (Allison, 1998a; Goodbred and Kuehl, 1998). 

 As shown on figure 2.1, the Bengal Basin is bordered by the Precambrian 

Shillong Massif to the north, Indian Shield to the west, and Neogene Tripura Fold Belt to 

the east.  A hinge line marked by high gravity and magnetic anomalies (Sengupta, 1966) 

divides the basin into two distinct regions: a stable shelf in the west/northwest provinces 

which contains a 1-8 km sequence of Permian to recent clastics (Iman and Shaw, 1985) 

and a subsiding foredeep in the south and east provinces which has continuing tectonic 

activity and has accumulated 16 km of Tertiary and Quaternary fluvial and deltaic 

sediment (Allison, 1998a).  The foredeep can be divided into a number of sub-basins, 

including the Sylhet sub-basin in the northeast, which is subsiding at rates up to 2.1 

cm/yr because of downthrusting under the Shillong Massif (Johnson and Alam, 1991).  

The Sylhet sub-basin floods extensively during monsoon season, however, the standing 

water is non-turbid because it is accumulated rainwater and not riverine overflow. 

 The surface of the Bengal Basin is the vast alluvial plain formed by the Ganges-

Brahmaputra Rivers.  Encompassing nearly the entire country of Bangladesh and the 

adjacent Indian states of West Bengal, the plain is blanketed by Quaternary and 

Holocene alluvium (Coleman, 1969).  The basin has very little relief, with a change in  
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Figure 2.1 Basin province map of Bangladesh.  Bangladesh is bordered to the north and 
east by mountains, from which the main rivers flow. 
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elevation from 90 m above sea level in the extreme northwest of Bangladesh near the 

Himalayan Mountains to a coastal plain of less than 3 m above sea level (Allison, 

1998a).  Despite this elevation change of 87 m, the majority of the country is composed 

of flat, deltaic deposits. 

 Two fault-bounded terraces, named the Barind and Madhupur tracts, outcrop in 

the west and central portions of the delta plain.  Both are elevated between 3-15 m above 

the surrounding Holocene alluvium.  Neither terrace floods during monsoon season, and 

the terraces’ presence have a large effect on the Ganges and Brahmaputra rivers’ varying 

channels. 

 The coastline of Bangladesh measures 654 km (Snead, 1985).  The western coast 

is a flat low-lying intersection of distributaries of the Ganges-Brahmaputra River (Barua, 

1991).  This lower tidal delta plain extends inland as far as 100 km and is dissected by 

tidal channels oriented north to south, many of which are abandoned delta mouths of the 

migrating Ganges River (Allison, 1998b; Barua, 1991).  The western coast region is 

mostly covered by the Sundarbans, the largest mangrove forest in the world at 5800 km2 

(Allison and Kepple, 2001; Saenger and Siddiqi, 1993). 

 The active delta plain is located in the central Bangladesh coastline, through 

which the majority of the Ganges-Brahmaputra is discharged.  The active delta plain is 

primarily influenced by tides, and the saline intrusion of tidally-influenced water extends 

approximately 100 km inland (Allison and Kepple, 2001).  

 

2.2 THE RIVERS  

The Ganges and Brahmaputra rivers both originate in the Himalaya-Tibetan uplift.  The 

steep, tectonic mountains provide a continuous amount of sediment for river transport.  

Seven of the world’s ten largest fluvial sediment loads originate in the Himalaya-Tibetan 

uplift, with sediment loads ranging from 160 (Mekong River) to 540 (Brahmaputra 

River) million tons annually (Milliman and Meade, 1983; Milliman and Syvitski, 1992).  

Published values for the estimated annual sediment loads of the two rivers vary 

throughout the literature, however, the Ganges carries between 485-1600 million tons 
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per year and the Brahmaputra annually delivers 617-1157 million tons per year 

(Coleman, 1969; Holeman, 1968).  It is widely undisputed, however, that the river 

system carries the highest world-wide annual load at over one billion annual tons 

(Milliman and Meade, 1983) 

The Ganges River source is the Gangotri glacier in the Kumaun Himalayas at an 

elevation of 7000m (Sarin et al., 1989).  The Ganges immediately flows over Miocene to 

Pleistocene-aged detrital rocks, such as coarsely-bedded sandstones, clays, and 

conglomerates, before reaching the central-lower Himalayas, which have three main 

zones: 1) outer belt of Upper Carboniferous aged dolomitic limestones, calcareous 

shales, and sandstones, with widespread replacement of gypsum for limestone; 2) inner 

sedimentary belt of limestones, overlain by shales and quartzites; 3) zone of igneous and 

metamorphic crystalline rocks composed of biotite-chlorite, Augen gneisses, and 

granites (Sarin et al., 1989).  The Ganges is also fed by several lowland tributaries which 

drain Mesozoic and Tertiary mafic effusives and the Pre-Cambrian-Cambrian shield and 

contribute a different chemical and mineralogical signature (Huizing, 1971). 

The Brahmaputra River originates from the Chamyungdung glacier at an 

elevation of 5200m in the Tibetan Himalayas (Sarin et al., 1989).  The Brahmaputra 

flows westward along the northern slope of the Himalayas before turning south through 

Assam and flowing into the northern boundary of Bangladesh.  The Brahmaputra flows 

over a variety of rock types including Precambrian metamorphics (high-grade schists, 

gneisses, quartzites, metamorphosed limestones), felsic intrusives, and Paleozoic-

Mesozoic sandstones, shales, and limestones (Huizing, 1971). 

The Meghna River is a third major tributary in the system, however, it flows west 

from the Tripura Fold Belt on the eastern boundary of Bangladesh, and its annual 

sediment contribution is considered to be insignificant.  It is frequently omitted in 

scientific articles detailing the region, despite the fact that Bangladeshis identify the 

main estuary the Meghna Estuary.   

Grain-size analyses on the river sediments indicate that the sediment is relatively 

coarse.  Sediment that reaches the Bay of Bengal is dominated by silt and clay, with 15-
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20% of the total discharge being fine to very fine sand (Thorne et al., 1993).  An 

additional study shows that more than 76% of the bed sediments are within the fine to 

very fine sand class, and have a mean grain size between 2.5 Φ (177 μm) and 4 Φ (62.5 

μm) (Datta and Subramanian, 1997).  The grain size of bed sediments in the river also 

decreases gradually from the upper to lower reaches of the river system (Datta and 

Subramanian, 1997).  The same study showed that the mean grain size for suspended 

sediments was approximately 6.5Φ (11.1 μm) (Datta and Subramanian, 1997).  Fine-

grained sediments are typically carried in the suspended load, however, during 

floodstages larger particles can be carried as the rivers’ velocity and discharge increases.  

The suspended load of a river carries the majority of the sediment, while bedload 

transport accounts for approximately 10% of the suspended load (Lane and Borland, 

1951).   

 

2.3 RIVER DESCRIPTIONS  

The three major rivers of Bangladesh—the Ganges, Brahmaputra, and Meghna rivers—

are the major control over the topography, landforms, and human patterns of the entire 

country.  The rivers are constantly evolving new paths and flood yearly, which dictates 

Bangladesh’s landscape. 

 Upstream of the Ganges-Brahmaputra confluence, the Ganges River is primarily 

a meandering channel (Coleman, 1969).  While in India, the Ganges bifurcates into two 

distributaries: the Hooghly River, which flows south through Calcutta into the Bay of 

Bengal, and the Ganga River which flows east into Bangladesh and is considered the 

continuation of the main Ganges channel (Islam et al., 1999).  From source to sea, the 

Ganges flows approximately 2500 km and has a drainage basin of 980,000 km2, of 

which only 34,188 km2 lie within Bangladesh’s borders (Islam et al., 1999). 

 The Brahmaputra River, locally known as the Jamuna River, is a braided river 

channel.  From beginning to end, the river flows 2896 km—1600 km in Tibet, 900 km 

through eastern India, and 400 km through Bangladesh (Islam et al., 1999).  The 
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drainage basin is approximately 640,000 km2, with 50,505 km2 located inside 

Bangladeshi borders (Islam et al., 1999).  

 In comparison, the Mississippi River in North America has a drainage basin of 

3,270,000 km2, or 40% of the continental United States (Milliman and Meade, 1983).  

The Mississippi River’s drainage basin is roughly twice the size of the combined 

Ganges-Brahmaputra River drainage basin; however, the Ganges-Brahmaputra River is 

ranked first in annual sediment discharge, and the Mississippi River ranks seventh 

(Milliman and Meade, 1983). 

The Brahmaputra also has the highest downstream gradient of the three rivers, 

which is a result of it having occupied its present channel for only 200 years (Barua et 

al., 1994). As a braided stream, the river is characterized by many channels, shoals, and 

islands, which is one characteristic of a river with a high sediment load (Coleman, 1969).  

The Brahmaputra is 60-70 ft deep in most stretches, however, narrow points along the 

river can be as deep as 150 ft (Coleman, 1969).   

The Brahmaputra has the highest sediment load of the three rivers, which is 

widely documented in sediment flux studies (Coleman, 1969; Holeman, 1968; Milliman 

and Meade, 1983).  Galy and France Lenord (2001) compared the Himalayan erosion 

rates with the suspended sediment loads of the rivers, and determined that the eastern 

portion of the Himalayan Range is eroding faster than the western portion, which 

contributes to the Brahmaputra having a higher suspended load than the Ganges.  The 

higher erosion in the eastern region is likely caused by higher precipitation in the eastern 

region (Fluteau et al., 1999; Galy and France-Lanord, 2001). 

 All three rivers flood extensively during the wet monsoon season.  The Ganges 

and Brahmaputra rivers are heavily influenced by Himalayan snow melt in late spring, 

however, extremely high rainfall during the southwest monsoon season (occurring 

annually from June to September) is the main cause of annual flooding (Jakobsen et al., 

2005).  The Ganges River has the longer record of hydrologic observations, as gage 

records were begun in 1910 at Hardinge Bridge, shown in Fig. 2.2 (Coleman, 1969).  As  
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Figure 2.2.  Locations of river and tide gage stations.  Water gage records are collected 
at the Ganges and Brahmaputra rivers at Hardinge Bridge and Bahadurabad, 
respectively, by the Bangladesh Water Development Board.  (Data from the Bangladesh 
Inland Water Transport Authority) 
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Figure 2.3.  Flood hydrograph of the Ganges and Brahmaputra rivers.  Monthly averages 
were averaged from 1990 to 2003.  Data were collected at the river gage stations in 
Figure 2.2.  (provided by the Bangladesh Water Development Board) 
 

 

 

shown in Fig. 2.3, dry-season water discharge is approximately 5,000 m3/s, while 

average maximum discharge is approximately 400,000 m3/s (Coleman, 1969).  The 

rising stage occurs rapidly over the monsoon season, when the discharge increases from 

the yearly base-level in June to the yearly maximum in August. 

The Brahmaputra River’s gage records were begun in 1949 in the town of 

Bahadurabad (shown in Fig. 2.2).  While the dry-season water discharge is only slightly 

greater than the Ganges River (Fig. 2.3), average annual water discharge is higher 

(650,000 m3/s compared to 400,000 m3/s) because of higher precipitation in the eastern 

Himalayas than in the western Himalayas (Coleman, 1969; Fluteau et al., 1999). 
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Figure 2.4.  Flood hydrograph of the Ganges and Brahmaputra rivers for 1963. The flood 
hydrograph from 1963 is often used as a model annual hydrograph, as it clearly shows 
the three possible peaks of the Brahmaputra River water discharge.  (modified from 
Coleman, 1969) 
 

 

 

Annual flood hydrographs for the Brahmaputra can show two or three major 

flood peaks which typically occur over the summer monsoon season.   As seen in Fig. 

2.4, the 1963 monsoon season clearly showed three peaks in the Brahmaputra River’s  

hydrograph; the two early peaks are caused by pulsated snow melt, while the last peak is 

caused by monsoon rainfall (Coleman, 1969).  The first-peak occurred in mid-June and 

describes an extremely rapid increase in discharge; within a few days, the flow increased 

from 600,000 ft3/s to 1,600,000 ft3/s.  The river level fell after this initial peak.  The 

major flood peak followed in late July or early August, when the average maximum 

discharge reached 2,000,000 ft3/s.  A third peak occurred in early September—reaching 

1,600,000 ft3/s —and the river level remained elevated until the end of September or 

early October (Coleman, 1969). 

The Meghna River drains the northeast fold belt of Bangladesh and is the 

smallest of the country’s three main rivers.  The Meghna is predominantly a meandering 
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stream, however, portions of the river show braiding, particularly stretches where 

tributaries contribute high amounts of sediment.  The average annual water discharge is 

124,000 ft3/s, although flood flow is on the order of 420,000 ft3/s —roughly one fifth of 

the Ganges and Brahmaputra’s individual flood discharge (Coleman, 1969).    

Comparing the 1963 discharge hydrographs of the Ganges and Brahmaputra, it is 

apparent that two separate peaks in Brahmaputra flooding occurred before the only peak 

of the Ganges occurred.  The average discharge hydrograph (Fig. 2.3) also shows that 

the earlier, larger peak in the Brahmaputra river’s discharge occurs before the peak of 

the Ganges River.  The timing of these flooding events influences the erosion and 

deposition of the river banks near the confluence.  When the Brahmaputra is at high 

discharge stage (and the Ganges is not), scouring and erosion occurs north of the 

confluence.  Later in the summer, when the Ganges and Brahmaputra have simultaneous 

high discharge, a backwater effect of Ganges current causes a considerable amount of 

deposition in the lower reaches of the Brahmaputra.  During periods of low or late 

flooding on the Brahmaputra, the backwater effect causes increased deposition north of 

the confluence, which forms new sand bars and consequently widens the channel.  

Coleman (1969) states that these morphological features are a result of the Brahmaputra 

carrying a higher sediment load despite the two rivers having similar water levels.  As a 

result of these backwater effects at the confluence, a significant portion of sediment 

carried by the Ganges and Brahmaputra rivers may be deposited within the Brahmaputra 

riverbed.   

 
2.4 RIVERS’ GEOMOPHOLOGICAL HISTORIES 

Channel migration of the Ganges and Brahmaputra rivers and their numerous tributaries 

and distributaries has created a complex geomorphic history in the Bengal Basin.  

Instead of switching river paths solely to steepen river gradient to the Bay of Bengal, 

many other factors influence channel migration.  Recent tectonic activity, annual 

monsoonal flooding, extreme river sediment loads, and human modification of levees 

and dams have contributed significantly to the varying river channels (Coleman, 1969).   
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 The oldest Brahmaputra River sediments are found in the eastern region of 

Bangladesh.  Geomorphic evidence indicates that the Brahmaputra occupied and 

abandoned at least three courses prior to the Old Brahmaputra River channel.  Two 

hundred years ago, the Brahmaputra River flowed east around the Madhupur Tract, 

about 50-60 miles east of its current course, joining the Meghna River southeast of 

Dhaka.  During this time, the Tista River (Fig. 2.2) carved the valley between the 

Madhupur and Barind tracts and served as a tributary of the Ganges, joining it 

downriver.  Following a severe earthquake in 1782 and a severe flood in 1787, the 

Brahmaputra River gradually shifted paths over the next 30 years and established a new 

course through the river valley previously carved by the Tista River (Allison, 1998a; 

Morgan and McIntire, 1959).  Since avulsing into its new channel, the river has 

expanded the valley from the original narrow course, to a braided stream valley 

averaging 8 miles wide.  The valley expansion is documented on historic maps dating 

back to 1830.  The Tista River now acts as a tributary to the Brahmaputra River, 

merging with the larger river 220 miles north of the Ganges-Brahmaputra River 

confluence.  The Old Brahmaputra River still diverts water and sediment from the 

current river around the Madhupur Tract, however, it is remarkably less turbid than the 

current Brahmaputra River channel (Coleman, 1969).  

 While the Brahmaputra River is shifting course to the southwest, the Ganges 

River is currently migrating northwest.  Prior to the 16th century, the Ganges River 

flowed into the Hooghly River near Calcutta, India, and discharged directly into the Bay 

of Bengal.  Since then, the Ganges has steadily shifted eastward, occupying and 

abandoning several prominent courses during its migration (Coleman, 1969).  Currently, 

the Ganges River has been migrating northwest for the past 250 years in response to 

tectonic uplift in the west which has raised areas as much as 6 m above present flood 

levels (Allison, 1998a).  Many tidal channels found in the southwest mangrove forests of 

Bangladesh are abandoned Ganges River channels; known as the moribund delta, the 

area is crossed by numerous old, silted up distributaries which remain open to the Bay of 

Bengal (Allison, 1998a). 
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2.5 RIVER FLOODING 

The annual monsoons of Southeast Asia control the oceanography and river hydrology 

of Bangladesh.   

The annual monsoons are caused by differential heating of the ocean and land 

(Ramage, 1971).  During the winter, the colder continent causes northeasterly 

atmospheric masses to bring weak precipitation to the Bay of Bengal (Fluteau et al., 

1999).  During the summer, warmer continents and cooler oceans create a low-pressure 

cell over the warm continent and a high-pressure cell over the cooler ocean.  The 

differential heating, combined with the Coriolis Effect, causes the southwest monsoon to 

bring heavy precipitation to the Bengal Basin (Fluteau et al., 1999; Webster, 1987).  The 

resulting monsoons are a dry monsoon from the northeast from September to May, and a 

wet monsoon from the southwest from June to September (Webster, 1987). 

 Flooding occurs yearly in Bangladesh as a result of increased rainfall during the 

summer monsoon and higher river levels (Jakobsen et al., 2005).  Water flow of 

2,000,000 ft3/sec on the Ganges or Brahmaputra rivers or 300,000 ft3/sec on the Meghna 

River are enough to cause the channels to overflow their banks (Coleman, 1969).  

Moderate floods occur approximately every four years, severe floods every seven, and 

catastrophic floods occurs every 30-50 years (Coleman, 1969).  A flood’s severity is 

determined by the amount of Bangladesh’s land area submerged during the event; during 

the catastrophic flood of 1955, 38% of the country was inundated (Coleman, 1969).   

Typically, finer sediments are deposited on the adjacent floodplain during floods, and 

coarser material is deposited as crevasse splays adjacent to the river channel in the 

natural levees.  The natural levees are therefore formed almost entirely of overlapping 

sediment deposits formed during flooding (Coleman, 1969).  An additional study of the 

natural levees on the Brahmaputra River found that Cesium-137 accumulation rates are 

correlated with distance from the river and that accumulation rates decrease with 

distance (Allison et al., 1998b).  Allison et. al (1998b) also determined that large 

amounts of river sediment are annually deposited in small areas in nearby plains during 

high flood events.  This supports the hypothesis that a large portion of river-transported 
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sediments are deposited landward of the river mouth during flood events in a high-load, 

tectonically active river system. 

 

2.6 RIVER MOUTH 

The subaerial and subaqueous deltas and fan of the Ganges-Brahmaputra River System 

provide an extraordinary opportunity to identify sediment transport and deposition in a 

large, relatively unstudied system.  Before the Ganges-Brahmaputra River debouches 

into the Bay of Bengal, sediment is deposited and stored in the river’s floodplain and 

subaerial delta.  Once sediment is discharged from the mouth of the river, the particles 

accumulate on the Bengal Shelf in the river’s subaqueous delta.  A portion of the river 

load is channeled through the Swatch of No Ground Canyon (Fig. 2.5) to the Bengal Fan 

and the deep sea. 

Original reports and studies announced that insignificant progradation of the 

delta had occurred over the last 200 years (Coleman, 1969; Fergusson, 1863; Morgan 

and McIntire, 1959).  To explain the assumed lack of progradation—despite enormous 

amounts of sediment delivered to the delta annually—Morgan and McIntire (1959) 

proposed that sediments are trapped in a subsiding trough perpendicular to shore.  

Fergusson (1863) and Coleman (1969) reconciled the sediment dispersal issue by 

proposing that strong tidal currents keep the sediment in suspension so that they cannot 

settle and are by-passed to the Swatch of No Ground.  Recent work has disproved these 

theories and shown that significant subaerial growth is indeed occurring.  Allison 

(1998b) constructed a database referencing topographic changes between 19th century 

charts and modern maps.  The database confirmed that the subaerial delta is prograding 

at an estimated annual rate of 7.0 km2 (Allison, 1998b).  The growth accounts for 1 to 

2% of the overall river sediment budget.  
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Fig. 2.5.  Shelf bathymetry of the Northern Bay of Bengal.  The topset, foreset, and outer 
shelf are subaqueous clinoform features.  The Swatch of No Ground Canyon deeply 
incises the shelf (modified from Michels, 1998). 
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Further from shore, progradation is occurring in the subaqueous delta as well.  

Sediments on the inner shelf (landward of the 20 m isobath) are interlaminated silts and 

muds, probably recording neap-spring tide cycles; these sediments are considered 

ephemeral deposits and are probably eroded by the southwest (summer) monsoon (Kuehl 

et al., 1989; Segall and Kuehl, 1992).  Sediments on the middle shelf are composed of 

alternating beds of silts and muds, probably deposited during high and low discharge 

seasons; coarse-grained intervals indicate multi-year depositions 

(Segall and Kuehl, 1992; Segall and Kuehl, 1994).  The broad delta topset is comprised 

of a thick layer of sand and silt in less than 20 m water depth (Michels et al., 1998).  

Highest sedimentation rates occur in the center of the delta foreset beds, where about 10 

cm of accumulation annually prograde the subaqueous delta front by about 15 m 

(Michels et al., 1998).  Foreset beds consist of sand and silt layers interbedded with silty 

clay.  Michels et al. (1998) contend that the sand and silt layers are tempestites, 

deposited by sediment flows triggered by tropical cyclones.  The prograding submarine 

delta stores approximately 30% of the rivers’ sediment load from the last 7000 years 

(Kuehl et al., 1997).   

The Swatch of No Ground canyon acts as a sediment conduit to the Bengal Fan 

and deep sea.  The canyon’s head lies in about 38 m water depth and the canyon 

continues south for 160 km until is ends at the Bengal Fan at a depth of 1406 m (Curray 

et al., 2003).  The canyon has an average gradient of 8.2 m/km.  The canyon is the 

presumed location of the river mouth at the last glacial sea level low.  There is a slight 

curve to The Swatch of No Ground, which may represent a westward migration of the 

river mouth during the last period of falling sea level (Curray et al., 2003).    

Geomorphic features, such as sand bars and tidal channels bending in the 

direction of the shelf canyon, suggest that sediment is transported toward the Swatch of 

No Ground from the river mouth (Coleman, 1969; Fergusson, 1863).  Sediment 

accumulation rates are highest at the canyon head, where they increase from 10 cm/yr on 

the topset to 50 cm/yr  (Kuehl et al., 1989; Michels et al., 1998).  The frequency of sand 

and silt layers (hypothesized to be storm-driven sediment layers) in the canyon matches 
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the semi-annual frequency of tropical storms in the Bay of Bengal, suggesting that the 

net transport of sediment suspended during cyclones is westward toward the canyon 

from the river mouth and delta (Michels et al., 1998).  An opposing opinion is that 

modern slides and turbidity currents are small and infrequent compared to canyon 

activity during lowered sea level (Curray et al., 2003).  While some studies suggest that 

very little sediment enters the canyon today (Curray et al., 2003), the prevailing 

hypothesis is that the Swatch of No Ground acts as a conduit for sediment to reach the 

Bengal Fan and deep sea.  A study of the mineralogy of sediment east and west of the 

canyon indicates that the Swatch of No Ground acts as a barrier of sediment transport to 

the Indian Shelf (Segall and Kuehl, 1992).  Chlorite is enriched in Ganges-Brahmaputra 

River water and deposited along the Bengal Shelf, however, it is not present west of the 

canyon.  The presence of chlorite on the Bengal Shelf indicates that the Ganges-

Brahmaputra water and sediment is transported west by surface currents until it reaches 

the Swatch of No Ground.  The canyon prevents chlorite-enriched sediment from 

reaching the western Indian Shelf (Segall and Kuehl, 1992). 

The Bengal Fan is the final destination of sediment carried by the Ganges-

Brahmaputra.  The submarine fan is the largest in the world at a length of 3000 km, 

width of 1000 km, and maximum thickness of 16.5 km (Curray et al., 2003).  Depths at 

the fan’s apex and end are 1400 and 5000 m, respectively.  Gradients range from 5.7 

m/km at the uppermost fan, to less than 1 m/km on its lower reaches (Curray et al., 

2003).  The Ganges-Brahmaputra is the main supplier of sediment, although smaller 

rivers that debouche into the Bay of Bengal from India and Bangladesh make some 

contribution.  First recognized as a submarine fan in 1953, the region was surveyed in 

1971, when it was discovered that abandoned sediment channels were incorrectly 

labeled as turbidity current channels (Curray et al., 2003).  Several inactive canyons and 

channels are present on the fan, however, only The Swatch of No Ground remains active 

today as a conduit of sediment to the Bengal Fan (Curray et al., 2003).   
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2.7 TIDAL CHANNELS 

The lower delta plain is defined as the low-elevation, subaerial portion of a delta which 

is adjacent to the ocean and periodically subjected to saline flooding. In the Ganges-

Brahmaputra Delta, the lower delta plain is located west of the active river mouth, and 

extends inland as far as 100 km as a series of north-south oriented channels (Allison and 

Kepple, 2001). These N-S channels are relict channels of the main Ganges-Brahmaputra 

River mouth, which formed as the river shifted eastward, (Allison, 1998b) and island 

accretions formed which have been joined to the mainland since the last maximum sea-

level transgression (Allison et al., 2003). While the channels in the lower flood plain 

were formed by previous occupation of the main Ganges-Brahmaputra River, they still 

may be active as small distributaries which branch from the main river. 

There are two possible sources of modern sediment supply to the lower delta 

plain west of the active river mouth: (1) delivery of sediment from distributaries that 

drain the northern Ganges River and discharge into the north-south tidal channels, and 

(2) Ganges-Brahmaputra River sediment that has been discharged from the main river 

channel, carried west by coastal currents, and directed into the tidal channels by tidal 

currents. Allison and Kepple (2001) determined that sediment accumulation rates in the 

lower delta have not changed over the last 2,500 years despite recent decreases in water 

and sediment flow through lower distributaries (resulting from upriver dams and 

dredging); this indicates that the sediment is not supplied by distributaries flowing to the 

lower delta channel, but is instead westward-transported main channel sediment moving 

inland through the lower delta channels.  Significant amounts of sediment could be 

contributed to the tidal channels by distributaries which divert sediment from the main 

river channel, suggesting that this may be an active pathway for sediment transport.  

Additionally, 137Cs sediment accumulation rates decrease upstream in the delta channels 

with increasing distance from the Bay of Bengal, suggesting that the sediment source is 

offshore (Allison and Kepple, 2001); if the sediment source were directly from the river, 

the accumulation rates would remain constant along the tidal channels or decrease from 

the river to the bay. 
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CHAPTER III 

FIELD MEASUREMENTS AND SAMPLING 

 

3.1 SAMPLE COLLECTION 

Sampling was conducted during July and August 2006 during the southwest monsoon 

season throughout the Ganges-Brahmaputra River Delta in Bangladesh.  The sampling 

team primarily resided in the capital city of Dhaka, and conducted three short 

expeditions into different regions of the country for sample collection.   

The first of the three expeditions was a four day trip that covered the northwest 

and southwest regions of the country.  The team traveled northwest from Dhaka, crossed 

the Brahmaputra River, and sampled the northwest tributaries.  The next day, the group 

headed south, crossed the Ganges River, and sampled the southern distributaries.  On the 

last day, the group traveled north and crossed the conjoined Ganges-Brahmaputra River 

by ferry on the return to Dhaka.  Shown on Fig. 3.1, the rivers sampled on this trip were 

the Brahmaputra, Atrai, Ganges, Bhairabi, Rupsa, Madhumati, Arialkhan, and Ganges-

Brahmaputra.   

The second trip was a day trip from Dhaka into the northeast region of the 

country.  The group traveled east from Dhaka and drove toward the Tripura Fold Belt on 

the eastern border of Bangladesh during this expedition and returned to Dhaka that 

evening.  During this outing, the Meghna River and Abandoned Brahmaputra River were 

sampled (Fig. 3.1).   

The last of the three sampling trips was a five day journey to the Bay of Bengal 

to sample the tidal channels.  Travel to and from the coastal tidal channels took four 

days, and one day was spent sampling a selected tidal channel by boat (Fig. 3.1).   

Rivers were selected to be sampled to provide a wide range of geographic 

locations and geomorphological characteristics.  For accessibility, sampling sites were 

selected for proximity to the main roads which were traveled by the research team.  In  
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Figure 3.1. Map of sampling sites in Bangladesh.  Main river channel sampling sites are 
denoted with a solid triangle; tributaries are marked with a solid square; distributaries are 
marked with a solid circle; the tidal channel is marked with an open circle.  The tributary 
region is shaded yellow, the distributary region is shaded green, and the tidal channel 
region is shaded pink. 
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accordance with the objectives of this thesis, the sites were later classified into broad 

morphological groups for analysis.     

 Samples were collected using a sturdy metal bucket, which was thrown into the 

river and retrieved with an attached recycled jute rope.  The surface samples were taken 

from river shore and were approximately one meter from river bank.  The bucket was 

rinsed with river water several times prior to official water sample collection to ensure a 

clean, representative sample.  At a small number of sites, samples were collected further 

from shore via an available dock or anchored boat.  After bucket collection, water 

samples were swirled to prevent settling and immediately transferred to plastic storage 

bottles.  Samples were stored for 2-4 days in the bottles until they were returned to a 

makeshift field laboratory in Dhaka for filtering. 

 In addition to collecting water samples at the river sites, observations were made 

regarding the river conditions.  River flow was calculated by timing a floating object 

across a measured distance, or by pacing using a hand-held GPS unit.  At each site, 

latitude and longitude, time of sampling, approximate river width, and bank conditions 

were recorded.  When possible, river width was accurately measured using the car 

odometer while crossing the river over a bridge.  Additionally, local Bangladeshis were 

interviewed for details about river depth and water flow. 

 During the last sampling expedition, tidal channel samples were collected by 

boat.  The team rented a wooden fishing boat from a local fisherman and hired him to 

steer the vessel through the local tidal channel.  As the group was visiting Kuakata on 

the Bay of Bengal coast, the tidal channel immediately located to the west of the city 

was selected as the representative tidal channel for sampling.  Surface water samples 

were collected by the same metal bucket as was used in river sampling.   

 Water samples were collected from approximately the same location in the tidal 

channel at important phases in the tidal channel (i.e. maximum flood tide, maximum ebb 

tide).  The boat also completed a small transect from shore into the Bay of Bengal and 

sampling was conducted every 10-15 minutes along the transect.  At the end of the 

transect, the ship was approximately 4-5 km from the shoreline.   
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 Suspended sediment samples were also collected from the water column to be 

used to measure 7Be activity data.  Approximately 10 gallons of water from a sampled 

river was collected in a large carboy and allowed to settle for at least 24 hours.  Once the 

sediment had settled, the remaining water was decanted from the container, and the 

sample was stored in a high-concentration slurry for radiometric analysis. 

 

3.2 LABORATORY ANALYSIS 

After arrival at the field laboratory, water samples were preserved on pre-weighed 

filters.  Before use in the field, filters were placed in individual glassine envelopes, 

numbered, and dried in a dessicator for three days to ensure driness.  Once dry, the filters 

were weighed to the nearest microgram on a Perkin Elmer AD-6 Autobalance.  The 

filters were weighed twice: individually and in the glassine envelopes so that the entire 

unit could be weighed should sediment fall off the filter into the envelope after filtering. 

 Filtering was conducted in the field laboratory in Dhaka to measure sediment 

concentrations.  Bottles were homogenized by shaking prior to filtering to ensure a well-

mixed representative sample.  To determine sediment concentration, a measured volume 

of the water sample was pumped through a pre-weighed filter.  Because of the high 

sediment load, only a small volume of sample (usually between 10-30 mL) was needed 

before the filter clogged and severely increased the filtering time.  Millipore 3.0 μm 25 

mm cellulose filters were used.  Four replicates of each sample were filtered.  While wet, 

filters were stored in the glassine envelopes and allowed to dry. 

 After filters arrived in the United States, the same procedure was used to prepare 

the filters for weighing.  The filters were dried for three days in the same desiccator and 

reweighed on the same balance.   

Suspended sediment concentrations were calculated using the mass of sediment 

accumulated on the filter and the volume of water pumped through the filter.  After 

return to the Texas A&M University, it was noted that sediment had fallen off 

approximately 10 filters into their envelopes.  In these cases, the entire unit (filter and 

envelope) were weighed and compared the original measurement of filter and envelope.  
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After suspended sediment concentrations were calculated, it became apparent that these 

replicates produced imprecise calculations.  The envelopes absorbed moisture quickly 

and produced inaccurate mass readings.  Because the amount of moisture absorbed by 

the envelopes was unknown, the replicates which lost sediment to the envelopes were 

excluded from suspended sediment concentration calculations.  As four replicates were 

usually filtered for each water sample, the exclusion of filters with lost sediment did not 

eliminate any sampling locations; the elimination of these filters only allowed fewer 

replicates to be included in the suspended sediment concentration averages. 

 Additionally, 20 mL of each water sample was saved in small vials.  The small 

volume of sample saved was necessitated by restrictions on liquids carried on flights to 

the United States during August 2006.  Upon return, the salinity of each sample was 

measured using a hand refractometer.  The index of refraction was measured to four 

decimal places and converted to salinity using the empirical relation between index of 

refraction and salinity (Quan and Fry, 1995).   

Salinities were measured for tidal channel samples.  The salinities of all river 

samples were measured with the hand refractometer and found to have no measurable 

salinity. 

Suspended sediment samples that were collected for radiometric analysis were 

measured for 7Be activity.  Beryllium-7 was measured by the Department of Geological 

Sciences at East Carolina University using a well-type germanium gamma detector. The 

suspended sediment samples ranged from 3-6 g dry weight and were analyzed on the 

detector for 24-48 hours. Activity measurements were made on beryllium's 477.6 KeV 

energy peak, which has an intensity of 10.4 % (i.e., gamma frequency per decay). 

Detector efficiency at 477.6 KeV is 0.1644 with minimum detectable activity (MDA) 

between 0.10-0.15 dpm/g.  
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CHAPTER IV 

RESULTS 

 

As hypothesized, suspended sediment concentrations vary widely throughout the entire 

river system.  Four geomorphological classifications are determined for analysis of data: 

main river channels, distributaries, tributaries, and tidal channels.  Sampling locations 

are shown in Fig. 3.1. 

Main river channels (marked with a solid triangle in Fig. 3.1) include samples 

taken from the three major rivers—the Ganges, Brahmaputra, and Meghna rivers.  The 

classification distributary (marked as a solid circle in Fig. 3.1) includes all rivers where 

water flows from a main river channel into the Bay of Bengal.  The classification 

tributary (marked with a solid square in Fig. 3.1) includes all rivers which flow into a 

main river channel; the source of these rivers’ water is often a small watershed within 

the region.  The tidal channel (marked with an open circle in Fig. 3.1) is the last 

classification and includes the lowest reaches of the river system.   

 

4.1 MAIN RIVER CHANNELS 

Suspended sediment concentrations are predictably high for the majority of the main 

river channels (Fig. 4.1); however, values show significant variation within this 

geomorphological classification.   

The Brahmaputra was sampled from both the east and west banks (Figs. 3.1 and 

3.2).  The river was 4.8 km wide as measured from the bridge spanning the 

Brahmaputra.  The east bank was sampled from a grassy shore which was stabilized with 

non-native rocks.  The west bank was sampled at a cut bank with a very strong river 

current.  This west bank sampling site was protected with concrete bricks to stop the 

river from eroding away the river bank and nearby town.  As listed in Table 4.1, the 

suspended sediment concentrations for the west and east banks (0.345 g/L and 0.465 
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g/L, respectively) are approximately equal.  The flow at the east bank was measured to 

be 100 cm/s; a measurement was not available at the west bank, however, it was visually 

estimated to be considerably faster.  While the suspended sediment concentrations on the 

two sides of this river are approximately equal, the value is lower for the west side, 

which had the stronger current.   

The Ganges River was sampled on the west bank.  The river width was measured 

from the nearby bridge and determined to be 2.1 km wide.  The flow velocity was not 

measured as the site was sampled on a windy day which was increasing the surface flow 

velocity.  The bank was lined with concrete bricks to prevent erosion.  At 0.563 g/L, the 

Ganges’ suspended sediment concentration is higher than the Brahmaputra’s, even 

though the Brahmaputra is known to have a higher sediment load at other times (Galy 

and France-Lanord, 2001; Milliman and Meade, 1983).   

Suspended sediment concentrations in the Meghna River vary considerably from 

the Ganges and Brahmaputra rivers because of the major difference in the sediment load 

of this smallest river.  The Meghna River was sampled on the eastern bank.  The 

sampling site was secured with non-native boulders to prevent erosion.  As measured 

while crossing the river by bridge, the river width was approximately 1 km.  A local 

worker stated that the river was approximately 14 m deep on the eastern side, and deeper 

than that on the western side.  The river flow was measured by GPS to be 30 cm/s.  At 

0.010 g/L, the Meghna’s suspended sediment concentration was the lowest of the three 

major rivers.  This was consistent with field observations: the Meghna was not the 

typical muddy brown color, but instead had a greenish tint and was slightly translucent. 

The Ganges-Brahmaputra River was also sampled downstream of its confluence 

(Fig. 4.2).   The samples were collected while crossing the river by ferry.  The ferry dock 

was situated on the south bank in a side channel of the river; a large, habited  
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Table 4.1. Suspended sediment concentrations of sampled rivers.  The geomorphological 
classes and sampling locations are shown on Fig. 3.1. 
 

River Latitude Longitude
concentration 

(g/L) 
geomorphological 

class 
 
Bhairabi River North 23.01230 89.41494 0.180 Distributary 
 
Bhairabi River North 23.01176 89.41531 0.156 Distributary 
 
Bhairabi River South 22.81617 89.57212 0.490 Distributary 
 
Bhairabi River South 22.81617 89.57212 0.493 Distributary 
 
Rupsa River East Shore 22.78000 89.58671 0.590 Distributary 
 
Madhumati River 22.93251 89.80880 0.290 Distributary 
 
Arialkhan River 23.37914 90.11842 0.823 Distributary 
 
 
Ganges River 24.06081 89.02178 0.563 

Main River 
Channel 

 
 
Brahmaputra West Bank 24.47949 89.71310 0.345 

Main River 
Channel 

 
 
Brahmaputra East Bank 24.38390 89.80202 0.465 

Main River 
Channel 

 
Ganges-Brahmaputra, 
South bank, Ferry Dock 23.41391 90.18027 0.150 

Main River 
Channel 

 
Ganges-Brahmaputra, 
Main channel, south side 23.44696 90.22784 0.312 

Main River 
Channel 

 
Ganges-Brahmaputra, 
Main channel, center 23.45934 90.23093 0.531 

Main River 
Channel 

 
Ganges-Brahmaputra, 
Main channel, north side 23.46938 90.24728 0.326 

Main River 
Channel 

 
 
Meghna River 24.04215 90.99937 0.010 

Main River 
Channel 

 
Atrai River 24.51463 89.15895 0.101 Tributary 
 
Atrai River 24.49912 89.13861 0.286 Tributary 
 
Abandoned Brahmaputra  
channel 
 

24.05740 90.96332 0.005 
 

Tributary 
 

 



34 

 

 
 

Figure 4.1.  Suspended sediment concentration map.  Suspended sediment 
concentrations of sampled locations are shown.  At sites where multiple samples were 
collected (Atrai and Bhairabi rivers), the average suspended sediment concentration is 
shown.  A close up of the Ganges-Brahmaputra River sites is shown in Figure 4.3.   
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Figure 4.2.  Suspended sediment concentration map of the Ganges-Brahmaputra main 
channel.  Figure shows the suspended sediment concentrations of the Ganges-
Brahmaputra River.  The Arialkhan is also shown, and is classified as a distributary.  
The Meghna River joins the Ganges-Brahmaputra River southeast of the sampling 
location. 
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sand-bar divided the river into the main channel and the southern side channel.  Samples 

were collected at the ferry dock in the southern channel, on the southern side of the main 

river channel, the center of the main channel, and on the northern side of the main 

channel.  The four sampling points give a rough transect of suspended sediment 

concentrations across the conjoined Ganges-Brahmaputra River.  The ferry dock sample 

had the lowest suspended sediment concentration in the transect, while the samples from 

the main river channel give a symmetric cross-section for suspended sediment 

concentrations with a maximum in the center.   

 

4.2 TRIBUTARIES 

The Atrai River drains a low-lying, possibly subsiding basin which is located north of 

the Ganges River and west of the Brahmaputra River.  The Atrai flows southeast and is a 

tributary to the Brahmaputra River (Figs. 3.1 and 4.1).  The river was sampled at two 

sites approximately 2.7 km apart.  The first sampling site had a suspended sediment 

concentration of 0.101 g/L.  At this location, the river was approximately 50 m wide 

with flooded fields surrounding.  The river flowed along the main highway and the site 

was accessed by a small bridge and path to the river.  The flow velocity was 

approximately 20 cm/s.   

The second Atrai River sampling site had a higher suspended sediment 

concentration at 0.286 g/L.  At approximately 100 m wide, the river was larger in this 

location.  The river was bound on both sides by natural, sandy banks, and there were 

raised roads on both sides.  The wind while sampling was blowing opposite of the river 

flow, making surface flow measurements unreliable.   

The abandoned Brahmaputra River channel was sampled in the northeast region 

of Bangladesh (Figs. 3.1 and 4.1).  The suspended sediment concentration of the 

abandoned Brahmaputra channel was the lowest sampled at 0.005 g/L.  It had the highest 

level of visibility of any river sampled, including plants which were visible under water.  

The river was approximately 1 km wide, and sampling was performed from the middle 
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of a bridge spanning the river.  No sustained flow was identifiable and there was 

evidence that parts of the river included drowned fields and farm paddies.   

 

4.3 DISTRIBUTARIES 

As a large-scale river delta, the Ganges-Brahmaputra’s intricate sediment dispersal 

occurs in the lower reaches of the river system as well.  Suspended sediment 

concentrations in the rivers’ distributaries vary considerably with tidal conditions. 

 The highest suspended sediment concentration within the distributary 

geomorphological classification occurred at the Arialkhan River, with a concentration of 

0.823 g/L.  The Arialkhan diverts water from the joined Ganges-Brahmaputra River 

south from the main river channel and flows through deltaic silts and sands before it 

reconnects with the main river south of the Meghna confluence.  The river flows through 

agricultural fields and showed no evidence of tidal influence.  The river was 

approximately 300 m wide at the sampling site and was flowing quickly at 100 cm/s (as 

measured using the GPS). 

 The remaining three distributaries were sampled further south where they 

received tidal influence, despite being 50 km further inland than the tidal saline intrusion 

limit at 100 km.     

 The Bhairabi River was sampled at two locations (Fig 3.1 and 4.1).  At the north 

Bhairabi River sampling site, two samples were taken approximately 30 km apart.   The 

suspended sediment concentrations are approximately equal at 0.180 g/L and 0.156 g/L, 

and shown as an average of 0.168 g/L in Figure 4.1.  The samples were collected at 

approximately 11:00 AM during ebb tide.  The river was flowing south at 100 cm/s as 

measured by the GPS.  The sampling site showed evidence of recent tidal influence, 

including a high tide line marked on the river bank with bricks and recently deposited 

plant debris.  The river was approximately 300 m wide.  Local Bangladeshis said that the 

river is approximately 7 m deep and that the tidal range is approximately 2 m.  

 The Bhairabi River south location (Figs. 3.1 and 4.1) was sampled from a boat 

which was anchored at the end of a 20 m dock; the samples were collected 
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approximately 20 m from the bank toward the middle of the river.  At this location, the 

suspended sediment concentrations were higher at 0.490 g/L and 0.493 g/L, and shown 

on Fig. 4.1 as an average value of 0.492 g/L.  The river was considerably wider at this 

location, approximately 1 km, however the flow was lower at 30 cm/s.  The river water 

appeared to be flowing faster near the center of the river, although it was not possible to 

measure accurately.  The river was sampled at 2:40 PM on the same day at the north 

Bhairabi River sampling site.  The river was flowing north, showing tidal influence.  It 

appeared to be high tide, as the river’s banks were completely full and there was no 

evidence of a higher river level on the banks.  The captain of the docked boat said that 

the river was approximately 9-12 m deep.   

 The Rupsa River (Figs. 3.1 and 4.1) was sampled the following morning at 9:30 

AM.  This sampling site had a suspended sediment concentration of 0.590 g/L.  The 

sample was collected at low tide while the river was flowing south.  Evidence that 

supported the river was at low tide included low water levels, exposed mud flats on the 

banks, and freshly eroded mud at higher levels on the shore.  The sample was collected 

for the east bank of the river from a bamboo pier that jutted approximately 4 m into the 

river.  The river was flowing at 70 cm/s as measured by the handheld GPS.  Local 

Bangladeshis said that the river was approximately 1-2 m deep at low tide.   

 The last distributary sampled was the Madhumati River (Figs. 3.1 and 4.1).  The 

Madhumati was sampled on the same day as the Rupsa River at 10:43 AM, however, it 

appeared to be high tide at this sampling location.  The suspended sediment 

concentration was 0.290 g/L.  The river was about 200 m wide, and flowing south at 

approximately 30-50 cm/s.  The sample was collected from under a bridge, and the river 

banks were protected with concrete bricks.  There was no evidence of recent flooding or 

erosion near the sampling site. 
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4.4 TIDAL CHANNELS 

Tidal Channel data was collected from a small, private fishing vessel in a tidal channel 

west of the coastal town of Kuakata.  The tidal channel was approximately 2 km wide 

and will be referred to as the “Kuakata Tidal Channel.”   

Samples were collected from approximately the same location in the Kuakata 

Tidal Channel to determine the variation of the suspended sediment concentration with 

the tidal cycle.  Tidal data was collected in the Pursur River (Fig. 2.2), which is located 

approximately 55 km west of the sampled tidal channel at 21.7167° N, 89.5500° E.  As 

shown in Fig. 4.3, on the sampling day, low tide occurred at 4:22 AM with a tide gage 

height of 0.91 m.  The region was in flood tide until high tide occurred at 10:35 AM with 

a tide gage height of 3.47 m.  Ebb tide occurred until low tide at 4:59 PM with a tide 

gage height of 0.91 m.  The last high tide of the day occurred at 10:54 PM, with a tide 

gage height of 3.24 m.  

Samples are identified with waypoint identification numbers (Fig. 4.4), however, 

there are no points 1 or 4.  These locations were occupied, but not sampled due to 

limited supplies.  The first sample (way point 2) was collected at 9:00 AM during the 

flood period as water flowed north from the Bay of Bengal into the channel.  The 

suspended sediment concentration at waypoint 2 was 0.430 g/L (Fig. 4.5, Table 4.2).  

Also during flood tide, a sample was collected at 9:30 AM at the mouth of the channel 

(way point 3).  This sample had a suspended sediment concentration of 0.784 g/L, 

indicating suspended sediment concentrations increase as flood tide progresses.  Two 

samples were collected at approximately the same location in the tidal channel after the 

tide reversed to ebb tide: at 1:30 PM, way point 12 was collected and had a suspended 

sediment concentration of 0.324 g/L and at 2:10 PM, way point 13 was collected and had 

a suspended sediment concentration of 0.386 g/L.   
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Figure 4.3.  Pursur River Tide Gage Record.  Figure details the high and low tides for 
the days proceeding, during, and following sampling in the Kuakata Tidal Channel.  
Figure 5.5 shows the tide gage data compared to the suspended sediment concentrations 
collected in the Kuakata Tidal Channel.  (Data provided by the Bangladesh Inland Water 
Transport Authority). 
 

 

 

Additionally, samples were collected on a transect into the Bay of Bengal 

(consisting of points 3, 5, 6, 7, and 8).  Samples were collected at 15 minute intervals in 

the southeast transect.  The transect ended approximately 4-5 km from shore and the 

surface flow in the Bay of Bengal was westward.  At the furthest point from shore, a 

depth measurement was collected with an unweighted grab sampler.  The water depth 

was approximately 5 m.   

Samples from waypoints 9 and 10 were collected while returning to the tidal 

channel.  Both were taken at the mouth of the channel during flood tide.   

Two samples were collected from a mangrove inlet on the western side of the 

tidal channel.  The inlet was approximately 10 m wide and was filled with fishing boats.  
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Waypoint 11a was collected during floodtide at 11:40 AM and had a suspended 

sediment concentration of 0.541 g/L.  The tide reversed to ebb tide and water flow 

switched direction at approximately 12:30 PM.  Waypoint 11b was collected while in the 

mangrove inlet at 12:32 PM and its suspended sediment concentration was 0.378 g/L.   
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Figure 4.4.  Tidal channel sampling locations.  Samples at way points 3 through 8 were 
collected during a southeastward transect from shore; waypoint 11 was collected in a 
small mangrove inlet to the west of the tidal channel.  Sites 1 and 4 were occupied 
briefly, but not sampled due to limited supplies. 
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Figure 4.5.  Suspended sediment concentrations of samples in the Kuakata Tidal 
Channel  Suspended sediment concentrations are listed in g/L.  Waypoint identifications 
of sampling locations are shown in Fig. 4.4.
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Table 4.2. Suspended sediment concentrations of sampled points in the Kuakata Tidal 
Channel.  Suspended sediment concentrations and salinities were measured from water 
filtered from the sample site.  Tidal cycle stages were observed in the field and later 
confirmed using the Pursur River Tide Gage data. 
 

Waypoint Latitude Longitude Time Tidal Cycle 
Stage 

Suspended 
Sediment 

Concentration 
(g/L) 

Salinity 
(PSU) 

2 21.85935 90.07179 9:00 AM flood 0.430 missing 
3 21.83637 90.05802 9:30 AM flood, transect 0.784 9.4 
5 21.83661 90.05744 9:45 AM flood, transect 0.035 12.8 
6 21.82968 90.05817 10:00 AM flood, transect 0.121 12.8 
7 21.81571 90.05846 10:20 AM flood, transect 0.198 13.3 
8 21.80653 90.06010 10:30 AM flood, transect 0.186 12.8 
9 21.84171 90.07047 11:10 AM flood 0.188 10.6 
10 21.85291 90.07047 11:20 AM flood 0.092 8.9 

11a 21.87031 90.07616 11:40 AM flood, 
mangrove inlet 0.541 9.4 

11b 21.87031 90.07616 12:32 PM ebb, mangrove 
inlet 0.378 7.8 

12 21.85933 90.07382 1:30 PM ebb 0.324 8.9 

13 21.86690 90.08237 2:10 PM ebb 0.386 7.8 
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CHAPTER V 

DISCUSSION OF RESULTS 

 

5.1 MAIN RIVER CHANNELS 

At 0.563 g/L, the Ganges’ measured suspended sediment concentration is higher than the 

Brahmaputra’s, even though the Brahmaputra is known to have a higher sediment load 

in other studies (Galy and France-Lanord, 2001; Milliman and Meade, 1983).  This 

discrepancy could be caused by the time difference between the flood stages of the two 

rivers.  As seen in Fig. 2.3, the Brahmaputra River peaks in water flow and decreases 

slightly before the Ganges reaches its annual water discharge peak.  Consequently, 

during late July when the rivers were sampled, the Ganges’ flood stage is still increasing 

to its one annual peak in water discharge, while the Brahmaputra’s water discharge is 

elevated from its dry season lows, but decreasing from its highest annual peak.  Thusly,  

the Ganges’ high suspended sediment concentration represents an increasing suspended 

load, while the Brahmaputra’s lower suspended sediment concentration represents a 

decreasing suspended load. 

 Remote sensing data indicates that the Ganges’ suspended sediment 

concentration is annually higher than the Brahmaputra’s during the high discharge 

monsoon season, although the Brahmaputra has a higher suspended sediment 

concentration during low discharge (Islam et al., 2001).  Remote sensing data can only 

interpret the surface layer, however, and cannot represent the higher, coarser bedload of 

the Brahmaputra River. 

 The sampling method of collecting suspended sediment concentrations at the 

surface also likely under represents the Brahmaputra River more than the Ganges River.  

Known to have coarser sediment than the Ganges, the Brahmaputra may carry more of 

its sediment in the middle and bottom portion of its channel (Coleman, 1969).   

 An analysis of the suspended load of a river can be determined by using the 

Rouse parameter p = w/(Ku*), where w = settling velocity of sediment, K = von 
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Karman’s constant, and u* = shear velocity (Vanoni, 1946).  The profile of suspended 

sediment concentration with depth is dependant on the Rouse parameter.  As depth 

increases, the amount of sediment transported in the suspended load decreases, while the 

Rouse Parameter remains constant.  Consequently, as depth increases, less sediment is 

carried in suspension.   

Although the necessary parameters were not measured in order to draw the 

concentration profile with depth for the two rivers, it is hypothesized that they would 

resemble Fig. 5.1.  The Ganges River is hypothesized to have a higher concentration at  

 

 

 

 
Figure 5.1.  Estimated suspended sediment concentration profile with depth for the 
Ganges and Brahmaputra rivers.  Parameters were not measured to draw exact 
concentration profiles, however, the figure depicts estimated profiles.  The Rouse 
parameter (p) is equal to w/(K u*) where w = settling velocity of sediment, K = von 
Karman’s constant, and u* = shear velocity. 
 

 



47 

the surface because the sediment grain size that the river carries is finer (smaller w).  The 

Brahmaputra River is hypothesized to have a lower concentration at the surface because 

the sediment is more coarse-grained.  Because the Brahmaputra River is a braided 

stream, with a high, coarse sediment load, it is hypothesized that concentration remains 

constant with depth, and then quickly decreases at the channel bottom.  The 

Brahmaputra River is predicted to have lower suspended sediment concentrations, and 

higher concentrations in the bed load.  The Ganges River is hypothesized to carry more 

sediment in suspension with depth because of the finer sediment load. 

If this assumption is true, then the sampling method of collecting water surface 

samples from the river edge underestimates the Brahmaputra River load more than the 

Ganges River.  Because the Brahmaputra River is hypothesized to carry more sediment 

in the bedload than the suspended load, then more of the river’s sediment is 

underrepresented by sampling at the surface.  Consequently, annual load calculations for 

the Brahmaputra will be underestimated. 

The Meghna River has a predictably low suspended sediment concentration 

because of its different source.  The northeast region of Bangladesh is subsiding at rates 

up to 2.1 cm/yr as the basin downthrusts under the Shillong Massif to the north (Johnson 

and Alam, 1991).  Consequently, this subsiding basin collects large volumes of non-

turbid rainwater during the southwest monsoon (Allison, 1998a).  In addition to draining 

this rainwater, the Meghna has tributaries which have source waters in the Tripura Fold 

Belt of the northeast.  Less erosion occurs in the Tripura Fold Belt than the Himalayan 

Mountains because of lower elevations and a lack of glaciers which enhance erosion.  

Rivers draining the fold belt, are therefore likely to contribute less sediment to the 

Meghna River than the amount of sediment that rivers draining the Himalayan Range 

contribute to the Ganges and Brahmaputra rivers.  Because of these source differences, it 

is estimated that the Meghna carries only one fifth of the sediment that either the Ganges 

or Brahmaputra carries (Coleman, 1969).  Consequently, it is often omitted in studies of 

the entire river system. 
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The Ganges-Brahmaputra River transect also demonstrates the variation in 

suspended sediment within a river channel.  While the river is presumably well-mixed, 

the sediment concentration varies dramatically across the river as the flow varies.  In a 

straight river section, maximum flow velocity occurs in a river channel where water has 

the least amount of frictional drag caused by contact between the water and channel bed.  

As this transect shows, the highest suspended sediment concentration occurs in the 

middle of the channel where the maximum flow would be.  The suspended sediment 

concentrations in the lower flow regions on the sides of the channel are lower and 

relatively equal, indicating that sediment may have fallen out of suspension as flow 

decreased.  The variation in suspended sediment concentrations across the Ganges-

Brahmaputra River transect presents the inherent problem of this river sampling method.  

Most water samples were collected from the shore in the area of low velocity in a 

straight river stretch.  These suspended sediment concentrations are most likely under 

representing the actual suspended load in the river.  Conversely, if samples were taken 

from an area of maximum flow velocity, for example the inside of a curve at the cut 

bank, then the suspended sediment concentration could be at a maximum value.  In the 

case of the Ganges-Brahmaputra River transect performed from the ferry, suspended 

sediment concentrations extrapolated for the entire river taken from the sides of the main 

river channel—or from the southern side channel where the ferry dock was located—

would severely underestimate the suspended load of the river.   

The suspended sediment concentrations in the Ganges-Brahmaputra River also 

indicate the difficulty in determining river properties.  The suspended sediment 

concentration downstream of the confluence is not simply an average value of the 

concentration in the two rivers that join (Table 4.1; the suspended sediment 

concentration in the Ganges-Brahmaputra (0.531 g/L) is not the average of the 

concentration in the Ganges (0.563 g/L) and Brahmaputra (0.465 g/L and 0.345 g/L)).  

One must add the volume times the concentration of each river and divide by the sum of 

the river volumes to estimate the final suspended sediment concentration.  Additionally, 

the rivers do not mix immediately at the confluence.  Remote sensing data indicates that 
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the water and suspended sediment of the two rivers can be seen as separate units for 

several kilometers downstream of the confluence (Islam et al., 2001).   

 
 
5.2 TRIBUTARIES 

The Atrai River is a northwest tributary of the Brahmaputra River which merges with the 

main river north of its confluence with the Ganges River.  The Atrai River drains 

paludal, or marshy, deposits which are located between the two main rivers (Kurshid et 

al., 1990).  This was observed in the field as the river flowed through flooded farms and 

rice paddies.  However, as shown on Fig. 2.1, there are three geologic regimes that 

northwest tributaries of the Ganges and Brahmaputra rivers flow through in Bangladesh: 

paludal deposits, the uplifted Barind clay, and alluvial deposits from the Tista River Fan 

(Khurshid Alam et al., 1990).  The uplifted Barind Terrace and the Tista River have 

higher elevations than the paludal deposits, and more capacity for erosion.  While the 

Atrai River drains the paludal deposits in the northwest region, it is not representative of 

the sediment flux for the entire region.  The Tista River drains the Himalayan Range and 

originally eroded the channel that the Brahmaputra River recently avulsed.  

Consequently, the Tista River is hypothesized to have a higher suspended load than the 

smaller Atrai River.  While using the suspended sediment concentrations of the Atrai 

River can give some insight into the suspended load of the northwest tributaries, using 

the Atrai River to estimate the sediment contribution of the northwest tributaries to the 

Brahmaputra River will be an underestimate. 

Conversely, the Abandoned Brahmaputra channel is located in the northeast 

region of Bangladesh and had a low suspended sediment concentration.  This relict 

marks the previous, more eastward channel of the Brahmaputra River which was 

occupied in the 1700’s before a severe earthquake triggered a 30-year channel avulsion 

to its current location.  Today, a small amount of river water is diverted from the main 

Brahmaputra River near Bangladesh’s northern border; the river flows east around the 

Pleistocene-uplifted Madhupur Terrace before joining the Meghna River.  The 

abandoned Brahmaputra River therefore acts as a distributary of the Brahmaputra River 
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and a tributary of the Meghna River.  The abandoned Brahmaputra River is classified as 

a tributary in this project because it flows through monsoon-flooded, low-lying reaches 

of northeast Bangladesh before reaching the Meghna River.  Its water source is more 

predominantly monsoon rains and flow from the Tripura Fold Belt which also feed the 

Meghna River than the Himalayan highland water which feeds the Brahmaputra River.  

Consequently, the suspended sediment concentration is lower than that in the 

Brahmaputra. 

Further work on the abandoned Brahmaputra channel could look into the 

sediment load of this channel when it diverges from the main Brahmaputra Channel.  

The suspended sediment concentration is predicted to be high where this channel diverts 

from the main channel, however, significant settling must occur once the river reaches 

the flooded potion of the northeast plains.  Future work could look at the settling and 

accumulation of sediment in the northern parts of this channel and compare the sediment 

dynamics at the river’s northern and southern reaches.   

 

5.3 DISTRIBUTARIES 

The distributary samples collected from the southwest region of Bangladesh reveal the 

extraordinary tidal influence within the Ganges-Brahmaputra River System.  Evidence of 

recent changes in water levels—including fresh erosion higher than the current bank 

levels, plant debris lines, and wet, muddy deposits along the banks—presumably from 

tides, was observed at nearly all of the sampling sites.  The most important observation, 

however, is the reversal in river flow at the southern Bhairabi River site.  Even at 

approximately 150 km from the coastline, the tidal forces are strong enough to reverse 

river flow.   

 The two Bhairabi River sampling locations differed considerably in suspended 

sediment concentration, despite being only 30 km from each other.  Part of the 

difference could result from the lower concentration samples at the northern sampling 

site being taken from the river bank (from where almost all the samples were collected) 

and the higher concentration samples from the southern sampling site being collected 
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from a docked boat approximately 20 m from the bank.  The suspended sediment 

concentration should increase toward the center of a straight channel.  However, there 

are several possible reasons for the variation.  The higher concentration samples were 

taken from a wider stretch of the river, where sediment capacity and water volume 

would be higher.  The higher concentration sample was also collected downstream of the 

Bhairabi River’s convergence with a distributary branch of the Madhumati River, which 

may have had a higher concentration.   

 Additionally, the variation in suspended sediment concentration between the two 

sampling locations on the Bhairabi River may be influenced by tides.  The higher 

concentration sample was collected at approximately high tide while the river was 

flowing north.  Highest suspended sediment concentrations occur during periods of 

decelerating flow velocity during tidal cycles (Dyer, 1986).  The samples from the 

Bhairabi River occurred at approximately high tide during decelerating flow velocity 

(Table 4.1, Fig. 4.1).  The varying flow velocity through the tidal cycle could resuspend 

sediment from the river bottom and increase suspended sediment concentrations.   

 The suspended sediment concentration in samples collected at the Rupsa River 

were high at 0.590 g/L.  Collected at low-tide, while the water was flowing south, the 

sample was collected near the middle of the river from the bamboo pier.  The high 

suspended sediment concentration at the Rupsa River could occur for several reasons.  

Foremost, the Rupsa River is located downstream of the Bhairabi River sampling sites 

and therefore receives the suspended sediment load of the Bhairabi River, as well as 

another unnamed distributary from the Madhumati River.  If the sample was collected 

during a period of decelerating flow velocity, the suspended sediment concentration 

could be higher due to resuspended particles.    

 The Madhumati River was sampled during high tide while the river was flowing 

south.  At 0.290 g/L, the suspended sediment concentration is not as high as the Rupsa 

River or southern Bhairabi River sample.  However, this sample was collected 

downstream of two distributaries which divert water from the Madhumati west to the 

Bhairabi and Rupsa rivers.  Suspended sediment concentration can therefore not be 
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estimated by distance from the river’s point of divergence from the main river channel.  

As seen in these data, tidal influences and diverging distributaries influence the 

suspended load in the river. 

 Lastly, the Arialkhan River had the highest suspended sediment concentration of 

any of the rivers sampled, including main river channels.  The high concentration is 

evidence that the Arialkhan diverts a significant amount of sediment from the conjoined 

Ganges-Brahmaputra River.  The suspended sediment concentration could increase in 

the Arialkhan River if high amounts of sediment are diverted into a river with a lower 

water flux.  The large suspended load of sediment diverted from the Ganges-

Brahmaputra River to the Arialkhan helps to explain why the suspended sediment 

concentration of the conjoined Ganges-Brahmaputra River is lower than the individual 

rivers upriver of their convergence.  This suggests that significant amounts of sediment 

are being diverted from the main river channels by distributaries.  

 

5.4 SEDIMENT BUDGET CALCULATIONS 

The sediment load is calculated for the geomorphological classifications to determine the 

groups’ roles in the overall distribution of sediment.  River maps were studied to 

determine the number of significant tributaries and distributaries that join and branch 

from the two main rivers.  Significant tributaries and distributaries are defined as greater 

than 200 m wide during wet monsoon season.  Suspended sediment concentrations in a 

given geomorphological classification are averaged to determine a general value to be 

used for each class.  Rivers classified in the tributary class that flow from the 

Brahmaputra River to the Meghna River are separated from the tributary classification 

and defined as distributaries from the Brahmaputra River. 

Fig. 5.2 illustrates the river measurements needed to calculate the sediment load 

of a river.  The collected suspended sediment concentration (g/L) was used to estimate 

an average suspended sediment concentration for a geomophological class and 

multiplied by the river flow (m/s) to determine the mean sediment flux of the river 
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(g/m2s).  The flux was then multiplied by the cross-sectional area (m2) of the river to 

determine the instantaneous suspended sediment load (g/s) of the river (Dyer, 1986).   

For sampling locations where width was not measured, river widths were 

estimated from published maps (Kurshid et al., 1990).  Depths were determined by 

interviews with local Bangladeshis and from published values (Coleman, 1969).  As 

suspended sediment concentrations and flow velocity measurements below the surface 

were not possible, calculations were made assuming suspended sediment concentration 

and velocity were constant with depth.  Although sediment concentrations increase with 

depth, the limited data set prohibits further extrapolation. 

Several assumptions were necessary to calculate the loads because of the limited 

 

 

 

 

 
 

Figure 5.2.  Schematic cross-section of river measurements used in calculating river 
suspended sediment loads.  For a first approximation of suspended sediment load, 
suspended sediment concentration is assumed to be homogenous and flow velocity is 
assumed to be constant with depth.  Width and depth were measured at the sampling site 
or determined from maps.   
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data set.  Because only surface concentrations were determined, the mass flux only 

estimates the suspended load of the rivers.  It is estimated that the bedload flux for the 

Ganges-Brahmaputra is only 10% of the suspended load flux, although the actual 

bedload flux remains undocumented (Galy and France-Lanord, 2001; Lane and Borland, 

1951; Milliman and Syvitski, 1992).  Additionally, the surface concentrations were 

measured from the sides of the rivers, where friction with the sides of the river slows the 

flow velocity and may decrease the sediment concentration.  Consequently, these values 

are likely low estimates of the suspended load.  Thirdly, it is unknown whether these 

point measurements are representative of recent rainfall events or if they demonstrate 

trends for the entire monsoon season.  It is unknown whether sediment estimates created 

with samples collected at other times during the monsoon season could produce different 

results.  The rivers were assumed to be parabolic in shape.  Despite these limits in 

assumptions, these data present the spatial differences in the suspended sediment load of 

the river system with minimized time variation.   

Listed in Table 5.1, the load is the estimated instantaneous suspended sediment 

load carried by the river or total sediment carried by river grouping 

A sediment budget flow chart is created in Fig. 5.3 to illustrate the sediment 

loads of rivers that drain from and into the main river channels.  Drainage basins are 

shown with the sediment loads calculated in Table 5.1.  The tributary region is divided 

into drainage basins where water and sediment flow into the Brahmaputra (drain into the 

Brahmaputra (as listed in Table 5.1); bright orange), into the Ganges (drain into the 

Ganges (as listed in Table 5.1); light orange), and tributaries to the Meghna which flow 

from the Brahmaputra (drain the Brahmaputra (as listed in Table 5.1); blue).  The 

distributary region is divided into drainage basins where water flows from the Ganges 

(drain the Ganges (as listed in Table 5.1); dark green) and from the Ganges-Brahmaputra 

(drain the Ganges-Brahmaputra (as listed in Table 5.1); bright green). 
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Table 5.1.  Suspended sediment load estimates for geomorphological classifications.  
The number of rivers which drain into or from the rivers was determine using regional 
maps.  The 6 distributaries which drain the Brahmaputra are included in the tributary 
classification on Fig.1.2 as they flow east from the Brahmaputra River into the Meghna 
River.  The single [or one] river which drains the Ganges-Brahmaputra River is the 
Arialkhan River. 
 

 
width 
(m) 

depth 
(m) 

concentration 
(g/L) Flow (m/s) 

 
Instantaneous 

load (g/s) 
      
Main River Channels      
      
Ganges 2100 20 0.563 1.0 2.36 x 107 
Brahmaputra 4800 18 0.405 1.0 3.50 x 107 
Meghna 1000 5 0.010 0.3 1.50 x 104 
Ganges-Brahmaputra 7500 20 0.319 1.0 4.79 x 107 
      
Tributaries      
      
7 drain into Brahmaputra 100 5 0.286 0.2 2.00 x 105 
3 drain into Ganges 100 5 0.286 0.2 8.58 x 104 
      
Distributaries      
      
6 drain the Ganges 300 7 0.349 0.7 3.08 x 106 
6 drain the Brahmaputra 300 5 0.005 0.3 1.35 x 104 
1 drains the Ganges-Brahmaputra 300 5 0.823 1.0 1.23 x 106 
  

 

 

  The sediment loads are shown in Fig. 5.4 as the percent of the total sediment 

load of the entire system carried by rivers in each drainage basin.  The total sediment 

load is assumed to be the sum of the sediment loads of the Ganges River and 

Brahmaputra River.  Approximately 80% of the suspended sediment from the Ganges 

and Brahmaputra rivers remains in the suspended load in the main river channel 

downstream of the confluence (Fig. 5.4).  Approximately 7% of the suspended load of  
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Figure 5.3.  Suspended sediment load estimates for main rivers and distributary/ 
tributary drainage basins.  The drainage basin for rivers draining into the Brahmaputra 
are bright orange, rivers draining into the Ganges are light orange, from the Brahmaputra 
are blue, from the Ganges are dark green, and from the Ganges-Brahmaputra are light 
green. 
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Figure 5.4. Suspended sediment flow chart of the Ganges-Brahmaputra River System.  
Percentage values are calculated with the total suspended load in the system as the sum 
of the Ganges and Brahmaputra rivers’ individual loads.  Approximately 82% of the 
sediment from the two individual rivers continues in the Ganges-Brahmaputra main river 
channel. 
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the river system is diverted from the main channel by 6 distributaries that drain the 

Ganges River and one that drains the Ganges-Brahmaputra River.   

With 7% of the 20% discharge deficit—as identified with these calculations—

accounted for, the pathway of 13% of the suspended load is unidentified.  It has been 

shown that suspended sediment concentrations rapidly increase at the Ganges and 

Brahmaputra rivers’ confluence, and decrease again downstream (Islam et al., 2001).  

The rapid increase in suspended sediment concentration may result from mixing 

turbulence resuspending bottom sediment.  Part of the sediment deficit between up and 

down river of the confluence may be a result of changing flow dynamics as the rivers 

merge.    

 A large portion of the missing sediment between the individual Ganges and 

Brahmaputra rivers and the conjoined Ganges-Brahmaputra River is probably deposited 

during overbank flooding.  As the rivers constantly evolve and overflow, considerable 

sediment is deposited along the natural levees (Allison, 1998b).  Sediment that is not 

accounted for between the individual rivers and the combined river has most likely been 

deposited near the river banks during high flow.   

Consequently, the highly complex nature of the sediment dispersal throughout 

the river system does not allow sediment load calculations to be determined from a 

single point along each river.  The sediment load is changed by distributary and tributary 

contributions and diversions, as well as overbank flooding which occurs seasonally 

along the entire river.  Furthermore, suspended load estimates cannot be calculated by a 

point measurement at the Ganges-Brahmaputra river mouth as sediment has been 

diverted and deposited throughout the river system.  To determine a comprehensive 

sediment load estimate, suspended sediment concentrations must be measured 

throughout the system to accurately determine the true sediment load of the entire river. 

The instantaneous suspended sediment loads during the monsoon season are used 

to estimate the annual suspended sediment load for the system.  The instantaneous loads 

are used to determine the total load for the four month monsoon season (assuming the 

same sediment load for the entire duration).  The annual suspended sediment loads are 
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calculated with the assumption that 95% of the sediment load is carried during the four 

months of the monsoon season (Goodbred, 2003).   

The annual suspended sediment loads from the literature and this study are listed 

in Tables 5.2 and 5.3 and shown graphically in Fig. 5.5.   

Compared to published values, the annual suspended sediment loads calculated 

in this thesis are lower.  The loads may be lower because of the inter-annual variability 

or because of the original assumption that suspended sediment concentration and 

velocity are constant with depth.  The measured suspended sediment concentrations 

were sampled from the sides of rivers, where friction decreases the flow velocity and 

capacity to carry suspended sediment.  Consequently, these values underestimate the 

suspended sediment load. 

Additionally, the suspended sediment concentrations for the entire classes were 

determined from only a few sampling points.  It is assumed that these points are 

representative of the entire region, however, there could be variations between geologic 

units and local rainfall. 

The calculated annual suspended sediment loads in this thesis agree with the 

published literature that the Brahmaputra River carries more sediment, despite the 

Ganges River having a higher suspended sediment concentration during sampling.  

Because the volume transport of the Brahmaputra River is greater (width of 4.8 km 

compared to 2.1 km in the Ganges, and similar depths), it carries a larger suspended 

load.  The Brahmaputra likely carries a higher bedload as well, as it has coarser material 

which is more often carried along the river bottom. 
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Table 5.2.  Calculations of annual suspended sediment loads.  The instantaneous load 
measured here is assumed to persist for four months to calculate the total monsoon 
season load.  The monsoon season load is assumed to be 95% of the total discharge to 
calculate the annual load.   
 

 

 
Instantaneous 

Load 
 (g/s) 

Monsoon Season Load 
(tons/Monsoon 

Season) 
Annual Load 

(tons/yr) 
    
Main River Channels    
    
Ganges 2.36 x 107 2.49 x 108 2.62 x 108 
Brahmaputra 3.50 x 107 3.68 x 108 3.87 x 108 
Meghna 1.50 x 104 1.58 x 105 1.66 x 105 
Ganges-Brahmaputra 4.79 x 107 5.03 x 108 5.30 x 108 
    
Tributaries    
    
7 drain into Brahmaputra 2.00 x 105 2.11x 106 2.22 x 106 
3 drain into Ganges 8.58 x 104 9.03 x 105 9.50 x 105 
    
Distributaries    
    
6 drain the Ganges 3.08 x 106 3.24 x 107 3.41 x 107 
6 drain the Brahmaputra 1.35 x 104 1.42 x 105 1.49 x 105 
1 drains the Ganges-
Brahmaputra 1.23 x 106 1.30 x 107 1.37 x 107 

 
 
 
 
Table 5.3.  Comparison of suspended sediment loads from published studies.  Annual 
load calculations in this thesis are lower than published values because of stated 
assumptions about the sampling method and calculation method. 
 

 
Ganges 
(tons/yr) 

Brahmaputra 
(tons/yr) 

Holeman, 1968 1600 x 106 800 x 106 
Coleman, 1969 485 x 106 617 x 106 
Milliman and Meade, 1983 680 x 106 1157 x 106 
   
this thesis 262 x 106 387 x 106 
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Figure 5.5.  Calculated annual sediment loads for the main river channels 
The Ganges-Brahmaputra River carries a lower load than the sum of the individual loads 
of the Ganges and Brahmaputra rivers (shown in percentages in Figure 5.4).  The 
Meghna River carries a comparatively insignificant suspended sediment load. 
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5.5 TIDAL CHANNELS 

Suspended sediment concentration in the Kuakata Tidal Channel is used to 

determine if the sediment source can be determined for the tidal channel region.  

Suspended sediment, salinity, and 7Be activities are used to assess sediment source.   

As shown in Fig. 5.6, suspended sediment concentrations from the Kuakata Tidal 

Channel are compared with the tidal cycle of the nearest tide gage, the Pursur River Tide 

Gage(Fig. 2.2), to determine if suspended sediment concentrations vary with the tidal 

cycle.  The suspended sediment concentration follows the same trend as the tidal 

variation, however there is a time difference between the tidal stages of the sampled tidal 

channel and the tide gage.  The suspended sediment concentration peaked before the 

Pursur Tide Gage, located to the west, measured the occurrence of high tide.  This time 

difference, however, is not consistent with the lag between suspended sediment 

concentration and water level at the tide gage during ebb tide.  The lag time is 

approximately one hour before the tide gage for high tide, and roughly 3.5 hours before 

low tide.  This time difference indicates that suspended sediment concentration in the 

tidal channel began to increase even before low tide occurred.   

This time lag between sediment concentration and tidal flow has been linked to 

flow velocity and observed in various estuaries (Dyer, 1986).  In the Ganges-

Brahmaputra River mouth (Fig. 5.7), it has been shown that suspended sediment 

concentrations are highest during decelerating flow (Barua, 1990).  In Fig. 5.7, during 

the accelerating flow of the ebb period, from 1 to 3 hours, the suspended sediment 

concentration is lower than during the decelerating flow of the ebb period from 3 to 7 

hours (Barua, 1990).  Maximum ebb current velocities occur before low tide, causing a 

switch from periods of accelerating current velocity to periods of decelerating current 

velocity (Postma, 1961).  Sediment entrainment is not solely a function of current 

velocity, and is instead influenced by turbulent kinetic energy and Reynolds stresses 

(Gordon, 1975).  It has been shown that for a given flow velocity, bed movement and the 

rate of entrainment increase during the phases of a tide when the current is decelerating  
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Figure 5.7.  Suspended sediment concentration response to flow velocity over one tidal 
cycle (modified from (Barua, 1990).  The sediment concentration profile is shown in red 
and the velocity profile is shown in green. Sediment concentration peaks during 
decelerating velocity of ebb flow and again during decelerating velocity of flood flow. 
 

 

 

(Gordon, 1975).  Consequently, decelerating tidal phases transport more sediment than 

accelerating phases. This relationship is attributed to the higher Reynolds stresses during 

the decelerating flow (Dyer, 1986).   

 Measurements for Fig. 5.7 were taken at the Ganges-Brahmaputra River mouth, 

where sediment is delivered from upriver.  In this location, the suspended sediment 

concentration has a higher peak during ebb flow, when water flows from the channel 

into the Bay of Bengal.  The smaller suspended sediment concentration peak occurs 

during flood flow when sediment is delivered to the channel from the Bay of Bengal.  If 
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this same pattern occurs in the Kuakata Tidal Channel, it could suggest that sediment in 

the tidal channels is supplied from the direct upriver sources. 

Although flow velocity was not measured while collecting the Kuakata Tidal 

Channel samples for this thesis, it is hypothesized that the decelerating ebb flow caused 

the increase in suspended sediment concentration preceding low tide in Fig. 5.6.  

However, samples were not taken over a full tidal cycle, so it is unknown whether the 

suspended sediment peak during decelerating flow of the flood tide would be larger or 

smaller.  If the suspended sediment peak during flood tide is larger than the peak during 

ebb tide, then sediment is likely provided from the Bay of Bengal and delivered to the 

tidal channels from the sediment plume.  If the suspended sediment peak is higher during 

ebb tide, then sediment is likely delivered directly from upriver sources. 

In addition to suspended sediment concentrations, salinities were examined in the 

Kuakata Tidal Channel.  Listed in Table 4.2, salinities were low through all stages of the 

tidal cycle.  A comparison of salinity and the tidal cycle showed no correlation.  

Salinities decrease from the Bay of Bengal into the Kuakata Tidal Channel (Fig. 5.8). 

The salinity at the mouth of the tidal channel during flood tide (waypoint 3; 

salinity 9.4 PSU) was higher than the salinity in the channel during ebb tide (waypoints 

12 and 13; salinities 8.9 PSU and 7.8 PSU, respectively).  This is expected as flood tide 

brings saline Bay of Bengal surface water into the tidal channel, and ebb tide supplies 

fresh water from upriver into the tidal channel.  A decrease in salinity was also observed 

between waypoints 11a and 11b (salinities 9.4PSU and 7.8 PSU, respectively) when the 

tides reversed from flood to ebb.   

Salinities of samples collected during the transect into the Bay of Bengal 

(waypoints 3 through 8) were higher than those collected in the tidal channel, however, 

they are still relatively low for an ocean body (all are below 14 PSU).  These low surface 

salinities are caused by dilution from the high river output of freshwater.  Salinities have 

been shown to vary throughout the entire Bay of Bengal during the wet monsoon  
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Figure 5.8.  Surface salinities of water samples from the Kuakata Tidal Channel.  
Samples were collected over flood and ebb tide and generally decrease from the Bay of 
Bengal into the Kuakata Tidal Channel. 
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season, with values typically less than 20 PSU in the coastal zone (Varkey et al., 1996).  

The fresh water output leads to a highly stratified surface layer characterized by warm 

(29.0° C) and low saline (29.0-32.8 PSU) waters (Gopalakrishna et al., 2002).  The 

salinities measured during the present study are lower than those characteristic of the 

freshwater plume because of closer proximity to shore. 

Salinities of the samples are compared to the suspended sediment concentrations 

in Fig. 5.9.  Although the correlation is weak, sediment concentration decreases with 

increasing salinity, as evidenced by the negative slope between sediment concentration 

and salinity.  Suspended matter flocculates inorganically at chloride concentrations 

between 0-3 PSU, and further increases in chlorinity do not cause significantly more 

flocculation, as seen in settling rates in laboratory experiments (Meade, 1972).  The 

decrease in concentration in the tidal channel is probably not due to flocculation as the 

salinities are larger than the 0-3 PSU which would cause significant flocculation.   

Beryllium-7 (half life = 53.3 days) activity data is useful for determining short-

term sediment transport.  A product of cosmic-ray spallation of nitrogen and oxygen, 

Beryllium-7 quickly adheres to small particles in the atmosphere.  It is flushed from the 

atmosphere by precipitation, solubized by acidic rainwater, and quickly scavenged by 

fine particles in terrestrial and marine environments (Olsen et al., 1986).  It has been 

shown that in an estuarine environment, 7Be activities decrease with distance from the 

fluvial, upriver source in estuaries (Dibb and Rice, 1989).  In the estuaries of large 

rivers, fluvial inputs of 7Be are significantly greater than direct atmospheric inputs to the 

lower estuary (Corbett et al., 2004). 

Activities for sampling locations are shown in Fig. 5.10.  Detectable activities in 

the Brahmaputra River (1.37 dpm/g and 0.73 dpm/g) indicate sediment has been 

transported to the river within three to four months.   

The activity in the Ganges River was below detection, indicating that sediment 

has taken longer to be transported through the river.  Activity was also below  detection 

in the Ganges-Brahmaputra River downstream of the confluence.  The below detection  
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Figure 5.9.  Suspended sediment concentration vs. salinity of tidal channel samples in 
the Kuakata Tidal Channel.  Suspended sediment concentrations decrease with depth.  
The small correlation coefficient indicates a weak correlation. 

 

 

 

reading of the sediment in these two locations, suggests that sediment takes longer than 3 

to 4 months to travel through the Ganges drainage basin and river channel, rendering 7Be 

signatures too low to be detected at the sampling location.  However, 7Be activities in the 

Kuakata Tidal Channel and offshore show that recently transported sediment is 

suspended in the tidal channels.  The presence of newly-transported sediment in the Bay 

of Bengal and tidal channels indicates that sediment does reach the lowest reaches of the 

river system before 4-5 half-lives have occurred. 

Because there are two possible pathways for sediment to reach the lower tidal 

channels—diversion through the distributaries or coastal transport from the main river 

channel mouth—this recently transported sediment must be transported through the 

Ganges or Ganges-Brahmaputra rivers.  The presence of active 7Be sediment in the 
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Kuakata Tidal Channel and in the Bhairabi River (Fig. 5.10) dictates that radiometrically 

young sediment must be present upstream.  Recordable activities in the Brahmaputra 

River indicate that the recently-transported sediment is present upstream of the two 

rivers’ confluence.  However, because the distributaries that divert sediment to the 

Bhairabi River branch from the Ganges River north of the confluence, the presence of 
7Be activities in the Bhairabi River dictate that there must be radiometrically young 

sediment in the Ganges River.  The 7Be signature could also not be delivered to the 

Bhairabi River from a tributary with a different source, because all rivers in the 

distributary region flow south from the Ganges River.  Additionally, if the 7Be activities 

in the Kuakata Tidal Channel and offshore come from the main river channel sediment 

plume, then there must be 7Be activities upstream in the main Ganges-Brahmaputra 

River channel.  This evidence suggests that the below detection 7Be activity values in the 

Ganges and Ganges-Brahmaputra rivers have a sampling artifact which prevents the 

reading of a reliable 7Be signature.   

 The Ganges River was sampled on a windy, stormy day.  The increased waves 

possibly resuspended older bottom sediment into the water column.  If older sediment 

was mixed with the newly-transported suspended sediment, then dilution of the 7Be 

signature would occur.  The river conditions might have also eroded older bank sediment 

into the river.  As the sample was collected from the river bank, older, eroded sediment 

could have been inadvertently collected.  The wind and waves most likely contributed to 

the collection of the unrepresentative sample.   

 The Ganges-Brahmaputra River downstream of the confluence was collected 

from a ferry boat.  The propellers could have resuspended older bottom sediment, which 

would dilute the 7Be signature.  Additionally, the unstable banks of the river could have 

eroded into the water column, further diluting the radiometric signature.  There is likely 

a residual sampling artifact in the collection method that contributed to the below 

detection readings in both the Ganges and Ganges-Brahmaputra rivers.  
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Figure 5.10.  Beryllium-7 activity values for suspended sediment in the water column of 
select sampled rivers.  Values are reported in dpm/g.  The 7Be data is inconclusive for 
identifying sediment source in the tidal channels.  The below detections reading of 
Sediment from the Ganges and Ganges-Brahmaputra rivers is likely a sampling artifact 
error as radiometrically young sediment is found in the tidal channels.  
 

 



71 

The 7Be activities of sediment collected in the Kuakata Tidal Channel are 

inconclusive for determining sediment source.  The activities are roughly equal during 

flood and ebb tide (0.20 dpm/g and 0.21 dpm/g, respectively), eliminating using the 7Be 

ages to determine the source.  The activity measured ~5 km offshore is higher at 0.56 

dpm/g.  Because activity decreases as 7Be ages, the higher value offshore than in the 

tidal channels may indicate that sediment is sourced to the tidal channels from the Bay of 

Bengal.  However, it is documented that the sediment plume from the main river mouth 

extends into the Bay of Bengal and is transported west by coastal currents (Segall and 

Kuehl, 1992; Barua et al., 1994).  The presence of radiometrically young sediment 

offshore does not conclusively indicate the sediment in the tidal channels comes from 

the main sediment plume, it merely indicates that sediment is transported through the 

entire system within 3-4 months.  The lower activities in the Kuakata Tidal Channel 

could also be 7Be activities which have been diluted by resuspended bed sediment.  

Suspended sediment concentrations increase due to resuspension during decelerating 

velocities of ebb and flood flow (Fig. 5.7).  The older, resuspended sediment from the 

channel bottom could dilute the 7Be activities of suspended sediment from the main river 

mouth.   

The 7Be activity measured in the Bhairabi River (0.38 dpm/g) is higher than that 

measured downstream in the tidal channel.  This young 7Be signature in the central tidal 

plains is not likely contributed by tidal currents.  The Bhairabi River location is located 

too far from the Bay of Bengal (150 km) for sediment to be contributed from the 

downriver source.  Although there are tidally-influenced flow reversals in the Bhairabi 

River, there was not measurable salinity.  Consequently, the radiometrically young 

sediment in this river is unlikely contributed from the sediment plume in the Bay of 

Bengal.  

This radiometrically young sediment in the Bhairabi River is more likely diverted 

from the Ganges River upstream.  The sediment budget created in this project indicates 

that roughly 7% of the suspended sediment from the main river channel is diverted into 

the distributaries of the southern tidal plain.  While the below detection value obtained 
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by samples collected in the Ganges River does not support this hypothesis, the sampling 

problems mentioned previously suggest this pathway may still be valid.  Because the 7Be 

activities obtained from the Ganges and Ganges-Brahmaputra rivers may be susceptible 

to sampling error, they are not fully accepted, and therefore do not rule out this pathway.  

The 7Be signature in the Bhairabi River is not likely a result of local sediment input to 

the distributary from its drainage basin because the small atmospheric input to a lower 

estuary is small compared to the fluvial input of the system (Corbett et al., 2004).  The 
7Be signature is representative of radiometrically young sediment transported to the 

distributary from the main river channel.   

The presence of radiometrically active 7Be concentration at the Bhairabi River 

site, however, indicates that sediment is actively being contributed to the lower 

distributaries in the Ganges-Brahmaputra System.  The unit is composed of a 16 km 

fluvio-deltaic sediment layer which has accumulated since the Paleogene, however, it   

was assumed that new sediment was not actively being contributed as the Ganges river 

migrates eastward (Allison, 1998a).  Sediment load calculations in this study indicate 

that approximately 7% of the sediment load in the system is being contributed to these 

lower channels, bringing radiometrically young sediment with a recent 7Be signature to 

the distributary rivers.   
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CHAPTER VI 

CONCLUSIONS 

 

Suspended sediment concentrations in the Ganges-Brahmaputra River System vary 

dramatically spatially during the high discharge, monsoon season.  Suspended sediment 

concentrations can be analyzed within different geomorphological classes to determine 

patterns and explanations of the variation.  Additionally, the suspended sediment 

concentrations can be used to determine annual sediment load estimates for the region. 

An analysis of the geomophological classes’ contribution to the annual sediment 

loads indicates that up to 7% of the total sediment load could be excluded in current 

sediment budget calculations because of its diversion into the distributary region of the 

river system.  Suspended sediment load estimates are calculated to be 262 million tons 

per year on the Ganges, and 387 million tons carried annually on the Brahmaputra River.  

These estimates are lower than previously published studies, due to interannual 

variability or to sampling artifacts and assumptions that underestimated the true 

suspended load of the rivers.  However, the data show that approximately 80% of the 

sediment carried by the Ganges and Brahmaputra rivers individually remains in the main 

Ganges-Brahmaputra River channel south of the rivers’ confluence.  The remaining 20% 

of sediment is diverted from the main river by the distributaries and deposited along the 

main river channel during overbank flooding. 

Suspended sediment concentrations are analyzed to determine the source of 

sediment in the lower tidal channels of the Ganges Brahmaputra River.  Samples were 

not collected over an entire tidal cycle, however, it is hypothesized that the suspended 

sediment concentration peaks over the tidal cycle suggesting resuspended sediment as a 

source to the tidal channels.   

Beryllium-7 activity data were analyzed to investigate suspended sediment 

source in the tidal channels.  The 7Be data were below detection in both the Ganges and 

Ganges-Brahmaputra rivers, indicating the sediment is older than 3-4 months.  This is 
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inconsistent, however, with the radiometrically young sediment that was found 

downstream in the tidal channels and in the inner distributary region.  The below 

detection readings in the Ganges and Ganges-Brahmaputra rivers is therefore assumed to 

be a sampling artifact, and the data are inconclusive. 

The radiometrically young sample found in the Bhairabi River in the distributary 

region, however, indicates that newly-transported sediment is actively being transported 

to the inner portion of the distributary region.  Often assumed to be deficient in new 

sediment as the Ganges River migrates east, the distributary region is found to be 

actively receiving newly-transported sediment diverted from the main rivers upstream. 
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