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ABSTRACT 

 

Stochastic Modeling of the Variation of Velocity and Permeability as a Function of 

 Effective Pressure Using the Bed-of-Nails Asperity-Deformation Model. (August 2007) 

 Ezequiel Genova Barazarte, B.S., Eckerd College 

Chair of Advisory Committee: Dr. Richard Carlson 

 
The mechanical and transport properties of porous and cracked media, such as 

velocity and permeability, are sensitive to the effects of effective pressure, which itself is 

a function of the confining pressure and the pore-fluid pressure. The dependence of 

permeability and velocity on effective pressure has previously been modeled using the 

Bed-of-Nails asperity-deformation model. The main objective of this research was to 

explore the sensitivity of the Bed-of-Nails and effective-pressure models to random, 

Gaussian errors, by using an inverse approach. To achieve this, numerical modeling of 

pre-existing velocity and permeability experimental data sets was done. 

Extrapolation to 600 MPa was performed using an epidosite data set of 

compressional velocity as a function of confining pressure, only using measurements in 

the range 0-100 MPa. The results showed that, given sufficient data and considering 

random error only, extrapolation can be done with a level of error of less than 1.5%. 

Model error can also be significant in this type of exercise because it can give rise to 

systematic misfit, although in this case it was shown that the effects of model error were 

not considerable.  Modeling the variation of compressional velocities as a function of 
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confining and pore-fluid pressures in a deep-sea chalk showed that the best-fitting 

asperity-deformation model is sensitive to the effective-pressure model. 

Measurements of permeability in a Navajo-sandstone specimen as a function of 

confining pressure were numerically modeled, and the results showed that measurements 

made at low pressures, specifically near Pe = 0, are very important to constrain the 

model. The same result was found in the case of permeability as a function of confining 

and pore-fluid pressure in a Wilcox-shale where the lack of measurements near Pe = 0 

caused the error in the model parameters to be overestimated. This occurs because the 

rate of change of permeability as a function of effective pressure is very high at low 

pressures. The lack of sufficient data near Pe = 0 overestimates the curvature matrix and, 

therefore, the errors in the model parameters. 
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CHAPTER I 

INTRODUCTION 

 

The properties of porous and cracked media depend on both the confining pressure, 

Pc, and the pore-fluid pressure, Pp. Consider a property M of a porous solid, such as 

velocity or permeability, that is a function of Pc and Pp  

                                              ),( pc PPMM =                                                             (1)                  

Measurements made at 0=pP will yield a function 

                                                   )0,( cPMM =                                                                 (2) 

If the pore-fluid pressure is no longer zero, the effective pressure Pe is defined as that 

combination of confining and pore-fluid pressures that has the same effect on the 

property M as when the pore-fluid pressure is zero [Robin, 1973] 

                                           )0,(),()( cpce PMPPMPM ==                                              (3) 

The concept of effective pressure is very important for characterizing the mechanical 

and transport properties of fractured and porous rocks [Terzaghi, 1936; Hubbert and 

Rubey, 1959].  

There is no single effective-pressure law that applies to all properties [Robin, 1973]. 

Even measurements of the same property in different samples can reflect different 

effective-pressure relationships depending on the number of parameters that can be  
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resolved from the data. The precision of the measurements will dictate whether we can 

apply a particular expression, or if one can use a simpler expression with fewer 

parameters. 

Because the effective pressure equals the confining pressure for 0=pP and the effect 

of pore pressure is observed to vary with Pc and Pp, effective-pressure laws can be 

written as 

                          pecpcee PPPPPPP )(),( χ−==                                                         (4) 

Gangi and Carlson [1996] noted that Pe has been given various approximations, 

pcde PPPP −≡≡1                                                                           (5) 

pce PPP χ−=2                                                10 ≤≤ χ                   (6) 

pdoce PaPPP )(3 −−= χ                                                                   (7) 

where ao ,,χχ  are constants. Which of these approximations applies to a particular data 

set depends on a number of considerations including: 1) the nature of the medium, 2) the 

range of Pc and Pp over which measurements are made, 3) measurements made at low 

pressures and, 4) the precision of the measurements. Notice that each succeeding 

approximation incorporates more parameters. The precision of measured values affects 

the resolution of the parameters ( χ , oχ , a ) from experimental data. 

Inverse methods are commonly used in the geosciences to estimate model parameters 

from experimental data; however, the estimated parameter values have uncertainties 

even for the case when the model is correct because of the errors in the experimental 

data. The range of the data can also affect the resolution of the model parameters. A 
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good example illustrating this point comes from Carlson and Gangi [1985], who 

concluded that both low pressure (e.g., less than 10 MPa) and high pressure (e.g., greater 

than 1000 MPa) data were needed to define both the properties of the cracks and the 

grains from the variation of velocity with pressure. Christensen [1974] addressed a 

similar issue for mafic and ultramafic rocks.  

Random errors also affect the estimation and resolution of model parameters. 

Uncertainties depend on the errors (noise) in the measurements and, therefore, our 

ability to resolve specific model parameters depends directly on the noise in the data. For 

example, let us say that Pe3 (equation (7)) is the most appropriate approximation for the 

property of a particular rock, but due to the scatter in the data it might be possible to 

resolve or constrain χ but not the parameter a (i.e., the results show a  is not significantly 

different from zero, where a is the estimate of the parameter obtained from the fit). In 

this case, the choice of models that can be resolved from the data would be limited to Pe2 

(equation (6)). 

The main objective of this study is to assess the resolution of the effective pressure 

and the “Bed-of-Nails” asperity-deformation [Gangi, 1975, 1978] model parameters 

based on four experimental data sets [Nelson, 1975; Carlson and Gangi, 1985; Gangi 

and Carlson, 1996; Kwon et al., 2001], and explore various aspects of fitting a non-

linear model to compressional velocity and permeability data. These various aspects 

include the fact that the resolution of the model parameters depends on the level of error 

present in the data and, therefore, the ability to constrain the model.  
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A compressional-velocity data set as a function of confining pressure [Carlson and 

Gangi, 1985] was used and two main issues were addressed; the first one was the 

sensitivity of the Bed-of-Nails model parameters to the level of error in the data, and the 

fact that the error in the model parameters was proportional to the error present in the 

data. The second issue we addressed here was extrapolation up to 600 MPa from 

measurements made between 0-100 MPa, where the parameter Pi was the most sensitive 

to constrain due to lack of measurements at “negative” pressures. Extrapolating data is 

often considered bad practice, but it can be justified if the fit is made based on a 

theoretical model that explains the data well enough [e.g., LuValle, 2004]. High-pressure 

values are often difficult and costly to make. The ability to extrapolate high-pressure 

measurements from those made at low pressures is, therefore, worth studying since it can 

greatly improve the efficiency of the experiment. 

A chalk data set [Gangi and Carlson, 1996] of compressional velocities as a function 

of both confining and pore-fluid pressures was used to explore the various effective-

pressure approximations given in (5-7) using the Bed-of-Nails asperity-deformation 

model [Gangi, 1975, 1978]. A unique feature of this process is that there is a model 

within a model: 1) velocity as a function of effective pressure, and 2) effective-pressure 

as a function of confining pressure and pore-fluid pressure. The important result here is 

that the ability to constrain the various effective-pressure models is conditioned by the 

resolution of one single parameter, Pi. We find that the various Pe models are still 

resolved at high levels of error.  
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Permeability measured as a function of confining pressure in a Navajo-sandstone 

sample [Nelson, 1975] was used to explore the sensitivity of the Bed-of-Nails model to 

the level of error present in the measured permeabilities. The most important result is 

that having a measurement at 0=cP  determines the precision of the Bed-of-Nails-model 

parameters. 

Permeability in a Wilcox shale [Kwon et al., 2001], measured as a function of both 

confining and pore-fluid pressure, was used to explore the differences of using a non-

linear fitting routine compared to the linearized version used by Kwon et al. [2001] to 

resolve the data. Another issue here was the fact that removing the measurement 

at 0=eP  caused the error space to change significantly and, therefore, limited the ability 

to constrain the Bed-of-Nails-model parameters.  

Each experimental data set has been fitted using the Bed-of-Nails asperity-

deformation model [Gangi, 1975, 1978], and the results have been used to generate 

synthetic data sets to which Gaussian errors have been added. These numerical 

experiments are designed to better understand the specific issues previously mentioned, 

so that they can be addressed in a way that is statistically meaningful. By generating 

synthetic data sets, we can also assess the validity of the various experimental data sets, 

and whether the results are typical for such experiments. 
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CHAPTER II 

BACKGROUND 

 

In this section, we discuss the concept of effective pressure in more detail and how 

effective-pressure laws can be derived using general asperity-deformation models, which 

explain the variation of mechanical and/or transport properties as a function of pressure. 

In the Bed-of-Nails asperity-deformation model [Gangi, 1975, 1978] effective pressure 

depends on the fractional area of contact of the asperities of a crack in a rock [Gangi and 

Carlson, 1996]. 

 

Asperity-Deformation Model 

Asperity-deformation models are used to obtain effective-pressure laws that describe 

the variation of mechanical and/or transport properties as a function of pressure [Gangi, 

1978]. Gangi and Carlson [1996] derived an asperity-deformation model for effective 

pressure from force-balance equations based on Pc, Pp and the load supported by the 

asperities, which they called an “asperity pressure”, Pa. They found this effective 

pressure to depend on the fractional area of asperity contact, Af. When confining pressure 

Pc is applied to a rock, cracks close, and more asperities come into contact. In the force-

balance equation the externally-applied force, Fc (Pc), is balanced by the sum of the 

pore-fluid-pressure force Fp (Pp) and by the force acting on the asperities in contact, Fa 

(Pa).  

                            papcacc FFPAAAPAPF +=−+== )(                                        (8) 
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where 

A = area of crack 

Ac = area of asperity contact 

Pa = Fa/A = “asperity pressure”, and ea PP ≅  

Rearranging equation (8), the effective pressure is given by 

                           pfcapce PAPPPPP )1(),( −−==                                                    (9) 

where Af = Ac/A is defined as the fractional area of contact and is itself a function of the 

“asperity pressure”, Pa  

                                 )()( afeff PAPAA ≈=                                                            (10) 

if de PP ~ , where Pd is the differential pressure, and Pc > Pp [Gangi and Carlson, 1996]. 

This assumes χ or (χo – aPd) ~1 (equations (6-7)). Thus 

                              pdfce PPAPP ))(1( −−≅                                                             (11) 

If we allow for some fractional area of contact Afo at zero effective (or differential) 

pressure, fof AA =)0( , then  

                                   d
d

f
foef P

P
A

APA
∂

∂
+≈)(                                                          (12) 

and                             pd
d

f
foce PP

P
A

APP )1(
∂

∂
−−−=                                                     (13) 

Equation (13) is equivalent to the definition of Pe3, with oχ = 1- Afo, and df PAa ∂∂= / . 

 

Effective Pressure 

The effective pressure depends on how the external load is distributed between the 

asperities and the pore fluid. The effective pressure depends directly on the fractional 

area of contact, Af (equation (13)). Gangi and Carlson [1996] summarized several 
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approximations of effective pressure, the simplest case being where Pe equals the 

differential pressure Pd [e.g., Terzaghi, 1936; Handin, 1958; Hubbert and Rubey, 1959] 

given in (5). This approximation is accurate when the material is very “friable” (i.e., 

with small areas of contact of asperities such as in soils, or rocks near fracture), 

and 0~fA . In noisy data sets where the scatter is significant, this definition can be a 

good approximation because it may not be possible to resolve more model parameters 

(e.g., ao ,χ ).  

The second approximation, Pe2, given in (6), assumes χ to be a positive constant, 

generally less than or equal to one [e.g., Nur and Byerlee, 1971; Todd and Simmons, 

1972; Walsh, 1981]. This means that fA  is constant. χ depends on the nature of the 

material (e.g., well-cemented rocks and porous rocks), but the precision of 

measurements may also be a factor in defining the value of the constant χ. For example, 

Kwon et al. [2001] found the effective-pressure coefficient estimate χ  to be 0.99 + 0.06 

for Wilcox shale when measuring permeability. Even though the permeability in this 

case depends on both cP  and pP , the value of χ is clearly indistinguishable from one and, 

therefore, the data are consistent with de PP = .  

The third approximation of effective pressure is given by (7). In this case, the 

coefficient, do aP−= χχ , is itself a function of the pressures [e.g., Nur and Byerlee, 

1971; Todd and Simmons, 1972; Robin, 1973, Gangi and Carlson, 1986] yielding two 

model parameters (i.e., oχ and a). The fractional area of contact, fA , is a linear function 

of Pd  for this case. Applying this approximation to measurements of P-wave velocity in 
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a sample of deep-sea chalk, Gangi and Carlson [1996] found oχ  ~ 0.93 and a ~ 0.014 

MPa-1. Though they did not report the uncertainties in these parameters, this data set is 

useful for exploring the effect of experimental error on the resolution of the model 

parameters. 

 

Bed-of-Nails Asperity-Deformation Model 

The advantages of using the Bed-of-Nails model are its simplicity and its flexibility. 

It also has excellent application to various velocity and permeability data sets [e.g., 

Nelson, 1975; Ciampa, 1980; Kwon et al., 2001]. In the model, asperities are treated as a 

distribution of rods with different heights, which are mechanically equivalent to the ones 

used in other models in which the asperities are hemispheres, wedges, cones, etc. [e.g., 

Greenwood and Williamson, 1966; Jones, 1975; Walsh and Grosenbaugh, 1979]. 

Different height-distribution functions (e.g., exponential, Gaussian, power-law) can 

be used in the Bed-of-Nails model. Gangi [1978] chose to use a power-law form for the 

height distribution function given by                                                                                                               

                  1)/1()( −−= n
oT whNhN                              ∞≤≤ n1                            (14)                            

where N(h) is the number of asperities having heights between h and wo (wo ~ maximum 

crack width), and NT is the total number of rods. This distribution function was chosen 

because it is easy to integrate and thus gives a simple, but useful analytical expression. 

The power coefficient n characterizes the distribution function of the asperity lengths 

[Gangi, 1978]. For example, a very smooth surface (i.e., a well-polished surface) with 

only a very few short asperities is characterized by n~1. On the other hand, a large n 
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describes a fracture with only a few tall asperities (e.g., a new fracture with just a few 

large intact asperities). 

Velocity depends on the elastic modulus of the cracks, which increase as asperities 

are compressed, and permeability depends on the width w of the crack, which is a 

function of effective pressure Pe because the width narrows as the asperities are 

compressed. For the Bed-of-Nails model, the width w of the crack varies with effective 

stress Pe [Gangi, 1978] as 

   n
eo PPww /1

1 )/(1/ −=                                                               (15)  

where  

== nbwENP oo /2
1  constant 

E = the rod’s Young’s Modulus 

oN = average number of rods per unit area 

b = the ratio of the rod’s cross-sectional area to their length (assumed equal for all 

rods) 

1P is a constant proportional to E, which varies from rock to rock [Gangi, 1978, 

1981].  

The pressure dependence of the permeability k can then be explained by this model 

because k is proportional to w3, that is 

                        
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o
o w

wkk                                                                     (16) 

where ok is the permeability when oww = . The pressure dependence of permeability is 

thus 

                 3
1 ])/(1[)( m

eoe PPkPk −=                                                        (17) 

where nm /1= . 
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Figure 1. Comparison of Navajo sandstone permeability data with Bed-of-Nails 
theoretical curves. Data shows excellent correlation, especially when m = 0.225 
(i.e., n = 4.44), where m=1/n. Note that there is a data point at P/P1=0  
(modified after Gangi [1978]). 

 

 

The permeability measured as a function of confining pressure for cylindrical 

Navajo-sandstone samples [Nelson, 1975] has been fitted using the model given above 

[Gangi, 1975, 1978]. The theoretical curves show excellent agreement with the 

experimental data (Figure 1). Kwon et al. [2001] measured permeability as a function of 

effective pressure, and their data has also been fitted using the Bed-of-Nails model. 

Following the argument in Gangi [1975, 1978] and Carlson and Gangi [1985], when 

cracks in rocks are non throughgoing some asperities are in contact when no pressure is 

applied. To account for such condition, an equivalent “initial pressure” Pi is introduced 

such that (15) becomes 

                                         m
io PPPwPw ]/)[(1/)( 1+−=                                         (18) 
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The crack has some initial width w(0) such that 

                                                 m
io PPww )/(1/)0( 1−=                                                 (19) 

The linear crack porosity )(PLφ  is the sum of the crack apertures, w(P) along a line, 

divided by the length of the line L 

                                       ooL wPwLPwP /)(/)()( φφ ==                                         (20) 

Gangi [1978, 1980, 1981] has shown that the modulus of a crack for the power-law, 

Bed-of-Nails model is 

                                    
m

i

o
cr P

PP
mw

wP
dw
dPwM

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=−≅

1

1

1                                         (21) 

In Carlson and Gangi [1985] case I, they assume the grain modulus Mg is much 

larger than the crack modulus Mcr such that the modulus of a rock, Mr, is given by  

                              )(/)](1[)(/)()(/1 PMPPMPPM gLcrLr φφ −+=                      (22) 

now becomes (when crg MM >> ) 

                                                   )(
)(

1)( PM
P

PM cr
L

r φ
≈                                              (23) 

Using the definition of velocity in a rock 

                                            2/1)](/)([)( PPMPV rr ρ=                                            (24) 

where rρ is the density of the rock, and combined with all the previous approximations, 

the variation of P-wave velocity at “low” effective pressures is given by (for the power-

law, Bed-of-Nails model)  

                                             2/)1()]/(1[)( m
ieoe PPVPV −+=                                       (25) 
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where Pe and m are defined above, and Vo is velocity at 0=eP . Pi is the equivalent initial 

pressure, which accounts for the fact that some asperities are in contact at 0=eP .  

Elastic wave velocities of thermally cracked rocks measured as a function of 

pressure [Ciampa, 1980] were successfully fitted using this model [Gangi, 1981]. 

Carlson and Gangi [1985] fitted the variation with pressure of compressional wave 

velocities in several rock samples as a function of confining pressure using the same 

model (Figure 2). A nanofossil chalk data set has also been successfully fitted [Gangi 

and Carlson, 1996] using the power-law Bed-of-Nails model. 
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Figure 2. Compressional wave velocity vs. confining pressure (Pp = 0) showing 
laboratory data (triangles), and Bed-of-Nails fitted curves (equation (25)). Case 
I model being shown (modified after Carlson and Gangi [1985]). 
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Summarizing, the Bed-of-Nails model has proven to be a very good approximation 

for the variation with pressure of various mechanical and transport properties, such as 

velocity and permeability. The Bed-of-Nails model can be used to assess the effect of 

random errors on the resolution of model parameters from experimental measurements 

of permeability and P-wave velocity as a function of pressure. 
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CHAPTER III 

METHODS 

 

Estimates of model parameters are usually obtained by fitting experimental data to a 

given theoretical model. It is important to note the difference between fitting data to a 

known theoretical model as supposed to fitting the data to an arbitrary function. Some 

programs can be used to fit data to several functions and choose the one that best fits the 

data. This seems appealing at first because there is no need to look for a specific 

equation to begin with; however, the problem is that these equations have no scientific 

context appropriate for the experimental data being used [e.g., Motulsky and Ransnas, 

1987]. Even if the equation fits the data well, the results are often meaningless in the 

context of the experiment. This is why it is important to fit the data to a sound theoretical 

model known to explain the data being modeled. 

Model fitting can be done by linear regression or non-linear regression depending on 

whether the fitting equation is linear or non-linear in the parameters. When the data 

allow it, linear models may be used. Linear regression finds values for the slope and 

intercept that define a straight line (or hyper plane in multi-dimensional space) that best 

explains a given data set. More precisely, it finds the hyper plane that minimizes the sum 

of the squares of the vertical distances of the points from the hyper plane. Achieving this 

goal of minimizing the sum-of-squares is quite simple in linear or multilinear regression, 

and there is no ambiguity because there is only one minimum for the sum-squared error 

surface. Non-linear regression is more general, and the goal is to minimize the sum of 
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the squares (i.e., the misfit) of the distances of the points from the surface [e.g., Motulsky 

and Ransnas, 1987; Motulsky, 1996]. It is almost impossible to achieve this directly, as 

with linear regression and, normally, non-linear regression uses an iterative process to 

minimize the error.  

The process of non-linear regression requires several steps to minimize the error 

[e.g., Parrish and Gangi, 1981; Motulsky and Ransnas, 1987; Motulsky, 1996]. First, an 

initial estimate for each of the parameters is input into the program. It is usually possible 

to plot the data and visually estimate what the values of the parameters are. Once the 

initial estimates are given to the program, a curve is generated and the sum-of-squares is 

calculated. The program then adjusts the parameters to make the curve come closer to 

the data. The most common algorithm to adjust the parameters is the Levenberg-

Marquardt algorithm [Levenberg, 1944; Marquardt, 1963]. The parameters may be 

adjusted several times until the changes make almost no difference in the sum-of-squares 

of the distances of the points from the curve, or until there is no significant change in the 

model parameters on successive iterations. The values of the parameters are reported at 

the end of the process. The minimized cost function, 2χ  (chi-square) for our study, is 

also reported by the program as an indicator of the goodness of the fit [e.g., Bevington, 

1969]  

                                
2)(

2 );(∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i i

n
ii xyy

σ
χ

P
                                                     (26) 

where iy is the observed ith value, );( )(n
ixy P is the calculated value at ix  for the 

parameter vector )(nP  , and iσ  is the uncertainty in the individual values of iy . 
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Many physical phenomena, such as the variation of compressional velocity and 

permeability as a function of pressure, are non-linear in the parameters (e.g., Vo, Pi, and 

m for velocity). Non-linear fits can be used to estimate the best values of the model 

parameters and their uncertainties [e.g., Jennrich and Ralston, 1979]. Uncertainties in 

the model parameters are proportional to the overall misfit (also referred to standard 

error or simply the s.e.) between the model and the data [e.g., Parrish and Gangi, 1981], 

which includes systematic misfit and random experimental error. In the absence of 

systematic error, the uncertainties in the model parameters depend on the measurement 

errors (i.e., on the precision of the measurements). If the experimental misfit is large, one 

or more parameter estimates may be poorly constrained.  

In this study, we fit the Bed-of-Nails model to velocity and permeability data sets 

[Nelson, 1975; Carlson and Gangi, 1985; Gangi and Carlson, 1996; Kwon et al., 2001] 

to determine the uncertainties of the model parameters, and their sensitivity to the level 

of error in the data. Other issues such as extrapolation of high-pressure measurements 

from those made at low pressures, sensitivity of model parameters to measurements 

made at 0=eP , and effects of using a non-linear fitting routine on the resolution of the 

model parameters, are also addressed in this study. 

The errors in the measured values of an experiment are random and, therefore, it is 

only one of many possible outcomes (e.g., the actual experiment could be an outlier). By 

using the determined parameters to generate error-free data sets, and adding Gaussian 

error to them, we can explore the range of possible outcomes of the experiment. The first 

step is to fit the Bed-of-Nails asperity-deformation model [Gangi, 1975, 1978] to the 
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experimental data set of interest, and obtain best estimates of the model parameters. 

These estimates are then used to generate an error-free, “true”, or ideal, theoretical 

model. To model the experiment, we add Gaussian error to the theoretical model and 

obtain a set of best-fitting parameters. The new fit to this data gives a new set of 

estimates for the model parameters and their uncertainties. This process yields one 

realization of the model experiment. Thirty realizations of this procedure are performed 

to get a statistically meaningful estimate of the range of outcomes of the experiment.  

Gaussian errors (i.e., random errors having a Gaussian distribution with mean, 0=μ , 

and a standard deviation, 1=σ ) were generated using the Box and Muller [1958] 

transformation, given by 

          )2cos(ln2 211 πηηξ −=                            (27) 
 

                                 )2sin(ln2 212 πηηξ −=                                                        (28) 

where 1η  and 2η  are two independent random numbers between zero and one drawn 

from a uniform distribution, and 1ξ  and 2ξ  are two new independent random numbers, 

drawn from a Gaussian distribution with 0=μ , and 1=σ . These random independent 

numbers are then scaled to generate errors that are introduced in the synthetic data sets. 

Because the variations of velocity and permeability with pressure in this study are 

non-linear, it is pertinent to review some theory on the non-linear least-squares-fitting 

algorithm and error propagation [e.g., Bevington, 1969; Parrish and Gangi, 1981; 

Bevington and Robinson, 1992]. Say we have one dependent variable which depends on 

ix , the vector of independent variables, ),...,,( 21 mxxx=x , and yi is the ith value of 
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dependent variable (Hereafter, bold face type denotes a vector). There are N data 

points ),( ixiy , , and.. The objective is to fit the data to a function obtained from a 

theoretical model (or some fitting function) 

                                                   );( PxYy =                                                            (29) 

where P is a vector of m parameters, ),...,,( 21 pPPP=P and );( PxY is the expression 

obtained from the theoretical model. 

The problem is to find the best-fitting parameter vector P  by making a least-squares 

fit of );( PxYy =  to the data )( ixyyi = . Following the development of Parrish and 

Gangi [1981] (see also Bevington [1969]), we take );( PxiYyi =  and ),...,( 21 pPPP=P , 

and minimize the sum-squared-error or cost function 

                                             ∑
=

−=
N

i
i YyN

1

22 )];([ Pxiδ                                           (30) 

By solving the set of p simultaneous equations 

          ∑
=

−
∂
∂

≡≡
∂
∂ N

i
i

jj

Yy
PP

N
1

22 )];([0 Pxiδ  for mj ,1= ; Ni ,1=                       (31) 

If );( PxiY  is a linear function of the parameters, the best fit can be found by simple 

linear regression. However, if );( PxiY  is a non-linear function of one or more 

parameters (as it is the case of this study), the best fit must be found by other methods. A 

common approach is to approximate );( PxY  by the first two terms of its Taylor series 

expansion to make a linear approximation, and then solve for P  by iteration: 
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Now approximate );( PxY : 

                 ...);();( )1()0(

)1()0()0( +∂+∂+≅
PPPP PPPxPx YdYdYY                          (33) 

where )0(P is an initial estimate of P  and )0(Y is the estimate of Y computed from )0(P . 

 

We now have 
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Letting )0(Yyy ii −=Δ we can write 
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This is a set of simultaneous equations which can be written in matrix form: 
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or  

                                             )0()0()0( PMY d=                                                                (37) 

therefore  

                                      )0()0()0( 1

YMP
−

=d                                                               (38) 

Now we find the next iteration to P  by setting 

                          )0()0()0()0()0()1( 1

YMPPPP
−

+=+= d                                            (39)    

and find )1(Pd . The iteration procedure is ended when 
P
Pd

 is small enough, at which 

point )(nP  is a vector of best fitting parameters. 

                                         )1()1()1( 1

YMP
−

=d                                                                   (40) 

The parameter covariance matrix is given by 
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where the numbers refer to the parameter number (e.g., 111 PSS = ), and the “error” matrix 

is 

                                           1−= MSP S                                                                 (42) 

where PS is the uncertainty in a given parameter, and S is the misfit (i.e., the standard 

error of the estimate), which is an estimator of the Gaussian error in the data. The 

term 1−M  is a constant in the linear case because it depends only on ix . In the non-

linear case, however, 1−M is not strictly invariant, but depends on different factors such 

as initial choice of values for model parameters, the level of error, the values of the 

independent variable(s), and the iteration path, which does not always lead to the same 

answer. Nevertheless, we expect PS  to be proportional to S.  

To test the hypothesis that 

                                           .1 const
S

≈= −MSP                                                      (43) 

the variation in compressional velocities with pressure in a quartzite sample reported by 

Carlson and Gangi [1985] was fit to equation (25) with model parameters Vo, Pi, and m, 

where nm /1= . The data itself shows a typical variation of compressional velocity in 

rocks as a function of increasing confining pressure; a rapid increase in velocity at low 

pressures (0-100 MPa), and then slower increase at higher pressures. Using the software 

Kaleidagraph, the quartzite data were fitted using the Bed-of-Nails asperity-deformation 

model [Gangi, 1975, 1978] yielding approximations for the parameters Vo, Pi, and m 

(Figure 3). The curve of the theoretical model fits the data quite well, with a standard  
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Figure 3. Best fit to quartzite velocity data (triangles) adopting the Bed-of-Nails 
model. Best estimates for model parameters shown inside the box. 

 

 

error of just 0.009 km/s, but there is some systematic error detectable throughout the fit. 

Below 100 MPa, the best-fitting curve tends to underestimate the experimental values, 

while above 200 MPa the best-fitting curve over-estimates the experimental values, and 

then underestimates the values above 500 MPa. 

The best-fitting model parameters were used to generate an error-free, synthetic data 

set of compressional-wave velocities as a function of confining pressure adopting the 

power-law Bed-of-Nails model [Gangi, 1975, 1978] given by equation (25). Our 

procedure is to use the standard error from the initial fit as the standard deviation of the 

Gaussian error in the model. Figure 4 shows the error-free, synthetic data set as a solid 

curve bounded by dashed lines, which represent the level of error being introduced, in  

N = 39



 

 

24

N = 39
s.e.=0.009

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3

0 100 200 300 400 500 600 700

Confining Pressure (MPa)

C
om

pr
es

si
on

al
 V

el
oc

ity
 (k

m
/s

)

Synthetic Data (Best Fit)
Synthetic + s.e.
Synthetic - s.e.
Random Trial

 
Figure 4. Gaussian Error introduced to error-free, synthetic velocity data set. 
Best-fitting curve shown as a solid curve, and level of error added is shown by 
the dashed line. Circles show one of the realizations performed at this error 
level. 
 

 

this case the standard error of 0.009 km/s. The open circles show a single realization 

chosen at random from the total of thirty that were done. Notice that 14 out of 39 data 

points fall outside the standard error boundaries. This is what we expect when 

introducing errors drawn from a Gaussian distribution where approximately 32% of the 

values fall outside one standard deviation from the mean. Note also that there is more 

scatter in the model than in the real data (Figure 3) because the systematic error in the fit 

to the experimental data is included in the model random error (Figure 4).  

Each of the thirty realizations was fitted using equation (25) and, thus, generated a 

new set of estimates for the model parameters. To test the hypothesis that the term 

1−M is approximately constant in the non-linear case (equation (43)), we repeated this  
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Table 1. Summary of numerical results for velocity data showing three different amounts 
of error introduced. 

  Error Introduced                Vo Uncertainty                Pi Uncertainty                 m Uncertainty                                       
     (km/s x 102)*                   (km/s x 102)*                 (MPa x 10-1)*                      (x 103)* 
 

        0.009                                  0.005                                 3.5                              0.0016 
        0.023                                  0.011                                 8.8                              0.0041 
        0.046                                  0.024                               17.7                              0.0082     
  
   * Notice the values have been scaled for purposes of showing them together in Figure 5.  
      Uncertainties in parameters are the average value from the 30 realizations.   
 
 
 
 

analysis for two additional levels of random error: 0.023 and 0.046 km/s. The average 

standard error for each parameter, taken over the thirty trials for each level of error, is 

given in Table 1, and the results are summarized in Figure 5, which shows the 

relationship between the parameter uncertainties and the misfit introduced to the error-

free, synthetic data sets. In each case, the relationship is clearly linear. Two of the 

parameters (Pi and m) show a perfect fit with a coefficient of determination of 1. The 

other parameter (Vo) also shows an excellent fit with a coefficient of determination of 

0.9954. The linear relationship between the parameter uncertainties and the misfit 

indicate that, in fits of this model to experimental data given typical experimental errors, 

1−M  is approximately constant, and the parameter uncertainty matrix PS is 

proportional to the misfit S (or simply the standard error). This result is only true in some 

cases, and in fact we will see this relationship does not hold when working with the 

permeability data sets (see chapters VI and VII). 
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Figure 5. Linear relationship between parameter uncertainty and misfit. 
Parameters are shown as circles (Vo), squares (Pi), and triangles (m). Linear 
regressions have been included for each one the parameters, and their 
corresponding best-fitting equations and correlation coefficients. 
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CHAPTER IV 

EXTRAPOLATION EXPERIMENTS 

 

Extrapolating a fit beyond the range of the data is usually considered bad practice 

and often avoided. Extrapolation can sometimes be justified if the fit is made to a sound 

theoretical model [e.g., LuValle, 2004]. High-pressure measurements are often difficult 

and costly to make, which is why trying extrapolation to higher pressures is useful. What 

we wish to know is how well we can extrapolate experimental data (acquired at 

pressures between 0 and 100 MPa) to 600 MPa. To answer this question we have used 

an epidosite data set [Carlson and Gangi, 1985] consisting of fifty compressional 

velocities measured over pressures ranging from 1-500 MPa (See Table A-1).  

The complete data set has been fitted (Figure 6) to the Bed-of-Nails asperity-

deformation model [Gangi, 1975, 1978], yielding best-fitting values for Vo, Pi, and m of 

6.62 + 0.01 km/s, 12.2 + 1.2 MPa, and 0.9323 + 0.0014, respectively, with a standard 

error of 0.017 km/s. The parameter Vo is the zero-pressure velocity, and it is usually very 

well-constrained by measurements made at low pressures. The parameter m, which 

ranges from 0 to 1, defines the shape of the curve. It also tends to be well-constrained if 

enough data are available at low pressures where the largest slope change occurs (in 

Figure 6 this would be approximately in the range 0-100 MPa). The most variable 

parameter in the epidosite compressional-velocity data set is Pi, which is the equivalent 

“initial pressure” (or “stress”). Pi may be poorly constrained because there is no data  
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Figure 6. Non-linear fit to epidosite compressional velocity data [Carlson and 
Gangi, 1985]. Values of best-fitting parameters Vo, Pi, m adopting the Bed-of-
Nails asperity-deformation model are shown. The experimental data are shown 
with triangles and best-fitting curve is the solid line.  

 

 

near this value (i.e., no negative pressure values). Notice the best-fitting curve (Figure 6) 

has been extended to a theoretical negative pressure to show Pi.  

There is some systematic misfit between the model and the data. The best-fitting 

curve first tends to overestimate the measured values at low pressures of 20-70 MPa, 

underestimate the measured values at pressures of 70-200 MPa, and overestimate the 

velocities at high pressures (350-500 MPa). However, the Bed-of-Nails model fits these 
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data remarkably well and, thus, is a viable theoretical model that explains the variation 

of velocity with pressure. 

To assess the accuracy and precision of velocities at high pressures estimated by 

extrapolation based on the Bed-of-Nails model, these best-fitting values were used to 

generate a synthetic, error-free data set, to which we have added random, Gaussian error 

as described previously. The extrapolation was done by limiting the “experimental” 

pressures to 0-100 MPa. The idea is to add Gaussian error to the synthetic set, and make 

a non-linear fit to obtain a best-fitting model. We estimate the velocity at 600 MPa from 

the error-free model with the added noise. We also varied the number of data points 

between 0 and 100 MPa (N= 27, 15, 9) to evaluate the extrapolation at different levels of 

data density. Thirty realizations were done at each one of these levels to assure 

statistically meaningful results.  

The first set of trials was done using 27 data points between 0-100 MPa. The 

pressures used were the actual pressures. The results are shown in Figure 7 with two data 

sets plotted; the first is the synthetic data set, and the second is an example chosen at 

random from the 30 trials to show the extrapolated values above 100 MPa. The values of 

the parameters Vo, Pi, and m are 6.62 + 0.01 km/s, 12.4 + 2.1 MPa, and 0.932 + 0.004, 

respectively, where the uncertainties given are the standard deviations, s.d., for each 

parameter over the 30 trials. The standard error in each one of the parameters over the 30 

trials is an estimator of the s.d. of the data. Notice how close the estimates of the 

parameters are to the true values from Figure 6. The inset in Figure 7 shows the  
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Figure 7. Extrapolated velocities up to 600 MPa using 27 points in 0-100 MPa 
range. Synthetic data set is shown by solid line, and data from single realization 
are shown with triangles after 100 MPa. Inset shows distribution of 
extrapolated values at 600 MPa over 30 realizations. The true value at 600 MPa 
is 7.560 km/s, and the mean ΔV is 0.003 + 0.007 km/s. 

 

 

distribution of extrapolated values at 600 MPa over the thirty realizations. The mean ΔV 

(i.e., the mean of the difference between the extrapolated values and the true value, at 

600 MPa) is 0.003 + 0.007 km/s. Thus, there is no systematic error in the extrapolated 

velocities. The range of 30 extrapolated velocities is 7.45-7.65 km/s, with a mean and 

standard deviation of 7.563 km/s, and 0.042 km/s, respectively. The precision of the 

extrapolated velocities is approximately 0.55%, which compares favorably with the 

experimental error of 0.22%. 

The second set of trials was done under the same conditions as the previous 

experiment, but this time reducing the number of data points used for the extrapolation  
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Figure 8. Extrapolated velocities up to 600 MPa using 15 points in 0-100 MPa 
range. Synthetic data set is shown by solid line, and data from single realization 
are shown with triangles after 100 MPa. Inset shows distribution of 
extrapolated values at 600 MPa over 30 realizations (note change of scale). The 
true value at 600 MPa is 7.560 km/s, and the mean ΔV is 0.003 + 0.013 km/s.  

 
 

from 27 to 15. The results are shown in Figure 8. The values of the parameters Vo, Pi, 

and m are 6.62 + 0.02 km/s, 12.2 + 4.2 MPa, and 0.932 + 0.008, respectively, where the 

given uncertainties represent the s.d. for each parameter over the 30 trials. The values of 

the parameters are still very close to the true values from Figure 6. The uncertainty in Pi 

has increased significantly compared to the previous case, whereas the uncertainties in 

Vo and m remain essentially unchanged. The mean ΔV is 0.003 + 0.013 km/s. This time, 

as expected, there is a larger range of extrapolated velocities of 7.35-7.75 km/s, with a 

mean and standard deviation of 7.563 km/s, and 0.072 km/s, respectively. For N=15, the  
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Figure 9. Extrapolated velocities up to 600 MPa using 9 points in 0-100 MPa 
range. Synthetic data set is shown by solid line, and data from single realization 
are shown with triangles after 100 MPa. Inset shows distribution of 
extrapolated values at 600 MPa over 30 realizations (note change of scale). The 
true value at 600 MPa is 7.560 km/s, and the mean ΔV is 0.034 + 0.017. 

 
 

precision of the extrapolation to 600 MPa is approximately 0.95%, approximately five 

times larger than the experimental error. 

In the third set of trials, we have only used 9 data points in the range 0-100 MPa to 

make the extrapolation to 600 MPa. The results are summarized in Figure 9. The values 

of the parameters Vo, Pi, and m are 6.62 + 0.02 km/s, 14.0 + 5.7 MPa, and 0.933 + 0.008, 

respectively, where the given uncertainties for each parameter represent the s.d. over the 

30 trials. The mean ΔV is 0.034 + 0.017 km/s, and this time ΔV is very nearly 

statistically non-zero at the σ2 level. This may be a result of the limited number of data 
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points used for the extrapolation (i.e., 9) and the values of the parameters reflect this, 

especially Pi and m.  Notice that the value of Pi has increased to 14.0 (from 12.2 and 

12.4 in the previous two cases). In this case, the range of extrapolated values has 

increased to 7.30-7.75 km/s. The mean and standard deviation are 7.526 km/s, and 0.097 

km/s, respectively. The precision of the extrapolated velocities is approximately 1.28%. 

To better explore the previous case where ΔV is significantly different from the first 

two cases, a plot of the original best-fitting curve (synthetic, error-free model) and the 

extrapolated best-fitting curve (average over 30 trails) obtained from only 9 data points 

has been generated (Figure 10). The misfit between the two curves at 600 MPa is 0.047 

km/s. Comparing the model parameters in the two cases, the first one that visually stands  
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Figure 10. Synthetic (solid line) data set against extrapolated (dashed line) best-
fitting curve (obtained from 9 data points in the range 0-100 MPa).  
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out is m (i.e., the “curvature”). The actual difference is not significant (0.932 in the 

synthetic data set, and 0.933 + 0.008 in the extrapolated data set). The parameter Vo did 

not change significantly between the two cases and therefore has little effect on the value 

of ΔV. The other parameter is Pi (12.2 in the synthetic data set, and 14.0 + 5.7 in the 

extrapolated case), and in this case the difference in Pi is ~ 15%. These results suggest 

that the variation of Pi gives rise to much of the error in the extrapolated value (e.g., 

where only 9 data points were used), and this inference can be tested by replacing the 

true Pi value when generating the average extrapolated best figure curve (Figure 11).  

The results shown in Figure 11 suggest that the effects seen in the last extrapolation 

case (Figure 10) are due primarily to the variation in the parameter Pi. The argument for  
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Figure 11. Synthetic (solid line) data set against extrapolated (dashed line) best-
fitting curve (obtained from 9 data points in the range 0-100 MPa) using true Pi 
value (Pi =12.2 MPa). This value has been used to generate an “extrapolated” 
best fitting curve.  
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this is that the extrapolated curve generated using the “true Pi“ value of 12.2 MPa 

overlies the synthetic curve. The misfit between the two curves at 600 MPa is 

0.013km/s, approximately three times less than the one (0.034 km/s) obtained when the 

average estimated Pi value (14.0 Mpa) was used (as supposed to using the true Pi). 

We have also tested the effects of model error for this data set (Figure 12). In this 

figure, the experimental data and the best-fitting model are shown in the lower portion of 

the plot. The upper portion shows the extrapolated velocities at 500 MPa where the 

highest pressure value used for the extrapolation is the corresponding value at which 

each data point is shown. For example, the second extrapolated data point from right to 

left corresponds to 460 MPa. This means that the highest pressure value used to 

extrapolate this value at 500 MPa was 460 MPa. The next value to the left corresponds 

to 440 MPa, and this means that the highest pressure value used to extrapolate to 500 

MPa was 440 MPa. What the figure shows is that from approximately 240-460 MPa, the 

systematic error in the extrapolated velocities at 500 MPa increases at a rate of about 3-5 

m/s every 20 MPa of pressure. Below 240 MPa, the systematic error in the model 

increases at a rate of over 10 m/s, and also the error in the extrapolated velocity at 500 

MPa increases as we lower the highest pressure value used for the extrapolation. Below 

100 MPa, every time we take a data point out for the extrapolation, the error in the value 

of the extrapolated velocities at 500 MPa increases when compared to the value of 7.510 

km/s, as predicted by the best-fitting model. Eventually, it is pointless to keep 

extrapolating to 500 MPa because the obtained values are far off the expected value. 
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Figure 12. Effects of model error on extrapolated velocities at 500 MPa from 
epidosite data set. Experimental data (triangles) and best fitting model (solid 
curve) are shown in lower portion of figure. Upper portion shows extrapolated 
velocities at 500 MPa where corresponding pressure value was the highest value 
used to do the extrapolation. 
 

 

We also tested the effects of adding “truly” zero-mean Gaussian error to this 

epidosite data set. This arises from the fact that, when adding the Gaussian errors 

generated by the Box-Muller algorithm (i.e., Gaussian errors with a mean of zero and 

standard deviation of 1), we are only working with a subset of the numbers generated. 

This subset may not have (very unlikely) a mean of zero and a standard deviation of one. 

To test the effects of adding truly, zero-mean error, we have added Gaussian errors to the 
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synthetic data set generated from the best fit to the original data (Figure 6) as we have 

done previously. The only difference now is that we have set up two different cases: 1) a 

subset with non-zero mean error added to the synthetic data set, and 2) a subset with 

zero-mean error added to the synthetic data set. We have accomplished the second case 

by subtracting the mean value obtained in the first case from every error value making 

up the subset of Gaussian errors. After subtracting this value, a new mean is calculated 

to be zero, but still with the same standard deviation as the previous case.  

      The results of the two previously mentioned cases are shown in Table 2. The table 

shows the mean value of the Gaussian error used for each trial (i.e., this is the average 

value of the errors generated by the Box-Muller algorithm) and its standard deviation. 

The next column shows the mean, scaled error (i.e., this is the value on the first column 

multiplied by the original standard error of the data from the best-fit of 0.0168 km/s, so 

that it can be added to the synthetic velocities), and its standard deviation. The other 

columns show the best-fitting parameters for each trial. Notice the table has been divided 

in two cases: 1) the case where non-zero Gaussian error has been added, and 2) the case 

where zero-mean error has been added. It is also important to note that, the standard 

deviations for both cases are the same, even though the mean values are not, and this is 

what we expect.  

By looking at the results we can clearly see that there is no difference, statistically, in 

the values of the best-fitting parameters Vo, Pi, and m obtained for either case. The 

values of the best-fitting parameters vary from case to case, but are all very close to one 

another. The standard errors are exactly the same trial in the two different cases. 
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Table 2. Summary of results for experiment when adding “truly”, zero-mean Gaussian error. 

                                                         
 Trial            Error       s.d.     Scaled Error     s.d.                Vo                   Pi                               m                    s.e.           
                   (Mean)                     (Mean)                          (km/s)             (MPa)                                    (km/s) 
                                                                             
 

                                                      NON-ZERO GAUSSIAN ERROR ADDED    

 

Best Fit           -               -               -                -          6.62 + 0.01      12.2 + 1.2     0.932 + 0.001     0.0168 

  

    1             0.0462     0.9296     0.0008       0.0156     6.63 + 0.01      14.1 + 1.2    0.930 + 0.001      0.0155 

  

    2             0.0771     0.8822     0.0013       0.0148     6.62 + 0.01      11.3 + 1.0    0.933 + 0.001      0.0150 

   

    3            -0.1804     1.0114    -0.0030      0.0170     6.62 + 0.01      13.1 + 1.2    0.931 + 0.001      0.0173 

 
                                                    ZERO GAUSSIAN ERROR ADDED 
 
 
Best Fit           -               -               -                -          6.62 + 0.01      12.2 + 1.2     0.932 + 0.001     0.0168 

  

    1             0.0000     0.9296     0.0000       0.0156     6.63 + 0.01      14.0 + 1.2    0.930 + 0.001      0.0155 

  

    2             0.0000     0.8822     0.0000       0.0148     6.62 + 0.01      11.3 + 1.0    0.933 + 0.001      0.0150 

   

    3             0.0000     1.0114     0.0000       0.0170     6.63 + 0.01      13.1 + 1.2    0.931 + 0.001      0.0173 

 
*     s.d. = standard deviation. 
**   The column labeled “error” represents the mean value of the errors being added. 
*** The column labeled “scaled error” represents the error scaled using the original standard 
error of 0.0168 km/s to be added to the synthetic velocities. 

 

 

In summary, we performed three different experiments extrapolating models up to 

600 MPa with the only difference being the number of data points used to extrapolate 

(e.g., 27, 15, 9). We have used a low rms error (0.017 km/s), and this means that the  
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results of our experiments assume precise measurements of compressional velocity as a 

function of confining pressure. Also, the theoretical model is known to explain the data 

over pressures from 0-600 MPa, and this is another very important assumption before 

attempting to extrapolate. The standard deviation in the range of extrapolated values 

varied from 0.042 km/s in the case of 27 data points, to 0.097 km/s in the case of 9 data 

points. These values represent errors ranging from 0.55 to 1.28 %. These results show 

that we can extrapolate to high pressures (up to 600 MPa) with enough confidence by 

making measurements at low pressures (0-100 MPa). Even in the case where only 9 data 

points were used for the extrapolation, the error was still relatively small (1.28%). The 

results also show that the parameter Pi is the most sensitive to the reduction of data 

points used for extrapolation, and it dictates to a great extent the scatter present when 

only using 9 data points. Because of this, it is important to constrain the parameter Pi as 

well as possible by making measurements at pressures close to zero.   
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CHAPTER V 
 

VELOCITY AS A FUNCTION OF EFFECTIVE PRESSURE 

 

In the previous section we looked at extrapolation and resolution based on 

compressional velocities measured over a range of confining pressures only. We expand 

the analysis to study the resolution of model parameters based on compressional 

velocities measured over a range of both confining and pore pressures. We have used a 

marly-nanofossil-chalk data set [Gangi and Carlson, 1996] of compressional velocities 

taken over confining and pore-fluid pressures ranging from 5-60 MPa. The chalk is of 

Cretaceous age from DSDP Site 357 on the Rio Grande Rise. The wet bulk density of 

the chalk sample is about 2400 kg/m3 and the porosity is near 20%. The main objective 

in this part of the study is to assess the validity of various effective pressure 

approximations previously given in equations (5-7) using the Bed-of-Nails model 

[Gangi, 1975, 1978].  

To illustrate the effects of the different effective-pressure approximations, let us 

rewrite the Bed-of-Nails model given in equation (25),  
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Curves of compressional velocity versus confining pressure at constant pore pressure 

[Gangi and Carlson, 1996] are shown in Figure 13. Each of the curves (dashed lines) 

shown in Figure 13 is a curve of velocity versus confining pressure at constant pore 

pressure starting at 0=pP MPa on the left side, and moving to 40=pP  MPa on the 

right side.  

The top diagram shows curves based on the Pe1 definition (equation (5)), where 

effective pressure simply equals the differential pressure Pd. In this case, the effective-

pressure law, Pe1, has the effect of shifting each curve to the right by a distance Pp. The 

shapes of all curves are exactly the same, and they progressively get shifted to the right 

by the given pore-pressure increment. The next effective-pressure definition, Pe2 

(equation (6)), though not shown in the figure, has a similar effect of shifting the curves 

to the right, the difference being that the shift is a fraction of the pore pressure, pPχ , 

where χ is a constant. The Pe3 model (equation (7)) is shown at the bottom diagram of 

Figure 13. In this case the shift in the pore-pressure curves is a function of 

Pd, pdo PaP )( −χ . Because the shift decreases with increasing confining pressure, curves 

of velocity versus confining pressure at constant pore pressure converge towards a 

common value at high values of Pc. 

Having illustrated the effects of the various effective-pressure definitions on 

compressional velocity data, we can now analyze the chalk data [Gangi and Carlson, 

1996]. A baseline was set for the experiment by fitting only the )0,( cPV data (Figure 14) 

to generate an error budget that can be used for the entire 
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Figure 13. Curves of velocity versus confining pressure at constant pore-fluid 
pressure showing effects of the various effective-pressure definitions. 
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Figure 14. Chalk data fitted with the )0,( =pc PP case. Best-fitting parameters 
and s.e. shown in inset.  

 

 

analysis. For 0=pP , the values of the parameters Vo, Pi, and m are 2.79 + 0.02 km/s, 6.7 

+ 3.2 MPa, and 0.921 + 0.010, respectively, with a standard error of 0.002 km/s, which 

we take to be the experimental error. We can determine how much systematic error there 

is when the fit is applied to the entire chalk data set. 

The chalk data [Gangi and Carlson, 1996] has been fitted using the Bed-of-Nails 

model [Gangi, 1975, 1978] with the three different effective pressure approximations 

given by equations (44-46), and the results are shown in Figure 15. The constant pore-

pressure curves show the same rapid rise of velocity at low pressures, but elevated Pp 

values have the effect of lowering the velocity. The constant pore-pressure curves tend  

N = 7
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Figure 15. Best-fits to measured compressional velocity in a water-saturated 
chalk for confining and pore pressures between 0-60 MPa. Experimental data 
(open triangles) matches color code for calculated constant pore-pressure curves 
(dashed lines), and calculated single confining/pore-pressure points (dash 
symbols).  
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to converge at high Pc values in the Pe3 case.  

In the Pe1 definition (top diagram in Figure 15), the standard error is 0.019 km/s and 

is quite large compared to the estimated experimental error of 0.002 km/s. Comparing 

the Pe1 definition (top diagram in Figure 15) to the baseline previously set (Figure 14), 

the excess error is ~0.017 km/s (e.g., the s.e. for the baseline is 0.002 km/s, and the s.e. 

for the Pe1 definition is 0.019 km/s). The model overestimates velocities at low Pp and 

underestimates velocities at high Pp. The excess error is systematic error, and it indicates 

that the Pe1 definition used does not explain the data. 

Applying the Pe2 definition (middle diagram in Figure 15) to the data, the standard 

error is reduced to 0.009 km/s, but there is still excess error compared to the expected 

measurement error of 0.002 km/s. The systematic misfit decreases as a result of adding 

the extra parameter χ . There is still disagreement between the experimental data and the 

corresponding theoretical values, which implies that the Pe2 definition also does not 

explain the data.  

The Pe3 definition (bottom diagram in Figure 15) gives the best resolution of all three 

effective-pressure models with the addition of two new model parameters (e.g., oχ ,a) 

with respect to Pe1 . The standard error is ~ 0.004 km/s, twice as large as the expected 

experimental error of 0.002 km/s, but most of the data is well-explained by using the Pe3 

definition. 

A different way to show the same effects of the various effective pressure 

approximations is to plot the data as a function of effective pressure (Figure 16). This 

collapses the data to a single trend (at least in the case of Pe2 and Pe3), and the best-
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fitting line is now a single line throughout. The same effects as before (Figure 15) of the 

various Pe models can be seen in this figure. In the Pe1 model (top diagram in Figure 16), 

the scatter around the best-fitting curve is an indication that the Pe1 definition is not valid 

and more parameters are needed to explain the data. When adding the single 

parameter χ  in the Pe2 definition, the misfit is significantly reduced but there is still 

disagreement between the experimental data and the best-fitting line. The last definition, 

Pe3, reduces almost all of the misfit and most experimental data fit the best-fitting curve. 

Comparing the uncertainties in the parameters that are common to all the 

approximations (e.g., Vo, Pi and m), it is easy to see that Vo is well-constrained in all 

cases with errors of less than 1%. Pi is the most sensitive parameter in all three effective-

pressure models, showing a decrease in the error from ~ 84% in the Pe1 definition to 

~23% in the Pe3 definition. Notice that even for Pe3 the error in Pi is still comparatively 

large. The parameter m shows a decrease in error from ~3% in the Pe1 model to ~0.7% in 

the Pe3 model. Overall, the resolution of model parameters Vo, Pi and m gets better going 

from Pe1 to Pe3, and this is clearly a result of using more information (e.g., more 

parameters) in the models. 

Fitting one real data set represents one realization of a stochastic or random process. 

Numerical modeling reveals how variable the results might be over a number of 

experiments. Three synthetic, error-free, data sets have been generated using the 

estimates of the parameters shown in Figure 16 adopting a particular effective-pressure 

approximation for each case (i.e., Pe1, Pe2, Pe3). We have introduced Gaussian error to  
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Figure 16. Best-fit to chalk data adopting various effective-pressure models as a 
function of effective pressure. Notice systematic misfit reduces as the number of 
parameters in model is increased, and overall resolution increases. N=27 for all 
three cases. 
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each data set by the method outlined in the previous section where we use the 

corresponding s.e. obtained from the original fits. After adding Gaussian error to the 

three synthetic data sets, a new fit is obtained yielding estimates for the best-fitting 

parameters. Thirty realizations of this procedure have been done for each effective-

pressure approximation to assure statistically-meaningful results. The average parameter 

values have been estimated from the fits to the synthetic data sets, as well as the s.e. for 

each one of the effective-pressure approximations.  

The results from the numerical experiments are very similar to the ones obtained 

from the fits to the experimental data (Table 3). Comparing the values of the parameters 

and their uncertainties to the ones estimated by fitting the experimental data it is clear 

that the difference is negligible. It is clear from these results that all the values for all 

parameters from the numerical experiments agree with the values obtained from fitting 

the experimental data.  

It is worth noting the change in the distribution of parameters Vo, Pi and m based on 

the level of error introduced (Figure 17), since they can be compared for the various 

effective-pressure approximations. The change in distribution for Vo as the level of error 

is decreased varies. The first level of error introduced (0.019 km/s) tends to increase the 

values of Vo (2.80-2.87 km/s), whereas the second level of error (0.009 km/s) tends to 

lower the values (2.76-2.82 km/s). The lowest level of error introduced (0.004 km/s) 

tends to confine the range of values to 2.77-2.81 km/s. The widest spread is in Pi as it is 

the parameter most sensitive to measurement error. The range of Pi is 3-13 MPa for the 

first two levels of error introduced (e.g., 0.019 and 0.009 km/s). The distribution tightens 
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Figure 17. Histograms for best-fitting parameters Vo, Pi and m to synthetic data sets to which Gaussian error has been 
added. N=27. Each column shows a different parameter. Each row displays the diagrams based on a particular 
effective-pressure approximation (e.g., going from Pe1 in the top row to Pe3 in the bottom row). The given error in the 
parameters is the standard deviation of the 30 trials, which is an estimator of the error in the parameters.  
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Table 3. Summary of best-fitting parameters to chalk data and numerical experiments. 

   Pe  *     s.e             Vo                   Pi                             m                     χ                oχ                  a 
Model   (km/s)     (km/s)             (MPa)                                                                            (MPa-1) 
 

1-E       0.019     2.84 + 0.02     9.3 + 7.8    0.920 + 0.024           -                  -                     - 
 
1-S       0.019    2.84 + 0.03      9.0 + 7.9     0.917 + 0.027           -                  -                     - 
 
2-E       0.009     2.78 + 0.02     6.3 + 3.5    0.916 + 0.012   0.84 + 0.02         -                     - 
 
2-S       0.009    2.79 + 0.02      7.5 + 3.9     0.912 + 0.014   0.83 + 0.02         -                     - 
 
2-S       0.019    2.78 + 0.05      7.1 + 7.9    0.913 + 0.028   0.83 + 0.05         -                     - 
 
3-E       0.004     2.80 + 0.01     7.8 + 1.8    0.917 + 0.006           -          0.92 + 0.01  0.013 + 0.002 
  
3-S       0.004    2.80 + 0.01      7.7 + 1.7    0.917 + 0.005           -          0.92 + 0.01  0.013 + 0.001 
 
3-S       0.009    2.79 + 0.02      8.6 + 4.2    0.915 + 0.013           -          0.92 + 0.03  0.013 + 0.003 
 
3-S       0.019    2.78 + 0.07      6.0 + 9.1    0.922 + 0.029           -          0.90 + 0.08  0.010 + 0.009       
   
* E = Fit made to experimental data. 
   S = Fit made to synthetic (numerical) data. Values of parameters shown are the average for 30 
trials. 

   Number in Pe column refers to the adopted effective-pressure approximation. 

 

(5-10 MPa) when the smallest error (0.004 km/s) is introduced. In the case of m, the 

behavior is very similar to Vo. The range of values for the first level of error (0.019 km/s) 

is 0.87-0.97, and the second level of error (0.009 km/s) tends to lower the values to 0.87-

0.93. The last level of error introduced (0.004 km/s) once again tightens the distribution 

of values to 0.89-0.93. The range of values of the parameters Vo, Pi and m decrease as 

the level of error introduced decreases. As we expected, the results agree with fits to the 

experimental data.  
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The results from fitting the synthetic data sets using the various effective-pressure 

approximations also confirm the fact that each subsequent model fits the data better than 

the previous one, and this is a result of the number of extra parameters that get added for 

each effective-pressure approximation. The parameters that are unique to a specific 

effective-pressure approximation (i.e., χ , oχ , and a) are very important because the 

resolution of a particular data set depends on the number of parameters used to describe 

the data. As noted previously, for this particular chalk data set, the Pe1 approximation 

lacks enough parameters to explain the data well, which is why it is necessary to expand 

the model to Pe2 and add an extra parameter (e.g., χ ) to minimize the scatter in the data. 

Pe2  is still missing some information, and therefore the fully-expanded Pe3 definition is 

necessary to constraint the data set at its best by including two extra parameters, oχ and 

a.  

To better compare the different effective-pressure approximation results, it is 

convenient to introduce the same amount of error to two different effective pressure 

models and see how they behave. Three new sets of numerical experiments were carried 

out for this purpose. In the first one, the s.e. obtained from fitting the Pe1 definition to the 

chalk data (i.e., 0.019 km/s) has been introduced to the synthetic data, but fitted using 

the Pe2  definition. In the second and third experiments, the s.e. obtained from fitting the 

Pe1 and Pe2 definitions (i.e., 0.019 and 0.009 km/s) have been introduced to the synthetic 

data, but fitted using the Pe3  definition. The results are summarized in Table 3. 

In the first experiment adopting the Pe2 definition, the error (0.019 km/s) appears to 

be large enough that one of the parameters, in this case Pi, over the 30 realizations, 
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cannot be resolved from zero (i.e., 9.71.7 ±=iP MPa). Recall that Pi was the most 

sensitive parameter to the change of effective-pressure approximations (and therefore 

change in error introduced), so it is not surprising that having increased the amount of 

error has resulted in failure to constrain Pi well. All other parameters (e.g., Vo , m, and χ ) 

are still very well constrained with values of 2.78 + 0.05 km/s, 0.913 + 0.028, and 0.83 + 

0.05, respectively. Comparing these last three values with the original case where the 

error was 0.009 km/s, the main difference is that there is an increase in the uncertainty of 

each one of these parameters by about a factor of 2.  

In the second experiment adopting the Pe3 model, the error introduced (0.009 km/s) 

has a similar effect on the value of all parameters compared to the previous case. This 

time though, the parameters Vo , Pi, m, oχ and a are successfully resolved yielding 

estimates of 2.79 + 0.02 km/s, 8.6 + 4.2 MPa, 0.915 + 0.013, 0.92 + 0.03, and 0.013 + 

0.003 MPa-1. The error in some of the parameters is high and not ideal for this type of 

experiment. The two most sensitive parameters in this experiment are Pi and a with 

associated errors of 49% and 23%, respectively. Notice also that oχ  is distinguishable 

from one at the σ2 level.  

In the last experiment still adopting the Pe3 model, the error introduced (0.019 km/s) 

causes Pi to have an associated error of 150%. Vo and m are still well-constrained with 

values of 2.78 + 0.07 km/s, 0.922 + 0.029, which represents errors of ~3% in each case. 

oχ is still resolvable from one with a value of 0.90 + 0.08 (e.g., ~9% error), and a is 

barely resolvable with a value of 0.010 + 0.009 MPa-1 (e.g., 90% error). 
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These results show that the effective-pressure approximation given by Pe3 is still 

appropriate to explain the data even at higher than expected levels of error such as 0.009 

km/s and 0.019 km/s. Remember that when going from Pe2 to Pe3, two parameters are 

used (e.g., oχ ,a) in place of χ . These two parameters are still resolvable (even though 

the uncertainties are high) at higher levels of error. Pi is the parameter that is most 

sensitive to experimental error in each case. This is an important result because it shows 

that the effective-pressure relation is well constrained, even when Pi is not well 

constrained.  

After fitting all three effective-pressure models to the chalk data [Gangi and 

Carlson, 1996], and numerically simulating and exploring the implications of these 

results, it is clear that the Pe3 definition is the most suitable one for this particular data 

set, even when the experimental errors are large. One question that arises from the 

variation of velocity as a function of confining and pore-fluid pressure is how many 

measurements are needed to constrain the model. We have attempted to address this 

issue by fitting the Pe3 definition to only the 0=pP MPa and 10=pP MPa experimental 

data. This experimental subset is made up of 11 measurements. The results are shown in 

Figure 18. 

Vo is very well constrained as it has been in all other experiments, with a value of 

2.80 + 0.02 km/s (e.g., an uncertainty of less than 0.5%). Pi is very sensitive to the fit 

and the limited number of measurements used with a value of 10.0 + 4.4 MPa, and 

therefore a large uncertainty of 44%. The parameter m is well-constrained with a value 

of 0.910 + 0.013 (e.g., an uncertainty of 1.4%). oχ  has a value of 0.87 + 0.17 (e.g., an  
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Figure 18. Chalk data fitted using the Pe3 model for measurements made at 
0=pP MPa and 10=pP MPa. Best-fitting parameters and s.e. are shown in the 

Figure. 
 

 

uncertainty of 20%), and a has a value of 0.012 + 0.008 MPa-1 (e.g., an uncertainty of 

67%). Clearly, three of the parameters (e.g., Pi, oχ , and a) have large uncertainties. Even 

that being the case, these results are significant because it is clear that a limited number 

of measurements can be used to obtain a reasonably well-constrained model. 

In summary, various effective-pressure approximations have been successfully 

modeled by fitting the Bed-of-Nails model [Gangi, 1975, 1978] to a nanofossil chalk 

velocity data set [Gangi and Carlson, 1996]. The extent to which the data can be fitted 

by a particular effective-pressure approximation depends directly on the number of 
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parameters included in each approximation. The Pe1 definition, with only three 

parameters, is not adequate to explain the data sets, and as a result the resolution was 

poor. By including more parameters in the model (i.e., χ  in Pe2, and oχ and a in Pe3), the 

resolution is greatly improved, and the systematic misfit was minimized. Both the 

original fits to the experimental data and the numerical experiments showed an increase 

in resolution when progressively higher (i.e., more parameters included) effective-

pressure approximations were applied. The resolution of the parameters themselves also 

reflects this. In the numerical experiments, all the common parameters (i.e., Vo, Pi and 

m) between the effective-pressure approximations showed an increase in resolution by 

including more parameters into the model. There was a tendency to tighten the 

distribution of values in these parameters as progressively higher effective-pressure 

approximations were used.  

Another important point from these experiments is that Pi is the parameter most 

sensitive to error for this particular data set, and the Pe3 definition is still appropriate 

even for the case when the error is high. It is the parameter Pi, and not the effective-

pressure model parameters themselves (e.g., oχ and a) that cause the Pe3 definition to fail 

to explain the data when the error is large. Another experiment showed that only using 

measurements made at 0=pP MPa and 10=pP MPa, the chalk data [Gangi and 

Carlson, 1996] was successfully fitted adopting the Pe3 definition, even though the 

uncertainties in some of the parameters were large. Nevertheless, these results show that 

only a limited number of measurements are needed to constrain effective pressure 

models if they are well-chosen and properly made. 
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CHAPTER VI 

PERMEABILITY AS A FUNCTION OF CONFINING PRESSURE 

 

The accuracy of permeability measurements depends upon good experimental set-

ups and choice of material can. In this study, we assess the resolution of models based 

on the Bed-of-Nails model [Gangi, 1975, 1978]. Measurements made at low pressures 

are particularly important in the resolution of model parameters. To study these effects 

we have chosen a permeability data set consisting of permeability measurements made 

over a range of confining pressures (0-70 MPa) on a fractured Navajo sandstone sample 

[Nelson, 1975]. Natural fractures in this study were simulated by saw cuts through the 

sample, as done by Jones [1975], and are parallel to the applied pressure gradient.  

Nelson [1975] employed a hydrostatic confining pressure vessel with flow-through 

pore-pressure fluid based on a design developed by Wilhelmi and Somerton [1969]. The 

apparatus measured the flow rate through and the differential pressure of air across the 

length of the Navajo sandstone sample (cylindrical; 3.5 by 7.5 cm) subjected to 

conditions of elevated confining pressure and temperature. Nelson [1975] fitted his data 

to an equation based on Tiller’s [1953] equation 

                                               n
f BPAk −+=                                                           (47) 

where (kf) is the fracture permeability, P is the effective pressure, and A, B, and n are 

positive constants. The same equation was used to describe the pressure variation of the 

whole-rock permeability (kr) and the fractured-porous-rock permeability (kfr). These 

permeabilities are related by 
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                                                      frfr kkk +=                                                             (48) 

where the flow in the crack and the pores are parallel so that the total fractured-rock 

permeability, kfr, is the sum of the porous rock permeability, kr, and the fracture (crack) 

permeability, kf. 

Whole-rock permeability was calculated by making measurements of intact rock 

over a range of confining pressures. Next, samples of the rock taken adjacent to the 

previous samples containing the artificial fractures are used to calculate the permeability 

of the fractured porous rock (kfr) (i.e., the total system permeability) using the same 

range of confining pressures. Fracture permeability (kf) was calculated by subtracting the 

whole rock permeability (kr) from the total system permeability (kfr).  

The fracture permeability (kf) versus pressure from Nelson [1975] is shown in Figure 

19. The data have been fitted to the Bed-of-Nails model [Gangi, 1975, 1978] given by 

equation (17), where ce PP =  and nm /1= . 

There are a few important points to note in Figure 18. First, the fit itself is very good 

as indicated by the coefficient of determination 998.02 =R . The standard error is 

0.215x10-9 m2, and the parameters k0, P1, and m yield values of (19.6 + 0.2) x10-9 m2, 

2211 + 360 MPa, and 0.220 + 0.008, respectively. There is little systematic error. The 

best-fitting curve goes through all data points, except for the data value at approximately 

21 MPa of confining pressure. This data point may be an outlier, and to test this we have 

re-fitted the experimental data without including this particular point (Figure 20). 

Comparing the two fits (Figure 19-20), we can see a slight increase in the resolution of  
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Figure 19. Best-fitting curve to Navajo sandstone permeability data. Best 
estimates for model parameters k0, P1, and m shown. Experimental data 
(triangles) included a data point at zero pressure.  
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Figure 20. Best-fitting curve to Navajo sandstone permeability data where 
pressure data point at 21 MPa has been removed.  

N=12 
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the model parameters k0, P1, and m. The standard error has decreased from 0.215 to 

0.155 (x10-9 m2) and this is the most noticeable change compared to the previous fit. 

This single data point contributes nearly 50% of the overall misfit variance. Even 

though the change in the value of the parameters (and their associated uncertainties) 

is not major, the change in the s.e. is significant for the case the data point at 21 MPa 

has been removed. Based on this finding, the results in Figure 20 were used for the 

numerical experiments. 

The last important point to make from the original fit to Nelson [1975] data set 

(Figure 19) is to note that having data points where the rate of permeability change is 

high (e.g., near zero pressure) is particularly important. To test the effects of having a  

 

 

 

 
 

 

 

 

 

 

Figure 21. Best-fitting curve to Navajo sandstone permeability data where data 
point at 0=cP has been removed. The uncertainties of model parameters k0, P1, 
and m have drastically increased compared to previous fit (Figure 20). 
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data point at zero pressure, the data has been fitted after removing the experimental data 

point taken at Pc = 0 (Figure 21). The standard error for the case without the zero- 

pressure data point has increased from 0.155 to 0.173 (x10-9 m2). There is also evidence 

of systematic misfit especially at low pressures between 5-13 MPa where the best-fitting 

curve over-estimates the data points. The results show a major increase (relative to Figure 

20) in the uncertainties of all the model parameters, especially on P1, which has an 

uncertainty of ~66%. The other two parameters, k0 and m, both have uncertainties of 

35%. Making a measurement at zero pressure (or very close to it) in this type of 

experiment is extremely important, and has obvious implications in terms of experimental 

designs and ways to improve such experiments.  

These results (Figure 21) suggest that measurements made at low or near zero-

pressure affect the resolution (e.g., measured by the uncertainties in the model 

parameters) of the Bed-of-Nails model parameters. Another question is whether the 

absence of data at low pressures can be compensated for by having more data. To test 

these effects, we have performed a series of numerical experiments to address two 

specific issues. The model parameters in Figure 20 were used to generate three different 

synthetic data sets; the first case includes a data point at Pc = 0, the second case the data 

point at Pc = 0 has been removed, and in the third case the data point at Pc = 0 has been 

removed with the variation that the number of data points has been increased from 11 to 

31. The same pressure values as in the experimental data set have been used for the first 

two cases (except for Pc = 0 in the second case). Gaussian error (the s.e. of 0.155 x10-9 

m2 was used) has been added to all three synthetic data sets by the method previously  
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Table 4. Summary of best-fitting parameters to synthetic data sets based on permeability data 
as a function of Pc. 

 
    Range    N      ko    Avg. Error   s.d.     P1    Avg. Error     s.d.          m     Avg. Error   s.d.           s.e. 

Case    (MPa)                     (x10-9 m2)                         MPa)                                                         (x10-9 m2) 
 

1          0-70     12    19.6       0.2          0.1     2110      260       130     0.224     0.006     0.004       0.158 
2          3-70     11    19.2       5.8          0.9     2080    1220       260     0.227     0.071     0.011       0.174 
3          3-70     31    19.2       3.3          0.6     2120      740       140     0.226     0.040     0.007       0.155 

 
*  Uncertainties reported for each parameter is the average value over the 30 trials.  
** Standard deviations (s.d.) are reported for each parameter over the 30 trials. 
*** Standard error (s.e.) for each case is the average value over the 30 trials. 

 

 

outlined. After adding the Gaussian error, the data were fitted to get new sets of 

parameters k0, P1, and m in each case. Thirty realizations of this procedure were done for 

each case to assure statistically-meaningful results. The results for the three different 

cases are summarized in Table 4. 

The comparison between the three different cases (Figure 22) is worth noting by 

looking at histograms of the various model parameters. The true values for each 

parameter are k0 = 19.6 x10-9 m2, P1 = 2220 MPa, and m = 0.221. In the first numerical 

case where the data point at Pc = 0 was included, the average values of the parameters k0, 

P1, and m were (19.6 + 0.2) x10-9 m2, 2110 + 260 MPa, and 0.224 +0.006, respectively, 

with an s.e. of 0.158 x10-9 m2. The uncertainties in each parameter represent errors of 

approximately 1%, 12%, and 3%, respectively. The second numerical case where the 

data point at Pc = 0 was removed, the average values of the parameters k0, P1, and m 

were (19.2 + 5.8) x10-9 m2, 2080 + 1220 MPa, and 0.227 + 0.071, respectively, with an 

s.e. of 0.174 x10-9 m2. The uncertainties in the parameters are approximately 30%, 58%,  
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Figure 22. Histograms showing distribution of parameters k0, P1, and m for various cases. (a) Zero-pressure data point 
included in the analysis (0-70 MPa pressure range). (b) Zero-pressure data point removed for the analysis (3-70 MPa 
pressure range). (c) Higher number (31) of data points included in 3-70 MPa pressure range. Mean and standard 
deviation are shown for each histogram. 
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and 31%. In the third case, where the number of data points in the 3-70 MPa pressure 

range was increased from 11 to 31, the average values of the parameters k0, P1, and m 

are (19.2 + 3.3) x10-9 m2, 2120 + 740 MPa, and 0.226 + 0.040, respectively, with a 

standard error of 0.155 x10-9 m2, and the uncertainties are approximately 17%, 35%, and 

18%. Note that the standard deviations, also given in the table and figure, do not match 

the average error in the parameters over the 30 realizations. Ideally, the standard 

deviation should be an estimator of the average error in the parameter, but this condition 

only holds for the case where the measurement at Pc = 0 was included in the analysis. 

When the data point at Pc = 0 is removed, the error space changes and the s.d. is no 

longer comparable with the average error over the 30 trials. The curvature matrix of the 

error space is causing these large errors. We will address this issue more closely in the 

next section. 

The uncertainties in all the parameters changed significantly from one case to the 

other. The parameter P1 showed the highest sensitivity when the zero-pressure data point 

was removed (e.g., uncertainty increased from 12% to 58%). Increasing the number of 

data points to 31 decreased the uncertainty of P1 by ~24%. The uncertainties in the 

parameters k0 and m increased to ~ 30-31% when the zero-pressure data point was 

removed, and decreased to ~ 17-18% when the number of data points was tripled. The 

error space changed significantly when the data point at Pc = 0 was removed. As a result 

of this, the increasing (or decreasing) uncertainties in the parameters from one case to 

another are not proportional to the misfit.  
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Comparing the true values to each one of the three cases, it is evident that the case 

with the zero-pressure point included yields better, and closer estimates to the true 

parameter values. It is also worth noting that the distribution of values for each 

parameter showed less scatter for the case when the data point at zero pressure was 

included compared to the other two cases. In the case the zero-pressure data point was 

included in the analysis, the range of values for k0, P1, and m were 19-20 (x10-9) m2, 

1900-2500 MPa, and 0.215-0.230, respectively. In the case the zero-pressure data point 

was removed from the analysis, the distribution of values for k0, P1, and m were 16-21 

(x10-9) m2, 1300-2700 MPa, and 0.205-0.255, respectively. By increasing the number of 

measurements to 31, there was a tendency to slightly confine the distribution of values 

for k0, P1, and m to 18-21 (x10-9) m2, 1900-2500 MPa, and 0.210-0.240, respectively, 

compared to the previous case where the zero-pressure data point was removed, and only 

11 measurements were used in the analysis. This is a result of changing the number of 

degrees of freedom of the fit. 

Several conclusions can be drawn from these permeability experiments, but they all 

converge into a single conclusion, and that is measurements made at very low pressures 

are particularly important in this type of data. The resolution of all model parameters is 

significantly better when the data point at zero pressure (or at low pressure) is included. 

Increasing the number of data points (not including a zero-pressure measurement) can 

have an important effect of improving the resolution of the model parameters, but the 

effect is not nearly as large as including a data point at zero pressure. These results 
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suggest that in order to improve the resolution of such experiments, it is very important 

to make permeability measurements at low pressures, especially at zero-pressure.
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CHAPTER VII 

PERMEABILITY AS A FUNCTION OF EFFECTIVE PRESSURE 

 

After looking at permeability as a function of confining pressure only [Nelson, 

1975], it is useful to extend the analysis to the dependence of permeability not only on 

confining pressure, but on pore-fluid pressure as well. A Wilcox shale permeability data 

set [Kwon et al., 2001] has been chosen for this purpose. The success of making 

permeability measurements over a range of confining and pore-fluid pressures, and the 

ability to constrain theoretical models, depends on many factors such as material of 

choice, pressures at which measurements are made, and sample-to-sample variation. In 

this part of the study, the main objective is to assess the resolution of parameters based 

on the Bed-of-Nails model [Gangi, 1975, 1978] given by equation (17) and the 

implications for the design of permeability experiments.  

Kwon et al. [2001] measured the permeability of Wilcox shale parallel to bedding by 

the transient pulse technique [Brace et al., 1968; Sutherland and Cave, 1980; Trimmer, 

1981]. Kwon et al. [2001] chose this bedding orientation because the permeability is 

higher than when the orientation is perpendicular to bedding, and there are wider 

permeability variations over the range of conditions imposed.  

The samples used by Kwon et al. [2001] were prepared from shale core of the 

Wilcox formation in West Baton Rouge Parish, Louisiana recovered from a depth of 

~3955 m. The clay content of the core ranged from 40 to 65%. Four different samples 

were used in the experiment; three of them were taken from the same stratigraphic 



 

 

67

horizon of a core, and the remaining one had a similar lithology (taken from core only 

0.2 m deeper than the first one). The individual cylindrical samples prepared from the 

core were 25.4 mm long and 12.5 mm in diameter. Samples were immersed in a 1 M 

solution of NaCl (density of 1040 kg/m3 [Wolf et al., 1979]) for more than 2 days to 

introduce as much fluid into the pores as possible. Once the pore fluid was introduced, 

the confining and pore-fluid pressures were increased stepwise to the desired 

experimental conditions, making sure the values did not exceed the ultimate value of 

)( pc PP −  at which permeability was to be measured. Experimental conditions )( pc PP −  

ranged from 3 to 12 MPa, with confining and pore-fluid pressures ranging from 13 to 45 

MPa, and from 10 to 42 MPa, respectively. A total of 33 permeability measurements 

were made with a reported uncertainty of + 10%. 

To measure permeability, a step change (< 15% of initial pore-fluid pressure, Pp) in 

the fluid pressure was imposed at one end of a cylindrical sample. The pressure 

difference across the sample then decreases with time 

                                          t
idnup ePPP α−Δ=− )(                                                       (49) 

or                                           tPPP idnup α−Δ=− )ln()ln(                                              (50) 

where upP and dnP are the upstream and downstream pressures, respectively, at the ends of 

the sample, iPΔ  is the pressure step change at one end of the sample imposed at t = 0, 

andα is given by 

                                         )/1/1)(/( dnup VVLkA += ηβα                                                (51) 
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where k is the permeability, A and L are the cross-sectional area and length of the 

sample, respectively, η  is absolute (dynamic) viscosity of the fluid,β  is compressibility 

of the fluid, and upV and dnV are the upstream and downstream reservoir volumes, 

respectively.α can be found by linear regression (equation (50)). Permeability can be 

calculated from (51). 

The permeability measurements from all four samples were used to determine an 

effective-pressure law for fluid flow using both the ratio-of-slope method [Walls and 

Nur, 1979; Bernabe, 1986, 1987] and the cross-plotting method [Walsh, 1981; David 

and Darot, 1989]. The variation of permeability with effective pressure from Kwon et al. 

[2001] was modeled by linearizing the Bed-of-Nails model [Gangi, 1975, 1978] in (17),  

                           1
3/1 loglog])/(1log[ PmPmkk eo −=−                                    (52) 

where the slope is m and the intercept is 1log Pm− . Notice that the parameter ko is 

included as part of the dependent variable in this linear approximation. To estimate the 

model parameters, Kwon et al. [2001] did a grid search [e.g., Bevington, 1969] to find ko, 

with linear regression to find P1 and m (Figure 23). The parameter m is the slope of the 

best-fitting line, and P1 was calculated from 1log Pm− .  

The best-fitting parameters k0, P1, and m were determined for the effective-pressure 

approximation de PP =1  given by (5). Kwon et al. [2001] obtained best-fitting values for 

k0, P1, and m of 1x10-17 m2, 19.3 + 1.6 MPa, and 0.159 + 0.007, respectively, the last two 

from the regression shown in Figure 23. The s.e. of the fit, not reported by Kwon et al. 

[2001], was calculated in this study to be 1.20x10-20 m2.  
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Figure 23. Permeability-effective pressure relationship for Wilcox shale 
samples. The slope of the line is equal to m, and the intercept is equal 
to 1log Pm− . The experimental data (diamonds) comes from four different 
samples used by Kwon et al. [2001] (modified after Kwon et al. [2001]). 
 
 

 

In our study, we model the permeability data in Kwon et al. [2001] using a non-linear 

method. The reason for doing this is to compare our results when using a non-linear fit to 

the linearized approach used by Kwon et al. [2001], and explore the differences in the 

error spaces for each case. When the experimental data behaves in a non-linear fashion, 

as it is the variation of permeability with effective pressure, it is preferable to model the 

data using a non-linear fit [Motulsky, 1996].  

The Wilcox shale permeability data set [Kwon et al., 2001] has been fitted (Figure 

24) using a non-linear fitting routine using the effective-pressure approximation Pe 

equals the differential pressure Pd, which itself is the difference between the confining 

pressure Pc and the pore-fluid pressure Pp. There is no evidence of systematic misfit,  
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Figure 24. Best-fitting curve (solid line) to permeability experimental data using 
a non-linear fitting method. Four different samples are shown in the figure. 
Notice values for best-fitting parameters on the right side.  

 

 

which suggests that no additional information (e.g., additional parameters) can be 

obtained from the data. The study by Kwon et al. [2001] shows no evidence that the fit 

could be improved by using other effective-pressure approximations including more 

parameters such as pce PPP χ−=  because χ  was statistically indistinguishable from 1. 

The lack of systematic misfit justifies why the Pe2 model cannot be successfully 

resolved. Because of this, only the effective-pressure approximation dpce PPPP =−=1  

(equation (5)) will be considered for the numerical experiments. 

All three parameters were directly estimated from the fit yielding values of k0, P1, 

and m of 1.2x10-17 + 4.8x10-17 m2, 18.3 + 4.0 MPa, and 0.154 + 0.249, respectively, with 
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an s.e. of 1.12x10-20 m2. The s.e. is reasonable compared to the one calculated previously 

(e.g., 1.15x10-20 m2). Clearly, the resolution of all model parameters is very poor, 

especially k0 where the uncertainty is approximately 400%. This uncertainty is much 

larger than the overall scatter in the data suggesting something unusual is taking place in 

the error space when estimating the uncertainties in the model parameters.  

In the case of P1 and m, the uncertainties are approximately 22% and 160%, 

respectively. The uncertainties in the parameters P1 and m are larger than those reported 

by Kwon et al. [2001] because of the different methods used to estimate them (e.g., using 

a linear vs. a non-linear method). When Kwon et al. [2001] used a linear method, the 

error space was modified and two of the parameters (e.g., k0 and P1) could not be directly 

calculated from the fit. The non-linear fitting method used in this study directly 

estimated all parameters, and has a different error space than the linearized model. Due 

to these differences in the way parameters are estimated by the two different methods, 

the uncertainties associated with each one will be different, in this case larger when 

using the non-linear routine [e.g., Motulsky, 1996].  

Our results agree, to some extent, with the previous results [Kwon et al., 2001] 

especially in that k0 is the most sensitive parameter, and therefore very hard to constrain. 

The inability to constrain k0 better results mainly from the lack of measurements made at 

effective pressures close to zero, as shown previously in a numerical experiment based 

on Nelson’s [1975] permeability data. The lowest effective pressure at which a 

permeability measurement was made by Kwon et al. [2001] was 3 MPa, and clearly not 

low enough to increase the resolution of the model parameters. 
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After fitting the experimental data using the effective pressure 

approximation de PP = , many questions arise from the estimates of the model parameters 

obtained. We could speculate about the reasons why there is such poor resolution of the 

model parameters, especially k0. Sample-to-sample variations are very possible in this 

type of experiment due to variations in clay content and connected pore-space [Katsube 

et al., 1991; Dewhurst et al., 1998, 1999], and the variations can introduce systematic 

differences between the samples. The ability to constrain the model parameters, 

especially k0, may be directly related to the absence of measurements near or at 0=eP . 

To better explore the effects of having a zero-pressure measurement in Wilcox shale 

data (or very close to it) a synthetic data set has been generated using the values k0 = 

1.2x10-17 m2, P1 = 18.3 MPa, and m = 0.154. Gaussian error was added as outlined 

previously using the original s.e. (1.12x10-20 m2). At high effective pressures the 

permeability values become negative due to the large misfit (the standard error) 

associated with the data. Negative errors drawn at random from a Gaussian population 

can give rise to negative permeability values. To avoid introducing negative 

permeabilities in the analysis, a truncated Gaussian distribution has been used by 

repeating the addition of Gaussian error until a positive value of permeability was 

obtained. The same pressure values used by Kwon et al. [2001] were used for the 

numerical experiment. Two different synthetic data sets were used for this experiment, 

one with a zero-pressure permeability value, and one without it, and the results are 

summarized in Figure 25. A total of 30 realizations were done for each case. 
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The results show that the resolution of all model parameters in the case where a data 

point at 0=eP  has been included is much better than the case where it has been 

removed. The parameter k0, the most sensitive in our initial fit (Figure 24), shows a large 

difference with a 0.09% uncertainty when including a zero-pressure data point compared 

to a 400% uncertainity in the case where the zero-pressure data point was removed. Also 

notice that the distribution of values is different for the two cases. In the case where a 

data point at zero pressure was included, the distribution of values for k0 stayed between 

1.2-1.3 x10-17 m2, whereas in the case with the lowest pressure at 3 MPa, the distribution 

of values widens (1.1-1.9 x10-17 m2). Compared to the true value of 1.2x10-17 m2, the 

average value of k0 over the 30 trails for the case where the zero effective-pressure data 

point was included was also 1.2x10-17 m2. For the case where the data point at 0=eP was 

removed the average value of k0 was 1.4x10-17 m2, and therefore still comparable to the 

design value. 

The parameter P1 is much better constrained than k0, but it still shows some 

resolution differences between the two cases; in both cases the average value was 

slightly higher than the design value of 18.3 MPa (e.g., 19.2 MPa for the case when 

including a data point at 0=eP , and 19.6 MPa for the case where the data point at 

0=eP  was removed). The average uncertainties in P1 differed by approximately 15% 

(e.g., 7% uncertainty in the case a data point at zero-pressure was included, and 22% 

uncertainty in the case the zero-pressure data point was removed). The distribution of 

values is the same in both cases with a range of 15-23 MPa. 

The parameter m displayed a large difference between the two cases, with 
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Figure 25. Histograms of parameters k0, P1, and m for numerical experiments 
based on permeability data. Left column shows case where zero-differential 
pressure data point has been included in the modeling, and right column shows 
case where zero-differential pressure data point has been removed from the 
modeling. N refers to the number of data points in each case. Value of error in 
parameter is average over 30 realizations.  
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uncertainties of ~5% for the case a zero-pressure data point was included, and 170% for 

the case with no zero-pressure data point. The case where the data point at zero-pressure 

was included showed a range of values for m of 0.14-0.16 compared to the case the data 

point at zero- pressure was not included with a range of 0.12-0.16.  

Looking at the results from the case without a data point at 0=eP  (i.e., replicating 

the experiment by Kwon et al. [2001]), each trial in the modeling is consistent with the 

results from the experiment (Table 5). The values and uncertainties of the parameters k0, 

P1, and m for each trial from the numerical experiment are comparable to the values 

obtained from the fit to the experimental data (i.e., Figure 24). The errors in all 

parameters, especially k0 , are very large for the case the measurement at 0=eP  was not 

included in the analysis. 

Actually, the parameter s.e.’s from the fits should compare with the s.d. of the 

parameters calculated from the ensemble of 30 realizations, but in the numerical 

experiments without a data point at 0=eP , this condition does not hold (i.e., 5.8x10-17 

m2 and 2.1x10-18 m2 for k0, 4.3 MPa and 1.5 MPa for P1, 0.241 and 0.007 for m). In the 

case where a measurement at 0=eP  was included in the analysis, the value of the 

calculated uncertainties in each parameter and the s.d. of their distributions are in 

excellent agreement (i.e., 1.1x10-18 m2 and 1.2x10-18 m2 in k0, 1.3 MPa and 1.4 MPa for 

P1, 0.007 and 0.007 for m).  

We think the disagreement in the first case is because the error space is ill-

conditioned due to not having a measurement at 0=eP . The character of the error space   
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Table 5. Summary of numerical experiments based on permeability data as a function of Pc and Pp. 

             CASE WITH DATA POINT AT 0=eP                  CASE WITHOUT DATA POINT AT 0=eP  
Trial     ko*           s.e.         P1        s.e.              m       s.e.               ko            s.e.         P1          s.e.          m         s.e. 
 #                  (m2)                 (MPa)                                                (m2)                  (MPa)    
                          
 1      1.2e-17   8.8e-21     22.3    1.4       0.141  0.005         1.1e-17   3.9e-17    22.2    5.0     0.140   0.197    

 2      1.2e-17   9.8e-21     19.2    1.2       0.150  0.006         1.8e-17   7.5e-17    19.5    4.0     0.129   0.217 

 3      1.2e-17   1.2e-20     19.7    1.6       0.147  0.007         1.6e-17   7.9e-17    19.9    5.2     0.133   0.273 

 4      1.2e-17   1.2e-20     18.1    1.3       0.154  0.007         1.8e-17   9.2e-17    18.4    4.4     0.132   0.265 

 5      1.2e-17   1.1e-20     18.2    1.3       0.154  0.007         1.6e-17   7.3e-17    18.6    4.2     0.137   0.250 

 6      1.2e-17   1.0e-20     19.0    1.3       0.150  0.006         1.5e-17   6.4e-17    19.2    4.2     0.138   0.238 

 7      1.2e-17   1.2e-20     20.0    1.6       0.146  0.007         1.7e-17   9.4e-17    20.4    5.5     0.126   0.270 

 8      1.2e-17   1.0e-20     18.1    1.1       0.155  0.006         1.9e-17   4.4e-17    19.8    4.5     0.145   0.265 

 9      1.2e-17   1.1e-20     17.6    1.2       0.158  0.007         1.5e-17   4.8e-17    20.2    4.0     0.139   0.226 

10     1.2e-17   1.3e-20     20.5    1.7       0.145  0.007         1.5e-17   5.2e-17    18.8    4.2     0.148   0.256 

11     1.2e-17   1.0e-20     20.9    1.4       0.142  0.006         1.4e-17   5.2e-17    17.6    3.9     0.139   0.248 

12     1.2e-17   1.0e-20     20.7    1.3       0.144  0.006         1.4e-17   5.2e-17    20.8    4.5     0.138   0.216 

13     1.2e-17   1.2e-20     18.4    1.4       0.153  0.007         1.3-e17   5.7e-17    21.1    5.3     0.138   0.247 

14     1.2e-17   1.1e-20     18.2    1.2       0.154  0.007         1.5e-17   5.1e-17    19.7    4.6     0.139   0.237 

15     1.2e-17   1.1e-20     19.4    1.4       0.147  0.007         1.3e-17   5.0e-17    19.0    5.1     0.139   0.248 

16     1.2e-17   1.2e-20     18.5    1.4       0.152  0.007         1.4e-17   6.1e-17    21.5    4.9     0.146   0.234 

17     1.2e-17   1.1e-20     21.1    1.6       0.141  0.006         1.3e-17   5.7e-17    21.1    5.3     0.138   0.247 

18     1.2e-17   1.1e-20     19.2    1.4       0.151  0.007         1.3e-17   4.9e-17    17.6    4.0     0.138   0.249 

19     1.2e-17   1.1e-20     19.0    1.3       0.151  0.007         1.4e-17   4.7e-17    18.3    3.7     0.145   0.263 

20     1.2e-17   9.3e-21     17.8    1.0       0.154  0.006         1.3e-17   4.5e-17    17.9    3.4     0.152   0.221 

21     1.2e-17   8.0e-21     20.7    1.1       0.145  0.004         1.1e-17   5.1e-17    20.8    3.6     0.150   0.193 

22     1.2e-17   8.0e-21     20.7    1.1       0.142  0.005         1.1e-17   5.0e-17    21.0    3.8     0.148   0.248 

23     1.2e-17   9.6e-21     21.5    1.4       0.141  0.005         1.3e-17   5.4e-17    19.8    5.0     0.148   0.248 

24     1.2e-17   1.1e-20     18.7    1.3       0.150  0.007         1.4e-17   6.0e-17    18.8    4.3     0.143   0.255 

25     1.2e-17   1.2e-20     17.3    1.3       0.158  0.008         1.2e-17   5.8e-17    21.5    4.1     0.151   0.248 

26     1.2e-17   1.3e-20     18.4    1.5       0.153  0.008         1.4e-17   5.5e-17    20.8    3.8     0.136   0.238 

27     1.2e-17   1.0e-20     15.5    0.9       0.159  0.007         1.7e-17   6.5e-17    15.8    2.8     0.151   0.237 

28     1.2e-17   9.7e-21     19.1    1.2       0.149  0.006         1.5e-17   4.8e-17    17.0    3.7     0.140   0.238 

29     1.2e-17   1.3e-20     20.5    1.7       0.144  0.008         1.2e-17   4.8e-17    19.7    4.6     0.148   0.229 

30     1.2e-17   1.2e-20     18.9    1.4       0.153  0.007         1.5e-17   5.2e-17    20.4    4.0     0.149   0.240                                       

* e = 10 to the power of 
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is causing it to overestimate the parameter errors in each trial, even though the standard 

deviations for all parameters are in excellent agreement (except for k0, but it still behaves 

more like the case with a data point at zero pressure) with the ideal case when a 

measurement at 0=eP  was included. The issue here has to do with the curvature 

matrixα (refer to Bevington and Robinson [1992]), which in the non-linear case depends 

directly on the sum of values of the dependent variable (e.g., permeability) at the 

different pressures. The permeability value at 0=eP MPa is significantly larger than the 

next bigger value at 3=eP MPa and therefore increases the value of the curvatureα . 

Larger values of the curvatureα give rise to lower errors in the parameters. Therefore, 

when this data point at 0=eP  is removed, the uncertainties in the parameters become 

much larger than expected, even though the s.e. of the fit does not significantly change 

from one case to another.  

We also adopted a similar approach as the one shown in Kwon et al. [2001] where 

they set k0 as a constant when fitting the Bed-of-Nails model to the permeability data to 

estimate the other model parameters P1 and m. We used the same k0 value used by Kwon 

et al. [2001] of 1x10-17 m2, but applying a non-linear fit to the experimental data to 

determine P1 and m. The results from this fit are shown in Figure 26. 

The results from Figure 25 show that the obtained estimates of model parameters P1 

and m when setting k0 = 1x10-17 m2 as a constant in the non-linear fit are comparable to 

the results reported by Kwon et al. [2001] obtained using a linear approach. The 

estimated parameters P1 and m for the non-linear case were 18.1 + 1.2 MPa, and 0.167 + 

0.007, respectively, with an s.e. of 1.12x10-20 m2. These values are statistically similar to 
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Figure 26. Best-fitting curve to permeability experimental data using k0 = 1x10-

17 m2 as a constant in the fit. Values of parameters P1 and m are determined 
from the fit. 

 
 
 
the ones reported by Kwon et al. [2001] of 19.3 + 1.6 MPa and 0.159 + 0.007, with an 

s.e. of 1.15x10-20 m2. 

These results indicate that for this permeability data set, both approaches (e.g., linear 

vs. non-linear) yield valid estimates for the parameters P1 and m when k0 is set as a 

constant. Ideally, a non-linear fitting routine is preferred over the linearized version 

because the data itself behaves in a non-linear fashion [Motulsky, 1996]. Constraining k0 

is what the problem amounts to at the end, either by setting it to be a constant when 

fitting the data, or preferably, by having a measurement at Pe = 0, in order to better 

constrain the model parameters.  

Lastly, we have generated error surfaces for the parameters k0, P1, and m as a 

function of 2χ (chi-square) for two different cases: 1) the normal case without the 
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linearization shown by equation (17), and 2) the linearized case shown by equation (52). 

To illustrate how the error surfaces were generated, let us rewrite equation (26) as 

                                                ∑Δ
= 2

2
2

i

i

σ
χ                                                             (53) 

where [ ]2)(2 );( n
iii xyy P−=Δ . 

If we assume iσ  is a constant, then we rewrite (53) as 

                                                  ∑Δ= 2
2

2 1
i

iσ
χ                                                           (54) 

If we let 22 Si ≈σ , where 2S  is the defined as  

                                           ∑Δ
−

= 22 1
iN

S
γ

                                                        (55) 

where S is the standard error, and γ−N are the degrees of freedom, which for Kwon’s 

data set [Kwon et al., 2001] is 30. We can now rewrite (54) as 

                                                 ∑Δ= 2
2

2 1
iS

χ                                                             (56) 

We can also define the iΔ ’s for both cases as follows, 

       3
1 ))/(1[ m

ioii PPkk −−=Δ                                     (normal case)                        (57) 

             1
3/1 loglog])/(1log[ PmPmkk ioii +−−=Δ       (linearized case)                    (58) 

where ik is the ith permeability value, iP  is the ith pressure value, and k0, P1, and m are the 

Bed-of-Nails model parameters. 

What we have done is to vary the value of one of the parameters, keeping the other 

two fixed at a constant value, and calculate the value of 2χ at the different values of the 
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parameter of interest using the two different approaches established in equation (57-58). 

The constants values we have used for the model parameters were obtained from the 

original non-linear fit to the data (Figure 24) of k0, P1, and m of 1.2x10-17 m2, 18.3 MPa, 

and 0.154, respectively. The results are shown in Figure 27. 

There are various points to make from Figure 27: 1) 2χ  is quadratic in the 

neighborhood of the minimum in both cases, as shown by the good fits applied, 2) the 

solutions for the two cases (i.e., the normal case vs. the linearized case) are different, and 

3) the linearized, logarithmic form yields larger error in k0, P1, and m compared to the 

“normal” form, as displayed by the more open, broader curves of the linearized case. 

Based on these results, we make the conclusion that in fact the error surfaces are 

different for the two cases previously mentioned, and at least for this particular data set 

the “normal” case should yield better estimates of the model parameters, given the other 

conditions are favorable (such as having a measurement at zero-effective pressure). 

We tried fitting higher-degree effective pressure approximations (i.e., those 

including more parameters) to the original experimental data set [Kwon et al., 2001] with 

no success. There is no indication that a model other than the one used here fits this 

particular data set, and the evidence for that is the absence of systematic misfit in the 

original fit to the data. The large scatter in the data, as well as possible sample-to-sample 

variations, represents an obstacle to modeling this particular data set. Permeability 

measurements subject to both confining and pore-fluid pressures represent a higher 

challenge because of the need to constrain two different variables, as supposed to only 

one as in Nelson [1975] permeability data. 



 

 

81

y = 1E-05x2 - 0.2787x + 1724.6 (Normal)
R2 = 1

y = 3E-06x2 - 0.0842x + 552.44 (Log)
R2 = 0.998

29

30

31

32

33

34

35

11500 12000 12500 13000 13500

ko x 10-17 (m2)

C
hi

-s
qu

ar
e

Normal
Log
Poly. (Normal)
Poly. (Log)

 

y = 14.4x2 - 531.06x + 4925.9 (Normal)
R2 = 1

y = 8.5766x2 - 317.65x + 2971.2 (Log)
R2 = 1

28.5

29.5

30.5

31.5

32.5

33.5

34.5

18 18.2 18.4 18.6 18.8 19

P1 (MPa)

C
hi

-s
qu

ar
e

Normal
Log
Poly. (Normal)
Poly. (Log)

 

y = 473857x2 - 146648x + 11376 (Normal)
R2 = 0.9994

y = 157761x2 - 48777x + 3800.2 (Log)
R2 = 1

25

27

29

31

33

35

37

39

0.148 0.15 0.152 0.154 0.156 0.158 0.16

m

C
hi

-S
qu

ar
e

Normal
Log
Poly. (Normal)
Poly. (Log)

 
Figure 27. Error surfaces for parameters ko, P1, and m. Two different 
approaches: 1) normal, and 2) linearized. Second order polynomials have been 
fitted to the data, shown in solid (for “normal” case) and dashed (for linearized, 
logarithmic case). Equations of the fits are also indicated in each case. 
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The principal result of this limited experiment is that the resolution of model 

parameters k0, P1, and m is highly dependant on measurements made at 0=eP  (as it was 

the case in Nelson [1975]), and lack of these measurements determines, to a great extent, 

our inability to constrain the models. These results have implications for experimental 

designs for these types of experiments where making measurements near zero-pressure 

may be decisive. Also, the methodology used to estimate model parameters can have a 

big impact on the outcome. Kwon et al. [2001] failed to estimate the error in k0, and 

underestimated the errors in for P1 and m.  Our non-linear fitting routine did not generate 

as good estimates as with the linear case used by Kwon et al. [2001], but it directly 

estimated all three parameters. The linearization of (17) may not be an accurate approach 

because only one of the three parameters (e.g., m) is directly estimated, while P1 is being 

back-calculated. k0 was only given a particular value to minimize the error in the linear 

fit, and therefore is only an approximation to the true value. The error space changes 

significantly when using the two different methods. Future experiments should carefully 

take into account the choice of material, the number of samples over which 

measurements are made, and especially measurements made at or near 0=eP . 
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CHAPTER VIII 

CONCLUSIONS 

 

The main objective of this study was to assess the resolution of various velocity and 

permeability experimental data sets [Nelson, 1975; Carlson and Gangi, 1985; Gangi and 

Carlson, 1996; Kwon et al., 2001] using the Bed-of-Nails [Gangi, 1975, 1978] asperity-

deformation model as the base theoretical model. These experimental sets included 

velocity and permeability measurements as a function of confining pressure [Nelson, 

1975; Carlson and Gangi, 1985] and confining and pore-fluid pressure [Gangi and 

Carlson, 1996; Kwon et al., 2001]. Effective pressure approximations (equations (5-7)) 

were applied to each data set (except Kwon et al. [2001] data set where only the first 

definition, Pd, applied). Numerical experiments were done based on all four 

experimental data sets, and the results used to explore resolution issues associated with 

each experiment, as well as other specific issues pertinent to particular data sets and 

models. These results can be used to improve the design of such experiments, and 

therefore increase their resolution and efficiency. The following conclusions are made: 

1. In most cases, the uncertainties in the model parameters are proportional to the 

misfit (e.g., the s.e.) of the data set, at least for the compressional velocity data set 

[Carlson and Gangi, 1985] as a function of confining pressure that was used. However, 

this result did not apply for permeability data sets (e.g., Nelson [1975], Kwon et al 

[2001]) where the conditions were different compared to the velocity data. Specifically, 

the lack of measurements at Pe = 0 in the permeability data sets resulted in the error 
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space behaving differently (compared to the case the measurement at Pe = 0 was 

included), and the model parameters not being well-constrained. 

2. Extrapolation of high-pressure compressional velocity measurements up to 600 

MPa obtained from those made at low pressures (0-100 MPa) is acceptable, even for the 

case where only 9 measurements were made at the 0-100 MPa range. The error in the 

extrapolated values was only 1.28% for the case only 9 data points were used. The 

parameter that proved to be most critical when extrapolating was Pi, and its resolution 

decreased as less data points were used in the 0-100 MPa range. The most important 

condition when extrapolating is to start with a sound theoretical model that explains the 

data very well.  

3. Measurements of compressional velocity for a deep-sea-chalk sample [Gangi and 

Carlson, 1996] over a range of confining and pore pressures have been successfully 

fitted using the Bed-of-Nails model [Gangi, 1975, 1978]. The parameter Pi proved to be 

most sensitive to changes in error for this velocity data set and could not be resolved 

when the levels of error in the data were high. We expected the Pe definitions (or 

approximations) to be sensitive to the scatter in the data; however, the Pe definitions 

were still constrained (e.g., χ , oχ , a were constrained even though Pi was not 

distinguishable from zero ) when high levels of error were present in the data. 

4. Measurements made at very low pressures are particularly important to constrain 

the model parameters in permeability data sets for through-going-crack permeability. In 

Nelson’s [1975] permeability data set, the measurement made at Pc = 0 proved to be 

very important to constrain the model parameters k0, P1, and m. Numerical experiments 
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showed that P1 is the parameter most sensitive to the zero-pressure data point. Increasing 

the number of measurements over the entire pressure range by a factor of 3, but still 

without including one at Pc = 0, did not significantly improve the resolution of the model 

parameters. 

5. Model parameters in permeability data as a function of both confining and pore-

fluid pressure [e.g., Kwon et al., 2001] may be hard to resolve due to the difficulty of 

obtaining low-pressure measurements. The lack of low-pressure measurements, 

especially at Pe = 0, limits the ability to constrain model parameters, especially k0, 

causing the error space to behave different. Because of this, k0 must be constrained either 

by finding it through a grid search, or preferably having a measurement at Pe = 0. The 

specific methodology (e.g., linear vs. non-linear) used to model the data is also very 

important because it affects how accurate the estimated uncertainties in the parameters 

are. When the data behaves non-linearly, it is appropriate to model it using a non-linear 

fitting routine. However, the linearized approach used in Kwon et al [2001] yielded valid 

estimates of the parameters and the results were comparable to the non-linear approach 

used in our study.  
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APPENDIX 1 

 

Table A-1. Epidote data summary 
 
 Pc (MPa)                      Vp (km/s)                           Pc (MPa)                      Vp (km/s) 

1.4 6.628 280.0 7.378 
2.8 6.653 300.0 7.393 
3.4 6.681 320.0 7.407 
4.1 6.695 340.0 7.418 
5.5 6.726 360.0 7.433 
6.9 6.740 380.0 7.442 
8.3 6.755 400.0 7.456 

10.0 6.781 420.0 7.465 
13.8 6.803 440.0 7.471 
20.0 6.849 460.0 7.479 
24.1 6.839    500.0 7.488 
30.0 6.864
34.5 6.896
37.9 6.926
41.4 6.946
44.8 6.964
48.3 6.977
50.0 6.987
55.2 7.005
60.0 7.025
62.1 7.033
65.5 7.041
69.0 7.051
72.4 7.062
75.9 7.091
79.3 7.101
82.8 7.114
86.2 7.125

100.0 7.162
110.0 7.184
120.0 7.203
130.0 7.217
140.0 7.227
160.0 7.266
180.0 7.288
200.0 7.302
220.0 7.313
240.0 7.336
260.0 7.364
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