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ABSTRACT 

Remote Sensing Studies and Morphotectonic Investigations in an Arid Rift Setting, Baja 

California, Mexico. (August 2007) 

Hesham Farouk El-Sobky, B.S., Alexandria University; 

M.S., Alexandria University 

Co-Chairs of Advisory Committee: Dr. Steven L. Dorobek 
                                                              Dr. Vatche P. Techakerian        

 

The Gulf of California and its surrounding land areas provide a classic example 

of recently rifted continental lithosphere. The recent tectonic history of eastern Baja 

California has been dominated by oblique rifting that began at ~12 Ma. Thus, 

extensional tectonics, bedrock lithology, long-term climatic changes, and evolving 

surface processes have controlled the tectono-geomorphological evolution of the eastern 

part of the peninsula since that time. In this study, digital elevation data from the Shuttle 

Radar Topography Mission (SRTM) from Baja California were corrected and enhanced 

by replacing artifacts with real values that were derived using a series of geostatistical 

techniques. The next step was to generate accurate thematic geologic maps with high 

resolution (15-m) for the entire eastern coast of Baja California.  The main approach that 

we used to clearly represent all the lithological units in the investigated area was object-

oriented classification based on fuzzy logic theory. The area of study was divided into 

twenty-two blocks; each was classified independently on the basis of its own defined 

membership function. Overall accuracies were 89.6 %, indicating that this approach was 

highly recommended over the most conventional classification techniques.  
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The third step of this study was to assess the factors that affected the 

geomorphologic development along the eastern side of Baja California, where thirty-four 

drainage basins were extracted from a 15-m-resolution absolute digital elevation model 

(DEM). Thirty morphometric parameters were extracted; these parameters were then 

reduced using principal component analysis (PCA). Cluster analysis classification 

defined four major groups of basins.  We extracted stream length-gradient indices, which 

highlight the differential rock uplift that has occurred along fault escarpments bounding 

the basins. Also, steepness and concavity indices were extracted for bedrock channels 

within the thirty-four drainage basins. 

 The results were highly correlated with stream length-gradient indices for each 

basin. Nine basins, exhibiting steepness index values greater than 0.07, indicated a 

strong tectonic signature and possible higher uplift rates in these basins. Further, our 

results indicated that drainage basins in the eastern rift province of Baja California could 

be classified according to the dominant geomorphologic controlling factors (i.e., fault-

controlled, lithology-controlled, or hybrid basins). 
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1CHAPTER I 

 

GENERAL INTRODUCTION 

 
I.1. Overview 
 

The Gulf of California and surrounding land areas provide a classic example of 

recently rifted continental lithosphere, where back-arc stretching of a continental 

volcanic arc has culminated in the ongoing seafloor spreading that characterizes the 

present-day axis of the gulf. The recent tectonic history of eastern Baja California, which 

includes most of the land area eastward of the main drainage divide that extends north-

south along the length of the peninsula, has been controlled by oblique rifting. This 

rifting began at about 12 Ma and has separated the peninsula of Baja California from 

mainland Mexico. Thus, extensional tectonics, bedrock lithology, long-term climatic 

changes, and evolving surface processes have controlled the tectono-geomorphological 

evolution of the eastern part of the peninsula since 12 Ma. No previous studies, however, 

have examined the current tectono-geomorphologic characteristics of eastern Baja 

California resulting from the combined effects of these factors.  

The proposed study will investigate several important themes or concepts in modern 

tectono-geomorphologic studies, using the present-day eastern part of Baja California as 

an ideal analog for intracontinental rift systems in arid climatic settings. The present-day 

arid climatic conditions and meager vegetative cover across Baja California make this 
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area especially favorable for tectono-geomorphologic analysis using remote sensing 

techniques. In addition, the numerous rift basins along the entire length of the peninsula 

and their various stages of tectonic evolution (from tectonically inactive to ongoing 

displacements along basin-bounding faults) also make the area suitable for statistical 

analyses of various morphometric indices that characterize the topography and drainage 

networks within each rift basin.  

The proposed study will utilize remote sensing data, various software packages, and 

statistical analyses to investigate the tectono-geomorphologic evolution of the eastern 

rift province of Baja California. Although satellite data only provide images of present-

day landforms, the arid climate of the peninsula and the relatively short phase of post-rift 

history for most basins (some basin-bounding faults are still seismically active) allow 

remnants of many rift-generated geomorphologic features to be preserved to varying 

degrees across the eastern part of the peninsula. Thus, the numerous rift basins of eastern 

Baja California provide sufficient examples for investigating the relative influence of 

various geological factors on the tectono-geomorphological evolution of these basins.   

 

I.2. Introduction to Baja California, Mexico 

Baja California is an excellent location to study continental rifting processes 

because: (1) offshore Gulf of California is an area of active rifting; (2) the history of 

extension and regional geology of Baja California are reasonably well understood; (3) 

the study area is an arid to semi-arid region, where limited vegetation makes remote 
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sensing an excellent tool for regional geologic mapping and analysis; and (4) Baja 

California is highly accessible for field work.  

Baja California is a peninsula bounded to the west by the Pacific Ocean and to 

the east by the Gulf of California (also known as the Sea of Cortez). The proposed study 

will focus on the Neogene extensional province, which is mainly found along the eastern 

side of the peninsular divide. 

 

I.3. Geology and tectonics framework for Baja California 

The Gulf of California rift forms a geologically young and active plate boundary that 

links the San Andreas strike-slip fault system in California to the oceanic spreading 

system of the East Pacific Rise. Previous tectonic and structural studies suggest a 

complex geological evolution for the Gulf of California and surrounding continental 

regions (Hamilton, 1961; Atwater, 1970; Karig and Jensky, 1972; Mammerickx and 

Klitgord, 1982; Gastil et al., 1983; Lonsdale, 1989; Stock and Hodges, 1989). Baja 

California is also an excellent modern example of a continental block, or terrain that has 

been horizontally translated ~ 300 km to the NW because of highly oblique rifting and 

sea floor spreading in the Gulf of California (Umhoefer and Dorsey, 1997). The 

peninsula was originally connected to the west coast of mainland Mexico but rifted and 

drifted away by differential movements of the Pacific and North American plates over 

the past 6-12 Myr.  

The tectonic evolution of eastern Baja California has been controlled by dynamic 

processes of oblique continental rifting that are still poorly understood. Geologic 
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structures, geomorphologic features, and sedimentary basins along the eastern side of 

Baja California preserve a critical record of these processes.  

Ochoa-Landín (1998) recently summarized the geologic evolution of the Gulf of 

California and Baja California from ~ 23 Ma to the present. During Oligocene time, an 

eastward-dipping subduction zone had developed along the Pacific side of Baja due to 

subduction of the Farallon plate beneath the western margin of North America 

(McDowell and Clabaugh, 1979; Sawlan and Smith, 1984). Subduction of oceanic 

lithosphere created a north-south trending volcanic arc along nearly the entire length of 

Baja from ~ 24-11Ma (Atwater, 1970; Stock and Hodges, 1989). As subduction slowed 

during Middle Miocene time, parts of western North America became coupled to the 

Pacific Plate along the former subduction zone (Atwater, 1989; Stock and Hodges, 1989; 

Nicholson et al., 1994; Bohannon and Parsons, 1995), causing initial riftting in the Gulf 

of California, the formation of a new plate boundary there, and the transfer of Baja 

California lithosphere onto the Pacific Plate. According to Dickinson and Snyder (1979), 

eastward-directed subduction was terminated as a transform boundary began to develop 

at the northern end of Baja California, with the northward migrating Mendocino triple 

junction simultaneous with southward migrating Rivera triple junction, and the start of 

transform shear. Gans (1997) suggested that the transform boundary had a collinear 

position with respect to the trench and maintained a stable configuration until about 5.5 

Ma when the plate boundary moved into the Gulf of California. Subduction stopped at 

~12 Ma (Middle Miocene), which has been related to the shutdown of spreading along 

the Pacific-Guadalupe ridge (Mammerickx and Klitgord, 1982). 
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 Extension in the Gulf of California began at ~12 Ma, in an east-west to northeast–

southwest direction, roughly orthogonal to the trend of normal faults that formed during 

rifting (Angelier, 1981 et al.; Atwater, 1989; Lonsdale, 1991; Stock and Hodges, 1989; 

Stock and Lee, 1994; Axen, 1995; Lee et al., 1996; Axen et al., 2000). Also near the 

Santa Rosalia Basin, Sawlan and Smith (1984) recognized that the onset of crustal 

extension coincided with a coeval change in volcanism from calcalkaline to transitional-

calcalkaline at around 12-10 Ma. This extension is responsible for the translation of Baja 

California as much as 100-150 km WSW relative to North America before about 5.5 Ma 

(Late Miocene). The complete translation of Baja California from the North American 

plate to the Pacific Plate is related to the activation and connection of the San Andreas 

Fault system with the East Pacific Rise, which has been dated at about 3.5 Ma (Lonsdale 

1991, Stock and Hodges 1989). This connection may have increased displacement of 

Baja California from mainland Mexico more than 260 km due to dextral strike-slip 

displacement along the San Andreas Fault system and the initiation of seafloor spreading 

in the Gulf of California (Landin, 1998). On the other hand, Angelier et al. (1981) 

recognized N-S striking normal faults and NNW-SSE to NW-SE dextral-slip and oblique 

faults in the Pliocene to Recent strata of Santa Rosalia basin, which have been related to 

a clockwise rotation of the extension direction from NE-SW to E-W that is associated 

with dextral strike-slip motion along the San Andreas fault system. At present, nearly all 

of the modern Pacific-North American relative plate motion is accommodated within the 

axis of the Gulf of California and the Salton trough (e.g., Lonsdale, 1989; DeMets, 1995; 

Bennett et al., 1996). The Baja California-North America spreading rate recorded by 
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magnetic anomalies in the axis of the gulf accelerated from ~43 mm/yr to ~51 mm/yr at 

~0.78 Ma (DeMets, 1995; DeMets and Dixon, 1999; Spencer and Normark, 1979; Stock 

and Hodges, 1989). Recently, Axen et al. (2000) suggested that significant oblique 

rifting has probably characterized the gulf since at least ~8 Ma, and possibly throughout 

its history. Since ~6.5 Ma, most plate-margin translation has been concentrated in the 

gulf, where long dextral transforms link short spreading ridges (e.g., Lonsdale, 1989).  

Baja California can be divided into three major domains (Umhoefer and Dorsey, 

1997): 1) a northern domain, which extends from Puertecitos to the Salton trough, 2) a 

central domain, from latitude ~30°N to ~25°N, and 3) a southern domain, from latitude 

~25°N to the mouth of the Gulf of California. These three main domains are defined by 

active transform faults in the gulf, as indicated by bathymetry (Larson et al., 1968; 

Lonsdale, 1989), seismicity (Molnar, 1973; Goff et al., 1987), and active onshore faults 

that cross the peninsula. In the northern domain, many strike-slip faults diverge 

westward from the transform faults offshore and cut across Baja California and southern 

California (e.g., Suarez- Vidal et al., 1991). Thus, the active plate boundary is at least 

200–300 km wide and is characterized by numerous strike-slip and normal faults 

(Umhoefer and Dorsey, 1997). 

 In the central domain, most seismicity occurs along major transform faults in the 

Gulf of California (Goff et al., 1987), and there are no active faults cutting across Baja 

California. Geomorphic and seismic data suggest that an important, but probably minor, 

component of active faulting is occurring along the eastern margin of central Baja 

California. Umhoefer and Dorsey (1997) further divided the central domain into western 
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and eastern segments. The western part of the central domain is a largely unfaulted 

region of flat to gently inclined strata of the Miocene fore arc and older units. The 

eastern part of the peninsula and the narrow shelf in the Gulf of California, however, are 

part of the gulf extensional province, which contains virtually all of the structures related 

to rifting (Gastil et al., 1975). A nearly continuous, east-facing rift escarpment forms the 

western boundary of the Gulf of California extensional province. In the southern 

domain, seismically active normal and oblique faults, especially the La Paz fault cut 

across Baja California (Normark and Curray, 1968). The relationship of these faults to 

the transform fault system offshore is unknown (Umhoefer and Dorsey, 1997). 

 

I.4. Statement of the problem 

In Baja California, no regional morphotectonic study has been done to investigate the 

role of the major forcing factors that have controlled the landscape of the peninsula, 

exposed lithology, tectonics, and climate. Climate and bedrock lithologies are relatively 

constant along the entire length of the eastern rift province, so tectonism has probably 

played a dominant role in the variable topographic evolution of this area.  

Watersheds are the geomorphic boundary of terrestrial sedimentary basins and are 

typically composed of one or more drainage basins. Detailed study of the drainage 

basins in Baja California, including the extraction of drainage basin attributes (e.g., hill 

shades, aspects, slope, etc), along with multivariate statistics will reveal the role of 

extensional  tectonics in controlling the geomorphology of the eastern rift province of 

Baja California. 
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I.5. Tectonic geomorphology of rift basins and Baja California 

Drainage networks in continental rift basins are strongly linked to bedrock lithology, 

climate, fault systems, and surface processes, although quantitative measurements and 

statistical analyses that demonstrate any interdependent relationships between these 

factors are generally lacking.  

Drainage networks can be demonstrably linked to the growth and linkage of 

extensional fault systems and regional development of topography in intracontinental rift 

systems (Leeder and Gawthorpe, 1987; Braun and Beaumont, 1989; Frostick and Reid, 

1989; Gilchrist and Summerfield, 1990; Summerfield, 1991; Foster and Gleadow, 1992; 

ten Brink and Stern, 1992; Gawthorpe and Hurst, 1993; Arvidson et al., 1994; Seidl et 

al., 1996; Gawthorpe and Leeder, 2000; Contreras and Schultz, 2001; Doglioni et al., 

2003; 2005). Baja California represents a unique continental rift setting because older, 

volcanically constructed, topographic features are spatially juxtaposed and temporally 

overprinted by younger, rift-related structures and topographic patterns (El-Sobky and 

Dorobek, 2004). The similar climatic conditions along the length of Baja California, but 

variable timing and intensity of late Miocene to Recent rifting and the unique 

dimensions and bedrock lithologies of individual rift basins, means that the present-day 

tectono-geomorphologic characteristics of different basins likely reflect different stages 

in the tectonic evolution of each basin. In other words, the tectono-geomorphologic 

“maturity” of individual rift basins is most likely related to pre-rift topography, local 

variations in bedrock lithologies, and when the most recent displacements occurred 

along basin-bounding fault systems.  
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This study will investigate a number of different morphometric indices and analyze 

topographic and hypsometric profiles of individual rift basins to characterize the tectono-

geomorphologic maturity of each basin. Preliminary analyses show that basins along the 

eastern side of Baja California can be subdivided into several basin types: 

• Immature basins, which are bounded by obvious fault scarps or abrupt and 

steep topographic inflections along the edges of basins. These abrupt topographic 

changes along the basin edges suggest recent vertical displacements on basin-

bounding faults. Other characteristics of tectono-geomorphologically immature 

basins include complex drainage networks and stream ordering relationships, stream 

and valley incisions that have very little accumulated sediment at the present time, 

steep alluvial-fan surfaces, and trunk streams that are shifted toward axial positions 

near recently active normal faults that bound the basin. 

• Transitional basins, which are in intermediate stages of tectono-

geomorphologic evolution. Remnant rift-generated topography is still preserved, 

although subdued by the combined effects of erosion and sediment accumulation. 

Topographic and hypsometric profiles across transitional basins are highly variable, 

even within the same basin, which indicates that these basins are evolving into more 

mature basins. 

• Mature basins, with basin margins that are not obviously fault-bounded. 

Fault scarps are not apparent, topographic and hypsometric profiles from basin 

flanks to basin centers are generally concave upward and fairly consistent across 
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individual basins, and many fluvial incisions are floored by significant sediment 

accumulations. 

 

I.6. Objectives 

I will investigate longer term geomorphologic and drainage-network evolution across 

the study area by examining all scales of stream development and how they relate to 

tectonically generated topography and bedrock lithologies. I am particularly interested in 

areas where stream profiles and stream patterns are not in equilibrium with more 

regional topographic profiles, which would suggest that the streams are in the process of 

adjusting to previous surface deformations. I will also investigate how stream patterns 

are influenced by local structural features. 

The particular objectives of the project proposed here are threefold: 1) to generate 

15-m spatial resolution absolute DEM for the study area and provide these data for the 

research community in the public domain, 2) to investigate the implementation of the 

object-oriented classification and stacked-vector techniques to generate a high-resolution 

hybrid classified map for the study area, and 3) to study the role of crustal deformation 

during rifting and tectonic reactivation in determining the geometry and distribution of 

extensional faults and their effects on drainage basins.  

 

I.7. Data and resources 

The required data for this study include: (1) LANDSAT 7 ETM+ satellite images, (2) 

ASTER satellite images, (3) SRTM digital elevation model (DEM) data, (4) topographic 
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maps, (5) geological maps, and (6) ground control points (GCPs). LANDSAT ETM+ 

images were acquired for the entire study area from the USGS. Six scenes will be used 

in this study, which cover about two-thirds of the peninsula. The images will be utilized 

to verify and/or enhance the surface geology. Thirty-two ASTER images were also 

acquired, which cover the eastern rift province of the peninsula. The ASTER images will 

be used to generate a relative DEM with 15-m spatial resolution. The shuttle radar 

topographic mission (SRTM) DEM data have also been acquired for the study area from 

the USGS (1:250,000 scale data at 90-m resolution). These data will be enhanced using 

appropriate geostatistical techniques, which after resampling and integration with the 

ASTER data will be used to generate an absolute 15-m spatial resolution DEM.  The 

SRTM digital elevation is available in 1° x 1° blocks (geographic coordinate system, 

WGS 1972 datum, units are decimal degrees) and requires some processing before 

conducting any geological analyses. 1:50,000 topographic maps are available and cover 

most of the peninsula. A representative number of GCPs scattered across the study area 

were collected using a hand -held GARMEN 72 GPS unit during field work in Junuary 

2004. 

 

I.8. Materials and methods 

I.8.1. Digital elevation model and geostatistical manipulations 

A DEM is crucial for this study, so much time and effort will be devoted to 

generating a reliable, robust, and precise DEM for the study area. The accuracy of the 

extracted morphometric parameters and indices rely completely on the accuracy and 
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precision of the derived DEM. DEMs are generally defined as binary raster files that 

have spatial elevation gridded in a regularly spaced pattern. In many earth and 

environmental science applications, DEMs serve as inputs for detailed spatial analyses, 

such as the determination of the extent of hydrographic networks and the classification 

of geological terrains (Moore et al. 1991; Weibel and Heller 1991; Kyriakidis et al. 

1999). Tectonogeomorphic studies also need accurate and precise values for elevation of 

planetary surfaces. The shuttle radar topography mission (SRTM) DEM has 90-m spatial 

resolution and will be used in this study. The SRTM elevation data provide the most 

complete, high-resolution digital topographic database for Earth’s surface. The SRTM 

data, however, contain artifacts and data gaps with null values, which appear as empty 

pixel elements in the DEM. For small areas, it is possible to use various interpolation 

methods to generate a DEM from the SRTM data that is completely free of such data 

gaps. For larger areas, however, interpolation becomes increasingly difficult. Null areas 

in the SRTM data are typically due to very steep relief, dense dark vegetation, very dark 

shadows, or the surface of bodies of water.   

Artifacts and data gaps in the SRTM data can be removed or filled with estimated 

values that resemble true values by using various geostatistical techniques. Increasing 

the resolution of the SRTM DEM beyond its actual spatial limits is also an objective.  

The power of geostatistical approaches lies in their ability to honor any intrinsic 

spatial information associated with regionalized variables. Geostatistics is distinct from 

conventional statistical techniques in that: 1) geological origins of the data are 

considered, 2) geostatistical methods provide definite modeling and treatment of spatial 
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correlations between data, and 3) geostatistical methods have the ability to handle data at 

different scales and levels of precision (Deutsch, 2002). In the present study, ordinary 

kriging and cokriging methods will be used to fill missing data in the original SRTM 

DEM. Results from ordinary kriging and cokriging methods can then be compared to 

evaluate the accuracy of the estimated values for the data gaps in the SRTM DEM. In the 

cokriging method, altitude is used as a primary or hard variable and co-regionalized with 

the reflectance attribute. The reflectance attribute is generated by summing the 

transformed spectral reflectance bands using the ACE (alternating conditional 

expectation) approach. The reflectance attribute is then used as a secondary or soft 

variable and formalized in a coherent set of variograms, one for the hard variable, one 

for the soft variable, and the cross-variogram between the pair of variables involved in 

the estimation (cf. Atkinson et al., 1992). 

The gap-free SRTM DEM generated using the new technique developed during early 

stages of this study (El-Sobky and Dorobek, in review) is very important, especially 

when involved in any automated computational algorithms. For example, automated 

extraction of the various morphometric indices using a gap-free DEM is more 

convenient, accurate, and fast, and the computing algorithm will not suffer any 

complications while running. 

 

I.8.2. Object-oriented classification 

Classification of satellite imagery is the process of clustering data into a number of 

uniquely identified classes that have similar spectral characteristics. Clustering is based 
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on the degree of similarity and dissimilarity between the different groups, so data points 

that belong to the same group should be highly similar, but dissimilar to the other 

groups. Unfortunately, different results can be achieved for the same data set by 

implementing different classification algorithms (Benediktsson et al., 1990a, b; Hepner 

et al., 1990; Key et al., 1989; Bischof et al., 1992; Kanellopoulos et al., 1992; Civco, 

1993; Paola and Schowengerdt, 1994; Solaiman and Mouchot, 1994; Skidmore et al., 

1997). Development of an optimal classification algorithm is a challenging problem (Ho 

et al., 1994) and no image classifier provides perfect results (Matsuyama, 1989). Thus, 

Kanellopoulos et al. (1993) and Brown et al. (2000) suggested that combining classifiers 

could be a useful and practical approach to increase classification accuracy as well as 

optimize classification performance. 

Input data sets typically play a critical role in guiding the selection of an appropriate 

algorithm for the classification process. An object-oriented classification technique is 

chosen for the present study to perform the classification tasks. The concept behind 

object-oriented classification is that classification is based on the image objects and their 

mutual relationships rather than on the characteristics of a single pixel. The strength of 

this technique is that it utilizes a broad spectrum of different object features, such as 

spectral values, shape, or texture, for classification.  However, in order to deal with a 

multisource classification, an augmented- vector method (also known as stacked-vector 

methods) will be used. According to Tso and Mather (2001), there are three main issues 

involved with using this method. The first issue is the possible differences in scale and 

measurements of each data source. To overcome this problem a normal score transform 
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(NST) will be used. An NST is a graphical transform that allows one to normalize any 

distribution, regardless of its shape. The NST algorithm will be used to transform the 

multisource data sets into normal distribution and to normalize each data set, such that 

the mean has zero value and standard deviation equals unity. The second issue is the 

computationally intensive nature of this method. Reducing the numbers of data vectors is 

the best way to reduce the computational requirements of this technique. Data reliability 

or uncertainty comprises the third issue of this technique. To overcome this problem, 

input vectors will be assigned different weights in the object-oriented classification 

algorithm based on the degree of correlation between these vectors and the separability 

analysis.    

 

I.8.3. Tectonics and evolution of topography and drainage networks 

The links between tectonically generated topography and surficial drainage networks 

have been investigated in a number of tectonic settings (e.g., compressional orogens and 

their associated foreland basins: Tucker and Slingerland, 1996; Schlunegger et al., 1998; 

Kühni and Pfiffner, 2001; Schlunegger and Hinderer, 2001; intracontinental strike-slip 

deformation zones: Replumaz et al., 2001), although intracontinental rift systems and 

their associated rift-flank uplifts have probably been investigated more extensively than 

any other setting (e.g., Braun and Beaumont, 1989; Frostick and Reid, 1989; Gilchrist 

and Summerfield, 1990; Summerfield, 1991; Foster and Gleadow, 1992; Ten Brink and 

Stern, 1992; Gawthorpe and Hurst, 1993; Arvidson et al., 1994; Seidl et al., 1996; 

Gawthorpe and Leeder, 2000; Doglioni et al., 2003). Most tectonogeomorphologic 
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studies of intracontinental rift systems have focused on long-wavelength topographic 

variations that are most likely to be related to the deformation and rheological evolution 

of continental lithosphere during and after rifting. Far less research, however, has 

focused on more local structural features (e.g., individual half-graben elements and 

transfer fault zones) and the topographic and drainage patterns that are associated with 

these features. Even less is known about how local tectono-geomorphology is related to 

longer wavelength topographic variations. That is, there have been few integrated studies 

that have investigated all scales of geomorphologic and drainage evolution as they relate 

to various scales of tectonic deformation and tectonically generated topography (cf. 

Arvidson et al., 1994). 

In the present study I will use remote sensing data to characterize all scales of 

topographic variability across the eastern region of the peninsula that borders the Gulf of 

California. With respect to long-wavelength patterns of rift-flank uplift, I am particularly 

interested in how topographic patterns caused by younger transtensional deformation in 

the Gulf of California region have overprinted the older rift-flank uplift that formed 

during earlier, more orthogonal rifting phases.  

 

I.8.4. Watersheds and basin geomorphometries 

Baja California is an active tectonic region. In active tectonic settings, topographic 

features can be analyzed to quantitatively characterize the interactions between tectonics 

and surface processes, thus providing a basis for modeling landscape evolution. In this 

study, the tectonic geomorphology of the Baja rift province will be examined with 
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emphasis on the general topographic indices, drainage patterns, and major longitudinal 

profiles. A major goal is to express the influence of tectonics on drainage patterns, where 

streams adjust to the local tectonic deformation especially along the eastern side of the 

main peninsular divide. The main peninsular divide in Baja California is likely due to 

volcanically constructed topography that was enhanced by rift-flank uplift during 

Miocene to Recent time. Isostatic flexural uplift of the rift-flank keeps it high-standing, 

preventing the drainages from dissecting the landscape. As a result, the geomorphic 

expression of active normal faulting is expected. Results from this study may determine 

the time scales necessary for a landscape to transform from one tectonic and base level 

condition to another. Such different mechanisms for generating topography should 

impart a unique fingerprint in the resulting landforms (e.g. Wells et al., 1988). 

 Similar hypotheses have been examined in the Italian Apennines, where geologic 

and geomorphic data reveal topographic evolution during the different phases of major 

plate convergence and crustal shortening (Castellarin et al., 1986; Colella et al., 1987; 

Thomson, 1994; Tortorici et al., 1995; Argnani et al., 1997; Bertotti et al., 1997; Coltorti 

and Pieruccini, 2000).  

The identification of drainage basins is an important process in both characterising a 

surface and in defining spatial units that are appropriately related to geomorphological 

processes. The 15-m spatial resolution DEM is fundamental for this study because 

fractal measures such as the perimeter (contour length) and the surface area of 

topography are a function of DEM spatial resolution. 
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Multivariate statistics such as factor analysis and cluster analysis will be an important 

tool used to manipulate the different derived topographic attributes as well as for 

facilitating the interpretations. 

 

I.9. Significance of the present study 
 
Baja California is kinematically linked to the Gulf of Claifornia rift system. 

Although this area has been studied extensively from the tectonic point of view, there is 

only a limited understanding of the relationships between progressive surface 

deformation and its effects on sedimentation, geohazard potential, and drainage-network 

and geomorphologic evolution, especially during the last few million years of 

deformation. Thus, understanding recent surface deformation will provide insight into 

the styles, rates, and processes of ongoing tectonic activity in this region.  

Other studies in modern, tectonically active settings have shown that surficial 

drainage patterns provide important information on intermediate to longer term patterns 

of tectonic deformation and related surface deformations. Thus, an integrated study that 

combines analysis of recent surface deformations, mapped structural features, regional to 

local topographic patterns, and the evolution of drainage networks and alluvial 

depositional systems is essential for describing and explaining the links between tectonic 

deformation and erosion/sedimentation patterns across the Baja California region. 



 19 

CHAPTER II 

 

GEOSTATISTICAL TECHNIQUES FOR GENERATING HIGH-RESOLUTION 

GAP-FREE DEM FROM SRTM DATA 

 
 

Shuttle radar topography mission (SRTM) digital elevation data from Baja 

California were corrected and enhanced by replacing artifacts with real values derived 

using a series of geostatistical techniques. Ordinary kriging was used initially to 

regionalize the DEM (hard variable) and provide estimates for missing data. A sum of 

transformed reflectance bands of the ETM+ images was derived by using the alternating 

conditional expectations (ACE) algorithm; these results were then used as a soft variable 

for cokriging. Modeled experimental semivariograms for both hard and soft variables 

and cross semivariograms for the spatially correlated variables were then evaluated using 

cross-correlation methods to assess the accuracy of the techniques. Cokriging was more 

accurate and efficient than ordinary kriging for retrieving the missing data and for 

creating more geologically realistic maps. This technique provides a new and accurate 

way to quantitatively correct and enhance DEMs and to incorporate spectral reflectance 

as a soft constraint for estimating missing values.  

 

 

 

 



 20 

II.1. Introduction 

Digital elevation models (or DEMs) are generally defined as binary raster files 

that have spatial elevation gridded in a regularly spaced pattern. In many earth and 

environmental science applications, DEMs serve as inputs for detailed spatial analyses, 

such as the determination of the extent of hydrographic networks and the classification 

of geological terrains (Moore et al. 1991; Weibel and Heller 1991; Kyriakidis et al. 

1999). Tectonogeomorphic studies also need accurate and precise values for elevation of 

planetry surfaces. Shuttle Radar Topography Mission (SRTM) DEM with 90-m spatial 

resolution is used in the present study. The SRTM obtained elevation data on a near 

global scale to generate the most complete, high-resolution digital topographic database 

for Earth’s surface. The SRTM data, however, contain artifacts and data gaps with null 

values, which appear as empty pixel elements in the DEM. For small areas, it is possible 

to use various interpolation methods to generate a DEM from the SRTM data that is 

completely free of such data gaps. For larger areas, however, this becomes increasingly 

difficult. Null areas in the SRTM data are typically due to very steep relief, dense dark 

vegetation, very dark shadows, or the surface of bodies of water.   

The purpose of this study was to demonstrate that artifacts and data gaps in the 

SRTM data can be removed or filled with estimated values that resemble true values by 

using various geostatistical techniques. Increasing the resolution of the SRTM DEM 

beyond their actual spatial limits was also an objective.  

The power of geostatistical approaches lies in their ability to honor any intrinsic 

spatial information associated with regionalized variables. Geostatistics is distinct from 
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conventional statistical techniques in that: 1) geological origins of the data are 

considered, 2) geostatistical methods provide definite modeling and treatment of spatial 

correlations between data, and 3) geostatistical methods have the ability to handle data at 

different scales and levels of precision (Deutsch, 2002). In the present study, ordinary 

kriging and cokriging methods were used to fill missing data in the original SRTM 

DEM. Results from ordinary kriging and cokriging methods were compared to evaluate 

the accuracy of the estimated values for the data gaps in the SRTM DEM. In the 

cokriging method, altitude was used as a primary or hard variable and co-regionalized 

with the reflectance attribute. The reflectance attribute was generated by summing the 

transformed spectral reflectance bands using the ACE approach. The reflectance 

attribute was then used as a secondary or soft variable and formalized in a coherent set 

of variograms, one for the hard variable, one for the soft variable, and the cross-

variogram between the pair of variables involved in the estimation (cf. Atkinson et al., 

1992). 

 

II.2. Previous studies 

Geostatistical interpolations are commonly used in remote sensing studies to 

solve problems with greater accuracy and precision than conventional statistical methods 

(e.g, Addink and Stein, 1999; Lohani and Mason, 1999; Oliver et al., 2000; Chica-Olmo 

and Hernandez, 2000; Herzfeld, 1999; Atkinson and Tate, 2000). In particular, kriging 

and cokriging techniques have been used with great success. For example, Lohani and 

Mason (1999) applied kriging and cokriging techniques to Airborne Thematic Mapper 
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(ATM) images to construct a DEM for a narrow and steep beach. Lloyd and Atkinson 

(2002) generated a digital surface model (DSM) from LiDAR data using both ordinary 

kriging and the kriging with trend model (also known as universal kriging). 

Regionalization theory is more successful than most other methods (e.g., time-series 

analysis, correlograms and Fourier transformation) because regionalization theory 

honors most natural phenomena captured by remote sensing methods, which are 

randomly or continuously distributed and commonly have high spatial variability across 

Earth’s surface.  

 

II.3. Methodology 

 The work flow for the methods described in this paper is shown in Figure 2.1. 

 

II.3.1. Study area 

The area under investigation (Baja California, Mexico) has a complex tectonic 

history and spectacular geomorphologic patterns (Figure 2.2). Developing a high-

resolution artifact-free DEM for the peninsula using SRTM data is critical for 

identifying most tectonic features and for statistical analysis of the geomorphologic 

characteristics of the region.  

Baja California is a ~ 1200-km-long by 50 to 200-km-wide peninsular that is 

bounded by the Gulf of California on the east and the Pacific Ocean on the west (Figure 

2.2a). Our ongoing studies are focusing on the middle two-thirds of the peninsula 
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Figure 2.1. Work flow for the proposed technique. 
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Figure 2.2. (a) Location map of Baja California. (b) Mosaic of ETM+ images. (c) SRTM digital elevation 
model of the selected test area. Blue patches are data gaps in the SRTM DEM. 
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(Figure 2.2b), which is representative of much of Baja California. In this paper, 

however, we focus on a selected test area (Figure 2.2c) in order to illustrate the veracity 

and utility of our proposed techniques.  

 

II.3.2. Variography 

Before using any geostatistical methods of estimation, the strength of spatial 

correlation similarities and dissimilarities between samples must be inferred. Variograms 

are basic diagnostic tools for graphically representing geostatistical relationships that 

describe and quantify the spatial variation of regionalized variables (Olea, 1994; 

Deutsch, 2002). A variogram can be described as a measure of dissimilarity or 

increasing variance as a function of distance between pairs of measured pixel values.  

Variography usually includes two main steps (Chambers and Yarus, 2001). First, an 

experimental variogram is computed that accounts for anisotropy and azimuthal 

directions. Second, the experimental variograms are modeled with continuous functions.  

 Pixel values in a DEM or remotely sensed image, whether elevation or digital 

number (DN), are considered geostatistically as regionalized variables, which then can 

be characterized by both random and spatial correlation aspects. Thus, these values can 

be studied simultaneously through the variogram function concept. A variogram function 

γ(h) is a statistically robust spatial-estimator tool. A variogram function characterizes the 

spatial correlation between paired samples by computing the squared differences 

between their values. A variogram function can be expressed as follows: 
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where )(hγ is the estimation variogram value for lag vector (h) between pixel z (xi) and 

pixel z (xi+h), and N (h) is the number of pairs of pixels separated by h.  

The ideal experimental variogram model consists of: (1) The range (Ao), which 

is the distance where the variogram reaches zero spatial correlation. The range of the 

variogram is controlled by the sill, where the spatial correlation between the data points 

after the range is almost zero. (2) The sill, which is the semivariance (Co + C) where the 

variogram reaches its range. (3) A nugget (Co) may be present, which is usually related 

to the presence of random noise, short scale variability, or measurement errors 

(Chambers and Yarus, 2001).  

Variogram models must honor the condition of positive definiteness (Deutsch, 

2002), which ensures a unique solution for the kriging equations and that the variance of 

any linear combination of data values will be positive (Kupfersberger and Deutsch, 

1999). Spherical, exponential, and Gaussian models (Isaaks and Srivastava, 1989; 

Deutch and Journal, 1992; Goovaerts, 1997) are the most commonly used models that 

honor the condition of positive definiteness. 

· The spherical model is defined by: 

           γ(h) = c[1.5(h/a) – 0.5(h/a)3], h ≤ a                               (2) 

        γ(h) = c, h > a 

· The Gaussian model is defined by: 

                                   γ(h) = c[1 - exp(-h2/a2)]                                                 (3) 

· The exponential model is defined by: 

                                   γ(h) = c[1 – exp(-h/a)]                                                   (4) 
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Where, h is the offset, a is the range, and c is the sill of the model. 

  Depending on the spatial behavior of the specific variable, the variogram can 

reveal several spatial characteristics such as continuity, anisotropy, zone of influence, 

zonality, and trend (Sahin et al., 1998). 

 

 II.3.3. Ordinary kriging 

Kriging was introduced by Krige (1951, 1966) and has become an important 

geostatistical estimation procedure. Kriging is recommended over conventional 

estimation methods because its estimates are unbiased, have minimal variance, can 

provide larger or smaller estimates than any of the sample values, take advantage of both 

distance and geometry to weight samples, and minimize the difference between the 

estimated and true values through a conceptual probabilistic random function model of 

the true values (Issak and Srivastava, 1989; Oliver et al., 1989a, 1989b; Rossi et al., 

1994). 

Ordinary kriging was used in this study and is the method typically used in the 

univariate case. Ordinary kriging is relatively simple and robust, especially when the 

kriging neighborhood is kept small (Arik, 2002). The detailed theory and equations that 

described ordinary kriging can be found in Journel and Huijbregts (1978), Issak and 

Srivastava (1989), and Wackernagel (2003). The advantage of using ordinary kriging is 

that it honors the data values at their locations, which is known as the exactitude 

property. The general equation for ordinary kriging is: 
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II.3.4. Cokriging 

Cokriging is commonly used in the multivariate case. It is an interpolation 

technique that allows better estimation of the hard (or primary) variables using the soft 

(or secondary) variables, which are more intensely sampled and have a degree of 

correlation with the primary variables. According to Isaaks and Srivastava (1989), the 

spatial cross-correlation between the sparse primary variable and a spatially denser 

secondary variable is the key to improve the reliability of estimation. Thus, cokriging 

seems to be ideally suited for remote sensing problems yet, it has been used only rarely 

(Bhatti et al., 1991; Atkinson et al., 1994). We show here how cokriging can be used for 

generating corrected (gap-free) SRTM DEMs from ETM+ reflectivity data.  

Topographic effects on radiance in optical satellite images have long been 

recognized (Stohr and West, 1975; Holben and Justice, 1980; Leprieur et al., 1988; 



 29 

Thomson and Jones, 1990). The proportion of light reflected toward a satellite also 

varies with the geometric relationships between the sun, target and viewer, all of which, 

in turn, vary with topography (Teillet et al., 1982; Hugli and Frei, 1983).  Topography 

also directly affects the spectral characteristics of reflected radiation (Dymond and 

Shepherd, 1999). The digital number (DN) is used here as a secondary variable that 

describes topographic effects on reflectance.  

The new processing sequence introduced here is the reverse of the normal 

sequence, where a DEM is typically used to correct topographic effects on reflectivity in 

mountainous areas. The ETM+ has eight spectral bands, which are used to account for 

spectral variations related to topographic changes. The estimator in cokriging is given as: 
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where ez  is the primary variable (elevation), iλ  is the secondary variable (reflectance), 

N and M are the number of primary and secondary variables, jγ  and ry , respectively, are 

the weights of both primary and secondary variables. In cokriging, the cross-variogram 

between the primary and the secondary variables is critical for coregionalizing the two 

variables. Strict limitations are required to ensure a positive estimation variance on the 

coregionalization model (Isaaks and Srivastava, 1989). A positive definite variogram is a 

legitimate measure of distance. It then becomes necessary to determine only one value 

for the secondary variable that incorporates all the variability within the different 

spectral bands. To solve this problem, we used the alternating conditional expectations 

(ACE) algorithm to aid in appropriate transformations of the eight bands in order to end 
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with one variable, as will be explained later. ACE is a nonparametric method developed 

by Breiman and Friedman (1985) for finding optimal transforms. The source code can be 

found at http://playfair.stanford.edu, and the code used here was written by Xue et al. 

(1996). The advantage of this algorithm is that no assumption is made about the 

functional form of the regression (i.e., the regression is nonparametric). Breiman and 

Friedman (1985) only assumed that the optimal transform of the dependent variable is 

the sum of the optimal transforms of the independent variables. 

 The simplified ACE equation is:  
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Where θ  and φ  are the transform functions and p is the number of independent 

variables, which in this case, are the eight thematic mapper spectral bands. Z and X are 

vectors of the data, and both may have random error. The ACE algorithm will find 

optimal values for θ  andφ , from which a smoothed Z can be calculated from X 

(Zwahlen et al., 1997). The improvement in the estimated results using cokriging is 

highly dependent on the degree of correlation between the primary and the secondary 

variables. To improve the correlation, the primary variable is transformed using the 

normal score transform algorithm (NST). 

The cokriging variance can be calculated as: 
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where Ce is the covariance of NST elevation, Cr is the covariance of ACE reflectance, 

and Cer is the cross-variance between e and r. 

 

II.4. Application and results 

II.4.1. Data description  

The geostatistical methods described above were applied to the SRTM data, 

which are sampled at intervals of three arc-seconds. The SRTM-3 arc-second data are 

generated using three-by-three averaging of the one arc-second samples. SRTM data 

cover Earth between 60oN and 57oS. The DEM is constructed using synthetic aperture 

radar (SAR) interferometry using phase differences between images. Using the regular 

processing steps to generate the DEMs does not account for scattered shadows in 

mountainous areas. Large holes in the land area may remain unfilled and presumably 

reflect areas where there have been problems with data processing.  

Six Landsat ETM+ level 1G images covering almost 75% of Baja California are 

used in the present study. Landsat ETM+ images have a stable radiometric response with 

low noise because the radiometric response of each ETM+ detector was calibrated pre-

launch as a function of incident spectral radiance (Williams, 2002). Because of their 

stable radiometric response and high signal-to-noise ratio, ETM+ images are most 

appropriate in terms of reflectivity for the technique described here.     
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II.4.2. Ordinary kriging results 

Isotropic behavior is very rare in natural geologic settings, thus it is important to 

investigate directional variograms derived from raw, untransformed satellite data of 

Earth’s land surface. Figure 2.3 illustrates the directional experimental variogram in the 

four major geographic directions, 00, 450, 900, and 1350 respectively. Using the 

parsimony principle, a Gaussian model is used to fit the first two directions, whereas a 

spherical model is more reasonable for fitting the other directions.  The selected window 

test area (Figure 2.4a), shows no trend in the variogram behavior, although this is not 

always typical. In other words, the variogram properties are completely controlled by the 

topography surrounding any gaps within the working window. In remote sensing, we 

usually deal with millions of pixels, so searching all data to select a kriging 

neighborhood is computationally prohibitive (Rossi et al., 1994). Thus, a spiral 

searching algorithm is introduced to select only the closest data to the estimation points 

(Deutsch and Journel, 1992). 

 In the technique described here, the working windows are selected visually, 

where two main constraints are followed. First, the window should be as small as 

possible, and second, data gaps should be surrounded by sufficient neighboring samples 

in all directions in order to avoid trend modeling. Modeling data trends is only important 

if estimates are located at the boundary of a cell (Bailey and Gatrell, 1995).  A surface 

variogram (Figure 2.4b) is used to estimate both major and minor ranges and to prove 

the anisotropic character of the selected window. The ellipse fitting method applied to
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Figure 2.3. Plot of experimental variograms and fitted models in different directions. 
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Figure 2.3. (Continued) 
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Figure 2.4. (a) Selected window from the test area showing data gaps. (b) Plot of surface variogram 
showing the elliptical fitting model. 
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the model ranges reveals the major anisotropy in the NW-SE direction and minor 

anisotropy in the NE-SW direction.  

Figure 2.5a shows the ordinary kriging results for the test area. The interpolation 

of the data gaps looks geologically acceptable. The smoothing effect, which is a major 

drawback of ordinary kriging and most other interpolation methods, is dominant and 

obscures much of the surficial features that might exist. Quantitative evaluation of the 

results is crucial, where ordinary kriging variance is commonly used as an analog for the 

uncertainty measurements associated with the ordinary kriging estimates. An Iso-surface 

contour plot of the estimation variance shows a realistic zonal increase in the estimation 

variance from the boundary of the data gap toward its middle (Figure 2.5b), which 

reflects the increase of the uncertainty measurements toward the center of the data gap. It 

also is worth noting that there are important implications for using the variance as a 

proxy for the uncertainty. Journel (1993) and Armstrong (1994) referred to the variance 

as a measure of reliability rather than as a measure of the uncertainty of the ordinary 

kriging estimate. By using variance in this way, the variance of the errors becomes 

independent of the actual data values and depends only on the data configuration. This 

situation is referred to as “homoscedasticity”, which is rarely achieved in practice 

(Goovaerts, 1997). 

  A more convenient tool that usually provides a more robust quantification of 

estimated values for data gaps is cross-validation. Cross-validation basically answers 

four main questions: (1) Is the variogram model appropriate? (2) Is the search 

neighborhood appropriately scaled? (3) Are data for any regions underestimated? (4) Are  
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Figure 2.5. (a) Contour map of elevation generated using the ordinary kriging method. (b) Ordinary 
kriging uncertainty map. (c) Cross-validation of ordinary kriging interpolation. 
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prediction errors comparable? The "leave-one-out" (or LOO) strategy (Allen, 1974) is 

the basis for cross-validation, where the value of a known sample is estimated with the 

help of all other data. This procedure is then repeated for each sample within the data 

set.  Cross-validation results for ordinary kriging are usually expressed as a regression 

plot between the actual data and the estimations of these actual data (Figure 2.5c).The 

scattered points around the 45o line along with the value of the R2 are key for evaluating 

the ordinary kriging accuracy. As indicated in the figure, the plotted points are closely 

scattered around the 45o line, where no over- or underestimation is observed. At the 

same time, the value of R2 (0.963) reflects the high degree of correlation between the 

actual and estimated data points. Generally speaking, the ordinary kriging method is an 

unbiased interpolation that provides a valid least-squares estimate of the data gaps. In the 

absence of reflectance data, ordinary kriging can stand alone as a valid technique to 

provide acceptable values for the data gaps in the SRTM DEM. 

 

II.4.3. Cokriging results 

In order to improve the reliability of the estimated values, the primary variable is 

transformed to be normally distributed, which then establishes homogeneity within the 

variance. A normal distribution is usually desired for processing the data statistically. A 

normal distribution allows the data to be defined by only two parameters: the mean and 

the standard deviation. Normally distributed data also improve the variogram analysis 

and kriging results. It is typically unnecessary to transform the data, although some 

specific analysis, such as Gaussian simulation, may be necessary. The normal score 
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transform (NST) algorithm was used in this study to transform the data into normal 

distribution and to normalize the data, such that the mean has zero value and standard 

deviation equals unity (Figure 2.6).  NST is a random non-parametric transformation, 

that is, the transformation function changes with each data set and the algorithm can 

partially remove any systematic component within the data. In other words, the NST 

algorithm suppresses the presence of any underlying or hidden trends. We then assumed 

isotropic conditions (i.e., no trend), which most gridding algorithms make before 

running.  

The ACE algorithm is used where elevation, the primary variable, is assigned as 

the dependent variable and the eight ETM+ spectral bands are assigned as the 

independent variables. Given dependent random variables Y (i.e., elevation) and 

independent random variables X1 through X8 (i.e., the eight thematic bands), we define 

the arbitrary mean zero transformation e(Y) and b1(X1), b2(X2),…, b8(X8). The 

optimal transformation of each variable is then calculated to maximize the correlation 

(details in Breiman and Friedman, 1985). Thus, 

                 ( ) ( ) ( ) ( ) )10(8*8.........2*21*1.* XbXbXbvsYe +++     

Figure 2.7 shows the optimal transformation of each thematic band and the 

power function used to fit each transformed band. Figure 2.8a shows elevation versus the 

sum of the transformed spectral band independent variables. A linear regression in 

transformed space results in the optimal transformation function (OTF): 

    )11.....(024787.9))(*(020504.2))(*(011341.3)(* 2 ++×++×+−= EiXibsumEiXibsumEYe  
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Figure 2.6. Normal score transform results. (a) The untransformed elevation histogram. (b) The 
untransformed elevation cumulative frequency. (c) NST histogram of elevation. (d) Cumulative frequency 
curve of elevation. 
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Figure 2.7. Optimal transformation of the eight ETM+ bands. 



 42 

 
 
Figure 2.8. (a) Linear regression between the elevation and the sum of the transformed independent 
variables. (b) Linear regression between the NST primary variable and the ACE secondary variable 
(covariate). 
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The ACE secondary variable is defined by one value which represents the sum of 

OTF of the eight thematic bands. The linear regression between the NST primary 

variable versus the ACE secondary variable is shown in Figure 8B. Both algorithms, 

NST and ACE, dramatically increase the degree of correlation between the hard and soft 

variables.   

As discussed earlier, the primary variogram, the secondary variogram, and the 

cross-variogram are constructed before running the cokriging algorithm. Figure 2.9 

illustrates the surface plots of the three variograms, which reveal the isotropic behavior 

of the data. 

In practice, we assume a weak second-order stationary random function. We 

started with modeling the cross-variogram using transition models that honor the rule of 

parsimony (i.e., minimum number of models). The spherical model is used where it fits 

to the data points well (Figure 2.10a). This model exhibits linear behavior at the origin 

and reaches the sill at distance a  , if the proposed variogram equations are: 
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The cross-variogram model should also satisfy the third requirement, which is: 
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where a and C are the range and sill values, respectively. 
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Figure 2.9. Surface variogram plots. (a) Cross-variogram. (b) Primary variogram. (c) Secondary 
variogram. The three plots reveal the isotropic character of the data. 



 45 

 

 

Figure 2.10. Omni-direction variograms, fitted with the spherical model. (a) Cross-variogram. (b) Primary 
variogram. (c) Secondary variogram. 
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The regression coefficient (R2) and residual sums of Squares (RSS) were used to 

evaluate the fitting of the modeled experimental variogram. R2 provides an indication of 

how well the model fits the variogram data. RSS is more sensitive than R2, and is 

typically used to ensure and to provide a measure of the best-fit of the variogram model. 

A low RSS value usually indicates a better model fit. As illustrated in Figures 2.10b and 

2.10c, the spherical model is used also to fit the primary and secondary variograms to 

satisfy the first constraint.  The cokriging map of the NST elevation (Figure 2.11a) and 

the iso-surface contour plot of the estimation variance (Figure 2.11b) show the 

robustness of the proposed technique. The cokriging map is geologically more realistic 

and the estimation variances decreased, which reflect an increase in the certainty of the 

estimates.  The cross-validation further supports the improvement, where the R2 

increased from 0.96 using ordinary kriging to 0.99 using cokriging (Figure 2.11c). 

The cokriged NST variable must then be back-transformed to yield a corrected 

DEM. A linear regression between the elevation and its NST is fitted using a fifth-order 

polynomial equation, which is used to perform the back-transformation. The final results 

should be tested by measuring the RMSE, which is defined as: 

                         )17()( 2

n
weRMSE ∑ −

=   

where e is the elevation extracted from the corrected DEM, w  is the elevation measured 

in the field, (which has a higher precision), and n  is the number of tested field locations 

or ground control points. Since our field data did not coincide with the actual data gaps, 

we generated artificial gaps in the STRM DEM that coincided with our ground control  
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Figure 2.11. (a) Cokriging of the NST contour map. (b) Cokriging uncertainty map. (c) Cross-validation of 
the cokriging interpolation. 
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points, where elevation was measured in the field using hand-held GPS units. We then 

applied cokriging to refill these artificial gaps. Table 2.1 shows the RMSE for the 

locations that were refilled using cokriging, where the incorporation of the reflectance 

variable as a soft background improves the estimation and decreases the RMSE.  

The cokriging procedures were applied to the entire study area, producing a well- 

corrected and enhanced DEM with 90-m resolution. Resampling of the corrected DEM 

using cubic convolution techniques increased the resolution to 30 meters (Figure 2.12). 

The cubic convolution method calculates an output cell value from a 4 X 4 block of 

surrounding input cells (details of this method are in the ERDAS Field Guide, 2003). 

The output value is a distance-weighted average, but the weight values vary nonlinearly 

as a function of distance. The cubic convolution produces sharper images than both 

bilinear and nearest neighbor interpolation, although it is the most computationally 

intensive resampling method. The cubic convolution method is preferred when 

resampling to a larger output cell size.  

To further assess the efficiency of our proposed technique, we introduce the 

following example as a practical application. One of the important functions of Terra 

Satellite (Yamaguchi et al., 1998) is to derive DEMs from Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) stereo images. Cloud cover and 

shadows from clouds create gaps in ASTER images. Automated stereo-correlation 

techniques (Ackermann, 1984; Ehlers and Welch, 1987; Lang and Welch, 1999) can be 

used on ASTER data to generate relative DEM, where the elevations are not tied to a 

ground or map datum and converting the relative DEM into an absolute DEM is  
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Table 2.1.  RMSE for the Final CoK Map Calculated Using 24 GCPs. 

NO. Geographic 
position (lat/long) 

DEM elevation (e) 
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Field elevation (w) 
(m) 

2)( we −  
n

we
RMSE ∑ −

=
2)(

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
 

20 
 

21 
 

22 
 

23 
 

24 
 

N 270 22` 46.5`` 
W 1120 26` 10.0`` 
N 270 23` 06.0`` 
W 1120 23` 00.4`` 
N 270 16` 31.8`` 
W 1120 14` 38.3`` 
N 260 27` 20.1`` 
W 1110 38` 50.3`` 
N 260 53` 19.8`` 
W 1110 59` 11.8`` 
N 270 18` 05.4`` 
W 1120 53` 33.8`` 
N 270 38` 47.1`` 
W 1130 23` 01.8`` 
N 270 58` 02.3`` 
W 1140 00` 58.4`` 
N 280 55` 42.5`` 
W1140 09` 22.9`` 
N 290 43` 44.0`` 
W 1140 43` 03.9`` 
N 290 02` 42.6`` 
W 1140 09` 02.9`` 
N 280 59` 35.9`` 
W 1130 45` 55.2`` 
N 280 43` 39.5`` 
W 1140 06` 18.1`` 
N 270 44` 57.6`` 
W 1140 00` 40.3`` 
N 260 12` 27.3`` 
W 1110 26` 37.3`` 
N 260 00` 38.3`` 
W 1110 21` 35.9`` 
N 250 36` 30.5`` 
W 1110 18` 53.0`` 
N 250 24` 23.5`` 
W 1110 32` 34.4`` 
N 250 19` 54.0`` 
W 1110 38` 06.1`` 
N 250 15` 17.0`` 
W 1110 46` 31.7`` 
N 250 02` 19.5`` 
W 1110 40` 32.8`` 
N 240 03` 16.0`` 
W 1100 35` 04.2`` 
N 240 07 09.1 
W 1100 26` 11.9`` 
N 240 54`43.9`` 
W 1110 59` 31.5`` 

371 
 

321 
 

67 
 

130 
 

9 
 

133 
 

82 
 

4 
 

207 
 

553 
 

331 
 

256 
 

116 
 

4 
 

29 
 

16 
 

361 
 

141 
 

61 
 

37 
 

52 
 

255 
 

20 
 

3 
 
 

360.7 
 

327 
 

73.4 
 

121 
 

10 
 

129.8 
 

88.4 
 

7.8 
 

211.5 
 

557.4 
 

334 
 

257.3 
 

118 
 

3.7 
 

26 
 

17.2 
 

360.1 
 

142.3 
 

59.4 
 

35 
 

47 
 

283.3 
 

27 
 

-2 

106.09 
 

36 
 

40.96 
 

81 
 
1 
 

10.24 
 

40.96 
 

14.44 
 

20.25 
 

19.36 
 

1.69 
 
9 
 
4 
 

0.09 
 
9 
 

1.44 
 

0.81 
 

1.69 
 

2.56 
 
4 
 

25 
 

800.86 
 

49 
 

25 
 
 

 
7.2234 m 



 
50

 

 

Figure 2.12. DEM and selected topographic profile across study area, before and after corrections and resampling. 
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controlled by the presence of scattered ground control points. These ground control 

points are usually collected in the field or sampled from available topographic maps, 

where error is introduced in both horizontal and vertical coordinates. In addition, the 

developed ASTER DEMs will still have the same problems with artifacts and data gaps. 

Thus, instead of using scattered ground control points and to avoid the bias that might be 

introduced, we used the corrected SRTM DEM. Running the automated 

stereocorrelation algorithm with the corrected (gap-free) SRTM DEM in the background 

guided the correlation process and resulted in an accurate, registered, and scaled ASTER 

DEM without any artifacts (Figure 2.13). 

 

II.5. Summary and outlook  

Our results indicate that both ordinary kriging and cokriging are valuable 

techniques for estimating elevation values for areas of missing data in SRTM DEMs. In 

this study, accounting for trends was not justified because the shapes of the variograms 

indicate the absence of any trends in the selected test area. This may not be typical for all 

data sets, however, so trend investigation should be performed in many cases.  

The smoothing effect of any interpolation method is a drawback, but the 

proposed cokriging method provides significant improvement over the ordinary kriging 

results. The cokriging method also honors the geological variations in topography and 

geomorphologic features. The Digital Number (DN) can be used as a proxy for the 

reflectance to account for the topographic variations within the data gaps. The DN is 

used because most of the algorithms used for converting reflectance values incorporate



  
52

 

 

 

 

 

Figure 2.13. (a). ASTER image located in the extreme southern part of the study area. White and black patches are clouds and their shadows. (b) Relative 
ASTER DEM generated using automated stereocorrelation algorithm. Notice the artifacts (data gaps) that match the cloud and shadow locations. (c) 
Rectified absolute gap-free ASTER DEM. 
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atmospheric corrections, which may deteriorate the reflectivity behavior as a direct 

response to topographic variations. The ACE algorithm was used to generate a single 

variable that incorporates all of the variability within the eight reflectance bands of the 

ETM+ data. The ACE algorithm not only provides the sum of the transformed 

independent variables but also increases the correlation between the soft and hard 

variables. Normal score transformation (NST) improves both the correlation and 

interpolation performance of the cokriging.  

Mapping the variance is useful for illustrating the uncertainty within the 

estimated areas. On the other hand, cross-validation techniques provide a robust way to 

further evaluate the accuracy of the elevation estimates. Our results show an 

improvement in the elevation estimates using cokriging (R2 = 0.991) rather than using 

ordinary kriging (R2 = 0.95). This improvement is seen visually in the reduction of 

smoothing effects in the final cokriging map (Figure 2.11a). 

 Finally, the RMSE was calculated (Table 2.1) using twenty-four ground control 

points for validation of the estimated elevation values within data gaps that we 

artificially introduced into the SRTM DEM. The RMSE had an average value of 7.22-m 

at the corrected locations, which is a reflection of the robustness of our technique. Using 

the corrected SRTM DEM in the algorithm of automated stereo-correlation to generate 

ASTER DEM was very successful. Our proposed technique produces an artifact-free 

DEM that has 15-m spatial resolution, which is comparable to the USGS 1-arc second 

DEM (Figure 2.13). 
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II.6. Conclusions 

In this paper, we describe a technique for resolving a problem that commonly arises 

when working with DEM, namely, how to fill various artifacts with elevation values that 

are statistically robust and geologically meaningful. The main conclusions from the new 

technique described here include: 

- Ordinary kriging provides estimated elevations for data gaps, but the method 

fails to account for natural geological and topographical variations that are 

commonly obscured by smoothing.  

- The ACE algorithm provides an optimal non-parametric transformation of the 

eight bands in ETM+ data, where the sum of the transformed bands is used as a 

secondary variable for cokriging. 

- In our test area, cokriging provides a geologically realistic map with less 

smoothing effects, although the performance and effectiveness of this method is 

completely controlled by the degree of correlation between the secondary 

variables (i.e., the eight thematic mapper bands) and elevation. 

Our proposed technique demonstrates that application of spatial geostatistical 

methods to remote sensing data is fertile ground for advanced approaches in 

geoscience mapping.   
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CHAPTER III 

 

AUGMENTED-VECTOR METHOD AND OBJECT-ORIENTED 

CLASSIFICATION OF BAJA CALIFORNIA, MEXICO 

 
 

The purpose of this part of the study is to generate accurate thematic geologic 

maps with high resolution (15-m) for the entire eastern coast of Baja California.  The 

main approach that we used to clearly represent all the lithological units in the 

investigated area was object-oriented classification based on fuzzy logic theory. We used 

the supervised maximum likelihood algorithm to define the fuzzy logic membership 

functions and carried out the fuzzy logic classification procedures using eCognition 

software developed by Definiens. The area of study was divided into twenty-two blocks, 

each was classified independently on the basis of its own defined membership function. 

This division is valuable to decrease the computational time and to increase the overall 

accuracy of each block. Six raw scenes (level 0) of Landsat 7 ETM+ imagery and thirty- 

two advanced spaceborn thermal emission and reflectance radiometer (ASTER) images 

were used as the main optical input for classification, in addition to a 15-m resolution 

digital elevation model (DEM) and some ancillary scattered geologic maps. All images 

were rectified precisely until 0.2 RMS errors were achieved. The optical data were 

stacked with the terrain data and then normally score transformed to eliminate the 

different-scale issue. Two blocks, block 4 and block 8, were selected to illustrate the 

results of this semiautomated approach of classification. The results were evaluated by 
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three main methods: (1) Accuracy assessment by classification stability; (2) Accuracy 

assessment by best classification results; and (3) Accuracy assessment by error matrix 

based on test areas. The overall accuracies were 89.6 % and 82.5 % for Blocks 4 and 8 

respectively, indicating that this approach was highly recommended over the most 

conventional classification techniques. 

 

III.1. Introduction 
 

Many attempts have been made to use the advantages of the high resolution satellite 

data that are available nowadays to generate a coherent spatial classification. Satellite 

imagery is considered the most accessible and accurate global resource because it 

provides wider variety and greater quantity of information than traditional mapping data; 

it is used to produce high quality lithological classification. No “standard” approach in 

extracting land cover information can be applied for all situations because the problem is 

affected by a number of complex, often interacting factors that pertain to energy source, 

sensor, atmospheric condition, energy/matter interactions at the earth’s surface, data 

handling and processing systems, and data users (Lillesand and Kiefer, 1987). 

 Classification of satellite imagery is the process of clustering data into a number of 

uniquely identified classes that have similar spectral characteristics. Clustering is based 

on the degree of similarity and dissimilarity between the different groups, so data points 

that belong to the same group should be highly similar, but dissimilar from the other 

groups. Different results can be achieved for the same data set by implementing different 

classification algorithms (Benediktsson et al., 1990a, b; Hepner et al., 1990; Key et al., 
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1989; Bischof et al., 1992; Kanellopoulos et al., 1992; Civco, 1993; Paola and 

Schowengerdt, 1994; Solaiman and Mouchot, 1994; Skidmore et al., 1997). However, 

these results are often characterized by limited accuracy and low reliability (Haala and 

Brenner 1999). Development of an optimal classification algorithm is a challenging 

problem (Ho et al., 1994) and no image classifier provides perfect results (Matsuyama, 

1989). Thus, Kanellopoulos et al. (1993) and Brown et al. (2000) suggested that 

combining classifiers could be a useful and practical approach to increase classification 

accuracy and to optimize classification performance. 

Input data sets typically play a critical role in guiding the selection of appropriate 

algorithm for the classification process. We chose an object-oriented classification 

technique to perform the classification tasks, where object-based techniques have been 

proven in terms of their potential to consider spatial complexity in the image 

classification process (Blaschke and Strobl 2001). 

Although object-based analysis of multispectral imagery was introduced early in the 

remote sensing literature (Ketting and Landgrebe, 1976), it has been largely ignored in 

favors of pixel-based methods, which have always been selected for conducting 

classification tasks (Lobo, 1997). Several object-based image analysis techniques have 

been used successfully for forest information extraction purposes (Hay et al., 1996; 

Pekkarinen, 2002; St-Onge and Cavayas, 1997). This technique has also been widely 

applied to urban applications (Damm et al. 2005; Grenzdörfer 2005, Argialas and 

Derzekos 2003), biotope classification (Leser 2002) and forest applications. For 

example, Mitri and Gitas (2002) developed an object-oriented classification model for 
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burned area mapping. Also, Flanders et al. (2003) tested the object-oriented approach for 

forest cut block delineation. Hese et al. (2005) used contextual information to classify 

forest cover change patterns and (Chubey et al., 2006) analyzed object oriented 

procedures for forest inventory parameters from Ikonos data. More recently, Arroyo et 

al. (2005) examined object oriented methods for regional fuel mapping with Quickbird 

data. 

The variability of the data on hand prompted the use of such methodology because 

more information could be extracted and precise results could be achieved from these 

data. On the other hand, many land cover classification studies have been done using 

multisource data such as optical data and ancillary data, e.g. digital images, terrain 

information like elevation, aspect, slope and thematic maps (Benediktsson et al., 1990; 

Kanellopoulos and Wilkinson 1997, Mather et al., 1998; Haack and Bechdol, 2000; Le 

Hegarat Mascle et al., 2000), where tremendous improvement in classification accuracy 

was reported.  

The concept behind object-oriented classification is that the classification will be 

based on the image objects and their mutual relationships rather than on a single pixel. 

This allows and facilitates the integration of a broad spectrum of different object features 

such as spectral values, shape, or texture for implementing classification.  However, to 

deal with a multisource classification, we also used an augmented-vector method (also 

known as staked-vector methods). According to Tso and Mather (2001), there are three 

main issues involved with using this method. The first issue concerns possible 

differences in scales and measurements of each data set. To overcome this problem we 
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used a normal score transform (NST), which is a graphical transform that can normalize 

any distribution, regardless of its shape. We used the NST algorithm to transform the 

multisource data sets into normal distribution and to normalize each data set, such that 

the mean has zero value and standard deviation equals unity. The second issue is the 

computationally intensive nature of this method. Reducing the number of data vectors is 

the best way to reduce the computational coast of this technique. The third issue of this 

technique is data reliability or uncertainty, where the input vectors are treated equally in 

terms of contribution to the classification. To overcome this problem, we assigned the 

input vectors different weights in the object-oriented classification algorithm, depending 

upon the degree of correlation between these vectors and the separability analysis. 

Figure 3.1 shows a simplified flowchart which summarizes the main classification steps 

used in this study.  

 

III.2. Study area and geological setting 

The Baja California peninsula is a long finger of land in western Mexico extending 

south from the US state of California. Baja California is bounded to the west by the 

Pacific Ocean and to the east by the Gulf of California (also known as the Sea of Cortez) 

and at the northeast tip by the state of Sonora, which is the only land area that joins the 

Baja California peninsula to the rest of the country (Figure 3.2). The Baja California 

Peninsula is divided into two states, Baja California (Lower California) and Baja  
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Figure 3.1. Flow chart summarizes the main steps used for semiautomated object classification approach. 
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Figure 3.2. Location map of the study area. Twenty-two blocks were selected along the eastern coast of 
Baja California.
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California Sur (Southern Lower California). In this study we will refer to both of these 

divisions as Baja California. 

Previous tectonic and structural studies of Baja California, especially the eastern 

part of it suggest a complex geological evolution for the Gulf of California and the 

surrounding continental regions (Hamilton, 1961; Atwater, 1970; Karig and Jensky, 

1972; Mammerickx and Klitgord, 1982; Gastil et al., 1983; Lonsdale, 1989; Stock and 

Hodges, 1989). The tectonic evolution of the eastern Baja California has been controlled 

by dynamic processes of oblique continental rifting that are still poorly understood. 

Geologic structures, geomorphologic features, and sedimentary basins along the eastern 

side of Baja California preserve a critical record of these processes. Baja California is 

also considered as excellent modern example of a continental block, or terrain that has 

been horizontally translated ~ 300 km to the NW because of highly oblique rifting and 

sea floor spreading in the Gulf of California (Umhoefer and Dorsey, 1997). The 

peninsula was originally connected to the west coast of mainland Mexico but rifted and 

drifted away by differential movements of the Pacific and North American plates over 

the past 4-5 Myr.  

 

III.3. Methodology 

III.3.1. Data acquisition and ground-truth. 
 

Six raw scenes (level 0) of Landsat 7 ETM+ imagery, acquired on 6 Jun 2000, 2 Jun 

2001 and13 Jul 2001, were used in the present study. The available ancillary data 

included hard copy topographic maps (1:50,000 scale) and an SRTM digital elevation 
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model (DEM) with 90-m spatial resolution, in addition to thirty-two advanced spaceborn 

thermal emission and reflectance radiometer (ASTER) images which were used 

primarily to develop a 15-m spatial resolution DEM (El-Sobky and Dorobek, 2005). 

Table 3.1 summarizes the details of the data used for this study.     

Field data gathering was conducted to collect the prevailing lithological types and 

ground positioning information needed in identifying and delineating training sample 

areas and calibrating the DEM. Ancillary scattered geologic maps and plotted hardcopy 

images were used in identifying various land cover features, especially the lithological 

rock units, and in describing their spectral characteristics. 

 

III.3.2. Data preparation and image processing  

The preprocessing technique is the first stage in any image processing sequence. To 

fulfill the basic requirements in terms of precision and accuracy, images must be 

corrected before proceeding with any manipulations. The two essential preprocessing 

techniques, Radiometric and geometric, are required to transform the 0-level (raw) 

images into a set of images ready for comparison and numerical combination. The 

radiometric preprocessing involves the rearrangement of the digital number (DN) in the 

images so that all areas of the image will have the same linear relationship between the 

DN and either radiance or backscatter (Moik, 1980).  

Geometrical correction is the comparison of digital image content with a map or with 

another image in order to change the geometrical character of the former image (Mather, 

1987). This process is very important for identification of training samples according to  
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Table 3.1. Spectral Channels of the Sensors Used in This study. 
 

Sensor and Topographic Data Spectral Channels Wavelength 
(µm) 

Spatial 
Resolution (m) 

ETM+ 
(Enhanced Thematic Mapper +) 
 
 
 
 
 
 
ASTER  
(Advanced Spaceborne Thermal 
Emission and Reflection 
radiometer). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Topographic Data: 
DEM 
 
 

Band 1* 
Band 2* 
Band 3* 
Band 4* 
Band 5* 
Band 6  
Band 7* 
Band 8(pan) * 
 
VNIR 
Band 1* 
Band 2* 
Band 3N* 
Band 3B* 
SWIR 
Band 4 
Band 5 
Band 6 
Band 7 
Band 8 
Band 9 
TIR 
Band 10 
Band 11 
Band 12 
Band 13 
Band 14 
 
 
Shaded Relief 
Slope 
Aspect 
Average Convexity 
Average Curvature 

0.452-0.514 
0.519-0.601 
0.631-0.692 
0.772-0.898 
1.547-1.748 
10.31-12.36 
2.065-2.346 
0.515-0.896 
 
 
0.52-0.60 
0.63-0.69 
0.76-0.86 
0.76-0.86 
 
1.600-1.700 
2.145-2.185 
2.185-2.225 
2.235-2.285 
2.295-2.365 
2.360-2.430 
 
8.125-8.475 
8.475-8.825 
8.925-9.275 
10.25-10.95 
10.95-11.65 

30 
30 
30 
30 
30 
120 
30 
15 
 
 
15 
15 
15 
15 
 
30 
30 
30 
30 
30 
30 
 
90 
90 
90 
90 
90 
 
 
15 
15 
15 
15 
15 
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map coordinates prior to classification, creating accurate scale maps, ensuring accurate 

distance and area measurements, and performing any other analysis that requires precise 

geographic locations.  Rectification, by definition, involves dereferencing, which refers 

to the process of assigning proper map coordinates to image data, since all map 

projection systems are associated with map coordinates (Erdase manual, 1997). 

Polynomial equations are used to convert the source file coordinates to rectified map 

coordinates were the polynomial coefficients for the transformed equation are estimated 

through sets of ground control points (GCPs) (Jensen, 1986). The complexity of these 

polynomial equations depends on the degree of distortion in the image, the number of 

the GCPs and their locations relative to each other. The mathematical details of 

polynomial models can be found in Schowengerdt (1997). 

 The number of GCPs is basically controlled by the order of transformation. In 

general, the minimum number of GCP that is required to perform a transformation of 

order t can be estimated from the following equation: 

2/)2()1( ++= ttGCPsofNumberMinimum                                        (1) 

Nine GCPs were extracted from the topographic maps and used for each scene. We 

tried to avoid any substantial changes of these GCPs due to time differences between 

images and topographic maps by selecting the points away from any possible changes as 

possible. The number of the selected GCPs reflects that the second order polynomial 

transformation has been used in this study. 

In most cases, a perfect fit of all GCPs does not occur and there are always 

differences between the desired outputs coordinates of the GCPs after transformation 
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and the original coordinates. Root mean square error (RMS) error is used to evaluate the 

accuracy of the transformation process, where RMS error is expressed as a distance in 

pixel widths in the same coordinate system that could be calculated for each GCP 

(equations 2 and 3).  

22
iii YRXRR +=                                                               (2) 

where Ri represent the RMS error of GCPi, XRi is the X residual for GCPi and YRi 

is the Y residual for GCPi. The total RMS error can be calculated from the following 

formula: 

     
2

1
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n

i
+= ∑

=
                                                 (3) 

where; T is the total RMS error, N is the number of GCP, and I the GCP number. 

Bernstein (1976) pointed out that the maximum allowed RMS error for the 

geometrically corrected image is ±1 pixel, where as in the present study, the average 

calculated total RMS error for the study area is ± 0.2 pixel width. The nearest-neighbor 

interpolation technique is selected to resample the six ETM+ images to avoid any 

possible alteration of the pixels DN or any smoothing, which is not recommended before 

classification, and also to avoid the blocky effect of pixels.  

The second important step after the rectification is to use the privilege of the ETM+ 

images over the TM, which is the release of the panchromatic band that has a 15-m 

spatial resolution. The 30-m spatial resolutions of the six ETM+ spectral bands are then 

improved through fusion with the ETM+ Panchromatic band to gain the panchromatic 

band spatial resolution (15-m). This has been done by applying the PanSharp automatic 
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algorithm (PCI Geomatica software), which preserves spectral characteristics of 

multispectral channels (Zhang, 1999 & 2002; Lewinski, 2006). The PanSharp automatic 

algorithm is a dedicated tool for fusing diverse satellite images of various spatial, 

spectral and radiometric resolutions. It also offers a feature of automatic resampling, i.e. 

adjusting the size of pixels in the multispectral image to the panchromatic one. The 

details of data fusion also appear in Savian and Landgrebe, 1991; Kunz et al., 1997; 

Hahn and Statter, 1998; and Haala and Brenner, 1999. The advantage of this fusion relay 

essentially is that these bands are simultaneously acquired with the same conditions in 

terms of solar illumination, season, and sensor parameters, which minimizes or removes 

any possible spectral distortion that may occur as a result of the fusion (Liu, 2000).  

Mosaic generation is the final step, where definite problems arise when attempting to 

perform this crucial step. There is no one correct approach to solve the problem of 

constructing mosaic imagery of varied temporal origin. We applied a combination of 

color balancing and intensity adjustment along with suitable feathering to match edges 

until an overall seamless image was obtained. 

                

III.3.3. Why object oriented approach 

Our primary aim in this part of study is to generate high resolution thematic maps 

using multiple sources of satellite images  in addition to digital terrain data. The use of 

these multisource data has been successfully proven to resolve any classification 

ambiguities which might arise from using single-source data ( e.g. Hoffer et al., 1975; 

Strahler et al., 1978; Fleming et al., 1979; Richards et al., 1982; Franklin et al., 1986; 
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Jones e. al., 1988; Benediktsson, 1989b; Breiman, 1996; Richards and Jai, 1999). 

Object-oriented classification is then selected to incorporate this data. The reasons 

behind the selection of object-oriented classification are that it is one of the most 

important and advanced techniques that has proven, excellent capabilities to 

accommodate multisource data; and it takes the reliability or uncertainty of each data 

source into account, which is very important parameter that determine how strongly a 

given source contributes to the multisource consensus pool (Mather and Tso, 2001). In 

object-oriented classification, the reliability and uncertainty are considered by assigning 

a specific input weight parameter to each data source, based on the spectral separability 

analysis for optical data sources only. If these weighting parameters are not chosen 

properly, then the multisource consensus will give disappointing results even though it 

based on a theoretically robust mechanism. Table 3.2 summarizes the main differences 

between the object-oriented classification approach and the conventional pixel-based 

classification techniques. 

 

III.3.4. Principles of object oriented image analysis   

As pointed out before, the main concept behind the object-oriented classification 

is to use the image objects rather than the image pixels simply because image objects 

have the important semantic information necessary to interpret the images. Object-

oriented image analysis refers to the extraction of real-world objects, which means it 

utilizes shape, neighborhood and other contextual information (Baatz and Schäpe, 1999;  
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Table 3.2. Differences Between Pixel-Based and Object Oriented Classification. 
 
Pixel-Based Classification Object Oriented Classification 
Pixel-based land cover map 
 
Based on “binary theory,” where pixel is 
classified into only one class or remains 
unclassified 
 
 
Requires values of gain and offset, sun 
elevation angle and ground visibility 
 

Image object segmentation polygons 
 
Based on “fuzzy theory,” where one pixel 
may show affinity to more than one class 
and the image object will have 
membership values from 1 to 0 
 
Applies directly to the image 
 

One-time step classification 
 
Uses the spectral signature as a criterion for 
classification 

Step-by-step classification 
 
Uses properties like heterogeneity, 
represented by color and shape as criteria 
for segmentation of the normalized input 
features 
 

Uses only spectral information and cannot 
incorporate any ancillary data. 

Incorporates spectral and spatial ancillary 
data like DEM and other vector data 
besides the image spectral bands 
 

Filters usually applied to reduce image 
distortion. 

Filters usually not used 
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Benz et al., 2004). In comparison to the pixel-based approaches, the basic processing 

units are image objects and not single pixels. In other words, this technique allows the 

analyst to decompose the scene into many relatively homogenous image objects 

(referred to as patches or segments) using a multiresolution image segmentation process 

(Benz et al 2004). These objects of interest have to be extracted in a first step called 

segmentation. During the subsequent classification, the segmented objects are 

systematically arranged in groups or categories according to defined criteria determined 

by the user in the class description. In this study, classification is performed using an 

algorithm developed by Definiens/Munich (2003). In eCognition, classification is based 

on thresholds and a fuzzy classification system, which are in turn based on membership 

functions. So a fuzzy classification set is a set whose elements have degrees of 

membership, which may defined as a full member (100% membership) or a partial 

member (between 0% and 100% membership). Mathematically, this degree of element 

membership is defined by a membership function. The major advantage of this theory is 

that it translates feature values of arbitrary range into fuzzy values between 0 and 1. 

Figure 4 shows how image analysis is realized in eCognition software. The first step of 

object-oriented image analysis is always the image segmentation. In eCognition the 

applied algorithm is called multiresolution segmentation, a technique that allows users to 

segment images on different levels, with different resolutions and variable segmentation 

based on four parameters: weight of participation in the segmentation, scale, color, shape 

(smoothness and compactness). All those parameters are weighted from 0 to 1 to 

determine the heterogeneity of an image object. During the process of segmentation, 
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adjacent objects are only merged, where the growing of heterogeneity (f) is the smallest; 

this underlying optimization procedure of the clustering process stops if a defined 

threshold (maximum allowed heterogeneity) is exceeded. After the segmentation, we get 

image objects constituted of homogeneous pixels. Then classification is performed using 

the objects rather than single pixels. The multiresolution segmentation approach allows 

for segmentation at different spatial resolutions simultaneously (Chen et al., 2005). 

Besides the spectral character of the image objects, their attributes such as shape, 

texture, etc. are the new input for an advanced and reliable classification. Classification 

using this technique is initially based on a process of image segmentation which is 

effectively used to create polygonal objects representing spectrally homogenous units at 

a certain scale. Table 3.3 summarizes the parameters of segmentation that are used in 

this study for three segmentation levels. See Baatz and Schäpe (2000) and the 

eCognition user guide (2004) for the detailed description of the techniques and the 

equations used.  

On the other hand, the issue of the different scale of measurements, i.e. different 

data sources are likely to have different measurements scales, should be solved first 

before performing segmentation. Normal score transformation is used to normalize the 

input data to be mapped into the same scale. The normal score is a dimensionless 

quantity derived by subtracting the population mean from an individual (raw) score and 

then dividing the difference by the population standard deviation. This transformation 

will ensure a transformation of the input data into a normally distributed data, with a 

mean zero and standard deviation unity (Figure 2). As reported before, three target levels 
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were identified for the study area (Figures 3.3 and 3.4): Level (1) represents small 

objects at an initial segmentation level to differentiate subclasses by spectral and 

structure characteristics. Level (2) is the main target of the classification rules. Level (3) 

was generated through a “classification-based segmentation” procedure that aims to 

unite objects of the same classified lithological units into larger spatial units. 

Additionally, small units below a certain threshold surrounded by bigger units classified 

as similar developmental phases were reassigned to the respective classes of the majority 

of neighbor objects. This is achieved through a “relation to neighbor objects” parameter 

in the rule-base (eCognition Manual, 2003). 

 

III.4. Results and discussion 

The area of study has been divided into 22 blocks (Figure 3.2). This division 

facilitated the classification process and avoided the crash of the classification model, 

where it was impossible to classify the whole study area as one unit. The eCognition™ 

version 4.0 professional software (Definiens Imaging, 2003) provides a unique object-

oriented rule-based approach to image classification (Baatz et al., 2003). Block 4 and 

Block 8 (Figure 3.2) have been selected to show the classification results. For Block 4, 

the final classification resulted in thirteen possible classes (Figure 3.5), where as twelve 

classes were recognized in Block 8 (Figure 3.6). The input layers have been weighted 

differently from one block to another based upon the degree of spectral seperabilities of 

each classified rock unit. Unsupervised classification was used first to generate feature
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Figure 3.3. The integration of optical and terrain data and normal score transformation process. 
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Figure 3.4. Example of the major steps for implementing object-oriented classification in eCognition software. 
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Table 3.3. Segmentation Criteria and Parameters Used in the Present Study. 

 

Note: f  is the overall fusion value, σ  is the standard deviations of spectral values in each layer, w  is the user defined weight for color against shape 
for each layer, n is the object size, l  is the perimeter of the object, b is the perimeter of the bounding box of an image object. 
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Figure 3.5. Block 4 object-oriented classification geological map. 
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Figure 3.6. Block 8 object-oriented classification geological map. 
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space images, which were further used to define the degree of separabilities between the 

different rock  units (El-Sobky, 1999). The input bands were assigned different weights, 

so the layers that usually exhibit high separation between classes in their feature space 

were assigned higher weights than those with low separations. Quality assurance is a 

very important step after any classification process in to allow a degree of confidence to 

be attached to the results and also to confirm that the analysis objectives have been 

realized (Richards 1993). In this study, three main types of accuracy assessments has 

been selected to quantify the degree of classification accuracy, which are 1) accuracy 

assessment by classification stability; 2) accuracy assessment by best classification 

results; and 3) accuracy assessment by error matrix based on test areas.  

First, accuracy assessment by classification stability is used only for the fuzzy logic 

classification algorithm, which relies on the membership degree between the classified 

objects. In other words, it is used to show the difference between the degree of 

membership of the best and second-best classification of an object that has been assigned 

to specific classes. Table 3.4 and Table 3.5 show the classification stabilities for the 

classes defined in Blocks 4 and 8 respectively. These statistical results have been 

calculated for image objects in the entire blocks. The differences of the best and second 

best classification membetship values for each class are defined by the mean in these 

tables, it is clearly obvious that the higher the values of the mean, the higher the 

classification stability of the specific class. So for Block 4, tonalite, basalt 2, limestone 

and water show the highest mean values and reflect good classification stabilities of
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Table 3.4. Accuracy Assessment by Classification Stability of Block 4. 
 

Class Objects Mean StdDev Min. Max. 
Ta 267 0.061 0.063 2.056E-005 0.52 

Tn1 613 0.093 0.159 0.00018 1
Tn2 614 0.092 0.099 4.410E-006 0.86 
B1 1642 0.052 0.056 4.410E-006 0.86 
B2 846 0.109 0.219 4.148E-005 1

Gn1 351 0.062 0.116 7.253E-005 1
Gn2 397 0.085 0.134 0.00016 1
St 101 0.028 0.031 9.292E-005 0.18 
al 1661 0.061 0.198 0.00010 1
Cg 116 0.065 0.124 0.00055 1
Cz 59 0.082 0.085 0.00369 0.57 
Ar 248 0.045 0.076 0.00059 0.64 

Water 54 0.198 0.165 0.00742 0.68 
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Table 3.5. Accuracy Assessment by Classification Stability of Block 8. 

 
Class Objects Mean StdDev Min. Max. 

In 1429 0.215 0.253 7.534E-005 1
Tn1 296 0.098 0.103 0.00011 1
Tn2 327 0.100 0.081 0.00014 0.57 
B1 1128 0.067 0.094 0.00021 1
B2 526 0.175 0.271 0.00015 1
Ta 23 0.070 0.055 0.00126 0.17 
Gn 80 0.218 0.251 0.00071 1
al 854 0.077 0.114 0.00017 1
Cg 399 0.067 0.127 2.872E-005 1
Br 374 0.103 0.094 8.219E-005 1
Ar 539 0.037 0.038 2.241E005 0.34 

Water 31 0.95 0.171 0.0273 1
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these classes over the other classes for this block. On the contrary, gneiss, intermediate 

igneous rocks, tonalite 2, volcanic breccia and water exhibited the highest mean values 

and hence good classification stabilities for Block 8. For the rest of the classes in both 

blocks, the low values of their means indicate that there is no big difference between the 

best and the second-best classification membership values for each class.   

Second, accuracy assessment by best classification results is described based on the 

values of the highest membership values of an object for each class. In other words, the 

high mean values indicate that most or even all the class objects have been classified on 

the basis of higher membership values, as indicated in Tables 3.6 and 3.7, which prove 

that all class objects have been significantly assigned to the right class. 

Finally, concerning the accuracy assessment by error matrix, ground truth data 

extracted from the available geologic maps were used as a mask in eCognition. The error 

matrix is basically the relation between the classified objects versus the true data. Table 

3.8 and Table 3.9 show the error matrix final results for Block 4 and Block 8, where two 

types of accuracies, user and producer, are calculated for each classified rock unit. The 

producer accuracy refers to the percentage of each class that has been correctly 

classified, where the user accuracy refers to the percentage of the classified area that 

correctly belongs to this class. Numerically speaking, the producer accuracy of 

sandstone class in Block 4 was 80% and the user accuracy of the same class was 89.5%; 

this means that 80% of the sandstone has been correctly classified and 89.5% of this 

sandstone area is correctly defined as sandstone. On the other hand, the overall accuracy
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Table 3.6. Accuracy Assessment of the Classified Image by the Best Classification Result of Block 4. 

Class Objects Mean StdDev Min. Max. 
Ta 267 0.936 0.074 0.524 1

Tn1 613 0.954 0.061 0.528 1
Tn2 614 0.943 0.078 0.502 1
B1 1642 0.958 0.047 0.500 1
B2 846 0.940 0.067 0.605 1

Gn1 351 0.958 0.064 0.523 1
Gn2 397 0.935 0.077 0.565 1
St 101 0.955 0.048 0.680 1
al 1661 0.937 0.076 0.512 1
Cg 116 0.913 0.098 0.542 1
Cz 59 0.854 0.103 0.570 1
Ar 248 0.953 0.063 0.552 1

Water 54 0.939 0.112 0.592 1
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Table 3.7. Accuracy Assessment of the Classified Image by the Best Classification Result of Block 8. 

Class Objects Mean StdDev Min. Max. 
In 1429 0.883 0.106 0.502 1

Tn1 296 0.911 0.095 0.519 1
Tn2 327 0.956 0.067 0.577 1
B1 1128 0.940 0.073 0.505 1
B2 526 0.904 0.114 0.511 1
Ta 23 0.903 0.094 0.657 1
Gn 80 0,913 0.108 0.513 1
al 854 0.933 0.077 0.502 1
Cg 339 0.929 0.087 0.533 1
Br 374 0.925 0.079 0.543 1
Ar 539 0.948 0.053 0.591 1

Water 31 0.974 0.077 0.575 1
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Table 3.8. Error Matrix by Test Areas for Block 4. 
 

 Land cover types 
 Ta Tn1 Tn2 B1 B2 Gn1 Gn2 St al Cg Cz Ar Water
Producer’s accuracy (%) 87.8 83 83.4 87.2 84.3 81.7 80.5 100 97.9 100 100 80 100 
User’s accuracy (%) 92.3 88.4 91 96.2 94.7 81.7 72.5 100 96.1 100 87.5 89.5 100 
Overall accuracy (%) 89.6 % 

 
 Ta Tn1 Tn2 B1 B2 Gn1 Gn2 St al Cg Cz Ar Water Total 

Ta 72 7 10 0 0 0 0 0 0 0 0 0 0 78 
Tn1 10 229 20 0 0 0 0 0 0 0 0 0 0 259 
Tn2 0 40 201 0 0 0 0 0 0 0 0 0 0 221 
B1 0 0 0 389 15 0 0 0 0 0 0 0 0 404 
B2 0 0 0 45 268 0 0 0 0 0 0 0 0 283 

Gn1 0 0 0 0 0 134 30 0 0 0 0 0 0 164 
Gn2 0 0 0 12 5 30 124 0 0 0 0 0 0 171 
St 0 0 0 0 0 0 0 32 0 0 0 0 0 32 
al 0 0 0 0 0 0 0 0 415 0 0 17 0 432 
Cg 0 0 0 0 0 0 0 0 0 23 0 0 0 23 
Cz 0 0 0 0 0 0 0 0 1 0 7 0 0 8 
Ar 0 0 0 0 0 0 0 0 8 0 0 68 0 76 

Water 0 0 0 0 0 0 0 0 0 0 0 0 16 16 

C
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n 
D

at
a 

Total 82 276 241 446 318 164 154 32 424 23 7 85 16 2207 



 
85

 

Table 3.9. Error Matrix by Test Areas for Block 8. 
 

 Land cover types 
 In Tn1 Tn2 B1 B2 Ta Gn al Cg Br Ar Water
Producer’s accuracy (%) 85.8 67.2 82.2 82.8 70.7 80 74.5 90.4 94.7 93.3 81.2 100 
User’s accuracy (%) 86.7 65.6 84.3 82.8 69.8 42.1 76 90 96 98 83.1 100 
Overall accuracy (%) 82.5 % 

Reference Data 
 In Tn1 Tn2 B1 B2 Ta Gn al Cg Br Ar Water Total 

In 241 20 9 0 0 11 0 0 0 0 0 0 281 
Tn1 18 82 22 0 0 0 0 0 0 0 0 0 122 
Tn2 17 23 166 0 0 0 0 0 0 0 0 0 202 
B1 0 0 0 336 66 0 4 0 0 0 0 0 406 
B2 0 0 0 70 169 0 0 0 0 0 0 0 239 
Ta 2 0 0 0 0 8 0 0 0 0 0 0 10 
Gn 0 0 0 6 7 0 38 0 0 0 0 0 51 
al 0 0 0 0 0 0 0 207 0 0 22 0 229 
Cg 0 0 0 0 0 0 2 1 89 2 0 0 94 
Br 0 0 0 0 0 0 6 0 2 96 0 0 104 
Ar 0 0 0 0 0 0 0 23 2 0 108 0 133 

Water 0 0 0 0 0 0 0 0 0 0 0 16 16 

C
la

ss
ifi

ca
tio

n 
D

at
a 

Total 278 125 197 406 242 19 50 231 93 98 130 16 1887 
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for each classified block is also calculated. So, for Block 4, the overall classification 

accuracy was 89.6%, where as it was 82.5% for Block 8. More analysis of the error 

matrix tables reveals that the number of misclassified objects is defined. For example, in 

Block 4, 15 objects of basalt 1 were misclassified as basalt 2, where as in Block 8 and 

for the same rock units, 66 objects of basalt 1 were misclassified as basalt 2. Actually 

this example shows that in block 8 classified objects of basalt1 get confused with basalt 

2 more than in Block 4. However, we found that in order to overcome and decrease this 

number of misclassified objects and hence increase the overall accuracy of the 

classification, we can go back and do two things. First, we can increase the number of 

defined objects for the nearest neighbor classifier, which may enhance the relationship 

function of the two units. Second, we can increase the weight of the input layers to show 

a tendency towards more reparability behavior of these units in the future space images. 

 

III.5. Summary and conclusions 

In this paper, we presented the object-oriented classification technique using a 

vector-stacked method as an unconventional classification approach to classify the 

eastern part of the Baja California peninsula. Our primary goal was to generate 

continuous and high resolution geologic maps for the entire area between the Baja 

peninsular divide and the western coastal line of the Gulf of California. This area has 

been divided into twenty-two blocks. A combination of optical and terrain data sets was 

successfully integrated and used after precise coregistration of all inputs (0.2 RMSE). 

We used eCognition software V.4.0 to implement the segmentation process based on 
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image objects rather than on a single pixel. All the optical data were preprocessed both 

radiometrically and geometrically and then the Pansharp automatic algorithm was used 

to improve the ETM+ bands resolution through a fusion process with the panchromatic 

band, a process that ended with 15-m spatial resolution images. Two blocks were 

selected to show the classification end results, Block 4 and Block 8. Thirteen surfacial 

lithological classes were recognized in Block 4, where only twelve classes were 

identified in Block 8. Three main types of accuracy assessments were used to quantify 

and hence evaluate the classification results. The results of the three methods were 

completely satisfactory and confirmed the power of the object-oriented classification as 

a very efficient unconventional classification approach. 
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CHAPTER IV 

 

QUANTIFYING THE FORCING FACTORS RESPONSIBLE FOR THE 

TECTONO-GEOMORPHOLOGICAL EVOLUTION OF THE NEOGENE RIFT 

BASINS, BAJA CALIFORNIA 

 
 

The Gulf of California and its surrounding land areas provide a classic example 

of recently rifted continental lithosphere, where back-arc stretching of a continental 

volcanic arc has culminated in the ongoing seafloor spreading that characterizes the 

present-day axis of the gulf. The recent tectonic history of eastern Baja California, which 

includes most of the land area eastward of the main drainage divide that extends north-

south along the length of the peninsula, has been dominated by oblique rifting that began  

at about 5 Ma. Thus, extensional tectonics, bedrock lithology, long-term climatic 

changes, and evolving surface processes have controlled the tectono-geomorphological 

evolution of the eastern part of the peninsula since 12 Ma. No previous studies, however, 

examined the effect of these combined factors on the current tectono-geomorphological 

characteristics of eastern Baja California.  

In an attempt to assess the factors that affected the geomorphologic development 

along the eastern side of Baja California, thirty-four drainage basins were extracted from 

a 15-m-resolution absolute digital elevation model (DEM). Thirty morphometric 

parameters were extracted; these parameters were then reduced using principal 

component analysis (PCA). The first five principal components have accounted for 
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80.77% variance and are used as the input variables for cluster analysis. Four major 

groups of basins are defined by interpreting the hierarchical tree. 

Stream-length gradient indices were measured, using a Hack profile, for the main 

stream in each of these basins. Bedrock lithologies and alluvium were plotted along the 

stream profiles to identify any relationship between lithology, structure, and stream 

gradient. The extracted stream length gradient indices highlight the differential rock 

uplift that has occurred along fault escarpments bounding the basins. Further, our results 

indicated that drainage basins in the eastern rift province of Baja California could be 

classified according to the dominant geomorphologic controlling factors (i.e., fault-

controlled, lithology-controlled, or hybrid basins).  

Using slope-area analysis, steepness and concavity indices were extracted for 

bedrock channels within the thirty-four drainage basins. A reference concavity of 0.37 

was used to allow a direct comparison of steepness indices for the basins. The results 

were highly correlated with stream length-gradient indices for each basin. Nine basins 

exhibiting steepness index values greater than 0.07 indicated a strong tectonic signature 

and possible higher uplift rates in these basins. 

 

IV.1. Introduction 

The Baja California peninsula is kinematically linked to the Gulf of California rift 

system. Although this area has been studied extensively from the tectonic point of view, 

there is limited understanding of the relationships between progressive surface 

deformation and its effects on sedimentation, drainage-network and geomorphologic 
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evolution, especially during the last few million years of deformation. An understanding 

of recent surface deformation will provide insight into the styles, rates, and processes of 

ongoing tectonic activity in this region.  

The eastern part of the Baja California peninsula has evolved through time in 

response to multiple episodes that exhibited complex changes in tectonic driving forces. 

complicated fault networks, rotating crustal blocks and continuous mountain ranges were 

formed during the past ~ 25 million years as a result of the long-term convergent 

movements of the pacific plates relative to the North American plate (Powell et al., 

1993; DeMets, 1995; Dickinson, 1996; Atwater and Stock, 1998). For about the last 15 

million years, divergent motion occurred between the two plates and the crustal 

deformations culminating in the oblique rifting and extension (Stock and Hodges, 1989; 

Dickinson, 1996; Atwater and Stock, 1998; Axen and Fletcher, 1998). As a result of 

these transtensional movements, regional subsidence occurred, and Miocene-to-

Pleistocene fault-bounded sedimentary basins evolved (Bartholomew, 1968; Quinn and 

Cronin, 1984; Kerr, 1982; Winker, 1987; Winker and Kidwell, 1996). The primary 

mechanisms for the formation of these sedimentary basins are the lithospheric extension, 

which creates rift basins and passive continental margins, and lithospheric contraction, 

which creates back-arc basins. 

Geomorphometric indices of the drainage network are valuable tools in revealing the 

evaluation of active tectonics because they usually provide significant and sufficient 

criteria to define the topographic adjustment that occurred as a result of rapid or slow 

rates of prevailing tectonic activities. The links between tectonically generated 
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topography and surficial drainage networks have been investigated in a number of 

tectonic settings (e.g., compressional orogens and their associated foreland basins: 

Tucker and Slingerland, 1996; Schlunegger et al., 1998; Kühni and Pfiffner, 2001; 

Schlunegger and Hinderer, 2001; intracontinental strike-slip deformation zones: 

Replumaz et al., 2001), although intracontinental rift systems and their associated rift-

flank uplifts have probably been investigated more extensively than any other setting 

(e.g., Braun and Beaumont, 1989; Frostick and Reid, 1989; Gilchrist and Summerfield, 

1990; Summerfield, 1991; Foster and Gleadow, 1992; Ten Brink and Stern, 1992; 

Gawthorpe and Hurst, 1993; Arvidson et al., 1994; Seidl et al., 1996; Gawthorpe and 

Leeder, 2000; Doglioni et al., 2003). Most tectono-geomorphologic studies of 

intracontinental rift systems have focused on long-wavelength topographic variations 

that are most likely related to the deformation and rheological evolution of the 

continental lithosphere during and after rifting. Far less research, however, has focused 

more on local structural features (e.g., individual half-graben elements and transfer fault 

zones) and the topographic and drainage patterns that are associated with these features. 

Even less is known about how local tectono-geomorphology is related to the longer-

wavelength topographic variations. Few integrated studies have investigated all scales of 

geomorphologic and drainage evolution as they relate to various scales of tectonic 

deformation and tectonically generated topography (cf. Arvidson et al., 1994).  

The relationship between tectonics and both initiation and evolution of basin 

drainages has been the focus of many workers (cf. Antonie et al., 2000; Benito et al., 

2000; Bogaart and van Balen, 2000; Colombo et al., 2000; Krzyszkowski et al., 2000; 
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Kusky and El-Baz, 2000; Latrubesse and Rancy, 2000; Maddy et al., 2000; Stokes and 

Mather, 2000; Tebbens and Veldkamp, 2000; Veldkamp and Van Dijke, 2000; Clift et 

al., 2001; Hsieh and Knuepfer, 2001; Maddy et al., 2001; Monecke et al., 2001; Moore 

and Larkin, 2001; Stouthamer and Berendsen, 2000; Harkins et al., 2002), Since the 

exposed lithology, tectonics, and prevailing climate are the three major forcing factors 

controlling the morphotectonics of this territory (Figure 4.1), as elsewhere, our efforts in 

this paper has been increasingly focused to understand the link between drainage basins 

geomorphometric indices and the tectonic activities and to define the dominant forcing 

factors that are most probably responsible for basins tectono-geomorphometric 

developments. 

This paper examines the sensitivity of the morphometric indices to reveal the 

possible ancient and recent tectonic activities along the eastern coast of the Baja 

California peninsula. Also it provides a test of the usefulness of multivariate analysis as 

a preliminarily step to reduce the geomorphometric parameters into a number of PCs 

which are then used in the cluster analysis process to group the basins by the degree of 

similarity between them.  This paper is organized as follows. In Section 3, we give the 

necessary background in geomorphometric parameters extraction, their meanings, and 

their sensitivities to the drainage-basin behaviors. Multivariate statistical analysis will be 

introduced as a valuable method for both data reduction and classification. Stream 
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Figure 4.1. The fundamental controls on the relief structure of Baja mountain belts, which are tectonically controlled by rock uplift, climatic condition, 
bedrock erodability and river incision. 
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profile analysis is introduced to examin both stream length-gradient index and area-slope 

analysis. Finally, in Section 4 presents results and discussion, followed by the summary 

and conclusions in Section 5. 

 

IV.2. Study area and regional tectonics 
 

The Baja California peninsula is considered to be one of the most important 

locations to study rift tectonics. The Baja California peninsula is 800 miles long, which 

make it one of the longest peninsulas in the world. The peninsula is also very narrow, 

averaging less than 70 miles in width with the narrowest part only 26 miles wide. The 

focus of our study is the central domain, between lat ~ 240 N and lat ~ 290 N, which is 

almost two-thirds of the Gulf Extensional Province, a region of normal and strike-slip 

faults and basins that surrounds the Gulf of California at its western side (Umhoefer et. 

al., 1994;  Zanchi 1994) (Figure 4.2). The western edge of the Gulf Extensional Province 

is the main gulf escarpment. In this area, the Neogene tectonic history of eastern Baja 

California (includes most of the land area eastward of the main, north-south oriented, 

drainage divide that extends along the length of the peninsula) has been controlled by 

oblique rifting. The Baja California peninsula is considered a direct product of rifting 

processes that began at ~12 Ma and has separated the peninsula of Baja California from 

mainland Mexico. The rifting process took place in two major stages; Stage I (~ 12 to ~ 

6 Ma) is the orthogonal rifting (also known as a protogulf stage), where the Gulf of 

California started to form as a result of regional strain partitioning (Gastil et al., 1975; 

Hausback, 1984; Stock and Hodges, 1989; Smith, 1991;  



 95 

 

 

 

Figure 4.2. Shaded relief map illustrates the location of the study area. 
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Umhoefer et al., 2002). Stage II, which overprinted stage I, started between ~ 8 and ~ 6 

Ma. In Stage II, the San Andreas fault system and the shifted plate boundary linked to 

form a modern oblique-divergent plate boundary (Karig and Jensky, 1972; Stock and 

Hodges, 1989), followed by the initiation of the strike-slip faults and pull-apart basins in 

the deep-seated Gulf of California and ending with the Baja California peninsula as a 

separate microplate (McClay and Ellis, 1987; Lonsdale, 1989; Humphreys and Weldon, 

1991; Lyle and Ness, 1991; Atwater and Stock, 1998; Umhoefer et al., 2002). 

 

IV.3. Material and methods 

IV.3.1. Drainage basins geomorphometrics 

Many studies have shown that where the distribution and nature of active 

structures are not well known, analysis of topography, digital elevation models (DEMs) 

usually provide important first-order insights about the rates and spatial distribution of 

any possible tectonic activities, because topography represents the net product of the 

interaction among tectonic, climate and surficial processes (e.g.,  Ahnert, 1970; Smith 

and Bretherton, 1972; Dunne, 1980; Willgoose et al., 1991a, b; Dietrich et al., 1993; 

Ohmori, 1993; Granger et al., 1996; Hurtrez and Lucazeau, 1999; Kirby and Whipple, 

2001; Finlayson et al., 2002; Montgomery and Brandon, 2002; Kirby et al., 2003). Such 

analysis is usually carried out on drainage basins, which are spatial units containing 

integrated aerial and linear pathways for sediment movement. A drainage basin is 

defined as the logical unit within which to model the subaerial geomorphological 

evolution of landscape to reveal the interaction between the prevailing major 
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geomorphic forcing factors (Tucker and Bras, 2000). Thus, drainage developments in 

different tectonic regimes have been the focus of many authors for a long time (cf. 

Davis, 1899; Chorley, 1969; Smith and Bretherton, 1972; Schumm, 1977; Dunne, 1980; 

Chorley et al., 1984; Bull and McFadden 1977, Rockwell et al., 1984; Keller, 1986; 

Wells et al., 1988; Willgoose et al., 1991a, b; Dietrich et al., 1993; Keller and Pinter, 

1996, 2002; Tucker and Bras, 2000; Wilson and Gallant, 2000; Silva et al., 2003; Martin 

and Church, 2004). The crucial step in this study is the drainage-basin extraction, which, 

depends on the resolution of the DEM. The effect of DEM resolution on measuring 

different geomorphic properties has been examined by many works (e.g. Strahler, 1952; 

Hack, 1973; Bull, 1977; Hare and Gardner, 1985; Cox, 1994; Wolock and Price, 1994; 

Zhang and Montgomery, 1994; Goa, 1997; Walker and Willgoose, 1999; Gelabert et al., 

2005). In this study, the high resolution of the ASTER DEM (15m) allows detailed 

extraction of the Neogene drainage basins and provides precise stream morphometrics. 

A continuous depressionless 15-m DEM, which has been patched using the techniques 

introduced by El-Sobky and Dorobek (2005) was used to define the Neogene rift basins. 

The D-8 algorithm (Jenson and Dominque, 1988; Costa-Cabral and Burges, 1994) and 

D-Infinity algorithm (Tarboton, 1997) we used provide highly automated procedures for 

basin extraction. Using these algorithms, the identified network channels are fully 

connected, convergent and unidirectional down-slope. Also, the implementation of the 

D-Infinity algorithm was found to be efficient and powerful, where it can assign 

reasonable flow directions even in very complex and ambiguous situations without user 

intervention. On the other hand, we used the “imposed gradients” algorithm that was 
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introduced by Garbrecht and Martz (1997) to resolve flow directions in flats, which 

eliminated virtually all parallel flow. Figure 3c illustrates all the extracted Neogene rift 

basins along the eastern margin of Baja California, where only thirty-four drainage 

basins were selected to extract the morphometric indices. These basins are bounded by 

the Baja peninsular divide (BPD) to the west and their main streams draining into the 

Gulf of California. So the morphometric parameters of these basins are basically used to 

reveal the long-term tectonic activities triggered first by the back arc deformation and 

culminated by later rifting processes.  I followed Strahler’s system (Strahler 1952) for 

the orders of the extracted streams, which are still considered as the simplest, and 

certainly the most widely accepted method today.  

 

IV.3.2. Multivariate analysis 

IV.3.2.1. Principal component analysis (PCA) 

The extracted geometrical variables are considered as the tab record for each 

basin history. These variables should reveal the uniqueness of each basin in terms of 

their tecto-geomorphological behaviors, especially in the Neogene periods. Some of 

these variables are correlated to each other to some extent; others are dependent on each 

other, and so on. Before classifying the drainage basins into certain groups, exploring the 

relationship between drainage basins variables is very important. To reduce the 

geometrical variables and remove any redundancy in the measured variables, which 

usually relates to the degree of correlation between some of these variables, a reliable 

multivariate statistical technique must be used. The multivariate statistical technique 
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serves as a tool for screening of such large numbers of interrelated variables for their 

underlying dimensions (Ebisemiju, 1979). 

Multivariate analysis has been used efficiently in the past decades in many fields 

of study (e.g., in hydrogeology: Güler et al., 2002; Lambrakis et al., 2004; Love et al., 

2004; Wright et al., 1984; Bargos et al., 1990; Norris and Georges, 1993; Wright et al., 

1993;  in geomorphology: Mather and Doorn-Kamp, 1970; Mark, 1975; Pavoni et al., 

1997; Griffith, 2002; Bishop et al., 2005; Smith et al., 2005; in sedimentology: Qu 

Wenchuan, 2001; Yongming et al., 2006; in geochemical assessments: Cushing et al. 

1980, Prat et al. 1984, Sabater et al., 1989, 1991; Del Giorgio et al., 1991; Melloul and 

Collin, 1992; Bandy and Pardo; 1994, in environmental measurements: Cushing et al., 

1980; Sabater et al., 1989; Melloul and Collin, 1992; van Tongeren et al., 1992; Pardo, 

1994; Green and Montagna, 1996; Miranda et al., 1996; Pienitz et al., 1997a, b; Diaz et 

al., 2002). 

In this study we used principal component analysis (PCA), which is one of the most 

widely used multivariate techniques. Principal components analysis, the term first 

introduced by Thurstone (1931), is a statistical technique applied to a number of 

variables to discover the degree of relative independence of these variables to one 

another and to identify new, meaningful, underlying variables. Also PCA is used as a 

tool in attempts to reduce a large set of variables to a more meaningful and in most cases 

smaller set of variables. Principal component analysis (PCA) usually takes place through 

a number of mathematical procedures that transform a number of, in most cases, 

correlated variables into a smaller number of uncorrelated variables called principal 
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components. The first principal component (usual from PC1 to PC3) accounts for as 

much of the variability in the data as possible, and then each succeeding component 

accounts for as much of the remaining variability as possible. The most important 

character of PCA is that generated components are thought to be representative of the 

underlying processes that have created the correlations among variables. Although many 

researchers accept these techniques and strongly recommend them for both identification 

of groups of interrelated variables and reduction of number of variables, others have 

criticized multivariate analyses for rarely giving results that go beyond common 

knowledge (e.g., Karr and Martin 1981, Fore et al. 1996, Stewart-Oaten 1996). The 

correlation matrix is used in this analysis because all variables are quantitative and with 

different units (Saporta, 1990; Lebart et al., 1995). 

  However, PCA is sensitive to the magnitude of correlations; robust comparisons 

must be made to ensure the quality of the analysis. PCA is known to be scale dependent 

(i.e., the variability of the data can be dominated by the variables in the more sensitive 

units), sensitive to outliers and missing data, and subject to poor correlations between 

poorly distributed variables. As a result data transformations are highly recommended 

before running of these analyses (see Austin and Greig-Smith, 1968; Hruby, 1987; 

Jackson, 1993; Norris and Georges, 1993; Palmer, 1993). These transformations had a 

large impact on our PCA results. 

Normal score transformation is used as a transformation tool to ensure a normal 

distribution, or “Gaussianization” (Monbet and Prevosto, 2000) of the all measured 

geomorphic variables before PCA transformation. Normal score transformtion is a 
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graphical transform that normalizes any distribution, regardless of its shape. The NST 

computations were done using the geostatistical Toolbox software v. 1.30. In practice, 

the normal score transform proceeds in three steps as summarized by Goovaerts and 

Jacquez (2004): 

1. The N original data z(uα) (i.e. SMR data) are first ranked in ascending order. Since the 

normal score transform must be monotonic, ties in z-values must be broken, which has 

been done randomly.  

2. The sample cumulative frequency of the datum z(uα) with rank k is then computed as   

             pk *= k/N - 0.5/N        (1) 

3. The normal score transform of the z-datum with rank k is matched to the quantile of 

the standard normal cdf: 

           y(uα) = φ(z(uα)) = G-1[F(z(uα))] = G-1[pk * ]    (2) 

IV.3.2.2. Cluster analysis 

The term cluster analysis was first introduced by Tryon (1939), where he 

introduced a number of methods and algorithms for grouping objects (e.g. individuals, 

quadrats, species etc.) of similar kind into respective categories. In other words, cluster 

analysis is defined as an exploratory data analysis tool which aims at sorting different 

objects or cases into groups or clusters in a way that the degree of similarity between 

two objects is maximal if they belong to the same cluster and minimal otherwise (Davis, 

1973). For a good introduction of cluster analysis, see Hartigan (1975), Gordon (1981), 

Murtagh (1985), McLachlan and Basford (1988), and Kaufman and Rousseeuw (1990). 
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Cluster analysis has proven useful in many aspects of geology, for example, in studies of 

carbonate facies and paleoclimatic changes (Smosna and Warshauer, 1979; Sheps, 2004; 

Goddu et al., 2003), in geochemistry and environmental monitoring (Grande et. al., 

2000, 2003b; Zwolsman et al., 1993, 1997), and in geomorphology and soil 

classification (Moore and Russell, 1967; Campbell et al., 1970; Arkley ,1971, 1976; 

Aldenderfer and Blashfield, 1984; Webster and Oliver, 1990; Young and Hammer, 

2000). 

Cluster results can change dramatically with the choice of the clustering method, 

the distance measured, and the number of clusters. Moreover, depending on the selected 

validity measure, different answers result for the optimal number of clusters. Despite the 

changing cluster results, each partition can still be informative and valuable. The results 

can give an interesting insight into the multivariate data structure even if the validity 

measure does not suggest the optimum for the chosen cluster number. It is thus desirable 

to perform cluster analysis in an exploratory context, by changing the cluster parameters 

and visually inspecting the results (Templ, 2003). SPSS Software V. 14.0.2 has been 

selected to conduct cluster analysis, where we selected the hierarchical clustering 

approach, which allows users to select a definition of distance, then select a linking 

method for forming clusters, then determine how many clusters best suit the data. 

Considering establishment of the matrix distance, we chose Euclidean distance because 

it is the most common distance to measure inter-cluster distances, especially when 

merging nearest clusters into broader groups. In a very simple sense, Euclidean distance 

is computed as follows: If a given pair of cases is plotted on two variables, which form 
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the x and y axes, the Euclidean distance is the square root of the sum of the square of the 

x difference plus the square of the y distance. Then we used a between-group distance 

technique to generate the “dendrograms,” are also called “hierarchical tree diagrams or 

plots,” which are simply a sequence of clustering partitions.  

 

IV.3.3. Drainage basin’s main stream profile analysis 

In a tectonically active region, the main stream profile analysis of drainage basins 

has strong potential to help reveal the fundamental controls on the relief structure of 

mountain belts.  The stream profile geometry has been well and intensively studied to 

identify spatial patterns of rock uplift, to infer erosional processes, and to identify the 

interaction between the tectonic activity and prevailing fluvial processes (e.g., Seeber 

and Gornitz, 1983; Ouchi, 1985; Harvey and Wells, 1987; Merritts and Vincent, 1989; 

Cox, 1994; Kafri and Heimann, 1994; Howard, 1994; Wende, 1995; Burbank et al., 

1996; Bonnet et al., 1998; Ginat et al., 1998; Fisher and Souch, 1998; Hurtrez et al., 

1999; Holbrook and Schumm, 1999; Humphrey and Konrad, 2000; Mather, 2000; 

Stokes and Mather, 2000; Snyder et al., 2000; Cox et al., 2001; Hsieh and Knuepfer, 

2001; Sun et al., 2001;  Ben-David et al., 2002; Ginat et al., 2002; Stokes and Mather, 

2003; Duvall et. al., 2004).  In active tectonic basins, the signal of rock uplift is usually 

transmitted through the bedrock channel, where fluvial incision controls landscape 

erosion by controlling the relief structure of drainage basins (Whipple and Tucker, 

1999). This fact has led to numerous studies that demonstrate that analysis of the 

drainage basin main stream profile, either from the morphological point of view (e.g. 
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stream length-gradient index) or from the bedrock-incision point of view (slope-area 

analysis) is critical and at the same time a powerful tool to explore rates and patterns of 

active deformation. The integration between the ASTER DEM and SRTM DEM (El-

Sobky and Dorobek, 2005) provides a highly accurate and precise DEM with a 15-m 

resolution, which will accurately capture the essential channel geomorphometric 

character to conduct the present study. 

 

IV.3.3.1. Stream length-gradient index 

The stream length-gradient index (SL) is one of the earliest-used geomorphic indices 

Hack, 1973). The SL index has been used as an indicator of the geomorphic evolution of 

active tectonic regimes because it usually expresses the connection between sensitivity 

to rock resistance, climatic change and tectonic processes to some extent with the 

production of a certain landscape in an active tectonic setting (Verrios and Kokkalas, 

2004). The stream length-gradient index is defined as: 

SL = (∆Η/∆L) L       (3) 

where SL is the stream length gradient index, ∆Η/∆L is the stream gradient at a specific 

site in the channel (∆Η is the change in elevation of the reach and ∆L is the length of the 

reach) and L is the total channel length from the point of interest where the index is 

being calculated upstream to the highest point on the channel (Hack, 1973; Merritts and 

Vincent, 1989; Keller and Pinter, 2001). The SL index is roughly related to the stream 

power but is particularly sensitive to changes in slope and lithology; this sensitivity 

allows evaluation of the relationship between possible tectonic activity and rock 
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resistance. In other words, the values of the SL index are high in areas where the rocks 

are significantly resistant or where active deformation is present (Zygouri and Kokkalas, 

2004; Zovoili and Koukouvelas, 2004). Therefore, any anomalously high SL values or 

fluctuation of the SL values in rock of uniform resistance is a possible indicator of active 

tectonics (Bull and McFadden, 1977; Keller, 1986; Keller and Pinter, 1996; Azor and 

Keller, 1999). In our study, we used stream length-gradient (SL) indices, which 

normalize the channel slope to basin size, to provide a means to quantitatively compare 

channel slope between basins. 

 

IV.3.3.2. Slope area analysis 

The relation between the main stream slope and the area of drainage basins is 

widely used to assess the balance between the rock uplift and channel incision in any 

tectonically active regimes (Snyder et al., 2000; Kirby and Whipple, 2001; Kirby et al., 

2003; Duvall et al., 2004; Kobor and Roering, 2004). This tectonic balance is 

demonstrated by using the stream power (also known as shear stress) model (Howard 

and Kerby, 1983), which express the relation between bedrock channel incisions as a 

power law function of unit stream power. In other words, this relation is expressed in 

terms of drainage area (A) and local channel slope (S) as follows: 

                 
Θ−= AKS s       (4)                      

 with ks often referred to as the steepness index, and the exponent Ө as the concavity 

index, which can be measured directly by regression of slope and area data. This relation 

has been applied at different tectonic settings (e. g., Howard and Kerby, 1983; Seidl and 
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Dietrich, 1992; Sklar and Dietrich, 1998; Whipple and Tucker, 1999; Stock and 

Montgomery, 1999; Snyder et al., 2000; Whipple et al., 2000a; Kirby and Whipple, 

2001; Montgomery, 2001; Schorghofer and Rothman, 2001; Roe et al., 2002; Dietrich et 

al., 2003; Kobor and Roering, 2004). The equation above is applied as a first-order 

exploratory tool to reveal possible active tectonics in unexplored settings with the 

assumption that minimal changes in slope-area data may reflect variable sediment 

supply, localized debris flow erosion, the frequency of storm events, or orographic 

effects (Kobor and Roering, 2004). The results of the power-law regression analysis 

produce a highly scattered cloud of points that needs to be smoothed (Tarboton et al., 

1991; Montgomery and Foufoula-Georgiou, 1993; Tucker and Bras, 1998; Snyder et al., 

2000, Duvall et al., 2004). A Matlab code (Appendix 1) used in our study simply 

averaged slopes in logarithmic bins of the drainage area to remove the scattered clouds 

and end with a more interpretable and smooth figure ready for computation of local 

slopes.  

Rock-type changes along the mainstream profile reflect possible competency 

changes that are vital to evaluate the bedrock incision rates (Hack, 1957; Stock and 

Montgomery, 1999; Whipple et al., 2000a, 2000b; Sklar and Dietrich, 2001; Duvall et 

al., 2004). Matching the drainage basin main stream profile with the object-oriented 

classification image using the technique introduced by El-Sobky and Dorobek (2006), 

provides good insight into the possibility of any competency changes caused by down-

slope bedrock variation. 
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IV.4. Results and discussion 

IV.4.1. Tectono-geomorphometrics and multivariate analysis 

 The merging of the ASTER DEM with the manipulated (geostatistically 

patched, El-Sobky and Dorobek, 2005, 2006) SRTM DEM provided a highly accurate, 

spike-free DEM. The generated DEM (15m) was used successfully to extract the 

drainage basins for the entire Baja California peninsula (Figure 4.3) using the D-8 

algorithm (explained earlier in detail). However, only thirty-four drainage basins were 

selected, using the most common morphometric parameters, for investigating their 

sensitivities to any possible variations along two-thirds of the eastern part of the 

peninsula. These basins were selected by their main-stream profiles, starting from the 

peninsular divide as an input and reaching the Gulf of California western coast (eastern 

coast of Baja) as their reach points. So these basins and their main stream profiles record 

any possible variation that may be related to tectonic, climatic or lithologic, or 

combinations of these geomorphic forces that might have happened in the course of their 

ages. These records of variations are best estimated from the basin’s morphometric 

parameters. Thirty parameters or variables of drainage-basin morphometry were selected 

to conduct our study (Table 4.1). Our first aim in this part of study was to classify the 

thirty-four drainage basins into certain groups, in which basins belonging to the same 

group reflect similarity and dissimilarity when compared to the other groups. 

Implementing this approach using these thirty morphometric parameters is impractical 

without using statistical power as an aid to guide the classification. The reason, 

basically, is that these parameters have different units and these units are expected to
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Figure 4.3. (a) The thirty-four extracted drainage basins form the 15-m DEM as illustrated in (b). (c) Locations of the selected basins. (d & e) Two 
examples for the extracted drainage basins.  
 

(a) (b) (c) 

(d) 

(e) 
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Table 4.1. Morphometric Parameters  (A is Area; DD is Drainage Density; TNS is Total Stream No.;  EF is Elongation Factor; SO is Strahler Order; 
LCD is Longest Channel Length; TCL is Total Channel Length; HA is Hypsometric Area; HI is Hypsometric Integral; ME is Max. Elevation; MeE is 
Mean Elevation; ASLS is Ave. Straight-Line Slope; AACS is Ave. Along-Channel Slope; BR is Basin Relief; OE is Outlet Elevation). 
Basins A DD TSN EF SO LCL TCL HA HI ME MeE ASLS AACS BR OE 

B1 54.31 13.57 3775 0.41 6 23.67 736.95 55.73 0.54 1160 627.69 0.05 0.04 1.12 43 
B2 47.96 13.67 3070 0.64 6 19.77 655.53 49.20 0.41 1342 557.62 0.03 0.02 1.33 18 
B3 86.48 13.46 6143 0.67 7 21.30 1163.57 88.69 0.19 831 156.82 0.00 0.00 0.83 5 
B4 122.53 13.54 7790 0.50 7 28.47 1658.86 125.60 0.45 1360 431.10 0.01 0.01 1.35 10 
B5 451.60 13.61 29200 0.48 8 54.82 6144.05 462.08 0.35 1427 579.14 0.01 0.01 1.43 7 
B6 75.54 13.52 4989 0.63 7 21.20 1021.46 77.34 0.25 833 211.22 0.01 0.01 0.83 5 
B7 903.66 13.44 59757 0.57 8 71.95 12143.15 923.25 0.46 1645 479.21 0.01 0.01 1.64 4 
B8 398.12 13.48 25102 0.64 8 49.01 5365.65 398.14 0.52 1655 649.61 0.02 0.01 1.65 10 
B9 895.58 13.65 57912 0.56 9 76.42 12228.00 895.79 0.48 1637 454.47 0.02 0.01 1.64 2 

B10 99.24 13.63 6384 0.56 6 25.58 1352.51 99.24 0.36 1641 592.63 0.05 0.03 1.63 17 
B11 237.40 13.51 12759 0.58 7 32.67 3208.27 237.40 0.40 1580 533.11 0.01 0.01 1.58 4 
B12 995.20 13.35 62821 0.71 9 77.11 13285.74 995.31 0.26 1666 433.87 0.01 0.00 1.66 3 
B13 558.52 13.42 36599 0.67 8 54.26 7496.37 558.47 0.26 1265 334.96 0.01 0.00 1.26 1 
B14 186.30 13.30 11626 0.50 7 38.97 2477.66 186.32 0.36 940 336.96 0.02 0.01 0.93 8 
B15 153.57 13.32 9128 0.46 7 35.88 2045.85 153.56 0.38 920 410.75 0.03 0.02 0.91 14 
B16 348.24 13.35 20845 0.53 8 41.50 4650.50 348.26 0.38 1129 432.75 0.01 0.01 1.13 2 
B17 109.84 13.30 7479 0.47 7 26.38 1460.76 109.84 0.29 1249 356.98 0.02 0.01 1.25 5 
B18 609.47 13.35 37126 0.66 8 54.61 8136.74 609.45 0.27 1397 378.11 0.01 0.01 1.39 4 
B19 442.72 13.44 26545 0.40 8 61.74 5951.66 442.71 0.38 1385 417.83 0.01 0.01 1.38 3 
B20 253.00 13.50 15533 0.60 7 31.89 3414.60 253.01 0.20 1922 377.69 0.02 0.01 1.92 3 
B21 373.67 13.37 24228 0.43 8 54.19 4995.93 373.67 0.34 1916 461.81 0.02 0.01 1.91 5 
B22 401.07 13.37 25017 0.45 8 53.15 5361.84 400.99 0.29 1600 462.64 0.01 0.01 1.60 4 
B23 749.36 13.36 46244 0.62 9 78.80 10012.73 749.44 0.32 1715 549.57 0.01 0.01 1.71 3 
B24 670.44 13.30 43862 0.73 8 53.46 8916.18 670.49 0.21 1289 270.28 0.00 0.00 1.28 7 
B25 141.61 13.45 8144 0.53 7 29.11 1905.17 141.60 0.39 966 379.05 0.02 0.01 0.97 5 
B26 152.67 13.23 10425 0.40 7 36.34 2019.45 152.67 0.35 902 222.54 0.01 0.01 0.90 6 
B27 191.42 13.21 13822 0.52 7 32.54 2528.38 191.43 0.18 911 167.67 0.01 0.01 0.91 8 
B28 587.17 13.25 41434 0.88 8 41.26 7782.06 587.19 0.13 1609 213.91 0.00 0.00 1.61 3 
B29 114.22 13.24 8147 0.59 7 24.64 1512.57 114.23 0.48 1036 295.75 0.01 0.01 1.03 6 
B30 84.05 13.17 5701 0.66 7 18.76 1107.02 84.04 0.24 849 202.52 0.01 0.01 0.85 1 
B31 1544.26 13.20 113313 0.34 8 132.38 20377.34 1544.03 0.22 961 216.61 0.00 0.00 0.96 2 
B32 55.12 13.07 3508 0.70 6 19.00 720.53 55.12 0.47 1046 281.87 0.01 0.01 1.05 8 
B33 84.42 13.18 6008 0.42 7 26.28 1112.41 84.42 0.46 552 253.78 0.01 0.01 0.54 14 
B34 69.56 13.20 4812 0.72 7 18.06 918.37 69.56 0.48 545 260.38 0.03 0.02 0.53 16 
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Table 4.1. Continued. 
Basins Si BL TFL FD AS RD RS RSi BiR SF FF DT RR RHO ASLR 

B1 1.37 20.2 15.3 0.28 57.5 881 0.04 1.44 4.9 69.51 0.13 943.25 0.06 0.74 3.62 
B2 1.21 12.2 11.7 0.24 31 1106 0.08 1.27 4.6 64.01 0.32 874.86 0.11 0.82 3.78 
B3 1.30 15.6 27 0.31 33.3 594 0.03 1.51 4.3 71.04 0.36 955.85 0.05 0.86 3.68 
B4 1.25 25 32.4 0.26 60 838 0.03 1.44 4.6 63.58 0.20 860.70 0.05 0.83 3.80 
B5 1.25 50.1 105.3 0.23 36 1197 0.04 1.49 3.7 64.66 0.18 879.70 0.03 0.49 1.80 
B6 1.29 15.6 11.7 0.15 40 522 0.03 1.28 4 66.04 0.31 892.98 0.05 0.39 1.56 
B7 1.28 60 136.8 0.15 42.5 1225 0.02 1.37 4.7 66.13 0.25 888.61 0.03 0.77 3.64 
B8 1.31 35 87.75 0.22 71 1326 0.03 1.54 4.4 63.05 0.32 849.78 0.05 0.75 3.28 
B9 1.36 60.5 113.4 0.13 59.4 1236 0.02 1.73 4.3 64.66 0.24 882.90 0.03 0.76 3.25 

B10 1.48 20.2 27 0.27 62 1490 0.07 1.79 4 64.33 0.24 876.67 0.08 1.01 4.04 
B11 1.17 30 48.15 0.20 34 988 0.03 1.31 5.7 53.75 0.26 726.33 0.05 0.65 3.68 
B12 1.35 50 156.6 0.16 47 1051 0.02 1.77 4.8 63.12 0.40 842.70 0.03 0.68 3.26 
B13 1.36 40 99 0.18 46 1101 0.02 1.60 4 65.53 0.35 879.53 0.03 0.89 3.57 
B14 1.28 30.8 30.6 0.16 44 762 0.02 1.37 4.4 62.40 0.20 829.94 0.03 0.97 4.25 
B15 1.48 30.3 25.2 0.16 46 807 0.02 0.02 4.7 59.44 0.17 791.87 0.03 0.77 3.63 
B16 1.67 40 72.9 0.21 43 1053 0.03 2.04 4.5 59.86 0.22 799.34 0.03 0.78 3.53 
B17 1.25 25 9 0.08 40 1095 0.04 1.27 4.2 68.09 0.18 905.52 0.05 0.85 3.55 
B18 1.61 42 91.35 0.15 43 994 0.02 1.59 4.5 60.92 0.35 813.26 0.03 0.82 3.70 
B19 1.78 60.1 30.6 0.07 57 1224 0.02 1.61 4.4 59.96 0.12 806.04 0.02 0.77 3.39 
B20 1.40 30.1 39.6 0.16 52 1836 0.06 1.45 4.2 61.40 0.28 828.64 0.06 0.86 3.63 
B21 1.56 50.25 55.8 0.15 53 1815 0.04 1.76 4.3 64.84 0.15 866.87 0.04 0.74 3.20 
B22 1.33 50.1 62.1 0.15 54 1399 0.03 1.35 4.2 62.38 0.16 833.90 0.03 0.81 3.40 
B23 1.28 50 132.3 0.18 58 1210 0.02 1.82 4.5 61.71 0.30 824.57 0.03 0.80 3.60 
B24 1.60 40 103.5 0.15 40 800 0.02 1.55 4.6 65.42 0.42 870.06 0.03 0.80 3.70 
B25 1.25 25.2 53.1 0.37 50 820 0.03 1.31 4.5 57.51 0.22 773.75 0.04 0.89 4.00 
B26 1.33 35 1602 10.49 37 676 0.02 1.39 4.7 68.28 0.12 903.19 0.03 0.73 3.45 
B27 1.32 30.1 14.4 0.08 41 584 0.02 1.43 5.2 72.21 0.21 953.74 0.03 0.77 4.00 
B28 1.29 30.9 47.7 0.08 31 778 0.02 1.45 4.8 70.57 0.61 935.23 0.05 0.76 3.66 
B29 1.21 20.5 25.2 0.22 40 523 0.03 1.27 4.6 71.33 0.27 944.60 0.05 0.72 3.30 
B30 1.28 15.6 32.4 0.39 54 277 0.02 1.27 4.4 67.83 0.35 893.44 0.05 0.72 3.18 
B31 1.47 130 70.8 0.05 46 676 0.01 1.48 5.2 73.38 0.09 968.25 0.01 0.35 1.84 
B32 1.30 12 12.6 0.23 31 697 0.04 1.50 5 63.64 0.38 831.97 0.09 0.74 3.68 
B33 1.51 24.9 25.2 0.30 47 440 0.02 1.48 4.3 71.17 0.14 937.81 0.02 0.79 3.40 
B34 1.59 13 16.2 0.23 32 482 0.03 1.43 4.3 69.18 0.41 913.42 0.04 0.79 3.40 

Note: Si is Sinuosity; BL is Basin Length; TFL is Total Fracture Length; FD is Fracture Density; AS is Asymmetry Factor; RD is Reach Drop, RS is Reach Slope; RSi is Reach Sinuosity; 
BiR is Bifurcation Ratio; SF is Stream Frequency; FF is Form Factor; DT is Drainage Texture; RR is Relief Ratio; RHO is RHO Coefficient; ASLR is Ave. Stream-Length Ratio.
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have different effects on the classification process. For example, the drainage-basin area 

ranges from ~ 47 to 1544 km2 while the hypsometric integral ranges from 0.13 to 0.54. 

Without transforming the data, drainage area as a parameter would completely mask the 

hypsometric integral in the classification process. The morphometric parameters were 

transformed using NST to ensure normality in their distribution as well as to remove any 

bias from the differences in units (Table 4.2). Figure 4.4 shows the transformations of 

the drainage basin area, as an example, using the normal score transform. We applied the 

PCA with VARIMAX normalized rotation, which is an orthogonal rotation that can 

maximize the variances of the component loadings across variables for each component 

and minimize the number of variables that have high loadings on each component to 

simplify the interpretation process. Component loadings > 0.71 are typically regarded as 

excellent and < 0.32 very poor (Nowak, 1998; Garcia et al., 2004). In this study, all 

principal factors extracted from the variables were retained with Eigen values > 1.0, as 

suggested by the Kaiser criterion (Kaiser, 1960).  

The parametric PCA results are shown in Figure 4.5, where the thirty 

intercorrelated morphometric parameters were reduced into a smaller set of five 

orthogonal (completely uncorrelated) variables  called PCs, which accounted for 80.77% 

of the total variance in the data set (Table 4.3 and 4.4) . These five PCs are extracted in 

decreasing order of variance, such that the first few principal components (PCs) explain 

most of the variation in the data set (Figure 4.5). The contribution of each morphometric 

variable to the new PC is called a load (Table 4.5). Typically, the new PC loads can be 

interpreted to indicate structure in the data set. The sign of variable loads (negative or
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Figure 4.4. The drainage basin area parameter transformation using Normal Score Transform (NST) as an example for the transformation that has been 
done to all measured morphometric parameters.
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Table 4.2. NST Morphometric Parameters  (A is Area; DD is Drainage Density; TNS is Total Stream No.;  EF is Elongation Factor; SO is Strahler 
Order; LCD is Longest Channel Length; TCL is Total Channel Length; HA is Hypsometric Area; HI is Hypsometric Integral; ME is Max. Elevation; 
MeE is Mean Elevation; ASLS is Ave. Straight-Line Slope; AACS is Ave. Along-Channel Slope; BR is Basin Relief; OE is Outlet Elevation). 
Basins A DD TSN EF SO LCL TCL HA HI ME MeE ASLS AACS BR OE 

B1 -1.59 1.07 -1.37 -1.22 -1.92 -0.76 -1.38 -1.38 1.92 -0.14 1.59 1.92 1.92 -0.21 1.92 
B2 -1.92 1.90 -1.90 0.43 -1.59 -1.08 -1.92 -1.92 0.51 0.14 1.08 1.08 1.38 0.14 1.59 
B3 -0.67 0.48 -0.74 0.86 -0.86 -0.86 -0.67 -0.67 -1.38 -1.22 -1.92 -1.59 -1.59 -1.22 -0.14 
B4 -0.35 0.95 -0.48 -0.51 -1.08 -0.35 -0.35 -0.35 0.59 0.21 0.28 0.14 0.21 0.21 0.76 
B5 0.59 1.20 0.56 -0.59 1.22 0.86 0.59 0.59 -0.14 0.43 1.22 0.28 0.35 0.43 0.35 
B6 -0.97 0.84 -1.07 0.35 -0.97 -0.97 -0.97 -0.97 -0.76 -1.08 -1.22 -0.28 -0.14 -1.08 -0.21 
B7 1.38 0.25 1.37 0.00 0.86 1.08 1.22 1.38 0.76 0.97 0.76 -0.35 -0.28 0.97 -0.43 
B8 0.35 0.56 0.40 0.51 0.97 0.35 0.43 0.35 1.59 1.08 1.92 0.59 0.59 1.08 0.67 
B9 1.22 1.58 1.20 -0.07 1.59 1.22 1.38 1.22 1.22 0.76 0.51 0.67 0.76 0.86 -1.22 

B10 -0.59 1.37 -0.65 -0.14 -1.38 -0.59 -0.59 -0.59 0.07 0.86 1.38 1.59 1.59 0.76 1.38 
B11 0.07 0.74 -0.04 0.07 -0.51 -0.07 0.07 0.07 0.43 0.51 0.86 -0.21 0.14 0.51 -0.51 
B12 1.59 -0.25 1.58 1.08 1.38 1.38 1.59 1.59 -0.67 1.22 0.43 -0.97 -0.97 1.22 -0.67 
B13 0.67 0.18 0.65 0.76 0.67 0.67 0.67 0.67 -0.59 0.00 -0.28 -1.08 -1.08 0.00 -1.59 
B14 -0.07 -0.40 -0.11 -0.43 -0.28 0.14 -0.07 -0.07 0.00 -0.59 -0.21 0.43 0.51 -0.59 0.43 
B15 -0.14 -0.33 -0.25 -0.76 -0.21 0.00 -0.14 -0.14 0.14 -0.67 0.14 0.97 1.22 -0.76 0.86 
B16 0.21 -0.11 0.18 -0.28 0.59 0.28 0.21 0.21 0.28 -0.21 0.35 0.07 -0.21 -0.14 -1.38 
B17 -0.51 -0.56 -0.56 -0.67 -0.07 -0.43 -0.51 -0.51 -0.43 -0.07 -0.14 0.86 0.86 -0.07 -0.07 
B18 0.86 -0.18 0.74 0.67 0.51 0.76 0.86 0.86 -0.51 0.35 0.00 -0.67 -0.86 0.35 -0.28 
B19 0.51 0.33 0.48 -1.59 0.35 0.97 0.51 0.51 0.21 0.28 0.21 0.00 -0.51 0.28 -0.76 
B20 0.14 0.65 0.11 0.21 0.14 -0.21 0.14 0.14 -1.22 1.92 -0.07 0.76 0.43 1.92 -0.59 
B21 0.28 0.11 0.25 -0.97 0.21 0.59 0.28 0.28 -0.21 1.59 0.59 0.51 0.28 1.59 0.00 
B22 0.43 0.04 0.33 -0.86 0.28 0.43 0.35 0.43 -0.35 0.59 0.67 -0.07 0.07 0.59 -0.35 
B23 1.08 -0.04 1.07 0.28 1.92 1.59 1.08 1.08 -0.28 1.38 0.97 -0.86 -0.76 1.38 -0.97 
B24 0.97 -0.48 0.95 1.59 0.43 0.51 0.97 0.97 -1.08 0.07 -0.51 -1.38 -1.38 0.07 0.28 
B25 -0.28 0.40 -0.40 -0.21 0.00 -0.28 -0.28 -0.28 0.35 -0.43 0.07 0.35 0.67 -0.43 0.07 
B26 -0.21 -0.84 -0.18 -1.38 -0.14 0.07 -0.21 -0.21 -0.07 -0.86 -0.86 -0.51 -0.59 -0.86 0.21 
B27 0.00 -0.95 0.04 -0.35 -0.35 -0.14 0.00 0.00 -1.59 -0.76 -1.59 -0.76 -0.67 -0.67 0.59 
B28 0.76 -0.65 0.84 1.92 0.76 0.21 0.76 0.76 -1.92 0.67 -1.08 -1.22 -1.22 0.67 -0.86 
B29 -0.43 -0.74 -0.33 0.14 -0.59 -0.67 -0.43 -0.43 1.38 -0.35 -0.35 -0.59 -0.43 -0.35 0.14 
B30 -0.86 -1.58 -0.95 0.59 0.07 -1.38 -0.86 -0.86 -0.86 -0.97 -1.38 -0.43 -0.35 -0.97 -1.92 
B31 1.92 -1.20 1.90 -1.92 1.08 1.92 1.92 1.92 -0.97 -0.51 -0.97 -1.92 -1.92 -0.51 -1.08 
B32 -1.38 -1.90 -1.58 0.97 -1.22 -1.22 -1.59 -1.59 0.86 -0.28 -0.43 -0.14 0.00 -0.28 0.51 
B33 -0.76 -1.37 -0.84 -1.08 -0.43 -0.51 -0.76 -0.76 0.67 -1.38 -0.76 0.21 -0.07 -1.38 0.97 
B34 -1.08 -1.07 -1.20 1.38 -0.67 -1.59 -1.08 -1.08 1.08 -1.92 -0.59 1.38 1.08 -1.59 1.22 
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Table 4.2. Continued.  
Basins Si BL TFL FD AS RD RS RSi BiR SF FF DT RR RHO ASLR 

B1 0.35 -0.76 -0.97 0.97 0.97 -0 0.965 -0.07 1.08 0.86 -1.22 1.08 1.08 -0.59 0.14 
B2 -1.59 -1.59 -1.59 0.67 -1.59 0.506 1.915 -1.22 0.35 -0.21 0.43 -0.07 1.92 0.59 0.97 
B3 -0.21 -1.08 -0.35 1.22 -0.97 -0.762 0.428 0.43 -0.76 1.08 0.86 1.59 0.67 0.97 0.67 
B4 -0.97 -0.35 -0.14 0.76 1.38 -0.069 0.587 -0.14 0.28 -0.35 -0.51 -0.28 0.86 0.76 1.08 
B5 -0.86 0.97 0.97 0.59 -0.76 0.587 0.859 0.28 -1.92 -0.07 -0.59 0.14 -0.76 -1.38 -1.59 
B6 -0.43 -0.97 -1.38 -0.43 -0.59 -1.083 0.28 -0.97 -1.22 0.28 0.35 0.35 0.76 -1.59 -1.92 
B7 -0.76 1.22 1.38 -0.67 -0.21 0.859 -0.353 -0.51 0.67 0.35 0.00 0.28 -0.97 0.00 0.35 
B8 -0.14 0.21 0.59 0.21 1.92 1.083 0.506 0.51 -0.21 -0.51 0.51 -0.35 0.28 -0.43 -0.76 
B9 0.28 1.59 1.08 -0.97 1.22 0.965 -1.382 0.97 -0.67 0.00 -0.07 0.21 -1.08 -0.35 -0.97 

B10 0.67 -0.67 -0.43 0.86 1.59 1.382 1.593 1.38 -1.59 -0.14 -0.14 0.00 1.38 1.92 1.59 
B11 -1.92 -0.21 0.14 0.07 -0.86 0.069 0.672 -0.86 1.92 -1.92 0.07 -1.92 0.59 -1.22 0.51 
B12 0.14 0.76 1.59 -0.28 0.28 0.209 -1.593 1.22 0.97 -0.43 1.08 -0.43 -0.14 -1.08 -0.86 
B13 0.21 0.51 0.76 0.00 0.14 0.428 -0.28 0.76 -1.38 0.21 0.76 0.07 -0.43 1.38 0.00 
B14 -0.51 0.07 -0.28 -0.14 0.00 -0.428 -0.428 -0.59 -0.28 -0.59 -0.43 -0.67 -0.51 1.59 1.92 
B15 0.59 0.00 -0.51 -0.21 0.07 -0.209 -0.138 -1.92 0.76 -1.38 -0.76 -1.38 -0.67 -0.07 0.28 
B16 1.59 0.35 0.51 0.14 -0.14 0.28 -0.069 1.92 0.07 -1.22 -0.28 -1.22 -0.86 0.07 -0.14 
B17 -1.08 -0.43 -1.92 -1.08 -0.35 0.353 1.083 -1.08 -0.97 0.51 -0.67 0.59 0.35 0.86 -0.07 
B18 1.38 0.59 0.67 -0.76 -0.07 0.138 -0.762 0.67 0.00 -0.97 0.67 -0.97 -0.21 0.67 0.86 
B19 1.92 1.38 -0.21 -1.59 0.86 0.762 -0.587 0.86 -0.14 -1.08 -1.59 -1.08 -1.38 -0.14 -0.59 
B20 0.43 -0.07 0.00 -0.35 0.51 1.915 1.382 0.07 -0.86 -0.86 0.21 -0.76 1.22 1.08 0.21 
B21 0.86 1.08 0.28 -0.86 0.59 1.593 0.762 1.08 -0.35 0.07 -0.97 -0.21 0.00 -0.51 -1.08 
B22 0.00 0.86 0.35 -0.51 0.67 1.219 -0 -0.67 -1.08 -0.67 -0.86 -0.51 -0.35 0.51 -0.35 
B23 -0.67 0.67 1.22 -0.07 1.08 0.672 -0.209 1.59 0.14 -0.76 0.28 -0.86 -0.07 0.35 0.07 
B24 1.22 0.43 0.86 -0.59 -0.43 -0.28 -1.083 0.59 0.43 0.14 1.59 -0.14 -0.28 0.43 0.76 
B25 -1.22 -0.28 0.21 1.38 0.43 -0.138 0.353 -0.76 0.21 -1.59 -0.21 -1.59 0.07 1.22 1.38 
B26 0.07 0.28 1.92 1.92 -0.67 -0.672 -0.859 -0.43 0.59 0.59 -1.38 0.51 -1.22 -0.76 -0.21 
B27 -0.07 -0.14 -1.08 -1.38 -0.28 -0.859 -0.965 -0.35 1.59 1.59 -0.35 1.38 -0.59 -0.21 1.22 
B28 -0.35 0.14 0.07 -1.22 -1.38 -0.353 -0.672 0.00 0.86 0.97 1.92 0.86 0.51 -0.28 0.43 
B29 -1.38 -0.59 -0.59 0.28 -0.51 -0.965 0.209 -1.38 0.51 1.38 0.14 1.22 0.43 -0.97 -0.67 
B30 -0.59 -0.86 -0.07 1.59 0.76 -1.915 -0.506 -1.59 -0.07 0.43 0.59 0.43 0.97 -0.86 -1.22 
B31 0.51 1.92 0.43 -1.92 0.21 -0.587 -1.915 0.21 1.38 1.92 -1.92 1.92 -1.92 -1.92 -1.38 
B32 -0.28 -1.92 -1.22 0.35 -1.92 -0.506 1.219 0.35 1.22 -0.28 0.97 -0.59 1.59 -0.67 0.59 
B33 0.76 -0.51 -0.67 1.08 0.35 -1.593 -1.219 0.14 -0.43 1.22 -1.08 0.97 -1.59 0.21 -0.28 
B34 1.08 -1.22 -0.76 0.51 -1.08 -1.219 0.138 -0.21 -0.51 0.76 1.38 0.76 0.21 0.28 -0.43 

Note: Si is Sinuosity; BL is Basin Length; TFL is Total Fracture Length; FD is Fracture Density; AS is Asymmetry Factor; RD is Reach Drop, RS is Reach Slope; RSi is Reach Sinuosity; 
BiR is Bifurcation Ratio; SF is Stream Frequency; FF is Form Factor; DT is Drainage Texture; RR is Relief Ratio; RHO is RHO Coefficient; ASLR is Ave. Stream-Length Ratio.
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Figure 4.5. Scree plot of the thirty extracted PCs. The first five PCs which account for 80.77% of the 
total variance, have been selected. The Inset shows the variance and the cumulative variance of the 
selected first five PCs.   
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         Table 4.3. Variance and Cumulative Variance of the Five Selected Principal Components.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Table 4.4. The Variable Communalities for the Morphometric Parameters PCA. 
 

Communalities 

NO. Variables Initial Extraction 
1 Area 1 0.973 
2 Drainage density 1 0.662 
3 Total stream NO. 1 0.973 
4 Elongation Factor 1 0.886 
5 Strahler Order 1 0.886 
6 Longest Channel Length 1 0.972 
7 Total Channel Length 1 0.973 
8 Hypsometric Area 1 0.973 
9 Hypsometric Integral 1 0.626 

10 Maximum Elevation 1 0.939 
11 Mean Elevation 1 0.970 
12 Ave. Straight-Line Slope 1 0.920 
13 Ave. Along-Channel Slope 1 0.937 
14 Basin Relief 1 0.952 
15 Outlet Elevation 1 0.609 
16 Sinuosity 1 0.817 
17 Basin Length 1 0.973 
18 Total Fracture Length 1 0.661 
19 Fracture Density 1 0.327 
20 Asymmetry Factor 1 0.332 
21 Reach Drop 1 0.885 
22 Reach Slope 1 0.877 
23 Reach  Sinuosity 1 0.843 
24 Bifurcation Ratio 1 0.309 
25 Stream Frequency 1 0.739 
26 Form Factor 1 0.886 
27 Drainage Texture 1 0.693 
28 Relief Ratio 1 0.920 
29 RHO Coefficient 1 0.817 
30 Ave. Stream Length Ratio 1 0.903 

 

% of Variance Cumulative % 
37.89 37.89 
21.57 59.46 
8.94 68.40 
6.88 75.28 
5.49 80.77
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Table 4.5. Variable Loads for the Rotated (VARIOMAX) Factors for the Morphometric Parameters PCA. 
 

NO. Variables (NST) PC1 PC2 PC3 PC4 PC5 

1 Area 0.985 0.012 0.032 -0.027 0.027 
2 Drainage density -0.206 0.724 -0.024 -0.259 0.164 
3 Total stream NO. 0.985 0.019 0.019 -0.029 0.030 
4 Elongation Factor -0.218 0.275 0.808 0.055 -0.327 
5 Strahler Order 0.885 0.105 -0.026 0.160 -0.257 
6 Longest Channel Length 0.951 0.153 -0.135 -0.026 0.161 
7 Total Channel Length 0.985 0.018 0.030 -0.022 0.022 
8 Hypsometric Area 0.985 0.012 0.032 -0.027 0.027 
9 Hypsometric Integral -0.304 0.400 -0.430 0.404 -0.157 
10 Maximum Elevation 0.557 0.776 -0.001 -0.165 0.003 
11 Mean Elevation 0.222 0.902 -0.285 0.133 -0.095 
12 Ave. Straight-Line Slope -0.618 0.444 -0.383 0.371 -0.238 
13 Ave. Along-Channel Slope -0.639 0.533 -0.384 0.209 -0.231 
14 Basin Relief 0.552 0.794 0.010 -0.127 -0.017 
15 Outlet Elevation -0.534 0.251 -0.223 0.349 0.298 
16 Sinuosity 0.306 -0.440 0.249 0.684 -0.025 
17 Basin Length 0.954 -0.033 -0.241 0.022 0.063 
18 Total Fracture Length 0.772 0.058 0.142 0.193 -0.057 
19 Fracture Density -0.478 -0.041 0.111 0.279 -0.083 
20 Asymmetry Factor 0.441 0.138 -0.069 0.252 -0.223 
21 Reach Drop 0.362 0.837 -0.136 0.028 0.185 
22 Reach Slope -0.647 0.607 -0.133 -0.178 0.204 
23 Reach  Sinuosity 0.669 0.175 0.260 0.530 0.125 
24 Bifurcation Ratio 0.356 0.081 0.119 -0.284 0.284 
25 Stream Frequency -0.138 -0.811 -0.191 0.002 0.161 
26 Form Factor -0.218 0.275 0.808 0.055 -0.327 
27 Drainage Texture -0.179 -0.773 -0.178 -0.038 0.173 
28 Relief Ratio -0.632 0.473 0.359 -0.390 -0.127 
29 RHO Coefficient -0.405 0.236 0.361 0.466 0.500 
30 Ave. Stream Length Ratio -0.259 0.388 0.376 0.150 0.722 
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positive) indicates gradients in morphometric variables. PC1 accounted for 37.89% of 

the total variance; had high positive loadings by drainage-basin area, total stream 

number, Strahler order, longest channel length, total channel length, hypsometric area 

and basin length; and had high negative loadings by average straight-line slope, average 

along-channel slope, reach slope, and relief ratio (Table 4.5, Figure 4.6a). PC1 could be 

interpreted as the length area component. PC2 accounted for 21.57% of the total 

variance and it had high positive loadings by mean elevation and reach drop, and high 

negative loadings by stream frequency and drainage texture (Table 4.5, Figure 4.6a). 

PC2 is interpreted as the elevation component. PC3 accounted for 8.94% of the total 

variance and it had high positive loadings by elongation factor and form factor, and 

moderate to low negative loadings by hypsometric integral, average straight-line slope, 

and average along-channel slope (Table 4.5, Figure 4.6b). PC3 is interpreted as a factor 

component. PC4 accounted for 6.88% of the total variance; it had moderate positive 

loadings by sinuosity and reach sinuosity (Table 4.5, Figure 4.6c). PC4 is interpreted as 

the sinuosity component. Finally, PC5 accounts for 5.49% of the total variance and had 

positive loading by average stream length ratio and RHO coefficient (Table 4.5, Figure 

4.6d). From the PCs loading values, parameters related to area and lengths clearly played 

the major role and accounted for the maximum variance followed by the elevation 

parameters.   

A cluster analysis (CA) was applied using the selected five PCs as input with 

Euclidian distances as the criterion for forming clusters of drainage basins. This 

approach is regarded as very efficient, although it tends to create small clusters. Often it 
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Figure 4.6. Principal components analysis of geomorphometric variables. (a) Variable loading scores for 
PC1 versus PC2. (b) Variable loading scores for PC2 versus PC3. (c) Variable loading scores for PC2 
versus PC4. (d) Variable loading scores for PC2 versus PC5. Variables are shown in Table 4.5.

(a) 

 (b) 
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                                                 Figure 4.6. (Continued) 

(c) 

(d) 
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may appear desirable to perform cluster analysis with all geomorphometric parameters. 

However, the addition of only one or two irrelevant parameters can have dramatic 

consequences in identifying the clusters. Gordon (1999) pointed out that the inclusion of 

only one irrelevant variable may be enough to hide the real clustering in the data. That is 

why we used the first five PCs to perform this task of analysis. 

Figure 4.7 displays about 9 subclusters which are connected to form four main 

clusters or groups at distance ~ 7 similarity units as a reference distance that reflects the 

degree of correlation between different basins. Group 1 is the biggest group of basins (14 

basins) in the dendrogram; these basins were at least 30% similar (if we convert the 

degree of correlation distance into similarity distance). Group 2 comprised seven basins 

with a degree of similarity ~ 25%. Group 3 comprised 5 basins that have a degree of 

similarity almost equal to Group 1. Finally Group 4 composed of eight basins with the 

same degree of similarity as Group 1 and Group3. Validating the clustering results is 

very important to understand the relationship between the drainage basins in each group; 

usually, visual inspection provides a good clue. The detailed analysis of the main stream 

profiles of all drainage basins in the four identified groups is used as a tool to explain the 

clustering behavior of these basins.   

 

IV.4.2. Response characteristics of main stream analysis 

The stream length-gradient index (SL) was measured for the selected thirty-four 

drainage basins. Figure 4.8 illustrates the measurements procedures, where the SL index 

is measured at every gradient change along the profile down dip and then the average SL 

is calculated to be the representative value for each basin. Figure 4.9 shows the Hack 
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Figure 4.7. Hierarchical dendrogram for 34 drainage basins obtained by the Euclidian distances hierarchical 
clustering method (the distances reflect the degree of correlation between different basins). 
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Figure 4.8. (a) 3-D image formed by draping the ETM+ scene of the Valle Las Flores drainage basin over the 
15-m DEM. (b) Semilog plot of the main stream profile and the calculation of stream length-gradient index. 

Stream length-gradient index (SL)

(a) 

(b) 
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Figure 4.9. (a) Hack profiles for Group 1 basins (e.g., San Pedro basin). (b) Hack profiles for Group 2 basins 
(e.g., Valle Las Flores basin). (c) Hack profiles for Group 3 basins (e.g., Santa Maria basin). (d) Hack 
profiles for Group 4 basins (e.g., Santa Agueda basin). 

(a) 

(b) 

(c) 

(d) 
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profile plots for each group of basins, and Figure 4.10 illustrates the SL values for the 

thirty-four basins plotted as a bar diagram. The SL indices provide a very good insight 

for visual interpretation of the cluster analysis results, where the four main basin groups 

are defined. Group one, composed of 14 basins show moderate values of SL indices 

ranging from 550 for Basin 16 to 800 for Basin 33. In this group, Basins 2, 12, 19, 21 

and 33 have slightly higher SL value than the average for this group. These five basins 

are located in the overlap area (Figure 4.10) between Group 1 and Group 3; their Hack 

profiles show a sudden gradient change down dip, which is known as a knickpoint. The 

knickpoints are usually interpreted either as signs of uplift movement along the 

bounding normal fault surfaces, or indicators of lithological variations, or combinations 

of differential amounts of rock uplift and eroding various rock types in these basins. 

Because Group 1 basins have no bounding fault scarps along their mainstream profiles, 

lithological variations along the mainstream profiles of these basins must be the main 

factor responsible for these knickpoints (e.g., Basin 12, Figure 4.11) and must control 

their location. Group 2 (composed of seven basins) and Group 3 (composed of five 

basins) show the highest SL index values within the four groups, indicating steeper 

relative slopes after the knickpoints along their stream long profiles. In these groups, the 

knickpoints are clearly matched with the presence of bounding normal fault surfaces 

(Figure 4.12 and 4.13), which strongly indicates differential amounts of rock uplift 

movement along the normal bounding fault foot wall blocks. This tectonic activity is 

further supported by examining the morphology of the foot wall fronts, which are 

characterized by steep, imbricated triangular talus facets and steep dipping faults as 
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Figure 4.10. Stream length-gradient values for the thirty-four drainage basins. 
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Figure 4.11. The relation between Hack profile, slope-area plot, and mainstream topographic profile in San Pedro basin. Note the knickpoint in the Hack 
profile and its relation to the lithological variations along the main stream topographic profile and the low ks value. Red line in the slope-area plot is best-
fit regression to the mainstream along the slope. 

# 12 San Pedro Basin 
(Group 1 Basin) 
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Figure 4.12. Hack profile, slope-area analysis, and mainstream topographic profile in Valle las Flores basin. Note the good match between the knickpoint 
in the Hack profile and the main pounding fault intersection. 
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Figure 4.13. Hack profile, slope-area analysis, and main stream topographic profile in Salsipuedes basin. 
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indicated by the presence of a long and straight east-facing topographic scarp (best seen 

in Basin 11, Figure 4.12). Group 2 and 3 basins are highly correlated; both could be 

recognized as one group as indicated by the similarity in their Hack profiles, where 

Group 2 SL values are completely located within the zone of Group 3 (Figure 4.10). On 

the other hand, Group 4 basins show the lowest SL (min. 150 and max. 350) values with 

smooth, gently sloping profiles that show no signs of any possible knickpoints or any 

sudden slope changes (e.g., Basin 22, Figure 4.14). The clear gap between the maximum 

SL values of Group 4 (Basin 18) and the low SL values of Group 1 (Basin 16) indicate 

that Group 1 basins are tectonically more stable and geomorphologically more mature. 

Because the main processes degrading the fault scarp are river incision, slope-

area analysis of the main stream profile is used to calculate both channel concavity index 

(Ө) and channel steepness index (ks) and quantitatively compare the four groups. Figure 

15 shows the calculated concavity index and steepness index for the thirty-four drainage 

basins calculated by power-law regression analysis of stream slope against drainage area 

(see Figures 4.11, 4.12, 4.13 and 4.14). Using the least-squares/best-fit for the bedrock 

channel in the steeper part in the regression domain, the slope of this line represents the 

concavity indix (Ө), and the y-axis intercept is the steepness index (ks). The measured 

concavity index values (Table 4.6) range from 0.24 to 0.56, which are typical values 

compared with most of the previous works (e.g., Willgoose et al., 1990; Tarboton et al., 

1991; Slingerland et al., 1998; Snyder et al., 2000). The average concavity was 0.37 for 

the thirty-four drainage basins; that value represents mixed bedrock incisions of 

intrusive, extrusive and sedimentary rocks. The higher concavity values were observed
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Figure 4.14. Hack profile, slope-area plot, and main stream topographic profile in Santa Agueda basin.
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   Table 4.6.Topographic Characteristics of Mainstream Profiles in Baja Extensional Province. 

 
Basins Principal Channel R2 ks ± 2σ Θ ± 2σ ks at (Θ=0.4) ks at (Θ=0.37) 
 
1 

 
Mal de Orin 0.87 0.087 ± 0.005 0.244 ± 0.026 0.060 0.067 

2 La Palma 0.88 0.088 ± 0.008 0.286 ± 0.038 0.052 0.058 
3 San Luis 0.90 0.089 ± 0.004 0.511 ± 0.030 0.107 0.113 
4 Alfredo 0.72 0.083 ± 0.003 0.287 ± 0.023 0.056 0.060 
5 Santa Maria 0.88 0.077 ± 0.001 0.294 ± 0.015 0.069 0.071 
6 El Pozo 0.85 0.043 ± 0.002 0.468 ± 0.041 0.045 0.047 
7 Calamajue 0.96 0.081 ± 0.001 0.348 ± 0.012 0.077 0.080 
8 Salsipuedes 0.95 0.091 ± 0.001 0.317 ± 0.006 0.071 0.080 
9 Mesa de Yubay 0.92 0.091 ± 0.001 0.289 ± 0.007 0.060 0.068 
10 Canoncito 0.88 0.084 ± 0.002 0.239 ± 0.013 0.054 0.059 
11 Valle las Flores 0.79 0.110 ± 0.002 0.248 ± 0.012 0.099 0.100 
12 San Pedro 0.92 0.057 ± 0.001 0.356 ± 0.011 0.051 0.055 
13 San Rafael 0.88 0.053 ± 0.001 0.378 ± 0.016 0.053 0.054 
14 El Infiernito 0.72 0.055 ± 0.002 0.334 ± 0.023 0.047 0.049 
15 Las Cuevitas 0.62 0.035 ± 0.000 0.260 ± 0.016 0.032 0.033 
16 Santa Barbara 0.95 0.071 ± 0.001 0.328 ± 0.013 0.053 0.060 
17 San Juan 0.95 0.034 ± 0.0008 0.321 ± 0.014 0.033 0.034 
18 La Trinidad 0.82 0.028 ± 0.0007 0.392 ± 0.012 0.029 0.030 
19 Palmarito 0.90 0.055 ± 0.0009 0.386 ± 0.009 0.057 0.058 
20 Valle del Azufre 0.94 0.353 ± 0.0006 0.307 ± 0.011 0.033 0.034 
21 El Yaqui 0.70 0.050 ± 0.0012 0.262 ± 0.015 0.044 0.045 
22 Santa Agueda 0.94 0.036 ± 0.0005 0.337 ± 0.008 0.035 0.035 
23 El Norte 0.88 0.026 ± 0.0006 0.490 ± 0.014 0.029 0.030 
24 Boca de Magdalena 0.95 0.043 ± 0.0007 0.464 ± 0.009 0.046 0.048 
25 Cadeje 0.89 0.072 ± 0.0021 0.524 ± 0.022 0.077 0.080 
26 Jacobo 0.95 0.033 ± 0.0007 0.411 ± 0.011 0.034 0.035 
27 La Tebaye 0.78 0.022 ± 0.0007 0.318 ± 0.021 0.020 0.021 
28 Papini 0.94 0.080 ± 0.0016 0.410 ± 0.012 0.082 0.085 
29 Las Virgenes 0.64 0.081 ± 0.0038 0.420 ± 0.003 0.081 0.083 
30 Timbabichi 0.75 0.038 ± 0.0016 0.417 ± 0.030 0.039 0.041 
31 Los Potreros 0.67 0.028 ± 0.0011 0.454 ± 0.017 0.039 0.040 
32 El Coyote 0.88 0.075 ± 0.0031 0.560 ± 0.023 0.086 0.090 
33 Las Tarambillas 0.73 0.046 ± 0.0024 0.445 ± 0.037 0.049 0.050 
34 El Camaron 0.71 0.075 ± 0.0033 0.330 ± 0.025 0.065 0.069 
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in basins where the stream profiles are mostly dominated by sedimentary rocks 

(Whipple, 2004). We also observed that the calculated concavity values varied with the 

geometrical orientation of the main steam profile to the bounding normal faults 

(especially for Group basins 2 and 3). The stream profiles perpendicular to the 

escarpment strike show relatively low concavity values, which are mostly attributed to 

the adjustment of the channel gradient to possible uplift movements, especially in 

steady-state conditions (Kirby and Whipple, 2001). The steepness index (ks), which 

depends on both uplift rate and erodibility of the bedrock, was also measured (Kirby and 

Whipple, 2001; Finlayson et al., 2002; Duvall et al., 2004; Kobor and Roering, 2004). 

The erodilibilty term contains both lithological and climatic effects. Concerning climate, 

we assume that although long-term climate may have changed along the peninsula over 

the last several million years, precipitation amounts are likely to be changed in a similar 

way along the entire length of the peninsula, regardless of the long-term climatic trend. 

This suggests that climatic variation can be largely ruled out as an explanation for the 

geomorphologic variability between basins (El-Sobky and Dorobek, 2005). The 

observed rock units along the main stream profiles of the drainage basins also showed a 

limited effect in terms of erodability variation as indicated by the concavity index 

values. Homogeneous substrate properties are required to derive meaningful 

comparisons of ks with rock uplift, which is confirmed by the reverse correlation 

between Ө and ks (Sklar and Dietrich, 1998; Kobor and Roering, 2004). Steepness index 

is calculated using Ө = 0.4 (Snyder et al., 2004) to facilitate direct comparison among 

the drainage basins. The measured ks at reference Ө = 0.4 (Figure 4.15) clearly 
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Figure 4.15. Concavity indices (Ө) and steepness indices (ks) for the thirty-four basins. The final zones were defined from the values of ks calculated at 
average value of Ө = 0.37. The nine basins were located inside the defined high uplift zone.

Uplift zone 

High uplift zone 

ks ks Ө 
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differentiates between Group 1 and Group 4 basins; however, the measured ks at 

reference Ө = 0.37 (actual measured concavity index average) clearly puts a boundary 

between Group 2 and Group 3 basins. In Group 4 basins, steepness indices are 

consistently low (average ks = 0.02) with a minimal variation that does not follow any 

lithological variations or differential uplift rate. On the other hand, the steepness index 

values of Groups 2 and 3 are high enough to be correlated with a differential uplift rate. 

Nine basins have ks > 0.07, indicating possibilities of higher differential uplift that could 

be recognized as boundaries of high uplift zones (Figure 4.15). 

 

IV.4.3. Implications of regional tectonics to drainage basins classification results 

Based on the assumptions that rule out the climatic effect in this area and that 

lithological input on the main stream morphological gradients is limited, then, the 

tectonic activity is the main forcing factor that is most probably responsible for 

sculpturing of the extensional provenance of Baja California. However, the distribution 

of the nine drainage basins that exhibited a clear evidence of uplift movements from the 

examination of their stream gradient indices as well as from their higher steepness 

indices are sporadic, which suggests local tectonic activity in these locations. The 

possible tectonic activities in the study area are either the Plio-Quaternary volcanism 

which is responsible for uplift of the marine Pleistocene terraces on the extensional 

coastal provinces (Schmidt, 1975; Demant, 1975; Ortlieb, 1980), or the activity 

associated with rifting of the Gulf of California from the mainland Mexico along the 

Gulf of California transform-rift. The Baja California peninsula has experienced 
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relatively slow and uniform uplift movements in the Quaternary, where it has been 

uplifted at a mean rate of 100 ±50 mm/103y over the last million years, and then this rate 

seemed to continue in some places and to decrease in other places through this period 

(Ashby et al., 1987; Ortlieb, 1991; Ledesma-Vazquez and Johnson, 2001). The vertical 

movements that were recorded along the normal bounding faults were either related to a 

dip-slip, which is only responsible for a few meters of displacements, or to major 

fracture zones that show a large strike-slip component that produces stronger and wider 

vertical motions (Ortlieb, 1991). The second deformation supports our interpretation, 

where most of the normal bounding faults in the nine basins showed a clear strike-slip 

component; these are clearly recorded and recognized from the along-strike 

displacements in the downdip streams in the hanging wall fault blocks (e.g. Basin 5, 

Figure 4.9c). Additionally, in the central eastern part of Baja California the fault 

chronology showed that two main extensional movements were responsible for the 

activation of the NNW-SSE fault plane, NE-SW to ENE-WSW extensional movement 

followed by E-W to ESE-WNW extension. The latter movement had a stronger strike-

slip component than the former one which is most probably related to the clockwise 

rotation of the horizontal to subhorizontal stress rotation (Angelier, 1981). However, 

Umhoefer and Stone (1996) related the kinematic behavior of the faults in the central 

extensional province of Baja California to their orientation relative to the direction of 

bulk extensional strain, where they defined two main fault groups.  The first group is the 

north-striking faults, which are characterized by dip-slip movements, and the second 

group is the NE-striking faults that are characterized by dextral-normal to dextral strike-
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slip. Zanchi (1994) related the N-S normal faults to the accommodation of the strain 

produced by motion along strike-slip faults. However, other workers identified active 

faults and related such activity directly to the rotation of the peninsular block towards 

the northwest (Nava-Sánchez, 2001). Figure 4.16 shows the location of the basins that 

may have the most observable tectonic activities. The major normal bounding faults of 

these basins are almost striking NE with a clear evidence of strike-slip movements as 

explained earlier. There is clear coincident matching between the locations of these 

basins and the locations of the en echelon transform faults that link the spreading center 

seated in the deep basins of the Gulf of California. This probably indicates that the plate 

boundary geometrical structure is controlling the uplift movements along the eastern 

coast of Baja California, where the movements along the transform faults may trigger 

the vertical uplift movements along the major fracture zones that have a pronounced 

strike-slip component. Ortlieb’s (1991) findings supported our interpretation, where he 

recorded such connection between the rift structure and the uplift movements of the 

Pleistocene marine units that are relatively close to the deep fault systems of the gulf at 

many locations. We think that the bounding faults that are located in the zones that are 

most probably suffering from incremental extensional movements along a set of parallel 

strike-slip faults are becoming increasingly active.  Concerning the seismotectonic 

activities of the study area, the distribution of the recent earthquakes and their focal 

mechanism “beach balls” (Figure 4.16) proved that the processes of incremental 

extensional movements, which are responsible for establishing the plate boundary 

(Humphrey and Weldon, 1991) are still active and continue to the present.  Not only 
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Figure 4.16. Shaded relief map of the study area shows the locations of the nine basins that may have the most 
observable tectonic activities. See Figure 3(a) for keyed basin names. The major tectonic framework of the Gulf 
of California is illustrated. Recent seismotectonic activities represented by the locations of the earthquakes, the 
focal mechanisms, correlate highly with the basin locations. Heavy dashed white lines show the positions of the 
major drainage divides. 
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that, but also the location of the focal points are constrained by the geometry of the 

transform faults either in the deep-seated gulf (Goff et al., 1987) or at the coastal 

extensional provinces that are very close to the extensional ridge axis (e.g., Basins 3, 7 

and 8, Figure 4.16).   

Another insight of the present study is that it has revealed the character of the 

peninsular divide; i.e., whether is it structurally or volcanically controlled. Along the 

central domain of the extensional province, the extracted thirty-four basins, which are 

bounded by the peninsular divide, indicated that the divide is actually structurally as well 

as volcanically controlled. We found that almost all the basins of Group 2 and 3 were 

bounded by the structurally controlled divide, where the bounding normal faults are the 

main structural component of the divide. We believe that some of these faults are 

basement-involved faults as indicated by the abrupt termination of these faults along 

strike with the termination of the volcanic escarpment (e.g., Basin 11, Figure 4.17). On 

the other hand, Group 1 and 4 basins are controlled by a volcanically constructed divide 

(Figure 4.18). These observations further support the results of both cluster analysis and 

inices extracted from the main stream profile for these basins. 
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Figure 4.17. (a) Location of Valle las Flores basin. (b) Prospective 3-D image showing the AA′ profile, which shows the relation between the hanging 
wall dip slope and eroded-back footwall crest. (C) 3-D image of the integrated classified geological map. 

(a) 

(b) 

(c) 
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Figure 4.18. (a) Location of El Yaqui basin. (b) Prospective 3-D image showing the AA′ profile, which shows that this basin (see Figure 4.3 (c) for 
location) is bounded by a volcanically controlled peninsular divide (i.e., no extensional bounding faults). (C) 3-D image of the intergrated classified 
geological map. 

(a) 

(b) 

(c) 
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IV.5. Summary and conclusions  

 A patched 15-m resolution DEM was used to extract the major Neogene drainage 

basins along the central tectonic domain of the Baja California extensional rift province. 

Both D-8 and D-Infinity algorithms were used to extract the drainage basins that are 

mostly bounded by the peninsular divide in the west side and draining to the Gulf of 

California. Of these basins, thirty-four were selected to examine the interaction between 

the prevailing geomorphic forcing factors. Thirty geomorphometric parameters were 

extracted for each drainage basin. These parameters were then reduced into five 

orthogonal uncorrelated PCs that explained 80.77% of the total variance, using 

VARIMAX normalized rotation of principal component analysis. PC1 was interpreted as 

a length-area sensitive component, PC2 as an elevation sensitive component, PC3 as a 

factor component, and PC4 as a sinuosity-sensitive component. The Euclidian criterion 

distance of cluster analysis was used to classify the thirty-four drainage basins into 

similar or correlated groups using the five PCs. Four major groups were clearly 

recognized from the hierarchical dendrogram, which was constructed using an average 

linkage method. Stream length-gradient indices and slope-area analysis of the main 

stream profiles of the thirty-four drainage basins were then used to examine the results 

of the multivariate analysis.  Stream length-gradient index results proved the reliability 

of the classification results where Group 2 and 3 basins show higher SL indices than 

Groups 1 and 4. Five basins showed unexpectedly high SL values, which were 

interpreted as a result of the erodibility changes resulting from lithological variation 

along their mainstream profile. For Groups 2 and 3, the most recognized knickpoints in 



 143 

the Hack profiles matched the intersection with the bounding normal faults. This result 

indicats that there is a strong possibility of differential uplift movements along the 

extensional bounding footwall blocks of Group 2 and 3 basins. Our result was further 

supported by the slope-area analysis of the main stream profile, where the measured 

steepness index (ks) values were high enough to strongly support the presence of 

differential tectonic uplift movements along the extensional bounding faults of Group 2 

and 3 basins. Nine basins showed remarkably high ks values with their extensional 

bounding faults striking NNW to NW. The location of these basins was correlated with 

the major tectonic framework and seismotectonic activities of both the Baja California 

peninsula and the Gulf of California, where a clear correlation is observed. Also the 

location of the recent earthquakes, the focal mechanisms show that activity is still 

possible along the extensional bounding faults as a result of possible incremental 

movements along the strike-slip faults of the Gulf.   
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CHAPTER V 
 

 
GENERAL SUMMARY 

 

In an attempt to understand the relationship between topography, climate, 

tectonics and lithology of the extensional provinces of two-thirds of the Baja California 

peninsula, we started by introducing a technique for resolving a problem that commonly 

arises when working with DEM, namely, how to fill various artifacts with elevation 

values that are statistically robust and geologically meaningful. In this part of study, we 

used a number of geostatsitical techniques (e.g., ordinary kriging, cokriging, ACE) to 

patch the DEM of the SRTM with meaningful values that honor the geology in the area 

of study. First we used ordinary kriging, which fails to account for natural geological 

and topographical variations that are commonly obscured by smoothing. We then used 

the ACE algorithm to provide an optimal non-parametric transformation of the eight 

bands in ETM+ data. Using the results of the ACE algorithm, cokriging generated 

geologically realistic maps with minimal smoothing effect. We found that the 

performance and effectiveness of the cokriging method is completely controlled by the 

degree of correlation between the secondary variables (i.e., the eight thematic mapper 

bands) and the elevation. To examine the accuracy of the introduced technique, RMSE 

was calculated using twenty-four ground control points for validation of the estimated 

elevation values within data gaps that we artificially introduced into the SRTM DEM. 

The RMSE had an average value of 7.22-m at the corrected locations, which is a 

reflection of the robustness of our technique. The corrected SRTM DEM was used in the 
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algorithm of automated stereo-correlation to generate the ASTER DEM, which 

successfully produced very good results. The proposed technique produced an artifact-

free DEM that has 15-m spatial resolution and comparable to the USGS 1-arc second 

DEM. 

In the second part of study, we used the privilage of the previously introduced 

technique to generate continuous and high resolution geologic maps for the study area 

between the Baja peninsular divide and the western coastal line of the Gulf of California, 

which is divided into twenty-two blocks. We used multisiurce data in eCognition 

software V.4.0 to implement the segmentation process based on image objects rather 

than on a single pixel. This approach successfully resolved any classification problems 

that might have arisen from using single-source data. In eCognition, classification is 

based on thresholds and a fuzzy classification system, which are in turn based on 

membership functions. We examined the accuracy of the classified images using this 

technique, where the accuracy assessment by error matrix resulted in and average of 

86% overall accuracy, indicating that this approach can be highly recommended over 

most conventional classification techniques. 

In the third part of study, thirty-four drainage basins were extracted from a 15-m-

resolution absolute digital elevation model (DEM) using both D-8 and D-Infinity 

algorithms. These basins are mostly bounded by the peninsular divide in the west side 

and drain to the Gulf of California. Thirty morphometric parameters were extracted for 

each basin. The VARIMAX normalized rotation of principal component analysis was 

used to reduce these parameters into five PCs that explained 80.77% of the total 
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variance. A Euclidian criterion distance of cluster analysis was used to classify the 

thirty-four drainage basins into similar or correlated groups using the five PCs, where 

four major groups were identified. We relied on the response characteristics of main 

stream analysis to explain the results of clustering. First we started with the stream 

length-gradients, which were measured at every gradient change along the main-stream 

profile down dip for the thirty-four basins and then calculated the average SL be the 

representative value for each basin. Second, we used slope-area analysis of the main 

stream profile was used to calculate both channel concavity index (Ө) and channel 

steepness index (ks). We quantitatively compared the results of both SL indices and the 

stream-area analysis and the clustering results, where this comparison proved the 

sensitivity of the morphometric parameter to reveal the uniqueness of Neogene rift 

drainage basins based on the prevailing geomorphic forcing factors of each basin. 

Additionally, we correlated the location of these basins with the major tectonic 

framework and seismotectonic activities of both the Baja California peninsula and the 

Gulf of California, where a clear correlation was observed. 
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