
ULTRA WIDEBAND ANTENNA ARRAY PROCESSING

UNDER SPATIAL ALIASING

A Dissertation

by

ALIREZA SHAPOURY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2007

Major Subject: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4277743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ULTRA WIDEBAND ANTENNA ARRAY PROCESSING

UNDER SPATIAL ALIASING

A Dissertation

by

ALIREZA SHAPOURY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Erchin Serpedin
Committee Members, Deepa Kundur

Mladen Kezunovic
Michael T. Longnecker

Head of Department, Costas N. Georghiades

August 2007

Major Subject: Electrical Engineering



iii

ABSTRACT

Ultra Wideband Antenna Array Processing

Under Spatial Aliasing. (August 2007)

Alireza Shapoury, B.S., Shahid Beheshti University of Iran;

M.S., Iran University of Science and Technology

Chair of Advisory Committee: Dr. Erchin Serpedin

Given a certain transmission frequency, Shannon spatial sampling limit defines

an upper bound for the antenna element spacing. Beyond this bound, the exceeded

ambiguity avoids correct estimation of the signal parameters (i.e., array manifold

crossing). This spacing limit is inversely proportional to the frequency of transmis-

sion. Therefore, to meet a wider spectral support, the element spacing should be

decreased. However, practical implementations of closely spaced elements result in a

detrimental increase in electromagnetic mutual couplings among the sensors. Further-

more, decreasing the spacing reduces the array angle resolution. In this dissertation,

the problem of Direction of Arrival (DOA) estimation of broadband sources is ad-

dressed when the element spacing of a Uniform Array Antenna (ULA) is inordinate.

It is illustrated that one can resolve the aliasing ambiguity by utilizing the frequency

diversity of the broadband sources. An algorithm, based on Maximum Likelihood

Estimator (MLE), is proposed to estimate the transmitted data signal and the DOA

of each source. In the sequel, a subspace-based algorithm is developed and the prob-

lem of order estimation is discussed. The adopted signaling framework assumes a

subband hopping transmission in order to resolve the problem of source associations

and system identification. The proposed algorithms relax the stringent maximum

element-spacing constraint of the arrays pertinent to the upper-bound of frequency

transmission and suggest that, under some mild constraints, the element spacing can
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be conveniently increased. An approximate expression for the estimation error has

also been developed to gauge the behavior of the proposed algorithms. Through con-

firmatory simulation, it is shown that the performance gain of the proposed setup

is potentially significant, specifically when the transmitters are closely spaced and

under low Signal to Noise Ratio (SNR), which makes it applicable to license-free

communication.
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CHAPTER I

INTRODUCTION

A. Motivation

The recent promises for relaxing the regulations regarding the wideband application of

the commercial wireless systems revived the classic studies and sparked a new wave of

wideband processing. The new FCC regulations seem to favor a wider transmission

bandwidth by expanding license-free spectrums, thanks to the recent advances in

manufacturing technology of low power communication systems [1].

Prompted by this development, many industries and institutes started investi-

gating the use of license-free transmissions. For instance, Power Systems Engineering

Research Center (PSERC) initiated a project to explore the possibility of replacing

the prohibitively expensive instrumentation and control wirings in the electric power

substations, with the wireless solutions [2]. Several comprehensive field measure-

ments and statistical analysis have been performed for this purpose [3, 4, 5], which

inter alia, suggests that the wireless channels in ISM spectrum tend to be more

interference–limited than noise–limited in particular in residential regions, where the

wireless devices are growing in abundance.

We can of course assume man-made interferences are independent and identi-

cally distributed (i.i.d.) and hence consider them as an additive Gaussian constituent

according to the Central Limit Theorem (CLT). Nonetheless the empirical measure-

ments indicate that this assumption may not hold true globally over time as the

interferences exhibit a time-dependant pattern and require a more elaborate model,

based on time series analysis (See Appendix A).

The journal model is IEEE Transactions on Automatic Control.
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This finding further signifies that the wireless instruments are more competing

against each other for the spectrum over the time, rather than against the noise.

In this regard, beamforming and array steering seem to be the panacea of the

high data rate wireless networks. For instance in [6], it is shown that that even with

full knowledge of network and perfect scheduling of the nodes, the throughput of the

multi-hop wireless network decreases as the number of nodes in the network increases,

making the wireless network unscalable.

It is further suggested that utilizing the spatial diversity in the antennas, e.g.,

beamforming or utilizing phased arrays antennas, will be advantageous in increasing

the spatial concurrency of transmission and hence increasing the capacity, since the

wireless network links would then act as wired ones enabling the scalability, while

offering more transmission security due to the arrays’ directive nature1.

Wideband array processing was extensively discussed in several publications dur-

ing the past three decades, striving for better performance and error-free communica-

tion (see [8] for additional references). On the implementation side, the errors of the

array antenna are seldom due to mechanical tolerances or inaccurate element spacings

[9]. The main imperfections are due to less discernible factors such as mutual cou-

pling which impact both phase and the amplitude of the excitation, and uncertain and

sometimes nonlinear impulse response of the communication network, particularly in

broadband scenarios.

It is generally known that the element spacing of the arrays, d, should be d <

λmin/2 or d < c/2fMax to avoid spatial ambiguity in an all-angle array processor

(λmin and fMax stand for the minimum wavelength and the maximum frequency

1Some researchers (e.g., Grossglauser and Tse [7]) calculated the network capacity
considering other sets of assumptions, however under practical scenarios, the network
capacity is still bounded, unless more diversities are utilized.
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of the wideband system respectively, and c is the propagation velocity). Hence,

a wideband system with high frequency mandates tightly packed arrays or smaller

spacings, which increase the mutual coupling between the elements and adversely

decrease the communication capacity [10, 11, 12, 13].

In array literature, arrays that are designed with the maximum all-angle spacing

d = λ/2 are called standard arrays. If we limit our angular range, we can design arrays

with d/λ > 0.5 (i.e., higher frequencies than the standard frequency of the array).

For instance, if we limit the scanning range to (−30◦, 30◦), we can still avoid aliasing

with an array with d/λ ∼= 1 since the grating lobes occur outside of the scanning

range.

In most broadband (or wideband) processing in ULA’s, the arrays are considered

such that the center frequency of the transmission band coincides with the standard

frequency of the array [14, 15, 16]. This still would permit non-aliased analysis of

the system, even if the fractional bandwidth is more than 40 percent of the center

frequency but under the constraint of limiting the scanning angle.

A different approach was presented in [17], where the array processor could re-

solve the ambiguity problem within a defined sector of interest in the scanning angle.

To remedy the limitation on the scanning angle range, one may design the array so

that the standard frequency of the array coincides with the lower limit of the spectral

support. In this case, although there is no aliasing, there are two drawbacks: the

necessity of decreasing the element spacing, which produces undesirable electromag-

netic couplings (and consequently a reduction of network capacity), and limitation

of array resolution [18, 19]. Herein, we assume plane waves resolvable, if the peak of

the second beam pattern lies at or outside of the null of the first beam pattern (i.e.,

separation is greater than or equal to BWNN , where BWNN is null-to-null bandwidth

of the beam pattern). The exact definition comes from the Rayleigh Resolution Limit



4

which is defined as

θ = 2 sin−1(
1

M( d
λ
)
) , (1.1)

where M is the number of elements in the array.

One possible way of avoiding the spatial aliasing, while maintaining a good res-

olution and accepting an increased (however average) element spacings, is to design

sparse linear arrays with uniform or nonuniform element spacing. These arrays often

exhibit high side–lobes and are difficult to adopt for broadband applications. There

are many references that address the estimator ambiguity and the identifiability issues

of these arrays (see e.g., [20, 8, 19] and their references). Many of these arrays are

extensions of the commonly considered ULA, which is discussed in this dissertation.

B. Background

In array signal processing, we are mainly exploiting the coherency of the signal in

space in order to discriminate against noise. Figure 1 shows a typical disposition of

a linear array with 14 elements. We assume that the wave propagation is planar,

which enables us to model the transmitters and the elements of the array in the same

plane. Furthermore we assume that the channel is homogeneous and is not dispersive

and there is a linear medium throughout the array length. We also consider that the

elements have almost the same angle to the transmitter. Under these assumptions,

the wavefront of the transmitted signal from the source would be coherent and what

is received at the various sensors is identical in form, except for a valuable time delay.

If the wave travelling speed is c and the spacing between the elements is d then the

mth element receives the wave with τm delay with respect to the first element in the
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θ

θ θ

Transmitter

Linear Array Geometry

Sensor Element 

2m=1
m=M

... m=i  ...

Refrence Point

Fig. 1. Disposition of a uniform linear array.

array (i.e., reference point). Hence2

τm = (m− 1)
d sin(Θ)

c
, (1.2)

where Θ ∈ (−90, 90) is the angle of the transmitter(s). The relative phase difference

between two adjacent sensor elements, that for instance receive a single-tone signal

having the wavelength λ (and angular frequency of ω rad/sec) arriving from angle θ,

is given by:

φ = ωτ1 = ω(τ2 − τ1) = . . . = 2π
d

λ
sin(θ) . (1.3)

In ULA with a visible range of (−90◦, 90◦), if the element spacing d is greater than the

half-wavelength (λ/2), the grating lobes may occur within the visible scanning range,

which produces the spatial aliasing, i.e., a phenomenon similar to the Nyquist or

Shannon temporal aliasing caused by undersampling of the waveforms in time series

analysis.

2As explained in Appendix B, the same delay calculations can be easily extended to
the 3-D scenario using the rectangular or spherical coordinate system and elementary
geometry.
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1. Broadband Design for Phased Array Systems

There are in general two main issues in designing a phased array system for broadband

data communication which are closely related to each other. The first one is the

wideband antenna design. Although the wideband antennas have already been used

for radar applications for decades, the literature is scanty for data communication

purposes.

Broadband octave nested arrays are studied in [21, 22]. Nested arrays are com-

pound arrays consisting of a nested set of sub-arrays. Each of these sub-arrays is then

designed for single frequency (one octave). Figure 2 shows a nested array with three 9-

element subarrays (M = 9) at each octave. In this case the minimum element spacing

corresponds to the highest frequency, which still mandates a packed array structure.

Furthermore the required number of elements in this setup is prohibitively high. For

instance, the broadband nested array in Figure 2 requires M +3(M +1)/2 = 26 total

elements. The other disadvantage of this broadband arrays is the limited (and fixed)

set of frequency band ratios (octave ratio). In other publications [23, 24] wideband

antennas, applicable to wireless networking were discussed in which multi-octave band

planar slot line arrays have been designed for high frequency wireless networking. The

drawback of these antennas are the limited scanning angle of ±30 degrees.

The second issue in broadband design is the wideband array signal processing.

On the processing side, the literature has gone through several phases of evolution,

in particular has evolved from narrowband processing. Many researchers have tried

to use the already–developed narrowband algorithms and fuse the data of several

narrowband estimations to perform wideband implementations.

There are two methodologies to implement the fusing task, coherent and incoher-

ent combining. The incoherency here means that no combining is performed until the
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First Equivalent Subarray

Third Equivalent Subarray

Second Equivalent Subarray

Nested Octave Array

Fig. 2. A typical broadband octave nested array.

data from each band is processed by a nonlinear processor. In the coherent approach

on the other hand, the data coming from all bands are processed at once. In [25] the

incoherent approach is addressed, while in [15], it is argued that the errors increase

dramatically at low SNR in the case of incoherent combining and suggested an al-

ternative coherent approach to overcome this limitation. The tendency to reject the

incoherent approach is mainly due to the inaccuracy of the order estimation problem

(i.e., number of sources) in these methods.

Aside from the combining methodologies, adaptive array processing can be cate-

gorized into general groups such as spatial only (e.g., [14]), gradient based algorithms

[26], subspace methods such as MUSIC [18], ESPRIT [27], BASS-ALE [28] estima-

tion etc.. Each method presents its own drawbacks and advantages compared to the

others and the practical performance of the methods in a certain application sets the
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superiority.

The main contribution of this work is the combined estimation of the trans-

mit data signals and the Direction Of Arrival (DOA) beyond the Shannon Spatial

Sampling Limit using ensemble frequency diversity, which is achieved by a subband

hopping scheme.

Although we are not aware of similar studies addressing our problem, we base

our approach mainly on the previously developed researches in this area and render

it amenable to our topic.

Herein it is assumed that the transmitter power is fixed for all subbands and the

elements have almost the same angle to the transmitter, i.e., the far-field assumption

holds. It is found that given an appropriate wideband communication scheme, one

can resolve the spatial ambiguities in the direction of arrival estimation even if the

antenna element spacing is larger than the above mentioned limit.

C. Outline

The organization of this work is as follows. Chapter II formulates the problem and

develops its mathematical model. This model is used in Chapters III and IV to

develop a wideband approach. This section constitutes the main body of our work

as it discusses the constraints and the methodology for resolving the spatial aliasing.

In Chapter III, we propose an MLE-based algorithm. In Chapter IV, a suboptimal

approach similar to the well-known MUltiple SIgnal Characterization (MUSIC) [18]

is proposed and is shown to be amendable to the wideband scenario. The error

magnitudes of the algorithms are discussed in Chapter V and an approximate formula

for the error is proposed. Then results are compared to the error approximate formula

through confirmatory computer simulations in Chapter VI.
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CHAPTER II

PROBLEM SETUP

A. The Mathematical Model

The wideband signal model considered in this work is considered to be a sum of dis-

joint narrow frequency bands. This is actually a popular method for wideband array

processing [29, 15, 25, 14, 30]. A ULA is assumed with M omnidirectional antenna el-

ements with element spacing d. The broadband communication is implemented using

a finite number of narrowband plane-waves impinging on the array. Each narrowband

plane-wave, which is referred to as a subband in this correspondence, is assumed to

have a spectral support of B Hz. All transmitter sources use fast-subband hopping

with the hopping duration of Th. During each hop, the source k, which is at azimuthal

direction θk relative to the broadside of the array, transmits using L subbands with

center frequencies {ωk1, ωk2, . . . , ωkL}, respectively, and δ = min(ωki−ωk(i−1)) = 1/Th

to obtain efficient utilization of the frequency spectrum. Let us suppose that we have

just one source and drop any k subscript for notational convenience. In Section D,

the problem of having k ∈ [1, K] subband hopping sources impinging on the array is

investigated, where a set of disjoint subbands is used for transmit sources. The signal

received by the mth element of the array, from the subband hop l, can be expressed

as:

um,l(t) = Qml(θ)sl(t) + em,l(t) , (2.1)

or in matrix format:

U = Q(θ) S + E , (2.2)
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where

1. The set of the frequency subbands Ω,
{
ωl ∈ Ω | l ∈ [1, L]

}
, is assumed known by

the hopping-based transmitter and receiver (L is the total number of frequency

subbands).

2. m ∈ [1, M ] is the mth sensor element and the total number of sensors, M , is a

known constant.

3. Qml(θ) =
[
e(m−1)ωl[−j d

c
sin θ]

]
, m ∈ [1,M ], l ∈ [1, L] is the steering matrix. The

column vector, i.e., L× 1 matrix Ql(θ), of the steering matrix is often referred

to as the steering vector of the array or the array manifold.

4. θ is the parameter indicating the direction of the source and is unknown.

5. S = diag [s1(t) , s2(t) , . . . , sL(t)], in which sl(t) is the signal vector at each

subband with spectral support of B Hz.

6. E = [em,l(t)], m ∈ [1,M ], l ∈ [1, L] is the noise matrix. The noise is assumed

stationary, with zero mean, Gaussian process.

B. Discussions on the Assumptions

1. Narrow-Band Assumption

Let us assume sl(t) is the baseband signal (which could be complex) and let xl(t) be

the bandpass transmitted signal resulting from the complex modulation with carrier

frequency of ωl, i.e., sl(t)e
jωlt. The index l ∈ {1, . . . , L} refers to one of the several

frequency bins which the transmitter uses to modulate the data. We later discuss

the constraint on the spectrum support of signals sl(t) and on the total number of

frequency bins.
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Since xl(t) is a physical signal, its spectrum should be even, hence:

Xl(ω) = Sl(ω − ωl) + S∗l (−ω − ωl) , (2.3)

where ’∗’ denotes the complex conjugate and Xl(ω) is the Fourier transform of xl(t).

xl(t) in the time domain takes the expression:

x(t) = 2Re [s(t)ejωct] . (2.4)

The signal impinging to the mth sensor element of the array as the result of this

transmission at frequency ωl is:

ym,l(t) = hm,l(t)*xl(t− τm) + em,l(t) , (2.5)

or

ym,l(t) = 2hm,l(t)*Re [sl(t− τm)ejωl(t−τm)] + em,l(t) , (2.6)

in which hm,l(t) is the impulse response of the channel, em,l(t) is the total noise with

regard to the mth sensor element, τm is wave propagation delay between the reference

element and the mth element in the array, and ’*’ denotes the convolution. (Note

that all of the above signals are physical signals.)

In the frequency domain:

Ym,l(ω) = Hm,l(ω)Xl(ω)e−jωτm + Em,l(ω) . (2.7)

Substituting the value of Xl(ω) in equation (2.7) yields:

Ym,l(ω) = Hm,l(ω)[Sl(ω − ωl) + S∗l (−ω − ωl)]e
−jωτm + Em,l(ω) . (2.8)

In the demodulation part, on each of the sensor element of the array, complex de-

modulation is performed by multiplexing the received signal ym(t) with the locally
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generated complex waveform e−jωlt or:

vm,l(t) = ym,l(t)e
−jωlt = hm,l(t)*xl(t− τm)e−jωlt + em,l(t)e

−jωlt . (2.9)

The spectrum of vm,l(t) is:

Vm,l(ω) = Hm,l(ω + ωl)Xl(ω + ωl)e
−j(ω+ωl)τm + Em,l(ω + ωl) , (2.10)

Vm,l(ω) = Hm(ω + ωl)[Sl(ω) + S∗l (−ω − 2ωl)]e
−j(ω+ωl)τm + Em,l(ω + ωl) . (2.11)

If we pass vm,l(t) through a low-pass filter with the bandwidth limited to the band-

width of the signal sl(t), Bl, and assume that Bl is smaller than ωl, then we can

eliminate the component in Vm,l, which is centered at ω = −2ωl. Hence, Um,l(ω), the

spectrum of the filtered signal vm,l(t), would be:

Um,l(ω) = Hm,l(ω + ωl)Sl(ω)e−j(ω+ωl)τm + Emf (ω + ωl) , (2.12)

in which Emf (ω + ωl) is the noise component after passing through the demodulator.

Under a quite general scenario, (to be discussed in the sequel), we can approximate

(2.12) by the following equation:

Um,l(ω) ≈ Hm(ωl)Sl(ω)e−jωlτm + Emf (ω + ωl) , (2.13)

which assumes the time domain equivalent expression:

um(t) = H(ωl)sl(t)e
−jωlτm + emf (t) , (2.14)

where emf (t) stands for the time domain version of the corresponding term Emf (ω +

ωl). We also assume that the channel response Hm,l(ω) ≈ H(ωl) which means that

the channel response at each frequency ωl is similar for all the M elements of the
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array.

If we assume that the support bandwidth of sl(t), Bl ¿ ωl, then as the frequency

|ω| increases, Sl(ω) decreases rapidly and hence the approximation in (2.13) follows.

In this scenario the bandwidth of the low-pass filter equals the support bandwidth of

the signal sl(t), Bl. Under the above scenario, the contribution of the signal on the

output Um,l(ω) is approximately zero if ω > Bl
1.

Another interpretation of the first scenario is that the signal s(t) does not vary

over the array ([31]), which means:

s(t) ∼= s(t + τm) which, in the worst case, is : s(t) ∼= s(t + τM) . (2.15)

In the frequency domain this assumption is translated into:

S(ω) ∼= S(ω)ejωτM , (2.16)

which might be justified if the support bandwidth of s(t), B ¿ ωl, i.e., S(ω) dies

quickly for ω > B. This interpretation is frequently referred to the signal narrow-band

assumption. Note that in the case of Uniform Linear Arrays, τm=(m− 1)d sin(Θ)/c.

If the frequency of the standard ULA array (in which d/λ = 1/2) is ωstd, then

ωτM
= (M − 1)π sin(Θ)ω/ωstd.

2. DOA Solutions and a priori Distribution of DOA

The solutions adopted in the array processing literature are mainly based on the

Bayesian approach. For instance when calculating the Maximum Likelihood Estimate

1Equation (2.13) can also be achieved from (2.12) under another set of assump-
tions. If the sensor elements are narrow-band around ω = ωl, then |Hm(ω + ωl)| goes
quickly to zero as |ω| increases. Therefore, if the frequency response of the sensor
element around ωl is flat, then we can still achieve (2.13) if sl(t) varies within the
bandwidth of the sensors Bwideband. The bandwidth of the low-pass filter in this case
matches the bandwidth of the sensor elements Bwideband.
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(MLE), it is customary to consider a uniform a priori distribution for the parameter

q = sin(θ) rather than θ per se. This assumption not only makes the mathematical

derivations more convenient, but only paves the way of utilizing analogous results

to array processing problems (for instance, adopting the frequency estimation ap-

proaches to spatial processing). We can account for this change of variable and a

priori assumption and express the distribution of the angles θ as:

pθ(θ) =
cos θ

qmax − qmin

, sin−1(qmin) ≤ θ ≤ sin−1(qmax) , (2.17)

where we considered a uniform a priori distribution for q over [qmin, qmax] and θ ∈
[−π/2, π/2]. Then one can construct an estimate similar to a Maximum A Posteriori

(MAP) estimate to amount for the effect on the a priori knowledge.

It is worth noting that we still do not know the exact pθ(θ), but wish to com-

pensate the uniform a priori assumption on the lumped variable q = sin(θ), that are

generally considered for derivation convenience. As we consider all-angle estimates

throughout this work, Equation (2.17) simplifies to

pθ(θ) =
cos θ

2
. (2.18)

This assumption implies that the DOA estimates in the endfire region are less likely

than the broadside of the array. Furthermore, the fact that the Rayleigh resolution

is worse in the endfire of the array, makes the estimates in this region even more

unfavorable. It is however a known problem [32, 33] and there are several methods in

the literature which suggest adjusting the element gains across the array to contain

this phenomenon (e.g., Hansen-Woodyard procedure [9]).
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3. Ambiguities

As per aforementioned remarks, the maximum alias-free frequency of operation for

an all-angle narrowband uniform linear array equals ωstd = πc/d or the standard

frequency of the array. Increasing the frequency of operation beyond the standard

frequency results in rank-one ambiguity of the steering vector Ql(θ), where two dis-

tinct transmitters located at different directions may produce the same array manifold

(i.e., array manifold crossing).

It is important to differentiate between two commonly used notions of ambiguity

in the array processing literature. The first one being the manifold ambiguity which is

discussed above. The second notion addresses the processing algorithms which apply

to nontrivially unambiguous problems but can create ambiguity (for instance due to

coherency of the signals or the proximity of the transmitters). These ambiguities may

be resolved by some other techniques.

Throughout this work, we consider the former notion of ambiguity, and we try

to resolve the spatial aliasing using several subbands. If we set the first subband

frequency ω1 = ωStd, then except this subband, all of the transmission spectrum is

beyond the alias-free range of the array. In general, we can have ω1 > ωStd, where

there is no all-angle alias-free subband or we can set ω1 < ωStd, where some or

all of the subbands are alias-free for all directions. Both of these scenarios can be

incorporated in the model, however for mathematical convenience in developing the

algorithm, ω1 = ωStd is considered.

In the next chapter, the problems of DOA and signal estimation are discussed

when the steering matrix is folding (or crossing).
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CHAPTER III

WIDEBAND MLE-BASED DOA ESTIMATION IN ULAS WITH INORDINATE

SPACING USING A SUBBAND HOPPING APPROACH ∗

A. MLE-based Algorithm

Let us assume that the outputs of the sensors are the time functions um(t), m ∈
{1, 2, . . . , M}. We can represent them by vectors ul(n), after appropriately pre-

processing and sampling the outputs regularly at arbitrary time instances n = ni,

i ∈ {1, 2, . . . , N}, ni+1 − ni ≡ ∆n ≤ Th/N ≡ 1/2B. From this point onward and

considering the reservations that are discussed in Section II, we drop the continuous

time variable t and use the sampled version n.

Based on assumptions on the source signals, two different models for MLE of the

arrival angles could be considered. In both models however, the noise is assumed to

be Gaussian, with zero mean and spatially and temporally white, i.e.,

E{e(n)eH(m)} = σ2Iδm,n , (3.1)

where δm,n is the Kronecker Delta function.

One approach is to treat the input signals {s(n)}N
n=1 as non-random. In other

words, we can assume that the signal sequence is frozen in all realizations of the

random data {u(n)}N
n=1. Hence, for each source, aside from the DOA (and probably

the noise variance), there are N unknown parameters that need to be estimated

∗ Major part of this section is excerpted from [34], under blanket permission
c©www.springeronline.com, and from “Incoherent MLE of array antennas with inor-
dinate spacing using subband hopping approach” [35], c©2006 IEEE with permission.

www.springeronline.com�
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from N observations. This model is often called deterministic or conditional model

and the MLE solution is called Deterministic ML (DML) or Conditional ML (CML)

respectively.

The second model is the unconditional or often-called stochastic model, in which

we assume that the source signal sequence, {s(n)}N
n=1, is a sample set from a sta-

tionary, temporally white complex Gaussian process with zero mean and nonsingular

covariance matrix

E{s(n)sH(m)} = Pδm,n |P | 6= 0 , (3.2)

E{s(n)sT (m)} = 0 ∀ n, m ,

where |.| denotes the determinant operation, and P is the covariance matrix, which

along with DOA (and probably the noise variance) needs to be calculated, rather

than the individual values at each realization in the conditional model. Therefore

under this model, fewer number of parameters are required to be estimated. The

MLE solution under this assumption is called Stochastic ML (SML) or Unconditional

ML (UML), respectively.

Under the conditional case, the received vectors have the following distributional

characteristic:

uc
l (n) ∝ N (Ql(θ)sl(n), σ2I) , (3.3)

while under the unconditional mode, the outputs, uu
l , are assumed to have a Gaussian

distribution with zero mean:

uu
l (n) ∝ N (0, R) , (3.4)



18

where:

R = E{uu(n)uH
u (n)} = Ql(θ)E{sl(n)sl(n)H}Ql(θ)

H + E{e(n)eH(n)}

= Ql(θ)PlQl(θ)
H + σ2I .

Obviously the maximum likelihood estimates for these two models result in dif-

ferent algorithms, nonetheless, unless there is information regarding a specific a priori

feature regarding the transmitted signals, conditional and unconditional models are

oftentimes used on the same data set, and although the underlying models are differ-

ent, they provide satisfactory results in estimating θ.

In [36], it is shown that the Cramér-Rao bound under the unconditional model

is achievable and is smaller than or equal to that of the conditional model (note that

as N increases, the number of unknowns also proportionally increases, which makes

the MLE inconsistent under the conditional model).

The DML approach is perhaps the most natural technique to use in the applica-

tions, where only a small number of snapshots is available. Unless explicitly mentioned

in this work, the general approach adopted herein is based on the conditional model.

Given the aforementioned assumptions, the column vector of the received signal,

ul(n), is circularly symmetric and temporally white Gaussian random process with

mean sl(n) Ql(θ) and covariance σ2
l I. The joint probability density function of the

sampled data of one source impinging on the array of M elements at the lth frequency

subband can be expressed as

J0(θl, sl(n), σl) =
1

(πσ2
l )

M
e−‖ul(n)− Ql(θ) sl(n)‖2/σ2

l . (3.5)

Assuming the measurements are independant and incorporating all the observations
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(N), from subband l, the likelihood function is given by

J1(θl, sl(n), σl) =
N∏

n=1

1

(πσ2
l )

M
e−‖ul(n)− Ql(θ) sl(n)‖2/σ2

l , (3.6)

which further simplifies to the well-known nonlinear regression model,

J2(θl, sl(n)) =
N∑

n=1

‖ul(n)− Ql(θ) sl(n)‖2 . (3.7)

Minimizing J2 results in the ML estimate. This is a multiple parameter estimation

problem. We first assume that the parameter θ is fixed and minimize J2 with respect

to sl(n), solving for the lowest Euclidean norm results in the estimate

ŝl(n) = Q†
l (θ)ul(n) , (3.8)

where Q†
l (θ) is the Moore-Penrose pseudoinverse of Ql(θ), which for this vector sim-

plifies to Ql(θ)
T / ‖ Ql(θ) ‖2. Plugging this estimate into (3.7) and minimizing with

respect to θ, we obtain:

J3(θl) =
N∑

n=1

∥∥∥ul(n)− Ql(θ) Q†
l (θ)ul(n)

∥∥∥
2

. (3.9)

Hence, the ML estimate is obtained by maximizing:

J4(θl) =
N∑

n=1

∥∥∥ Ql(θ) Q†
l (θ) ul(n)

∥∥∥
2

. (3.10)

The above equation can be equivalently simplified to

J5(θl) = Tr(Ql(θ) QT
l (θ) R̂l) , (3.11)

in which R̂ is the sample covariance matrix of the received signals at frequency sub-

band l. Hence, the ML estimate would be

θ̂l = arg
{

maxθ Tr (Ql(θ) QT
l (θ) R̂l)

}
. (3.12)
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Fig. 3. Normalized DOA estimate using N = 4 snapshots at each frequency subband of

a 7 element array antenna with SNR=3dB per each subband, when the source

is 40 degrees relative to the broadside of the array.

Figure 3 shows independent MLE of an array at each subband, when the wide-

band source is fixed at a certain angle. Within the adopted mathematical formalism,

we can visually verify that the inordinate spacing of the antenna elements creates

grating lobes, which results in multiple angle estimates. The remaining problem is to

sift the true direction of arrival from the spurious estimates or maxima in (3.12) and

then estimate the transmit signals at each subband.
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B. The Number and the Loci of the Grating Lobes

The accuracy of DOA estimates in ULA increases as the aperture size of the array

increases [18], however as the element spacing increases the spurious (grating) lobes

move to the visible region. In a similar vein, and given the reciprocality of this error,

two distinct angles would lead to the same steering vector.

There are inherent ambiguities with linear arrays for sources which are symmet-

rical with respect to the broadside of the array, i.e., when θ2 = 180◦ − θ1. Such

ambiguities cannot be avoided [37, 38] and for all practical purposes, we restrict the

scanning angle to [−90◦, 90◦]. If the true angle of the source is at θ, the loci of the

grating lobes can be calculated as

θg = sin−1
(
sin θ − κ

ζ

)
, (3.13)

where ζ = d/λ and κ = 1, 2, 3, . . . (for all integers which are possible). Equation

(3.13) is highly nonlinear.

Figure 4 shows the onset of the grating lobes (i.e., κ = 1). The grating lobe

remains out of the visible range of the array, [−90◦, 90◦], if ζ ≤ 0.5. Figure 5 illustrates

the relationships between the number of the grating lobes κ, the source angle θ and

the interelement spacing per wavelength ζ.

The total number of the grating lobes κ at a subband with ζ = ζl can be expressed

as
{
κ = 1, 2, 3, . . .

∣∣ 0 <
κ

ζl

≤ 2
}

. (3.14)

In view of (3.13), to ensure that the estimates of the grating lobe angles do not

construct a maximum after the histogram combining, we should have θg1|ζ=ζp 6=
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θg2|ζ=ζq for all subbands p 6= q, hence:

κ1

ζp

6= κ2

ζq

, (3.15)

for any integers κ1 and κ2 (κ1 6= κ2), which are constrained by (3.14). Hence, the

maximum possible number of aliasing angles at subband frequency l is:

κ̂max = b2ζlc . (3.16)

An extension of the methodology which is addressed in this section has been

adopted to two–dimensional arrays. This is discussed in Appendix B.



23

1

1

1

1

2

2

2 2

3

3 3

3

3

4

4 4

4 4

5

5

5

5

5

5

6

6

6

6

6

6

7

7 7

7

7

7 7

Source Angle (in Degrees)

ζ 
=

 A
pe

rt
ur

e−
si

ze
 p

er
 w

av
el

en
gt

h

−90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

0

1

2

3

4

5

6

7

The total number of spurious angles = κ    Color code

         κ =

0

Fig. 5. The nonlinear relationship between the number of the aliasing angles, the true

angle and the aperture size.

Note that the step of finding a good set of frequency subbands for subband hop-

ping to satisfy (3.15) poses no realtime computational burden on the array processor.

C. Resolving the Aliasing by Combining the Estimates

As it can be seen from Figure 3, at higher frequencies, despite the correct estimates

at the correct angle and given the constraints in (3.14) and (3.15), the grating lobes

appear at different angles in each sub-band. One obvious approach is to consider un-

known Joint Random Plus Aliasing Noise distribution and use non-parametric density

estimators such as histogram or Kernel or Parzen Density Estimators (KDE)[39] for

DOA estimation. Let us assume that Pθl
is the probability that the likelihood of
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the observation vector J5(θl) in (3.11), drawn from the underlying distribution p(θl),

falls in a given region R (e.g., DOA vicinity) of the sample space Ω. Note that

we are eventually looking for the dominant peaks of the likelihood function. R is

assumed a surface of two dimensions, the first (horizontal) dimension is an angular

interval ([θ1, θ2]), and the second (vertical) dimension is the amplitude interval for

the likelihood function. Both of the dimensions are associated with the angular and

amplitude granularity of the array processor. The index, l, refers to one of the L

subbands. Since in non-coherent (blind) combining, we do not differentiate among

the underlying distributions in different subbands, we drop the index l

Pθl
≈ Pθ and p(θl)

≈ p(θ) . (3.17)

Then we have

Pθ =

∫

R

p(θ′)dθ′ . (3.18)

One observation vector is drawn from each of L subbands according to (3.11) from

the underlying (pseudo) distribution. The probability that the likelihood values of k

of these L vectors falls in R is given by binomial distribution

P(k) =

(
L

k

)
Pk

θ(1− Pθ)
L−k . (3.19)

From the properties of binomial distribution, it is well known that

E[
k

L
] = Pθ and Var[

k

L
] =

Pθ(1− Pθ)

L
. (3.20)

Therefore, as the number of subbands increases (i.e., L →∞), the variance becomes

smaller, and we expect a sharper distribution, and a good probability Pθ can be

obtained from the mean fraction of the likelihoods, i.e., peaks in (3.11), at which
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Pθ ' k/L. If we approximate p(θ) as constant within R

Pθ =

∫

R

p(θ′) dθ′ ' p(θ)S , (3.21)

where S = 4J ×4θ is the volume of R and θ is some point lying inside R. 4θ is the

angular observation width and 4J is the quantized amplitude to a desirable degree.

We can write the intuitive result

p(θ) ' k

L4J ×4θ

. (3.22)

Equation (3.22) is the familiar histogram. The above estimate becomes more accurate

as the number of observations from each subband, L, increases and as the volume

S decreases. As it is intuitively obvious, there is a compromise between the number

of frequency bands and the granularity of DOA estimation. DOA is then simply the

largest statistical mode (i.e., the most likely value) among all angle intervals of all

the surfaces S, or

θ̂l = arg {maxθ mode (p(θ) |S4J ,4θ
)} , (3.23)

where θ ∈ [θ1, θ2]. In the limit of an infinite number of subbands (L → ∞), it is

expected that the performance of the proposed estimator to improve, as R can become

smaller (i.e., better accuracy), while ensuring that it still contains an ever increasing

number of points. A more elaborate density estimation approach is the Parzen density

estimator. Unlike parametric or finite-mixture density estimation approaches, where

only sufficient statistics and mixing weights are required in estimation, Parzen density

estimation employs the full data sample in defining density estimates for observations.

Nonetheless, practical Parzen density estimation does not tend to avoid cumbersome

calculations in the above histogram implementation. Perhaps an alternative approach
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is to average the subband estimates at different frequencies in view of (3.11)

JAve(θ) =
1

L

L∑

l=1

{Tr(Ql(θ) Q†
l (θ) R̂l)} , (3.24)

and then use the above for MLE, i.e.,

θ̂l = arg {maxθ JAve(θ)} . (3.25)

In fact (3.25) suggests a computationally less demanding estimate when we substitute

the statistical mode at each angle interval with the statistical mean. Notice that due

to the Law of Large Numbers (LLN), (3.25) converges to the true mean or the true

DOA. If we use this method and use the estimates at subbands as samples, the grating

lobes would average out while the true angle estimates add up consistently. Figure

6 shows the resulting estimate of a 7-element array antenna using the histogram

approach under the following condition: M = 7, θ = 40◦, SNR = 3 dB, L = 16,

N = 4, ω1 = ωstd, δ = 1/Th = 0.2ωstd and ωi = ωi−1 + δ. The reduced impact

of the aliasing lobes and a sharper angle estimate are among the advantages of this

method. The off-line calculations described in Section B help avoid the grating lobes

at different frequencies occurring at the same spurious angles, which would adversely

impact the performance of this estimator.

The proposed wideband angle and signal estimation algorithm can be simply

summarized as follows:

1. Off-line check of the subband frequencies to avoid the overlapping of the spurious

angles at subbands according to (3.14) and (3.15).

2. ML estimate at each subband, i.e., (3.12).

3. Normalize the estimates at each subband.
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Fig. 6. MLE-based estimate resulting from combining the estimates at all subbands.

4. Apply (3.23) or (3.24) and (3.25) to estimate θ.

5. Use (3.8) to calculate the signals at each subband and apply the appropriate

demodulator.

Other faster optimal or suboptimal approaches can replace the ML search step.

D. Multiple Access Using Subband Hopping

Consider K disjoint subband sets Ω1, Ω2, . . . , ΩK in which Ωk = {ωk1, ωk2 . . . ωkL}.
Hence, in total, we have K × L frequency bands, each band having (without loss of

generality) the same spectral support of B Hz for data signals. The only restriction

applied here is the subband frequency separation among all of the K × L subbands

which is discussed in Appendix C. We assume that δ = min(ωap−ωbq) = 1/Th, where

ωap is the pth subband frequency of Ωa subband set and ωbq assumes a similar defini-
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tion. The receiver chooses one of the sets, known to the transmitter for transmission

at each hop. Therefore, at any given time, different sources transmit different sub-

bands and thus interference is avoided. Similar to spread spectrum frequency hopping,

this methodology inherently addresses the problem of source association, near-far and

multipath problems under the weak condition that the subband frequencies (i.e., ωkl)

at each set, Ωk, are adequately separated. The rather stronger assumption in this

scheme is the narrowband signal assumption, which requires that the signal sl(t) (i.e.,

the transmit data signal at subband l) does not vary over the array length or in the

worst case, s(t) ∼= s(t + τM), where τM = (M − 1)d sin θ/c and c is the propagation

velocity. This interprets in the frequency domain as S(ωl) ∼= S(ωl)e
jωτM . Therefore,

one can ensure the narrowband assumption, if B ¿ ωl, so that S(ω) fades out quickly

when ω > B. It is worth noting that we did not restrict the specific baseband signal

format to address the narrowband signal assumption, and only the constraint on the

spectral support.

E. Relationship between ML–based Algorithm and Conventional Beamforming

In this section, we address the relationship between the conventional beamforming

and the Maximum Likelihood Estimate under deterministic models.

We first review the conventional beamforming. If the array manifold is known,

one can steer the array electronically to a specific direction. A weight vector Wl and a

summer (adder) can be used for each subband l to linearly combine the output signals

to form a single output (i.e., superposition of the outputs). Referring to Figure 7,

if we assume that ul(n) is wide-sense stationary, in the noiseless case, the average

output power of ϕl(t) is:

Pϕl
= E(ϕ2

l (n)) = WH
l Rul

Wl (3.26)
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If we further assume that ul(n) is spatially white or Rul
= I, then we can write:

Pϕl
= WH

l Wl (3.27)

Steering toward a direction θ0 corresponds to minimizing the power Pϕl
at all angles,

except the look direction, θ0, so:





minW Pϕl
= Wl(θ)

H Wl(θ)

subject to Wl(θ)
H Ql(θ) = 1

(3.28)
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Utilizing the Lagrange Multipliers approach:

Γ(Wl, λ) =
1

2

[
WH

l (θ) Wl(θ)
]
+ λ

[
1−WH

l (θ) Ql(θ)
]

.

∂ Γ(Wl, λ)

∂ WH
l (θ)

= 0 =⇒ Wl(θ)− λQl(θ) = 0 ,

=⇒ Wl(θ) = λ Ql(θ) .

∂ Γ(Wl, λ)

∂ λ
= 0 =⇒ 1 − WH

l (θ)Ql(θ) = 0 ,

Wl(θ) =
Ql(θ)

QH
l (θ)Ql(θ)

=
Ql(θ)

M
, (3.29)

using the fact that:

‖Ql(θ)‖2 = QH
l (θ)Ql(θ) = M . (3.30)

This implementation is analogous to the design of Finite Impulse Response (FIR)

filters in which the weights of a filter are chosen to minimize the filter output power

under the constraint that the filter response for a given frequency, e.g., f0, is fixed.

Because of this similarity, the beamforming method is often called the Delay-and-Sum

method.

We also note that in the present derivation, the weighings are obtained indepen-

dently from the data signal statistics as we blindly assumed that ul(n) was spatially

white. From this perspective, this method might be interpreted as a nonparametric

method [31].

If the beamforming weighting method in Equation (3.29) is used, the actual

noiseless output power would be:

P̂ =
QH

l (θ)R̂Ql(θ)

M2
, (3.31)

where

R̂l =
1

N

N∑
n=1

ul(n)uH
l (n) , (3.32)
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and we used the sample covariance matrix of the received signals, R̂, as the signal

autocorrelation R is normally unknown.

The DOA estimates are then the locations of the peaks of (3.31), however jux-

taposing this estimate with the MLE Equation (3.11) immediately indicates that:

Tr
[
Ql(θ) QT

l (θ) R̂l)
] ∝ QH

l (θ) R̂l Ql(θ)

QH
l (θ) Ql(θ)

∝ QH
l (θ) R̂l Ql(θ) . (3.33)

Hence, maximizing the beamformer spectrum is equivalent to MLE under the de-

terministic signal model. The above criterion holds if ul(n) is spatially white, i.e.,

each antenna element has omnidirectional pattern. In fact, in [40], it is shown that

the above criterion also holds under the stochastic signal model, where only a single

transmitter impinges on the array. Although we do not address the stochastic model

in this dissertation, the single transmitter assumption still holds for our setup with

subband hopping approach.
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CHAPTER IV

WIDEBAND SUBSPACE-BASED DOA ESTIMATION IN ULAS WITH

INORDINATE SPACING USING A SUBBAND HOPPING APPROACH ∗

A. Subspace-based Algorithm

The sampled spatial covariance of the received vector at frequency l is:

Rl = E{ul(n)uH
l (n)}

= Ql(θ)E{sl(n)sH
l (n)}QH

l (θ) + E{el(n)eH
l (n)}

= Ql(θ)PlQ
H
l (θ) + σ2

l I , (4.1)

where ul(n) is the column submatrix of the received signal defined in Sections II and

III, and Pl is the data signal covariance matrix. The conventional MUSIC method,

splits the eigenvectors of Rl into two orthogonal subspaces, namely the signal space

(corresponding to the K̂ largest eigenvalues) and the noise space (corresponding to

the rest of M − K̂ eigenvalues). This requires the following two assumptions that are

discussed later:

Assumption A.1. The rank of the signal space is known. Despite our assumption

that we have just one wideband source impinging on the array, K̂ is not necessarily

one in the presence of aliasing. We investigate how we can identify a good K̂ in

Section B.

∗ c©2006 IEEE. Reprinted, with permission, from “A subspace approach for DOA
estimation of uniform linear arrays with increased element spacing applicable to wide-
band transmission” [41].
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Assumption A.2. Ql(θ)PlQ
H
l (θ) should be at least of rank K̂ ensuring that the

nonlinear equation entails the true angle and the aliasing angles (i.e., avoiding the

penalty as the result of order underestimation).

Observing the above constraints, (4.1) can be decomposed into (see e.g., [8]):

Rl = Us,lΛs,lU
H
s,l + Un,lΛn,lU

H
n,l = UlΛlU

H
l (4.2)

where Us,l and Un,l are the signal and the noise eigenvectors, respectively. Ul is

unitary and Λl is a diagonal matrix which contains the sorted eigenvalues of Rl. Any

vector orthogonal to Ql(θ) is an eigenvector of Rl with the eigenvalue σ2
n. Provided

that we choose a correct K̂, the partitioning would result in Λn,l = σ2
nI. Hence,

Rl = Us,lΛs,lU
H
s,l + σ2

l Un,lU
H
n,l . (4.3)

Therefore, the eigenvectors of the covariance matrix Rl belong to either of these two

orthogonal subspaces.

It can be simply proved via trigonometric equalities for the calculation of the

aliasing angles (or grating lobes) that if θl is the aliasing angle of θk, then θk also

is the aliasing angle of θl with the same array setup. When spatial aliasing exists,

two distinct (aliasing) angles θl and θk, would produce the same Ql(θ) making the

array ambiguous. Hence, if one searches through all possible Ql(θ) to find those

that are orthogonal to the noise subspace, aliased and true DOA estimates could be

determined (given K̂)

UH
n,lQl(θ) = 0, θ ∈ {θ1, . . . , θK̂} . (4.4)

If R̂ is the sample covariance matrix of the received signals,

R̂l =
1

N

N∑
n=1

ul(n)uH
l (n) , (4.5)



34

then it can be used in the decomposition formula (4.2) to calculate the noise eigen-

vectors Ûn,l and the estimate of the orthogonal projector onto the noise subspace,

i.e.,

Π̂>
l = Ûn,lÛ

H
n,l .

Hence, finding the DOA’s in (4.4) could be alternatively achieved by:

Jl(θ̂0) = arg

{
maxθ

Ql(θ)Q
H
l (θ)

QH
l (θ)Π̂>

l Ql(θ)

}
. (4.6)

The orthogonality between Un,l and Ql(θ) at each frequency bin gives rise to peaks

in (4.6) and the K̂ largest peaks correspond to the true and the aliasing angles.

B. Resolving the Ambiguity

Knowledge of the number of angles K, a parameter necessary in the decomposition

(4.2), represents the key step in the proposed subspace algorithm. Since the sam-

ple covariance matrix (4.5) is formed using a finite set of samples, identifying the

multiplicity of the smallest similar eigenvalues M − K̂ is inaccurate.

Underestimating would risk the desired true angle to appear in the noise space,

while the aliasing angles would dominate the signal space. On the other hand, over-

estimating of the number of the aliasing lobes would result in the mixture of noise

and signal subspaces. However, overestimating exhibits less risk as the following al-

gorithm would reduce the impact of the interfusion of noise on the signal subspace,

as the number of subbands increases.

Let Jl(θ̂0) in (4.6) be the estimated angles after deploying the subspace algorithm

with K̂ = κ̂max, obtained in (3.16), when the source is arbitrarily at θ0. The set of

angles is likely to consist of the true angle, the aliasing angles and probably the

spurious angles due to the noise subspace. Since the source is a wideband transmitter
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Fig. 8. Subspace estimates at different aperture-size per wavelengths corresponding to

different frequency bins, ζl = d/λl, when θ0 = 65◦, M = 7, SNR = 5dB and

N = 6.

with L frequency bands, there are L such estimates: JL = {J1(θ̂0), J2(θ̂0), . . . , JL(θ̂0)}.
Figure 8 shows J1, J3, J6, J9 angle estimates (at some typical subbands). Note

the appearance of the grating lobes or the aliasing angles in the visible range at higher

frequencies. Our objective is to find the true direction of arrival θ0 from the estimates

JL. Since the true angle estimate is likely to exist in all estimates, the subspace

processor renders it amenable to similar non-parametric density estimators which

were discussed earlier in Section C. In the simplest (histogram) form, the resulting
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angle estimate would be:

θ̂0 = max E
{
Jl(θ̂0)

}
, l ∈ [1 . . . L] , (4.7)

while observing the assumptions discussed in (3.14) and (3.15).

Figure 9 shows the final result of the source angle estimate. Once the DOA

estimate is calculated, we can calculate the transmitted data signals [25]:

ŝ(n) = Q†
l (θ)ul(n) , (4.8)

where Q†
l is the generalized left inverse of the matrix Ql (e.g., Moore-Penrose inverse).

Suppose the wideband source is at direction θ0, then the proposed algorithm may

be summarized as follows:

1. Off-line check of the frequency bins to avoid the overlapping of the spurious

angles according to (3.14) and (3.15).

2. Collect input signals uml and calculate the sample covariance matrix at each

frequency Rl.

3. Calculate the maximum number of the aliasing angles κ̂l at each frequency bin

l.

4. Calculate DOA estimate at each frequency l using (4.6).

5. Normalize the amplitude level of estimates at each estimate .

6. Apply (4.7) to find θ̂0.

7. Use (3.8) to calculate the transmit signals at each frequency bin [42] or apply

appropriate demodulator (e.g., BPSK).
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Fig. 9. Final angle estimate when θ0 = 65◦, M = 7, SNR = 5dB and N = 6, L = 9,

ζ ∈ {0.53, 0.81, 1.09, 1.37, 1.65, 1.93, 2.21, 2.49, 2.77}.

Despite the underlying derivations and arguments, the implementation of the

proposed setup and algorithm is simple and assumes relaxed constraints. The rich

wideband spectrum conveniently affords the multiple access deployment.
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CHAPTER V

ERROR MAGNITUDES UNDER ALIASING

The mean-square estimation error of a non-random parameter is lower-bounded by the

Cramér-Rao Bound (CRB). CRB, however, is not a tight bound for certain models,

exhibiting e.g., low SNR, finite sample regimes. In these scenarios, this bound leads to

overly optimistic estimates of system performance. This prompted the development of

alternative bounds over the years, e.g., the Barankin, Ziv-Zakai, and Weiss-Weinstein

bounds. The MLE under certain regularity conditions attains asymptotically the

minimum variance as given by CRB [8]. However, exact expressions for the bias and

variance of the MLE in the non-asymptotic region are still often difficult to compute.

In this section a lower bound on the variance of the estimator under spatial

aliasing is presented. As addressed earlier in Section B, the loci and the number of

aliasing angles are not available in closed form. The actual number of the aliasing

lobes, i.e., κθ0 ≤ κ̂max = b2ζlc, depends on the source angle at subband frequency l.

The estimators, which are discussed in Sections C and B, perform DOA esti-

mation by data mixtures of different subbands. At subband frequency l, an approx-

imation of the error size using the CRB can be calculated under the multi-source

scenario when the number of transmitters is upper-bounded by κ̂max. Note that this

derivation is in regard to just one subband and we do not consider the multi-source

implementation which is utilized by the subband-hopping approach of Section D.

First, an error bound is derived when only one subband is used for estimation.

It is shown that, as expected, our proposed array processor could not limit the error

magnitude in this scenario. In the later part of this section, we derive an error bound

when multiple subbands are used in the estimation process.

By using the law of total probability, the Mean Square Error (MSE) of the
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estimator at the subband frequency l can be expressed as [43]:

MSE = E
[
(θ̂ − θ0)

2
]

= Pr
[
θ0

]
E
[
(θ̂ − θ0)

2|θ0

]
+ Pr

[
θf

]
E
[
(θ̂ − θ0)

2|θf

]
(5.1)

where θ0 is the true angle, θf is any other angle (i.e., false angle), and θ̂ is the estimate.

Note that the subscript l, which associates the probabilities and the estimation errors

to the subband l, has been intentionally dropped to avoid notational distraction.

The aliasing angles, θκ, present major contributions on the overall MSE of the

estimator as their amplitudes are similar to that of the true angle. Therefore, we can

write the following approximation:

Pr
[
θf

]
E
[
(θ̂ − θ0)

2|θf

]
≈

κθ0∑
κ=1

Pr
[
θκ

] [
(θκ − θ0)

2
]

. (5.2)

Furthermore by approximating the local errors asymptotically to CRBl in the region

close to the true angle, we obtain:

E
[
(θ̂ − θ0)

2|θ0

]
≈ CRBl . (5.3)

CRBl in the above approximation represents the local MSE in the asymptotic sense,

conditioned on the event that the estimate has actually attained the true angle given

an alias-free setup. The best local approximate to this bound is achieved when the

true angle lobe in the aliasing scenario is simulated by an analogous lobe under alias-

free scenario. The lobe width of an alias-free setup is generally wider than the aliased

setup. The number of elements of an alias-free standard array, Maf , with analogous

half power bandwidth to an aliased array would be:

Maf ≈ Mζl

ζaf

, (5.4)

where ζaf ≤ 0.5 is an arbitrary number which makes Maf an integer. M and ζl are

correspondingly the number of elements and the interelement spacing per wavelength
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at subband frequency l of an aliased array. In calculating the half power bandwidth

at subband l, ∆θHl
, we used the following approximation for each subband:

∆θHl
≈ 0.891

sec θ0

Mζl

. (5.5)

It can be shown that the above approximation is relatively accurate and has a max-

imum error of 4% when Mζ ≥ 5 in the worst region (i.e., the endfire region) [8,

Sec. 2.5]. Therefore, CRBl can be calculated by plugging the new quantities at CRB

for an alias-free array (of size Maf and interelement spacing of ζaf ≤ 1/2), which is

readily available in the literature (e.g., [8, 44]). Adopting and simplifying the CRB

expression which is derived in [44] to our problem, and given the transform (5.4), we

obtain:

CRBl =
σ2

N(DHD ¯ P̂ T )
, (5.6)

where

D =
∂Ql(θ)

∂θ

∣∣∣
Maf ,ζaf

, (5.7)

Ql(θ) is already defined in Section II, and

P̂ =
1

N

N∑
n=1

sl(n)sH
l (n) , (5.8)

where we considered real signals in the conditional signal model (see [8]). We can

generalize and use different signal models (e.g., [44]), which are extensively discussed

in the literature and replace their corresponding CRB in (5.6).

Given the approximations in (5.2) and (5.3), the total probability equation at

hand (5.1) can be simplified to:

MSE ≈ Pr
[
θ0

]
CRBl +

κθ0∑
κ=1

Pr
[
θκ

] [
(θκ − θ0)

2
]

. (5.9)
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The above expression presents an error approximate for an aliased array which

operates at the frequency subband l.

Let us further simply the above equation to understand the error magnitude

behavior under the aliasing scenario. We note that the probability of occurrence of

the true angle is the same as the aliasing lobes assuming a noise free setup. Using

this observation, the MSE approximation can be written as:

E
[
(θ̂ − θ0)

2
]
≈ 1

κθ0

(
CRBl +

κθ0∑
κ=1

[
(θκ − θ0)

2
])

(5.10)

Obviously, the summation term in the right hand side of (5.9) can get very large in

the presence of aliasing (even as κθ0 mildly increases in the denominator according to

(3.14)). This is an expected observation as the processor uses just one subband for

estimation. In obtaining the above approximation, we considered the noise-free (or

high SNR) assumption and we ignored the effect of the sidelobes at each subband,

arguing that the discretized grating lobes, which have the same amplitude as the true

lobe, have substantial impact on the error magnitude than the sidelobes. In Appendix

D, we derive more accurate expressions for Pr(θ0).

Next we will try to find an error expression, similar to Equation (5.9), when the

mixture of the subbands is considered. Let us create a sample probability space by

combining the true and the spurious aliasing angles of all subbands. We then calculate

the probability of each discrete outcome θl
i, where i = 0, . . . , κl

θ0
and l = 1, . . . , L.

Note that at subband l, we assign θl
0 to be the true angle of arrival which is consistently

present in all subbands. Aside from this angle all other grating lobe angles are distinct,

non-repetitive and have the same relative frequency of appearance in our sample space

(i.e., assumed equiprobable) by design (see Section B).

Let κl
θ0

specify the number of the aliasing angles at frequency subband l, therefore

the support of the probability mixture has κall + L members, where κall =
∑L

l=1 κl
θ0

.
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In the proposed method, the estimates of all subbands are incoherently combined.

We can approximate the mixture and calculate the required probabilities of (5.1)

using the cumulative distribution function (CDF) of binomial probability, which can

be expressed in terms of the regularized incomplete beta function, Iρ(a, b). Therefore,

the probability that the maximum occurs at the true angle after combining can be

expressed as:

Pr[θ0] = Iρ

(
a = 2, b =

L− ρ

ρ

)
, ρ =

L

L + κall

, (5.11)

where ρ is the relative occurrence frequency of the true angle in the sample space and it

is considered that at least a = 2 of the total subband estimates (i.e, L+κall = a+b+1),

equal the true angle and thus form a maximum at θ0 in the mixture. Hence, the

resulting MSE approximate becomes:

MSE ≈ Pr[θ0] CRBe + (1-Pr[θ0])
L∑

l=1

κθ0∑
κ=1

[
(θl

κ − θ0)
2
]

, (5.12)

where in the above expression, CRBe is the equivalent alias-free CRB, which has

the same half power bandwidth as the data mixture in the vicinity of the true angle

(similar to (5.6)), and

P̂e =
1

LN

L∑

l=1

N∑
n=1

sl(n)sH
l (n) . (5.13)

To understand the behavior of the processor in the asymptotic case when the

number of subbands, L, gets large, we can roughly approximate the distribution of

the grating lobes as discrete uniform within the scanning range, and further simplify

(5.2) as:

Pr
[
θf

]
E
[
(θ̂ − θ0)

2|θf

]
≈ π2

12

κθ0∑
κ=1

Pr
[
θκ

]
, (5.14)
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and hence (5.12) becomes

MSE ≈ Pr[θ0] CRBe + (1-Pr[θ0])
π2

12
. (5.15)

By investigating (5.15), we also observe that the aliasing angles are regarded as a

nuisance to the system, since the second term dominates the MSE as SNR increases

(and consequently CRB decreases). Higher SNR values will increase the magnitude

of these spurious components at any given L, nonetheless regardless of the SNR, the

strength ratio of these components to that of the true angle after combining over

subbands would remain constant and would ultimately mask the noise.

Figure 10 illustrates the asymptotic behavior of the MSE estimate when L gets

large using (5.12). It is seen that the overall error decreases as L increases. On the

other hand, given a fixed number of the subbands, L, as SNR increases, the exceeding

contributions of the aliasing noise restrict the overall performance of the processor.

This constraint does not create a burden on the application of the proposed

algorithms in UWB, as the spectrum is fairly available to increase the number of

subbands and, more importantly, systems with high signal strength are not applicable

as secondary systems (note the power constraint in ISM [1]).
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Fig. 10. The asymptotic behavior of the MSE approximation when L increases.
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CHAPTER VI

SIMULATION SETUP AND RESULTS

The approaches proposed have been subjected to computer simulation experiments

to study the validity of the method and the dependency of the SNR variation on

the accuracy of signal and DOA estimates in terms of a simple multiple access sce-

nario. Standard statistical measures have been used for the MLE and subspace-based

algorithms.

A. MLE-based Simulation

To facilitate the demonstration we used K = 5 different sources, 5 different sub-

band sets, each of them containing 20 frequency subbands (L = 20). The frequency

subbands of the sets are spread throughout the spectrum in the following collating

format: ω1,1 ω1,2 . . . ω2,2 . . . ω4,20 ω5,20, where ωk,l is the lth frequency subband

from the kth subband set. A ULA of M = 10 sensors with element spacing equal to

the wavelength corresponding to the lowest frequency is considered. In this example,

we set the lowest frequency of transmission to ω1,1 = 2ωstd, i.e., regardless of the

source angle, aliasing lobes are present in all estimates. The angular granularity is

set to one degree. Let us assume that the adjacent frequency difference in the above

setup is fixed and equals to δ = 1/Th = 0.02 ωstd. The uncorrelated BPSK transmit

sources in the experiment are assumed to have the same power with SNR= 3 dB

per each subband, resting at −50◦, 20◦, 23◦, 25◦ and 75◦ respectively relative to the

broadside of the array. We use these angles to gauge the array estimates in several di-

rections in particular in the problematic endfire region. It is worth reminding that the

resolution of an ordinary ULA is proportional to Mζl in broadside region and is worse

in endfire region (∝ √
Mζl). The interested reader may refer to Hansen-Woodyard
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procedure [9], which addresses this impact in endfire arrays. Four snapshots (N = 4)

are taken at each subband frequency for estimation of the signals and the direction of

the source. Figure 11 shows the MLE-based results at each subband and the ability

of the array processor to identify the direction of the transmit sources.

B. Wideband Subspace-based Simulation

For the subspace-based algorithm, a multiple source setup is considered with four

wideband transmit sources (K = 4) or four disjoint frequency sets in observation of

(3.14) and (3.15). Each of the frequency sets contains 9 frequency bins (L = 9).

Similar to the previous setup, the frequency bins of each set are spread through-

out the spectrum in a collating format. A ULA of M = 7 sensors is considered.

The maximum adjacent frequency difference, δ, in the example setup equals to

δ = ∆maxω = 0.07c/d = 0.14ωstd. The angular calculation granularity is set to

one degree. The uncorrelated BPSK transmit sources in the experiment are assumed

to have the same power with SNR= 3 dB per each frequency bin resting at −50◦, 20◦,

22◦ and 24◦ relative to the broadside of the array. Six snapshots (N = 6) are taken

at each frequency bin for estimation of the signals and the direction of the source.

Figure 12 shows the subspace estimation results and the ability of the array processor

to identify the direction of four transmit sources.

C. Comparisons with the MSE Approximate

In order to investigate the statistical validity of these algorithms, ten thousand Monte

Carlo replications are generated to measure the Mean Square Error (MSE) of both

the estimated signals and the DOA with different SNRs, when one of the transmit

sources is at θ = 22◦ relative to the broadside of an array with M = 10 elements,
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for a better visual comparison.
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N = 5 and L = 9. The source signal uses BPSK for data transmission with a rate

equal to 0.05ωstd. Figure 13 indicates the Euclidean and the Hamming distances of
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Fig. 13. Distance measures between the estimated signals and the transmitted signal

versus SNR after 10000 Monte Carlo replications, for the proposed MLE-based

and subband-based methods with M = 10, L = 9, N = 5.

the recovered signal (after BPSK demodulator) relative to the originally transmitted

signal versus SNR. These distance measures are used to visually investigate the con-

vergence and compare the performances of different estimators under the conditional

signal model, which is assumed in this work (see e.g., [45] which assumes similar

comparison metrics).

Figure 14 compares the performance of the aliased array setup when different

subbands are used for transmission. We note that the processor exhibits a threshold

effect at low SNR. This is a known phenomenon in the estimation theory and has

been extensively discussed in the literature (see e.g., [46, 47, 43]).
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Fig. 14. MSE versus SNR for a transmitter located at 22 degrees relative to an array

of M = 10 element, when it transmits through L = 9 subbands, using the

MSE approximation and the simulation with 10000 Monte carlo replication.

The number of snapshots is N = 5.

As it is seen from Figure 14, the proposed algorithms appear statistically stable,

relaxing the stringent element spacing constraint, even when the number of snapshots

N is relatively low. Increasing the number of snapshots, N , and the number of

subbands, L, as illustrated in Figure 10 can further decrease the error magnitude.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this dissertation we have addressed the motives behind the use of antenna arrays

in wireless networks. Based on the results of several field measurements and em-

pirical data, we have explained that the wireless channels are becoming more and

more interference–limited due to technological advances and favorable regulations.

Referring to previously published results, we have further elaborated upon the fact

that wideband antenna arrays could play an important (and even remedial) role in

interference–limited channels, as it would enable wireless devices to utilize the inher-

ent transmission directivity and hence operate under lower SNRs (and consequently

use less power and provide better network security).

In this perspective, wideband antenna array designs and processing, which oper-

ate over a wide spectrum, have become the main focus of several academic research

projects.

In another vein, element coupling among array sensors, creates – an often ne-

glected – implementation issue in wide spectrum array structures. This is mainly

due to the constraint on the element spacing, since as the frequency of transmission

increases, the spacing should decrease. We discussed that the spatial aliasing occurs

if one decides to increase the element spacing to harness the coupling impact.

This dissertation has also studied this effect of undersampling and proposed some

methodologies to resolve the aliasing and ambiguity effects.

An MLE-based and a (suboptimal) subspace-based array processor have been

introduced which perform DOA estimation under the aliasing scenario. A subband
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hopping model for broadband sources is proposed, which is used to tackle the source

association problem. This model also provides us with a more independent per-

formance analysis of aliased arrays. The problem so formulated is shown to admit

increased element spacing in uniform linear arrays (ULAs) in addition to the ability

to work under low SNR. Data transmission in the proposed schemes is achieved by

multiple narrowband frequency transmissions.

Several approximations have been considered to find an expression for the er-

ror magnitude under the aliasing scenario. The error approximate is, however, not

strictly a bound but provides a relatively good benchmark and characterization of

the proposed setup. The asymptotic behavior of the estimator and its relation to

alias-free setup have also been also discussed.

Finally, the performances of the estimators are gauged with Monte-Carlo analysis

to ensure the validity of the adopted models. The estimators inherently enjoy the

source association capability and due to their hopping nature are less affected under

near-far or multipath scenarios.

We also discussed how one can improve the performance of the proposed processor

by an appropriate choice of the subband sets.

Although some results were obtained, there are many interesting and important

problems which are left for further research, such as the possibility of coherent com-

bining of the subbands rather than the incoherent combining under spatial aliasing.

B. Future Work

1. Constant Beam Pattern and Beam Sampling

The beam width narrows as the frequency increases from one subband to another

(Figure 15). This results in different “weightings” for different subbands in combining,
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Fig. 15. Beam pattern variation as a function of frequency for an array with M = 21

elements (alias-free scenario).

a problem which is discussed in Section C. If we want a constant beam pattern over

the frequency range, we can use beam pattern sampling techniques [22], beam-shaping

filters [48], etc., to create a frequency-invariant beamformer (FIB).

Figure 16 shows an aliased setup after the FIB processing using [48], when the

upper frequency of transmission is four times the standard frequency of the array. †

It appears that the beam patterns can also be sampled, under specific condi-

tions, beyond the spatial limit. A more detailed analysis of this topic may result in

better broadband arrays which can filter out the grating lobes iteratively as the array

†For derivation details, please consult with “Wideband Array processing with con-
stant beam pattern beyond the spatial sampling” [49].
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Fig. 16. Constant beam pattern after beam pattern sampling for an array with M = 21

elements and L = 30 (aliased scenario when the maximum frequency of trans-

mission is four times the standard frequency of the array).

processor gradually receives more samples (from different subbands) in the course of

time.

2. Closeness of the Grating/side Lobes

In practical implementations, although the conditions expressed in Equations (3.14)

and (3.15) ensure that the grating lobe angles do not construct a maximum, due

to computational constraints and given the lobe widths, some local maxima may

be created, in particular when the number of the subbands is not high. The best

practice in this scenario is to make sure that the generated grating lobes are maximally
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distanced from each other. In this perspective, it would be helpful to develop another

metric, which measures the closeness of the spurious lobes. Unfortunately due to the

complex and non-linear loci of the grating lobes, a closed–form equation to describe

this measure appears to be a very formidable task if not impossible. Nonetheless

acquiring such measures quantitatively or qualitatively would help improving the

performance of the array processor.
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APPENDIX A

FIELD SURVEY OF WIRELESS ISM-BAND CHANNEL PROPERTIES∗

PREFACE

In an interdisciplinary project to gauge the wireless channel quality in electric power

substations, several setup configurations were designed to collect the empirical char-

acteristics of wireless channels in several locations. This section discusses the motive,

setup and the result of this investigation. Leaving aside the importance of such

field measurements for specific applications, the findings suggest that the unwanted

signals (i.e., interferences plus noise), have strong time-dependant characteristics.

Environmental data has been collected to investigate any correlation between the

unwanted signal levels (i.e., noise plus interference) and the variance variations of

the Gaussian random noise (i.e.,“noise only” variation due to environmental or at-

mospheric changes). The results suggest that the unwanted power level exhibits

little correlation with the random noise and more with the setup location, i.e., in-

dustrial, residential and sparsely populated regions. This strongly implies that the

dominant constituents of the unwanted signals are interference–related rather than

noise–related.

∗ This work was sponsored by Power Systems Engineering Research Center
(PSERC), National Science Foundation Industry/University Collaborative Research
Center under grant NSF EEC-0002917. The Office of the State Climatologist (OSC)
for Texas provided us with the surface weather data.
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Abstract ∗

In this survey, some measuring metrics are identified to study the average noise power

variations in typical outdoor power substations. Power substations generally have

metallic structures and despite the insulation considerations have high electric fields.

The physical size of a substation does not allow a completely controlled experiment. A

setup plan was arranged to study the noise floor variation in a few substation switch-

yards in residential, industrial, isolated and sparsely populated subdivisions. The

empirical data sets were collected, processed and compared with the known noise

constituents that were cited in the literature. A two-week measuring window was

chosen to encounter any possible factors that might affect results at several substa-

tions. Several field measurements were executed to enable the comparative analysis

of the recorded data. By collecting the weather data during the survey, it was illus-

trated that the average noise floor in the spectrum of interest (i.e., 2.4 GHz), does not

correlate or has week correlations with the real time weather condition changes, such

as humidity, pressure and precipitations. The analysis suggests that the noise floor

variation (and hence the link quality) is time-dependent and has an underlying dom-

inant semi-deterministic constituent in addition to the classical random distribution.

This semi-deterministic component is associated with the location of the substation

switchyard (e.g., residential or industrial), and its dynamic range is significant and

should be identified. The methodology, which is adopted in this study has applica-

tions in the analysis of static outdoor environments. Several practical considerations

have been discussed in this work for future implementations in high electromagnetic

∗ c©2007 IEEE. Reprinted, with permission, from “Noise Profile of Wireless Chan-
nels in High Voltage Substations”, Alireza Shapoury and Mladen Kezunovic, IEEE
Power Engineering Society General Meeting (PESGM’07), June 2007 (accepted for
publication at the time of this dissertation).
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field environments.

Introduction

Wireless networks have several features that make them an attractive communication

solution in the harsh industrial environment such as electrical distribution or trans-

mission networks. Since wireless networks do not use expensive signal and control

cables for data transmission, they are easier to install and use, and hence provide a

cost effective solution for industrial and power system applications. The utilization

of the existing wireless technologies should be closely investigated to better under-

stand the detrimental impacts of switching transient fields on the radio band channels

[50, 51, 52, 53, 54]. An accurate analysis for comparing different wireless implementa-

tions requires measurement and inspection of a wide spectrum of modulation, coding

and implementation techniques. Metallic structure, electric impulses from the corona

effect or switching operations of power apparatus, and electromagnetic interferences

and weather variations are among the discriminative features in this particular in-

dustrial environment. From theoretical standpoint, the wireless receivers are often

designed based upon certain assumptions about noise [55]. Most of them assume that

noise is IID (Independent Identically Distributed) and has some form of exponential-

family distribution such as Guassian or Rayleigh. Some others consider correlated

noise but with specific autocorrelation properties. Some noise distributions contribute

to the noise floor. Other noise profiles may produce impulsive disruptions of links,

for instance the Poisson-Gauss model [52].

The validity of the scientific conclusions becomes intrinsically linked to the va-

lidity of these underlying assumptions. In practice, since some of the assumptions

are unknown or untested for specific applications, the scientific conclusions become

arbitrary. A good estimate of the noise pattern is the target of this study. If there
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is a good estimate of the noise pattern, then we can calculate the error rate under

a given channel-coding scheme. We prefer not to do the reverse, i.e., estimate the

noise profile by just observing the resulting calculated and processed error rates, in

particular when an estimate of the noise profile is directly obtainable.

To assess the characteristics of the wireless network, field experiments were con-

ducted with spread spectrum radios operating at 2.4 GHz. A special attention was

paid to long term observations. For instance, long period measurement runs allows

us to observe the variation of average noise power during the weekdays. In some

applications, the impact on wireless devices needs to be attributed to portable struc-

tures as opposed to constantly moving (or mobile) objects (e.g., cellular phones). In

this approach, measurements were made for a period of fourteen days, with both

moving transceivers (on a wheel-cart to facilitate repositioning) and fixed location

transceivers in critical locations, for example, in the vicinity of a circuit breaker.

There are some recommendation practices in the literature for the site surveys,

which are primarily based on the Bayesian probability assumptions of the noise. In

the observation of such recommendations (e.g., in [56], field surveys, tests and cross-

validations were performed and reported in [3]. It is shown that despite the soundness

of the recommended Kolmogorov-Smirnov Test (KS test) based on the Bayesian as-

sumption, the average noise power variation at 900MHz Industrial, Scientific and

Medical frequency bands (ISM [57]) has typically stronger time-series constituent

and can therefore be approximated by an Auto-Regressive Moving Average (ARMA)

model. This finding has some implications in the design of wireless systems. For in-

stance in CDMA applications [58], to avoid the capacity degradation, power control

schemes are used to improve power efficiency and the connectivity by addressing the

near-far problem. The semi-deterministic nature of the noise floor which is further

addressed in the present study, relates to the dynamic range of the power control



69

schemes.

Admittedly, due to the large physical size of the test environment, the measure-

ment was not a controlled test process (i.e., controlled experiment [59]) in which one

could acquire and record all the relevant environmental and electrical parameters

(e.g., delay profile). In this study, as much information about the test and as much

analysis as possible is gathered to supplement anecdotal evidence used in the past.

In the first part, the probable impacts of the industrial environment on the wire-

less channel are investigated considering the observation windows based on previously

published measurements, analyses and pertinent assumptions found in the standards

and technical literature [53, 55, 60, 61]. The data recording plan and disposition of

test devices is discussed next. Description of how the data was conditioned and pre-

processed to enable an accurate analysis is given in a follow up section. Subsequently,

statistical data analysis and comparison of the performance of different analyses ap-

proaches are presented. The simulation results and the conclusion are given at the

end.

Noise Pattern Constituents

One particularly detrimental characteristic of the (wireless) channel of interest is the

presence of ambient electromagnetic interference (EMI) produced by power lines and

power apparatus used for switching the substation configuration. The electromagnetic

fields radiated by these interfering sources may occur as spurious signals and, hence,

are a source of noise [60]. In radio transmission we are especially concerned about the

electromagnetic noises which are non-stationary in nature. There are two main types

of radiated radio noise sources in substations: gap breakdown and line conductor

corona [53].
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Gap discharge radio-noise is produced by a rapid flow of electric current in the

air gap between two points of unequal potential occurring on electric power switching

equipment. The current-surge accompanying avalanche ion production is of very

brief duration, consisting of one or several impulses persisting for a few nanoseconds.

These noises are strongly impulsive in nature. The statistics of this phenomenon are

directly related to the electrical incidents, and result in opening or closing of switching

elements commonly called circuit breakers.

Corona discharge is also a threshold transition process that requires a critical

potential gradient in the vicinity of a charged object be exceeded before the effect is

manifested. The charged object needs not be an electrical conductor.

Either source may be comparable or exceed the noise power levels of other man-

made noise sources. A noise source might create impulsive noise in one system and

a random noise in a different system (for instance as in Frequency Hopping Spread

Spectrum systems versus Direct Sequence Spread Spectrum [2]). A strong impul-

sive noise may create a uniform disturbance over the frequency spectrum of interest.

The radio noise produced by these phenomena exhibit RF components of substantial

magnitude in the UHF-TV band (470-806 MHz) [52].

This study does not suggest the importance of the impact of the gap breakdown

(e.g., circuit breaker operations) on the wireless channel due to the scarcity of the

phenomenon, nor does it probe the absolute value of the corona discharge. In normal

operations, the corona discharge is the discriminatory phenomenon between the power

substations environment and other industrial environments, which are already studied

in the literature. This survey was to investigate whether the variation of the corona

discharge has an effective impact on the variation of the noise power. In general,

we expect to observe three types of noises in substation applications: background

noise, incidental impulsive noise and unwanted signals. In this study, the background
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noise is defined as the total sources of disturbances in the link and the measurement

system, independent of the presence of the signal. For instance the Trichel streamers

and glow corona contribute to this background noise. The incidental impulsive noise

is due to the gap breakdown discharge phenomena (often caused by circuit breaker

opening). The ideal method of tracking these phenomena is to apply fast response

measuring devices (i.e., peak detectors) for long runs and record the receptions during

breaker opening, as well as investigating the seasonal effects and climate impacts. In

power-line applications, random noise (often considered Gaussian) is a component of

the total noise caused by the discharge [61]. Hence the average noise level indicates

the level of background noise and interference at the measurement site. It is worth

noting that there is little or no (slow or fast) fading due to the stationariness of the

devices in substations. The testing periods were chosen to be long enough to include

atmospheric cycle extremes, and probable diurnal and weekly patterns.

Test Setup Plan

The measurement setup was designed by using readily available instruments while

considering the size of substation yards and the presence of high power signals. Surges

initiated by the power system and ground leakage currents can damage the measuring

devices, therefore appropriate grounding and protection have been incorporated in the

setup design (Figure 17).

The main methods of high voltage surge protection are the series and the shunt

approaches. Series devices are typically designed or plugged directly into the Radio

Frequency (RF) line between the antenna and the RF circuitry attempting to block

the incoming surges before they reach the RF amplifier. In the shunt approach, the

surge is guided away from the RF input by providing a better path to ground.

The use of Quarter-wave stubs is a popular method among the RF design engi-



72

Substation

Noise

Protection

Elements

Radio

Device

Interface and 

Data

Conditioner

Signal Strength 

Recorder and

Data Comparator

Radio

Device

Pseudorandom 

Data Generator 

Protection

Elements

Fig. 17. Measurement block diagram.

neers which could be realized in series or shunt configurations. A quarter wave stub

protector creates a band-pass filter focused at the center frequency of the wireless

device. Notwithstanding the low-frequency attenuation of the stubs, a detrimental

portion of the energy could still enter the equipment input (Note that the voltage

and energy levels are too high for sensitive RF front-end even given significant atten-

uation).

Gas-Tubes and Non-Gas Tubes protection devices are among other elements

which limit the let-through voltage into the sensitive RF circuitry by exhibiting a

Zener-like breakdown phenomenon. These devices are seldom built-in and need to be

attached externally.

In this survey, a setup plan is conducted for the 2.4 GHz frequency band using

IEEE802.11 compatible radios. In the preliminary test implementations, none of the

aforementioned methods exclusively secured the setup against the detrimental surges

in the substations, ultimately causing some equipment damage and failures. Our

conjecture is that the impulsive noise in the substations is too fast to be contained
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with DC-blocks alone and is too strong over the time to be contained solely by the

Quarter-wave stubs. Hence a combination of the protection methods is used in the

final setup and is suggested for future implementations.

The linearity of these protection provisions needs to be considered to avoid skew-

ing the recorded data within the frequency spectrum.

The setup consists of wireless modems (acting as access units and base units),

data acquisition devices and a processing unit (Figure 18). The access unit was placed

next to the control room (where the base unit is more likely to be located) with an

omni-directional antenna attached to it. Note that the physical structure of a typical

substation or an industrial environment may not allow the use of directional antennas.

The subscriber unit was placed at the far end of the substation, attached to a metallic

structure (i.e., the circuit breaker panel). The device disposition was such that there

was no line of sight communication. The power control feature in the communication

device is inhibited and the signal power is maintained constant during the trial. The

processing unit fetches the wireless quality parameters from the modems. The data

are then automatically recorded on a laptop machine for post-processing. Two laptops

were deployed and programmed to emulate the continuous data communication to the

virtual circuit breaker receiver and to handle the logging and background processing.

Figure 19 shows typical dispositions of the radio transceivers. The in-yard radio was

installed 1.2m above the ground level and electrically attached and grounded to the

metallic structures of the circuit breaker (Since the wireless communication analysis

is aimed at monitoring operation of circuit breakers, free-body metering suggested in

[56] would be inappropriate in this case).

The survey duration of the measurement run was about 14 days in each yard

(i.e., the 34.5 KV, 138 KV and 345 KV yards) to include weather cycle extremes, and

probable diurnal and weekly patterns.
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Fig. 18. 2.4 GHz measurement setup.

Data Recording and Pre-processing

The main objective of this survey is studying the variations of the noise floor levels

rather than the absolute magnitudes of the measured parameter. In most wireless

design quality analysis, the magnitude of the Signal to Noise ratio (S/N) and Signal

to Interference ratio (S/I) are of more importance than the absolute values of signal,

interference and noise levels individually.

The results presented in this paper have been generated using the observed data

collectively. There was no electrical incident or breaker operation during this survey,

and hence there is no major gap-breakdown noise (i.e., as mentioned before these

incidents are rare in nature). Other than that, the wireless devices seemed to receive

no disturbing high power noise impulses due to the high voltage (HV) corona effect,

which could cause major link disruption. The higher the voltage level, the higher

average noise was observed.

The polled signal levels from the radios are in Receiver Signal Strength Indicator

(RSSI) format, which are often in linear or in logarithmic format. RSSI is used in

the control loop of the firmware of the radio. Manufacturers do not usually calibrate
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Fig. 19. No-line-of-sight (NLOS) disposition of the instruments in a power substation.

the RSSI of their radios to dBm values, and often instead provide an approximate

conversion table for the mapping between these values. Since RSSI is a relative

index, the device works regardless of RSSI calibration to dBm values and hence it

was assumed that the measurement setup was subject to the offset (calibration) error.

This error has been ignored as the general methodology adopted is invariant to this

offset error and the background noise may anyway induce offset in different locations.

The level calculations are implemented by utilizing the conversion table and then

converting the dBm values to the desired voltage levels. The recorded data from

this experiment have been utilized for the 2.4 GHz analyses. Each reading takes

approximately one second which contains the exact timing information. The average

noise power, in this survey, is calculated as the average noise level in the transmission
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spectrum and is recorded in one-minute intervals as a moving average of 60 readings

(i.e., window size). The radios use 79 channels in the 2400 to 2483.5 MHz frequency

range using 9 hopping sequences per each hopping set. A program has been designed

to continuously poke the link quality data from the radios, seeing that this feature

was not a built-in function in the device. Specific provisions were made to avoid data

congestion while polling the data from the radios. In this regard there were just two

wireless devices at each measurement run in the substation yard and the baud rate of

the dummy data generator is set constant and low. The processing unit also handled

the data logging. As test duration was fourteen days, there were more than 20,000

observations per each data set.

It is reported that the weather conditions drastically affect the noise generation

in high voltage outdoor environments [61]. To include the environmental impacts on

the wireless channel, dew point, dry bulb and wet bulb temperatures, station and

sea level pressures, and the relative humidity and the presence of any precipitation

during the observation window have been incorporated in the analysis on an hourly

basis. These surface weather data have been recorded on hourly basis through the

three nearest weather stations, which have at most 12.4 miles aerial distance to the

test site. Note that the rates of changes of environmental data are typically low

and the variations (and not the mean) of the surface data in these closely spaced

weather stations are almost similar. This data resolution is accurate enough due

to the tardiness of the atmospheric changes. To relate the weather parameters to

the average SNR variation, pre-processing of data was done such that the data sets

have similar timings (i.e., observation windows). The resulting weather data has less

timing resolution than the electrical data (e.g., the load pattern of the transformers

in the substation and the recorded SNR values).

To calculate an approximate estimate for the (higher resolution) electrical data
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coinciding with the weather hourly data, Parzen window [62] with smoothing para-

meter of h = 60 (minutes) has been used. We define the Parzen Kernel function ϕ(u)

such that:

ϕ(u) =





1 | u |< 1
2

0 otherwise
(A.1)

then the estimated values at the hourly grid points, xH , would be:

xH =
1

Nh

N∑
m=1

xmϕ(
H −m

h
) (A.2)

where N is the total number of samples with higher resolution (i.e., observations

with one-minute precision), xm is the magnitude of the mth sample, and xH is the new

generated sample with lower resolution (i.e., one-hour precision). Thus the resulting

size of the data set becomes 340 samples. We can use other types of Kernels such a

Gaussian [62], but we found little variations in our final result to justify the use of

more complex Kernels.

Table I lists the observed parameters and the experiment settings. The dynamic

range of the noise variation has particular significance, when a wireless Power Control

scheme is considered, the dynamic range together with the wireless circuit design

constraints prescribe the step-size and the granularity of the power control. Without

loss of generality, it is assumed that the wireless devices have five power steps within

their dynamic range and hence five classes are assigned for this survey.

Data Analysis

The goal of this study is to probe the predictability of the noise floor level (note

that the power control is disabled and since the signal levels are constant during the

transmission, the SNR variations are proportional to noise variations). To this end,

several classifiers have been considered given the observation parameters and then
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Table I. The observed parameters and the settings.

Observation parameters Setting

SNR Observation size= 333 samples,

Dew point temperature Training percent =13/14 (Hold-Out Method)

Relative humidity KNN neighbor = 1

Sea level pressure 5 noise classes

Station pressure

Wet bulb temperature

Dry bulb temperature

Dew point temperature

Presence of precipitation

Transformer load patterns

Time

their classification rates have been gauged. The success of a classifier in having higher

classification rate could reveal the underlying structure of the data. As mentioned

before, the inertness of one observation parameter can be determined if the omission

of that parameter does not substantially change the classification rate of the chosen

best classifier.

The data set is divided to the training set and the test set using the hold-out

method [39]. 90% of the data is considered for the training and the remaining for

the testing purpose. Quadratic and K-Nearest Neighbor (KNN) classifiers are used

as pattern classifiers [63].

Some of the observation parameters may not affect the process or have less im-

pact as they may act similar to random noise in our process. The issues regarding
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the correlation, causality, the common cause scenarios, and confounding and coinci-

dental factors are also addressed in the analysis. Some observation parameters are

inter-correlated. Given the actual station pressure and the wet bulb and the dry

bulb temperatures, the dew point and relative humidity can be calculated. We did

not know this underlying relation when we gathered the weather data. This is an

apparent example of correlation, which may exist in the observation. We kept all the

observation parameters and could investigate if the chosen“best classifier” is robust

to these discrepancies in the observation data. (One can always compare the results

to the case when these correlations are known a priori).

Feature extraction

In practice, there is a maximum number of features above which the performance of

any classifier will degrade rather than improve. This phenomenon is due to the fact

that blindly increasing the number of features (as also exemplified above with the

weather data), may allow correlated features and the noise to incorporate in the clas-

sification process. To remedy the problem, feature extraction which transforms the

existing features into a lower dimensional space that preserves most of the information

in the original samples x has been performed.

f : x ∈ RΩ −→ y ∈ RΠ where Π < Ω (A.3)

where f is the transform function, Ω is the dimension of our sample space,y is the

vector of new features with reduced dimension Pi, and R is the sample or the feature

space. The optimal linear features are calculated for two objective functions in this

paper.

The first objective criterion is to preserve as much randomness (or variance) in
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high dimensional space as possible using the Principal Component Analysis (PCA)

or Karhunen-Loeve Transform (KL). The projection functions in PCA are defined by

the first eigenvectors of the sample covariance matrix Σx [62].

Although there is no guarantee that the direction of maximum randomness con-

tains good discrimination features, this method generally leads to good signal repre-

sentations.

The second objective criterion is to preserve as much of class discriminatory infor-

mation as possible using Fisher Linear Discriminant Analysis (LDA). The projected

samples result more compact clusters. Let us consider that the projection results in

J classes, where each of them contains Nj samples, then the center of the class Cj

and the center of the complete set, C are:

µj =
1

Nj

∑
xi∈Cj

xi (A.4)

µ =
1

N

∑
xi∈C

xi =
1

N

J∑
j=1

Njµj (A.5)

then, Sb is the between classes scatter matrix :

Sb =
J∑

j=1

Nj(µj − µ)(µj − µ)T (A.6)

and Sw is the within classes scatter matrix :

Sw =
J∑

j=1

∑
xi∈Cj

(xi − µj)(xi − µj)
T (A.7)

Then Fisher LDA projections are calculated by the first eigenvectors of the matrix

S−1
w Sb, maximizing the variance of the clusters while minimizing the variance of the

projected sample points within each clusters [39]. As can be seen, if the discrimi-

natory information is in the mean of the data, LDA generally results in better class
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separability.

These two feature extraction methods are not the only methods. We shall see

whether they are accurate enough for our estimation problem. The results of these

classification techniques are addressed in the next section.

Simulation results and discussions

Table II shows the classification rates achieved by the above-mentioned classifiers,

when we do not consider time dependency of the observation parameters.

Table III indicates the result of the same classifiers, when the time labels are

incorporated in the observation vector. There are other nonlinear classifiers which

may result in better classification rates. Nevertheless, the achieved classification rate

of 92% practically suffices noise level predictions. PCA indicates which of the ob-

servation parameters have the most prominent impact on the predictability of the

variation of noise power. It is observed that noise power level has a strong time-series

component, which has more impact on our signal than random noise (i.e., distrib-

utional part). Statistical cross-validations among different test sets were performed

to inspect and verify the absence of over-fitting in our predictors. Optimal receiver

design incorporating the time series analysis is still an open problem (Even for the

processes that are known and are fully controlled there is still ongoing debate about

an optimal design).

The weather conditions may impact the telecommunication channel in two ways.

If the precipitation causes the transmission line conductors to be wet, this may results

in a drastic increase in corona noise generation. The climate condition also impacts

the propagation constant. This analysis did not support further studying the strength

of the association of these weather phenomena to the channel properties. The runtime

snapshot comparison of the humid and rainy days to the sunny days indicate no
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Table II. Results with time independent observations.

Classifier Reduced Dimension Classification Rate

Quadratic No 0.29

KNN No 0.38

Quadratic PCA 0.25

Quadratic LDA 0.29

KNN PCA 0.75

KNN LDA 0.33

major noise floor fluctuation with respect to the weather types and conditions, which

anecdotally suggest that the noise floor variation is due to the Earth rotation, galactic

sources or planetary atmosphere layers.

Figure 20 shows the variation of the transformer load (in Volt-Amperes) versus

the noise level (in Volts) and scatter plot of 138KV transformer loading versus the

noise level at 2.4 GHz frequency band (taken from a typical data set which is in

conformity with other data sets). The plots in Fig. 4 may prematurely suggest the

presence of causality between these two parameters. Through confirmatory study of

the data sets, it is observed that there is basically no causality between the load pat-

tern and the noise level but they just share a common cause, i.e., “time”. Even though

the load patterns of the transformers significantly differ in the residential subdivisions

from the industrial regions, the recorded noise levels indicate identical patterns. Sec-

ond, no significant changes in the classification rate were observed when we omitted

the load pattern from the observation vector and deployed the best classifiers (This

is due to the fact that the PCA de-correlates the data). In retrospective study, by
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Fig. 20. The variation of the transformer load (in Volt-Amperes) versus the noise

level (in Volts) and scatter plot of 138KV transformer loading versus the

noise level at 2.4 GHz frequency band (taken from a typical data set which is

in conformity with other data sets). The absolute values of the noise voltage

level and the transformer loadings are not of concern in this analysis so the

units have been taken off from this axis.
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Table III. Results with time dependent observations.

Classifier Reduced Dimension Classification Rate

Quadratic No 0.25

KNN No 0.54

Quadratic PCA 0.75

Quadratic LDA 0.38

KNN PCA 0.92

KNN LDA 0.38

juxtaposing the experiment results in different substations, it appears that the noise

power floor is associated with the substation voltage levels (which is almost constant

during normal operations) but is not affected by the load pattern of the transformers.

The slow change in the load pattern and the impact of the voltage levels on the noise

floor are consistent with the theoretical equation of the conductor corona noise [53].

The comparisons of different test sets confirm similar findings in different substations.

In [2], it is shown that the noise variations over the time in a typical power-line

substation are substantially different during the weekdays and weekends at 900MHz

ISM frequency band (in particular in residential subdivisions). This observation may

attribute to the interferences from other devices, e.g., cordless phones, government

exclusive radios, etc., which operate at similar frequency band.

One can show with a simple calculation and using the simplified Friis equation

that the path loss in 2.4 GHz is almost 8.5 dB higher than that of 900 MHz. This

corresponds to less transmission range (and less interference range) at 2.4 GHz. By

observing the collected data sets in this survey, it is confirmed that the data in
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the substations that were located in the residential subdivisions indicated no major

behavioral differences from the industrial, isolated or sparsely populated subdivisions

at 2.4GHz. This observation is coherent to the theoretical path loss result regarding

the inertness of interferences of distant devices in 2.4 GHz (even in the residential

regions).

Worth mentioning is that according to the regulations [57], the primary users of

2.4 GHz spectrum are government systems and ISM users and the secondary (license-

free) users are subject to strict output power in ISM frequency bands. Given the

limited transmission range at 2.4 GHz and the consistency of the test results from

several substation yards in different locations, it is suspected that the channel varia-

tions were due to the usage pattern of the primary users of this band. Nonetheless

the interferences of the primary sources should be studied, which again demands for

time-series analysis.

Moreover the deterministic variations of the noise floor have potential implica-

tions when no channel estimation and signal-level adjustments are performed. For

instance in spread spectrum scenarios, the optimal performance of Direct Sequence

Spread Spectrum (DSSS) systems often depends on the power control schemes in con-

trast with the Frequency Hopping Spread Spectrum (FHSS) schemes. By the same

token in non-spread spectrum systems, amplitude dependant modulations such as

QAM and ASK require more sophistication than the constant envelope career mod-

ulations such as CPFSK unless an adaptive power control scheme is applied, which

incorporates the noise floor variation.

Conclusion

The noise sources and their behavior in extreme electromagnetic environment such

as a power substation have been investigated in this survey. An experiment has
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been designed to investigate the noise power variation and to cross-validate the prob-

able confounding factors. Statistical analyses and confirmatory studies were done

in attempts to ascertain the underlying associations. The underlying random and

also semi-deterministic structure of the measured data suggests the inertness of the

weather variations, ambient temperatures and load patterns. Using classification

analyses, it is observed that the noise power had a strong time-series component,

which had more impact on the channel than random noise (i.e., distributional part).

Furthermore, it verifies the non-randomness of the noise floor and the possibility of

noise floor estimation to some degree of certainty.

This suggests that the variation of the Signal to Noise Ratio (SNR) has a deter-

ministic component, which optimally require more complex and adaptive schemes for

certain types of modulations (e.g., QAM, ASK). The test methodology, measuring

metrics selection and protection provisions adopted in this effort have applications

in wireless design under high energy fields. It is also suggested that the field survey

recommendation practices (e.g., [56]) be modified to include time series analysis.

Leaving aside the lack of extensive measurements and characterizations of wire-

less communication systems in high voltage substations in the literature, the ex-

periments in this survey collectively support the applicability and the feasibility of

wireless implementation in this environment.
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APPENDIX B

EXTENSIONS TO TWO DIMENSIONAL ARRAYS

The discussion in Section B can be generalized to planar arrays and three dimension

scenarios. Suppose that the sensors are placed at equispaced intervals on vertical and

horizontal axes, Y and X, and θ and φ represent the spherical elevation and azimuth

angles of arrival (Figure 21). Let us define ζx = dx/λ and ζy = dy/λ, respectively, the

Z

Y

X

θ

φ

Fig. 21. The relation to the spherical coordinates.

horizontal and vertical element spacings per wavelength. If we define α and β such

that:

sin(α) = sin(θ) sin(φ) ,

sin(β) = sin(θ) cos(φ) , (B.1)

and the true spherical elevation and azimuth angles are at θ0 and φ0 or equivalently
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by the new conversion at α0 and β0, then the loci of the grating lobes will occur at:

αg = sin−1
(
sin α0 − κx

ζx

)
,

βg = sin−1
(
sin β0 − κy

ζy

)
, (B.2)

where {κx, κy} = 1, 2, 3, . . . (where available).

To avoid constructing maxima after histogram combining similar to the one di-

mensional array case, we should have

αg1|ζx=ζpx
6= αg2|ζx=ζqx

,

βg1|ζy=ζpy
6= βg2|ζy=ζqy

, (B.3)

for all possible dissimilar values of spacing per wavelengths relative to the horizontal

axis and the vertical axis. Hence, the following inequalities should be satisfied:

κx1

ζpx

6= κx2

ζqx

,

κy1

ζpy

6= κy2

ζqy

, (B.4)

for any integers κx1 and κx2 (κx1 6= κx2) and κy1 and κy2 (κy1 6= κy2), which are

constrained by (B.2).



89

APPENDIX C

SUFFICIENT CONDITION ON THE MINIMUM FREQUENCY SEPARATION

OF THE SUBBANDS

Let us first define and review the following parameters and matrices:

1. θ is the parameter indicating the direction of the source and is unknown.

2. α = sin θ is unknown (−π/2 ≤ θ < π/2).

3. q(α) = e−jπα.

4. The set of the frequency subbands Ω,
{
ωl ∈ Ω | l ∈ [1, L]

}
, is assumed known

(L is the total number of frequency subbands).

5. δ = ∆ω/ω1 is known, real, scalar and is the minimum subband frequency sepa-

ration or increments where ω1 represents the lowest subband (center) frequency.

6. m ∈ [1, M ] is the mth sensor element and the total number of sensors, M , is a

known constant.

7. Qml(θ) =
[
e(m−1)ωl[−j d

c
sin θ]

]
, m ∈ [1,M ], l ∈ [1, L] is the steering matrix.

8. S = diag [s1(t) , s2(t) , . . . , sL(t)], in which sl(t) is the signal vector at each

subband.

Without loss of generality, let us assume that ωl corresponds to the standard

frequency of array. Then we have:

Q = A B , (C.1)
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where

A = diag [1 , q , . . . , q(M−1)] , (C.2)

B = [q(l−1)(m−1)δ] m ∈ [1,M ] , l ∈ [1, L] . (C.3)

Under noise free scenario, the output of the element would be:

U = Q S = A B S . (C.4)

We want to know the condition on δ, if any, in order for the above equation to

have consistent answers so that we can solve for α (note that as defined α is a bijective

function of θ).

To answer the above question we need to start with the following proposition.

Proposition B.1. Let D be the M×L matrix [x(i−1)(j−1)], where x 6= 0, and M < L.

Then rank(D) < M if and only if x is a kth root of 1 for some k ∈ {1, 2, . . . ,M −1}.

Proof. We show any grouping of M column vectors results in a matrix whose deter-

minant is 0 if and only if x is a kth root of 1 for some k ∈ {1, 2, . . . , M −1}. We prove

by induction on the number of rows, M , the case of M = 1 being trivial.

By using elementary matrices we may reduce the problem to that of considering

the (M − 1) × (L − 1) matrix [xi(j−1)(xi − 1)] and looking at all (M − 1) groupings

of column vectors; in this case we consider the (1,1) minor of the matrix obtained by

subtracting from each jth column, j > 1, the (j − 1)st column of D, and further by

subtracting from each ith row, i > 1, the first row of the resulting matrix.

Choosing the columns j1, . . . , jM−1, where jα ∈ {1, . . . , L − 1} and jα 6= jβ for
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α 6= β, we consider

∣∣∣[xi(jα−1)(xi − 1)]
∣∣∣ =

∣∣∣([xi(jα−1)])
∣∣∣

M−1∏
i=1

(xi − 1)

=
∣∣∣([x(i−1)(jα−1)])

∣∣∣
M−1∏
i=1

xi

M−1∏
i=1

(xi − 1), (C.5)

where | . | denotes the determinant operation. Using the induction hypothesis on the

first term in (C.5), we see the right hand side of (C.5) is 0 if and only if xi = 1 for

some i ∈ {1, . . . , M − 1}. This completes the proof.

Corollary B.2. rank(U) < M if and only if α = 2n
kδ

for some k ∈ {1, . . . , M − 1}
and n ∈ {− ⌊

k
2

⌋
, . . . ,

⌊
k
2

⌋}.

Proof. rank(U) = rank(Q) = rank([(qδ)(i−1)(j−1)]. Then apply Proposition (B.1)

with x = qδ.

Corollary B.3. rank(U) = M if and only if δ < 2
M−1

.

Proof. Direct result from Corollary (B.2).

Hence the matrix B and consequently U would be full rank if and only if

δ = ∆ω
ω1

< 2
M−1

.
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APPENDIX D

THE PROBABILITIES OF THE GRATING LOBES AND THE TRUE ANGLE

REQUIRED FOR THE MSE APPROXIMATE

Let us start by using the decision statistics that was derived in Equation (3.11), we

start the derivations based on the decision statistics

J(θl) = Tr(Ql(θ) QT
l (θ) R̂l) , (D.1)

to find the true angle in terms of

θ̂l = arg
{

maxθ Tr (Ql(θ) QT
l (θ) R̂l)

}
. (D.2)

Given the assumption on the discretized grating lobes addressed in Chapter V, the

probability that the true angle θ0 is chosen rather than other κθ0 grating lobes, θκ,

would be:

Pr(θl = θ0) = 1− Pr
{ κθ0⋃

κ=1

(
J(θκ) > J(θ0)

)}
. (D.3)

One can use the Bonferroni inequalities to find lower and upper bounds for the union

term in the right hand side of the above equation. To do so, let us define:

P1 =

κθ0∑
κ=1

Pr
(
J(θκ) > J(θ0)

)
, (D.4)

P2 =

κθ0∑
κ1<κ2

Pr
{ (

J(θκ1) > J(θ0)
)
∩

(
J(θκ2) > J(θ0)

) }
, (D.5)

and for 2 < j < κθ0 ,

Pj =
∑

Pr
{ (

J(θκ1) > J(θ0)
)
∩ · · · ∩

(
J(θκj

) > J(θ0)
) }

, (D.6)

where the summation is taken over all j-tuples of distinct integers. Then, for odd
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j ≥ 1, the upper bound would be,

Pr
{ κθ0⋃

κ=1

(
J(θκ) > J(θ0)

)}
≤

κ∑
i=1

(−1)i+1Pi , (D.7)

and for even j ≥ 2, one can find the lower bound as,

Pr
{ κθ0⋃

κ=1

(
J(θκ) > J(θ0)

)}
≥

κ∑
i=1

(−1)i+1Pi . (D.8)

If we implement the first order approximation by setting j = 1, we eliminate the

intersection terms and we achieve the famous Boole’s inequality or the Union Bound.

This implies ignoring the events in which the probability of simultaneous occurrence

of two or more grating lobes are higher than that of the true angle. Given the

equiprobable assumption of the grating lobes1, we can easily derive a more precise

expression of the union term in Equation (D.3). We can calculate the probability of

simultaneous occurrence of j-tuples, using the binomial distribution:

Pr(any j-tuple) ∝ B(κθ,
j

κθ

). (D.9)

So we can express the union term in the right–hand side of Equation (D.3) and the

probability of the true angle with a desirable accuracy.

The remaining term to be calculated is the pairwise probability:

Pr(θ = θκ) = Pr
{(

J(θκ) > J(θ0)
)}

, (D.10)

which is the probability of choosing a grating lobe. Equation (D.10) can be written

1We can still achieve a more precise expression by incorporating a priori informa-
tion in Equation (2.17).
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as:

Pr(θ = θκ) = Pr
{(

J(θκ) > J(θ0)
)}

(D.11)

= Pr
{(

J(θκ)
2 > J(θ0)

2
)}

(D.12)

= Pr
{(

J(θκ)
2 − J(θ0)

2
)

< 0
}

(D.13)

= Pr
{

Tr
(
{Ql(θk) QT

l (θk)−Ql(θ0) QT
l (θ0)} R̂l

)
< 0

}
(D.14)

= Pr(D < 0) (D.15)

where we considered D as the new decision variable,

D =J(θκ)
2 − J(θ0)

2 . (D.16)

We can use the criterion (3.33) discussed in Section E of Chapter III to further simplify

(D.14). Equation (D.1) together with (D.16) construct a quadratic form, analogous

to the known problem of M–ary non-coherent detection of binary signaling under

AWGN. The grating lobes and the true angles can be interpreted as the matched

output to any M–ary signal waveform. The general quadratic form of this equation

has been discussed in [64, Appendix B], in which the general quadratic expression

takes the form:

D =
N∑

n=1

(A|Jθκ(n)|2 + B|Jθ0(n)|2 + CJθκ(n)J∗θ0
(n) + C∗Jθκ(n)∗Jθ0(n)) , (D.17)

where the constants for the problem at hand becomes A = 1, B = −1 and C = 0, and

J∗θ0
(n) and Jθκ(n) are respectively the outputs of the receiver corresponding to the

true direction and the grating lobe at sample n, with the following moments (consult
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with Section II for the mathematical model):

E(Jθ0) =Ms(n) ,

E(Jθκ) =QH
θκ

Qθ0s(n) ,

V ar(Jθ0) =Mσ2
n ,

V ar(Jθκ) =Mσ2
n ,

Cov(Jθκ , Jθ0) =QH
θκ

Qθ0σ
2
n . (D.18)

Furthermore let us define:

S ≡M

N∑
n=1

|s(n)|2 ,

R0 ≡|QH
θκ

Qθ0| . (D.19)

Following similar straightforward algebra in [64, Appendix B] and plugging in

the parameters, we arrive at the following result for N = 1 snapshot:

Pr(θ = θκ) = Q(ν1, ν2)− ν3

ν3 + ν4

Io(ν5) e−
1
2
(ν2

1+ν2
2 ) , (D.20)

where Io is the zeroth order modified Bessel function and Q is the Marcum Q-function

defined as:

Q(a, b) =

∫ ∞

b

xe−x2 + a2

2
Io(ax)dx , (D.21)
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and where:

ν1 =

√
S

2σ2
n

(1−
√

1−MR2
0) , (D.22)

ν2 =

√
S

2σ2
n

(1 +
√

1−MR2
0) , (D.23)

ν3 =
√

1 + MR2
0 , (D.24)

ν4 =
√

1−MR2
0 , (D.25)

ν5 =
SR0

2σ2
n

. (D.26)

The interested reader may consult with [64] and incorporate Equations (D.18) and

(D.19) for the problem of N > 1 snapshots.

The pairwise probabilities for all grating lobes need to be calculated and substi-

tuted in Equation (D.3) to achieve the probability that the true angle is θ0.
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