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ABSTRACT 

Some Optimization Problems in Power System Reliability Analysis. 

(August 2007) 

Panida Jirutitijaroen, 

B.Eng., Chulalongkorn University, Bangkok, Thailand 

Chair of Advisory Committee: Dr. Chanan Singh 

 

This dissertation aims to address two optimization problems involving power 

system reliabilty analysis, namely multi-area power system adequacy planning and 

transformer maintenance optimization. A new simulation method for power system 

reliability evaluation is proposed. The proposed method provides reliability indexes and 

distributions which can be used for risk assessment. Several solution methods for the 

planning problem are also proposed. The first method employs sensitivity analysis with 

Monte Carlo simulation. The procedure is simple yet effective and can be used as a 

guideline to quantify effectiveness of additional capacity. The second method applies 

scenario analysis with a state-space decomposition approach called global 

decomposition. The algorithm requires less memory usage and converges with fewer 

stages of decomposition. A system reliability equation is derived that leads to the 

development of the third method using dynamic programming. The main contribution of 

the third method is the approximation of reliability equation. The fourth method is the 

stochastic programming framework. This method offers modeling flexibility. The 

implementation of the solution techniques is presented and discussed. Finally, a 

probabilistic maintenance model of the transformer is proposed where mathematical 
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equations relating maintenance practice and equipment lifetime and cost are derived. 

The closed-form expressions insightfully explain how the transformer parameters relate 

to reliability. This mathematical model facilitates an optimum, cost-effective 

maintenance scheme for the transformer. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction* 

Electric power systems in the United States have been going through a 

restructuring process that transforms electric market from integrated utility to privately 

owned generation, transmission, and distribution units [21] [25]-[27] [30]. The key 

driving force of deregulation is to increase efficiency by introducing competitiveness to 

the energy market. To oversee system operation and ensure reliability, Independent 

System Operator (ISO), a public regional company, is established to monitor the market 

and provide congestion management. ISO is also responsible for power exchange market 

that determines real-time market clearing price in its service region, and several other 

auxiliary markets, including Installed Capacity Market (ICAP). 

Several issues arise with deregulations since the market is now operating in an 

increasingly competitive environment that demands high reliability with the least 

expensive cost. The need for optimizing available resources in the market to maximize 

system reliability has assumed an increased importance. This research aims to address 

some optimization problems involving power system reliability in the new market 

structure namely, capacity expansion planning, and maintenance optimization. 

Capacity expansion problem is one of the major optimization problems in the 

literature. Previously, utilities projected generation and transmission investment 

                                                 
* This dissertation follows the style and format of IEEE Transactions on Power Systems. 
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concurrently and correlatively with the assumption of one bus model where all 

generating units and loads are connected into a single bus. Only generation requirement 

is evaluated while transmission lines were planned to ensure energy delivery ahead of 

time, consequently, the system is well balanced and stabilized. Under the deregulated 

environment, Independent Power Producers (IPPs) can install new generations virtually 

in any area which may results in imbalances between generation and transmission.  

Installed Capacity Market (ICAP) is a capacity market such that firm capacities 

are procured as required by the ISO while the rest of the capacity can be paper traded. 

ICAP is established to guarantee long term system adequacy in the face of future 

increasing future demand. The requirement also helps prevent the power producers from 

limiting their power supplies, which reduce their ability to exercise market power. Long 

term adequacy analysis does not only benefit the consumers for affordable, efficient and 

reliable electricity but also serves the IPPs as a tool for minimum cost generation 

investment. 

At the time of writing this dissertation, the capacity requirement is calculated by 

simulation and ad hoc methods. In particular, ISO--New England (ISO-NE) utilizes 

Multi-Area Reliability Simulation Program (MARS) for the calculation [15]. An 

optimization procedure along with MARS is proposed to determine an excess or 

deficient amount of generation in each area. One of the contributions of this paper is to 

show the relationship between each area risk level and load changes. The analysis 

pointed out that an exponential approximation of risk level [89] can be applied to multi-

area systems. The major drawback of [15] is that the method requires iterations between 



 3

optimization and risk calculation which is obtained from several MARS runs. In a single 

MARS run, the outage of each component in the system is simulated chronologically by 

Monte Carlo sampling which may demand long history to produce converged results.  

Optimization methods have been applied to solve capacity expansion problem 

without reliability considerations [10] [14] [31] [56] [67] [71] [79]. Mixed-integer 

programming [24] and dynamic programming have been proposed to incorporate the 

discrete decision of additional capacity and to obtain the sequence of optimal decisions 

respectively. Various optimization algorithms; such as, Branch and Bound and Bender’s 

decomposition, have been applied to the problem. Heuristic techniques such as Fuzzy 

logic [12], greedy adaptive search [38], genetic algorithm [32], simulated annealing, and 

Tabu search have also beeen used [11] [51] [63]. This research aims to develop 

optimization techniques incorporating reliability constraints to the solution of capacity 

expansion problem, in particular, for multi-area power systems.  

In addition to the multi-area adequacy problem, another important issue in the 

current aging infrastructure is the performance of a device since the system is now 

forced economically to operate at its limit that accelerates the aging process of most of 

the devices in the system. Electric supply utilities are now pursuing maintenance scheme 

in a cost effective fashion [35]. Transformers are considered one of the most common 

equipment in power systems. Their deterioration failures cause system interruption as 

well as high cost of load loss. Preventive maintenance can prevent this type of failure 

and help extend transformer lifetime. Too little or too much maintenance may lead to 

poor reliability or high maintenance cost. System reliability and cost should be balanced 
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to achieve cost effective maintenance. This study is intended to devise methodology for 

the optimal maintenance schedule for a transformer. 

 

1.2 Objectives and Organization 

The objective of this research is to develop optimization techniques and 

computational tools that systematically incorporate reliability aspects. The problem of 

interest is multi-area power system adequacy planning and transformer maintenance 

optimization. The organization of this dissertation is given below. 

 Chapter II proposes a new simulation method for power system reliability 

evaluation. Chapters III, IV, V, and VI propose different solution methods to multi-area 

power system adequacy planning problem. Chapter VII proposes a probabilistic model 

for transformer maintenance problem with equivalent mathematical equations relating 

maintenance practice and equipment lifetime and cost. 
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CHAPTER II 

SIMULATION METHODS FOR POWER SYSTEM RELIABILITY INDEXES 

AND THEIR DISTRIBUTIONS* 

 

2.1 Introduction 

Mathematical models for computing reliability indices can be solved either by 

direct analytical methods or using a simulation approach. Although the analytical 

solutions are exact within the assumptions made, they are sometimes difficult to derive 

for a large power system. While the simulation methods produce only estimates of 

reliability indexes, they generally provide more flexibility in dealing with complex 

systems and conditions. Most of current simulation methods evolve from Monte Carlo 

simulation (MC). The principal advantage of this approach is its simplicity to implement 

at any levels of reliability analysis. However, MC can require long computation time to 

produce converged results. Thus, there is a need for efficient simulation methods for 

reliability analysis of large power systems.  

There are two basic approaches in Monte Carlo – sequential simulation and 

random sampling. In the remainder of this chapter, MC refers to the sampling technique 

where the basic concept is to draw random samples of system states. Reliability indexes 

are then statistically estimated from these samples. The converged results are found 

when the normalized variance of an estimate lies within an acceptable level. The 

                                                 
* Reprinted with permission from “Comparison of Simulation Methods for Power System 
Reliability Indexes and Their Distribution” by P. Jirutitijaroen and C. Singh, IEEE Transactions 
on Power Systems, to be published. © 2007 IEEE 
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convergence of the estimate depends heavily on the occurrence of loss of load events. As 

a result, the efficiency of MC deteriorates for the power system having a high level of 

reliability. In other words, when the power system is highly reliable, the probability of 

loss of load states becomes small and estimating the rare-event probability is very time 

consuming.  

To overcome this problem, one approach is to employ variance reduction 

techniques such as Importance Sampling (IS), Control Variate, and Antithetic Variate 

methods [33] [59] [75]. The main idea of IS is to make the rare-events more frequently 

sampled by modifying the probability distribution function of system components so that 

loss of load events are more likely to occur [18] [41] [58] [74]. Control Variate and 

Antithetic Variate methods exploit correlations among random variables to achieve 

variance reduction [75]. Convergence in these methods is based on a new random 

variable whose mean value is the same as of the original but has lower variance. These 

variance reduction methods are generally found to successfully reduce simulation time; 

however, the probability distribution functions of predictor variables are altered from 

that of the original even though the mean values stay the same. Therefore, these methods 

are suitable for the analysis when mean values of the indices are of primary interest. 

However, it may become less attractive to apply these methods when the integrity of the 

actual distribution functions needs to be preserved such as in risk analysis and in the 

optimization framework.  

An integration of reliability evaluation and optimization procedures is used in 

many types of problems; for example, planning [4] [6] [15] and design [19] problems. 
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These problems often search for the best solution that maximizes system reliability while 

minimizing cost and can be considered as stochastic programming problems due to 

system uncertainties in reliability evaluation. In order to describe the stochastic behavior 

of system components, their probability distribution functions need to be taken into 

account. The available solution algorithms of stochastic programming, such as the L-

shaped algorithm, are based on enumeration of states [46] [60] [62]. When components 

possess continuous probability distribution function or discrete probability distribution 

function with a large number of states, the algorithm may become computationally 

intractable. To overcome this problem, algorithms employing sampling techniques, for 

example, SAA (Sample-Average approximation) [9] [29] [60] and Stochastic 

Decomposition [62] are proposed. These algorithms require that the fidelity of 

probability distribution function be maintained while the sampling is carried out. Details 

of available stochastic algorithms are beyond the scope of this chapter. Interested readers 

are referred to [60].  

Latin Hypercube Sampling (LHS), developed by McKay, Conover, and Beckman 

in 1979, is a marriage between stratified and random sampling [28] [85]. The sample 

size, n, is pre-selected and the probability distribution function is divided into n intervals 

with equal probability of occurrence.  Random sampling is then performed for each 

interval corresponding to the probability distribution function in that interval. This 

means that LHS is a constrained version of MC sampling that can produce estimates 

more precise than MC with the same sample size. LHS is thus considered as one of the 

variance reduction techniques. This major advantage can be exploited when combining 
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reliability evaluation with optimization. LHS is currently used in the stochastic 

optimization framework in comparison with MC sampling. The results show that the 

method produces tighter bounds of the optimal solution than MC [9] [29]. In addition, 

the approximate distributions of the reliability indexes are also generated which may be 

used as a risk assessment tool since reliability index itself only represents the mean 

value.  

In general, stochastic nature of components of a power system is modeled in 

terms of discrete probability distribution functions based on their failure and repair rates. 

In order to perform LHS, discrete probability distribution functions of area generation 

and load need to be constructed prior to sampling. This means that LHS uses some extra 

computation time during the equivalent distribution function construction while MC can 

sample states according to the failure and repair rates of a unit. To reduce this 

computation time, Discrete Latin Hypercube Sampling (DLHS) is proposed in this study. 

DLHS is a modified version of LHS that is done at the component level based on its 

failure and repair rate without creating an equivalent discrete distribution function. 

DLHS not only saves computation time and storage to construct the equivalent 

distribution functions, but also requires less storage than LHS during sampling. Other 

modifications of LHS are tailored to fit particular applications and can be found in [45]. 

Multi-area reliability analysis has two major approaches; Monte-Carlo simulation 

and state-space decomposition. In Monte-Carlo simulation, failure and repair history of 

components are created using their probability distributions. Reliability indices are 

estimated by statistical inferences. The basic concept of state-space decomposition, 
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originally proposed in [46], is to classify the system state space into three sets; 

acceptable sets (A sets), unacceptable sets (L sets), and unclassified sets (U sets) while 

the reliability indices are calculated concurrently. Advanced versions of decomposition 

such as simultaneous-decomposition for including load and planned outages in a 

computationally efficient manner are described in [19], [29], [33], [39]. 

This research proposes LHS and DLHS for reliability evaluation of power 

systems and illustrates the process using a single area power system. It should be pointed 

out that LHS and DLHS can be used for a multi-area power system as well as single 

area. Single area is chosen for illustration since the correct distributions for single area 

can be readily obtained using enumeration for the purposes of comparison. Reliability 

indexes in this study are loss of load probability and expected unserved energy. Both 

sampling techniques produce approximated distribution function for unserved energy. 

The comparisons among LHS, DLHS and conventional MC sampling are presented 

including analysis of efficiency and accuracy of each method. More specifically, a 

performance index is used to determine the accuracy of the approximated distribution 

functions from LHS, DLHS and MC to the actual ones found from enumerations. 

Several comparisons of the sampled distribution functions are made at generation level, 

combined generation and load level, and finally, unserved energy. The test system is an 

actual twelve-area power system with a variety of unit types in terms of capacity, 

availability, and quantity.  

This chapter is organized as the following. Section 2.2 explains mechanism of 

LHS in detail. DLHS is then proposed in section 2.3. A comparison of approximated 
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distribution produced by three sampling techniques is presented in section 2.4 while that 

of reliability indexes, namely unserved energy and loss of load probability, is given in 

section 2.5. Finally, conclusions are given in section 2.6. 

 

2.2 Latin Hypercube Sampling 

LHS was invented to estimate uncertainty in a problem where the variable of 

interest is expressed as a function of random variables [28] as follow. 

( )xfy =  (2.1)

where  

y  = The variable of interest 

x  = Random variables 

When the function to be evaluated is complicated and computation intensive, 

investigation of interaction of variable of interest with other stochastic variables (in 

multi-dimension) is inevitably cumbersome. LHS has been developed as a probabilistic 

risk assessment tool to specifically assist this type of investigation. The very first 

application of LHS was a reactor safety study of nuclear power plants [9]. Recently, 

LHS has been applied in the stochastic optimization framework. The test problems 

include vehicle routing [29], aircraft allocation, electric power planning, telecom 

network design, and cargo flight scheduling problems [9]. The problem uncertainties 

represented by probability distribution functions are incorporated into the model.  Due to 

numerous system states, sampling techniques are employed to reduce the states to be 

evaluated in the optimization algorithm. The results show that LHS outperforms MC 
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sampling by producing tighter upper and lower bounds of the optimal objective values 

with the same sample size. LHS has been also applied to statistical modeling of 

microwave devices [39]. 

While MC is conventionally applied for power system reliability problems, LHS 

can yield relatively better estimate of the distribution of the variable of interest than MC 

[28], [85]. This is due to the fact that prior to sampling, LHS divides a distribution 

function into intervals of equal probability. The number of intervals is equal to sample 

size. Then LHS randomly chooses one value from each and every subinterval with 

respect to its distribution in that subinterval.  This means that LHS is done over the 

entire spectrum of the distribution function, including the tail-end values. The sampled 

values thus represent the actual distribution better than MC especially for the extreme 

region of the distribution. The variance of a sample from LHS is considered smaller than 

that from MC since LHS yields a stratified sample of the random variables.   

With multi-dimensional random variables, LHS creates a system state by pairing 

the values after sampling each random variable individually. The pairing scheme is 

rather simple in the case of uncorrelated random variables. A system state is found by 

randomly choosing one value out of the sampled values from each component without 

replacement. However, in case of random variables with certain correlation among them, 

a strategy of pairing scheme will involve use of optimization. A full description of the 

pairing scheme in such cases is beyond the scope of this chapter. Interested readers are 

referred to [3] for detailed procedure in the presence of correlations between random 

variables. LHS as applied in this dissertation is described as follows. 
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The sample size, n, is specified in advance. Next, the equivalent probability 

distribution functions of area generation and load are divided into n subintervals with 

equal probability, . A value is randomly chosen from each and every subinterval. At this 

point, there are n generation values and n load values from each area. Then, a system 

state is constructed from randomly pairing area generation to area load. This constitutes 

n samples of system state for each area. Steps of LHS are presented as follows. 

1. Specify sample size, n. 

2. Construct discrete distribution function of area load and generation. 

3. Divide equivalent area generation and load distribution functions into n 

subintervals with equal probability.  

4. Randomly sample without replacement and record a value from each and every 

subinterval corresponding to its distribution in that subinterval. 

5. Perform random permutations to produce pairs of generation and load. 

6. Use each pair as a system state for reliability analysis. 

Note that in step 4, the n sampled values of each component need to be stored for 

the pairing in step 5. Then, after random pairing, reliability can be evaluated from each 

pair of area generation and load. MC, on the contrary, samples generation capacity state 

by randomly choosing capacity of each unit according to its failure and repair rates, and 

then summarizing over all available units in that area. Reliability evaluation is done 

without storing all sampled values of area generation and load. This means that LHS 

requires extra space to store samples of generation and load for pairing. In addition, the 
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equivalent distribution functions of area generation need to be constructed before 

sampling.   

To reduce the storage requirement for pairing and the extra computation time for 

constructing equivalent distribution functions, DLHS is proposed in this dissertation. 

The detailed procedure is presented in the next section. 

 

2.3 Discrete Latin Hypercube Sampling 

DLHS is a special case of LHS proposed specifically for a random variable with 

discrete distribution function. DLHS is performed at the unit level based on its failure 

and repair rates or its state probabilities to avoid constructing equivalent distribution 

function. Generally, a unit is represented by two-stage Markov model. This assumption 

can be relaxed and the same procedure can also apply to a multi-stage Markov model. 

Probability of a unit being in up and down states can be found from the following 

formula.  

ii

iU
ip

λμ
μ
+

=  
(2.2)

ii

iD
ip

λμ
λ
+

=  
(2.3)

where 

U
ip  = Probability of a unit i being in up state 

D
ip  = Probability of a unit i being in down state 

iμ  = Repair rate of a unit i 
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iλ  = Failure rate of a unit i 

For a pre-selected sample size, n, number of times that a unit will stay in up or 

down state is proportional to its probability in (2.2) and (2.3), respectively. Random 

sampling is performed to choose a state of each unit. Then, an area generation state is 

found by summing capacities of all available units. This means that instead of storing 

sampled state capacity as in LHS, DLHS stores only number of up or down states of a 

unit. DLHS also does not require constructing equivalent distribution function of area 

generation. Steps of DLHS are presented as follows.  

1. Specify sample size, n. 

2. For all units, compute and record number of times unit i is in up state. 

3. Randomly sample status of each generating unit without replacement. 

4. Summarize generation capacity from all available units.  

5. Choose load state by LHS and randomly pair with generation states. 

6. Use each pair as a system state for reliability analysis. 

It can be seen that DLHS requires recording only number of up states for all units 

while LHS requires storing n sampled values of generation states before pairing. This 

storage reduction is significant when the sample size is considerably large. Additionally, 

DLHS reduces storage space of tens of thousand of generation states resulting from 

equivalent discrete distribution function of area generation. If an area possesses m 

generating units with different capacity and a sample size is n, Table 2.1 shows the 

comparison of storage required between DLHS and LHS for a single area reliability 

analysis.  
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Table 2.1 Storage Comparison between DLHS and LHS 

Space required when LHS DLHS 
Creating equivalent PDF At most 2m - 

Selecting a generation state n m 
 

 

Since DLHS is applied at the component level, the resulting sampled distribution 

of DLHS is somewhat less representative of the actual distribution than that of LHS. 

However, the computation efficiency is increased and the storage space is reduced. Later 

analysis will show that the gain from reducing storage and computation time exceeds the 

loss in accuracy. 

 

2.4 Comparison of the Sampled Distributions 

The test system as shown in Appendix A is a multi-area representation of an 

actual power system [6] [17]. Single area reliability analysis is performed for all areas 

except area 6, 7, and 8 which have no load. Area generating unit statistics are given in 

Table A.1. Generating unit failure and repair rate data are from IEEE Reliability Test 

System 1996. Area loads are grouped into eight clusters each; the peak value is shown in 

Table A.2. Hourly load models can also be used. Reliability indexes of each area are also 

shown in Table A.2. Frequency and duration indices can be calculated using the 

formulas given in [43] [58] [64]. It can be seen that each area possesses a variety of 

generating units. This diversity in capacity and number of units affects smoothness of 

the equivalent generation distribution functions, which, in turn, affects the efficiency of 
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the sampling techniques. Next, the comparison of sampled distribution function is made 

among MC, LHS, and DLHS. 

In single area reliability analysis, area generation and load states are sampled to 

determine if the area suffers loss of load or not. Thus, the analysis can be divided into 

three parts; generation, combined generation and load, and then unserved energy. This 

chapter investigates the effect of sampling techniques, MC, LHS and DLHS on the 

distribution of all three parts of single area reliability analysis.  

In order to measure the accuracy among MC, LHS, and DLHS, the sampled 

distributions are compared with the actual ones found from enumeration. It may be 

difficult to compare the sampled distributions visually, thus a performance index is used 

to determine the closeness of sampled distribution to the actual one. The index is 

adopted from chi-square test and is shown in (2.4). The actual distributions are divided 

into intervals such that the expected number of occurrences in each interval is at least 

five.  

( )
∑
=

−
=

k

j

j

1 j

2
j

Expected
ExpectedObserved

Index ePerformanc  
(2.4)

where  

jObserved  = Observed frequency of interval j 

jExpected  = Expected frequency of interval j 

k  = Number of interval 
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The analysis is performed with five sample sizes, 1000, 2000, 5000, 10000, and 

20000 and repeated ten times for each sample size. The performance index is statistically 

inferred by averaging over 10 batches of samples to handle randomness in the sampling.  

 

Table 2.2 Number of States of Selected Area Generation Distribution for LHS 

Area 1 2 3 9 10 11 
No. of States 1777 21860 13513 1576 2276 3422 

 

 

In case of LHS, the distributions need to be stored during sampling while DLHS 

does not even require distribution construction. Table 2.2 gives the number of storage 

entries for LHS. From this table, it can be appreciated that the computational space 

would be dramatically reduced in case of DLHS as it would not require this storage. 

DLHS also reduces storage required during the course of sampling. For example, when 

the sample size is 1000 for area 2, LHS requires 1000 spaces while DLHS requires only 

32, which is number of units in area 2. When the sample size increases to 5000 for area 

2, LHS would require 5000 spaces while space requirement for DLHS remains at 32. 

 

2.4.1 Sampled Generation Distribution 

For LHS and DLHS, the performance indexes of sampled generation distribution 

of all areas are zero regardless of the sample size. Performance index of MC in this case 

is shown in Table 2.3. The sampled generation distributions from MC tend to approach 

the actual ones as sample size increases.  In particular, the generation distributions in 
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area 5 and 12 are closer to the actual ones than other areas. This may be due to the fact 

that their unit quantities are small and their capacities are evenly distributed. This would 

indicate that generating unit variety in each area contributes to the sampling accuracy.  

 

Table 2.3 Performance Index of Sampled Generation Distribution from Monte Carlo 

Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 2.90 2.72 2.95 2.26 4.21 
2 11.12 12.58 12.22 11.48 9.99 
3 9.36 12.35 10.24 9.48 9.52 
4 4.55 3.58 4.47 4.11 3.69 
5 0.33 0.38 0.29 0.22 0.22 
9 2.08 0.88 1.21 1.48 1.42 
10 7.19 5.79 6.09 7.04 5.50 
11 3.38 5.01 5.34 3.45 6.80 
12 0.31 0.16 0.11 0.10 0.08 

 

 

The sampled generation distributions from both LHS and DLHS perfectly 

represent the actual generation distribution. This means that DLHS performs as well as 

LHS in terms of accuracy but requires less computation time and storage. 

 

2.4.2 Sampled Combined Generation and Load Distribution 

Performance indexes of MC, LHS, and DLHS are shown in Table 2.4, Table 2.5, 

and Table 2.6 respectively. It can be seen that the performance indexes in the case of 

LHS and DLHS are smaller than those of MC. This would indicate a closer fit to the 
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actual distribution for LHS and DLHS. By examining the equation of the performance 

index, this means that that MC would give higher deviation of observed interval 

frequency from the expected frequency, indicating a higher degree of randomness. 

 

Table 2.4 Performance Index of Sampled Combined Generation and Load Distribution 

from Monte Carlo Sampling 

Sample size Area 
1000 2000 5000 10000 20000 

1 27.27 36.97 72.10 127.67 240.54
2 20.08 28.50 50.63 74.35 140.96
3 19.83 26.03 39.83 62.63 111.58
4 14.09 15.86 27.83 41.06 67.69 
5 27.47 36.18 87.65 153.24 285.43
9 21.24 32.62 70.21 119.08 222.75
10 24.01 32.47 67.09 113.96 226.34
11 14.28 23.86 32.75 68.03 95.85 
12 23.83 36.66 88.21 149.47 286.22
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Table 2.5 Performance Index of Sampled Combined Generation and Load Distribution 

from Latin Hypercube Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 8.84 7.80 8.90 5.50 7.72 
2 9.05 10.73 11.31 13.67 11.40 
3 10.35 9.97 14.53 11.93 14.01 
4 7.61 7.92 8.61 8.00 7.17 
5 4.21 2.70 2.62 3.65 3.09 
9 5.92 6.76 7.76 3.54 6.28 
10 9.32 9.69 9.99 8.72 7.29 
11 9.65 10.56 7.56 8.51 7.26 
12 2.57 4.18 2.34 2.22 5.02 

 

 

Table 2.6 Performance Index of Sampled Combined Generation and Load Distribution 

from Discrete Latin Hypercube Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 7.58 9.10 9.93 10.26 9.05 
2 11.96 15.19 14.67 12.14 11.87 
3 8.73 16.68 11.93 11.41 12.09 
4 8.13 8.46 7.34 10.33 7.61 
5 3.17 3.22 3.03 4.01 4.65 
9 5.06 6.72 4.46 4.87 4.62 
10 9.07 7.70 10.80 7.27 11.95 
11 9.10 8.56 9.46 9.45 12.46 
12 2.83 2.69 3.27 3.23 2.44 

 

 

It can be seen from Table 2.5 and Table 2.6 that the distributions obtained using 

DLHS, represent the actual ones as closely as LHS. 
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2.4.3 Sampled Unserved Energy Distribution 

Unserved energy distribution is the conditional probability distribution function 

of combined generation and load when the system load is not satisfied. Performance 

indexes of MC, LHS, and DLHS are shown in Table 2.7, Table 2.8 and Table 2.9 

respectively. Performance index of MC is higher than LHS and DLHS in all areas, 

especially in area 10 and 12, which have high LOLP. This indicates that LHS and DLHS 

represent unserved energy distribution better than MC. In addition, sample distribution 

from DLHS, again, represents the actual ones as well as that from LHS. 

 

Table 2.7 Performance Index of Sampled Unserved Energy Distribution from Monte 

Carlo Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 2.50 1.99 4.69 3.43 2.31 
2 1.45 1.21 1.68 2.26 0.81 
3 1.61 1.25 1.01 1.91 1.96 
4 3.16 4.95 2.44 4.03 4.33 
5 0.78 1.06 1.01 0.90 1.08 
9 2.86 3.26 2.59 5.33 2.24 
10 11.19 11.22 13.90 13.67 18.17 
11 0.80 1.43 1.22 1.37 1.32 
12 13.28 12.60 15.42 25.31 20.67 
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Table 2.8 Performance Index of Sampled Unserved Energy Distribution from Latin 

Hypercube Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 3.01 2.60 2.83 2.92 1.93 
2 0.55 0.58 0.58 0.99 0.69 
3 0.97 0.41 1.15 0.82 0.33 
4 1.50 1.60 3.34 2.07 2.02 
5 0.40 1.10 0.76 0.88 0.34 
9 1.92 4.11 2.85 2.49 1.47 
10 9.77 9.80 11.70 8.07 12.75 
11 0.46 0.44 0.73 0.43 0.69 
12 8.48 10.01 8.79 7.45 9.58 

 

 

Table 2.9 Performance Index of Sampled Unserved Energy Distribution from Discrete 

Latin Hypercube Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 2.09 1.81 3.13 2.62 3.90 
2 3.28 0.85 1.44 0.52 1.74 
3 0.74 1.29 1.19 0.91 0.82 
4 3.45 3.41 3.21 3.93 3.50 
5 1.07 1.23 1.01 0.99 1.31 
9 2.19 2.84 3.19 2.23 2.67 
10 9.98 9.84 13.30 10.71 13.87 
11 0.75 0.64 2.00 1.08 0.99 
12 10.09 8.62 10.15 10.05 9.35 

 

 

It should be noted that unserved energy distribution represents tail-end region of 

combined generation and load distribution. The expected number of occurrences is quite 

small in this region especially in areas 2, 3, 5, and 11 where LOLP is small. The 
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performance indexes for these areas seem to be small, or equivalently, the sampled 

distributions are very close to the actual ones; however, the reliability estimates in the 

next section will show otherwise. This behavior of performance index is due to the small 

occurrence of values of actual distribution. 

 

2.5 Comparison of Reliability Indexes 

Reliability indexes in this study are loss of load probability and expected 

unserved energy. Percentage error of the estimates is found from averaging the 

percentage absolute deviation from the actual value, over all ten batches of sample. The 

formula is shown in the following.  

%100
Actual

ActualEstimate1Error
1

×
−

= ∑
=

m

i

i

m
 

(2.5)

where  

iEstimate  = Reliability index of batch i 

Actual  = Reliability index from enumeration 

m  = Number of batch 

The resulting percentage errors from different sampling techniques are shown in 

the following. 

 

2.5.1 Loss of Load Probability Estimation 

Percentage error of LOLP estimates are shown in Table 2.10, Table 2.11, and 

Table 2.12. As sample size increases, the estimates are closer to the actual values for all 
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sampling techniques. In addition, LHS and DLHS produce closer LOLP estimates than 

MC, especially for areas 10 and 12 where LOLP is comparatively high. Percentage error 

of the estimates shows that LHS and DLHS outperform MC for all areas. Overall LHS 

appears to be the best predictor for LOLP, especially in areas with small LOLP such as 

area 2, 3, 5, and 11. 

 

Table 2.10 Percentage Error of Estimated LOLP from Monte Carlo Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 25.60 16.99 8.93 11.03 5.84 
2 58.76 32.29 31.40 22.28 10.45 
3 110.03 69.24 38.46 42.32 31.36 
4 26.62 27.27 8.26 9.21 5.39 
5 45.23 35.08 22.03 15.81 10.83 
9 19.13 16.81 8.72 8.75 5.99 
10 07.27 8.37 6.61 5.67 4.41 
11 40.00 32.56 24.86 15.18 11.82 
12 7.17 4.84 5.24 6.16 4.89 

 

 

Table 2.11 Percentage Error of Estimated LOLP from Latin Hypercube Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 24.01 11.40 12.62 8.41 4.53 
2 37.98 29.38 16.46 16.70 10.50 
3 80.78 38.09 47.69 25.77 8.86 
4 19.66 13.50 9.01 4.76 2.98 
5 28.61 38.46 19.26 14.52 7.14 
9 15.82 10.94 9.25 4.02 3.51 
10 5.74 3.71 2.80 1.69 1.55 
11 30.31 19.24 15.52 9.18 8.14 
12 2.99 2.19 1.25 0.72 0.58 
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Table 2.12 Percentage Error of Estimated LOLP from Discrete Latin Hypercube 

Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 13.49 14.47 6.66 6.85 6.53 
2 75.97 34.07 29.12 10.88 13.94 
3 80.78 69.64 42.32 30.01 19.81 
4 21.30 13.58 10.45 4.97 5.19 
5 53.23 36.62 24.31 17.05 13.97 
9 16.22 13.27 6.13 3.88 4.48 
10 9.02 4.89 3.30 1.87 1.99 
11 41.44 25.16 28.29 15.22 10.76 
12 3.84 2.09 1.93 1.02 0.55 

 

 

2.5.2 Expected Unserved Energy Estimation 

Percentage errors of EUE estimates are shown in Table 2.13, Table 2.14, and 

Table 2.15. As sample size increases, the estimates are closer to the actual values for all 

sampling techniques. In general, LHS and DLHS perform better than MC. More 

specifically, LHS predicts EUE better than MC almost in all areas except in area 3, 

where DLHS produces the best EUE estimates in areas 2 and 3. LHS predicts EUE the 

best in areas with high LOLP (area 10 and 12) where DLHS predicts EUE the best in 

areas with low LOLP (area 2 and 3). 
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Table 2.13 Percentage Error of Estimated EUE from Monte Carlo Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 16.34 8.93 5.73 6.77 3.63 
2 43.02 42.16 20.75 15.06 11.95 
3 90.21 54.63 61.83 28.47 23.37 
4 18.77 18.34 14.72 8.32 5.19 
5 53.66 41.01 23.76 13.07 7.02 
9 10.45 7.00 6.80 4.63 3.29 
10 9.11 7.71 5.25 1.94 2.60 
11 48.30 28.53 15.23 5.81 8.79 
12 5.91 4.65 3.16 2.48 1.88 

 

 

Table 2.14 Percentage Error of Estimated EUE from Latin Hypercube Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 11.72 13.59 6.47 7.40 2.20 
2 52.36 28.87 16.24 16.96 9.58 
3 104.84 46.10 56.66 21.43 25.34 
4 15.41 11.61 11.09 9.01 4.14 
5 31.12 36.67 19.25 13.04 8.26 
9 8.77 15.57 5.73 4.96 2.08 
10 9.40 4.80 3.50 2.42 1.94 
11 25.80 15.72 11.85 14.24 4.27 
12 4.10 3.40 1.75 0.92 0.87 
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Table 2.15 Percentage Error of Estimated EUE from Discrete Latin Hypercube Sampling 

Sample size Area 
1000 2000 5000 10000 20000

1 18.72 13.30 13.04 5.37 4.54 
2 56.59 28.11 20.55 14.84 6.44 
3 79.79 49.79 41.93 20.45 18.51 
4 19.52 15.47 8.83 11.20 6.38 
5 46.32 16.53 16.02 8.22 8.66 
9 17.29 14.30 6.98 4.38 4.06 
10 8.21 6.60 3.54 3.40 2.64 
11 46.50 36.88 19.49 13.00 8.84 
12 5.88 4.30 2.89 1.77 1.27 

 

 

Reliability indices, as generally used, are the mean values of the distributions of 

these indices. It appears that LHS and DLHS are able to predict these distributions more 

accurately but the differences in the mean values of indexes are not that significant. This 

is because the mean values are generally dominated by the high probability region of the 

distribution which can be captured effectively by all three methods, especially when the 

sample size is large. On the other hand, the comparison of the distributions requires 

consideration of the entire spectrum including low probability regions where the LHS 

and DLHS appear to perform better by virtue of the constrained sampling from all strata. 

 

2.6 Discussion and Conclusions 

Latin Hypercube Sampling (LHS) has been investigated for reliability evaluation 

of power systems. Due to its storage requirement during the sampling and extra 

computation time for equivalent distribution construction, a new sampling technique 
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called Discrete Latin Hypercube Sampling (DLHS) is proposed. Both sampling 

techniques are applied to a single area reliability analysis in comparison with traditional 

Monte Carlo (MC) simulation. Generation distribution, combined generation and load 

distribution and unserved energy distribution resulting from LHS, DLHS and MC are 

analyzed and compared with the actual distribution from enumeration.  

The results indicate that LHS and DLHS represent sampled distribution better 

than MC. In addition, DLHS performs as well as LHS but with less computation time 

and storage. The distribution of unserved energy provides the spectrum of potential load 

loss even with small probability; thus, the information can be helpful for risk assessment 

since EUE tells only the expected value. The comparison between estimated reliability 

indexes; LOLP and EUE, from all sampling techniques to the actual one from 

enumeration is made. Percentage error is used to show deviation of sampled indexes 

from actual indexes. The results show that LHS and DLHS generally predict both 

indexes slightly better than MC.  

It should be noted that LHS and DLHS are also able to provide distributions that 

are close representations of the actual ones. Therefore, these techniques are especially 

important when we need sampled states in the optimization process rather than simply 

computing the indexes. This information would also be useful in risk analysis. 

Furthermore, DLHS can be considered as a mixed sampling technique between MC and 

LHS. The level of randomness of DLHS is smaller than MC yet higher than LHS since it 

puts constraints on how many failure states each unit can be in, not on the distribution. 

DLHS needs less storage requirement than LHS. On the other hand, the distribution is 
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less representative than LHS since LHS uses a constrained sampling from the actual 

distribution. Finally the objective of this study is not to universally promote one method 

over the others. All the three methods have their respective strengths and can be used 

where appropriate. 
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CHAPTER III 

MULTI-AREA POWER SYSTEM ADEQUACY PLANNING USING MONTE 

CARLO SIMULATION WITH SENSITIVITY ANALYSIS 

 

3.1 Introduction 

In this chapter, sensitivity analysis of the effect of additional generation in each 

area on system reliability is conducted utilizing Monte Carlo simulation and a 

perturbation procedure. The analysis is a preliminary test for the prospective location in 

which the additional generation has the most effect on system reliability. System loss of 

load probability is used as a reliability index to quantify this effect in different locations. 

A benefit of installing new capacity in a certain area is measured as a decrement of 

system loss of load probability. A candidate location will be determined from this 

benefit. The proposed simulation procedure is a perturbation analysis of generation 

addition in each area along with Monte Carlo simulation in the presence of system loss 

of load.  

This chapter is organized as follows. Section 3.1 presents system modeling. 

Perturbation procedures are proposed in section 3.3. Section 3.4 shows computational 

results. Discussion and conclusions are given in the last section. 

 

3.2 System Modeling 

Multi-area power systems can be formulated as a network flow problem where 

each node in the network represents an area in the system and each arc represents tie line 
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connection between areas. Source and sink nodes are introduced to represent generation 

capacity and load. Discrete probability distribution function of each generation system 

and transmission line is constructed from the capacity and forced outage rates. System 

load vectors are constructed based on hourly forecasted data in each area utilizing K-

mean clustering algorithm. Discrete joint probability function of system load is then 

derived. It is assumed that the additional generation is 100% reliable for all areas. In this 

analysis, capacity flow model and Ford Fulkerson algorithm is employed to determine 

loss of load state. The following presents detailed modeling of area generation, area 

load, and tie lines correspondingly. 

 

3.2.1 Area Generation Model 

Generation units in each area are given forced outage rate, repair time and their 

capacities. Discrete probability distribution function is constructed based on unit 

parameters assuming two stage Markov process, up and down states. The distribution 

function construction utilizes unit addition algorithm approach. The probability table 

contains numbers of state capacity including zero and its corresponding probability. Let 

icv   =  Capacity vector of area i  

ipv   =  Probability vector of area i such that ( ) ii pc vv =Pr  

For computational efficiency, the generation state capacity will be rounded off to 

a fixed increment so that only minimum capacity state and number of states in each area 

are stored. A state with very small probability will be neglected. 
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3.2.2 Tie Line Model 

It is assumed that transmission line capacity, forced outage rate and repair rate 

are given. Discrete probability distribution of tie-line capacity between areas is 

constructed based on the given parameters using two stage Markov process. The tie-line 

model is represented by (3.1), which contains the connection areas (from area, to area), 

its capacity and its corresponding probability (3.2).  

( )ijijij bft
vvv

,=  (3.1)

( )ij
t
ij tp

vv Pr=  (3.2)

where 

ijt
v

 = Tie-line capacity vector from area i to area j 

ijf
v

 = Tie-line capacity vector from area i to area j in forward direction 

ijb
v

 = Tie-line capacity vector from area i to area j in backward direction 

t
ijpv  = Probability vector of tie-line capacity from area i to area j 

 

3.2.3 Area Load Model 

Discrete joint distribution of area load is composed employing hourly load data 

in each area to preserve the correlation between area loads and is presented in (3.3) 

( )h
n

hhh LLLL ,,, 21 K
v
=  (3.3)

where  

hL
v

 = Load vector for the hour h 
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h
iL   =  Load for the hour h in area i 

n = Number of areas in the system 

Due to numerous load states, they are grouped together utilizing clustering 

algorithm to an appropriate number of states. To simplify this, peak load will also be 

assumed in some applications. 

 

3.3 Perturbation Procedure 

Perturbation analysis is applied to estimate the derivatives of generation 

reliability indices in Monte Carlo simulation with respect to generation parameters such 

as mean up time and mean down time in [54] [64]. The analysis requires single Monte 

Carlo simulation followed by the sensitivity analysis of reliability indices, which is 

obtained from the derivative estimation. Perturbation concept is extended in this context 

to account for changes in generation capacity in each area independently. The possibility 

to apply this procedure mathematically to both sequential simulation and state sampling 

Monte Carlo simulation is explored. The objective of this procedure is to determine the 

derivative of loss of load probability with respect to addition capacity in each area.  

 

3.3.1 Sequential Simulation 

This simulation can be completed by advancing time in two cases; fixed step or 

by the next event.   
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3.3.1.1 Fixed Time Interval 

Time in each stage is constant over the simulation period. Let 

T        =  Time duration of each state 

N        =  Number of simulation periods 

Gis      =  Generation in area i for state s 

n         =  Number of area 

TTFis =  Total transfer flow to area i for state s [55] [70] 

Lis  =  Load at area i for state s 

Loss of load at state s occurs when 

0<−+ isisis LTTFG  (3.4)

Let  

( )isisisi LTTFGP ,,   

= Loss of load probability for area i obtained from simulation 

( )isisis LTTFGP ,,   

= System loss of load probability  

Then, 
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(3.6)

Using perturbation analysis, generation in each area is perturbed by 

individually, loss of load probability in area i becomes (3.7). iGΔ
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and, 
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where  

iPΔ  = Change in loss of load probability 

Likewise, change in system of loss of load probability is (3.9). 
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(3.9)

 

3.3.1.2 Next Event Method 

Time in each stage is advanced by the next event. Let 

Ts = Time duration of state s 

Ttot  = Total simulation time  

N  = Number of simulation periods 

Gis  = Generation in area i for state s 

n  = Number of area 

TTFis  = Total transfer flow to area i for state s 

Lis  = Load at area i for state s 

The same concept is applied here. Loss of load probability in each area i can be 

written as (3.10). 
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System loss of load probability is (3.11). 
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By perturbation analysis, generation in each area is perturbed by 

individually, loss of load probability in area i becomes (3.12). iGΔ
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where  

iPΔ  = Change in loss of load probability 

Then, change in system of loss of load probability is (3.14). 
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Since the change in loss of load probability as a function of addition generation is 

not continuous, derivative with respect to iGΔ does not exist. Mathematical analysis may 

not be directly applied to the problem. However, this perturbation concept can simply be 

implemented by artificially increasing generation in each area when loss of load exists in 

state sampling simulation. 
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3.3.2 State Sampling Simulation 

The proposed simulation utilizes state sampling method because of its simple 

implementation. Whenever loss of load state is encountered, perturbation analysis 

module is activated. The process will explicitly add generation in each area with 

assumption of full availability of the additional unit. Then, the flow calculation is 

determined to identify loss of load state. Major drawback of this procedure is its 

convergence criteria. Perturbation analysis of additional generation in each area (when 

system suffers loss of load) produces more uncertainty in the simulation. Therefore, the 

simulation bound for nominal loss of load probability should be tighter than a commonly 

used bound of 5 %. In this chapter, convergence criteria of 3 % is used which should 

provide reasonable accuracy. It should be emphasized here that this simulation requires 

single extended Monte Carlo simulation instead of one Monte Carlo simulation for each 

area. 

 

3.4 Computational Results 

The test system is thirteen-area power system given in Appendix B. Loss of load 

probability (LOLP) of individual areas before generation is shown in Table 3.1. 

Generating unit failure and repair rate data are from IEEE Reliability Test System 1996. 

System peak load is assumed to be increased by 1.275 times the original load for area 1- 

3, and 10-12, by 1.2 times the original load for area 4, 5, 8 and 13. The system LOLP 

before generation addition is 0.004419. Simulation result is shown in Fig. 3.1. 
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Table 3.1 Area LOLP before Generation Addition 

Area LOLP 
1 0 
2 0.000020 
3 0.000010 
4 0.000173 
5 0 
8 0.002477 
10 0 
11 0 
12 0.000026 
13 0.001713 

 

 

 

Fig. 3.1 Area LOLP after Generation Addition 

 

As seen from Table 3.1, area 8, with LOLP of 0.002477, suffers most from loss 

of load and contributes most to system loss of load probability. Therefore, one should 
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expect that generation addition in this area would improve system LOLP the most. 

System LOLP with additional generation from each area is shown in Fig. 3.1.  

System LOLP declines with the highest slope when new generation is added to 

area 8 while it remains unchanged when generation is added to areas 1-3, 6-7, and 9-11. 

Generation addition to area 4, 5, and 12 also improve system LOLP to a certain degree. 

It can be seen from the system diagram in Appendix B that the areas 4-5, and 12 are 

closely located and connected to area 8 and 13 that suffer most from loss of load, the 

affected areas thus receive capacity assistance from their neighborhood areas. The 

simulation suggests that additional generation should be located in area 13. The amount 

of power that should be produced depends on the desired system reliability level and can 

be found from Fig. 3.1. 

 

3.5 Discussion and Conclusions 

The simulation procedure proposed here can be used as a guideline to quantify 

the effectiveness of additional generation in each area. The procedure is simple yet 

effective enough to provide a relationship of reliability index of interest and generation 

after one Monte Carlo simulation. The assumption of 100% reliable generation unit can 

be relaxed in the simulation phase. Furthermore, each area can have different forced 

outage rates which will represent a more realistic system. 

However, the procedure is limited since it can only quantify the effect of one area 

generation. In real applications, it would be more reliable and applicable to locate 

generation in more than one area. Therefore, the effect of combination of generation 
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from many areas should is studied in further chapters. Moreover, after the effect of 

reliability index and generation is analyzed, the optimization scheme should be proposed 

and applied to make a decision based on the cost and benefit of the additional units.   
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CHAPTER IV 

MULTI-AREA POWER SYSTEM ADEQUACY PLANNING USING GLOBAL 

DECOMPOSITION WITH SCENARIO ANALYSIS* 

 

4.1 Introduction 

Multi-area reliability analysis is performed using two major approaches; Monte-

Carlo simulation and state-space decomposition. In Monte-Carlo simulation, failure and 

repair history of components are created using their probability distributions. Reliability 

indices are estimated by statistical inferences. The basic concept of state-space 

decomposition, originally proposed in [87], is to classify the system state space into 

three sets; acceptable sets (A sets), unacceptable sets (L sets), and unclassified sets (U 

sets) while the reliability indices are calculated concurrently. Advanced versions of 

decomposition such as simultaneous-decomposition for including load and planned 

outages in a computationally efficient manner are described in [72], [76], [78], [80]. One 

of many applications of this method is multi-area production costing [61] with the 

objective of determining the optimal sets of unit addition.  

Previously, in Chapter III, the sensitivity analysis along with Monte Carlo 

simulation is proposed to the solution of multi-area power system adequacy planning 

problem. One of the main drawbacks of MC is that the method may require a long 

history to produce a converged result. This study develops a comparative algorithm for 

                                                 
* Reprinted with permission from “A Global Decomposition Algorithm for Reliability 
Constrained Generation Planning and Placement” by P. Jirutitijaroen and C. Singh, Proceedings 
of the 9th International Conference on Probabilistic Methods Applied to Power Systems, 
Stockholm, Sweden, June 2006. © 2006 IEEE 
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selecting the best generation combination utilizing a technique called global 

decomposition method for reliability calculation. The prospective additional units are 

included in the system and the decomposition process is performed once. The reliability 

indices were then calculated by extracting only the states of interest. Even though global 

decomposition is involved with large number of states, it did not significantly affect the 

computation time. Scenario analysis is proposed to determine the best generation 

combination. The comparison is made concurrently with global decomposition process 

to improve computational efficiency and reduce memory required.  

The chapter is organized as follows. Section 4.2 reviews concepts of 

decomposition approach for multi-area power system reliability evaluation. Scenario 

analysis is given in section 4.3. Discussion and conclusions are given in the last section. 

 

4.2 Review of Decomposition Approach for Reliability Evaluation 

A multi-area power system is modeled as given in section 3.2. The system state 

space consists of area generation states, tie line capacity states, and area load states. 

Decomposition approach analytically partitions the state spaces into the following three 

different sets of states. 

1. Sets of acceptable states (A sets): The success states that all area load is satisfied.  

2. Sets of unacceptable states (L sets):  The failure states or Loss of load states that 

some load areas are not satisfied. 

3. Sets of unclassified states (U sets): The states that have not been classified into A 

or L sets.  
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The state space is first categorized as a U set and then further decomposed into A 

sets, L sets, and U sets. The process of decomposition is presented in the following. 

 

4.2.1 Network Capacity Flow Model 

The system is transformed into network capacity flow model as shown in Figure 

4.1. Each node in the network represents an area and each arc connecting between nodes 

represents tie line capacity in multi-area power systems. Artificial source and sink nodes 

are created to represent area generation and load. An area generation arc connects source 

node to its area while an area load arc connects its area to sink node. Every arc in the 

network is associated with capacity states and corresponding probabilities.  

 

…
…
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…
…

. Power system network  
Tie line between areas 

ijt
v

 

L
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Fig. 4.1 Power System Network: Capacity Flow Model 

 

 

4.2.2 State Space Representation 

The state space is defined as equation (4.1). 
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where   

kM  = Maximum state of arc k. 

km   = Minimum state of arc k. 

N  = Number of arcs in the network 

 A system state, X, can assume any value between its minimum and maximum 

state as shown in (4.2).  

[ ]NxxxX K21=  (4.2)

where , and kkk Mxm ≤≤

kx   = State of arc k. 

The process of partitioning the state space to A and L sets involves determining 

maximum flow in the network.  

 

4.2.3 Partitioning an Unclassified Set 

A maximum flow from artificial source to sink node is found in order to classify 

system loss of load state. Ford-Fulkerson algorithm is implemented with breadth-first 

search to find an existing flow in the network. Given a U set, unclassified set or state 

space (S set, as in (4.1)) at the beginning of the decomposition, the process of 

partitioning into A and L sets is explained in the following.  
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The capacity of each arc in the network is assigned to be the capacity of 

maximum state in the set. After the maximum flow is performed, the resulting flow is 

expressed as (4.3). 

[ ]NfffF K21=  (4.3)

where 

kf  = Flow in arc k from the maximum flow calculation 

If the resulting maximum flow is less than the sum of area loads, then obviously 

the U set does not have any success state in it. On the other hand, if the maximum flow 

from the calculation is equal to the sum of area loads, then any state above the resulting 

flow in the network ( ) will result in success state, let kf

ku  = State of arc k that has capacity equal to or just greater than  kf

Then, the A set can be obtained from (4.4). 
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In order to extract loss of load sets, a systematic approach is to reduce each 

capacity arc until system reach loss of load state given that all other arcs are at its 

maximum states in U set. With this approach, the number of L sets is equal to the 

number of arcs in the network (N). The construction of L sets is found from the ‘v’ 

vector. Let 

kv  = The minimum state of arc k that will produce system success when all 

other arcs are kept at its maximum capacity in the U set. 
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 This means that if the capacity of arc k is below , the system will suffer loss of 

load in any area irrespective of all other arcs capacity. The direct calculation of ‘v’ 

vector would require many flow calculations with reduced capacity of arc k until the 

system reaches loss of load state. However, this procedure would require so much time 

and thus reduce computational efficiency.  

kv

The efficient procedure of evaluating ‘v’ vector is described in the following. 

Instead of making flow calculation every time the capacity of each arc is reduced, this 

vector can be found from the flow calculation of the residual network. Let 

ke  = The assisting flow from the residual network when arc k is removed 

 The value of  is evaluated from maximum flow calculation of the residual 

network with arc k removed. The source and sink node for the flow calculation is 

defined from the direction of arc k. This means that if arc k is removed from the system, 

the assisting flow of capacity  will be delivered, or equivalently, the system will still 

remain in success state with this assistance level  from other arcs.  

ke

ke

ke

 Then, ‘v’ vector is calculated from (4.5) 
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where 

kx   = State of arc k. 

kf  = Flow in arc k from the maximum flow calculation 

ke  = The assisting flow from the residual network when arc k is removed 
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km   = Minimum state of arc k in U set 

L sets are also constructed to make them disjointed sets. The general formulation 

of L set is (4.6).  
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(4.6)

Based on A and L sets, the next U sets can be constructed as (2.10) 
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(2.10)

 The decomposition process creates N numbers of L sets and N numbers of U sets 

each time and will continue until the probability of U sets is insignificant. Some of these 

sets may be null sets. 

 

4.2.4 Probability Calculation 

Let X be any set in the form (4.7), 
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where 

X
kM  = Maximum state of arc k in set X 

km   = Minimum state of arc k in set X 

N  = Number of every arc in the network 

 Probability of any set is calculated from (4.8). 
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where 

kx   = State of arc k  

kxp   = Probability of state  of arc k  kx

 Equation (4.8) can be simplified by utilizing cumulative probabilities in (4.9). 
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where 

kxp   = Cumulative probability of state  of arc k  kx

 In later applications, (4.9) is used for probability calculation. 

 

4.3 Scenario Analysis  

In this approach, prospective generation locations in the system are pre-selected 

by an expert. These candidate locations create various possible generation combinations, 

each of which yields different system reliability and cost. The generation combinations 

with acceptable costs are analyzed and the selection for the best location is based on 

system reliability, system loss of load probability in this case, with additional generation.  

In this analysis, all prospective generation units and tie lines are included in the 

state space prior to the decomposition. The decomposition process applied to this 

augmented state space is then called global decomposition process. The process of 

decomposition is the same as described in the previous section. Reliability indices of any 
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generation and transmission line combination can be extracted from the global state 

space by assigning zero probability to the omitted states.  

The concept of global decomposition is based on the fact that decomposition 

depends only on the state capacities and not the state probabilities. In this application, 

the problem is to select the best generation combination in the system that will yield the 

maximum reliability. The state space contains maximum possible number of additional 

generators in each area. The sets obtained from this state space are valid for all 

scenarios. Probability of each scenario can then be evaluated by allowing zero 

probability for some omitted states because of the non-inclusion of certain generators. 

Scenario analysis examines all possible generation combinations with global 

decomposition as a reliability evaluation tool. The advantage of this tool is that a 

reliability index of any combination can be calculated after a single decomposition. A 

comparison is made to determine the best generation location. Instead of making a 

comparison after the global decomposition is complete, this research proposes a 

comparison algorithm that works interactively with each step of decomposition to gain 

computational efficiency. Two comparison algorithms are proposed for generation and 

transmission lines and presented in the following. 

 

4.3.1 Comparison Algorithm for Generation Planning  

Recall that at every step of decomposition, one A set, N L sets and N U sets are 

generated from one U set. The A sets will be deleted to minimize memory usage since 

the goal of this evaluation is to extract all L sets for system loss of load probability 
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computation. The U sets have to be kept and partitioned further into A, U and L sets. 

After global decomposition is performed, the state space will be completely partitioned 

into various L sets. Probability of each set is calculated from (4.9). System loss of load 

probability of each combination can be computed from the summation of probability 

over all L sets by assigning zero probability to the omitted states because of the absence 

of generators in the combination under consideration.  

A straightforward approach for comparison is to compute system loss of load 

probability of each combination after complete global decomposition and then make 

comparison. This study proposes an algorithm that compares and cuts off some low 

performance generation combinations at each stage of decomposition. The proposed 

algorithm computes probability of A sets, and L sets of all possible combinations at each 

stage of decomposition. If the probability of A sets of combination i is greater than 

combination j, then, the following comparison is made.  

( ) j
L

i
A PP <−1  (4.10)

where 

i
AP  =  Probability of A sets from combination i 

j
LP  = Probability of L sets from combination j 

Equation (4.10) implies that maximum system loss of load probability of 

combination i is smaller than current (partial) system loss of load probability of 

combination j. This means that even if the resulting U sets of combination i were all loss 

of load sets, system loss of load probability from combination i will still be smaller than 

that from combination j. At each stage of decomposition, a comparison will be made and 
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low performance combination will be deleted from the possible solution list. The 

procedure may not require complete global decomposition process. It can be stopped 

when the possible solution list has only one combination or for all possible solutions, 

probability of unclassified sets is less than an epsilon. The steps of the algorithm are 

outlined below. 

Step 0. Initialization 

− System state space is the first U set.  

− Possible solution list ← every combination i. 

Step 1. Decomposition and Evaluation 

− Partition U sets into A and L sets 

− Compute and update i
AP  and i

LP  for every combination i. 

− Find i
A   

iA PP
∀

= maxmax

Step 2. Comparison 

− If ( )max1 A
i

L PP −> , delete combination i from possible solution list. 

Step 3. Stopping criterion 

− Stop if number of combination is 1 or for all i ε<−−= i
L

i
A

i
U PPP 1  

− Otherwise, create U sets and go to step 1. 

This method improves computational efficiency and reduces memory usage for 

storing U sets and L sets. At each stage of decomposition, A and L sets will be deleted 

after probability evaluation. Probability of all possible scenarios is evaluated and a 

comparison in (4.10) is made to delete some solutions. When some low performance 
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solution is cut off, number of possible solutions that need to be evaluated will be smaller 

at each iteration. 

4.3.2 Comparison Algorithm for Transmission Line Planning 

Generally, reliability improvement is more marked with additional generators 

than the transmission lines. In this section, the previous algorithm is modified to make it 

easier to differentiate bad solutions from the good ones. At each stage, there will be 

some low probability U sets discarded during the decomposition process for better 

computational efficiency. The cumulative probability of the discarded U sets can be 

relatively significant in comparison process and should be taken into account in (4.10). 

Therefore, comparison equation is modified as follows.  

( )( ) j
L

i
A

i
U PPP <−−1  (4.11)

where 

i
UP  = Probability of discarded U sets from combination i 

Probability of discarded U sets can be computed from (4.12).  

( )i
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where 

i
UP  = Probability of retained U sets from combination i 

Then, the comparison equation becomes,  

j
L

i
L

i
U PPP <+  (4.13)

The process of selecting the best combination may not require completing global 

decomposition. It can be stopped when the possible solution list has only one 



 53

combination or for all possible solutions, probability of unclassified sets is less than an 

epsilon. The steps of the algorithm are outlined below. 

Step 0 Initialization 

− System state space is the first U set.  

− Possible solution list ← every combination i. 

Step 1 Decomposition and Evaluation 

− Partition U sets into A and L sets 

− Compute and update i
AP , i

UP and i
LP  for every combination i. 

− Find ( )i
L

i
U   

i
PPP +=

∀
minmin

Step 2 Comparison  

− If minP , delete combination j from possible solution list. P j
L >

Step 3 Stopping criterion 

− Stop if number of combination is 1 or for all i, ε<i
U  P

− Otherwise, create U sets and go to step 1. 

This method improves computational efficiency and reduces memory usage for 

storing U sets and L sets. The A and L sets will be deleted after evaluating their 

probabilities at each stage of decomposition. Probability of all possible scenarios is 

evaluated and a comparison in (4.13) is made to delete some solutions. When some low 

performance solutions are deleted, number of possible solutions that need to be 

evaluated will be smaller at each iteration. 
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4.4 Computational Results 

The test system used in Chapter III is modified to mask the obvious solution by 

combining area 8 to area 12. The resulting system has only twelve area and its 

parameters are given in Appendix A. Generating unit failure and repair rate data are 

from IEEE Reliability Test System 1996. 

 

4.4.1 Generation Planning  

It is assumed that the budget is $150 million and the additional generators have 

capacity of 50 MW each. Table 4.1 shows area generation and loads as well as 

availability and cost per generator in prospective areas which are areas 1 to 5, and 9 to 

12. Maximum number of unit additions allowed in each area is three units, which are 

included in the state space before performing global decomposition. Total number of 

scenarios is 165, i. e., 165 combinations of generators are to be analyzed. Probability 

distribution table for generation and tie-lines are developed with a capacity increment of 

50 MW. System probability of loss of load before additional generation is 0.02639.  
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Table 4.1 Generation and Load Parameters 

Area 
j 

Load (MW) Generation (MW) FOR of additional 
units 

Cost per unit ($m)

1 1400 2550 0.05 50 
2 8000 23600 0.05 50 
3 4800 15100 0.05 50 
4 1200 3100 0.05 50 
5 300 100 0.05 50 
6 0 550 - - 
7 0 3500 - - 
8 0 400 - - 
9 1000 2100 0.05 50 
10 1200 3100 0.05 50 
11 1550 4150 0.05 50 
12 1300 900 0.05 50 

 

 

The optimal solution provided by the algorithm is to locate all three generators in 

area 12. Loss of load probability after additional generation is 0.00762. Table 4.2 shows 

number of possible scenarios to be evaluated and number of omitted scenarios at each 

stage of decomposition. The algorithm starts cutting off some scenarios at 

decomposition stage 15. These possible scenarios are deleted after a comparison in 

equation (8) is made. The number of possible scenarios (combinations of area 

generators) that need to be evaluated is smaller. This improves computational efficiency 

since number of L sets created in later decomposition is often large. 
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Table 4.2 Number of Possible and Omitted Scenarios at Each Decomposition Stage for 

Generation Planning 

Decomposition Stage Number of possible scenarios Number of omitted scenarios
1-14 165 0 
15 165 36 
16 129 84 
18 45 36 
19 9 8 

 

Since the goal of this study is to select the best generation location, there is no 

need to perform complete decomposition.  If a comparison is made after performing 

global decomposition, more stages of decomposition need to be conducted. The 

proposed algorithm terminates after 19 stages of decomposition, which helps in reducing 

computational time and memory usage for storing U and L sets 

 

4.4.2 Transmission Line Planning 

It is assumed that the additional transmission lines have capacity of 100 MW 

each with a mean repair time of 8 hours and a failure rate of 10 per year. It is assumed 

that the ISO wishes to increase transfer capabilities between areas that is now less than 

300 MW. Table 4.3 shows transfer capability between areas and the prospective 

locations for this study. The number of prospective locations is 13. Maximum number of 

unit additions is included in the state space before performing global decomposition. 

Total number of scenarios is 91, i e, 91 combinations of transmission lines are to be 

analyzed. Probability distribution tables for generation and tie-lines are developed with a 
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capacity increment of 50 MW. System probability of loss of load before additional 

capacities is 0.0042.  

 

Table 4.3 Transfer Capability and Additional Capacity 

From 
Area 

To 
Area 

Transfer 
Capability (MW) 

Possible Additional 
Capability (MW) 

1 2 4550 - 
1 3 300 - 
1 6 100 200 
1 10 150 200 
2 3 1050 - 
2 8 150 200 
2 9 900 - 
2 10 450 - 
3 7 400 - 
3 10 200 200 
3 11 50 200 
4 5 50 200 
4 7 300 - 
4 10 200 200 
4 11 150 200 
5 6 400 - 
5 10 50 200 
5 11 650 - 
7 11 350 - 
7 12 950 - 
9 10 150 200 
9 11 150 200 
10 11 150 200 
10 12 100 200 

 

 

Table 4.4 shows number of omitted scenarios at each stage of decomposition. 

The optimal solution found is to locate both transmission lines between area 2 and area 8 

which improves system loss of load probability to 0.0007. The proposed method requires 
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45 stages of decomposition while complete global decomposition requires 126 stages of 

decomposition. 

 

Table 4.4 Number of Possible and Omitted Scenarios at Each Decomposition Stage for 

Transmission Line Planning 

Decomposition Stage Number of omitted scenarios 
1-41 0 
43 78 
44 0 
45 12 

 

 

4.5 Discussion and Conclusions 

The algorithms for long term generation adequacy planning and transmission line 

planning are described utilizing global decomposition as a reliability evaluation tool. 

Scenario analysis is applied for the selection of the best solution. The direct approach is 

to perform single global decomposition, calculate system loss of load probability of all 

possible combinations, and then make a comparison for the best solution. However, the 

direct comparison after global decomposition requires high memory usage for all L sets.  

The algorithms select the best scenario by comparing reliability index which is 

loss of load probability in this case. The proposed approaches require less number of 

stages of global decomposition than a straightforward approach when system loss of 

load probability of all scenarios is compared after complete decomposition. The 

algorithms converge when there is only one solution left in the possible solution lists. 

The methods require less memory usage since all L sets from each stage of 
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decomposition can be deleted after evaluation. The comparisons in (4.10) and (4.13) also 

help reduce number of possible solutions at each stage of decomposition. Therefore, the 

number of evaluations and comparisons is smaller at a given stage of decomposition. 

Global decomposition need not be completed once the solution is found. The algorithm 

can also be extended to compute other reliability indices of interest from global 

decomposition such as frequency of loss of load.  
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CHAPTER V 

MULTI-AREA POWER SYSTEM ADEQUACY PLANNING USING GLOBAL 

DECOMPOSITION WITH DYNAMIC PROGRAMMING* 

 

5.1 Introduction 

This study proposes dynamic programming to determine the location of 

generators in multi-area power systems with global decomposition as a reliability 

evaluation tool. Original generation probability distribution in each area is modified to 

incorporate additional generators. An equation relating the number of additional units in 

each area to generation probability distribution is developed in this paper. After global 

decomposition, an equation for reliability is derived and approximated. The problem 

structure is transformed and solved by dynamic programming.   

There are two ways to formulate the problem. One is to minimize the cost subject 

to loss of load probability constraint and the other is minimizing the loss of load 

probability subject to cost constraint. Either objective can be achieved by the method 

described in this paper. The basic formulation is based on minimizing the loss of load 

probability with budget as a constraint but the same formulation can be used for the 

                                                 
* Reprinted with permission from  
“A Method for Generation Adequacy Planning in Multi-Area Power Systems Using Dynamic 
Programming” by P. Jirutitijaroen and C. Singh, Proceedings of the 2006 IEEE Power 
Engineering Society General Meeting, Montreal, Canada, June 2006. © 2006 IEEE 
“Reliability and Cost Trade-Off in Multi-Area Power System Generation Expansion Using 
Dynamic Programming and Global Decomposition” by P. Jirutitijaroen and C. Singh, IEEE 
Transactions on Power Systems, vol.21, no. 3, pp. 1432-1441, August 2006. © 2006 IEEE 
“A Hybrid Method for Multi-Area Generation Expansion Using Tabu-search and Dynamic 
Programming” by P. Jirutitijaroen and C. Singh, Proceedings of the 2006 International 
Conference on Power System Technology, Chongqing, China, October 2006. © 2006 IEEE 
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alternate objective. If the minimized loss of load probability is not acceptable, the budget 

can be changed and reliability re-optimized. Through such an iterative procedure, a 

suitable solution that minimizes the cost subject to a reliability constraint can be found. 

Since decomposition needs to be performed only once in the proposed method, such an 

iterative procedure is quite efficient.  

Global decomposition is an efficient reliability evaluation technique for this type 

of analysis. With global decomposition, the additional generators in prospective areas 

are included in the system. This global state space is valid for all generation 

combinations. The concept is based on the fact that decomposition depends on state 

capacities and not state probabilities. The unavailability (forced outage rate) of 

additional generators is also considered in the formulation. The major advantage of this 

technique is that decomposition is performed only once. Reliability indices of each 

combination can be evaluated by allowing zero probability to the omitted states. One of 

the contributions of this study is to derive the relationship of reliability index to the 

additional generation in each area. 

This chapter is organized as follows. The problem is formulated in section 5.2. 

Section 5.3 presents reliability equation and approximation after global decomposition. 

Dynamic programming application to this problem is given in section 5.4. The proposed 

method is illustrated by a three-area power system in section 5.5 and implemented to a 

twelve-area power system in section 5.6. Discussions and conclusions are given in the 

last section. 
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5.2 Problem Formulation 

A multi-area power system is modeled as given in Chapter III Section 3.2. The 

problem is formulated as a network flow problem as given in Chapter IV Section 4.2.1. 

The capacity of every arc in the network is a random variable because generation, tie 

line and load capacity are random with discrete probability distributions. For 

computational efficiency, all arc capacities are rounded off to a fixed increment so that 

only the minimum capacity state and number of states in each arc need to be known. 

States with very small probability are ignored.  

The decision variables of network flow problem are integer as the number of 

additional generators is an integer value. This network flow problem is called stochastic 

integer programming problem due to randomness in capacity arcs, reliability constraints, 

and integer decision variable. The standard formulation is derived in the following with 

the objective of minimizing loss of load probability subject to cost and network capacity 

constraints.  

Index set 

I =  Network nodes {s, t, 1, 2,…, n}  

Assumption 

The additional generators have capacity of   MW each and additional tie lines have 

capacity of  MW each. 

GC

TC

Parameters 

iG  =  Capacity of existing generation arc i (MW) 

G
ia  = Cost of an additional generation unit at node i ($/MW) 



 63

GC  = Capacity of an additional generator (MW) 

GN  = Total number of addition generators 

iL   = Capacity of load arc i (MW) 

ijT  = Capacity of tie line arc i (MW) 

T
ija  = Cost of a tie line between line i and j ($/MW) 

TC  = Capacity of an additional tie line (MW) 

TN  = Total number of addition tie line 

R = Total available budget ($) 

s = Source node  

t  = Sink node 

Decision variables 

ijX   = Flow from node i to j 

G
iX  = Number of addition generators at node i, integer  

T
ijX  = Number of addition tie line between node i and j where (i,j) = (j,i), 

integer 

The objective function to minimize loss of load probability is given below. 

Min { }nntttnttt LXLXLXXXX <<< UU ...:,...,,Pr 221121  (5.1) 

The problem has the following constraints. 

Capacity constraints 

− Flow in generation arc  
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G
i

G
isi XCGX +≤   Ii∈∀  (5.2)

− Flow in tie line 

T
ij

T
ijijji XCTXX +≤−   jiIji ≠∈∀ ,,  (5.3)

− Flow in load arc 

iit LX ≤  Ii∈∀  (5.4)

Conservation of flow at node i in the network  

it

ij
Ij

ij

ij
Ij

jisi XXXX +=+ ∑∑
≠
∈

≠
∈

 Ii∈∀  (5.5)

Maximum number of additional generators  

G

Ii

G
i NX =∑

∈

 (5.6)

  Maximum number of additional transmission line  

T

ji
Ii Jj

T
ij NX =∑∑

≠
∈ ∈

 (5.7)

Budget constraint 

 RXaXa
ji
Ii Jj

T
ij

T
ij

Ii

G
i

G
i ≤+∑∑∑

≠
∈ ∈∈

 (5.8)

  Non negativity 

0,, ≥T
ij

G
iij XXX  Iji ∈∀ ,  (5.9)

  The expression within the parenthesis in equation 1 represents the system loss of 

load event. The problem is thus formulated so as to minimize the loss of load probability 

index subject to cost constraint. If the optimal system reliability obtained through this 
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process does not satisfy the requirements, the cost constraint can be relaxed to allow 

more additional generators in the system and the LOLP can be re-optimized 

All possible additional generation units are included in each prospective area of 

the system before performing global decomposition. In the global decomposition 

process, constraints (2) to (7) and (9) have already been included. The problem has only 

one additional constraint which is the budget constraint (8). However, the objective 

function has no available explicit formulation in terms of the decision variables. In order 

to express the objective function in terms of number of additional generators in each 

area, generation probability distribution is modified to incorporate additional units as 

described in the next section. 

 

5.2.1 Generation Probability Distribution Equation Incorporating Identical 

Additional Units 

The generation probability distribution of each area is modified as additional 

units are added to the area. The expression for the modified probability distribution is 

developed as a function of the number of additional units. For the sake of simplicity, this 

expression (5.11) is presented assuming that the capacity of additional units in a given 

area is the same. This, however, is not an inherent limitation of the method but if the 

units are non-identical then (5.11) becomes more complex. The equation in the case of 

non-identical units is given in the next section. 

The capacity, Cj, of an additional unit j is assumed as multiple, µj, of the fixed 

increment, η, used in the discrete probability distribution, i.e.  
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η
μ j

j

C
=  

(5.10)

The following equation describes generation probability incorporating the 

additional units, yj in area j.  
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− −⎟⎟
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PP
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0 FOR1FOR
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)  
(5.11)

where  

0
j

kjiG
P

μ−
 = Probability of original generation at level i- µjk before additional units in 

area j, 0 if ki jμ≤  

FORj = Forced outage rate of additional units in area j 

Equation (5.11) describes the probability of a given generation level in each area 

in terms of number of additional units in this area. 

 

5.2.2 Generation Probability Distribution Equation Incorporating Non-Identical 

Additional Units 

Let the additional units in area j have the capacities,  and 

corresponding number of additional units in area j is respectively. Each 

additional unit has the capacity as multiple, , 

m
jjj CCC ,,, 21 K

m
jjj yyy ,,, 21 K

t
jμ mt ,,2,1 K= of the fixed increment, η, 

used in the discrete probability distribution. The following equation describes generation 

probability incorporating the additional units, , in area j.  t
jy
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where 
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and  

1−

−

t
G j

kt
ji

P
μ

 = Probability of generation at level with additional units, 

in area j, 0 if  

ki t
jμ−

121 ,,, −t
jjj yyy K ki t

jμ≤

t
jFOR  = Forced outage rate of additional unit t in area j 

max,t
jy  = Maximum number of additional units of capacity  t

jC

 

5.2.3 Reliability Equation and Approximation after Global Decomposition 

The system state space consists of generation states in each area and inter-area tie 

line states. It is defined as (5.14).  

⎥
⎦

⎤
⎢
⎣

⎡
=Ω

N

N

mmm
MMM

K

K

21

21  
(5.14)

where   

kM  = Maximum state of arc k 

km  = Minimum state of arc k 

N = Number of arcs in the network 
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A system state, x, can assume any value between its minimum and maximum 

state as shown in (5.15).  

[ ]Nxxxx K21=  (5.15)

where  kkk Mxm ≤≤

kx  = State of arc k 

The maximum possible number of additional generators in each area is included 

in the state space before performing global decomposition. The additional generation 

capacity in each area is rounded off to the closest integral multiple of the fixed 

increment, η, used when constructing its distribution.  

Let the budget constraint be of the following form,  

Ryayaya NN ≤+++ K2211  (5.16)

where  

ja  = Cost per additional generator to area j 

R = Total budget available 

The maximum number of additional generation levels in area j is calculated from 

(5.17).  

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

j
jj a

Rμγ max  
(5.17)

where 

max
jγ  = Maximum number of additional generation levels in area j 

jμ  = Maximum number of additional generation levels in area j 
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The sets obtained from this state space are valid for all scenarios of distribution 

of additional generators. Probability of each scenario can then be evaluated by allowing 

zero probability for the excluded states because of the omission of corresponding 

additional generators included in the original decomposition. 

After global decomposition is performed, the state space is completely 

partitioned into a number of L sets. Probability of a set is calculated from (5.18).  

( ) ∏ ∑
= ≤≤

=
N

k Mxm
x
kkk

k
p

1

Pr
ωω

ω  
(5.18)

where 

ω = A given set 

kx  = State of arc k 

kxp  = Probability of state  of arc k kx

ω
kM  = Maximum state of arc k in set  ω 

ω
km  = Minimum state of arc k in set  ω 

Now area generation probability can be written as a function of additional units 

in the area as given in (5.11) or (5.12) for identical and non-identical units 

correspondingly. Therefore, equation (5.18) can be written in terms of number of 

additional units in each area as in (5.19).  

( ) ( )∏
=

=
N

j
jj yh

1

Pr ω  
(5.19)

and 
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where 

jy  = Number of additional units in area j 

0
j

kjiG
P

μ−
 = Cumulative probability of original generation at level i- µjk before 

additional units in area j 

Equation (5.20) is rewritten in the case of non-identical units as the following.  
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where 

t
jy  = Number of additional units of capacity  in area j t

jC

1−

−

t
G j

kji
P

μ
 = Cumulative probability of generation at level  with additional 

units,  in area j, 0 if  

ki t
jμ−

121 ,,, −t
jjj yyy K ki t

jμ≤

Probability of an A set and U set can also be expressed in terms of number of 

additional units in all areas as (5.19). Loss of load probability is calculated from 

summation of probability of loss of load sets. The objective function for the optimization 

problem can be expressed as (5.22).  
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where   

nd = Total number of decompositions 

di = Number of L sets generated at ith decomposition 

The problem is transformed into a single cost constraint (5.8) with an objective 

function to minimize loss of load probability (5.22). In order to apply dynamic 

programming, separable functions in both objective function and constraints are 

favorable structures. However, equation (5.22) is a very complex function with no 

specific pattern and has a nonlinear relationship between the decision variables which 

are the number of additional generators in each area. Because of the restriction of the 

function structure, it is more efficient to do the optimization with only 1 set from the 

global decomposition process or with L sets only from the first stage of global 

decomposition process. 

 

5.2.3.1 The First A Set Equation 

Instead of minimizing system loss of load probability from L sets produced by 

global decomposition, this study proposes to maximize system availability computed 

from the first A set of global decomposition. The first A set contains unbiased 

information since it is extracted from the overall state space. Its probability equation is 

the same as in (5.19), which is a multiplication of one variable functions. The separable 

function structure of the first A set probability equation is a desirable one; however, the 
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first A set generated from global decomposition is not likely to produce high probability. 

Most of the time, the first L sets generates higher probability than all other L sets 

generated in the decomposition process. In the following, the structure of the first L sets 

probability function is presented. 

 

5.2.3.2 The First L Set Equation 

`After the first decomposition, loss of load sets can be found from reducing 

capacity in generation arc for each area until the loss of load state is found. The L sets 

generated from reducing generation arc in area 1 have the following structures. 
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where   

iM  = Maximum capacity for the generation arc of area i 

1v  = Minimum capacity of generation in area 1 that the system remains in 

success state 

In order to produce disjointed sets, the second L set obtained from reducing 

generation arc in area 2 is found below. 
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where   

2v  = Minimum capacity of generation in area 2 that the system remains in 

success state 
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Then, the first decomposition will create n L sets as a result of n generation area, 
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where   

iv  = Minimum capacity of generation in area i that the system remains in 

success state 

Loss of load probability equation from the first L sets can be written as (5.26) 

and (5.27) in case of identical units and (5.82) in the case of non-identical units. 
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where  

0

1
j

kjiv
G

P
−−μ

 = Cumulative probability of capacity arc vi-µjk-1 generation area j before 

unit addition 

From (5.23), a probability equation of this set is rewritten as (5.29). 
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Due to the structure of the first L sets described by (5.25), the states of 

component from 2 to N in L1 set take all possible value from 1 to their maximum states, 

i.e.,  

( ) 11 =ii yg , Ni ,,2 K=  (5.30)

Therefore, (5.29) can be written as (5.31) 

( ) ( )1
1
11Pr ygL =  (5.31)

Consider probability equation of , the same argument can applied to the states 

from 2 to N, the probability from is (5.32) 

2L

2L

( ) ( ) ( )2
2
21

2
12Pr ygygL =  (5.32)

Since the capacity arc of area 1 in both and takes all possible value from 1 

to . This gives (5.33). 
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From (5.33), (5.32) can be simplified as (5.34)  
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The same analysis is then applied to all L sets, the probability equation of set 

is (5.35). Even though the order of the generation arc we pick will create different L sets, 

it can be shown that the resulting probability equations are exactly the same.  

iL
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ii ygygygygL 1

1
12

2
21

1
1 111Pr −

−
−−−−= L  (5.35)

The probability of loss of load after the first decomposition is (5.36). This 

equation has a separable structure; this will be clear when dynamic programming is 

applied to solve this problem.  
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1
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1
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1

PrPr

−
−
−

=

−−−

++−+=

=∑

L

K  
(5.36)

It should be observed that if any arc has ‘v’ value equal to one, the effect of unit 

addition in that area to system reliability cannot be calculated from (5.36). In the process 

of obtaining L sets, ‘v’ values can be expressed as the smallest capacity of an area 

generation before the system enters loss of load state. In other words, the capacity below 

the ‘v’ values will result in system failure (or loss of load in any area). The ‘v’ values 

obtained from the decomposition are very important variables since they are the 

preliminary indications of area generation deficiency. It can also be implied from the ‘v’ 

value that the components with ‘v’ value equal to one do not contribute as much to the 

system reliability.  In other words, without the capacity in that area (‘v’ value equal to 

one), the system can still remain in success state. Therefore, in this application, the ‘v’ 

value will indicate the prospective area for the optimization process. 

 

5.3 Dynamic Programming Application to the Problem 

Dynamic programming is an optimization procedure that can be applied to a 

problem with discrete decision variables which are the number of additional units in 

each area in this application. The problem has the following formulation.  

Min ( )LPr  or Max ( )APr  

s.t. Ryayaya NN ≤+++ K2211  
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The first step in solving a problem with dynamic programming is to define stages 

and states of the problem. In this application, stages represent area of interest and states 

are the available budget at each stage as shown in Fig. 5.1. At each stage, a decision is 

made on how much should be spent on each area generation.   

 

S1 = R S2 = 0,1,…,R SN-1 = 0,1,…,R SN = 0,1,…,R 

Stage N 
yN 

Stage N-1 
yN-1

…. Stage 2 
y2 

Stage 1 
y1 

 

Fig. 5.1.  State Diagram of the Problem 

 

 

where  

jS  = Available budget at stage j 

Dynamic programming initially solves the smallest sub problem, which contains 

the smallest number of variables. The optimal solution to the next sub problem (next 

stage) is calculated using the solution from the previously computed smaller sub 

problem (previous stage). A recursive function can be derived to describe this 

relationship. In this problem, the last stage is the smallest sub problem; therefore, the 

solution obtained from the last stage is the starting point of a recursive function.  

If a solution from optimization does not satisfy system reliability criteria, a 

budget constraint can then be relaxed to incorporate more generation units. Global 
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decomposition is not required to be performed once again if the maximum number of 

additional units in each area remains the same. The problem can then be re-optimized 

until the reliability criterion is satisfied. The following analysis covers the recursive 

function derivation for the first L set and the first A set optimization. With this recursive 

function, solutions from each stage can be evaluated. The recursive function describes a 

relationship between (already computed) solutions from a previous stage to a current 

stage. The optimal solution can then be traced back when the solution to the first stage is 

found. 

 

5.3.1 Recursive Function of the First A Set Optimization 

Recall that the probability of the first A set is (5.19). 

( ) ( )∏
=

=
N

j
jj yhA

1

Pr  
(5.19)

At the very last stage, there is only one area in the subproblem, which is (5.37).  

( )

+∈
≤
Iy
Syats

yh

N

NNN

NN

..
max

 
(5.37)

where  

NS  = 0, 1, …, R 

For the preceding stages, the numbers of variables considered are larger and the 

problem at any stages is (5.38). 
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∏

Iy
Syayayats

yh

k

jNNjjjj

N

jk
kk

K11..

max
 (5.38)

Note that the first stage represents the overall problem since it considers all 

variables. Let ( )jj Sf  be the optimal objective function at stage j with available budget 

 jS

The optimal solution to the last stage is (5.39) 

( ) ( )NNNN yhSf =  (5.39)

Since ⎥
⎦

⎥
⎢
⎣

⎢
≤≤

N

N
N a

Sy0 , (5.39) is rewritten as (5.40). 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
=

N

N
NNN a

ShSf  
(5.40)

Recall that the problem at any stages is (5.38) and the optimal solution to any 

stage is (5.41) 

( ) ( ) ( ){ }jjjjjjjj yaSfyhSf −⋅= +1max  (5.41)

where 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≤≤

j

j
j a

S
y0  

The recursive function is written as (5.41) 

( ) ( ) ( ){ } 1,,1,
,

max 1
0

−=
=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−⋅

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
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⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≤≤
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Nj

yaSfmh
a
S
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Sf

jjjjjj

a
S

y

j

j
j

jj

j

j
j

K
 (5.41)
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5.3.2 Recursive Function of the First L Set Optimization 

Recall that the probability of the first L set is (5.36). 

( ) ( )

( ) ( )( ) ( )
( )( ) ( )( ) ( )( ) ( )N

N
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N
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N

i
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ygygygyg
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1
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2
2
21

1
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1
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−
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=
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++−+=

=∑

L

K  
(5.36)

At the very last stage, there is only one area in the subproblem, which is (5.42) 

( )

+∈
≤
Iy
Syats

yg

N

NNN

N
N
N

..
min

 (5.42)

where  

NS  = 0, 1, …, R 

For the preceding stages, the numbers of variables considered are larger, the 

problem in any stages is (5.43)  

( ) ( )( ) ( ) ( )( ) ( ){ }{ }

+
++

−
−
−−

−
−

∈
≤+++

−+−+
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ygygygygyg
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jNNjjjj
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j
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11

1
1
11

1
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..

11min
 

(5.43)

Let ( )jj Sf  be the optimal objective function at stage j with available budget , 

the optimal solution to the last stage is (5.44) 

jS

( ) ( )N
N
NNN ygSf =  (5.44)

Since ⎥
⎦

⎥
⎢
⎣

⎢
≤≤

N

N
N a

Sy0 , (5.44) is rewritten as (5.45). 
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The optimal solution to any stage is (5.46)  

( ) ( ) ( )( ) ( ){ }jjjjj
j
jj

j
jjj yaSfygygSf −−+= +11min  (5.46)

where 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≤≤

j

j
j a

S
y0  

The same function (5.46) is also applied to the first stage where  and the 

recursive function is (5.47) 

RS =1
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5.4 Illustration on Three-Area Test System 

The proposed approach is applied to a three-area power system with step-by-step 

calculation. The three-area test system parameters are given in Appendix C. The addition 

unit parameters of three area system are shown in Table 5.1. Assume that the budget is 

10 million dollars, the problem is to locate the best generation combination in the three 

areas. Stage diagram of the problem is shown in Fig. 5.2. 
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Table 5.1 Three Area Addition Unit Parameters 

Area j ja  (m$) Load (MW) FORi 

1 3 500 0.15 
2 5 600 0.05 
3 4 500 0.10 

 

 

S2 = 0,1,…,10 S3 = 0,1,…,10 

 

Fig. 5.2 Stage Diagram of Three Area System 

 

 

From the budget constraint, the maximum numbers of unit addition in each area 

are 3 units in area 1, 2 units in area 2, and 2 units in area 3. These units will be included 

in the system before performing global decomposition. State of capacity arc will start 

from 1 to 9. The solution steps from the first A set optimization and the first L set 

optimization are presented in the following. 

 

5.4.1 Illustration of the First A Set Optimization 

After the first decomposition,  

⎥
⎦

⎤
⎢
⎣

⎡
=

111676
222899

A  

The problem can be formulated as (5.48) 

Stage 1 
m1 

Stage 2 
m2

Stage 3 
m3

S1 = 10 S4 >= 0 
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where   
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(5.50)
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kky
GG k
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PPyh
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(5.51)

The table relating available budget  (from 0 to 10) with the probability of each 

, 

jS

jy ( )jj yh  are developed with the following calculations. Possible values of  are 0, 1, 

2 and 3. The calculation is shown below. 

1y

( ) =−= 00
1 1

5
1
9

0
GG

PPh  0.3277 (5.52)

( ) ( )( ) ( )( ) =−+−= 85.015.01 0000
1 1

4
1
8

1
5

1
9 GGGG

PPPPh  0.6758 (5.53)

( ) ( ) ( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

−

−−

2

0

200
1 85.015.0

2
2 1

5
1
9k

kk
GG k

PPh
kk

 0.8760 
(5.54)

( ) ( ) ( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∑

=

−

−−

3

0

300
1 85.015.0

3
3 1

5
1
9k

kk
GG k

PPh
kk

 0.9597 
(5.55)

Possible values of  are 0, 1 and 2. The calculation is shown below. 2y

( ) =−= 00
2 2

6
2
9

0
GG

PPh  0.2621 (5.56)

( ) ( )( ) ( )( ) =−+−= 95.005.01 0000
2 2

5
2
8

2
6

2
9 GGGG

PPPPh 0.6357 (5.57)
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kk
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 0.8762 
(5.58)

Possible values of  are 0, 1 and 2. The calculation is shown below. 3y

( ) =−= 00
3 3

5
3
8

0
GG

PPh  0.3277 (5.59)

( ) ( )( ) ( )( ) =−+−= 9.01.01 0000
3 3

4
3
7

3
5

3
8 GGGG

PPPPh  0.6963 (5.60)

( ) ( ) ( ) ( ) =⎟⎟
⎠

⎞
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⎛
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−−
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0

200
3 9.01.0

2
2 3

5
3
8k

kk
GG k

PPh
kk

 0.8991 
(5.61)

Table 5.2 shows a relationship between available budget ( from 0 to 10) and 

the probability of each , 

jS

jy ( )jjj Syh ,   

 

Table 5.2 Available Budget and Modified Probability with Additional Units for the First 

A Set Optimization 

Probability and number of unit addition in each area Budget 
of (m$) 1y  ( )11 yh  2y  ( )22 yh  3y  ( )33 yh  

0-2 0 0.3277 0 0.2621 0 0.3277 
3 1 0.6758 0 0.2621 0 0.3277 
4 1 0.6758 0 0.2621 1 0.6963 
5 1 0.6758 1 0.6357 1 0.6963 

6-7 2 0.8760 1 0.6357 1 0.6963 
8 2 0.8760 1 0.6357 2 0.8991 
9 3 0.9597 1 0.6357 2 0.8991 
10 3 0.9597 2 0.8762 2 0.8991 
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The decision of the budget that will be spent in each area is made at each stage. 

At stage 3 from (5.62), the optimal decision at each budget level and its corresponding 

objective function value are shown in Table 5.3. 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢=

4
3

333
ShSf  

(5.62)

 

Table 5.3 Optimal Decision at Stage 3 for the First A Set Optimization  

S3 3y  ( )33 Sf  
0-3 0 0.3277 
4-7 1 0.6963 
8-10 2 0.8991 

 

 

At stage 2, we have 

( ) ( ) ( ){ }22322222 5,max ySfSyhSf −⋅= . (5.63)

where ⎥⎦
⎥

⎢⎣
⎢≤≤

5
0 2

2
Sy  

The optimal decision at stage 2 is shown in Table 5.4 
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Table 5.4 Optimal Decision at Stage 2 for the First A Set Optimization 

2y   
S2 0 1 2 

Opt. 
 2y

( )22 Sf  

0-3 0.2621 ( )303 −⋅ f  
= 0.0859 

- - 0 0.0859 

4 0.2621  ( )43f⋅
= 0.1825 

- - 0 0.1825 

5 0.2621  ( )53f⋅
= 0.1825 

0.6357 ( )03f⋅  
= 0.2083 

- 1 0.2083 

6 0.2621  ( )63f⋅
= 0.1825 

0.6357 ( )13f⋅  
= 0.2083 

- 1 0.2083 

7 0.2621  
= 0.1825 

( )73f⋅ 0.6357 ( )23f⋅  
= 0.2083 

- 1 0.2083 

8 0.2621  ( )83f⋅
= 0.2357 

0.6357 ( )33f⋅  
= 0.2083 

- 0 0.2357 

9 0.2621  ( )93f⋅
= 0.2357 

0.6357 ( )43f⋅  
= 0.4427 

- 1 0.4427 

10 0.2621  ( )103f⋅
= 0.2357 

0.6357 ( )53f⋅  
= 0.4427 

0.8762 ( )03f⋅  
= 0.2871 

1 0.4427 

 

 

At stage 1,  

( ) ( ) ( ){ }12111 31010,max10 yfyhf −⋅=  (5.64)

where ⎥⎦
⎥

⎢⎣
⎢≤≤

3
100 1y  

The optimal decision at stage 1 is shown in Table 5.5. 
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Table 5.5 Optimal Decision at Stage 1 for the First A Set Optimization  

1y  
0 1 2 3 

Opt.  
1y  

( )101f  

0.3277  ( )102f⋅
= 0.1450 

0.6759 ( )72f⋅  
= 0.1408  

0.8760 ( )42f⋅  
= 0.1598 

0.9597 ( )12f⋅  
= 0.0824 

2 0.1598 

 

 

The solution is to locate 2 generation at area 1, 0 generation at area 2, and 1 

generation at area 3. The total cost is 10 m$. This combination will yield the maximum 

probability of the first A set which is 0.1598.  

 

5.4.2 Illustration of the First L Set Optimization 

After the first decomposition, the first L sets are as follows. 

⎥
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⎡
=
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3L  

  The problem can be formulated as (5.65) 
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where   
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(5.67)
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(5.68)

 The table relating available budget  (from 0 to 10) with the probability of each 

, 

jS

jy ( )j
j
j yg  are developed with the following calculations. 

Possible values of  are 0, 1, 2 and 3. The calculation is shown below. 1y

( ) == 01
1 1

3
0

G
Pg 0.0579 (5.69)

( ) ( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 85.0

0
1

15.0
1
1

1 001
1 1

2
1
3 GG

PPg 0.0144 
(5.70)

( ) ( ) ( )( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠
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⎠
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⎛
= 200201
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0
2
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1
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2
2
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1

1
2

1
3 GGG

PPPg 0.0033 
(5.71)
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⎞
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⎝

⎛
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⎠
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⎛
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1
3
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2
3
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3
3

3 1
1

1
2

1
3 GGG

PPPg 0.0007 
(5.72)

Possible values of  are 0, 1 and 2. The calculation is shown below. 2y

( ) == 02
2 2

4
0

G
Pg 0.0989 (5.73)
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3

2
4 GGG

PPPg 0.0033 
(5.75)

Possible values of  are 0, 1 and 2. The calculation is shown below. 3y

( ) == 03
3 3

3
0

G
Pg 0.0578 (5.76)
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Table 5.6 shows a relationship between available budget ( from 0 to 10) and 

the probability of each , 

jS

jy ( )jj
j
j Syg ,  . 

 

Table 5.6 Available Budget and Modified Probability with Additional Units for the First 

L Set Optimization 

Probability and number of unit addition in each area Budget 
of (m$) 1y  ( )1

1
1 yg  2y  ( )2

2
2 yg  3y  ( )3

3
3 yg  

0-2 0 0.0579 0 0.0989 0 0.0579 
3 1 0.0144 0 0.0989 0 0.0579 
4 1 0.0144 0 0.0989 1 0.0118 
5 1 0.0144 1 0.0211 1 0.0118 

6-7 2 0.0033 1 0.0211 1 0.0118 
8 2 0.0033 1 0.0211 2 0.0020 
9 3 0.0007 1 0.0211 2 0.0020 
10 3 0.0007 2 0.0033 2 0.0020 

 

 

The decision of the budget that will be spent in each area is made at each stage. 

At stage 3, 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢=

4
3

333
SgSf  

(5.79)

The optimal decision at each budget level and its corresponding objective 

function value are shown in Table 5.7. 
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 Table 5.7 Optimal Decision at Stage 3 for the First L Set Optimization 

S3 3y  ( )33 Sf  
0-3 0 0.0579 
4-7 1 0.0118 
8-10 2 0.0020 

 

 

At stage 2, we have 

( ) ( ) ( )( ) ( ){ }2232
2
22

2
222 51min ySfygygSf −−+=  (5.80)

where ⎥⎦
⎥

⎢⎣
⎢≤≤

5
0 2

2
Sy  

The optimal decision at stage 2 is shown in Table 5.8. 
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Table 5.8 Optimal Decision at Stage 2 for the First L Set Optimization 

2y   
S2 0 1 2 

Opt. 
 2y

( )22 Sf  

0-3 0.0989 + 
(1-0.0989)  ( )03f⋅

= 0.1511 

- - 0 0.1511 

4 0.0989 + 
(1-0.0989)  ( )43f⋅

= 0.1095 

- - 0 0.1095 

5 0.0989 + 
(1-0.0989)  ( )53f⋅

= 0.1095 

0.0211 + 
(1-0.0211) ( )03f⋅  

= 0.0778 

- 1 0.0778 

6 0.0989 + 
(1-0.0989)  ( )63f⋅

= 0.1095 

0.0211+ 
(1-0.0211) ( )13f⋅  

= 0.0778 

- 1 0.0778 

7 0.0989+ 
(1-0.0989)  

= 0.1095 
( )73f⋅

0.0211 + 
(1-0.0211) ( )23f⋅  

= 0.0778 

- 1 0.0778 

8 0.0989 + 
(1-0.0989)  ( )83f⋅

= 0.1007 

0.0211+ 
(1-0.0211) ( )33f⋅  

= 0.0778 

- 1 0.0778 

9 0.0989+ 
(1-0.0989)  ( )93f⋅

= 0.1007 

0.0211+ 
(1-0.0211) ( )43f⋅  

= 0.0326 

- 1 0.0326 

10 0.0989 + 
(1-0.0989)  ( )103f⋅

= 0.1007 

0.0211 + 
(1-0.0211) ( )53f⋅  

= 0.0326 

0.0033 + 
(1-0.0033) ( )03f⋅  

= 0.0610 

1 0.0326 

 

 

At stage 1,  

( ) ( ) ( )( ) ( ){ }121
1
11

1
11 3101min10 yfygygf −−+=  (5.81)

where ⎥⎦
⎥

⎢⎣
⎢≤≤

3
100 1y  

The optimal decision at stage 1 is shown in Table 5.9. 
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Table 5.9 Optimal Decision at Stage 1 for the First L Set Optimization 

1y  
0 1 2 3 

Opt.  
1y  

( )101f  

0.0579 + 
{(1-0.0579) 

( )102f⋅ } 
= 0.0887 

0.0144 + 
{(1-0.0144) 

( )72f⋅ } 
= 0.0910 

0.0033 + 
{(1-0.0033) 

( )42f⋅ } 
= 0.1124 

0.0007 + 
{(1-0.0007) 

( )12f⋅ } 
= 0.1517 

0 0.0887 

 

 

The optimal solution is to locate 0 generation at area 1, 1 generation at area 2, 

and 1 generation at area 3. The total cost is 9 million dollars. This combination yields the 

minimum loss of load probability of the first L sets which is 0.0887. The solutions from 

the first L sets optimization are compared with the optimal from enumeration as shown 

in Table 5.10.  

 

Table 5.10 Comparison between Solutions from the First L Set Optimization and 

Enumerations 

Possible combination
1y  2y  3y  

 
Cost

LOLP of the first L set
obtained from 

global decomposition 

 
Actual LOLP 

0 0 2 8 0.1528 0.7101 
0 1 1 9 0.0887 0.6850 
0 2 0 10 0.1154 0.6883 
1 0 1 7 0.1224 0.7060 
1 1 0 8 0.0910 0.6950 
2 0 1 10 0.1124 0.5280 
3 0 0 9 0.1517 0.5959 
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 Table 5.10 shows that the optimal solution is to locate 2 generation units in area 

1, and 1 generation units in area 3. The solution obtained from dynamic programming 

application to the first L set is not optimal; however, it is close to the optimal solution. 

Recall that the solution from the first A set optimization is the optimal one. In the 

following, area load is reduced to observe the effectiveness of the approach. Table 5.11 

shows the result with system load of 400, 500, and 400 in area 1, 2 and 3. Table 5.12 

shows the result with system load of 300, 400, and 300 in area 1, 2 and 3.  

 

Table 5.11 Comparison between Solutions from the First L Set Optimization and 

Enumerations with System Load of 400, 500, and 400 in Areas 1, 2 and 3 

Possible combination
1y  2y  3y  

 
Cost

LOLP of the first L set
obtained from 

global decomposition 

 
LOLP 

0 0 2 8 0.0237 0.1485 
0 1 1 9 0.0100 0.1157 
0 2 0 10 0.0136 0.1247 
1 0 1 7 0.0192 0.1354 
1 1 0 8 0.0103 0.1219 
2 0 1 10 0.0181 0.0837 
3 0 0 9 0.0236 0.1174 

 



 93

Table 5.12 Comparison between Solutions from the First L Set Optimization and 

Enumerations with System Load of 300, 400, and 300 in Areas 1, 2 and 3 

Possible combination
1y  2y  3y  

 
Cost

LOLP of the first L set
obtained from 

global decomposition 

 
LOLP 

0 0 2 8 0.0019 0.0115 
0 1 1 9 0.0005 0.0057 
0 2 0 10 0.0006 0.0074 
1 0 1 7 0.0017 0.0092 
1 1 0 8 0.0005 0.0061 
2 0 1 10 0.0016 0.0070 
3 0 0 9 0.0019 0.0105 

 

 
It can be seen that even though the solution is not optimal, it requires less cost 

than an optimal one and therefore should be acceptable as a near optimal one. It appears 

that the proposed approach works better for systems with smaller loss of load 

probabilities. 

 

5.5 Implementation on Twelve-Area Test System 

A 12-area power system is shown in Appendix A. The test system is a multi-area 

representation of an actual power system [73] that has 137 generation units and 169 tie 

line connections between areas. Generating unit failure and repair rate data are from 

IEEE Reliability Test System 1996. Transfer capabilities between areas are given in 

Appendix A. Table 5.13 shows area generations and loads as well as availability and 

cost per generator in prospective areas which are areas 1 to 5, and 9 to 12. It is assumed 

that the additional generators have capacity of 200 MW each. Probability distribution 

tables for generation and tie-lines are developed with a capacity increment of 50 MW. 



 94

System loss of load probability before unit additions is 0.0041 for original load and 

0.0153 for 10% increased load. Reliability indices presented in the analysis are 

calculated from complete decomposition approach. 

 

Table 5.13 Generation and Load Parameters of a Twelve Area Test System 

Area 
 j 

Load  
(MW) 

10 % increased 
Load (MW) 

Generation 
(MW) 

FOR  
of additional 

units 

Cost  
($m) 

1 1750 1900 2550 0.025 250 
2 16650 18300 23600 0.025 250 
3 9300 10250 15100 0.025 250 
4 2000 2200 3100 0.025 250 
5 550 600 900 0.025 250 
6 0 0 550 - - 
7 0 0 3500 - - 
8 0 0 400 - - 
9 1100 1200 2100 0.025 250 
10 2200 2400 3100 0.025 250 
11 2600 2850 4150 0.025 250 
12 750 850 900 0.025 250 

 

 

The analysis is implemented with two load scenarios; original and 10% 

increased, and repeated with two budgets; $0.5 and $1 billion. Maximum number of 

additional units allowed in each area is two units for $0.5 billion budget and four units 

for $1 billion budget, which gives 45 and 495 possible generator combinations 

respectively. The purpose of having two different budgets is to test the correctness of the 

proposed method. The proposed method is applied to smaller budget first and then to 
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larger budget. To verify the correctness of the solution from this procedure, an optimal 

solution for each scenario is also obtained by enumeration. 

The additional units are included in the state space before performing global 

decomposition according to the budget. Once global decomposition is performed, 

candidate areas are determined by the ‘v’ value and the optimal solution from the first L 

set optimization is computed. Table 5.14 shows the solution for the system with original 

load and $0.5 billion budget. Table 5.15 shows the solution with 10% increased load and 

$0.5 billion budget. Table 5.16 shows the solution with original load and $1 billion 

budget.  Table 5.17 shows the solution with 10% increased load and $1 billion budget. 

Table 5.18 shows the comparison between the optimal solution from proposed method 

and that from enumeration.  

 

Table 5.14 Solution with $0.5 Billion Budget 

Area 1 2 3 4 5 9 10 11 12 
‘v’ value 1 248 147 27 1 1 16 23 1 
Solution from DP - 0 0 2 - - 0 0 - 
Optimal Solution 0 0 0 2 0 0 0 0 0 
 

 

Table 5.15 Solution with $0.5 Billion Budget and 10% Increased Load 

Area 1 2 3 4 5 9 10 11 12 
‘v’ value 1 284 166 31 1 1 20 28 1 
Solution from DP - 0 0 2 - - 0 0 - 
Optimal Solution 0 0 0 2 0 0 0 0 0 
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Table 5.16 Solution with $1 Billion Budget 

Area 1 2 3 4 5 9 10 11 12 
‘v’ value 1 240 147 27 1 1 16 23 1 
Solution from DP - 0 0 3 - - 1 0 - 
Optimal Solution 0 1 0 3 0 0 0 0 0 

 

 

Table 5.17 Solution with $1 Billion Budget and 10% Increased Load 

Area 1 2 3 4 5 9 10 11 12 
‘v’ value 1 276 166 31 1 1 20 28 1 
Solution from DP - 0 1 3 - - 0 0 - 
Optimal Solution 0 2 0 2 0 0 0 0 0 

 

 

Table 5.18 Comparison between the Solutions from the Proposed Method and the 

Optimal Solution 

 
Scenarios 

LOLP of optimal 
solution from  

proposed method 

LOLP of optimal 
solution from 
enumeration 

% 
Difference

Original Load, $0.5 B 0.001640 0.001640 0 
Increased Load, $0.5 B 0.010182 0.010182 0 
Original Load, $1 B 0.001320 0.001284 2.80 
Increased Load, $1 B 0.008975 0.007834 14.56 

 

 

Results show that when the maximum number of additional units in each area is 

small, the proposed method accurately provides optimal solution. However, when the 

maximum number of additional units in each area is higher, the proposed method 

provides a solution with LOLP close to the one obtained from the optimal solution. This 
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is due to the fact that all possible additional units are included in the state space before 

performing global decomposition. Since all the states are assumed to exist in the system, 

the first L sets from global decomposition can underestimate capacity deficiency, and 

thus, LOLP. Even though the proposed method may not necessarily provide the optimal 

solution, it still gives a solution close to optimal one that can be adjusted with some 

other sensitivity techniques to obtain the optimal solution.   

Results also show that when system loss of load probability is small, the 

proposed method produces optimal or close to optimal solution. System with small loss 

of load probability tends to have much more generation than load. When the system 

loses its generation in any single area, the surrounding areas can provide assistance 

allowed by transfer capabilities from its neighborhood areas. This means that there is 

smaller probability that the system will lose its generations in two areas or more to 

produce loss of load state.  

The first L sets from global decomposition are partitioned from the overall state 

space by lowering generation in one area while keeping generation in other areas at their 

maximum until the system reaches loss of load state. They provide information about the 

effect of additional generation in any area to partial system loss of load probability 

which is produced from loss of generation in a single area i.e. Li is produced from loss of 

generation in area i. The combined effects of loss of area generation in two (or three or 

more) areas are evaluated at the second (or third and so on) stage of decomposition.  

However, when there are small probabilities that loss of two or more area 

generators creates loss of load states, the effects of additional generation on loss of load 
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probability are mainly dominated by loss of generation in one area and transfer 

capability of its surrounding areas, or equivalently, the first L set from global 

decomposition 

 

5.6 Improvements Using Heuristic Search 

Tabu search is one of many heuristic techniques applied to generation expansion 

problem. It has been recognized as an efficient method for combinatorial optimization 

problems. The algorithm is powerful due to the flexible forms of memory in the search 

space. The search performance, however, depends on a good starting solution. This 

dissertation combines Tabu search with the solution from the first L set optimization to 

obtain optimal solution. The comparison between using randomly generated starting 

solutions and solution from the first L set optimization is made. 

Tabu search is an intelligent search procedure that has been widely applied to 

combinatorial optimization problems. The procedure starts with an initial solution. 

Neighborhood solutions are then created by some pre-specified neighborhood function. 

Objective function value of these neighborhood solutions is evaluated. The decision on 

moving from current solution to the next solution is made based on adaptive memory in 

Tabu list and current aspiration level. This list is vital since it prevents cycling in the 

search procedure. 

In this application, neighborhood function is simply a random sampling of 

location to add and drop one generator. Objective function is calculated from global 

decomposition technique. From computational experiment, it is efficient to sample 8 
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neighborhood solutions and keep 3 moves in Tabu list. The algorithm is presented in the 

following. 

Step 0. Initialization, 0=k  

− Initial feasible solution, [ ]00
2

0
1

0
nxxxx K

v =  

− Initialize Tabu list, 0T , and aspiration level, ( )00 xfA =  

− Initialize best solution, 0* xx vv ←  

where 

k
ix  = Number of additional units in area i at iteration k 

kxv  = Current solution vector at iteration k 

kT  = Tabu list 

kA  = Aspiration level at iteration k which is the reliability Index in this 

application 

( )⋅f  = Objective function value of solution vector 

While iteration  maximum iterations do the following, <k

Step 1. Generate neighborhood solutions, { } ( )1−⊂ knbhd xNx vv  

where 

{ }nbhdxv  = Set of neighborhood solutions 

( )⋅N  = Neighborhood function generation 

Step 2. Compute objective function values, ( ){ }nbhdxf v  and find the best 

neighborhood solution, bestnbhdx ,v  
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where ( ){ }nbhdbestnbhd xfx vv minarg, =  

Step 3. Check move with 1−kT   

− If not in 1−kT , 

o bestnbhdk xx ,vv ← , ( )bestnbhdk xfA ,v← , and update kT   

o If ( ) ( )*, xfxf bestnbhd vv <  then update best solution, bestnbhdxx ,* vv ←   

o Advance 1+← k and go to step 1. k

− If in 1−kT , 

o Check aspiration criteria, if ( ) 1, −< kbestnbhd Axf v , then bestnbhdk xx ,vv ← , 

bestnbhdxx ,* vv ← , ( )bestnbhdk xfA ,v← , and update kT  

o Otherwise, advance 1+← k and go to step 1. k

Note that in this application, a move is stored as number of the area that a unit is 

added in the solution vector. A move is checked by comparing the area that a unit is 

dropped in the solution vector with number of areas in the Tabu list. This criterion 

prevents cycling since it checks whether the area that a generator is dropped has a 

generator added in the previous iteration or not. If a generator has been added to this area 

in previous iteration, we rather not drop it out in current iteration 

The solution found from section 5.5 when a budget is 1 billion dollars and load is 

increased by 10 is chosen to be a starting solution in this study. Solutions from random 

sampling are sampled for comparison. These solutions are used as starting solutions in 

Tabu search procedure as shown in Table 5.19. 
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Table 5.19 Solution from an Optimization Method and Random Sampling 

Area 1 2 3 4 5 9 10 11 12
Solution from the first L set optimization 0 0 1 3 0 0 0 0 0 
Random Sampling 1 1 1 0 0 0 1 1 0 0 
Random Sampling 2 0 0 0 1 0 0 1 0 2 
Random Sampling 3 0 0 1 1 1 0 0 1 0 
 

 

Each initial solution in Table 5.19 is used in Tabu search procedure. The 

algorithm iterates for 10 times. The comparison between results using initial solution 

obtained from dynamic programming and those from random sampling are made. Fig.  

5.3 shows objective function values at each iteration resulting from different starting 

solutions.  
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Fig. 5.3  Comparison of Algorithm Efficiency Produced by Different Initial Solutions 

 

 

The optimal solution found from enumeration is to locate 2 generators in area 2 

and 2 generators in area 4. Random sampling 1, 2, and 3 reach optimal solution at the 

6th, 5th, and 6th iteration. Initial solution from optimization reaches optimal solution at the 

3rd iteration. Even though the difference in number of iterations is small, initial solution 

from optimization provide better assurance of getting good solution than those from 

random sampling. In actual application, optimal solution is not known; therefore, there 

will be no guarantee at which iteration it will be reached. Initial solution from 
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optimization at least offers a solution that is close to optimal and likely to achieve it in 

timely manner. 

 

5.7 Discussion and Conclusions 

After the decomposition is performed, the best generation location can be found 

from scenario analysis as presented in Chapter IV. However, if the optimal solution is 

required, exhaustive search has to be performed. Instead of exhaustive search, dynamic 

programming provides a solution to the problem in a more systematic approach and a 

flexible choice of cost constraints.  

Dynamic programming reduces number of computations made during the search 

for best solution. Number of multiplication depends on available budget, R as seen in the 

three area test system. Number of possible combination is shown in (5.82). In the worst 

case, multiplication will be performed to all components in the table of the size 

( )1+× jmR  at each stage (except the last stage). The operation used in exhaustive search 

and dynamic programming are compared in the Table 5.20. The computation will be 

significantly improved for large system with dynamic programming.  

Number of possible combinations = ( )∏
=

+
N

j
jy

1

1  
(5.82)

where   

N = Number of area in the system 

jy  = Maximum number of unit additions in each area 

R = Budget 
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Table 5.20 Comparison of Number of Computations between Exhaustive Search and 

Dynamic Programming 

Operation Exhaustive Search Dynamic Programming 
 

Multiplication ( ) (∏
=

+×−
N

j
jyN

1

1)1  At most  ( ) ( )( )∑
=

+××−
N

j
jyRN

1
11

 
Comparison ( ) 11

1

−+∏
=

N

j
jy  At most ( )  ( )∑

=

××−
N

j
jyRN

1
1

 

 

Dynamic programming can also be applied to a problem with different cost 

constraints, as long as the constraint is in separable form. For example, a summation of 

one variable function as in (5.83), the same analysis can be applied. 

( )∑
=

N

j
jj yh

1

 
(5.83)

As an example, the constraint can also be of the quadratic form as in (5.84). It is 

also possible to consider problems with multiple constraints; however, the algorithm 

may not be as efficient.  

∑
=

++
N

j
jjjjj yy

1

2 ϕβα  
(5.84)

Another advantage of the approach is that the proposed technique can be 

extended to incorporate transfer capability adequacy analysis between areas. Global 

decomposition allows us to include additional state capacities of any arc in the network 

which can either be additional generation or additional tie lines. Thus, the same analysis 
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can be applied so that generation and tie line expansion can be analyzed together by the 

proposed method.  

However, the structure of the optimization problem does not allow simple 

analysis when considering L sets from more than one stage of decomposition. The 

problem is then simplified by considering sets from the first stage of decomposition 

only; the first L sets optimization. This introduces an approximation to the problem 

given that the objective of the problem is to maximize reliability of the overall system. 

This approximation is reasonable since the first L sets provide preliminary information 

on the generation deficiency in each area from the overall state space which represents 

the system characteristic. The optimization process depends significantly on these sets.  

With the first A set method, the optimization process depends significantly on the 

set characteristic. For example, consider three area test system in section 5.4 with 600, 

700, and 600 MW load in area 1, 2, and 3 correspondingly, then the first A set will 

become (5.85) 

⎥
⎦

⎤
⎢
⎣

⎡
=

111787
222899

A  
(5.85)

The generation state in the first A set contains only artificial states (7, 8, and 9). 

With the total budget of 10 m$, it is impossible to locate new generation in every area 

(3+5+4 = 12 m$). Clearly, this A set can never have probability more than 0.  Therefore, 

if the first A set only consists of artificial states and the available budget is not enough to 

spend on new generation in every area, then the optimal available probability is zero. 

This simply means that the information from the first A set is not enough for 
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optimization process. Thus, it is important that the set from decomposition phase give 

substantial information to the optimization phase. 

As described in section 5.2.3.2 that ‘v’ values are the critical variables in 

determining the prospective generation locations before performing optimization 

process. It is possible that the selection of the location from ‘v’ values cuts off the 

optimal solution. Moreover, the system with plenty of generation and highly connected 

tie line with large capacity is likely to have all ‘v’ value equals to one in the first 

decomposition to which the proposed method can not be applied.  

An optimization procedure is proposed to find an optimal or near optimal 

generation location in multi area power systems. The term near optimal is used to 

indicate that the LOLP of the proposed solution is equal or close to that of the optimal 

solution. The problem has reliability constraint that does not have an explicit expression 

and therefore complicates the optimization process. Global decomposition is introduced 

to effectively evaluate reliability index of different generation combinations. Even 

though reliability equation can be derived, it is a very complex function. This reliability 

equation is then approximated by considering only L sets from the first decomposition 

since they possess separable structure which can be solved by dynamic programming.  

 The problem is formulated with minimization of LOLP index as an objective 

function subject to cost constraint. If a solution obtained from the optimization provides 

unsatisfactory system reliability, budget constraint can be relaxed to include more 

additional units in each area. The problem can be re-optimized without performing 

global decomposition again if the maximum number of additional units in each area 
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remains unchanged. This iterative procedure between cost constraint and reliability 

optimization can be used to get a satisfactory solution. The procedure is quite efficient as 

decomposition needs to be performed only once. 

Generation expansion problem including reliability constraint is a very 

challenging and complex optimization problem. Due to the problem complexity, certain 

assumptions and approximations have been made. The study proposes a method to 

explicitly incorporate reliability into consideration. The main contribution is to propose 

an approximation to LOLP equation. The proposed approach simplifies the problem by 

optimizing over a smaller set of state space and thus the solution cannot guarantee global 

optimality. However, the solution from this approach is likely to be near optimal, if not 

optimal, and can provide a starting point to which sensitivity analysis can be applied to 

locate the optimal solution.  

Meta-heuristic techniques, which require good starting solution for efficiency, 

can be applied along with the proposed method to ensure an optimal solution. The 

proposed approach is efficient and ensures a better optimal solution when initial solution 

from optimization is used. The comparison between randomly selected initial solutions 

and initial solution from the first L set optimization is made. The algorithm reaches 

optimal solution faster with initial solution from optimization procedure than with 

random initial solutions. Other meta-heuristic techniques such as Particle Swamp 

Optimization (PSO) or Simulated Annealing (SA) can also be applied along with 

classical optimization procedure. 
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CHAPTER VI 

MULTI-AREA POWER SYSTEM ADEQUACY PLANNING USING 

STOCHASTIC PROGRAMMING* 

 

6.1 Introduction 

In Chapter V, reliability calculation is not based on complete information about 

the state space and thus the solution obtained can be considered near optimal only. In 

this Chapter, the problem is formulated as two-stage recourse model. The first stage 

decision variables are the additional capacity units and the second stage decision 

variables are network flows. Reliability aspect is included in the second stage objective 

function as an expected cost of load loss. This formulation does not require generation to 

meet demand at all time, it rather maximizes reliability within available resource, i.e. 

minimize expected loss of load cost subject to available expansion budget. It should be 

noted that this reliability index is also a stochastic variable and minimizing this index 

makes the problem more challenging than incorporating random uncertainties in system 

capacities and load. The overall objective is to minimize expansion cost in the first stage 

and at the same time to minimize expected loss of load cost in the second stage. 

                                                 
* Reprinted with permission from  
“Multi-Area Generation Adequacy Planning Using Stochastic Programming” by P. Jirutitijaroen 
and C. Singh, Proceedings of the 2006 IEEE Power Systems Conference and Exposition, 
Atlanta, Georgia, October 2006. © 2006 IEEE 
“Stochastic Programming Approach for Unit Availability Consideration in Multi-Area 
Generation Expansion Planning” by P. Jirutitijaroen and C. Singh, Proceedings of the 2007 IEEE 
Power Engineering Society General Meeting, Tampa, Florida, June 2007. © 2007 IEEE 
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This chapter is organized as follows. Section 6.2 presents problem formulation. 

Solution procedures are proposed in section 6.3. Section 6.4 shows computational 

results. Unit availability consideration is given in section 6.5. Discussion and 

conclusions are given in the last section. 

 

6.2 Problem Formulation 

A multi-area power system is modeled as given in Section 3.2. The problem is 

formulated as a network flow problem as given in Section 4.2.1. The formulation 

presented here is similar to that in Section 5.2.  

Indices 

I = {1,2,…,n} Set of network nodes 

s = Source node 

t = Sink node 

i,j = Network nodes 

ω  = System state (scenario), Ω∈ω  

Ω  = State space (all possible scenarios) 

Parameters 

gN  = Maximum number of additional generation units 

tN  = Maximum number of additional transmission lines 

g
ic  = Cost of an additional generation unit at area i ($) 

t
ijc  = Cost of an additional transmission lines between area i and area j ($) 
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( )ωl
ic  = Cost of load loss in area i in stateω ($/MW) 

( )ωo
ic  = Operation cost of  generators in area i in stateω  ($/MW) 

g
iM  = Additional generation capacity in area i (MW) 

t
ijM  = Additional transmission lines capacity between area i and area j (MW) 

( )ωig  = Capacity of generation in area i in stateω  (MW) 

( )ωijt  = Tie line capacity between area i and j in stateω  (MW) 

( )ωil  = Load in area i in stateω  (MW) 

Decision variables 

g
ix  = Number of additional generators in area i, integer 

t
ijx  = Number of additional transmission lines between area i and area j, integer 

( )ωijy  = Flow from arc i to j for system stateω  

Using system expected cost of load loss as a reliability index, the problem is 

formulated as two-stage recourse model. The first stage decision variables are number of 

generators to be invested in each area that are determined before the realization of 

randomness in the problem. The second stage decision variables are the actual flows in 

the network. The failure probability of additional generators can be taken into account 

by using their effective capacities [89]. The formulation is given in the following. 
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where constraints (6.2) and (6.3) in the first stage are restrictions on maximum number 

of additional generators and transmission lines in the system. Constraint (6.4) is an 

integer requirement for the number of additional generators. The function in (6.1) is the 

second stage objective value of minimizing operation cost and loss of load cost under a 

realization ω of  and is given as follows.  Ω
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( ) ( ) ( ) Ijiyyy itsiij ∈∀≥ ,;0,, ωωω  (6.10)

where, constraints (6.6), (6.7), and (6.8) are maximum capacity flow in the network 

under uncertainty in generation, tie line, and load arc respectively. Constraint (6.9) 

constitutes conservation of flow in network. Constraint (6.10) is non-negativity 

requirement for actual flow in the network. 
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 To simplify the problem, operation cost in the second stage objective function is 

neglected and only generation expansion is considered in this study. It should be noted 

that the cost of load loss coefficient depends on system states. The calculation of this 

coefficient is performed separately and is shown in the following. 

Loss of load cost depends on interruption duration as well as type of interrupted 

load. The most common approach to represent power interruption cost is through 

customer damage function (CDF) [22]. This function relates different types of load and 

interruption duration to cost per MW. In order to accurately calculate system expected 

LOLC, LOLC coefficient needs to be evaluated according to the mean duration time of 

each state (ω).  

Mean duration of each stage can be assessed by taking a reciprocal of equivalent 

transition rate from that state to others. State mean duration is presented in (6.11). 

Equivalent transition rate of all components can be calculated using the recursive 

formula in [43] when constructing probability distribution function.  
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(6.11)

where 

ωD  = Mean duration of state ω (hours) 

+ωλ
ig  = Equivalent transition rate of generation in area i from a capacity of state 

ω to higher capacity (per day) 

−ωλ
ig  = Equivalent transition rate of generation in area i from a capacity of state 
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ω to lower capacity (per day) 

+ωλ
ijt  = Equivalent transition rate of transmission line from area i to area j from a 

capacity of state ω to higher capacity (per day) 

−ωλ
ijt  = Equivalent transition rate of transmission line from area i to area j from a 

capacity of state ω to lower capacity (per day) 

ωλ
kl
 = Equivalent transition rate of area load from state ω to other load states 

(per day) 

lm  = Total number of area load states 

Customer damage function used in this paper is taken from [22]. The function 

was estimated from electric utility cost survey in the US. For small-medium commercial 

and industrial loads, interruption cost in dollars per kW-h can be described, as a function 

of outage duration, by (6.12).  

( ) 202248.038489.048005.6 ωω
ω

DDl eDc −+=  (6.12)

 

6.3 Solution Procedures 

L-shaped algorithm [60] is the most common approach for stochastic 

programming procedure and is thus chosen for this study. At each iteration, the 

algorithm approximates the second stage objective function by generating piecewise 

linear function and appends it to the master problem. The linear function is generated 

from solving all the second stage problems, i. e. all realization in the second stage. For 

large systems, the number of system states grows exponentially and thus it is impractical 



 114

to enumerate and evaluate the entire state space. Direct application of L-shaped 

algorithm cannot be achieved in timely manner since the algorithm evaluates all system 

states (scenarios) in sub problems when generating cut for the master problem.  

To overcome this problem of dimensionality, in the proposed method sampling 

technique is employed to reduce number of system states [9], [29]. There are two 

fundamental approaches to apply sampling techniques; interior [60], [62] and exterior 

[9], [29]. The key difference between the two is that interior sampling deals with 

sampling in the course of optimization algorithm while exterior sampling performs 

sampling before the optimization algorithm. The objective of the second stage, called 

sample-average approximation of the actual expected value, is defined by these samples. 

This approximation makes it possible to solve the problem with deterministic equivalent 

model.  

This study proposes both direct implementation of the L-Shaped algorithm and 

the Sample Average Approximation (SAA) to solve the problem. Exterior sampling is 

chosen to overcome numerous number of system states. The number of system states is 

selected and the expected loss of load cost is approximated. Two sampling techniques 

are used and compared, Monte Carlo simulation and Latin Hypercube sampling to 

construct the sample-average function. Details of each method are given in the 

following. 
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6.3.1 L-Shaped Algorithm 

The algorithm is implemented with Xpress-IVE student edition. Steps of L-

shaped algorithm [29] for this problem are as follows. 

Step 0. Initialization 

− Find x0 from solving master problem; discard the second stage objective 

function. 
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(6.13)

− Set upper bound (UB) and lower bound (LB), i.e., ∞←UB and −∞←  LB

Step 1. Solve sub problem at iteration k 

− Reset the linear approximation function coefficients, Ii , its 

right-hand-side value 0←kα , and the sub problem objective function 

value 0←kf . 

k
i ∈∀← ;0β

− For all states ω  = 1 to Ω , solve sub problem k where each scenario has 

probability, ωp  
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− Obtain dual solution, ( )l
i

t
ij

g
i

k
,,, ,, ωωωω ππππ =

r  associated with generation, 

transmission line capacities, and load constraints respectively. 

− Update the generated cut from  g
i

g
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− Update sub problem objective value  k  k fpf ωω=+

− Update  , if changed, update the incumbent 

solution, k  
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Step 2. Solve master problem  

− Append the following cut, ∑
∈∀

+≥
Ii

g
i

k
i

k xβαη  

− Obtain solution 11, , ++ kkg from the following master problem  ix η
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− Update  
⎭
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g
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Step 3. Check convergence 

− Compute percent gap from ( )
UB

LBUBgap −
=%   

− If ε≤gap , stop and obtain optimal solution, incumbentx , and objective 

value from upper bound, else, 1

% x ←*

+← kk , return to step 1. 

 

6.3.2 Sampled Average Approximation 

The expected cost of load loss can be approximated by means of sampling. Let 

Nωωω ,,, 21 K  be N realizations of random vector for all uncertainties in the model, the 

expected cost of load loss can be replaced by (6.17). 
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This function is a SAA of the expected cost of load loss. The problem can then 

be transformed into deterministic equivalent model as follows.  
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Note that the solution obtained from this sample-based approach does not as such 

guarantee optimality in the original problem. The optimal sample-based solutions, when 

obtained with different sample sets, rather provide statistical inference of a confidence 

interval of the actual optimal solution.  

Let  be the optimal solution and  be the optimal objective value of an 

approximated problem. Generally,  and  varies by the sample size N. If  is the 

optimal solution and  is the optimal objective value of the original problem, then, 

obviously,  

*
Nx *ˆNz

*
Nx *ˆNz *x

*z

** ˆNzz ≤ . (6.25)

Therefore,  constitutes an upper bound of the optimal objective value. Since 

 is the optimal solution of the approximated problem, then the following is true,  

*ˆNz

*ˆNz
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( ) ( )*** ˆˆˆ xzxzz NNNN ≤= . (6.26)

Taking expectation on both sides, (6.26) becomes 

[ ] ( )[ ]** ˆˆ xzEzE NN ≤ . (6.27)

Since the SAA is an unbiased estimator of the population mean,  

[ ] ( )[ ] *** ˆˆ zxzEzE NN =≤  (6.28)

which constitutes a lower bound of the optimal objective value. In the following, details 

on obtaining lower bound and upper bound estimates are discussed. The derivation of 

lower and upper bound confidence interval was presented in [46] and has been applied in 

[9], [29]. 

 

6.3.2.1 Lower Bound Estimates 

The expected value of , *ˆNz [ ]*ˆNzE , can be estimated by generating ML 

independent batches, each of NL samples. For each sample set s, solve the SAA problem 

which gives  and the lower bound can be found from s
NL
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(6.29)

By the central limit theorem, the distribution of a lower bound estimate 

converges to a normal distribution ( )2, LLN σμ  where [ ]*ˆ
LNL zE=μ , which can be 

approximated by a sample mean , and 
LL MNL , [ ]*2 ˆVar

LNL z=σ , which can be approximated 

by a sample variance  
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 Thus, the two-sided 100(1-α)% confidence interval of the lower bound is 
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where  satisfies 2/αz ( ){ } ααα −=≤≤ 11,0Pr 2/2/ zNz  

It should be noted that the lower bound confidence interval is computed by 

solving ML independent SAA problems of sample size NL. 

 

6.3.2.2 Upper Bound Estimates 

Given a sample-based solution , the upper bound of the actual optimal 

objective can be estimated by generating MU independent batches, each of NU samples. 

Since the solution is set to , (6.18) can be decomposed based on system state 

*
Nx

*
Nx kω  to 

NU independent linear programming (LP) problems. For each sample batch s, solving the 

LP problems gives ( )*ˆ N
s
N xz

U
. Then, the upper bound is approximated from 
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By central limit theorem, the distribution of an upper bound estimate converges 

to a normal distribution ( )2, UUN σμ  where ( )[ ]*ˆ NNU xzE
U

=μ , which can be approximated 

by a sample mean , and 
UU MNU , ( )[ ]*2 ˆVar NNU xz

U
=σ , which can be approximated by a 

sample variance  
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 Thus, the two-sided 100(1-α)% confidence interval of the lower bound is 
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where  satisfies 2/αz ( ){ } ααα −=≤≤ 11,0Pr 2/2/ zNz  

In this study, a solution  is found from each batch s of ML batches in lower 

bound SAA problems and used to compute the upper bound estimates. It should be noted 

that the upper bound confidence interval depends on the chosen approximate solution 

 from SAA problems. Thus, ML upper bound intervals are computed. 

*
Nx

*
Nx

 

6.3.2.3 Optimal Solution Approximation 

The optimal solution can be extracted when unique solution is obtained from 

solving several SAA problems with different samples of a given size, N. In theory, 

optimality should be attained with sufficiently large N. However, it may be possible that 

each sample yields different solutions for small sample size. If an identical solution is 

found from solving SAA problems with these samples, it may be concluded that 

optimality is verified. 

 

6.3.3 Sampling Techniques 

The sampling techniques used in this paper are Monte Carlo sampling (MC) and 

Latin Hypercube Sampling (LHS). Random variables in the model are sampled based on 
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their corresponding discrete probability distributions. Details of MC and LHS technique 

are discussed in the following. 

 

6.3.3.1 Monte Carlo Simulation 

MC is a well known sampling technique in reliability analysis. For each 

component in the system, a number between 0 and 1 is randomly chosen and the 

component state is found by performing inverse transformation according to its 

cumulative probability distribution. A system state is found when all component states 

have been assigned. 

 

6.3.3.2 Latin Hypercube Sampling 

LHS was initially proposed in reference [85]. The number of samples N needs to 

be known in advance. For each component in the system, the interval (0,1) is equally 

divided into N subintervals and a random number is drawn from each subinterval. This 

means that there are N random numbers for each component. For each subinterval, a 

sample value is obtained by performing inverse transformation according to its 

cumulative probability distribution in that subinterval. This constitutes a sample vector 

of size N of a component. The process is repeated for all components in the system. With 

this data, we can construct a matrix of size N × number of components. A system state is 

found by randomly picking a value from each column of this matrix without 

replacement. This gives N samples of system states. It should be noted that LHS yields a 
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stratified sample of the data. Thus, the variance of a sample from this technique is 

considered smaller than that from MC. 

 

6.4 Computational Results 

This study implements both methods presented in the previous section. A three-

area power system, shown in Appendix C, is chosen for L-shaped algorithm method. 

The twelve-area power system, shown in Appendix A, is chosen for Sample Average 

Approximation method. Equivalent transition rates of area load are given in Appendix 

A, Table A.4 for a twelve area test system and Appendix C, Table C.6 for a three area 

test system. 

 

6.4.1 L-Shaped Algorithm 

A three area test system is shown in Fig. C.1. There are 5, 6, and 5 generating 

units of 100 MW each in area 1, 2, and 3 respectively. Each generator has failure rate of 

0.1 per day and mean repair time of 24 hours. The system has three transmission lines 

each with 100 MW capacity, failure rate of 10 per year, and mean repair time of 8 hours. 

Table C.1, Table C.2, and Table C.3 show area generation, transmission line, and load 

probability distributions. Load cluster data is taken from [17]. It is assumed that the 

maximum number of additional units is 2 and the additional generators have capacity of 

100 MW each. The cost of additional unit of the three-area system is 100 million dollars 

for all areas 
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The optimization procedure yields a solution to locate one generator in area 1 and 

one generator in area 2 that gives expected loss of load cost of 1.48 million dollar and 

expansion cost of 200 million dollar. The algorithm converges in 6 iterations. Upper 

bound and lower bound at each iteration are shown in Fig. 6.1. It should be noted that 

the expected loss of load cost depends on the customer damage function used. The study 

presented here is only for illustration purposes. Xpress-IVE student edition is the 

software used for implementation. 
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Fig. 6.1.  Upper Bound and Lower Bound of Objective Function 

 

 

6.4.2 Sampled Average Approximation 

A 12-area power system is shown in Fig. A.1. The test system is a multi-area 

representation of an actual power system [17] that has 137 generation units and 169 tie 
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line connections between areas. System parameters can be found in Appendix A. This 

study uses original load as shown in Table 5.13. All the tie lines in the system are 

assumed to have a mean repair time of 8 hours and a failure rate of 10 per year. It is 

assumed that the additional generators have capacity of 200 MW each. In order to 

perform LHS, probability distribution table is constructed with an increment of 1 MW. 

Load cluster and its equivalent transition rate are shown in Appendix A. In this problem, 

it is assumed that number of additional generators is 4. Total number of system states 

( Ω ) of this problem is 1.62×1049. 

The study conducts three tests for lower bound estimate, upper bound estimate, 

and optimal solution approximation. To compare the effectiveness of the estimate, 5 

different sample sizes are chosen for this study, which are 200, 500, 1000, 5000, and 

10000. All three tests are implemented with two sampling techniques described in 

section V to compare the efficiency between MC and LHS. Lower bound estimate of 

each sample size is calculated by solving SAA problems with data generated by 5 

different batches of sample. Therefore, ML is 5 and NL are 200, 500, 1000, 5000, and 

10000. The 95 % confidence intervals of lower bound from different sample sizes are 

shown in Table 6.1 and Table 6.2 when using MC and LHS respectively.  
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Table 6.1 Lower Bound Estimate from Monte Carlo Sampling 

Sample size Lower bound ( 95% confidence interval ) 
200 1868138 ± 164834  
500 1721296 ± 134936 
1000 1748388 ± 75527 
5000 1731028 ± 29524 
10000 1718414 ± 18765 

 

 

Table 6.2 Lower Bound Estimate from Latin Hypercube Sampling 

Sample size Lower Bound ( 95% confidence interval) 
200 1630427 ± 176359 
500 1735213 ± 107946 
1000 1706931 ± 54523 
5000 1690686 ± 38665 
10000 1682813 ± 7817 

 

 

Note that, at this point, each sample size will produce five solutions, which may 

or may not be identical, from five batches of sample. These solutions are then used to 

calculate upper bound estimate.  

Upper bound estimate of each sample size is obtained by substituting the solution 

obtained from that particular SAA problem. This will transform SAA problem into 

independent linear programming problem which makes it faster to solve than SAA 

problem. In this study, 10 batches of sample of size 10000 are used to estimate upper 

bound. Thus, MU is 10 and NU is 10000. The 95 % confidence intervals of upper bound 

from different batches of sample size (NL) are shown in Table 6.3 and Table 6.4 when 

using MC and LHS respectively. In addition to upper bound estimate, the solution 
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obtained from different batches of sample size can be seen from Table 6.3 and Table 6.4. 

Note that the number of additional generators in all other area is zero.  

 

Table 6.3 Upper Bound Estimate and Approximate Solutions from Monte Carlo 

Sampling 

# of Add. Gen. in Area Sample sizes Batch 
2 9 10 

Upper Bound  
( 95% confidence interval ) 

1 2 1 1 2185851 ± 167656 
2 1 1 2 2227225 ± 183308 
3 1 1 2 2200578 ± 215138 
4 3 0 1 1720037 ± 21728 

200 

5 3 0 1 1712327 ± 18589 
1 1 1 2 2210587 ± 154688 
2 2 1 1 2164757 ± 233365 
3 3 1 0 1730035 ± 15487 
4 1 2 1 2207378 ± 167284 

500 

5 1 1 2 2128233 ± 300166 
1 2 1 1 1726760 ± 14041 
2 3 0 1 1728932 ± 20059 
3 3 1 0 1718296 ± 14514 
4 3 0 1 1726690 ± 14040 

1000 

5 2 1 1 1888449 ± 313452 
1 3 0 1 1717799 ± 14516 
2 3 0 1 1719699 ± 18318 
3 3 0 1 1726453 ± 20637 
4 3 0 1 1716471 ± 21303 

5000 

5 3 0 1 1723173 ± 24283 
1 3 0 1 1726690 ± 14040 
2 3 0 1 1728932 ± 20058 
3 3 0 1 1717799 ± 14516 
4 3 0 1 1719699 ± 18318 

10000 

5 3 0 1 1726453 ± 20637 
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Table 6.4 Upper Bound Estimate and Approximate Solutions from Latin Hypercube 

Sampling 

# of Add. Gen. in Area Sample sizes Batch 
2 9 10 

Upper Bound 
( 95% confidence interval ) 

1 1 2 1 1693587 ± 9270 
2 2 0 2 1674512 ± 9435 
3 2 1 1 1693948 ± 16963 
4 1 1 2 1679482 ± 10263 

200 

5 2 1 1 1675370 ± 12153 
1 2 1 1 1690918 ± 8868 
2 2 1 1 1679735 ± 11403 
3 2 0 2 1686659 ± 9646 
4 0 1 3 1693739 ± 10258 

500 

5 2 0 2 1683681 ± 11471 
1 2 1 1 1679735 ± 11403 
2 2 0 2 1686659 ± 9646 
3 2 0 2 1691074 ± 10273 
4 1 1 2 1680107 ± 11382 

1000 

5 3 0 1 1686411 ± 9629 
1 2 0 2 1691074 ± 10273 
2 2 0 2 1683681 ± 11471 
3 3 0 1 1679388 ± 7809 
4 2 0 2 1691708 ± 9664 

5000 

5 3 0 1 1685699 ± 15859 
1 3 0 1 1679665 ± 11407 
2 2 0 2 1686659 ± 9646 
3 3 0 1 1690780 ± 10289 
4 3 0 1 1683386 ± 11464 

10000 

5 3 0 1 1679388 ± 7809 
 

 

 

Next, optimal solution is approximated by solving SAA problems with increased 

sample sizes. In this study, the optimal solution is obtained when identical solutions are 

found within 5 consecutive batches of sample of the same size. It can be seen from Table 

6.3 that in the case of MC sampling the solutions are identical when sample sizes are 
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5000 and 10000. Therefore, the optimal solution is to install 3 units in area 2 and 1 unit 

in area 10. However, in the case of LHS, the solutions shown in Table 6.4 are not 

identical even when the sample size is 10000. The converged solution is found, which is 

to install 3 units in area 2 and 1 unit in area 10, when sample size is increased to 12000.  

With LHS, there are two possible candidate solutions which are 3 units in area 2, 

1 in area 10, and 2 units in area 2, 2 units in area 10 when sample size is 5000 and 1000 

as shown in Table 6.4. Note that the second solution does not appear when using MC 

sampling as seen in Table 6.3. In order to compare two sampling techniques, the total 

costs of the two solutions were found by performing reliability analysis. Expected cost 

of load loss is calculated by Monte Carlo simulation. The convergence criterion is 1% 

standard deviation. Table 6.5 shows the comparison between these two possible optimal 

solutions. It can be seen that these two solutions yield very close total costs with only 

0.046% difference. 

 

Table 6.5 Comparison between Possible Optimal Solutions 

# of Add. Gen. in Area Solution 
2 9 10 

Expected total Cost, 
with 0.01 S.D. 

1 3 0 1 1687543 
2 2 0 2 1687857 
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Even though it takes larger sample size to obtain converged solution in LHS, the 

candidate solutions found from LHS detect small changes in objective function value as 

shown in Table 6.5. It appears that with LHS the solution space is more thoroughly 

explored; therefore, the solutions with very close objective value are found. This may be 

helpful when alternative solutions are desirable for planning purposes. 

Summary of lower bound and upper bound intervals of different sample sizes are 

shown in Fig. 6.2 and Fig. 6.3 using MC and LHS respectively. For each sample size, 

the best upper bound estimate is chosen based on its average value as well as the 

tightness of the interval. It can be seen that lower bound intervals are smaller as the 

sample size increases for both MC and LHS while upper bound estimates are tight in 

both sampling techniques. This is due to the fact that number of samplings (NU) and 

number of batches (MU) for upper bound estimates is sufficiently large enough for this 

problem. However, LHS gives tighter lower bound and upper bound estimates than MC. 

This is caused by the variance reduction property of LHS. 

 



 131

200 500 1000 5000 10000
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
x 106

Number of sampled state

O
bj

ec
tiv

e 
va

lu
e

Lower Bound
Upper Bound

 

Fig. 6.2.  Bounds of SAA Solution with Monte Carlo Sampling 
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Fig. 6.3.  Bounds of SAA Solution with Latin Hypercube Sampling 

 

 

It is interesting to note that even though the original problem has very large 

number of system states (1.62×1049), SAA technique requires only small number of 

samples (10000) which provides sufficient information of the over all state space for 

optimization. 

 

6.5 Unit Availability Consideration 

Previously, the candidate generators are characterized by their effective 
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capacities with 100% availability instead of modeling their forced outage rates 

explicitly. This is due to the limitation of the available solution approaches of the 

stochastic programming framework that the state space of all random variables must 

remain the same with respect to decision variables. This restriction is violated when the 

additional units are modeled by integer decision variables, representing the number of 

additional units in each area, since the probability distribution function of their capacity 

changes with the number of additional units. The analysis is emphasized on generating 

units since the probability of failure of a generating unit is usually higher than that of a 

transmission line. The same analysis can also be applied to incorporate availability of a 

transmission line.  

In this section, on the other hand, binary first stage variables are proposed to 

cope with the change of distribution because of the additional units. Binary first stage 

decision variables assume only two states, up or down with specified forced outage rates. 

This means that the additional capacity of all candidate units has two possible values, 

full capacity or none. Thus, the state space of all random variables, including the 

capacity of additional units remains unchanged throughout all decision variables. The 

problem formulation presented in section 6.2 is modified as follows. 

The first stage variables are binary, individually representing decision of 

additional unit in each area. These variables are determined before the realization of 

random uncertainties.  
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The first stage constraint, modified from (6.2), contains only restriction on 

maximum number of additional units as follows.  
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 The second stage constraints, modified from (6.6), describe a realization of the 

system. These constraints include generation capacity limit in each area in stateω . 
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The randomness in additional generating units is represented by the additional 

capacity of that unit, . The probability distribution of additional capacities, 

, consists of two stages, fully available and zero capacity. However, if needed, 

the derated states of additional generating units can also be modeled by utilizing integer 

first stage variables as long as their distributions,

( )ωg
kiM ,

( )ωg
kiM ,

( )ωg
kiM , , remain the same. 

The overall objective is to minimize the expansion cost while also maximizing 

system reliability under uncertainty in area generation, load, and tie-lines. The first stage 

objective function, modified from (6.1), is shown below.  
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 (6.37)

Mean duration time calculation need to include the equivalent transition rate of 

additional generating units. Equation (6.11) is modified as follow.  
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(6.38)

+ωλ
kig ,
 = Equivalent transition rate of additional generating unit k in area i from a 

capacity of state ω to higher capacity (per day) 

−ωλ
kig ,
 = Equivalent transition rate of additional generating unit k in area i from a 

capacity of state ω to lower capacity (per day) 

Steps of L-shaped algorithm [60] for unit availability consideration are given as 

follows.  

Step 0. Initialization 

− Find x0 from solving master problem; discard the second stage objective 

function. 
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(6.39)

− Set upper bound (UB) and lower bound (LB), i.e., ∞←UB and −∞←  LB

Step 1. Solve subproblem at iteration t 
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− Reset the linear approximation function coefficients, 

i , its right-hand-side value 0←tα , and the 

subproblem objective function value 0←tf . 

t
ki KkIi ∈∀∈∀← ,;0,β

− For all system states ω  = 1 to Ω , solve subproblem t where each scenario 

has probability, ωp  
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− Obtain dual solution, ( )load
i
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− Update subproblem objective value  t  t fpf ωω=+

− Update  , if changed, update the 

incumbent solution,  
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Step 2. Solve master problem  

− Append the following cut, ∑ ∑
∈∀ ∈∀
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− Update  
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Step 3. Check convergence 

− Compute percent gap from ( ) 100% ×
−

=
UB

LBUBgap   

− If ε≤gap , stop and obtain optimal solution, incumbentx , and objective value 

from upper bound, else, 1

% x ←*

+← tt , return to step 1 

The algorithm is then implemented with the tree-area power system. The 

transmission lines are assumed to be fully available at all time. Load cluster data is taken 

from [17] and consists of 4 states in this study. Area generation, and load probability 

distributions are given in Appendix C. Equivalent transition rates of all components, 

calculated from the recursive formula in [43], are also shown in Appendix C. It is 

assumed that the maximum number of additional units is 2 and the additional generators 

have capacity of 100 MW each. The cost of an additional unit of the three-area system is 
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100 million dollars for all areas. Parameters of additional units in each area are given in 

Table 6.6. 

 

Table 6.6 Three Area Additional Unit Parameters with Unit Availability Consideration 

Area Unit cost ($m) Failure rate (per day) Mean repair time (hours)
1 100 0.2 24 
2 100 0.05 24 
3 100 0.1 24 

 

 

The optimal solution using the algorithm is to locate one generator in area 1 and 

one generator in area 2 which gives expected loss of load cost of 1.7 million dollars and 

expansion cost of 200 million dollars. The algorithm converges in 2 iterations. Upper 

bound and lower bound are shown in Table 6.7.  

 

Table 6.7 Upper Bound and Lower Bound of Objective Function with Unit Availability 

Consideration 

Iteration Lower Bound Upper Bound % Optimality Gap 
0 198.02 211.36 6.312 
1 201.62 201.70 0.040 
2 201.70 201.70 0.000 

 

 

It should be noted that the study presented here is only for illustration purposes. 

The actual expected loss of load cost, however, may vary depending upon the system 

customer damage function given in the model. It can be seen from the results that the 
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number of iterations is very small. This may be due to the fact that the formulation 

individually represents decision variable of a generating unit and not as number of units 

in each area as in [4]. Therefore, it allows a candidate solution to move faster than that 

presented in [4], which converged in the 6th iteration. However, the drawback of this 

formulation is that system states expand with the inclusion of additional units and the 

computation time per iteration increases as the state space grows. For a large system, 

sampling techniques [60] can be applied to reduce the number of system states to be 

evaluated for each subproblem. Truncation of state space can also be used when 

choosing a state for subproblem calculations. 

 

6.6 Discussion and Conclusions 

The problem is formulated as a two-stage recourse model with the objective to 

minimize expansion cost and maximize reliability subject to total budget. L-shaped 

algorithm is implemented and applied to solve the problem. Due to numerous system 

states in large systems, straightforward implementation of L-shaped method seems 

impractical for larger systems. To overcome this, exterior sampling method is proposed. 

Reliability function of the problem is approximated by the sample-average using two 

sampling techniques which are MC and LHS. The binary decision variables of additional 

generating units also allow explicit availability consideration of the additional units.  

Results show that even though the problem itself has huge number of system 

states the proposed method can effectively estimate the optimal solution with a small 

number of samples. In addition, LHS seems to provide better solution with tighter 
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bounds than MC due to its variance reduction property.  

Other reliability indices can also be used; for example, expected loss of load or 

loss of load probability. Expected loss of load can also be used as a reliability index in 

the second stage objective function since it may be difficult to assess the loss of load 

cost coefficient for various systems. However, some weighting coefficients need to be 

used in order to make this reliability index compatible with other costs in the objective 

function. To calculate loss of load probability, number of loss of load states has to be 

obtained. Therefore, minimizing loss of load probability is the same as minimizing 

number of loss of load states with the following second stage objective function in 

(6.43). The analysis should be made to verify that this function is convex on decision 

variables.  

( ) ( ) ( )( )0,Max, ωωω itiIi
ylxf −=

∈
 (6.43)

Instead of requiring maximum number of additional units, a budget constraint 

can be used to allow flexibility. Sensitivity analysis on the weight of load loss in each 

area can be conducted to provide the quantified information (expected loss of load 

reduction) of the next best generation location that improves system reliability subject to 

budget constraint. The problem can be formulated to minimize cost with subject to 

reliability constraint where reliability index can be obtained from different budget 

values. If reliability index (expected loss of load) is above the limit, budget can be 

increased. The algorithm has to be repeated until system reliability is below the limit. 

Although the analysis is focused on the multi-area formulation, there does not 

appear to be any inherent limitation in extending this approach to more detailed 
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transmission networks used in composite system reliability formulations. It is possible to 

apply this approach with different problem formulation such as using DC flow model 

instead of network flow model. The problem formulation and solution technique are 

capable of including transmission line expansions although the studies reported are for 

generation.  
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CHAPTER VII 

TRANSFORMER MAINTENANCE OPTIMIZATION: A PROBABILISTIC 

MODEL*  

 

7.1 Introduction 

Transformers are one of the most common equipment in power systems. There is 

relatively little literature on quantifying the effect of transformer maintenance on 

reliability. Transformer deterioration failures cause system interruption as well as high 

cost of lost load. Preventive maintenance can prevent this failure type and extend 

transformer lifetime. However, too little or too much maintenance may lead to poor 

reliability or high maintenance cost. In order to achieve cost effective maintenance, 

system reliability and cost should be balanced. This study proposes a probabilistic model 

for transformer maintenance optimization.  

Model parameters in the proposed model are assumed to be known from 

historical data collected. The parameters include inspection rate of each stage, mean time 

in each stage, failure cost, maintenance cost, and inspection cost. This study also 

investigates the effect of model parameters on reliability and maintenance cost. An 

equivalent mathematical model is introduced for simpler analysis. The analysis covers 

Mean Time to the First Failure, maintenance and failure cost, and inspection cost. 

Simulation results of the proposed model are corroborated by mathematical equations of 

                                                 
* Reprinted with permission from “The Effect of Transformer Maintenance Parameters on 
Reliability and Cost: a Probabilistic Model” by P. Jirutitijaroen and C. Singh, Electric Power 
System Research 72 (2004) 213-224, July 2004. © 2004 Elsevier 
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the equivalent model using first passage time and steady state probability calculations 

[86]. The objective of this study is to give an insight into the effect of the model 

parameters on reliability and all associated cost. 

This chapter is organized as follows. Basic background material for model 

building, namely, deterioration process of transformer, maintenance process, and 

transformer inspection tests are given in the following. Section 7.2 proposes a 

probabilistic maintenance model. Sensitivity analysis is given in section 7.3. Equivalent 

models for mathematical analysis are presented in section 7.4. Discussions and 

conclusions are given in the last section. 

 

7.1.1 Deterioration Process of a Transformer 

The two main components of an oil-immersed transformer are its windings and 

oil. The deterioration processes of these two components are described below. 

 

7.1.1.1 Deterioration Process of the Winding 

The insulating paper in the winding is a cellulose material, which consists of a 

long chain Hydrocarbon glucose molecule. The condition of the paper is determined by 

the degree of polymerization (DP). The higher the DP is, the longer is the chain and 

better is the paper condition [37]. As paper ages, the chain breaks down and generates 

CO, CO2, H2O, Furfural or FFA, and fiber. 
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7.1.1.2 Deterioration Process of the Oil 

The oxidation of oil produces acids, moisture and sludge, which impair cooling 

property, resistivity and dielectric strength of the oil.   

These two processes happen concurrently and dependently. Water produced in 

the deterioration process of the paper increases the ageing rate of the oil and vice versa. 

Both processes are accelerated by high temperature, moisture and oxygen. Deterioration 

failure is a long-term accumulated fault, which happens as a result of deterioration 

process. It can happen either in winding or oil; for example, loss of too much moisture of 

paper insulation in winding, dielectric breakdown, or partial discharge [47]. 

 

7.1.2 Maintenance Process of a Transformer 

There are numbers of maintenance processes for a transformer. This study 

presents some of the processes below. 

 

7.1.2.1 Oil Filtering  

Most of the moisture comes from the degradation process of paper, which is used 

in the winding for wrapping around conductors and spacers; therefore, maintenance 

action would require a complete dismantling of this device. Moreover, the cost of this 

action represents a replacement by new transformer. During the deterioration process of 

insulating paper, water and fiber are produced in the oil; thus, the effective action would 

be drying and filtering the oil. At high temperature, water content in oil is relatively high 

compared to water content in paper. The drying method consists of filtering oil at high 
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temperature. This on-line maintenance action will not only reduce moisture but also 

remove fiber and dirt particles, which are possible sources for partial discharge or 

electrical breakdown in the oil. 

 

7.1.2.2 Oil Replacement 

This maintenance action will be done off-line when properties of oil; i.e., 

dielectric breakdown voltage, sludge, resistivity, etc. are in a more adverse condition. 

 

7.1.3 Transformer Inspection Tests 

There are a number of inspection tests for a transformer. This study presents 

some of the tests below. 

− In routine sampling test, a sample is taken from oil and run through the following 

analysis; dielectric strength, resistivity, acidity, fiber count: small (<2 mm), 

medium (2-5 mm) and large (>5 mm) [52], and moisture content. Serviced-aged 

oils are classified into four conditions as follows [82]. Table 7.1 suggests test 

limits for group 1, Table 7.2 suggests test limit for group 2 and 3 

1. Group 1: satisfactory 

2. Group 2: requires reconditioning for further use 

3. Group 3: poor, should be reclaimed or disposed  

4. Group 4: adverse condition, dispose only  
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Table 7.1 IEEE Std. C57.100-1986 Suggested Limits for In-Service Oil Group 1 by 

Voltage Class 

Property Limit 
 

Voltage Class 
69 kV and 

below 
69– 288 kV 345 kV 

and above 
Dielectric breakdown voltage 
60 Hz, 0.100 gap 1 min, kV, min 

26 26 26 

Dielectric breakdown voltage 
0.040 gap, kV, min 

23 26 26 

Dielectric breakdown voltage 
0.080 gap, kV, min 

34 45 45 

Neutralization number max, mg KOH/g 0.2 0.2 0.1 
Interfacial tension, min, mN/m 24 26 30 
Water max, ppm* 35 25 20 
*Does not pertain to free breathing transformer or compartment 

 

 

Table 7.2 IEEE Std. C57.100-1986 Suggested Limits for Oil to Be Reconditioned or 

Reclaimed 

Property Group 2 Group 3 
Neutralization number max, mg KOH/g 0.2 0.5 
Interfacial tension, min, mN/m 24 16 

 

 

− Dissolved Gas Analysis measures gases that are produced by the ageing process 

(H2, C2H2, C2H4, CH4, CO). Levels of condition of dissolved gas in oil, and total 

dissolved combustible gas (TDCG) are listed in the following [77]. Table 7.3 

lists the concentrations corresponding to each level. A suggested action based on 

TDCG, which impacts both maintenance action and inspection rate, is given in 

Table 7.4. 
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1. Condition 1: Satisfactory  

2. Condition 2: Prompt additional investigation 

3. Condition 3: Indicates high level of decomposition. Prompt additional 

investigation 

4. Condition 4: Excessive decomposition 

 

Table 7.3 IEEE Std. C57.104-1991 Dissolved Gas Concentrations 

Concentration Limits (ppm) Dissolved Gas 
C1 C2 C3 C4 

H2 100 101-700 701-1800 >1800 
CH4 120 121-400 401-1000 >1000 
C2H2 35 36-50 51-80 >80 
C2H4 50 51-100 101-200 >200 
C2H6 65 66-100 101-150 >150 
CO 350 351-570 571-1400 >1400 
CO2 2500 2500-4000 4001-10000 >10000 

TDCG 720 721-1920 1921-4630 >4630 
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Table 7.4 IEEE Std. C57.104-1991 Action Based on TDCG Analysis 

 Sampling Intervals and Operating Procedures for  
Gas Generation Rates 

 

TDCG 
Levels 
(ppm) 

TDCG 
Rates 

(ppm/day
) 

Sampling 
Interval 

Operation Procedures 

>30 Daily 
10-30 Daily 

Consider removal from service. Advise 
manufacturer. 

C4 >4630 

<10 Weekly Exercise extreme caution. Analyze for 
individual gases. Pan outage.  
Advise manufacturer. 

>30 Weekly 
10-30 Weekly 

C3 1921-
4630 

<10 Monthly 

Exercise extreme caution. Analyze for 
individual gases. Pan outage.  
Advise manufacturer. 

>30 Monthly 
10-30 Monthly 

C2 721-
1920 

<10 Quarterly 

Exercise caution. 
Analyze for individual gases. 
Determine load dependence. 

>30 Monthly Exercise caution. 
Analyze for individual gases. 
Determine load dependence. 

10-30 Quarterly 

C1 <721 

<10 Annual 
Continue normal operation. 

 

 

− Furfural Analysis measures FFA which can determine the age of the paper 

insulation.  

− Partial Discharge Monitoring helps to predict and prevent breakdown of 

transformer [40]. Many types of equipment have been developed for this test, for 

example, radio interference and acoustic emission. The cost varies according to 

accuracy of results and sophistication of tools used. The analysis of PD from 

acoustic emissions should be made according to the size of the transformer. 

Large transformers are considered for further investigation if any internal partial 
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discharges are detected. Smaller transformers, on the other hand, use PD count 

rate to examine the condition of transformer [40]. 

− Temperature Measurement provides information on ageing of oil and paper since 

high temperature has a major impact on this process. 

 

7.2 Transformer Maintenance Model 

A general probabilistic model of the effect of maintenance on reliability of a 

device is proposed in [50] [53]. The model represents the deterioration process of the 

device by discrete stages [86]. A proposed probabilistic model utilizes this general 

model shown in Fig. 7.1. In the proposed models, three stages of deterioration process 

are introduced; D1, D2, and D3.  

At each stage, inspection test is implemented to determine oil condition in the 

investigation process. After inspection, oil condition is determined by the criteria 

indicated in the previous section. The criteria categorizes oil condition into 4 groups 

ranging from normal (C1) to adverse condition (C4). To simplify the problem, we  
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classify only two levels of maintenance which are oil filtering and oil replacement. 

Three types of inspection tests are introduced in the model since they are relatively 

common in the industry; Routine Test, Dissolved Gas Analysis, and Partial Discharge.  

Maintenance action is assigned corresponding to the oil condition. It is assumed 

that after oil filtering, the probability of going back to the previous stage is relatively 

high and after oil replacement, system stage is set back to the beginning (D1). If oil 

condition is C1, nothing is done. If oil condition is C2, C3, or C4, two options are 

available and are assigned with different probabilities, oil filtering or oil replacement. 

For example, if the present stage is D2 with oil condition C2, the probability of oil 

filtering will be higher than oil replacement. On the other hand, if the present stage is D2 

with oil condition C3 or C4, the probability of oil replacement will be higher. After 

maintenance, the device will have 3 options, going to stage D1, D2, or D3. The 

probability of transferring to other stages depends on the present stage and maintenance 

practice. 
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Fig. 7.1 Transformer Maintenance Model 
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Parameters in the model are listed below. 

− Mean time in each stage determines the transition rate of each stage in the 

deterioration process.  

− Inspection rate of each stage can be treated as maintenance rate of each stage 

under the assumption that inspection, test and maintenance actions are 

implemented sequentially.  

− Probabilities of transition from one stage to others are the probabilities of oil 

condition after the inspection process, probabilities of transferring from any oil 

condition to a given stage, probabilities of filtering or replacing the oil, and 

probabilities of transferring to each stage after maintenance. These probabilities 

can be treated as equivalent transition rates from one stage to others. The 

equivalent model is introduced to clarify this point later.  

Notice that mean time in each stage and transition probabilities can be 

approximated from historical data of oil condition of a physical transformer; thus, these 

parameters are assumed to be given. However, inspection rate of each stage can be 

varied to achieve high reliability with minimum cost. Therefore, this parameter is of the 

most concern in the analysis. 

In the following section, sensitivity analysis of inspection rate of each stage is 

implemented on the model in Fig. 7.1. Model parameters are listed in Appendix D. The 

analysis covers two aspects, namely, mean time to the first failure, and all associated 

costs (failure cost, maintenance cost, and inspection cost).  

 



 153

7.3 Sensitivity Analysis 

Mean time to the first failure (MTTFF) is the expected operating time before 

failure of the transformer starting from initial stage. This analysis will provide 

information of how the transformer operating time changes when the inspection rate of 

each stage changes. Let  

i1  =  Inspection rate of D1 (per year) 

i2  =  Inspection rate of D2 (per year) 

i3  =  Inspection rate of D3 (per year) 

The simulation results of the relationship of each inspection rate and MTTFF are 

shown in Fig. 7.2, Fig. 7.3, and Fig. 7.4. 

The following observations can be drawn from these simulation results. 

− In Fig. 7.2, MTTFF decreases with i1. This is caused by the assumption of 

exponential distribution of time spent in each stage. The exponential distribution 

implies constant failure rate. This is of particular significance in stage D1. This 

means that the inspections, which lead back to D1, will not improve the time to 

failure in D1; however, those leading to D2 and D3 will result in degradation. 

Thus, the effect of inspection will always be degradation. In other words, if we 

assume an exponential distribution for stage 1, then maintenance is of minimal 

use. 

− In Fig. 7.3, MTTFF increases at a decreasing rate with i2 and stays at some value. 

− In Fig. 7.4, MTTFF has a positive and linear relationship with i3.  

 



 154

 

Fig. 7.2 Relationship between MTTFF and Inspection Rate of Stage 1 
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Fig. 7.3 Relationship between MTTFF and Inspection Rate of Stage 2 
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Fig. 7.4 Relationship between MTTFF and Inspection Rate of Stage 3 
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In order to relax the assumption of exponential distribution, the proposed model 

in Fig.7.1 is modified by representing stage D1 by three sub-stages. Although each sub-

stage is exponentially distributed, the overall D1 will have deterioration. The simulation 

results of relationship of each inspection rate and MTTFF are shown in Fig. 7.5, Fig. 7.6, 

and Fig. 7.7. 

In Fig. 7.5, MTTFF increases rapidly when increasing i1 and then slightly 

decreases at high i1. The simulation results in Fig. 7.6 and Fig. 7.7 give the same 

observations as in Fig. 7.3 and Fig. 7.4.  

The simulation results on MTTFF suggest that inspection rate of D1 helps 

extending MTTFF; however, having too high inspection rate of D1 might reduce 

MTTFF. In addition, inspection rate of D2, when higher than a certain value, has a 

minimal impact on reliability. Fig. 7.7 indicates that transformer lifetime is longer with 

increased inspection rate of D3. Next, the analysis on inspection cost, maintenance cost, 

and failure cost are made. This analysis provides information about the effect of 

inspection rate on all associated cost. It can be seen from Fig. 7.1 that the cost from 

maintenance practices are oil filtering and oil replacement cost. We assume cost 

parameters from Appendix D. 
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Fig. 7.5 Relationship between MTTFF and Inspection Rate of Stage 1 with Three Sub-

Stages in Stage 1 
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Fig. 7.6 Relationship between MTTFF and Inspection Rate of Stage 2 with Three Sub-

Stages in Stage 1 
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Fig. 7.7 Relationship between MTTFF and Inspection Rate of Stage 3 with Three Sub-

Stages in Stage 1 
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The simulation results of relationship between inspection rate and all associated 

costs are shown in Fig. 7.8-7.19. The following observations can be made from the 

simulation results. 

− In Fig. 7.8, 7.12 and 7.16, failure cost decreases exponentially as inspection rate 

of D1, D2 and D3 increases.  

− In Fig. 7.9, maintenance cost first decreases as inspection rate of D1 increases 

and then increase with inspection rate of D1. The optimal region of inspection 

rate of D1 that minimizes maintenance cost is 0.5 to 1 per year.  

− In Fig. 7.13 and 7.17, maintenance cost increases with inspection rate of D2 and 

D3 and stays at constant value at higher inspection rate of D2 and D3. 

− In Fig. 7.10, inspection cost increases linearly with inspection rate of D1. 

− In Fig. 7.14 and 7.18, inspection cost increases as inspection rate of D2 and D3 

increases and remains constant at high inspection rate of D2 and D3. 

− In Fig. 7.11, the optimum region of inspection rate of D1 that minimizes total 

cost depends on inspection rate of D2 and D3. If the inspection rate of D2 and 

D3 are higher, the optimal value of inspection rate of D1 will be smaller. Failure 

cost dominates total cost at small inspection rate of D1 while maintenance cost 

dominates total cost at high inspection rate of D1. 

− In Fig. 7.15 and 7.19, the total cost is minimal at very high inspection rate of D2 

and D3. Failure cost dominates the total cost at small inspection rate of D2 and 

D3 while maintenance cost dominates total cost at high inspection rate of D2 and 

D3.  
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Fig. 7.8 Relationship between Expected Annual Failure Cost and Inspection Rate of 

Stage 1 
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Fig. 7.9 Relationship between Expected Annual Maintenance Cost and Inspection Rate 

of Stage 1 
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Fig. 7.10 Relationship between Expected Annual Inspection Cost and Inspection Rate of 

Stage 1 
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Fig. 7.11 Relationship between Expected Annual Total Cost and Inspection Rate of 

Stage 1 
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Fig. 7.12 Relationship between Expected Annual Failure Cost and Inspection Rate of 

Stage 2 
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Fig. 7.13 Relationship between Expected Annual Maintenance Cost and Inspection Rate 

of Stage 2 
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Fig. 7.14 Relationship between Expected Annual Inspection Cost and Inspection Rate of 

Stage 2 
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Fig. 7.15 Relationship between Expected Annual Total Cost and Inspection Rate of 

Stage 2 
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Fig. 7.16 Relationship between Expected Annual Failure Cost and Inspection Rate of 

Stage 3 
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Fig. 7.17 Relationship between Expected Annual Maintenance Cost and Inspection Rate 

of Stage 3 
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Fig. 7.18 Relationship between Expected Annual Inspection Cost and Inspection Rate of 

Stage 3 
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Fig. 7.19 Relationship between Expected Annual Total Cost and Inspection Rate of 

Stage 3 

 

 

Simulation results on cost suggest that cost effective maintenance occurs at small 

inspection rate of D1 and high inspection rate of D2 and D3. In the next section, 

equivalent mathematical models are presented for simpler analysis. Equations derived 

from mathematical analysis provide an explicit relationship of each inspection rate with 

MTTFF and costs. 
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7.4 Equivalent Models for Mathematical Analysis 

The proposed equivalent models have 3 discrete stages representing deterioration 

processes. Maintenance is assumed to be implemented at every inspection, thus, 

maintenance and inspection rate of each stage are considered to be an equivalent repair 

rate. Let  

D1 = Stage 1  

D2 = Stage 2, minor deterioration 

D3 = Stage 3, major deterioration 

F = Failure stage 

1y  = Mean time in stage 1 (year) 

2y  =  Mean time in stage 2 (year) 

3y  =  Mean time in stage 3 (year) 

21μ  =  Repair rate from stage 2 to 1 (/year) 

32μ  =  Repair rate from stage 3 to 2 (/year) 

31μ  =  Repair rate from stage 3 to 1 (/year) 

In the following, two models are proposed to simplify the transformer 

maintenance model. The first model assumes that after maintenance is performed, the 

stage of a device will always be improved. The second model assumes that with some 

probability, maintenance may accelerate failure of a device. Mathematical equations 

relating MTTFF and costs to inspection rates in each stage of both models are derived in 
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the following section. The equivalent models are employed in analyses in the next 

section, MTTFF and Cost analysis. 

 

7.4.1 Perfect Maintenance Model 

It is assumed that in the initial stage the transformer is in good working condition 

that needs no maintenance. Moreover, it is assumed that maintenance improves the 

device to the previous stage; therefore, repair rate of stage 2 improves the device to stage 

1 and repair rate of stage 3 improves the device to stage 2. The model is shown in Fig. 

7.20. 

 

Fig. 7.20 Perfect Maintenance Equivalent Model 
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7.4.2 Imperfect Maintenance Model 

 This model shown in Fig. 7.21 is slightly different from the model in Fig. 7.20. 

Transition rate from stage 1 to 3 is introduced ( 13λ ) to describe an imperfect inspection 

of stage 1. This model accounts for the probability that inspection of stage 1 might cause 

the system to transit to stage 3. Note that this model is an equivalent model for 
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transformer maintenance model in Fig. 7.1 since it accounts for a transition of stage 1 to 

3.  

13λ  31μ  
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y
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D1 D2 D3 F 

 

Fig. 7.21 Imperfect Maintenance Equivalent Model 

  

 

 The equivalent models will be employed in analyses in the next section, MTTFF 

and Cost analysis. The equations obtained from the analyses will be used to verify the 

simulation results from the previous analyses. 

 

7.5 Mean Time to the First Failure Analysis 

MTTFF equations are derived using the methodology of first passage time 

calculation [86]. Cost equations are derived using steady state probability calculation. 

The cost analyses include failure cost, maintenance cost, and total cost. Maintenance 

cost in this analysis includes inspection cost based on the assumption of the equivalent 

model that maintenance is implemented at every inspection. These equations are used to 

explain the simulation results in Fig. 7.2-7.7. 
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7.5.1 MTTFF for Perfect Maintenance Model 

Truncated transitional probability matrix Q is constructed by deleting row 4 and 

column 4 which associated with the absorbing state [86]. 
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 Determination of this matrix is found from (7.3). 
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 Mean time to the first failure depends on the starting stage, if the device enters 

from stage 1, 2, or 3, MTTFF is the summation of matrix ( )1N , , or, and is 

shown in (7.5), (7.6) and (7.7).  

( )2N ( )3N

321322132322121321 yyyyyyyyyyMTTFF μμμμ +++++=  (7.5)

32132213232212132 yyyyyyyyyMTTFF μμμμ ++++=  (7.6)

321322132323 yyyyyyMTTFF μμμ ++=  (7.7)

Let us assume that the system starts at stage 1, MTTFF is (7.5). Let   

T0  =  Life time without maintenance  

TE  =  Extended life time with maintenance 

Transition rate from D1 to D2, from D2 to D3, and from D3 to F, are given in 

(7.8), (7.9), and (7.10). 
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Notice that the extended time consists of the following terms; 

− The first term, 
2312

21

λλ
μ , is the ratio between the maintenance rate from stage 2 to 

stage 1 and the failure rate from stage 1 to 2 and 2 to 3.  

− The second term, 
f323

32

λλ
μ , is the ratio between the maintenance rate from stage 3 

to stage 2 and the failure rate from stage 2 to 3 and 3 to failure stage. 

− The third term,
f32312

3221

λλλ
μμ , is the ratio between the two maintenance rates (from 2 

to 1 and from 3 to 2) and the failure rate of all stages. 

The extended life time of perfect maintenance model is a summation of all 

possible combinations of ratios between maintenance rate of the current stage and failure 

rate of the current and previous stage. Since TE can only be positive in this model, 

inspection and maintenance always extend the equipment life time. If the repair rate of 

each stage is high relative to the transition rate of that stage and the previous stage 

( 231221 λλμ >> , f32332 λλμ >> ), the device will have a very long extended lifetime. 

 

7.5.2 MTTFF for Imperfect Maintenance Model 

Truncated transitional probability matrix Q is constructed by deleting row 4 and 

column 4 which associated with the absorbing state [86]. 
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The expected number of time intervals matrix is calculated from  [ ] 1−−= nQIN
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 Determination of this matrix is found from (7.16). 
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 Mean time to the first failure depends on the starting stage, if the device enters 

from stage 1, 2, or 3, MTTFF is the summation of matrix ( )1N , , or, and is 

shown in (7.18), (7.19) and (7.20).  

( )2N ( )3N
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Let us assume that the system starts at stage 1, then the MTTFF is (7.21).  
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The following observation is made regarding the relationships of inspection rate 

of each stage and MTTFF. 

− It is possible that inspection and maintenance will reduce MTTFF at very high 

inspection rate of stage 1 (recall that high inspection in stage 1 will increase 13λ ; 

thus, denominator may be large). This will increase the failure rate from stage 1 

to 3; therefore, MTTFF may decrease. This conclusion is verified by the 

simulation result in Fig. 7.5. 

− High inspection rate of stage 2 will increase the repair rate from stage 2 to 1 

( 21μ ). Assuming that this repair rate is very high, MTTFF can be approximated 

as (7.23). This means that MTTFF will increase to a constant value. This is 

verified by the simulation result in Fig. 7.6. 
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13
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− High inspection rate of stage 3 increases the repair rate from stage 3 to 2 ( 32μ ) 

and also repair rate of stage 3 to 1 ( 31μ ). These rates are linearly related to 

MTTFF; therefore, the lifetime increases linearly with inspection rate of stage 3. 

This is verified by the simulation result in Fig. 7.7. 

 

7.6 Cost Analysis 

Cost equations are derived using steady state probability calculation. The cost 

analyses include failure cost, maintenance cost, and total cost. Maintenance cost in this 

analysis includes inspection cost based on the assumption of the equivalent model that 

maintenance is implemented at every inspection. These equations explain the simulation 

results in Fig. 7.8-7.19. Let   

FC  =  Repair cost after failure (dollar/time) 

MC  =  Maintenance cost (dollar/time) 

P(i)  =  Steady state probability of stage i, i = 1,2, or 3 

CF  =  Expected annual failure cost (dollar/year) 

CM  =  Expected annual maintenance cost (dollar/year) 

CT  =  Expected annual total cost (dollar/year) 

TR  =  Repair time (year) 

The expected failure cost per year is found from (7.24) and the expected 

maintenance cost per year is found from (7.25). 
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CF = FC × frequency of failure (7.24)

CM = MC × frequency of maintenance (7.25)

 

7.6.1 Cost Analysis for Perfect Maintenance Model 

The transitional probability matrix shown in (7.26) and resulting steady state 

probability are derived in the following. 
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 Using frequency balance approach, steady state probability is calculated from 

(7.27). 
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(7.27)

 Determination of this matrix is shown in (7.28). 
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From, 3213221323221210 yyyyyyyTMTTFF μμμμ +++= , we have 
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Let   =RT
Fμ

1 , the repair time (year), then 
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 The probability of each state is shown in (7.31). 
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Failure cost is found from (7.32). 
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The failure cost is an average cost over lifetime in one cycle of the device. This 

indicates that as MTTFF increases, the annual failure cost will reduce and it can also 

reduce to zero. Consider the case of very frequent maintenance, this cost will approach 

zero. On the other hand, without maintenance; this cost will be an average cost over a 

total life time (life time without maintenance plus repair time). This indicates that failure 
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cost will be the highest without maintenance; therefore, maintenance helps reducing 

failure cost.  

Maintenance cost is found from (7.33). 
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(7.33)

Maintenance cost depends on repair rate of stage 2 and 3. Without maintenance, 

this cost is obviously zero. Consider the case of very frequent maintenance causing the 

device to stay in stage 1 longer, maintenance cost is the highest and equal to an average 

cost over a lifetime in stage 1. Therefore, maintenance cost increases from zero to some 

constant value. 

The expected total cost is a summation of failure and maintenance cost. Clearly, 

without maintenance the total cost is only a failure cost which is an average cost over a 

total lifetime. Consider very frequent maintenance, failure cost is zero while 

maintenance cost is the highest. Thus, total cost is dominated by failure cost at small 

inspection rate and it is dominated by maintenance cost at high inspection rate. The next 

question arises as if, at all, we should do the maintenance. 

Since maintenance is introduced in order to reduce the total cost, it should be 

implemented only if the highest possible total cost without maintenance is less than the 

highest possible total cost with maintenance, i.e., 
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Thus, the following inequality (7.37) should be considered.  
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This means that if the ratio of failure cost and maintenance cost is higher than a 

constant value, then the maintenance should be implemented. Intuitively, if the failure 

cost is not expensive, we would rather replace the device than maintain it. 

 

7.6.2 Cost Analysis for Imperfect Maintenance Model 

The transitional probability matrix shown in (7.39) and resulting steady state 

probability are derived in the following. 
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 Using frequency balance approach, steady state probability is calculated from 

(7.40). 
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Determination of this matrix is shown in (7.41). 
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 The probability of each state is shown in (7.42). 
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Failure cost is found from (7.43). 

( )
MTTFFT
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y
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3
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(7.43)

Failure cost equation of imperfect maintenance model is the same as that of 

perfect maintenance model; however, MTTFF equation is different. From MTTFF 

analysis, MTTFF will be greater than the lifetime without maintenance as long as the 

probability of transferring from stage 1 to 3 is not high which is usually true. Therefore, 
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failure cost reduces to a constant value as inspection rate of any stage increases. This 

conclusion is verified by simulation results in Fig. 7.8, 7.15 and 7.19.     

Without any maintenance, 
0TT

FCC
R

F +
= is the highest possible value. If the 

failure rate from stage 1 to stage 3 is significantly smaller than failure rate from stage 1 

to stage 2 ( 1213 λλ << ) and failure rate from stage 2 to stage 3 ( 2313 λλ << ), then MTTFF 

increases and decreases as repair rates of any stages (FC 12μ , 31μ , or 32μ ) increase. On 

the other hand, if the failure rate from stage 1 to stage 3 is slightly larger (or slightly 

smaller) than the failure rate from stage 1 to 2 ( 1
13

12 ≈
λ
λ ), then MTTFF can be possibly 

small. If MTTFF is low relative to , then will converge toRT FC
R

F T
FCC = . 

Maintenance cost is found from (7.44). 

( ) ( ) ( ) ( )( )32312113 321 μμμλ +⋅+⋅+⋅×= PPPMCCM  (7.44)

If the probability of transferring from stage 1 to stage 3 is insignificant then the 

analysis is the same as in perfect maintenance model. Maintenance cost will increase 

from zero to some constant value when inspection rates of D2 and D3 increase. This is 

verified by simulation results in Fig. 7.13 and Fig. 7.17. However, when inspection rate 

of stage 1 increases (probability of transferring from stage 1 to 3 is higher), maintenance 

cost could increase to infinity. This is verified by the simulation result in Fig. 7.9. It 

might be the case that the device condition gets worse and worse with every inspection 

and maintenance.  
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In terms of total cost, failure cost dominates total cost at small inspection rate 

while maintenance cost dominates total cost at high inspection rate. Total cost will be 

lowest at optimum region of inspection rate of stage 1 and high inspection rate of stage 2 

and 3. This conclusion is verified by simulation results in Fig. 7.11, Fig. 7.15, and Fig. 

7.19.  

Note that in this cost analysis, the inspection cost is accounted in the 

maintenance cost. However, if the inspection is used only to determine the stage of the 

device then the inspection cost need to be addressed in the model separately. 

 

7.7 Inspection Model  

An inspection stage is added to the perfect maintenance model. The model is 

shown in Fig. 7.22. Note that the inspection stage has no transition rate to other stage 

under an assumption of perfect inspection that the device after inspection stays in the 

same stage.  

 

Fig. 7.22 Inspection Model 
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Transitional probability matrix and resulting steady state probability are derived 

in the following. Truncated transitional probability matrix Q is constructed by deleting 

row 4 and column 4 which associated with the absorbing state [86]. 
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The expected number of time intervals matrix is calculated from . [ ] 1−−= nQIN
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 Determination of this matrix is shown in (7.47). 
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 Assume that the device first entered from stage 1, 
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Then, Mean time to the first failure is the time spent in stage 1, 2 and 3, 
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321322132322121321 yyyyyyyyyyMTTFF μμμμ +++++=  (7.49)

The transitional probability matrix and the resulting steady state probabilities are 

derived in the following. Transitional probability matrix is shown in (7.50). 
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Using frequency balance approach, steady state probability is calculated from 

(7.51). 
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 Determination of this matrix is shown in (7.52). 
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where is time in inspection stage and is given in (7.53). IT

( 321322121211 yyyyyyT II )μμμμ ++=  (7.53)

 Then, probability in each stage is given in (7.54). 
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The conditional probabilities of stage 1, 2 and 3 given that the stages are in 

working stages (excluding time spent in inspection stage) is found from (7.55), (7.56), 

and (7.57) correspondingly. The steady stage probability for each stage is as follow. 
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Notice that the MTTFF equation in (7.49) is the same as that of the model 

without inspection. Moreover, the steady state probability equations (7.55), (7.56), and 

(7.57) are the same as those of perfect inspection model. 
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Intuitively, inspection by itself should not improve operating lifetime of the 

device since it is introduced only to determine the stage of the device. However, in this 

case the inspection has no transition rate to other stage because we assume perfect 

inspection that the device after inspected will stay in the same stage. Clearly, the 

inspection does not affect the failure and maintenance cost. 

Inspection cost is analyzed as follow. Let    

IC  =  Inspection cost (dollar/time) 

CI  =  Expected inspection cost (dollar/year) 

The expected annual inspection cost is given in (7.58) and (7.59). 

( ) II PICC μ××= 1  (7.58)
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Inspection cost is a linear function of inspection rate and probability of being in 

stage 1; therefore, high inspection rates and repair rates of going from any stage to stage 

1 increase the inspection cost.  

Obviously, inspection increases the total cost. However, inspection is intended to 

determine the stage of the device which is a crucial issue. Inspection is neither 

introduced to extend the device lifetime nor to reduce the cost. As long as the inspection 

does not cause the system to transit to higher stages, it should be implemented 
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7.8 Discussion and Conclusions 

A probabilistic model for transformer maintenance optimization is proposed 

using the concept of representing the deterioration process by the device of stages. 

Analysis of inspection rate of each stage on MTTFF, failure cost, maintenance cost and 

inspection cost are investigated in the study. Simulation results from MATLAB are 

shown and verified by mathematical equations of the equivalent model. The study 

suggests the criteria of implementing maintenance by comparing the failure and 

maintenance cost. In addition, inspection model has been constructed for inspection cost 

analysis. The analysis suggests the inspection is introduced only to determine the stage 

of device. 
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CHAPTER VIII 

CONCLUSIONS 

8.1 Conclusions 

Electric market deregulation is a driving force for efficient power system 

operation. The competitive environment demands high system reliability with the least 

cost. The need for optimizing available resources to maximize system reliability has 

assumed an increased importance. This dissertation examines two optimization problems 

involving power system reliabilty analysis, namely multi-area power system adequacy 

planning and transformer maintenance optimization.  

Chapter II proposes a new simulation method for power system reliability 

evaluation. A sampling technique called Discrete Latin Hypercube Sampling (DLHS) is 

proposed.  The proposed method provides both reliability indexes and their distributions 

and requires less computational time and memory than Latin Hypercube Sampling 

(LHS) in the sampling process. Comparative study shows that DLHS and LHS predict 

reliability indexes and distributions better than Monte Carlo simulation (MC). This 

contribution is beneficial to a wide-range of problems that involve integration of 

reliability assessment and optimization.  

Chapters III to IV propose several solution methods to the multi-area power 

system adequacy planning problem. The first method proposed in Chapter III employs 

sensitivity analysis with Monte Carlo simulation. This method can be used as a guideline 

to quantify the effectiveness of additional generation to each area. The procedure is 
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simple yet effective enough to provide relationship between reliability indexes and 

additional capacity after one Monte Carlo simulation. 

The second proposed method in Chapter IV applies scenario analysis with a 

state-space decomposition approach called Global Decomposition. The comparative 

algorithm allows efficient reliability evaluation which need not be performed completely 

in order to obtain optimal planning policy. The analysis applies to both generation, and 

transmission lines planning using loss of load probability as a reliability index of 

interest. The algorithm can also be extended to compute other reliability indexes such as 

frequency of loss of load. 

After Global Decomposition, system reliability equation is derived which leads 

to the development of the third method using Dynamic programming presented in 

Chapter V. Using system loss of load probability (LOLP) as a reliability index, a 

dynamic programming approach based on LOLP simplified analytical formulation is 

developed. The equation relating LOLP to additional capacity in the system is derived. 

With reasonable assumptions, this complex function is approximated into a separable 

structure to which dynamic programming is effectively applied. Due to the 

approximation, the solution obtained is considered near optimal. Heuristic search is then 

applied to obtain optimal solution.  

The fourth method presented in Chapter VI is in the stochastic programming 

framework. A two-stage recourse model is proposed to formulate the problem with 

expected unserved energy (EUE) cost as a reliability index. Unit avaiability of a 

generator is also included in the formulation. The L-shaped algorithm is applied to the 
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problem; however, the algorithm performs poorly with a large test system due to the 

dimensionality of system state space. Sample Average Approximation technique is 

employed to reduce computational time using two sampling techniques, namely Monte 

Carlo simulation and Latin Hypercube Sampling. The promising results from LHS are 

proved to be effective and better than those from MC.  

In addition to the planning problem, Chapter VII discusses transformer 

maintenance optimization using a probabilistic model to devise the optimal maintenance 

schedule. A probabilistic maintenance model is proposed where mathematical equations 

relating maintenance practice and equipment lifetime and cost are derived. These closed-

form expressions insightfully explain how the transformer parameters relate to 

reliability. This mathematical model facilitates an optimum, cost-effective maintenance 

scheme for the transformer. 

  

8.2 Suggestions of Future Work 

Simulation methods proposed in Chapter II are implemented on single area 

power system reliability analysis. The methods can be extended to a multi area power 

system level. Area load and generation correlations should also be addressed in the 

sampling process. In terms of planning problem, both LOLP and EUE can be integrated 

using probabilistic constrained stochastic programming. Although both indexes seem to 

be similar in the sense that they are probabilistic, LOLP is a discrete index while EUE is 

a continuous index in the optimization state space. Therefore, each index requires 

distinct approach to maneuver the solution algorithm, which is computationally 
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expensive. This challenge may be achieved by exploiting sampling techniques and 

introducing novel scenario selection schemes. The proposed methods for planning 

problem can be applicable to other power system optimization problems such as security 

and operation.  
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APPENDIX A 

TWELVE AREA POWER SYSTEM DATA 

 

 

1 2 8 

6 3 9 

5 11 7 

10 4 12
 

Fig. A.1 A Twelve Area Power System 

 

 

Table A.1 A Twelve Area Generating Units Statistic 

Number of Unit in Area Capacity 
Range(MW) 1 2 3 4 5 9 10 11 12 

5-20 - - 1 - - 1 10 1 - 
21-50 4 - 1 - 2 5 2 4 - 
51-100 5 2 1 - 1 1 - 2 - 
101-200 2 4 2 - 4 4 1 5 1 
201-300 1 5 2 1 - 1 - 3 1 
301-500 3 8 6 5 - - 2 3 1 
501-1000 - 8 6 1 - 1 2 1 - 

> 1000 - 6 4 - - - - - - 
Total 13 32 23 7 7 13 17 19 3 
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Table A.2 A Twelve Area Peak Load and Reliability Indexes 

Area Peak Load  
(MW) 

LOLP EUE 
(MW) 

1 1900 0.0114 1.9866 
2 18300 0.0026 2.4017 
3 10250 0.0009 0.5176 
4 2200 0.0109 2.2592 
5 60 0.0027 0.1504 
9 1200 0.0151 1.7049 
10 2400 0.0701 17.935 
11 2850 0.0034 0.5762 
12 850 0.1435 21.285 

 

 

Table A.3 A Twelve Area Cluster Load Data 

Cluster Cluster Value ( times 
Peak Load) 

Probability

1 1.3309 0.0482 
2 1.2198 0.1097 
3 1.1178 0.1125 
4 1.0140 0.1407 
5 0.9206 0.1532 
6 0.8144 0.1414 
7 0.7204 0.1719 
8 0.6145 0.1225 
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Table A.4 A Twelve Area Load Equivalent Transition Rates (Per Year) 

ij
lλ  j 
i 1 2 3 4 5 6 7 8 
1 0 1536 0 0 0 0 0 0 
2 629 0 1441 82 0 0 0 0 
3 44 1271 0 1662 780 0 0 0 
4 0 135 1251 0 2047 313 0 0 
5 0 0 359 1684 0 0 1965 183 
6 0 0 0 216 1507 0 2440 7 
7 0 0 0 0 506 1605 0 1221 
8 0 0 0 0 0 90 1633 0 
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APPENDIX B 

THIRTEEN AREA POWER SYSTEM DATA 

 

 

 

1 2 9 

6 3 10

5 12 7 

11 4 8 

13
 

Fig. B.1 A Thirteen Area Power System  

 

 



 217

Table B.1 A Thirteen Area Installed Capacity and Peak Load 

Area Installed Capacity (MW) Peak Load (MW) 
1 2240 2024 
2 22743 19144 
3 14610 12573 
4 2920 3087 
5 79 301 
6 468 0 
7 3000 0 
8 83 149 
9 346 0 
10 1785 1358 
11 2595 1525 
12 3546 3443 
13 815 1613 
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Table B.2 A Thirteen Area Transfer Capability 

From Area To Area Installed Capacity (MW) 
1 2 3674.1 
1 3 329.8 
1 6 117.8 
1 11 152.3 
2 3 1064.9 
2 9 159.7 
2 10 708.1 
2 11 393.9 
3 7 384.2 
3 11 203.1 
3 12 55.3 
4 5 37.9 
4 7 334.9 
4 11 181.9 
4 12 110 
5 6 358.9 
5 11 35.2 
5 12 590.4 
7 12 334.7 
7 13 799.6 
8 12 129.1 
10 11 99.6 
10 12 118.4 
11 12 140.7 
11 13 117.8 
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APPENDIX C 

THREE AREA POWER SYSTEM DATA 

 

 

 

 

Fig. C.1 A Three Area Power System 

 

 

Table C.1 Three Area Power System Generation Cumulative Probability 

Area 1 Area 2 Area 3 State of 
Cap.  
Arc 

Cap 
(MW) 

Cum. 
Prob. 

Cap 
(MW) 

Cum.  
Prob. 

Cap 
(MW) 

Cum.  
Prob. 

7   600 1.000000   
6 500 1.00000 500 0.737856 500 1.00000 
5 400 0.67232 400 0.344640 400 0.67232 
4 300 0.26272 300 0.098880 300 0.26272 
3 200 0.05792 200 0.016960 200 0.05792 
2 100 0.00672 100 0.001600 100 0.00672 
1 0 0.00032 0 0.000064 0 0.00032 

 

 

 

Area 
1 

Area 
2 

Area 
3 
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Table C.2 A Three Area Transfer Capability 

Tie-line 
1-1 1-2 1-3 

State 
of 

Cap. 
arc 

Cap 
(MW)

Cum. 
Prob.

Cap 
(MW)

Cum. 
Prob. 

Cap 
(MW)

Cum. 
Prob. 

2 100 1 100 1 100 1 
1 0 0.1 0 0.1 0 0.1 

 

 

Table C.3 A Three Area Load Parameters 

Load State Area 1
(MW) 

Area 2
(MW) 

Area 3
(MW) 

Probability 

1 500 600 500 0.028257 
2 400 500 400 0.275288 
3 300 400 300 0.436651 
4 200 300 200 0.259803 

 

 

Table C.4 A Three Area Generation Equivalent Transition Rates 

Area 1 Area 2 Area 3 
Cap 

(MW) 
+

1gλ  −
1gλ  Cap 

(MW)
+

2gλ  −
2gλ  Cap 

(MW)
+

3gλ  −
3gλ  

   600 0.6 0    
500 0.5 0 500 0.5 1 500 0.5 0 
400 0.4 1 400 0.4 2 400 0.4 1 
300 0.3 2 300 0.3 3 300 0.3 2 
200 0.2 3 200 0.2 4 200 0.2 3 
100 0.1 4 100 0.1 5 100 0.1 4 
0 0 5 0 0 6 0 0 5 
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Table C.5 A Three Area Transmission Lines Equivalent Transition Rates 

From Area - To Area 
1-2 1-3 2-3 

Cap  
(MW) 

+
12tλ  −

12tλ Cap 
 (MW)

+
13tλ  −

13tλ Cap 
 (MW)

+
23tλ  −

23tλ  

100 0.0274 0 100 0.0274 0 100 0.0274 0 
0 0 3 0 0 3 0 0 3 

 

 

Table C.6 A Three Area Load Equivalent Transition Rates 

ij
lλ  Load state, j 

Load state, i 1 2 3 4 
1 0 1.3429 0.0206 0 
2 0.3394 0 1.9753 0.0278 
3 0.0085 1.3399 0 2.1036 
4 0 0.0452 2.2370 0 
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APPENDIX D 

TRANSFORMER MODEL PARAMETERS 

 

Model parameters are given below. 

Inspection cost = 100 $ 

Oil filtering cost = 1,000 $ 

Oil replacement cost = 10,000 $ 

Failure cost  = 100,000 $ 

Mean time in D1  = 10 years 

Mean time in D2 = 7 years 

Mean time in D3 = 3 years 
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Fig. D.1 Transformer Model Parameters 
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