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ABSTRACT 
 

Improved Performance of Railcar/Rail Truck Interface Components. (August 2007) 

Brett Alan Story, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Gary T. Fry 

The objective of this research is to improve the railcar/rail truck interface by 

developing a low maintenance bearing interface with a favorable friction coefficient.  

Friction and wear at the center bowl/center plate bearing interface cause high turning 

moments around curved track, wear of truck components, and increased detrimental 

dynamic effects.   

The recommended improvement of the rail truck interface is a set of two steel 

inserts, one concave and one convex, that can be retrofit to center bowls/center plates.  

The insert geometry addresses concerns about maintaining favorable pressure 

distribution on existing components, minimizing overall height increase to accommodate 

existing infrastructure, and retaining railcar stability.  The stability of the railcar upon the 

design inserts has been ensured when the instantaneous center of rotation of the railcar 

body is above the railcar center of gravity.  The damping ratio provided by the frictional 

moment within center bowl is 240 and eliminates the possibility of dynamic 

amplification.   

Using a 90 inch radius of curvature ensures stability and requires a 0.5 inch 

diameter reduction of the existing center plate for a gap of 1/16 inch.  The increase in 

railcar height for the specific design is 0.71 inches which can be absorbed by either 

grinding of the center plate or new manufacturing dimensions.  The design is feasible for 

small travel values corresponding to small vertical gaps at the side bearings.     

 In addition to geometry alterations, the bearing surfaces are coated with a 

protective metallic layer.  The literature suggests that optimum friction coefficients 

between bearing elements in the center bowl/center plate interface may reduce turning 

moments of the truck, wear of truck components, and detrimental dynamic effects such 
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as hunting.   Axial-torsional tests determined friction coefficient estimates and wear 

properties for a matrix of various metallic protective coatings and steel.  Tungsten 

carbide-cobalt-chrome has a favorable coefficient of 0.3 under standard center 

bowl/center plate contact conditions. 
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CHAPTER I 

INTRODUCTION 
 

1.1 Background 

A gondola is a railcar used for transporting bulk materials, such as gravel or coal, at 

approximately 100 tons per railcar.  These loads create a total railcar weight that can 

exceed 286,000 pounds (Wolf 2005a).  As railcar weights increase to improve capacity 

efficiency, new methods and devices can be implemented to increase railcar 

performance and service life.       

The body of the railcar sits on two wheel and axle suspension assemblies called 

trucks.   The body of the railcar contacts each truck at a center bowl and two side 

bearings (Hay 1982).  The underside of the railcar has two cylindrical center plates that 

fit into center bowls located on trucks at either end of the railcar as shown in Figures 1.1 

and 1.2.  

 

 
Figure 1.1: Railcar Truck and Center Bowl/Center Plate 

Assembly 

____________ 
This thesis follows the style of Journal of Structural Engineering. 
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Figure 1.2: Cross Section A-A of Center Bowl/Center 
Plate Assembly 

 

 The center bowl, which takes approximately 90% of the cargo load and railcar self 

weight, is a cylindrical bowl that contacts the center plate on a flat surface (Tournay et 

al. 2006).  A center pin runs through the middle of the center bowl/center plate assembly 

and alignments the truck and railcar body during maintenance.  The side bearings, which 

may or may not be in constant contact over various loading conditions, prevent 

excessive rocking of the railcar (Hay 1982). 

Currently, the Association of American Railroads (AAR) requires center bowl liners 

or other lubricants that reduce friction and wear between the center bowl/center plate 

bearing surfaces (AAR 1982). Over time, plastic or metallic center bowl liners wear 

down and must be replaced. Replacement decreases productivity and adds maintenance 

costs.  Research shows that liners fail when center bowl/center plate contact shifts from 

flat, evenly distributed contact to point or edge contact (Tournay et al. 2006). When 

point or line contact damages liners, the friction at the bearing surface rises and reduces 

performance by increasing turning moments.  Estimates on this escalated friction 

coefficient for use in industry simulations are as high as 1.0 (Simson and Pearce 2005).   

1.2 Problem Statement 

When a railcar enters a curve, the trucks follow the rail and the center plate rotates 

within the center bowl.  The bearing interaction between the center bowl and center plate 

surfaces causes wear, and increased friction forces between the worn surfaces increase 
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turning moment.  Repeated cornering wears both flat contact surfaces of the center plate 

and center bowl as well as the rim or wall of the center bowl (Tournay et al. 2006).   

Ideally, the center bowl and center plate rotate concentrically about their common 

geometric center, and wear to the components would distribute equally to make a 

symmetric pressure distribution.  Non-uniform loading conditions, caused by 

unsymmetrical cargo loads or negotiating curves, cause non-uniform contact between the 

center plate and center bowl.  As a result, the center plate may move away from the 

geometric center of the center bowl, as illustrated in Figure 1.3.  In Figure 1.3, the center 

of rotation for the center plate has moved from the geometric center of the center bowl 

(Figure 1.3(a)) to the center bowl rim (Figure 1.3(b)). 

 

 
(a) Unworn, Uniform Loading  (b) Worn, Uneven Loading 

 

Figure 1.3: Center Plate Rotation Offset from Center Bowl   

 

As a rail truck enters a horizontal curve, the center plate may slide and contact with 

the wall or rim of the center bowl.  Tear down tests performed at Transportation 

Technology Center (TTC) suggest that similar events may cause point or line contact 

between the center plate and center bowl; therefore, the rotation between the two 

surfaces occurs at the contact point, not at their concentric centers (Tournay et al. 2006).    

This non-concentric rotation leads to uneven bearing contact and pressure distributions 

resulting in increasingly uneven component wear. 
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The degradation of center bowl/center plate interfaces has adverse effects on other 

railcar components.  In addition to truck component wear, high turning moments 

resulting from large friction forces in the center bowl can cause rail wheels to jerk, slip, 

and grind on the rail on horizontal curves.  As the railcar enters a curve, the friction 

forces within the center bowl and at the side bearings resist truck rotation and thus the 

wheels on the high side of the rail are forced against the rail.  This wheel/rail interaction 

causes gauge spreading of the track and damages wheel and rail profiles. 

Another scenario that wears truck components and rails is hunting.  Hunting is a 

dynamic condition, often occurring in unloaded railcars at moving high speeds, where 

trucks and their axles rotate rapidly about the center plate and cause wheels to bounce 

back and forth against the rail (Hay 1982).  Extreme hunting can cause the wheel to 

climb the rail and possibly derail.  Low friction at the center bowl/center plate bearing 

interface does not provide sufficient resistance to hunting; therefore hunting instability 

results.  Other detrimental dynamic effects in the center bowl can be reduced with an 

appropriate friction coefficient.  Impact between the center plate and the center bowl rim 

is an example of such dynamic interaction.  Simulations have shown that center bowl 

friction coefficients less than 0.3 increase hunting and center bowl rim impacts (Simson 

and Pearce 2005).    

1.3 Project Objective 

 The project objective is to improve railcar/rail truck interface performance by 

implementing low maintenance, bearing interfaces with favorable friction coefficients.  

The design has two features essential to mitigating the center plate/center bowl bearing 

problem: 1) altered interface geometry and 2) favorable friction coefficient.   The design 

combines two steel inserts, one convex and one concave, with a protective coating on the 

bearing faces of the inserts.  As will be described in detail in Chapter II, the insert 

geometry reduces edge contact and improves the stress state at the interface.  A metallic 

protective coating on the insert contact faces reduces wear and provides a favorable 

friction coefficient.  Different materials were tested in the laboratory to determine their 
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friction coefficient estimates and wear properties.  From these tests, the proper protective 

coating can be chosen for the design.   
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CHAPTER II 

 GEOMETRIC INSERT DESIGN PROCEDURES 
 

2.1 Insert Geometry  

A set of center bowl/center plate bearing inserts is proposed that limits wear 

caused by stress concentrations by reducing point or edge contact between the center 

bowl and center plate. A graphic of the general design scheme is shown in Figure 2.1.  

As a first step in determining the best alternative bearing interface geometry, 

SolidWorks models of different geometric interfaces were constructed to examine their 

interaction.   

 

 
 

Figure 2.1: Geometric Design of Proposed Inserts 

 

2.2 Investigation of Spherical Interface Geometry  

Figure 2.2 shows an exaggerated spherical interface in both the centered and 

tilted position caused by turning or eccentric loading.   
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(a) Centered Position 

  
(b) Tilted Position 

 

Figure 2.2: Exaggerated Spherical Bearing Interface  

 

 The exaggerated interaction of the spherical bearing surface shows the 

elimination of point or line contact as the center plate rotates against the center bowl.  A 

lack of edge contact along the faces of the center bowl and center plate reduces 

concentrated contact stresses.  This stress reduction correlates to a wear reduction in the 

interface components.  Depending on the radius of curvature at the interface, the center 

plate may have a tendency to climb the center bowl and instability may occur.  

Examination of the scale components of a railcar and rail truck show that this instability 

is an unlikely event that can be eliminated in design.   

Figure 2.3 shows the interaction between the radius of curvature and center of 

gravity (C.G.) of a railcar body.  An instantaneous center of rotation (I.C.) exists in 

which the railcar body and center plate, acting as one rigid body, rotate with the same 

angular velocity.  In the case of the railcar rotating within the concave center bowl insert, 

the I.C. is constrained to be the radius of curvature for the insert.  The interaction of the 

C.G. of the railcar and the (I.C.) are the determining parameters of the stability of the 

railcar.     
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(a) Small Radius of Curvature       (b) Large Radius of Curvature 

 

Figure 2.3: Location of Center of Gravity for Small and 
Large Radii of Curvature  

 

In absence of friction forces, the assembly will right itself if the I.C. (radius of 

curvature, in this case) of the center plate and railcar body is higher than the C.G. of the 

railcar body. This is due to the rising of the center of gravity of the car body to create a 

higher potential energy state, and its tendency to right itself back to its stable position. 

The railcar weight rights the railcar body to its original (lower) energy state.   If the I.C. 

is below the C.G. of the railcar, the instability of the assembly will increase as the C.G. 

of the railcar body is lowered and a lower potential energy state is created. The railcar 

will not return to its original (higher) energy state without external corrective forces.   

The design radius of curvature is initially chosen as 90 inches (above the center bowl 

face), which is well above the typical  C.G. for a loaded railcar body of 96 inches above 

the rail or 60 inches above the center bowl face (Hay 1982).   A radius of curvature of 90 

inches gives a 50% increase in the distance needed for the I.C. to be above the C.G.  

Such a design will reduce the instances in which stability of the railcar could be 

compromised, such as eccentric loading or excessive rocking.   An alternative 

I.C. 

I.C. 

Original 
C.G. 

Original 
C.G. 

New C.G. 
(Higher) 

New C.G. 
(Lower) 
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orientation for a spherical set of inserts is one where the bottom insert is convex and the 

top concave.  This orientation is eliminated as it creates an I.C. far below not only the 

C.G., but even below the track; such an orientation would be highly unstable.   

Figure 2.4 shows the spherical bearing assembly drawn to scale for a 16 inch 

diameter center bowl.  The primary difference between the exaggerated drawing and 

scale drawing is the overlap of the outer wall of the center plate and the inner wall of the 

center bowl.  While in the center position shown in Figure 2.4, the center plate and 

center bowl inserts are in flush contact and no line contact occurs.  The diameter of the 

standard 16 inch center plate has been modified in the Figure 2.4 to allow for rotation 

within the center bowl.   

 

 
Figure 2.4:  Scale Spherical Bearing Interface 

 

In order to achieve constant flush contact between the center plate insert and 

center bowl insert as the railcar rotates about the I.C., relationships between side bearing 

gaps, the radius of curvature, and clearances between the top insert and inner center 

bowl wall must be established. Figure 2.5 shows the pertinent measurements and 

variables required.   
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Figure 2.5: Rotation Constraint Relationships   

 

Assuring flush contact at the bearing interface requires that the amount of 

rotation of the railcar body required for the side bearings to come in contact on either 

side can be accommodated at the center bowl.  If the allowable rotation at the bearing 

interface is smaller than the required rotation for side bearing contact, the center plate 

insert would contact the center bowl rim and could bind or even climb the wall.  With 

the railcar geometry fully defined, expressions relating the side bearing gap distance (g), 

total rotation of the railcar (θ1), and the horizontal travel of the center plate at the center 

bowl edge (h) have been determined as follows.  The initial geometry of the railcar and 

truck establish the initial angles γ and β in Figure 2.5.   

h

I.C.

R1 
R2 

γ 

α 

β 

θ1 

θ2 

g 

φ 
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The following variables are known at the onset of the derivation and are shown 

in Figure 2.6: 

 
R1 Radius of curvature at the bearing interface 

g Vertical side bearing gap 

d Diameter of center bowl 

ti Mid thickness of the center bowl insert 

b1 Side bearing height 

a Horizontal distance from center bowl center to center of side bearing  

 
 

 
 

Figure 2.6: Initial Railcar Geometry   

g 

d

a 

ti 

R1 

b1 
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Figure 2.7: Side Bearing Gap Geometry   

 
 

From Figure 2.6 and 2.7 the angle γ can be calculated from the initial geometric 
variables as follows  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

2

1tan
L
aγ

, 
(2.1) 

 
where  
 

)( 112 gbtRL i +−+= . (2.2) 
 
 
With γ known, the radial distance from the I.C. to the upper side bearing is 
 

( )γsin2
aR = . (2.3) 

 
 
The vertical gap g can be related to R2 and the angles shown in Figure 2.7 as follows 

L1 

R2 
L2 

γ 

θ1 
α 
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21 LLg −= , (2.4) 

 
 

where 
 

)cos(21 αRL =  (2.5) 
  

1θγα −= . (2.6) 
 

 
Combining these variables gives the rotation of the railcar body required to close 

the side bearing gap, g, as 

 
( ) ( ))()cos( 1112 gbtRRg i +−+−−= θγ  (2.7) 

  
( ) ( )1

2

11 cos θγ −=
−+

R
btR i . (2.8) 

 
 
Solving for θ1 yields 
 

  
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
−= −

2

111
1 cos

R
btR iγθ . (2.9) 

 
 

Now the center bowl geometry in Figure 2.8 can be used to determine the 

horizontal travel required by the center plate along the center bowl. 
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Figure 2.8: Center Plate Horizontal Travel Geometry   

 
 

The angle β can be calculated from the initial geometry by noting that the center 

plate will stop rotation along the face after it contacts the side of the center bowl rim.   

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1

31sin
R
L

β . (2.10) 

 
 
 

Now, the horizontal travel of the center plate (h) can be related to R1, β, and θ2. 
 

  43 LLh −= , (2.11) 
 
 
where 
 

  
23
dL =  (2.12) 

 

L3 

R1 

θ2 

φ 

β

L4 
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  )sin(14 ϕRL =  (2.13) 
  

  2θβϕ −= . (2.14) 
 

 
Combining the above equations, h is: 
 

  )sin(
2 21 θβ −−= Rdh . (2.15) 

 
 

To find the value of h corresponding to the closing of the side bearing gap g, θ1 

and θ2 are equated and h becomes: 

 

)sin(
2 11 θβ −−= Rdh . (2.16) 

 
 

The following numerical example illustrates railcar geometry and typical values 

for horizontal center plate travel (Wolf 2005b, Tournay et al. 2006). The geometry as 

defined in Figure 2.5 is as follows: 

 
R1 90 inches 

g 1/16 inches 

d 16 inches 

ti 0.25 inches 

b1 4.5 inches  

a 26 inches 

 
 
The angle γ and radius R2 are: 
 

deg879.16
)in16/1in5.4(in25.0in90

in26tan 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

= −γ  (2.17) 
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( ) in547.89
deg88.16sin

in26
2 ==R  (2.18) 

 
 
The rotation of the railcar body is 
 

( ) deg138.0
in547.89

in5.4in25.0in90cosdeg88.16 1
1 =⎟

⎠
⎞

⎜
⎝
⎛ −+

−= −θ . (2.19) 

 
 
The angle β for this set up is: 
 

deg10.5
90
8sin 1 =⎟
⎠
⎞

⎜
⎝
⎛= −β . (2.20) 

 
 
Finally, the horizontal travel of the center plate, h, is given by 
 

in22.0deg)138.0deg1.5sin(in90in8 =−−=h . (2.21) 
 
 

The horizontal gap between the center plate and center bowl rim required for 

flush contact at the bearing interface is approximately 1/4 inches for a radius of 

curvature of 90 inches and a side bearing gap of 1/16 inches.  A comparison of the 

example to results for such a calculation changing only the side bearing gap to 1/8 inches 

and 1/4 inches is shown below in Table 2.1. 

 

Table 2.1: Rotation and Center Plate Travel for Various 
Side Bearing Gaps 

 

 g = 1/16 inches g = 1/8 inches g = 1/4 inches 
γ (degrees) 16.88 16.89 16.91 
R2 (inches) 89.55 89.49 89.37 
θ1 (degrees) 0.138 0.278 0.560 
h (inches) 0.22 0.43 0.88 
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The equations and results above have been derived for any magnitude of value 

for θ1 or θ2.  In reality, these angles are very small and noting that the numerical 

outcomes for the angle θ1 are between 0.138 and 0.560 degrees, the expressions for both 

θ1 and h can be simplified by including the following small angle approximations 

 

θθ ≈sin , (2.22) 
 

1cos ≈θ . (2.23) 
 

Implementing these approximations, the derivations for θ1 and h are shown 

below.  Referring to Figure 2.6 and Equation (2.4), the expression for g in terms of R2 

and the associated angles is 

 

21 LLg −=  (2.4) 
 

γα coscos 22 RRg −=  (2.24) 
 

( ))cos()cos( 12 γθγ −−= Rg  (2.25) 
 

( ))cos()sin()sin()cos()cos( 112 γθγθγ −+= Rg . (2.26) 
 
 
Using the small angle approximations, 
 
 

( ))cos()sin()cos( 12 γγθγ −+= Rg , (2.27) 
 
 
and recalling equation 2.3, θ1 (in radians) is  
 
 

a
g

=1θ . (2.28) 
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Solving for h from Figure 2.7 and Equation (2.11), 
 
 

  ϕsin
2 1Rdh −=  (2.29) 

 

  )sin(
2 21 θβ −−= Rdh  (2.30) 

 

  ( ))sin()cos()cos()sin(
2 221 θβθβ −−= Rdh . (2.31) 

 
 
Employing the small angle approximations once more, 
 

  ( ))cos()sin(
2 21 βθβ −−= Rdh , (2.32) 

 
 

where 
 

  
2

)sin(1
dR =β  (2.33) 

 

  
4

)cos(
2

2
1

dR −=β . (2.34) 

 
 

Substituting into the equation for h and equating θ1 and θ2 
 
 

  
a
g

R
dRh *

4
1 2

1

2

1 −= . (2.35) 

 

Approximate values for θ1 and h using the previous numerical input are shown in 

Table 2.2.   
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Table 2.2: Approximate Rotation and Center Plate Travel 
for Various Side Bearing Gaps 

 

 g = 1/16 inches g = 1/8 inches g = 1/4 inches 
θ1 (degrees) 0.138 0.275 0.551 
h (inches) 0.22 0.43 0.86 

 
 

With the acceptance and increasing use of constant contact or reduced gap hard 

contact side bearings, less rotation of the railcar occurs and the required horizontal travel 

of the center plate within the center bowl is significantly reduced.  The implementation 

of a spherical bearing interface where the center plate and center bowl remain in flush 

contact throughout the rotation required for side bearing contact reduces the edge contact 

responsible for component wear.   

 

2.3 Investigation of Conical Interface Geometry 

An investigation into alternative interface geometries revealed a conical interface 

as a possible improvement over flat plate contact.  In such a layout, a shallow conical 

interface would work to center the center plate in the center bowl.  Figure 2.9 shows a 

conical interface layout in both the centered and tilted positions.   In contrast to the 

spherical bearing interface, a conical interface has several locations where line or edge 

contact could occur.  Also in contrast to a spherical geometry, the movement of the 

center plate within the center bowl would be less of a smooth rotation and more of a 

jerking, start-stop motion.   
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(a) Centered Position 

 

 

 
(b) Tilted Position 

 

Figure 2.9: Exaggerated Conical Bearing Interface  

 

For example, in Figure 2.9(b) the right tip of the center plate insert will gouge 

into the upper face of the center bowl insert.  This is an extreme case of point or line 

loading that would occur any time the center plate rocked within the center bowl, much 

like flat plate contact.   

2.4 Geometry Dimensions 

Considering the models and discussion above, a spherical bearing interface is 

chosen for the preliminary geometry layout.  Figure 2.10 shows the preliminary 

dimensions of such a spherical interface with a 16 inch diameter center bowl.   
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Figure 2.10: Design Geometry 

 

The geometry shown in Figure 2.10 was calculated so that a reasonable amount of 

steel material exists at both the center of the bottom insert and the outer edges of the 

upper insert.  The total increase in height for a railcar with these inserts is 0.71 inches. 

The bottom insert has an outer thickness of 0.61 inches and an inner thickness of 0.25 

inches, which results in a required radius of curvature of approximately 90 inches. 

Consequently, the thickness at the center of the center plate insert is 0.46 inches.  The 

inner diameter of both of the inserts is 3 inches which will allow for the small rotations 

of the center plate within the center bowl.   

Railcars can be retrofitted to accommodate existing railcar stock.  The lower 

insert can be simply dropped into an existing center bowl, while the upper insert can be 

welded to the existing center plate.  With the use of existing plastic center bowl liners, 

the railcar must be raised off of its trucks and inspected on a regular basis.  With this 

proposed design, railcar owners will not only have less physical equipment costs from 

liners and lubrication, but hauling schedules may be able to run longer without 

maintenance stops.  
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2.5 Dynamic Investigation 

With the kinematics of the railcar/rail truck interface examined and the design 

geometry completed, an investigation of the dynamic interaction between the railcar and 

rail truck was performed.  Specifically, the interaction of the interface was examined to 

determine the possibility of a dynamic instability due to oscillatory motion within the 

center bowl.  Such an instability caused by dynamic amplification can occur in harmonic 

systems when the system is driven at the system’s natural frequency of vibration.  

Damping, or energy loss, can serve to mitigate, or even eliminate this resonant behavior.  

Given the broad spectrum of frequencies to which the railcar is subjected as it traverses 

track, a dynamic analysis is needed to produce both the natural frequency of the system 

as well as the damping ratio caused by friction.   

The first step in determining the natural frequency and damping ratio of the 

system is the construction of the equation of motion (EOM).  In general, a body has six 

degrees of freedom (DOF’s) that correspond to translation in the x, y, and z coordinates 

and rotation about each of the x, y, and z axes.  Figure 2.11 shows the above coordinates 

and their corresponding directions in relation to the rail truck.   

 
Figure 2.11: Coordinate System 

 

 

x

z

y 

θx 

θz 

θy 
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Because the bearing interface is spherical, translational DOF’s are assumed to be 

fixed; only rotational motion can occur at the interface.  Taking the railcar and truck to 

be rigid bodies eliminates truck warping and car body bending which corresponds to 

rotation about the y and z axes, respectively.  The above assumptions leave rotation 

about the x axis as the only DOF for the dynamic analysis.  As mentioned earlier in the 

chapter, the car body rotates within the center bowls through the angle θx (θ from the 

preceding sections) about the I. C.  Beginning with the assumption of a frictionless 

interface, the free body diagram (FBD) of the system rotated through an angle θ are 

shown in Figure 2.12. 

 
 
 

Figure 2.12: Free Body Diagram 

 
Construction of the EOM from Figure 2.12 requires the summation of moments 

about the I.C. and gives: 

 

Rcg 
Hr 

H/2
C.G.

I.C.

W

N

θ

Br 
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∑ ..CIM  θ&&J=  (2.36) 

 

θθ sincgWRJ −=&&  
(2.37) 

 

The mass moment of inertia with respect to the I.C. of the railcar body is 

represented by J.  Rearranging and using the small angle approximation from Equation 

(2.22) 

 

0=+ θθ
J

WRcg&& . (2.38) 

 

The natural frequency of a harmonic equation of this form is the square root of 

the theta coefficient 

 

J
WRcg=ω . (2.39) 

 

The inclusion of friction into the EOM from Equation (2.38) is shown below and 

consists of a moment caused by a friction traction over the surface area of the bearing 

interface which opposes the direction of the angular velocity   

 

 

0]sgn[ =++ θθθ &&&
J

M
J

WR fcg . 
(2.40) 
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Appendix A.1 illustrates the derivation of Mf and gives the approximate result 

 

 

WRM f 1μ= . 
(2.41) 

 

Equation (2.40) now becomes 

 

 

0]sgn[1 =++ θ
μ

θθ &&&
J
WR

J
WRcg . 

(2.42) 

 

This equation is nonlinear because of the sign change required by the frictional 

term.  In order to discover the amount of damping provided by the friction, an equivalent 

linear EOM is needed, and has the following form.   

 

 

0=++ θθθ
J

WR
J

c cgeq &&&  
(2.43) 

 

The value of ceq is determined by equating the average rate of energy dissipated 

by the friction moment in Equation (2.44) and the viscous damping in Equation (2.43).  

Noting from dynamics that the rate of energy dissipated is the damping moment 

multiplied by the angular velocity, the following relationship between ceq and Mf can be 

made (Chopra 2001).   

 

 
2]sgn[ θθθ &&&

eqf cM = . 
(2.44) 
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The notation represents the time average of the expression inside.  This 

equation can be further simplified to the following 

 

 
2θθ &&

eqf cM = , 
(2.45) 

 

and rearranging,  

 

2θ

θ
&

&
f

eq

M
c = . 

(2.46) 

 

Assuming that the solution to the EOM is harmonic and of the form in Equation 

(2.47), the time average required in Equation (2.46) can be taken over half a cycle with θ 

ranging from θ0 to θf  and time ranging from zero to the time required by Equation (2.47) 

 

 

)cos()( 0 tt ωθθ = . 
(2.47) 

 

Taking θ 0 to be -θ 1 and θf to be +θ1 in Equation (2.47), Equation (2.48) is solved for tf 

 

 

)cos(11 ftωθθ −=  
(2.48) 

 

ω
π

=ft . (2.49) 
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Noting that the time average of a function is the integral of the function over the 

time interval divided by the time interval (Stewart 1999), Equation (2.46) can now be 

written as  

 
 
 
 
 
 

 

∫

∫

−

−

=
f

f

t

f

t

f
f

eq

dtt
t

dtt
t

M
c

0

2
0

0
0

))sin((1

)sin(1

ωωθ

ωωθ
 

(2.50) 

 
 

( )( )
1

1
2

1

11 4

2

2
πωθ
μ

πωθ
θμ WRWR

ceq ==  (2.51) 

 
For an EOM of the form in Equation (2.43), the critical damping and damping 

ratio are defined (Chopra 2001) as 

 
 

ωJccr 2=  
(2.52) 

 
 

cr

eq

c
c

=ζ , 
(2.53) 

 
and substituting values of ceq and ccr, 
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J
WR

J

WR

1
2

11

1

2
2

4

θπω
μ

ω
πωθ
μ

ζ == . 
(2.54) 

 
As an estimate on typical natural frequency and damping ratio values for a railcar 

with a spherical bearing interface, the follow values are applied to the above equations: 

 
 
W =  286,000 pounds 

Hr =  10 feet 

Br =  8 feet 

Rcg= 2.5 feet 

μ= 0.3 

θ 1= 0.00241 radians 

R1= 7.5 feet  

The mass moment of inertia for the railcar about the I.C. is 
 

 

25
22

2
2 ftslug1077.1

12
ft10ft8ft.52

ft/s2.23
lbs000,286

−×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+=J . 

(2.55) 

 
The natural frequency of the dynamic system is 
 

 

rad/s01.2
ftslug1077.1
ft.52lbs000,286

25 =
−×

∗
=ω . 

(2.56) 

 
The damping ratio of the system is 
 

 

( )
1.240

ftslug1077.1rad0024.0rad/s01.2
lbs000,286ft5.73.02

252 =
−×∗∗

∗∗∗
=
π

ζ . (2.57) 
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A damping ratio of more than unity implies that the system is overdamped and 

the oscillatory motion will not occur.  Thus, dynamic effects will not cause any 

detrimental resonant motion in the center bowl (Chopra 2001).   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 30

CHAPTER III 

 MATERIAL TESTING PROCEDURES 
 

3.1 Protective Material 

The center bowl/center plate inserts can be coated with a material that gives both 

excellent wear resistance and a favorable friction coefficient.  While silicon nitride or 

silicon carbide may have ideal ceramic properties for this application, the process of 

depositing these ceramics onto steel substrates with large surface areas is problematic.  

In attempts to coat silicon nitride onto steel via plasma deposition, the plasma deposition 

equipment was unable to heat the silicon nitride to an appropriate deposition 

temperature.   

An alternative to ceramic coating is a metallic based protective coating.  

Tungsten carbide and chrome nickel have excellent wear and hardness properties and are 

readily coated to steel.  For this reason, tungsten carbide and chrome nickel were tested 

in the High Bay Structural and Materials Testing Laboratory at Texas A&M University.  

Material compositions of both materials are shown below in Table 3.1 and Table 3.2. 

 

 

Table 3.1: Material Composition of Tungsten Carbide 
Cobalt Chrome Coating 

 

 

 

 

 

 

 
 
 
 

Tungsten Carbide Cobalt Chrome 
Material % Composition 

 
Tungsten Carbide (WC) 86 
Cobalt (Co) 10 
Chrome (Cr) 4 
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Table 3.2: Material Composition of Ferro Chrome Nickel 
Coating 

 
Ferro Chrome Nickel 

Material % Composition 
 

Iron (Fe) 27.8 
Chrome (Cr) 31 
Nickel (Ni) 28.5 
Silicon (Si) 1.5 
Boron (B) 4 
Copper (Cu) 3.2 
Molybdenum (Mo) 4 

 

 

Cobalt is present in many tungsten carbides as a metallic element that provides a 

matrix or binder for the primary elements.  Small amounts of chrome are used to reduce 

corrosion and oxidation as well as increasing the maximum service temperature.  

Chrome nickel has many more alloying elements seen in Table 3.2.  Its high percentage 

of both chrome and nickel help reduce corrosion.  Boron and molybdenum are added for 

increased strength and hardness.   

As assured in specifications obtained from Hitemco Southwest, the tungsten 

carbide material has a Rockwell ‘C’ Scale hardness of at least 63, or about 7 on the 

Mohs Hardness Scale (Lide 2005).   Variation of material hardness is attributed to the 

different alloying materials used.  In this case, the use of cobalt and chrome can slightly 

decrease the hardness.  Typical values of hardness for pure tungsten carbide are 8-9 on 

the Mohs Hardness scale (Lide 2005).   The chrome nickel material is softer with a 

Rockwell ‘C’ Hardness of 40-45 corresponding to a Mohs Hardness of 6-7 (Callister 

2003).  

3.2 Test Setup 

 In order to investigate the effects of a protective coating on the center bowl/ 

center plate bearing surface, a series of reduced scale laboratory tests was performed to 
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estimate the unlubricated friction coefficients for varying materials on both steel and 

tungsten carbide. Wear of each combination of materials was also documented.  The 

matrix in Table 3.3 below shows the combination of materials tested and how many tests 

were performed for each combination. 

 

Table 3.3: Specimen Material Combinations Used in 
Laboratory Testing 

 

  Specimen Material 

  Steel  
Tungsten 
Carbide 

Chrome 
Nickel 

Steel 1 4 3 Base 
“Pestle” 
Material Tungsten 

Carbide 1 3 3 
 

 

The “mortar and pestle” test assembly in Figure 3.1 was fabricated to test coated 

tablets in an axial-torsional load frame.  The top (“pestle”) and bottom (“mortar”) pieces 

both fit into the load frame and the coated steel discs were held in place and centered by 

3 set screws on the top rim of the mortar.  This setup allowed for a rapid interchange of 

specimens between testing. The load frame applied axial force through the pestle while 

the mortar and disc were rotated through an angle of twist at a constant rate.  Figure 

3.1(c) shows the interaction between the pestle and mortar, and Figure 3.1(d) shows the 

altered pestle in which tungsten carbide coated specimen #3 was welded to the pestle.  

To ensure that the surface coating of tungsten carbide was unaffected by the heat of the 

welding procedure, the pestle was ground at the edges so a groove weld could be 

formed.  This reduced the heat from the weld from altering the surface of specimen #3.   
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 (a) Specimen and Mortar    (b) Specimen Fixed to Mortar 
 

  
 

(c) Pestle and Mortar Interface   (d) Modified Pestle 
  

 
Figure 3.1: Test Apparatus 
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An axial-torsional load frame was used to determine torque as a function of 

rotation experienced by test specimens for each surface. The energy from torque vs. 

rotation hysteresis loops was equated to the work done by the friction force on the 

specimen surface.  Controlled parameters (axial load, angle of twist, twist rate, and test 

duration) were used to calculate friction coefficients between steel and various protective 

materials.  Appendix A.2 shows the derivation of the relationships between the 

hysteresis energy and the controlled parameters.  The resulting equation from Appendix 

A.2 is 

 

  
max4

3

zaT

L

RP
E
θ

μ = . (A.28) 

 

Steel tablets were machined and coated with the metallic based materials 

according to Table 3.4.  Each 2 inch diameter, 0.5 inch thick tablet was made of 4140 

steel which was coated with an approximately 0.020 inch protective coating.  One disc 

was left uncoated to serve as a control to confirm accurate friction coefficient results for 

steel on steel contact.  The control also served as a benchmark on which to compare 

material wear.   

 

Table 3.4: Specimen Coatings 

 

 

 

 

 

 

 

 

Specimen # Coating Material  
    
1 Tungsten Carbide 
2 Tungsten Carbide 
3 Tungsten Carbide 
4 Tungsten Carbide 
5 Chrome Nickel  
6 Chrome Nickel 
7 Chrome Nickel 
12 None 
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3.3 Test Parameters 

The axial load used in the laboratory tests was that which creates a typical state 

of stress found in a center bowl/center plate bearing interface.  A heavily loaded railcar 

weighs approximately 286 kips.  Field tests have shown that four side bearings on the 

railcar (two per truck) can typically take about 10% of the total load at any time 

(Tournay et al. 2006).  The remaining load transferred through each center plate into 

each center bowl is  

 

  kips7.128
2

kips28610.0kips286
=

×−
=sP . (3.1) 

 

The stress in the center bowl was found by dividing sP  by the area of the center 

bowl.  Assuming a 16 inch diameter center bowl with a 2 inch hole for the center pin, the 

stress is 

   

  ( ) ksi65.0
in1i8

kips7.128
22 =

−
=

nB π
σ . (3.2) 

   

In order to achieve the same state of compressive full scale stress for a 2 inch 

diameter specimen, a smaller force ( TP ) was applied 

     

  kips2kips04.2in1ksi65.0 2 ≅=×= πTP . (3.3) 
 

 Unlike the axial force which was scaled down for test specimen dimensions, the 

angle of twist needed for laboratory tests is identical to the twisting of the center plate 

against the center bowl that occurs in the field.   A degree of curvature (D) of 6° for a 

100 foot chord (C) is the maximum safe curvature for a horizontal curve in railroad 

engineering (Wolf and Ghilani 2006).  This is approximately the same angle used in tests 

for determining issues with truck component performance (Tournay et al. 2006).  This 

angle was used with a proper geometric setup to produce the maximum angle of twist 
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(θzmax) between the center bowl and center plate throughout a series of horizontal curves.  

In railroad engineering, horizontal curves are defined by 100 foot chord lengths as 

shown in Figure 3.2 (Wolf and Ghilani 2006).   

 

 
 

Figure 3.2: Standard Rail Curvature 

 

The following relationship was obtained from Figure 2.4 
 

  
R
C

D 2
1

2
1sin = . (3.4) 

 

The radius of curvature (R), to the centerline of the rail, for this configuration is 
 

  ft4.955
deg3sin
ft50

sin 2
1

2
1

===
D

C
R . (3.5) 

 

R 

D 

C 
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  Figure 3.3 shows the portion of the curve in Figure 3.2 for a standard railcar 

length which now encompasses a smaller central angle (D').  The geometry was adjusted 

by altering the chord length to a standard railcar length of 40 feet (C') while keeping the 

same radius of curvature (Hay 1982).   

 
 

Figure 3.3: Rail Curvature between Truck Centers 

 
 

The new central angle is: 

 

  o40.2
ft4.955
ft40

sin2
'

sin2' 2
1

12
1

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−

R
C

D  (3.6) 

 

The central angle (D') was then used to determine the angles of twist φ1 and φ2.  

The triangle in Figure 3.3 defined by the radii of the curve (to the centerline of the rails) 

and the center-to-center truck length is isosceles. Thus, the angles Δ1 and Δ2 are equal 

and thus θz1 and θz2 are equal.  Dropping the subscripts and using Δ and θz, the following 

relationships were used to relate θz to the know quantity D' 

R 

D’ 

C’ 

θz2 

θz1 

Δ2 

Δ1 
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  deg90=+Δ zθ  (3.7) 
  

  deg180'2 =+Δ D . (3.8) 
 

Combining Equations (3.6a) and (3.6b) 

 

  deg20.1
2

'
==

D
zθ . (3.9) 

 

Knowing θz, the total angle of twist that occurs between the center bowl and 

center plate was determined.  Figure 3.4 is a layout of a case in which the twisting of 

truck components consists of four stages:  (1) tangent track entering a curve, (2) a spiral 

curve to the right, (2) an immediate spiral curve to the left, and (4) tangent track exiting 

the curve.   The center line rail arc lengths of the curves in stages 2 and 3 are not 

required to be equal because these differences do not cause a change in θz.  A change in 

R or a reversal of curvature causes θz to change and thus the transition from the second 

stage to the third stage of Figure 2.6 creates the maximum total angle of twist (θzmax) 

between center bowl and center plate for a rail curvature of 6 degrees.   
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Figure 3.4: Rail Geometry Maximizing Center Bowl Twist 

 
        

 
Figure 3.5: Lead and Rear Truck Alignments  
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As the railcar follows the track, the lead and rear trucks rotate independent of 

each other, but through the same angle θz or 2θz.  Each of these four stages corresponds 

to a lead and rear truck alignment, as seen in Figure 3.5.  The red lines represent the 

centerlines of the railcar bodies which are either perpendicular to the trucks (Stages 1 

and 4) or rotated through the angle θz (Stages 2 and 3).  Both the lead and rear trucks 

rotate through the same total angle θzmax.  For example, the lead truck starts out 

perpendicular the railcar body centerline (Stage 1), rotates clockwise through θz (Stage 

2), rotates counterclockwise through 2θz (Stage 3), and finally clockwise through θz 

again back to perpendicular (Stage 4).     From inspection of this rotation, the total angle 

of twist was determined 

 

  deg3deg40.22max ±≅== zz θθ . (3.10) 
 

3.4 Laboratory Testing         

 The operational capabilities of the axial-torsional load frame were the primary 

factors in determining the twist rates for the laboratory tests.  Under the given axial load 

and angle of twist, an appropriate range of operational twist rates was 0.5 – 1.5 Hz.    

After preliminary tests on specimen #7 with varying twist rates showed no effect on 

torque vs. time results, a single twist rate of 1.0 Hz was used for all subsequent tests.   

 Before running tests at the desired 2 kips, a 0.5 kip test run was done to ensure 

that the axial-torsion load frame (Figure 3.6) could accommodate the torque produced by 

the test. Subsequent tests were performed at 0.5 kip increments until 2 kips was safely 

reached.  To ensure the proper final torque value from which the friction coefficient 

could be calculated, the tests were run until peak torque values reached constant 

magnitude.  Each specimen was subjected to 3 individual 30 second tests, which 

provided enough time to reach constant magnitude torque readings for all specimens.  

Between tests, the temperature of the contact surface was measured with a thermal gun 

to ensure that dramatic temperature increases were not occurring on the bearing surface.  
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Laboratory temperature conditions ranged from 72° F to 76° F, and bearing surface 

temperatures never changed by more than 2° F.  

Before and after testing each specimen, the specimen and pestle were sanded to a 

400 grit finish using silicon carbide sandpaper.  This procedure helped ensure that each 

specimen was undergoing a similar initial contact condition.       

 

 
 

Figure 3.6: Axial-Torsional Load Frame and Data 
Acquisition  
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CHAPTER IV 

 RESULTS  
 

4.1 Friction Coefficients for the Steel Pestle Tests 

 Friction coefficient values were obtained using the torque vs. rotation output 

described in Chapter III.  Torque vs. total rotation plots and torque vs. plastic rotation 

plots were created for all tests and these were used to determine friction coefficients 

representative of the different materials tested.  The MATLAB code for calculating 

friction coefficients is found in Appendix D.3.  Figure 4.1 shows the torque vs. rotation 

plot for specimen #12 on the steel pestle.   

 

 
 

Figure 4.1: Representative Torque vs. Rotation Results for 
Steel Pestle 

 

 All torque and rotation test plots can be found in Appendix B.  The test data 

shows consistent trends in both the tungsten carbide on steel and chrome nickel on steel 



 43

contact.  Table 4.1 summarizes the results found for all materials tested with the steel 

pestle. 

 

Table 4.1: Summary of Friction Coefficient Results for 
Steel Pestle 

 

Specimen No. μ 
1 (WC) 0.45 
2 (WC) 0.31 
3 (WC) 0.28 
4 (WC) 0.29 

5 (Cr-Ni) 0.74 
6 (Cr-Ni) 0.40 
7 (Cr-Ni) 0.57 
12 (Steel) 0.41 

 

 

The values shown in Table 4.1 represent the friction coefficient calculated by the 

energy method described in Chapter II, with the lowest values occurring for tungsten 

carbide shown in bold.   

 The friction coefficient of steel on steel was found to be 0.41 which agrees with 

results found in the literature, and is shown in bold in Table 4.1 (Lide 2005).  The 

tungsten carbide results, also shown in bold in Table 4.1, are lower than friction 

coefficients of steel on steel in all cases except specimen #1.  The friction coefficients 

for chrome nickel on steel range from 0.40-0.74.       

4.2 Friction Coefficients for the Tungsten Carbide Pestle Tests 

After seeing the damage sustained by the steel pestle during testing, the idea of 

coating both surfaces of the bearing interface was examined.  Friction coefficients 

between the tungsten carbide pestle and the coated specimens are calculated in the same 

manner as for the steel pestle tests.  Table 4.2 shows the friction coefficient values for 

the tests on the tungsten carbide pestle.    
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Table 4.2: Summary of Friction Coefficient Results for 
Tungsten Carbide Pestle 

 
Specimen No. μ 

1 (WC) 0.24 
2 (WC) 0.22 
4 (WC) 0.12 

5 (Cr-Ni) 0.47 
6 (Cr-Ni) 0.12 
7 (Cr-Ni) 0.22 
12 (Steel) 0.30 

 

 

 The friction coefficient values of the tungsten carbide on steel (specimen #12 on 

the tungsten carbide pestle) in Table 4.2 for the second set of tests agree with results 

from Table 4.1 (specimen #3 on the steel pestle).  The friction coefficients for tungsten 

carbide on tungsten carbide (in bold in Table 4.2) are lower than those of tungsten 

carbide on steel.  The values for tungsten carbide on itself range from 0.12-0.24, where 

as values for chrome nickel on tungsten carbide are scattered from 0.12-0.47. 

4.3 Specimen Wear for Steel Pestle Tests 

Also important to the success of the design is the ability of the protective coating 

to withstand the loading conditions found at the bearing interface while minimizing 

wear.  Photographs of each specimen were taken after testing and all presented in 

Appendix C.   Figure 4.2 shows a tungsten carbide coated specimen before and after 

testing.  The light spots in Figure 4.2(b) are areas of localized polishing which was the 

only damage incurred from the axial-torsional test.  Figure 4.3 shows a chrome nickel 

coated specimen in a similar manner.   
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(a) Before Testing   (b) After Testing 

 

Figure 4.2: Tungsten Carbide Coated Specimen #3 

 

 
 

(a) Before Testing   (b) After Testing 

 

Figure 4.3: Chrome Nickel Coated Specimen #6 

 

The black outline of wear on the specimen in Figure 4.3(b) is a powder that appeared 

on all three chrome nickel coated specimens after testing.  The coating on each of the 

coated specimens was not damaged during the laboratory tests and no visible change in 
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the depth of the coating or difference in texture occurred.  Specimen #7 shown in Figure 

4.4 was damaged at the coating facility, and while it showed localized wear and a black 

powdery substance like the other specimens, no further cracking or chipping of the 

ceramic coating occurred.   The damage to the coating on specimen #7 occurred when 

the specimen was removed from the rod to which it was welded for plasma deposition of 

the coating material.  Such a process of spraying would not be used for full scale inserts. 

 

 
 

Figure 4.4: Specimen #7 Damaged Prior to Testing 

 

 A visual inspection of the wear sustained by the steel specimen shows a more 

severe wear pattern than the coated specimens.  Although consistent with the size and 

shape of the wear on the coated specimens, the steel specimen has significant wear into 

the thickness of the surface.  Figure 4.5 shows the steel specimen before and after 

testing.   
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(a) Before Testing   (b) After Testing 

 

Figure 4.5: Steel Specimen #12 

 

 Figure 4.6 shows a close visual comparison of damage between specimens of 

each material.  While the coated specimens experienced local polishing, the steel 

specimen’s surface underwent pitting and local plastic deformation perceptible by touch.   
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(a) Tungsten Carbide  (b) Chrome Nickel 
 

 
 

(c) Steel 

 

Figure 4.6: Comparison of Specimen Wear for Steel Pestle 
Test 

 

The steel pestle sustained significant damage to its surface as well.  The surface 

of the pestle had to be sanded to a 400 grit finish after each test to ensure the damaged 

caused by the previous test did not affect the subsequent test.   

4.4 Specimen Wear for Tungsten Carbide Pestle Tests 

Wear on the specimens for the tungsten carbide pestle tests occurred in similar 

patterns, but was less severe.  All wear took place near the outer edge of the specimen as 

in the previous steel pestle tests.   Figure 4.7 again compares the wear of each type of 

material after 3 tests against the tungsten carbide.  When comparing the steel specimen 

wear against the steel and tungsten carbide pestles, the steel wear against the tungsten 

carbide is far less severe than steel on steel contact.   The tungsten carbide pestle did not 

wear appreciably throughout any of the tests as the steel pestle did.   
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(a) Tungsten Carbide  (b) Chrome Nickel 
 

 

 
 

(c) Steel 

 

Figure 4.7: Comparison of Specimen Wear for Tungsten 
Carbide Pestle Test 
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CHAPTER V 

DISCUSSION 
 

5.1 Friction Values from Laboratory Testing 

 Several observations are made by examining the torque vs. rotation plots in 

Appendix B in conjunction with the behavior of the axial-torsional load frame during 

testing.  Figure 5.1 compares both the initial torque vs. rotation (total) and the modified 

torque vs. plastic rotation.  As seen in plots in Figure 5.1(a), the torque values are not 

constant which signifies a change in either the applied axial load or the radius of the 

contact area.  During the tests, the specimen and pestle experience concentrated contact 

at high spots toward the edge of the specimen, which would cause a change in the axial 

force and torque values.  To account for this eccentricity, the average work done by the 

friction forces is equated to the recorded energy in the hysteresis loop.  The average 

applied axial load, PT, is used in the energy balance formulation.  Noticeable rotation of 

the axial-torsional load frame also occurred during testing, and can be seen in the sloping 

of the unloading curves in the torque vs. rotation plots at ±3 degrees or ±0.52 radians in 

Figure 5.1(b).   
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(a) Torque vs. Total Rotation 
 

 
 

(a) Torque vs. Plastic Rotation 
 

Figure 5.1: Comparison between Torque vs. Total Rotation 
and Torque vs. Plastic Rotation 
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Ideally, the unloading curve of the torque vs. rotation would be perfectly vertical, 

but the rotation of the load frame introduced an additional elastic rotation.  This was 

corrected by determining the slope, m, of the unloading line in the torque vs. total 

rotation plots and correcting the values by implementing the following formula 

 

  
m
T

zzplastic −= φφ , (5.1) 

 

where T is the torque output and φz is the rotation specimen and is bounded by ±θzmax. 

This correction gives hysteresis loops that compensates for the energy in the unwanted 

elastic deformation of the load cell.   
Friction coefficients for the tungsten carbide on steel and on itself fall into or just 

below the previously discussed desired range for minimum turning resistance without 

the adverse effects of hunting of 0.3.  In practice with the introduction of siliceous fines 

and debris, it is unlikely that friction coefficient will remain as low as ideal laboratory 

conditions, so laboratory results slightly lower than the ideal range may be conducive to 

excellent performance.  While the friction coefficients for extended service are unknown 

at this time, the tungsten carbide on tungsten carbide bearing interface gives values that 

are most conducive to low friction forces without excessive hunting as suggested by the 

literature (Simson and Pearce 2005, Tournay et al. 2006).   

5.2 Wear Characteristics of Specimens  

 Both the materials of the coated specimens showed excellent wear characteristics 

throughout all tests.  When compared to the damage incurred by the steel specimen, the 

polishing wear on the coated specimens is negligible.   

As shown in Figures 4.3, 4.4, and 4.6, the wear patters on all specimens were 

local rather than uniform over the entire surface area.  This localized contact is due to 

non uniform thicknesses of both the original steel specimens and the individual coatings.   

Differences in thickness values of coated and uncoated specimens ranged from 

0.001-0.01 inches.  Before testing, tiny gaps between the specimen and the mortar were 
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documented in Figure 5.2.  This gap suggests non-uniform contact and the presence of 

higher “hot spots.”  Slightly non-concentric rotation between the mortar and pestle 

resulted from hot spot contact.   

 

 

 
 

Figure 5.2: Gap between Bearing Surfaces 

 

 Locally, the surface hotspots experienced a much higher stress state than the 

intended uniform stress caused by a 2 kip load on the full surface area.  This unintended 

feature of the test gives evidence that the metallic protective coatings tested are quite 

robust, and while the proposed geometry will work to reduce stress concentrations, the 

protective coatings can withstand local stress increases.  No cracking or spalling, even 

on the initially fractured coating of specimen #7, occurred throughout any test.   

 The black powdery substance found on the chrome nickel surfaces after testing is 

most likely free carbon.  The plasma deposition process used to coat the specimens 

leaves the top of the coating less dense than the remaining coating and thus carbon can 

escape under the high pressure and torsion cause by the test.    The specimens tested 

against the tungsten carbide pestle generally had more powder on the surfaces as seen in 

Figures 4.7 and 4.8.   
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 Although no tests preformed were designed to test fatigue, some observations 

about the wear of the pestle can be made.  The steel pestle experienced significant wear 

during each set of tests, and was sanded and polished to a 400 grit finish after each 

specimen was tested 3 times.  The tungsten carbide pestle needed no such refinishing 

after each test, as only polishing of the surface occurred.  No visible increase in wear 

occurred after the 21 tests performed using the coated pestle.  Figure 5.3 shows the end 

condition of the tungsten carbide pestle resulting from repeated testing.   

 

 
 

Figure 5.3: Tungsten Carbide Pestle After Testing 

 

5.3 Full Scale Prototype 

 
In general, railcar center plates are not precisely uniform; they vary from model to 

model and thus, an exact final geometry blanketing all possibilities is not practical.  

Instead, general design concepts are examined and should be implemented as variables.  

The appropriate radius of curvature must be greater than the height of the C.G. as 

measured from the center bowl face.  With this satisfied, one can design inserts of 

desired thickness for a variety of truck geometry configurations.  This can include an 

array of variances such as plate/bowl diameter, thickness, or implementation and 

specification of side bearings. Table 5.1 displays the car body rotation, lateral travel of 
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the center plate, and railcar height increase for varying values of insert radii of curvature 

and side bearing gaps for both 16 inch and 14 inch diameter center bowls.  All 

assumptions concerning other truck geometry are listed in the MATLAB code in 

Appendix D.1.  

 

Table 5.1: Kinematic Results from Various Initial 
Geometric Truck Parameters 

 

  

  
Side Bearing Gap of 1/16 in. 

  

  
Side Bearing Gap of 1/4 in. 

  

 
R1 

(in.) θ1 (deg.) h (in.) ΔH (in.) θ1 (deg.) h (in.) ΔH (in.) 
128  0.138 0.31 0.55 0.565 1.26 0.50 
90  0.138 0.22 0.63 0.56 0.88 0.58 

Center Bowl 
Diameter of 

14 in. 60  0.138 0.14 0.77 0.557 0.58 0.72 
                

128  0.138 0.31 0.61 0.565 1.26 0.55 
90  0.138 0.22 0.71 0.56 0.88 0.66 

Center Bowl 
Diameter of 

16 in. 60  0.138 0.14 0.88 0.557 0.58 0.84 
 

 

 Throughout the design of the inserts, a radius of curvature of 90 inches has been 

used as the basis for all geometric considerations.  Table 5.1 shows that an increase in 

radius of curvature leads to less of an overall decrease in railcar height, but an increase 

in the overall horizontal travel of the center plate within the center bowl.  From a retrofit 

point of view, the horizontal travel should be reduced first as less grinding modifications 

to existing truck components will be required.  In manufacturing new center plates to 

incorporate this design, the entire center plate can be machined to include both the 

spherical cap of the insert and could have a thickness reduction to compensate for the 

change in height of the railcar.  In this manufacturing scheme, no height increase would 

occur. 

Concerns that are different for each instance of center bowl/center plate 

configurations are of equal importance.  For instance, the method of attachment of the 
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center plate insert to the existing center plate should be established on an individual 

basis.  The primary concern for the proper function of a spherical bearing interface is the 

ability of the railcar to rotate through the angle needed to close the gap at the side 

bearings.  As mentioned in Chapter II and seen in Figure 2.4, the existing center plates, 

should be altered to accommodate the required rotation.   With center plates and center 

plate inserts of differing diameter, a perimeter weld is one possible method of 

attachment.  Figure 5.4 shows possible implementation of such an attachment scheme.    

In future manufacturing of center plates, the actual face of the center plate could 

be machined as a convex piece and the overall thickness reduced to allow for the center 

bowl insert.   

 

   
 

Figure 5.4: Center Plate Insert Connection and Weld 
Detail 

 

 The surface of hard contact side bearings could also be coated with tungsten 

carbide.  Specifications for the type, size and, adjustment of side bearings vary 

tremendously, but the implementation of tungsten carbide as a coating during the 

manufacturing process would be a logical and immensely beneficial step.  In addition to 

wear reduction, lower friction will reduce forces and greatly reduce the large moments 

caused by contact at the side bearings for both hard contact, and constant contact side 

bearings.   
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5.4 Dynamic Concerns for Design Inserts 

The motion of the rotation of the railcar within the center bowl has been 

determined not to be oscillatory due to the enormous hysteretic damping of the frictional 

moment caused by center bowl forces.  Because the maximum angle of rotation of the 

railcar is so small, the friction within the center bowl can be expected to significantly 

retard or completely stop the rotation of the railcar.  With continuous random vibration 

from the motion of the train, the equilibrium caused by the large frictional moment will 

be intermittently broken and the railcar will work to right itself within the center bowl.  

This righting will be most prominent and beneficial in horizontal curves or other areas 

where vibration or rotation of the trucks.  As a train enters a horizontal curve, inertial 

forces act on the C.G. of the railcar and cause it to rotate counter clockwise about the 

I.C.  The weight of the railcar will cause clockwise rotation about the I.C. back towards 

its stable position.   

 The purpose of the dynamic analysis presented in this project is to confirm that 

the rotation of the railcar within the center bowl will not be detrimental to the function of 

the railcar.  It is necessary for more involved dynamic models of the system to be studied 

to ascertain any other areas of concern.  Such analysis could include the exploration of 

multiple DOF models or more advanced models for the contact stress within the center 

bowl.  The assumption of uniform pressure is an approximation, as the exact contact 

stress is unknown.  Using a uniform contact pressure gives excellent closed form 

approximations to the moment of the friction force about the I.C.  As mentioned in 

Appendix A.1, values of interest such as friction moment have been determined both 

exactly and under the assumption that the spherical cap over which the contact pressure 

acts can be well approximated by a circular area.   

For static equilibrium of the railcar to exist, the resultant of the force from the 

contact pressure and frictional force must be vertical and pass through the centroid of the 

railcar.  In the static problem, a uniform contact pressure does not allow for equilibrium, 

as the resultant force would pass through the I.C. at a location not directly vertically 

under the centroid.  As shown in Appendix A.1, this error is likely negligible.   



 58

5.5 Constant Contact Side Bearings 

Constant contact side bearings are becoming increasingly popular for heavy 

railcars.  Unlike hard-faced side bearings with specific gaps as discussed above, constant 

contact side bearings are often preloaded spring systems.  Clearly the introduction of 

springs in place of a gap at the side bearings changes the kinematic formulations for 

rotation of the railcar body in Chapter II.  Optimizing side bearing stiffness is a worthy 

endeavor as high stiffness causes higher forces and thus higher turning moments, and 

must be balanced with larger car body rotations caused by low stiffness.   

The presence of springs at the side bearings will also alter the EOM presented in 

Chapter II.  Springs will alter the natural frequency and thus the damping ratio.   

5.6 Future Testing 

 This thesis outlines the geometric components of the proposed center bowl/ 

center plate inserts and shows, through preliminary laboratory testing, a robust 

implementation of protective coating material properties to improve the bearing interface 

interaction.  Other needed research includes material research examining the deposition 

of ceramic materials such as silicon nitride or silicon carbide onto steel. Tests on 

concave or convex specimen surfaces would also improve the understanding of the 

performance of protective coating on the system. 

In addition to center bowl/center plate interface modifications, other application 

of a protective wear would be beneficial.  A vertical wear liner coated with tungsten 

carbide would mitigate wear from the necessary contact between the center plate and 

center bowl walls.   

 As the environment of the center bowl bearing interface is immensely 

complicated, full scale testing of insert prototypes could be used to confirm the results of 

this work and determine areas of improvement for the design.   
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CHAPTER VI 

CONCLUSIONS 
 

Based on geometric designs and laboratory testing, the following conclusions 

regarding the proposed center bowl/center plate inserts have been made. 

 

• An I.C. higher than the C.G. of the railcar ensures stability of the railcar upon the 

proposed center bowl/center plate interface under standard use.  

 

•  Slight modification of existing components is required to achieve flush contact 

at the spherical bearing interface through the use of 2 spherical bearing inserts. 

 

• With the trend of reduction of the distance g to 1/16 inch, the kinematics of the 

rotation of the railcar body within the center bowl is accommodated by an h of 

0.22 inches.  The proposed geometric inserts increase the total height of the 

railcar by 0.71 inches. 

 

• Dynamic amplification of the rotation within the center bowl is impossible due to 

the damping ratio of 240 caused by friction.   

 

• The proposed spherical bearing surface will work to distribute stresses more 

evenly by creating more uniform contact area and re-centering the rotation of the 

center plate away from the center bowl rim.  The center bowl rim will still 

provide necessary lateral force resistance. 

 

• Tungsten carbide coated test specimens give friction coefficients consistent with 

the optimum friction coefficient for this application of 0.3 (Simson and Pearce 

2005). 
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• While the steel specimen experienced substantial pitting and permanent local 

surface deformations, the tungsten carbide coated surfaces were polished with no 

perceptible change in thickness.   

 

• The proposed design is a practical and robust implementation of tungsten carbide 

coating to reduce both center bowl/center plate bearing surface wear and turning 

moments caused by a high friction coefficient between the bearing surfaces.   

 

• Coating of hard contact and constant contact side bearings with tungsten carbide 

will improve wear at the side bearing surface, but will also reduce contact forces 

that contribute largely to turning moments.   
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A.1 Derivation of Moment Due to Friction  

 
In order to determine the moment resulting from the friction traction on the 

surface of center plate insert, spherical coordinates can be employed.  The infinitesimal 

surface area, dS is 

 
  sss ddRdS θϕϕsin2

1= . (A.1) 
 

 
 

where: 
 
0 < θs < 360 degrees 
 
0 < sϕ < φ = 4.95 degrees (See Equation 2.15) 
 

 
 

Figure A.1:  Spherical Coordinate Angles on a Spherical 
Cap 

 
The vertical component of the resultant force from a uniform pressure (p) is 
 

  ∫= dSpN sv )cos(ϕ  (A.2) 
 
 

  ∫∫ ∫ ==
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2

)2cos(12
1

ϕπ −
= RpN v . (A.4) 

 
 
 
Substituting in W for Nv the pressure is 
 

  ( ))2cos(1
2

2
1 ϕπ −

=
R

Wp . (A.5) 

 
 
The friction traction is  

 
 

  ( ))2cos(1
2

2
1 ϕπ

μσ
−

=
R

W
T . (A.6) 

 
 

The moment caused by this traction varies over the surface of the spherical cap.  

The moment arm from the I.C. to an arbitrary infinitesimal surface area, dS is 

 
  22 zyL += , (A.7) 

 
or in spherical coordinates 
 
 

  ( ) ( )222 cos1sinsin1 sss RRL ϕθϕ += . (A.8) 
 
The moment from friction is 
 
 

  ∫= dSLpM f μ  (A.9) 
 
 

( ) ( )∫ ∫ +=
ϕ π

ϕθϕϕθϕμ
0

2

0

222
1 )sin(cos1sinsin1 ddRRRpM sssssf . (A.10) 
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The MATLAB code in Appendix D.2 was used in the numerical integration of 

Mf, and the numerical value of Mf is 7729200 inch-pounds. 

 

Due to the small angle φ, the surface area of the spherical cap is very close to the 

surface area of a flat circular region.  If taken to be a flat circular area the following 

values for pressure is obtained   

 

  

4

2
cd

Wp
π

≈ . 
(A.11) 

 
The moment resulting from this pressure distribution is 

 
WRM f 1μ≈ . (A.12) 

 
A comparison of the numerical values of the exact expressions and the 

approximate expressions are shown in the table below.   

 

Table A.1: Comparison of Exact and Approximate Values for Pressure and 
Moment 

 
 Exact 

Value 
Approximate 

Value % Error 

p (psi) 1503.5 1515.7 0.80 
Mf (lb-in) 7729200 7722000 -0.09 

 
 

As the resulting values have such low percent error, the approximate expressions 

have been used in developing expression for damping ration in Chapter II. 
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A.2 Derivation of Relationships between Work Done by Friction and Hysteretic 

Energy  

A relationship between the following parameters was developed to obtain the 

friction coefficient from data gathered during testing: Axial Force (PT), torque (T), 

friction coefficient (µ), and angle of rotation (θz).  
 

 
Figure A.2: Free Body Diagram of a Body in Compression 

 

The pressure distribution shown in Figure A.2 was assumed to be uniform over 

the area (A)   

A
PT=σ . (A.13) 

 

Shear stress from coulomb friction is defined as  

 

μστ = , (A.14) 
 

or combining (A.13) and (A.14), the shear stress is 

A
PTμμστ == . (A.15) 

 

PT 

σ 
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Figure A.3: Infinitesimal Area on Circular Cross- Section 

 

Assuming this contact surface is subject to both a compressive normal force ( TP ) 

and a frictional counter-clockwise torsion (T), an infinitesimal surface area (dA) will 

experience an infinitesimal normal force (dN) and an infinitesimal in-plane force (dH) 

from friction.   

 

The horizontal force on the area, dA, was defined using (A.15) from above 

 

dA
R
P

dAdH
a

T
2π

μτ == . (A.16) 

 

 

The infinitesimal torque, dT, is defined as (See Figure A.4) 

 

dA
R
PrrdHdT

a

T
2π

μ== . (A.17) 
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Figure A.4: Components Infinitesimal Torque 

 

 

 
 

Figure A.5: Illustration of the Polar Rectangle 

 

 

Torque over the entire surface is found by integrating over the surface using 

polar coordinates.  The following equations were developed to find the infinitesimal area 

(dA) for a polar rectangle 

 

θrS =  (A.18) 
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r
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addrrdS θ)
2

(1 −=  (A.19) 
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addrrdA θ= . (A.22) 
 

  

Combining (A.17) and (A.22), infinitesimal torque, dT, becomes 

 

a
a

T ddrr
R
P

rdT θ
π

μ 2= . (A.23) 

 

The work energy of this torque if found by multiplying dT by the rotation as follows 

 

za
a

T
E dddrr

R
P

rdW φθ
π

μ 2= . (A.24) 

 

Integrating over the surface area, the total work is 
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max3
4

zaTE RPW θμ= , (A.26) 

 

and rearranging, the friction coefficient is 
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max4
3

zaT

E
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θ

μ = . (A.27) 

 

Equating the work done by this force to the energy in the hysteresis loop 
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APPENDIX B  

TEST DATA PLOTS 
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Figure B.1: Test Data Plots for Specimen 1 (Tungsten 
Carbide) on Steel 

 

 
 
 

Figure B.2: Test Data Plots for Specimen 2 (Tungsten 
Carbide) on Steel 
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Figure B.3: Test Data Plots for Specimen 3 (Tungsten 
Carbide) on Steel 

 

 
 
 

Figure B.4: Test Data Plots for Specimen 4 (Tungsten 
Carbide) on Steel 
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Figure B.5: Test Data Plots for Specimen 5 (Chrome 
Nickel) on Steel 

 

 
 

Figure B.6: Test Data Plots for Specimen 6 (Chrome 
Nickel) on Steel 
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Figure B.7: Test Data Plots for Specimen 7 (Chrome 
Nickel) on Steel 

 

 
 

 
Figure B.8: Test Data Plots for Specimen 12 (Steel) on 

Steel 
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Figure B.9: Test Data Plots for Specimen 1 (Tungsten 
Carbide) on Tungsten Carbide 

 

 
 
 

Figure B.10: Test Data Plots for Specimen 2 (Tungsten 
Carbide) on Tungsten Carbide 
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Figure B.11: Test Data Plots for Specimen 4 (Tungsten 
Carbide) on Tungsten Carbide 

 

 
 
 

Figure B.12: Test Data Plots for Specimen 5 (Chrome 
Nickel) on Tungsten Carbide 
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Figure B.13: Test Data Plots for Specimen 6 (Chrome 
Nickel) on Tungsten Carbide 

 

 
 
 

Figure B.14: Test Data Plots for Specimen 7 (Chrome 
Nickel) on Tungsten Carbide 
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Figure B.15: Test Data Plots for Specimen 12 (Steel) on 
Tungsten Carbide 
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 81

  
 

(a) Before Testing   (b) After Steel Pestle Testing 
 

 
 

(c) After Tungsten Carbide Pestle Testing 
 
 

Figure C.1: Specimen #1 Before and After Testing 
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(a) Before Testing   (b) After Steel Pestle Testing 
 

 
 

(c) After Tungsten Carbide Pestle Testing 
 
 

Figure C.2: Specimen #2 Before and After Testing 
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(a) Before Testing 
 
 

 
 

(b) After Steel Pestle Testing 
 
 
 

Figure C.3: Specimen #3 Before and After Testing 
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(a) Before Testing   (b) After Steel Pestle Testing 
 

 
 

(c) After Tungsten Carbide Pestle Testing 
 
 

Figure C.4: Specimen #4 Before and After Testing 
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(a) Before Testing   (b) After Steel Pestle Testing 
 

 
 

(c) After Tungsten Carbide Pestle Testing 
 

 
Figure C.5: Specimen #5 Before and After Testing 
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(a) Before Testing   (b) After Steel Pestle Testing 
 

 
 

(c)  After Tungsten Carbide Pestle Testing 
 

 
Figure C.6: Specimen #6 Before and After Testing 
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(a) Before Testing   (b) After Steel Pestle Testing 
 

 
 

(c) After Tungsten Carbide Pestle Testing 
 

 
Figure C.7: Specimen #7 Before and After Testing 
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(a) Before Testing   (b) After Steel Pestle Testing 
 

 
 

(c) After Tungsten Carbide Pestle Testing 
 

 
Figure C.8: Specimen #12 Before and After Testing 
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(a) Before Testing   (b) After Testing 
 

Figure C.9: Steel Pestle Before and After Steel Pestle 
Testing 

 
 
 
 

  
 

(a) Before Testing   (b) After Testing 
 

Figure C.10: Tungsten Carbide Pestle Before and After 
Tungsten Carbide Pestle Testing 
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MATLAB CODE 
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D.1 MATLAB Code for Kinematic Relationships  

 
%%MATLAB Code for Kinematic Relationships and Geometric Design 
%%Calculations for Inserts 
 
 
 
clear 
clc 
 
%%Input 
CG=60;          %Center of Gravity of Railcar above Center Bowl 
                %Face (in.) 
R1=1.5*CG;      %Radius of Curvature of Bearing Interface (in.) 
ti=0.25;        %Inner(Middle)Thickness of Bottom Insert (in.) 
d=16;           %Diameter of Center Bowl 
 
%%Calculation of Outer Thickness of Bottom Insert 
to=R1-sqrt(4*R1^2-d^2)/2+ti;    %Outer Thickness of Bottom Insert (in.) 
 
%%Exploration of Kinematic Relationships  
 
g=1/16;         %Side Bearing Gap (in.) 
b1=4.5;         %Truck Side Bearing Height from Bolster Surface (in.) 
b2=b1+g;        %Car Body Side Bearing Height from Bolster  
                %Surface (in.) 
a=26;           %Horizontal Distance between Side Bearings and  
                %Center Bowl Center (in.) 
 
%%Calculations of Needed Quantities from Defined Geometry 
 
%%Vertical Side Bearing Gap and Subsequent Rotation 
 
R2=sqrt(a^2+(R1+ti-(b2))^2);        %Radius from I.C. to Car Body 
                                    %Side Bearings (in.) 
gamma =atan(a/((R1+ti-(b2))));      %Angle between Car Body Side  
                                    %Bearings and Vertical (rad.) 
gammad=gamma*180/pi;                %Angle between Car Body Side  
                                    %Bearings and Vertical (deg.) 
alpha=acos(g/R2+cos(gamma));        %Difference Between Gamma and  
                                    %Theta (rad.) 
alphad=alpha*180/pi;                %Difference Between Gamma and  
                                    %Theta (deg.) 
 
theta1=gamma-alpha;                 %Rotation Required to Close Side  
                                    %Bearing Gap (rad.) 
theta1d=theta1*180/pi;              %Rotation Required to Close Side  
                                    %Bearing Gap (deg.) 
 
%%Horizontal Side Bearing Movement Due to Rotation 
 
gh=a-R2*sin(alpha);                 %Horizontal Movement of Side  
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                                    %Bearings (in.) 
 
%%Horizontal Center Bowl Gap and Subsequent Rotation 
 
beta=asin((d/2)/R1);                %Angle Between Center Bowl Rim  
                                    %and Horizontal (rad.) 
betad=beta*180/pi;                  %Angle Between Center Bowl Rim  
                                    %and Horizontal (deg.) 
phi=beta-theta1;                    %Angle Between Beta and  
                                    %Theta1* (rad.) 
phid=phi*180/pi;                    %Angle Between Beta and  
                                    %Theta1* (deg.) 
 
h=R1*sin(beta)-R1*sin(phi);         %Horizontal Travel of Center  
                                    %Plate in Center Bowl (in.) 
 
%%Vertical Center Plate Movement Due to Rotation 
 
hv=R1*(-cos(beta)+cos(phi));        %Vertical Travel of Center  
                                    %Plate in Center Bowl (in.) 
 
 
%%Determination of Center Plate Insert Geometry from  
%%Rotation Requirements Rounding Algorithm for Horizontal Travel 
xx=[1/4,1/2,3/4]; %Rounded Measurements in Quarter Inch Increments(in.) 
 
for i=1:length(xx) 
    if h>max(xx)   %Assuring Practical Horizontal Travel 
        disp('Horizontal Travel too large') 
        break 
    end 
    if xx(i)-h<.25 & xx(i)-h>=0 
        hh=xx(i); 
    end 
     
end 
hh;                 %Rounded Horizontal Travel Distance (in.) 
 
dc=d-2*hh;          %Center Plate Insert Diameter (in.) 
tto=1/8;            %Outer Thickness of Center Plate Insert (in.) 
phic=asin(.5*dc/R1);%Angle the Center Plate Surface Traverses from  
                    %Outside to Vertical (rad.) 
phicd=phic*180/pi;  %Angle the Center Plate Surface Traverses from  
                    %Outside to Vertical (rad.) 
tt=R1-R1*cos(phic); %Thickness from Curvature of Center Plate Surface  
                    %from Tip to Middle (in.) 
tti=tto+tt;         %Mid Thickness of Center Plate Insert (in.) 
 
%%Output 
disp('Center Bowl Insert Design Geometry:') 
disp('     ') 
disp('Center Bowl Insert Diameter:') 
d 
disp('Center Bowl Insert Mid Thickness:') 
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ti 
disp('Center Bowl Insert Edge Thickness:') 
to 
disp('Interface Radius of Curvature:') 
R1 
disp('Center Plate Insert Design Geometry:') 
disp('     ') 
disp('Center Plate Insert Diameter:') 
dc 
disp('Center Plate Insert Mid Thickness:') 
tti 
disp('Center Plate Insert Edge Thickness:') 
tto 
disp('Total Railcar Height Increase:') 
DeltaH=ti+tti 
disp('Total Rotation of Railcar Body:') 
theta1d 
 
%%%% 
%   * The Derivation of the relationships between theta1 and  
% the existing geometry used a process in which theta1 was set  
% equal to theta2 where the angles corresponded to the rotation  
% required for side bearing contact and center bowl gap, respectively.   
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D.2 MATLAB Code for Numerical Integration of Mf  

 
%%MATLAB Code for Calculation of Friction Moment 
 
clear 
clc 
 
syms psi theta real  
syms psi theta positive  
%%Input 
R1=90               %Radius of Curvature (in) 
Nv=286000           %Normal Force (lb) 
mu=.3               %Friction Coefficient 
psi0=4.94           %Psi Bound (deg) 
psi0r=psi0*pi/180   %Psi Bound (rad) 
 
%%Surface Area Calculation 
Sa=2*pi*int(R1^2*sin(psi),psi,0,psi0r); 
Sa1=vpa(Sa,10)      %Surface Area (in^2) 
 
%%Pressure Calculations 
p=2*Nv/(pi*R1^2*(1-cos(2*psi0r)))   %Uniform Pressure Acting  
                                    %on 2 Bowls (psi) 
st=p*mu                             %Fricton Traction (psi) 
 
%Moment Calculations 
L=sqrt((R1*sin(psi)*cos(theta))^2+(R1*cos(psi))^2); %Moment Arm (in.) 
L=simple(L); 
mint=st*L*R1^2*sin(psi);        %Intermediate Calculations  
m1=(int(mint,theta,0,2*pi));    %Intermediate Calculations 
 
Mf=double(int(m1,psi,0,psi0r))  %Moment Due to Friction (lb-in.) 
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D.3 MATLAB Code for Friction Coefficient Calculations 

 
%%MATLAB Code for Determining Friction Coefficients 
 
clear 
clc 
close all 
format long 
 
%%Import Test Data 
%%Column Layout: 
%%Time(s)Axial Disp(in)Axial Load(kips)Rotation(Deg)Torque(lb-in) 
data=xlsread('Puck12_3_wc',1, 'A:E'); 
 
t=data(:,1);            %Time (s) 
tstop=30;               %Final Time for Analyzing (s) 
p=data(:,3)*-1000;      %Axial Load (lbs) 
Pbar=mean(p);           %Average Axial Load (lbs) 
rot=data(:,4).*pi/180;  %Rotation (rad) 
rotmax= max(rot)        %Maxi Rotation (rad) 
tq=data(:,5);           %Torque (in-lbs) 
 
%%Data Plots 
plot(t,p)                   %%Axial Load vs. Time 
axis([0,30,0,4000]) 
title('Axial Load vs. Time') 
xlabel('Time (s)') 
ylabel('Axial Load (lbs)') 
 
figure 
plot(t,rot)                 %%Rotation vs. Time 
axis([0,30,-0.06,0.06]) 
title('Rotation vs. Time') 
xlabel('Time (s)') 
ylabel('Rotation (rad)') 
figure 
 
plot(rot,tq,'b')           %%Torque vs. Total Rotation 
axis([-0.06,0.06,-800,800]) 
title('Torque vs. Rotation') 
xlabel('Rotation (rad)') 
ylabel('Torque (lb-in)') 
 
%%Find maximum rotation to find slope of the unloading line 
for i=1:length(t) 
    if rot(i)==rotmax; 
        irmax=i; 
    end 
end 
irmax 
%%Find Coordinates of Points on Unloading Line 
for j=irmax:irmax+10 
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    tqslope(j-irmax+1)=tq(j); 
    rotslope(j-irmax+1)=rot(j); 
end 
%%Fit data with line 
pf=polyfit(rotslope,tqslope,1); 
y2=polyval(pf,rotslope); 
 
figure                   %%Plotting Unloading Line and Approximation 
plot(rotslope,tqslope) 
hold on 
plot(rotslope,y2,'r-') 
slope=pf(1,1) 
 
plrot=rot-tq./slope;    %%Find Plastic Rotation 
figure 
plot(plrot,tq,'r')      %%%Torque vs. Plastic Rotation 
axis([-0.06,0.06,-800,800]) 
title('Torque vs. Plastic Rotation') 
xlabel('Plastic Rotation (rad)') 
ylabel('Torque (lb-in)') 
 
%%Calculating Energy 
for i=1:length(t) 
    if t(i)<=30 
    drot=plrot(i+1)-plrot(i); 
    E(i)=(drot)*(tq(i+1)); 
    iend=i; 
    end 
end 
%%Dividing Total Energy by Number of Cycles 
E=sum(E)/30 
%%Calculate Friction Coefficient 
mu= 1.5*E/(2*rotmax*1*Pbar) 
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