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ABSTRACT 

 

Skin Cancer Detection by Oblique-Incidence Diffuse Reflectance Spectroscopy. 

(December 2006) 

Elizabeth Brooks Smith, B.E., Vanderbilt University 

Chair of Advisory Committee: Dr. Lihong Wang 
 
 

Skin cancer is the most common form of cancer and it is on the rise.  If skin cancer is 

diagnosed early enough, the survival rate is close to 90%.  Oblique-incidence diffuse 

reflectance (OIR) spectroscopy offers a technology that may be used in the clinic to aid 

physicians in diagnosing both melanoma and non-melanoma skin cancers.  The system 

includes a halogen light source, a fiber optic probe, an imaging spectrograph, a charge 

coupled device (CCD) camera, and a computer.  Light is delivered to the skin surface via 

optical fibers in the probe.  After interacting with the skin, the light is collected and sent 

to the spectrograph that generates optical spectra.  Images and histopathological 

diagnoses were obtained from 250 lesions at the University of Texas M.D. Anderson 

Cancer Center (Melanoma and Skin Center).  To classify OIR data, an image processing 

algorithm was developed and evaluated for both pigmented and non-pigmented lesions.  

The continuous wavelet transform and the genetic algorithm were employed to extract 

optimal classification features.  Bayes decision rule was used to categorize spatio-

spectral images based on the selected classification features.  The overall classification 

accuracy for pigmented melanomas and severely dysplastic nevi is 100%.  The overall 
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classification accuracy for non-pigmented skin cancers and severely dysplastic nevi is 

93.33%.  Oblique-incidence diffuse reflectance spectroscopy and the developed 

algorithms have high classification rates and may prove useful in the clinic as the 

process is fast, noninvasive and accurate.    
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CHAPTER I 

INTRODUCTION 

 
1.1 Overview of Skin Cancer 

Skin cancer is the most common form of cancer and it is on the rise.  Non-melanoma 

skin cancers account for half of all cancers and include basal cell carcinomas and 

squamous cell carcinomas.  Basal cell carcinomas begin in the basal cell layer of the 

epidermis.  The tumor cells continue dividing but do not differentiate any further.  

Squamous cell carcinomas develop from dividing keratinocytes in a higher level of the 

epidermis.  The American Cancer Society estimates that there will be 1 million new 

cases of non-melanoma skin cancers in the U.S. this year1.  Melanoma is the most 

serious and fatal type of skin cancer.  Melanoma skin cancers arise from melanocytes in 

the nueral crest.  The American Cancer Society estimates that there will be 62,000 new 

cases of melanoma in the U.S. this year with 8,000 people dying of the disease1.  Skin 

cancer is difficult to diagnose non-invasively as malignant skin lesions can closely 

resemble their benign counterparts. 

 

There are many kinds of lesions that can be mistaken for skin cancer or vice versa.  The 

most common types include common nevi (moles), dysplastic nevi, warts, seborrheic 

keratosis, and actinic keratosis.  Common nevi are benign growths formed by clusters of  
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melanocytes in the basal layer of the epidermis or the top layers of the dermis.  

Dysplastic nevi have atypical size, shape, and organization of cells.  They are more 

likely to turn into melanoma than common nevi and are graded mild, moderate or severe.  

Mild and moderate dysplastic nevi do not have to be removed but should be watched 

closely.  Severe dysplastic nevi are always removed completely as they have 

resemblance of melanoma.  Warts are harmless skin growths caused by a virus.  Often 

times they go away by themselves, though some may need treatment.  Seborrheic 

keratoses are benign wart-like tumors that are very common in people over 40.  Actinic 

keratosis is a precancerous skin tumor caused by sun exposure and known in some cases 

to turn into squamous cell carcinoma.  Different lesion types can have similar 

characteristics furthering the problem in discriminating between them.     

 

1.2 Current Methods of Diagnosis 

If skin cancer is diagnosed early enough, the survival rate is close to 90%.  Visual 

examination is used in the clinic to determine whether a skin lesion may be cancerous.  

ABCDE represents common guidelines that are helpful in identifying skin cancer.  

Asymmetry (A), irregular border (B), variety of colors (C), large diameter (D), and 

evolving lesions (E) are symptoms of melanoma.  Accuracy is partially determined by 

practice, but even the most experienced physician will be unable to diagnose certain 

lesions as many features are shared by benign and malignant tumors.  It remains crucial 

that non-melanoma, melanoma, and benign tumors be differentiated during early stages.  

Dermoscopy decreases skin refraction and improves resolution of epidermal structures 
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and the nevoscope uses polarized light for imaging of skin lesions.  Both of these 

methods add to the physician’s accuracy but still leave a considerable margin for error.  

Questionable lesions must be biopsied as histopathology is the gold standard for 

diagnosis.  This leads to many unnecessary biopsies that can be painful, costly, and slow 

to yield results.  A non-invasive accurate method of diagnosis is needed in the clinic.   



 

 

4

CHAPTER II 

BACKGROUND 
 
 
2.1 Optical Imaging Basics 

X-ray, MRI, and ultrasound are imaging modalities commonly used in medical practice.  

Optical imaging is new to the field and has many interesting advantages.  (1) Optical 

photons are non-ionizing offering a technology that is safe for patients.  (2) Optical 

spectra are related to molecular conformation of biological tissue.  (3) Optical absorption 

is related to angiogenesis, hyper-metabolism, and cell death.  (4) Optical scattering can 

be used to measure the size of scattering particles.  (5) The Doppler Effect can be used to 

image blood flow.  This research analyzes optical spectra of diffusely reflected light to 

discriminate between benign and cancerous tumors. 

 

When light interacts with biological tissue, photons can be reflected, absorbed, scattered, 

or transmitted.  Light that is immediately reflected when hitting the surface of the 

medium is termed specular reflectance.  Photons that go through a series of absorption 

and scattering events before being reemitted at the top and bottom of the medium are 

considered diffuse reflectance and transmittance, respectively.  Absorption is when 

energy is deposited into the medium as an electron is moved from the ground state of a 

molecule to the excited state.  A scattering event occurs when a photon is deflected into 

a new direction.  When photons first enter the medium, they are considered to be in the 
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ballistic regime as they are mostly forward directed.  Once they begin to scatter in 

different directions isotropically, they are in the diffusion regime.  

 

Biological tissue is considered scattering media as there is little absorption.  Biological 

scatterers are primarily cell nuclei and mitochondria, with diameters ranging from 1 μm 

to 8 μm.  The wavelengths used for this research are smaller than these scatterers, so the 

light interaction can be predicted by Mie scattering theory, which is an exact analytical 

solution of Maxwell’s electromagnetic field equations.  When the scattering particles are 

much smaller than the wavelength, the light interaction can be predicted by Raleigh 

scattering theory, which is a limiting case of Mie theory.  Scattering coefficient is 

defined as the probability of photon scattering per unit infinitesimal pathlength.   

 

In the visible range, the most significant absorbers in biological tissue include 

oxygenated hemoglobin, deoxygenated hemoglobin, and melanin.  The concentration of 

each absorber can be calculated by measuring the absorption at different wavelengths.  

Absorption coefficient is defined as the probability of photon absorption per unit 

infinitesimal pathlength.  When light propagates along x through an absorbing medium 

with absorption coefficient μa, the intensity varies according to Equation 2.1 

 ( )xII aμ−= exp0  (2.1) 

where I0 is the initial intensity.  This is commonly known as Beer’s Law.   
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The Monte Carlo technique is very useful for simulating light propagation in tissue.  

Based on random movement, a large number of photon packets are traced yielding an 

accurate model of photon transport.  A grid system can be used to store the absorption, 

diffuse reflectance, and transmittance quantities.  Each photon packet is launched from 

the same location with a weight of one.  Once hitting an interaction site, a fraction of the 

light is absorbed. The dropped weight is recorded and the weight is updated.  The 

remaining portion continues to propagate through scattering events determined by 

statistically sampling the probability distributions for step size and deflection angle.  If a 

packet hits a boundary, it can be internally reflected or transmitted based on probability.  

The weight of transmitted light is recorded.  If a photon packet is transmitted at the 

surface of the tissue, the weight is recorded in the diffuse reflectance grid.  When a 

photon packet exits the medium or the weight becomes too small, it is considered dead 

and a new photon packet is launched.  This is continued to obtain a realistic 

representation of light propagation. 

 

2.2 OIR History 

Oblique-incidence reflectometry (OIR) can separate absorption and scattering properties 

based on relative measurements whereas normal-incidence reflectometry requires 

absolute measurements that can be difficult to obtain.  OIR breaks the symmetry in the 

diffuse reflectance pattern resulting in a more robust clinical system.  The setup 

incorporating oblique incidence light continues to evolve.  Early research of oblique-

incidence reflectometry tested the application of diffusion theory by comparing Monte 
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Carlo simulations and experimental results from a video reflectometer2.  The next trial 

implemented a fiber optic probe3, which was soon followed by the addition of the 

spectrograph4.  Lastly, the probe was modified in size to be more appropriate for skin 

cancer, data acquisition was made to be real time, and clinical tests were performed. 

 

The Optical Imaging Lab at Texas A&M University developed the first OIR imaging 

system.  Garcia-Uribe et al.5 classified non-pigmented lesions as benign or cancerous 

with 100% accuracy and pigmented lesions as benign or dysplastic with 95% accuracy.  

These results are very encouraging in that OIR technology in the clinic could greatly 

reduce the number of unnecessary biopsies.  They were unable to include melanoma due 

to the size of the study, 102 lesions.  The proposed research will use the same 

technology and methods but will be larger to ensure that melanoma is included in the 

classification algorithm.      

 

2.3 Work by Others 

Spectroscopic methods 

Other researchers are also exploring the capabilities of spectroscopy to aid the physician 

in skin cancer detection.  Wallace et al.6,7 used multivariate discriminate analysis and 

neural networks to classify reflectance spectra of common nevi and melanoma.  They 

reported an accuracy rate of 86.7% for the neural network technique though the study 

did not include dysplastic nevi.  McIntosh et al.8 utilized near-infrared reflectance 

spectroscopy with multivariate analysis to group spectra from non-melanoma skin 
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cancers, pre-cancers, and benign lesions.  They described classification accuracies of 

72.4-97.7%,.  Tomatis et al.9 discriminated between melanoma and non-melanoma 

lesions with 85% accuracy using multispectral imaging.  Sigurdson et al.10 employed 

Raman spectroscopy and neural networks to categorize skin lesions, including melanoma 

with a classification performance of 80.5%.  Panjehpour et al.11 used fluorescence 

spectroscopy to classify non-melanoma skin cancers and reported that it only worked 

well in patients with fair skin.  The reports mentioned differentiate between the specified 

skin lesion classes, but none of them include melanoma skin cancers, non-melanoma 

skin cancers, atypical lesions, and benign lesions in one study.  In the clinic, in would be 

most useful to be able to use one imaging modality on all questionable lesions.  

 

Other methods 

Non-spectroscopic methods also have some interesting results.  Confocal scanning 

microscopy can image nuclear, cellular, and architectural detail in the epidermis and 

superficial dermis of melanocytic lesions12,13.  This is only useful for pigmented lesions 

as the melanin causes the cytoplasm to appear bright.  Analysis of cytologic structure 

makes it possible to discriminate between uniform cells of melanocytic nevi and atypical 

cells characteristic of melanoma.  Aberg et al.14 employed multi-frequency electrical 

impedance to categorize lesion types by the impedance relation between lesion and 

reference skin.  Voltage was applied thorough two outer electrodes on a handheld probe 

and sensed with a center electrode.  They were able to identify actinic keratosis and non-
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melanoma skin cancers from benign nevi with 98.3% accuracy and melanoma from 

benign nevi with 89.0% accuracy.   

 

Takahashi et al.15 applied magnetic resonance imaging (MRI) to establish that the signal 

intensity accessed by the tumor-to-fat contrast ratio on T2-weighed images clearly 

differentiated between melanoma and benign pigmented lesions.  Maurer et al.16 added 

that melanoma had a higher SNR in both unenhanced T2-weighted and contrast 

enhanced fat suppression images, as well as a higher CNR in fat suppression sequences.  

More recently, Pennasilico et al.17 utilized MRI with the contrast agent, gadopentetate 

dimeglumine, to evaluate parameters that may be used to differentiate between 

melanoma and benign lesions.  The enhancement rate in the first minute was found to be 

significantly greater for melanomas and the signal-time intensity curves for melanoma 

were different than those for benign lesions.  The mention MRI parameters provide 

limited differentiation ability at this time.   

 

As discussed previously asymmetry is a distinguishing attribute of melanoma.  Using 

symmetric distance variations and a backpropagation neural network, Ng et al.18 have 

sorted symmetrical and asymmetrical lesions with 80% accuracy.  This technique may 

prove useful though they have not yet tried to classify lesions.  Piantanelli et al.19  

studied fractal analysis of boundary irregularity to find an increasing linear regression 

from common nevi to dysplastic nevi to melanomas.  Common nevi and melanoma may 

be distinguished using this method, but there is too much overlap to separate dysplastic 
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nevi.  The fractal dimension may be valuable when used in combination with other 

diagnostic parameters.  Though research is moving forward, there is still a need for a 

device that can discriminate all types of lesions with high accuracy. 
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CHAPTER III 

EXPERIMENTAL SETUP 

 
The OIR system includes a light source, optical multiplexer, fiber optic probe, imaging 

spectrograph, charge coupled device (CCD) camera, and computer (Figure 1).  The 150 

W halogen light source (Fiberoptics Incorporated, SOL-R 150DC) provides stable white 

light output with negligible ultraviolet light.  The optical multiplexer (Ocean Optics, 

MPM-2000) illuminates five source fibers one at a time.  The aluminum probe was 

custom made by Ocean Optics consisting of five source fibers and 24 collection fibers.  

200 μm plastic-clad silica source fibers were positioned linearly as shown in Figure 2.  

When the probe is placed perpendicular to the area of interest, the center source fiber is 

normal to the surface of incidence.  The outer source fibers are situated at 45 degrees and 

CCD camera 

Imaging 
spectrograph 

Halogen 
light source 

Optical 
multiplexer 

Probe Computer 

Collection 
fibers 

Incidence 
fibers 

Figure 1. Schematic of OIR system 
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the remaining source fibers are at 25 degrees.  Once the light is delivered to the area of 

interest, it interacts with the medium and the diffuse reflectance is collected by detection 

fibers.  The custom made fiber bundle (Fiberguide Industries) consists of 100 μm silica-

silica collection fibers that form two linear arrays on the probe tip.  The fiber bundle is 

connected to the imaging spectrograph (Newport, Oriel MS 257) that disperses light into 

its component wavelengths and captures the optical spectra with a CCD camera.  The 

4.5 mm 

Collection fibers (100 μm) 

Oblique incidence  
source fiber 

1.8 mm 

1.4 mm 

2 mm 

5 mm 

2 mm 

Figure 2. Diagram of probe tip 
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CCD chip has a 512 x 512 pixel chip that measures 12.3 x 12.3 mm2.   To prevent 

overlapping, 21 fibers were fit to the CCD chip with 3.6 nm resolution.  The 

specifications of the spectrograph and CCD chip allow for a 290 nm wavelength range, 

which was selected to be 455 – 765 nm.  Light in the visible range is best for this 

application because ultraviolet light is unsafe for patients and infrared light is not as 

sensitive for this purpose.  Spatio-spectral images are automatically saved on the 

computer future data analysis.  The system is built on portable cart that can be easily 

moved from room to room (Figure 3). 

 

Figure 3. Picture of OIR system
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CHAPTER IV 

PRELIMINARY EXPERIMENT 

 
4.1 Calibration and Validation 

The system was calibrated and validated using liquid phantoms prepared with varying 

amounts of Trypan blue as the absorbers and polystyrene microspheres as the scatterers.  

A spectrophotometer used collimated transmission to measure the absorption coefficient 

for each phantom.  The reduced scattering coefficient was calculated using Mie theory20, 

which is based on known parameters of the microspheres.  Three phantoms with 

different optical properties were used to calibrate the system.  The diffuse reflectance 

was collected from each phantom by gently immersing the probe tip with the collection 

fibers normal to the surface.  Calibration factors for each fiber and phantom were 

averaged and recorded for future data collection.  In the same manner, the diffuse 

reflectance was collected from three additional phantoms to validate the system by 

extracting optical properties. Diffusion theory or scalable Monte Carlo can be used to 

calculate the absorption and scattering coefficients.  The optical properties chosen for the 

phantoms allowed the diffusion theory method.  The experimental and expected results 

are shown in Figure 4 at varying wavelengths.  The absorption and scattering properties 

have good agreement. 
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4.2 Diffusion Theory 

Diffusion theory is based on the diffusion approximation2 of the transport equation 

where the diffuse photon intensity is assumed to be uniform in all directions.  The 

Figure 4. Expected and estimated optical properties (a) Absorption 
coefficient for phantom 1, (b) scattering coefficient for phantom 1, (c) 
absorption coefficient for phantom 2, (d) scattering coefficient for
phantom 2 
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fluence rate distribution from a point source can then be solved under the same 

approximation.  Calculation of the absorption and scattering coefficients is derived from 

the modified diffusion theory-based model, though it does not accurately model “near 

diffuse reflectance”, reflectance in the range of 1 transport mean free paths (mfp’) of the 

source21.  This problem can be avoided by only using “far diffuse reflectance,” beyond 1 

mfp’ of the source.  The optical properties for the phantoms were chosen so that the mfp’ 

would be less than distance between the source and collection fibers.  For normally 

incident light, the diffuse reflectance is modeled by two isotropic point sources; one 

positive source located below the tissue surface and one negative located above the 

tissue surface.  For oblique incidence (Figure 5), the positive point source is the same 

distance from the incident light, but the tissue depth is modified by Snell’s Law.  

Light beam

ds

Δx = dssin(αt)

αi

αt

Mirror line

Figure 5. Schematic of obliquely incident light 
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According to Wang and Jacques22, the distance from the point of incidence to the 

positive point source (ds) is defined by   

 
'35.0

13
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s Dd
μμ +

==  (4.1) 

where μa is the absorption coefficient, μs’ is the reduced scattering coefficient, and D is 

the diffusion coefficient.  When using oblique incidence, there is a shift of the point 

sources in the x direction.  Using elementary geometry, the shift (Δx) is defined by 
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where αt is the angle of refraction.  Diffuse reflectance can be measured at multiple 

wavelengths.  The position of the diffuse reflectance from the incident light can be 

obtained from the reflectance profile at a particular wavelength.   Figure 6 shows the 

normalized reflectance profile at the wavelength of 576 nm for absorption and scattering 

coefficients of 0.39 cm-1 and 12.77 cm-1, respectively.  The diffuse reflectance can be 

calculated by the modified two-source diffusion theory model4, 
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where sR  is specular reflection, 'a  is albedo, x  is the distance between the point of 

observation on the tissue surface and the point of incidence, zΔ  is the distance between 

the virtual boundary and the tissue depth, bz  is the distance between the virtual 

boundary and the tissue surface, and 1ρ  and 2ρ are the distances between the point 
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sources and the point of observation.  Applying nonlinear least squares fit to the 

reflectance expression yields the effective attenuation coefficient (μeff), defined by 

 
D

eff aμ
μ =  (4.4) 

The diffusion coefficient can be calculated by 

 
)sin(3 t

xD
α

Δ
=  (4.5) 

Using Equations 3.2-3.4, the diffuse reflectance profile, and the two-source diffusion 

theory model, the absorption and reduced scattering coefficients can be calculated by the 

following equations: 

Figure 6. Normalized reflectance profile at wavelength 576 nm used to
deduce optical properties 
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4.3 Scalable Monte Carlo 

Scalable Monte Carlo allows for a single simulation to be used to fit data and extract 

optical properties23.  This method is especially useful for “near diffuse reflectance”, 

when the collection fibers are further than 1 mfp’ from the source fibers.  If the 

anisotropy factor and refractive index do not change, it is possible to extract the diffuse 

reflectance for one set of optical coefficients from one Monte Carlo simulation with 

another set of coefficients.  Using Beer’s Law and simulated time-resolved diffuse 

reflectance, ( , )rR tρ , for certain reference values, arμ  and srμ , the diffuse reflectance 

can be obtained for a different absorption parameter, aμ ,   

 ( )( , ) ( , ) expr a arR t R t ctρ ρ μ μ= − −⎡ ⎤⎣ ⎦  (4.8) 

where c is the speed of light.  Changing the scattering coefficient alters the photon path 

length and the time by the scaling factor s

sr

μ
μ

.  This affects the diffuse reflectance by a 

power of three; two for the area and one for time. 

 
3

( , ) ,s s s
r

rs rs rs

R t R tμ μ μρ ρ
μ μ μ

⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠
 (4.9) 

When both the absorption and scattering coefficients are changed, Equation 4.8 and 

Equation 4.9 are both used.  Applying nonlinear regression, the measured time-resolved 
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diffuse reflectance can be used to calculate the optical properties of an unknown 

medium.  
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CHAPTER V 

CLINICAL EXPERIMENT 

 
5.1 Data Collection 

Images and histopathological diagnoses were obtained from 250 lesions at the University 

of Texas M.D. Anderson Cancer Center (Melanoma and Skin Center).  Dr. Madeleine 

Duvic and other dermatologists identified suspicious skin lesions that were going to be 

biopsied for routine care.  Patients were asked to participate in the study and sign an 

informed consent approved by the IRB under protocol DM98-275.  Because the OIR 

system was built onto a portable cart, it was easily moved to the patient exam rooms.  

The lights were turned off to remove unknown sources of light.  The oblique-incidence 

spectroscopic probe was used to collect spatio-spectral images from skin lesions and 

adjacent healthy skin.  Baby oil was dropped onto the skin to couple the light in between 

the probe and the skin.  Data was collected with the probe placed perpendicular to the 

collection site ensuring contact but not compressing the skin.  At each position five 

images are collected, one from each of the source fibers.  The probe was rotated 45 

degrees and repeated until images of four different probe positions were achieved.  A 

digital image was obtained from each lesion using a Canon camera with an attached 

Dermlite lens.  After the measurements were complete, the physicians removed the 

lesion and sent it for biopsy.  Histopathological diagnoses was performed by 

UTMDACC and reported within 3 to 4 days.   
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The lesions included in data analysis include benign common nevi (CN), mildly 

dysplastic nevi (DN1), moderately dysplastic nevi (DN2), severely dysplastic nevi 

(DN3), melanoma in situ (M1), invasive melanoma (M2), warts (W), actinic keratosis 

(AK), seborrheic keratosis (AK), basal cell carcinoma (BCC), and squamous cell 

carcinoma (SCC).  Other lesion types were excluded from data analysis at this time.  The 

categories were separated into two groups, 111 pigmented lesions and 65 non-pigmented 

lesions.  The number of lesions captured and a representative Dermlite image of each 

type are shown in Table I and Table II.  The images show the difficulty that arises when 

tying to diagnose skin lesions visually.  Image acquisition from five source fibers at four 

probe positions resulted in 20 images being collected from each lesion and 

corresponding normal tissue.  An example spatio-spectral image for normal skin is 

shown in Figure 7. 

R
elative

value
R

elative
value

Figure 7.  Spatio-spectral image of normal skin  
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Lesion Type Number of Lesions Dermlite example image

Common nevi 19

Actinic keratosis 3

Seborrheic keratosis 12

Mild dysplastic nevi 21

Moderate dysplastic nevi 41

Severe dysplastic nevi 5

Melanoma 5

Melanoma in situ 5

Total 111

Table I. Pigmented Lesions 
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Lesion Type Number of Lesions Dermlite example image

Common nevi 4

Warts 3

Actinic keratosis 11

Seborrheic keratosis 2

Basal cell carcinoma 28

Squamous cell carcinoma 14

Severe dysplastic nevi 1

Melanoma in situ 2

Total 65

Table II. Non-Pigmented Lesions 
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5.2 Data Analysis 

To classify OIR data, an image processing algorithm was developed and evaluated for 

both pigmented and non-pigmented lesions.  Each lesion image was divided by the 

related healthy tissue image to normalize the data.  This is based on the assumption that 

the melanin content of healthy skin tissue will correlate with that of the imaged lesion.  

Melanoma
Melanoma in situ
Severe dysplastic nevi

Actinic keratosis
Seborrheic keratosis
Common nevi
Mild dysplastic nevi
Moderate dysplastic nevi

Common nevi
Mild dyplastic nevi
Moderate dyplastic nevi

Actinic keratosis
Seborrheic keratosis

Common nevi

Mild dysplastic nevi
Moderate dysplastic nevi

Common nevi
Actinic keratosis
Seborrheic keratosis
Mild dysplastic nevi
Moderate dysplatic nevi
Severe dyplastic nevi
Melanoma
Melanoma in situ

Figure 8. Breakdown of pigmented lesions 

Common nevi
Wart
Actinic keratosis
Seborrheic keratosis

Basal cell carcinoma
Squamous cell carcinoma
Severe dysplastic nevi
Melanoma in situ

Common nevi
Wart
Actinic keratosis
Seborrheic keratosis
Basal cell carcinoma
Squamous cell carcinoma
Severe dyplastic nevi
Melanoma in situ

Common nevi
Warts

Actinic keratosis
Seborrheic keratosis
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The skin is not homogeneous and will vary within the collection site.  To reduce the 

error, the collection fiber intensity found at each probe position was averaged for each 

source fiber.  For simplification, groups were separated into two classes at a time.  

Features were extracted from the pigmented lesions to break them into two groups.  This 

was repeated for the subgroups until the desired categories were achieved.  The same 

procedure was followed for the non-pigmented lesions.  Figure 8 and Figure 9 illustrate 

the classification order followed for pigmented and non-pigmented lesions, respectively.      

 

Selection of features 

The following describes the method used to establish optimal features for each of the 

five classifiers.  Features were extracted to divide each group in stages.  The continuous 

wavelet transform (CWT) was employed to extract the best five features per fiber in the 

two classes under analysis.  The CWT of ( )f t  with respect to the wavelet function Ψ is 

defined as follows24:  

 1( , ) ( ) t bWf b a f t dt
aa

∞

Ψ
−∞

−⎛ ⎞= Ψ ⎜ ⎟
⎝ ⎠∫ , 0a <  (5.1) 

The Morlet analyzing wavelet was used varying a  from 1 to 16 and b along the 

wavelength range.  The one dimensional data, intensity as a function of wavelength, is 

converted into two dimensional information, wavelet transformation as a function of b 

and a.  CWT features are extracted from the two dimensional data yielding mean, 

standard deviation, skewness, and kurtosis values for varying wavelength ranges.  The 

five most effective features for each fiber were chosen using the Fisher distance (FD) as 
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a measure of separability between classes.  Redundant features were removed from the 

list and those remaining were narrowed down to the best 20 also using the Fisher 

distance.   

The Fisher distance and the receiver operating characteristic (ROC) curve can 

both be used as a measure of separability.  The results for each measure are comparable 

though there can be minor differences.  The Fisher distance is calculated by 

 2
2

2
121 σσμμ +−=FD  (5.2)   

where 1μ  and 2μ  denote class means and 1σ  and 2σ  denote class standard deviations.  

The ROC curve is obtained by plotting the true positive fraction versus the false positive 

fraction for different cutoff levels.  The true positive fraction is when the test is positive 

and it is correct.  The false positive fraction is when the test is positive and it is incorrect.  

When there is good separation, the area under the ROC curve will be close to 1.  This 

signifies that when the positive tests are correct, there are few incorrect and vice versa.    

The Genetic Algorithm (GA) was utilized to find the most effective combination 

of features.  It uses methods of population, crossover, and mutation to find the optimal 

selection of features25.  The first population is a random set of chromosomes that 

represent 1000 possible solutions.  According to classification ability, each chromosome 

is given a fitness value defined as follows 

 Fitness value = FD * ROCA (5.3) 

where ROCA is the area under the receiver operating characteristic curve.  A second 

population is generated according to the fitness values.  Chromosomes that divide 

classes most effectively are selected to reproduce.  The parent chromosomes crossover at 
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1, 2, or 3 randomly chosen points. The mutation operation randomly changes the 

offspring resulting from crossover to prevent solutions from falling into a local optimum.  

This process is repeated until the new population is complete.  The generations continue 

to evolve until a specified condition is satisfied.  At this point, the best solution in the 

final population is chosen as an optimal combination of features.  For this study, the 

program ended, when the fitness value ceased to improve over many generations or a 

maximum number of generations was reached.  This process was repeated several times 

and the best feature combination was selected.  The features included in the first 

classifier for pigmented lesions are shown in Table III.  The others may be found in the 

Appendix.   

Source 
Fiber #

Collection 
Fiber #

Statistic Wavelength 
Range

FD ROCA

sf3 20 mean 542-698 0.9566 0.8434
sf5 14 skewness 560-571 0.8773 0.8240
sf4 3 skewness 560-571 0.8833 0.8108
sf4 21 mean 498-563 0.8875 0.8003
sf5 14 mean 498-563 0.8847 0.7955
sf2 15 mean 563-701 0.8600 0.8090
sf4 4 skewness 542-578 0.8580 0.8073
sf2 14 kurtosis 494-687 0.8437 0.8066
sf3 19 mean 542-756 0.8360 0.8108
sf1 20 mean 542-756 0.8304 0.8059
sf5 20 mean 549-560 0.8176 0.8184
sf4 4 kurtosis 560-571 0.8228 0.7882

Table III.  Effective Image Features for First Classifier of Pigmented Lesions 
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Feature conditioning and classification 

The resulting features for each classifier were conditioned to remove correlations and 

reduce dimensionality.  Feature vectors were formed for each image based on the chosen 

effective feature combination.  Two steps were necessary to remove correlation.  First, 

the mean feature vector was subtracted.  Second, the feature vectors were multiplied by 

the matrix 

 ( )1 1 2, ,..., t
nA e e e=  (5.4) 

where ( )neee ,...,, 21  are eigenvectors of the covariance matrix.  The within-class matrix 

(SB) and the between-class matrix (SW) were calculated to reduce dimensionality26.   

 ∑ ∑
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To minimize the separability measure, J, the feature vectors were multiplied by the 

eigenvector corresponding to the zero eigenvalue of ),( 1
BW SS − .   

 ),( 1
BW SSTraceJ −=  (5.7) 

This reduces each feature vector to one dimension based on a new combined image 

feature (CIF) without losing any information. 

 A Bayes decision rule was used to separate each group based on the selected 

features.  Each classifier categorizes 1 lesion group into 2 subgroups, which for 

simplicity will be called class I and class II.  A lesion is considered to be of class I if 
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 Pr (class I | x) > Pr (class II | x) (5.8) 

Figure 10. Scatter plot of training data for pigmented lesions 

Figure 11. Scatter plot of testing data for pigmented lesions 
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Figure 12. Scatter plot of training data for non-pigmented lesions 

Figure 13. Scatter plot of testing data for non-pigmented lesions 
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Otherwise, it will belong to class II.  Using a one dimensional feature and assuming a 

Guassian distribution simplifies the criteria.  A lesion is considered to be of class I if 

 g (class I) > g (class II) (5.9) 

Otherwise, it will belong to class II.  The probabilities of a lesion belonging to a certain 

class for Guassian distributions can be calculated by   

 g (class I) 
1

2
1

1
)(

)ln(
σ

μ
σ

−
−−=

CIF
 (5.10) 

 g (class II)
2

2
2

2
)(

)ln(
σ

μ
σ

−
−−=

CIF
 (5.11) 

where 1μ  and 2μ  denote class means and 1σ  and 2σ  denote class standard deviations.  

For the training set, the classifier outcome was measured based on histopathology 

reports.   

  

5.3 Results 

Based on the classification features, spatio-spectral images were separated into different 

categories.  The algorithms were evaluated and validated with two thirds of the data as 

the training set and one third as the testing set. Confusion matrices and classification 

accuracies are shown in Tables IV-IX.  Scatter plots testing and training sets are shown 

in Figures 10-13.  For pigmented lesions, severe dysplastic nevi, melanoma, and 

melanoma in situ are classified with 100% accuracy in the testing set.  The other less 

severe lesions are classified with accuracies ranging from 84.21-86.67%.  There is an 

overall classification rate of 87.39%.  For non-pigmented lesions, basal cell carcinoma, 
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squamous cell carcinoma, severe dysplastic nevi, and melanoma in situ were classified 

with 85.71% accuracy in the testing set.  The other less severe lesion types were 

classified with accuracies ranging from 83.33-100%.  There is an overall classification 

rate of 90.77%.  Histopathology was used to organize the training set initially and again 

to measure the classifier with the testing set.   
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DN3_M1_M2 AK_SK CN DN1_DN2 Accuracy
DN3_M1_M2 12 100.00

AK_SK 8 100.00
CN 1 1 9 81.82

DN1_DN2 4 1 31 86.11

Total 89.55

Table IV. Training Confusion Matrix for Pigmented Lesions 

DN3_M1_M2 AK_SK CN DN1_DN2 Accuracy
DN3_M1_M2 3 100.00

AK_SK 5 2 100.00
CN 1 7 71.43

DN1_DN2 1 1 2 22 87.50

Total 84.62

Table V. Testing Confusion Matrix for Pigmented Lesions 

DN3_M1_M2 AK_SK CN DN1_DN2 Accuracy
DN3_M1_M2 15 100.00

AK_SK 13 2 86.67
CN 1 2 16 84.21

DN1_DN2 5 1 3 53 85.48

Total 87.39

Table VI. Overall Confusion Matrix for Pigmented Lesions 
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BCC_SCC_DN3_M2 AK_SK CN_W Accuracy
BCC_SCC_DN3_M2 12 1 1 85.71

AK_SK 1 5 83.33

CN_W 1 100.00

Total 85.71

Table VIII. Testing Confusion Matrix for Non-Pigmented Lesions 

BCC_SCC_DN3_M2 AK_SK CN_W Accuracy
BCC_SCC_DN3_M2 30 1 96.77

AK_SK 1 6 85.71

CN_W 1 5 83.33

Total 93.18

Table VII. Training Confusion Matrix for Non-Pigmented Lesions  

BCC_SCC_DN3_M2 AK_SK CN_W Accuracy
BCC_SCC_DN3_M2 42 2 1 93.33

AK_SK 2 11 84.62

CN_W 1 6 85.71

Total 90.77

Table IX. Overall Confusion Matrix for Non-Pigmented Lesions 
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CHAPTER VI 

CONCLUSION 

 
For patients with melanoma, finding the tumor early is the key to survival.  The current 

OIR system can image lesions as small as 2 mm in diameter.  It can accurately calculate 

optical properties as compared to estimated values from collimated transmission and Mie 

theory.  It also has good classification results from data collected in recent clinical 

studies.  Data analysis involved lengthy statistical procedures to extract image features.  

Overall classification accuracies ranged from 84.21-100% for pigmented lesions and 

84.62-93.33% for non-pigmented lesions.  The pigmented algorithm was able to identify 

all of the high risk lesions (DN3, M1, M2).  Six lesions were incorrectly put into this 

category, but this is preferable over the problem of classifying high risk lesions as 

benign.  The non-pigmented algorithm classified the high risk lesions (BCC, SCC, DN3, 

M2) in the testing set with over 85% accuracy.  It is likely that the rate is lower due to an 

increased number of lesions.  The next step for this technology is to establish a 

statistically significant database for different types of skin lesions as well as normal skin.  

Furthermore, physiological parameters responsible for diagnostic optical features need to 

be identified.  Though it may be some time before any technology can replace the 

biopsy, OIR could certainly aid the physician in deciding which lesions to biopsy.  This 

could reduce the number of biopsies for benign lesions, as well as help identify lesions 

that may be dangerous.  This technology may be able to bring attention to a lesion that 

would otherwise be passed up.  OIR is a strong competitor with other methods for non-
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invasive skin cancer detection.  This technology has a promising outlook for skin cancer 

diagnosis and could also be expanded to ocular, cervical, oral, and GI cancers. 
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APPENDIX 

Source Fiber 
#

Collection 
Fiber # Statistic Wavelength 

Range FD ROCA

sf5 18 skewness 600-763 1.1417 0.8794
sf5 19 mean 592-730 1.0823 0.8704
sf3 18 kurtosis 658-687 1.0329 0.8601
sf1 15 kurtosis 654-687 1.0012 0.8593
sf5 16 kurtosis 661-687 0.9971 0.8477
sf5 14 skewness 647-658 0.9915 0.8391
sf2 19 skewness 600-690 0.9558 0.8362
sf2 21 skewness 600-719 0.9758 0.8136
sf3 21 kurtosis 679-698 0.9371 0.8465
sf3 15 kurtosis 672-763 0.9261 0.8366
sf5 14 kurtosis 658-730 0.9215 0.8379

Table X. Effective Image Features for Second Classifier of Pigmented Lesions 
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Source 
Fiber #

Collection 
Fiber #

Statistic Wavelength 
Range

FD ROCA

sf3 14 kurtosis 574-603 0.9139 0.8069
sf5 15 skewness 538-611 0.8318 0.8090
sf3 19 kurtosis 520553 0.8224 0.8077
sf5 10 kurtosis 574-603 0.8376 0.7823
sf5 17 skewness 542-571 0.8202 0.7738
sf5 2 skewness 553-563 0.8085 0.7823
sf3 13 kurtosis 542-571 0.7748 0.7937
sf5 11 kurtosis 574-600 0.7058 0.7602
sf1 14 kurtosis 574-603 0.7254 0.7390
sf4 21 kurtosis 600-603 0.7145 0.7453
sf4 18 kurtosis 520-553 0.6934 0.7606

Table XI. Effective Image Features for Third Classifier of Pigmented Lesions 

Source 
Fiber #

Collection 
Fiber #

Statistic Wavelength 
Range

FD ROCA

sf3 21 kurtosis 629-669 0.8253 0.8006
sf5 16 mean 560-752 0.8379 0.8189
sf1 21 skewness 618-672 0.8417 0.8156
sf3 14 skewness 618-676 0.8447 0.8350
sf5 1 mean 538-723 0.8463 0.8100
sf5 17 mean 607-737 0.8474 0.8194
sf3 17 skewness 618-676 0.8508 0.8028
sf3 11 kurtosis 636-665 0.8652 0.8006
sf3 11 skewness 618-672 0.8734 0.8233
sf3 1 mean 538-723 0.8787 0.8067
sf5 5 kurtosis 647-665 0.8924 0.8389
sf3 16 skewness 618-683 0.9004 0.8228

Table XII. Effective Image Features for First Classifier of Non-Pigmented Lesions 
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Source 
Fiber #

Collection 
Fiber #

Statistic Wavelength 
Range

Final 
Wavelength

FD ROCA

sf5 18 skewness 578 607 1.9106 0.9725
sf1 20 skewness 611 621 1.7598 0.956
sf2 20 mean 560 730 1.6391 0.989
sf3 16 mean 527 567 1.6946 0.956
sf2 1 kurtosis 687 708 1.5901 0.9725
sf2 12 skewness 625 661 1.5619 0.9615
sf3 15 mean 560 730 1.4996 0.967
sf2 19 mean 556 589 1.4964 0.9505
sf1 1 skewness 665 748 1.4505 0.9286

Table XIII. Effective Image Features for Second Classifier of Non-Pigmented Lesions 



 46

VITA 

 
Name:  Elizabeth Brooks Smith 

Address: 3223 Ashton Park Drive, Houston, TX 77082 

Email Address: smitheb@houston.rr.com 

Education: B.E., Biomedical Engineering, Vanderbilt University, 2004 

  M.S., Biomedical Engineering, Texas A&M University, 2006 

 


	ThesisNewA3.pdf
	ThesisNewB3.pdf

