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ABSTRACT

Fast High-Order Variation-Aware IC Interconnect Analysis. (August 2007)

Xiaoji Ye, B.E., Wuhan University

Chair of Advisory Committee: Dr. Peng Li

Interconnects constitute a dominant source of circuit delay for modern chip de-

signs. The variations of critical dimensions in modern VLSI technologies lead to

variability in interconnect performance that must be fully accounted for in timing

verification. However, handling a multitude of inter-die/intra-die variations and as-

sessing their impacts on circuit performance can dramatically complicate the timing

analysis.

In this thesis, three practical interconnect delay and slew analysis methods are

presented to facilitate efficient evaluation of wire performance variability. The first

method is described in detail in Chapter III. It harnesses a collection of computation-

ally efficient procedures and closed-form formulas. By doing so, process variations

are directly mapped into the variability of the output delay and slew. This method

can provide the closed-form formulas of the output delay and slew at any sink node of

the interconnect nets fully parameterized, in-process variations. The second method

is based on adjoint sensitivity analysis and driving point π model. It constructs the

driving point model of the driver which drives the interconnect net by using the ad-

joint sensitivity analysis method. Then the driving point model can be propagated

through the interconnect network by using the first method to obtain the closed-

form formulas of the output delay and slew. The third method is the generalized

second-order adjoint sensitivity analysis. We give the mathematical derivation of this
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method in Chapter V. The theoretical value of this method is it can not only handle

this particular variational interconnect delay and slew analysis, but it also provides

an avenue for automatical linear network analysis and optimization.

The proposed methods not only provide statistical performance evaluations of

the interconnect network under analysis but also produce delay and slew expressions

parameterized in the underlying process variations in a quadratic parametric form.

Experimental results show that superior accuracy can be achieved by our proposed

methods.
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CHAPTER I

INTRODUCTION

A. Introduction

Interconnect parasitics are the dominant source of on-chip circuit delays for modern

VLSI technologies. To efficiently account for wire delays in the design process, inter-

connect modeling, particularly the model order reduction of passive linear networks,

has been an active topic of research in CAD community for more than a decade (e.g.

[1, 2, 3, 4]).

Asymptotic waveform evaluation (AWE) [1] uses moment matching technique to

generate the reduced order model for the interconnect network. It uses 2q moments to

generate a q pole transfer function approximation of the interconnect network. How-

ever, when applied to practical examples where a large number of dominant poles are

needed, AWE may become less effective because of the ill-conditioning nature of the

moment generation procedure. Krylov-subspace technique [2] is better numerically

conditioned. But stability is still a problem, meaning the reduced-order model gener-

ated by the Krylov-subspace technique may have unstable poles, which could result

in oscillation of the circuit response in practical cases. Passive reduced-order inter-

connect macromodeling algorithm (PRIMA) [3] is a projection based method which

can guarantee the stability and passivity of the reduced order model. Compared with

AWE. q-th order PRIMA approximation matches only q moments. PRIMA works

especially well for the cases where high order reduced order models are needed. All

these model order reduction techniques are for nominal case interconnect analysis,

meaning they do not consider variations in the interconnect network.

The journal model is IEEE Transactions on Automatic Control.
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As modern VLSI technologies approach the nanoscale manufacturing regime, it is

becoming increasingly difficult to control systematic/random fluctuations introduced

in the fabrication process, leading to growing variations in the critical dimensions

and material properties of metal and dielectric layers [5]. These process variations

inevitably introduce performance variations in interconnects, which must be fully

accounted for during timing verification. Hence, variational reduced-order intercon-

nect models must be constructed to capture impacts of multiple variations accurately

over a wide perturbation range. The need for addressing the nano-scale IC manu-

facturing reality necessitates the development of statistical analysis and optimization

methodologies. However, the realization of such statistical frameworks such as SSTA

critically relies on the availability of variation-based models for interconnects. The

existing variational interconnect models are plagued by their inherent inefficiencies

and/or high computational complexity that prevent them from being practically em-

ployed in newly developed statistical analysis frameworks. To realistically evaluate

the variability in interconnects and its impact on circuit performance and yield, com-

pact variational interconnect models must be developed to enable an affordable inclu-

sion of the inter-die and intra-die process variations into statistical circuit simulation.

The major challenge for achieving this goal lies in constructing compact variation-

based interconnect models that are accurate over multiple and large-scale parametric

variations, and at the same time, computational efficient.

B. Contributions

A set of practical variation-aware interconnect analysis methodologies which can ac-

curately and efficiently capture a wide range of variations of the interconnect delay

and slew are proposed in this thesis. And some of the methods proposed in this the-
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sis can find their applications in a much wider range of areas. For example, adjoint

sensitivity analysis method is a general circuit analysis technique which can be used

in many other areas such as circuit optimization, signal integrity and noise analysis.

The major contributions of this thesis are as follows:

• A practical variation-aware interconnect analysis methodology is presented to

provide efficient delay and slew calculations for statistical timing analysis. In

this approach, process variations of the interconnect network and input signal

variations are translated into output delay and slew variations without extract-

ing a “full-blown” variational reduced order model and subsequently performing

sampling. While gaining improved efficiency by avoiding extracting a “full-

blown” model, through a noticeable collection of technical deployments and

numerical methods, we also avoid losing any significant accuracy in terms of

delay and slew, which may be challenging to achieve via a purely delay/slew

metric based approach.

• We propose to use adjoint sensitivity analysis method to construct the driving

point model and compute driving point waveform. In our adjoint sensitivity

analysis method, we use linearized MOSFET model to handle the driver of the

interconnect net. The driving-point model is used with the linearized MOSFET

model to calculate delay and slew at the driving point of the interconnect.

• We extend the classical adjoint sensitivity analysis method up to second order.

Our method can capture much wider range of variations of the linear network

compared with the original first order adjoint method. And we extend the ap-

plication of adjoint sensitivity analysis from linear network to nonlinear circuits

which makes this method more powerful.

Parts of the research work in this thesis have been published in [6, 7].
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C. Thesis organization

This thesis is organized as follows:

Background In Chapter II, we introduce the concept, problem formulation and

objective of variational interconnect analysis. Then a literature survey is given for

some of the prior work of variational interconnect analysis.

Variational interconnect analysis In Chapter III, we present our methodology

for variational interconnect analysis. First, we go through the overall analysis flow

of our methodology. Then we explain each steps of our variational interconnect

analysis in detail including: parametric moment computation, slew rate computation,

parametric two-pole model and parametric high-order analysis. Parametric moment

computation is based on a set of closed-form formulas which can compute the second

order parametric moments efficiently. Parametric slew rate computation is based

on the PERI metric [8]. And by clarifying “near-end node” and “far-end node” for

the interested sink nodes, we use either parametric two-pole model for the former or

parametric high-order model for the latter. And we then convert the variation in the

output response at a certain time point into the variation in delay, by doing so we

avoid using nonlinear iterations over a large number of circuit instances to find the

delay variation.

Driving point model and adjoint sensitivity analysis In Chapter IV, we first

go through the basic ideas of driving point pi model construction. Then we introduce

first order adjoint sensitivity analysis method, its origin, derivation and application

in the interconnect analysis. Then we present the procedures of using driving point

pi model and adjoint sensitivity analysis method to computing the driving point

waveform and its sensitivities with respect to variation sources. This driving point

waveform can then be propagated by using the methods in Chapter III to complete
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the variation-aware interconnect analysis flow.

Conclusion In Chapter V, I conclude this thesis with the discussions of the methods

presented in this thesis and future directions of this research topic.
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CHAPTER II

BACKGROUND

As integrated circuit feature sizes continue to scale into the sub-100nm regime, the

number of transistors incorporated on a chip are above one billion [9]. Meanwhile,

the amount of interconnect is growing with the transistor counts. Due to the die size

limitation, interconnect dimensions are scaling down with the feature sizes. There-

fore, the relative error of variations introduced during the fabrication step will have

more and more effect on the performance of integrated circuits. It is imperative

to consider variation effects on the circuit performance during the circuit simula-

tion/modeling/optimization to provide meaningful results.

A. Objective of variational interconnect analysis

Statistical static timing analysis (SSTA) [10, 11, 12, 13] has been recently proposed

to handle variability during timing verification of integrated circuits. Instead of using

one fixed delay values for gates, SSTA uses first/second order canonical delay models

which take into account correlated/random variations during the timing verification.

By traversing the timing graph of the circuit in a breadth-first manner, canonical delay

expressions are propagated from source nodes to sink nodes. During the propagation,

there are two atomic operations needed: sum and max. The max operation in [10, 11,

13] are based on Clark’s algorithm [14], the max operation in [12] is based on moment

matching technique. First order SSTA uses the canonical first order expression 2.1

for all the gate delays, arrival times, required arrival times, slacks and slews:

Td = Td,0 + αT
d ρ, (2.1)
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where Td,0 is the nominal delay, ρ = [ρ1, ρ2, · · · , ρNρ
]T represent Nρ principal

components of variation sources 1, αd is a Nρ × 1 vector representing the first order

sensitivities with respect to principal components.

Some recent work about statistical static timing analysis also use the second

order canonical expression 2.2 for the gate delays etc.

Td = Td,0 + αT
d ρ + ρT Γdρ, (2.2)

where Td,0 is the nominal delay, ρ = [ρ1, ρ2, · · · , ρNρ
]T represent Nρ principal

components of variation sources, αd is a Nρ × 1 vector representing the first order

sensitivities with respect to principal components, Γd is a Nρ×Nρ matrix representing

the second order sensitivities with respect to second order variation terms. Since sec-

ond order canonical expression 2.2 is essentially a higher order Taylor series expansion

of the delay, it is more accurate than the first order canonical expression, especially

for the cases where variation ranges are large. In this thesis, I use the second order

canonical expression for most of the timing/intermediate quantities during the circuit

analysis.

Fig. 1 illustrates a simple combinational circuit. In most of the existing SSTA

work, gate/wire delays are propagated from input to output pins. First/second order

gate delay model can be extracted from SPICE simulation. But delay model for

wires can not be easily extract from SPICE simulation. [13] suggests to use Elmore

delay model to estimate the wire delay, which is essentially the first order moment of

the impulse response. From the timing verification perspective, Elmore delay is not

accurate enough. So interconnect delay model which is accurate and easy to generate

1Principal component analysis (PCA) is used to transfer the original set of corre-
lated random variables into an uncorrelated set of principal components ρ
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Fig. 1. Number of extra adjoint circuit run equals to number of parameters.

and at the same time can be facilitated into the statistical timing analysis flow is

desired. One of the major objectives of variational interconnect analysis in this thesis

is to build the second order canonical delay/slew model for the interconnects.

There are many other applications where variational interconnect analysis can

be utilized. For example, in the wire sizing problem, circuit designers want to find

the optimal wire size parameters to meet some given timing constraints. If the sen-

sitivities of the wire delay/slew with respect to design parameters can be computed,

circuit designers can easily find out which design parameter can be changed in order

to meet the timing constraint. In this particular optimization problem, variational

interconnect analysis is served as an simulation engine which needs to be called again

and again during the optimization loop. So the efficiency of variational interconnect

analysis is also very important.

B. Prior work

In the past, a significant amount of work has emerged to address interconnect vari-

ability via various avenues through variational interconnect model order reduction

[15, 16, 17, 18, 19, 20, 21], or via statistical/variational interconnect analysis [19, 22,

23].
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While the above approaches are instrumental in terms of providing principles

and methodologies for variational reduced-order modeling of dynamical systems and

statistical circuit analysis, practical challenges still need to be addressed under the

context of timing analysis. Modern chip designs contain an overwhelmingly large

number of interconnect networks that must be analyzed efficiently. As such, efficiency

of variational interconnect analysis is ultimately crucial to facilitate an feasible sta-

tistical timing flow. To this end, it is worth noting that general variational reduced

interconnect models do not directly offer the standard timing measures, namely, delay

and slew, as well as their variability, which are needed in existing timing analysis flows

[10, 11]. The variational model order reduction in [15] is based on two projection-based

model order reduction techniques: PRIMA [3] and PACT [24]. And the variational

analysis in [15] is based on matrix perturbation theory [25]. [16, 17] are based on the

balanced truncation technique. However, standard timing quantities such as delay

and slew are not calculated. A significant cost will be incurred in order to evaluate

the reduced-order models over a large number of samples to provide such delay and

slew statistics, thereby making the cost of statistical timing analysis intractable. [22]

first calculates the circuit moments under variation, then moments are mapped to

delay metrics in order to get the circuit delay under variation. Physical synthesis

oriented delay/slew metrics are extremely efficient, however, they are not completely

suitable to accurate timing verification. These metrics tend to give inaccurate delay

estimation, especially for near-end nodes in the interconnect network, making it more

difficult to apply for capturing delay variations.
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C. Overview of our approach

Given a RC network with a single input, N circuit nodes and Ns sink nodes, the

objective of our approach is to compute the delay Td,i and slew rate Ts,i at sink node

i, i = 1...Ns while considering the variations of RC elements due to a set of Nρ process

variables, ρ = [ρ1, ρ2, · · · , ρNρ
]T and the input variation, modeled as variation in the

input slew. Without loss of generality, delay and slew are defined as 50% propagation

delay and 20-80% slew time, respectively. To be accurate over a wide range of process

variations, each delay is expressed in terms of a second order polynomial in process

variables ρ′is as

Td = Td,0 + αT
d ρ + ρT Γdρ, (2.3)

where Td,0 is the nominal delay, αd is a Nρ × 1 vector representing the first order

delay sensitivities, Γd is a Nρ×Nρ matrix representing the second order terms. For the

same purpose, the 2nd-order parametric form is used as a standard form to represent

most of circuit quantities during the analysis.



11

CHAPTER III

VARIATIONAL INTERCONNECT ANALYSIS

In Chapter III, we present a practical interconnect analysis methodology to provide

efficient delay and slew calculation for statistical timing analysis. In this approach,

process and input signal variations are propagated into the output delay and slew

variations without computing a complete variational reduced order model and per-

forming subsequent statistical sampling as some of the existing approaches did. Fig. 2

uses a simple RC interconnect nets to illustrate the problem definition.

While gaining improved efficiency by avoiding computing the complete varia-

tional reduced order models, we also develop specific techniques to avoid losing any

significant accuracy in delay and slew variations, which is difficult to achieve by de-

lay/slew metric based approaches. As a standard practice, we assume that an accurate

nominal-case interconnect analysis technique such as high-order AWE [1, 26] is used

for the nominal timing verification, as part of a variational interconnect analysis flow.

Based on the result of the nominal timing analysis, each circuit node under analysis

will be identified either as a “far-end” or a “near-end” node. For both, a “small-

scale” parametric reduced order model will be computed. The avenue for doing so

will be through fast closed-form formulas for the former and efficient perturbation

analysis method for the latter. It is shown that the proposed techniques offer accu-

rate variational interconnect delay and slew computation over a wide range of process

variations, regardless of the nature of circuit nodes (e.g. far ends vs. near ends). It

directly produces parametric expressions of delay and slew in the underlying process

variables, and hence constitutes a useful analysis infrastructure for statistical timing

analysis.
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RC Variations

Input Variation

Delay/Slew
Variations

Fig. 2. Propagation of RC and input variations.

A. Analysis flow

In order to capture a wide range of process variations, every timing quantity is ex-

pressed in terms of a second order polynomial in process variables ρ′is as

T = T0 + αT
d ρ + ρT Γdρ, (3.1)

where T0 is the nominal value, αd is a Nρ × 1 vector representing the first order

sensitivities with respect to variations, Γd is a Nρ×Nρ matrix representing the second

order sensitivities with respect to variations.

The input slew can be dependent on the same or different set process parameters

since it is impacted by the preceding driving stage. For simplicity of notation, we

include all the process parameters in ρ. In this fashion, the statistical correlation

between different circuit stages can be naturally captured. It should be noted that

upon getting these parametric forms, the statistical distributions of delay and slew can

be easily obtained by propagating distributions of the underlying process parameters
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through these quadratic expressions. As the dependency of timing quantities on

process variation is kept, these parametric forms can be directly incorporated into a

statistical timing analysis flow [10, 11, 12, 13].

The proposed analysis flow is outlined in Fig. 3. The variational interconnect

analysis follows the accurate high-order AWE analysis applied for the nominal case.

By examining the poles and residues of the nominal case AWE model, a sink node

can be identified as a “near end” or a“far end” node. Here, a node is said to be near

end if the AWE model has two obviously dominant pairs of poles and residues such

that a two-pole model will be sufficient for analyzing delay and slew. Based on the

parametric moment computation, parametric output slews are obtained by extending

the existing moment-based nominal slew metric while considering the input slew

variations [8, 27]. To more reliably compute the delay, a parametric two-pole (for

“far” end nodes ) or high order reduced model (for “near” end nodes) is computed.

Finally, parametric forms of the delay is generated by evaluating the parametric

reduced model. The efficiency of the proposed approach is archived by adopting a) an

efficient variational transfer function moments computation procedure; b) a simple

and yet accurate (parametric) moment-based slew metric; c) efficient closed-form

formulas (far-end nodes) and numerically efficient perturbation analysis (near-end

nodes) for variational delay analysis. In Fig. 3, shaded steps are performed using

closed-form formulas while others are achieved using efficient numerical computation.

Each of these steps is described in details as follows.
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High-order nominal 
delay/slew analysis

Nominal delay can 
be captured by a 
two-pole model?

Parametric moment 
computation up to a high 

order moment

Compute parametric forms 
of the first three moment 

Construct a parametric
2-pole model

Variational pole 
& residue analysis

Construct a parametric 
high order model

Analyze output voltage variation around 
the nominal delay time

Process 
variations

Input slew 
variations

Parametric 
output slew

Parametric output delay 

inputs

outputs

closed-form
computation

Netlist

Y N

Fig. 3. Variational delay and slew computation.
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B. Parametric moment analysis

An RC network with a single voltage input can be described using the following

system equations

C
dx

dt
+Gx = bu, y = LTx, (3.2)

where G,C ∈ RN×N are the conductance and capacitance matrices, u is the voltage

source, x ∈ RN×1 is the unknown vector consisting of the node voltages and the

voltage source current, b ∈ RN×1 is a vector linking the input to the RC circuit, and

L ∈ RN×M is the output matrix used to select the sink node voltages y ∈ RM×1 from

x. Throughout this paper, the notation (G,C, b, L) is used to denote a single-input

RC network commonly encountered in timing analysis.

Variations of G and C matrices are modeled by quadratic dependency on the

process parameters ρ. Without loss of generality, we only consider a linear dependency

for simplicity of notation as follows

G = G0 +
Nρ
∑

i=1

Giρi, C = C0 +
Nρ
∑

i=1

Ciρi, (3.3)

where Gi and Ci are sensitivity matrices and can be obtained during the parasitics

extraction. The zero-th order moment of a RC network without any grounded resis-

tance is given by m0 ∈ RN×1 is given as m0 = G−1b = [1 1 · · ·1 0]T regardless of

process variations. In the following, the quadratic parametric forms of the next three

moments are derived.

The quadratic parametric form of the ith order moment mi ∈ RN×1 vector is

represented in the following form

mi = mi
0 +

Nρ
∑

j=1

αi
jρj +

Nρ
∑

j=1

Nρ
∑

k=1

γi
j,kρjρk, (3.4)

where mi
0 is the nominal value, αi

j ∈ RN×1 and γi
j,k ∈ RN×1 are the first and second
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order coefficients. Since circuit moments are computed recursively in an ascending

order, it will suffice to show how the next moment vector mi+1 is computed given

mi. Assuming that the parametric form of mi as in (3.4) is available, mi+1 can be

obtained as

mi+1 = −G−1Cmi = −(G0 +
Nρ
∑

i=1

Giρi)
−1(C0 +

Nρ
∑

i=1

Ciρi)m
i, (3.5)

where the matrix inversion can be expanded using Taylor series since the perturbation

term is assumed to be small

(G0 +
Nρ
∑

i=1

Giρi)
−1 =

(

I −
Nρ
∑

i=1

Giρi + (
Nρ
∑

i=1

Giρi)
2

−(
Nρ
∑

i=1

Giρi)
3 + · · ·

)

G−1
0 . (3.6)

Substituting (3.4) and (3.6) into (3.5) and retaining only up to the quadratic terms

gives

mi+1 = mi+1
0 +

Nρ
∑

j=1

αi+1
j ρj +

Nρ
∑

j=1

Nρ
∑

k=1

γi+1
j,k ρjρk, (3.7)

where

mi+1
0 = −G−1

0 C0m
i
0

αi+1
j = G−1

0 GjG
−1
0 C0m

i
0 −G−1

0 C0α
i
j −G−1

0 Cjm
i
0

γi+1
j,k = γi+1,1

j,k + γi+1,2
j,k . (3.8)

In (3.8), the second order coefficient γi+1
j,k is split into two parts which are given by

γi+1,1
j,k = −G−1

0 GjG
−1
0 GkG

−1
0 C0m

i
0 +G−1

0 GjG
−1
0 C0α

i
k

−G−1
0 GjG

−1
0 Ckm

i
0 −G−1

0 Ckα
i
j, (3.9)

γi+1,2
j,k = −G−1

0 C0γ
i
j,k, (3.10)
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where the second order coefficient γi
j,k ( for ρjρk) of mi is defined recursively as in

(3.8). For the zero-th order moment m0, it is true that αi
j = γ0

j,k = 0.

A few key observations are due here. Starting from m0 = G−1b = [1 1 · · ·1 0]T ,

the parametric forms of the first few moments can be computed using (3.5, 3.8,

3.9, 3.10). As in (3.4), the Nρ sensitivity vectors αi
j ’s can be computed using the

standard sensitivity analysis, achievable by reusing the LU factor of G0 or applying

path tracing (RICE [26]) with mild computational cost. The large number (O(N2
ρ ))

of second order coefficients are more expensive to compute in (3.4). To speedup,

we exploit the observation: in a typical RC signal net, the number of sink nodes,

Ns, is typically much less than the number of circuit unknowns N . Hence, efficiency

of analysis can be improved if the second order analysis is only conducted for the

sink nodes. In our implementation, the nominal moments and first-order sensitivity

vectors are computed for all N circuit nodes while the second order coefficients are

only computed for Ns sink nodes. As an example, let us consider the term in (3.10).

Instead of computing the complete γi+1,2
j,k , we seek the entries of the sink nodes of

interest. We multiply γi+1,2
j,k with LT (L ∈ RN×Ns) from left to select just what

corresponds to Ns sink nodes

LTγi+1,2
j,k = −LTG−1

0 C0γ
i
j,k = ΦTγi

j,k, (3.11)

where Φ = −ΘTC0 and Θ = (GT
0 )−1L is obtained via solving the adjoint linear system

defined by GT
0 by reusing the same LU factor of G0. Considering only Ns sink nodes

changes the cost from O(N2
ρ ) linear system solutions/matrix-vector multiplications to

O(NsN
2
ρ ) vector inner products. When Ns is small, the latter can be performed faster

using vector operations. It should be noted in evaluating (3.11), vector γi
j,k ∈ RN×1

is not formed directly either since there exist also O(N2
ρ ) of them. Instead, ΦTγi

j,k is

evaluated.
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C. Slew rate computation

The variation of the slew at any given sink node say, j, is analyzed based on the

parametric moments computed in the previous section. Here, slew is computed on

a per sink node basis, thus it only involves scalar computations while considering

parametric variations. Unlike delay computation, there do exist simple moment-based

slew metrics that are accurate for both the near and far end nodes [28, 29].

In [8], the PERI metric is used to estimate the sink node slew for a given input

slew

slewramp =
√

slew2
step + slew2

input, (3.12)

where slewinput is the slew of the ramp input, slewstep is the output slew for a step

input, and slewramp is the output slew for the ramp input. It is shown that the above

metric can correlate fairly accurately the ramp input slew with the output slew if an

accurate metric for slewstep is used. In this paper, it is assumed that the nominal

output slew slew0
ramp has been accurately obtained. Then, the variation of slewstep

around slew0
step is estimated as

slewstep =
m1

j · slewstep,0

m1
j,0

, (3.13)

where m1
j and m1

j,0 are first order moment and its nominal value at the sink node j.

In the above, the (variational) Elmore delay of the node is normalized with respect

to the nominal slew to provide a variational step-input slew metric. Let us assume

that the variational forms of slewin and slewstep are cast into

slewin = αi + βT
i ρ+ ρT Γiρ, slewstep = αs + βT

s ρ+ ρT Γsρ, (3.14)

where αi and αs are scalars, βT
i and βT

s are Nρ × 1 vectors, Γi and Γs are Nρ × Nρ

matrices. Substituting (3.14) into (3.12) and expanding about the nominal ramp-
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input output slew gives the following variational form of slewramp

slewramp =
√

α2
s + α2

s(1 + βT
r ρ+ ρT Γrρ), (3.15)

where

βr =
αiβi + αsβs

α2
i + α2

s

Γr =
βiβ

T
i + βsβ

T
s + 2(αiΓi + αiΓi)

2(α2
i + α2

s)
−

1

8
βTβT

r . (3.16)

We have found in our experiments that the above variational slew metric is very

accurate. It is also possible to use the two-moment slew metric proposed in [28]. The

computation of the parametric form of the output slew can be similarly conducted.

D. Variational delay analysis

Unlike the slew analysis, simple moment-based interconnect delay metrics tend to

be inaccurate for near end nodes, making it not completely suitable for variation

analysis. We propose to analyze the output voltage response variation at the nominal

delay point (e.g. 50%Vdd crossing point) and then convert the variation in response

to variation in delay.

As shown in Fig. 3, each sink node is identified either as a “near” end node

or a “far” end node by examining the results of the nominal analysis. For a “far”

end node, a parametric two-pole AWE model is constructed to evaluate its voltage

response variation while for a “near” end node, perturbation analysis of poles and

residues is conducted to construct a more accurate parametric high-order AWE model.

The strategy here is that majority of nodes ( those are of far-end in nature) can be

processed rather efficiently using simple two-pole models and a smaller number of

near-end nodes are analyzed using high-order models. When using only the nominal
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analysis result to decide the nature of a sink node, we have assumed that process

variations do not make a near-end node behave like a far-end node and vice versa.

This is a quite reasonable assumption since for bounded process variations the nature

of a circuit node is determined by its location. For an arbitrary sink node, let us

assume that a set of Nr pole and residue pairs, pnom,i and knom,i are computed in an

accurate high-order AWE analysis used for the nominal case timing analysis. From

this analysis, the nominal 50%Vdd crossing time is assumed to be tnom. Then, the

portion of output response at time tnom attributed to the two most dominant low

frequency poles, say, pnom,1 and pnom,2, is computed as Vl. For a given user-specified

tolerance ε (ε < 1), the sink node is identified as a far-end node if

|0.5Vdd − Vl| < 0.5εVdd. (3.17)

Otherwise, it is identified as a near-end node.

1. Parametric two-pole model

We describe how a parametric two-pole model can be efficiently constructed for far-

end nodes. A second order AWE model parameterizable in the same quadratic para-

metric form is computed. This goal can be achieved by propagating the parametric

moment expressions derived in the previous sections though the moment matching

procedure. Since the order of moment matching is low, it is possible to derive closed-

form formulas. As an example, let us consider the characteristic function of a 2nd

order AWE model

b2p
2 + b1p+ 1 = 0, (3.18)

where b1 is determined by the moment matching process using circuit moments
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as b1 = −m0m3+m1m2

m0m2−m2

1

. Notice that the parametric form of these moments can be com-

puted using the procedure described in the previous sections. Denote the parametric

expressions for the first four moments as

mi = αm,i + βT
m,iρ+ ρT Γm,iρ, i = 0, 1, 2, 3. (3.19)

Substituting (3.19) into (3.18) and keeping up to the 2nd order parametric terms

gives

b1 ≈
f1

f2
, (3.20)

where

f1 = (αm,1αm,2 − αm,0αm,3) + (3.21)

(αm,1β
T
m,2 + αm,2β

T
m,1 − αm,0β

T
m,3)ρ+

ρT (αm,1Γm,2 + βm,1β
T
m,2 + αm,2Γm,1 − αm,0Γm,3)ρ,

f2 = (αm,0αm,2 − α2
m,1) + (αm,0β

T
m,2 − 2αm,1β

T
m,1)ρ+

ρT (αm,0Γm,2 − 2αm,1Γm,1 − βm,1β
T
m,1)ρ. (3.22)

Here, b1 is in the form of a ratio of two quadratic forms. In our implementa-

tion, analytical expressions have been derived to convert such a ratio into a standard

quadratic form. Going though similar derivations, b2 as well as two pole/residue pairs

of the two-pole model, k1, p1, k2, p2, can be obtained in the same parametric quadratic

form. Essentially, by passing parametric moments to a set of pre-stored closed-form

formulas, a parametric two-pole model can be computed very efficiently for any given
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circuit node.

2. Parametric high-order model

For sinks that are identified as near-end nodes, a two-pole model is not accurate

enough to analyze the variation in the voltage response. Instead, we seek an accurate

parametric high-order AWE model. The order of parametric model can be set to what

is used in the nominal case timing analysis. Unlike a simple two-pole model, it is not

possible to derive closed-form expressions to relate the circuit moments to a high

order model. Hence, we first numerically compute the parametric variations of the

characteristic function of the AWE model and then perform perturbation analysis

on system poles and residues to produce the desired parametric model. Without

loss of generality, consider the correspondence between the circuit moments and the

coefficients of the characteristic function in a 4-th order AWE model
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. (3.23)

To simplify the notation, we denote the Hankel matrix in the above equation

as F , its nominal matrix as F0, its first sensitivity w.r.t the i-th process variable ρi

as Fi and its second order dependency on ρiρj as Fi,j. Notice that Fi and Fi,j can

be obtained by replacing each moment in F by its first order sensitivity w.r.t ρi and

second order dependency w.r.t ρiρj , respectively. We further denote [b4 b3 b2 b1]
T as

b, [m4 m5 m6 m7]
T as m, and their nominal values as b0 and m0, respectively. We

define bi, mi, bi,j and mi,j as in the case of F . A standard sensitivity analysis gives
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S-planeModel poles Characteristic functions
f(b,s) = 0

nominal

perturbednominal
perturbed

Taylor series expansion 
of f(b,s) around each 
nominal pole

Fig. 4. Perturbation analysis of model poles.

bi = F−1
0 (−mi − Fib0). (3.24)

Matching the second order terms from the both sides of (3.23) leads to

bi,j = F−1
0 (−mi,j − Fibj − Fi,jb0). (3.25)

Using the parametric moments already computed, the parametric forms of b can

be obtained by solving multiple linear matrix problems defined by the nominal Hankel

matrix.

With the parametric dependency of the characteristic function (defined by b)

computed, we proceed to analyze the variation of the system poles. For general high-

order models, no closed-form expressions are available for poles. To make the problem

of analyzing parametric variations of transfer function poles tractable, perturbation

analysis is applied in the neighborhood of each nominal model pole, as illustrated in

Fig. 4.

To capture the variation of a pole of the high-order AWE model around its
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nominal value, say pnom,i, the characteristic function

f(b, s) = 1 + b1s+ b2s
2 + b3s

3 + b4s
4 = 0 (3.26)

is expanded into a quadratic function at s = pnom,i as

f(b,∆pi) = q0 + q1∆pi + q2∆p
2
i = 0, (3.27)

where, ∆pi is the variation of the i-th pole and

q0 = 1 + b1pnom,i + b2p
2
nom,i + b3p

3
nom,i + b4p

4
nom,i

q1 = b1 + 2b2pnom,i + 3b3p
2
nom,i + 4b4p

3
nom,i

q2 = b2 + 3b3pnom,i + 6b4p
2
nom,i. (3.28)

Notice that since b has parametric variations, q0 in (3.28) is not necessarily zero.

Using the parametric expressions of b, q′is in the above equation can be cast in the

following quadratic forms in the process variables

qi = qi,0 + qT
i,1ρ+ ρTQi,2ρ (3.29)

Plugging ∆pi = pT
i,1ρ+ ρTPi,2ρ into (3.27) gives

pi,1 = −q0,1/q1,0, Pi,2 = −(q0,2 + q1,1p
T
i,1 + q2,0pi,1p

T
i,1)/q1,0. (3.30)

After the perturbation analysis is completed for all poles, the resulting parametric

expressions are employed to compute the parametric forms of residues (k′is) that leads

to a complete parametric circuit model. Given a Nm-th order parametric model, the

variation of the time-domain voltage response y(t) at any time t under a saturated

ramp input can be evaluated using
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y(t) =
Nm
∑

i=1

aki

p2
i

[(−1 − pit+ epit)U(t) −

(−1 − pi(t− t1) + epi(t−t1))U(t− t1)], (3.31)

where a is the slope of the ramp input, t1 = Vdd/a, and U(·) is the step function.

Utilizing the parametric poles/residues, expanding y(t) around its nominal value leads

to a second order parametric expression of the voltage response.

E. Delay variation

In the nominal case delay analysis, typically, a reduced order model is computed

to obtain the analytical solution of the voltage response at a sink node under the

saturated ramp input. To find the output delay, nonlinear Newton iterations are

applied to find the time tnom at which the output voltage crosses 50%Vdd. However,

applying nonlinear iterations over a large number of circuit instances to find the delay

variation is prohibitively expensive. To facilitate a feasible variational delay analysis,

in our approach, we convert the variation in the output response at tnom, namely, ∆V ,

to the variation in delay. As shown in Fig. 5, the rationale behind is that although

finding a particular voltage crossing point is intrinsically difficult, evaluating variation

of the response at a given time is rather straightforward. The latter is achieved by

using the parametric two-pole or high-order AWE model developed in the previous

sections.

To this end, two fixed time points ta and tb are selected in the neighborhood

of tnom: ta < tnom < tb. The voltage response at these two points can be similarly

obtained from the parametric model computed previously. The slope of the voltage

response around tnom can be approximated as
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Fig. 5. Avoiding nonlinear iterations by converting voltage response variation to delay

variation.

slope(tnom) =
y(tb) − y(ta)

tb − ta
. (3.32)

Using (3.32), the delay variation is estimated as

td = tnom −
∆V (tb − ta)

y(tb) − y(ta)
, (3.33)

which can be finally converted to a standard quadratic parametric form. It

should be noted that in (3.33) the variation of slope(tnom) is also reflected in the

delay variation.

F. Experimental results

We first demonstrate the accuracy issue of variational interconnect analysis using two

circuit examples. In Fig. 6, a ramp input is applied to a RC circuit and a far end

node is selected to examine the voltage response. We compare the direct transient

simulation and the 2nd order AWE model for the original circuit and the perturbed

circuit where RC values are varied to mimic the impact of process variation. As
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can be seen, for this far end node the 2nd order AWE model is very accurate for

both the original circuit and the perturbed one. Therefore, it is well expected that

delay/slew variation can be accurately captured if a parametric 2nd order AWE model

is extracted. We conduct a similar comparison for a near end node selected from

another RC circuit in Fig. 7. This near end node is located close to the driving

voltage input therefore resistive shielding effect is noticeable in this case. It is clearly

seen that the 2nd order AWE model cannot capture well the variation of the output

response. However, a 4th order model can. This implies that for near end nodes,

delay/slew variations cannot be well captured by a low order model. For a case like

this, the perturbation analysis will be invoked in the proposed variational analysis

flow to produce a high-order parametric model to ensure the accuracy.

Next, we demonstrate the accuracy of the proposed analysis on a near-end node

chosen from a RC circuit with 124 nodes and 234 RC elements, as shown in Fig.

8 and Fig. 9. This circuit is driven by a saturated ramp signal with a nominal

input slew rate of 200ps. 10 independent RC variation sources are considered so is

the variation in the input slew. In practice, near end nodes are usually difficult to

estimate using moment-based delay metrics. However, in the proposed technique,

this node is identified to be a near-end node in the nominal case timing analysis.

When performing the variational analysis, the perturbation analysis is invoked to

generate a 4-th order parametric AWE model and the quadratic parametric forms

are computed for delay and slew. 500 circuit samples are randomly generated and

we directly compute the output delay and slew of each sample by applying transient

analysis. For comparison, the parametric delay and slew expressions obtained from

our proposed technique are evaluated for these 500 circuit samples. In Fig. 8 and

Fig. 9, the relative errors of delay and slew of the proposed variational technique

are shown. In this case, the maximum errors are 4.2% and 2.7% for delay and slew,
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Fig. 6. Nominal and variational analysis for a far-end node.
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Fig. 8. Relative delay error distribution for a near-end node.

respectively.

Next, we examine the statistical distributions of the interconnect delay and slew

in a RC circuit. For this case, 10 independent process parameters are considered and

a fixed ramp input with a 50ps slew is applied to each circuit instance. The PDFs

of the delay and the slew at one circuit node are examined in Fig. 10 and Fig. 11.

As clearly seen from the figure, the PDFs of our variational analysis match very well

with those computed by the corresponding 8-th order AWE model for each case.

For more extensive verification of the proposed techniques, we consider a set of

RC nets with different sizes ranging from a few ten nodes to a few hundred nodes

and several hundred circuit elements, in Table I and Table II. For each circuit, a
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circuit node is arbitrarily chosen as one sink node for comparison. Again, 10 inde-

pendent process parameters are considered which are perturbed with various degrees

to generate 500 samples for each circuit. In Table I, the input to all the nets is a

fixed ramp input with 50ps slew rate while the input in Table II has a nominal slew

of 200ps and varies with the same 10 process parameters. In the second columns of

the both tables, the maximum percentages of delay and slew variations (with respect

to the nominal values) seen across the 500 samples are listed to indicate the degree of

variability. In both tables, we list the maximum and average relative errors for delay

and slew for each of these circuits and compare the 2nd-order parametric analysis

(5th/6th columns) with the first-order sensitivity analysis (3rd/4th columns). As a

reference, a high order AWE model and nonlinear iterations are applied to compute

the delay and slew for each sample, which are regarded as the exact solution. In the

table, “-” indicates the cases where the corresponding analysis generates a significant

error in estimating delay or slew. It can be clearly seen from these tables that for a

wide range of delay/slew variations, the presented 2nd-order parametric analysis can

maintain very good accuracy. It should be noted that for some cases, the first-order

analysis completely fails to capture the large variability.

G. Conclusions

In this chapter, a practical variation-aware methodology is presented to analyze inter-

connect performance variations. Specific techniques have been developed such that

a 2nd-order parametric analysis can be done efficiently for on-chip RC interconnects

for a large number of process variations manifesting in terms of RC value pertur-

bations and input slew variations. The proposed variational analysis can accurately

capture wide variations of interconnect delay and slew even under the cases where the
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simpler first-order sensitivity analysis completely fails. Since the proposed technique

produces parametric expressions for delay and slew, it is expected that the technique

and its extensions can be incorporated easily into a statistical timing environment as

an interconnect delay calculator.



36

Table I. Variational interconnect analysis results: fixed input slew (50ps)

1st: Max/Ave% 2nd: Max/Ave%

Net Max D/S Var.% Delay E. Slew E. Delay E. Slew E.

1 34.6/36.8 81.0/7.0 17.1/2.2 2.8/0.9 11.1/1.1

2 59.5/64.7 49.3/8.5 23.5/2.4 2.2/0.7 13.1/1.1

3 31.2/33.8 32.8/6.2 15.4/2.3 5.2/0.9 8.5/0.9

4 45.9/49.7 33.1/8.3 14.5/2.9 3.4/0.9 6.9/1.0

5 61.9/62.1 93.7/16.0 -/- 5.0/1.1 4.2/0.5

6 61.1/62.2 98.6/16.2 -/- 6.3/1.1 4.4/0.5

7 29.6/31.3 37.8/5.5 10.0/1.8 2.7/0.8 3.0/0.7

8 17.6/17.1 32.3/4.2 5.5/1.0 2.5/0.7 2.4/0.6

9 26.7/28.1 9.4/3.1 11.3/13.2 3.4/0.5 4.6/0.8

10 27.9/29.2 11.1/3.4 11.9/3.3 3.2/0.4 3.8/0.7

11 31.7/35.8 19.0/3.9 19.8/3.9 7.1/0.5 9.6/0.9

12 40.6/41.9 16.5/3.9 19.7/3.7 6.3/0.8 10.6/0.9

13 50.9/47.7 20.3/2.9 18.8/2.7 8.0/0.5 8.5/0.6

14 27.3/29.7 17.2/3.5 18.8/3.3 5.7/0.6 7.2/0.8

15 21.7/23.2 13.3/3.6 47.9/3.4 3.0/0.6 5.3/0.9

16 32.9/33.0 14.6/3.6 14.0/3.3 3.9/0.5 4.1/0.7
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Table II. Variational interconnect analysis results: w/ input slew variations (nominal

slew 200ps)

1st: Max/Ave% 2nd: Max/Ave%

Net Max D/S Var.% Delay E. Slew E. Delay E. Slew E.

1 30.9/28.5 43.9/5.5 9.9/2.4 3.47/0.5 5.7/1.3

2 46.9/32.1 48.8/6.9 9.2/1.4 3.8/0.4 6.4/1.3

3 21.9/19.2 24.7/4.3 8.7/2.9 2.7/0.8 4.6/1.5

4 12.5/13.5 15.6/4.3 4.8/1.2 2.3/0.7 2.1/0.6

5 76.7/93.6 59.9/10.1 -/- 6.9/1.3 5.0/4.6

6 79.1/13.8 6.9/10.0 -/- 7.4/1.1 7.2/6.0

7 18.9/19.0 28.8/5.3 8.0/2.9 3.1/0.6 4.3/1.5

8 16.3/16.4 25.1/4.0 8.1/2.2 2.3/0.5 3.1/1.3

9 55.9/49.5 18.1/3.4 12.1/2.4 7.8/1.8 6.9/3.1

10 27.4/22.7 9.7/0.8 5.8/1.7 3.6/1.3 5.8/2.8

11 32.6/42.7 14.0/1.7 15.7/2.0 5.9/2.1 11.0/2.1

12 11.6/12.1 4.1/0.6 3.6/0.9 2.6/0.5 2.7/1.2

13 17.3/16.8 5.1/0.7 4.4/0.8 2.5/0.6 3.2/1.3

14 33.0/35.1 9.0/1.2 6.8/1.0 4.4/1.2 3.5/1.5

15 37.9/29.4 9.4/1.4 9.2/1.1 4.9/1.3 4.3/1.4

16 36.4/34.0 8.1/1.1 5.7/1.0 4.2/1.1 2.7/1.3
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CHAPTER IV

DRIVING POINT MODEL AND ADJOINT SENSITIVITY ANALYSIS

In the variational interconnect timing analysis flow, the signal delay and slew at sink

nodes are analyzed in two steps. In the first step, a reduced-order driving-point model

of the interconnect network is first constructed (e.g. a three-element π-model). The

driving-point model is used with the gate delay model to calculate delay and slew

at the driving point of the interconnect. In the second step, the delay and slew at

the fan-out nodes are calculated based on their corresponding reduced-order transfer

functions. Chapter III is primarily describing the second step. In this chapter, I

present techniques to construct the driving point model and compute driving point

waveform.

A. Variational interconnect analysis flow

The complete interconnect timing analysis flow is outlined in Fig. 12. The parametric

π-model is constructed based on the parametric form of the first three admittance

moments. The parametric π-model and the nonlinear gate model can be analyzed

using adjoint sensitivity analysis to calculate the 2nd order variational model of delay

and slew at the driving point of the interconnect network. After the driving point

delay and slew model are calculated, they can be propagated to any sink nodes by

using the methodology presented in Chapter III. The efficiency of the proposed

analysis methodology is archived via the following steps:

• A reduced-order π-model is used as the driving-point model. Since there are

only three parameters in the circuit, the adjoint sensitivity analysis and its

second order extension can be carried out quite efficiently.
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• For Nρ process parameters, the first-order parametric dependency of circuit

moment vectors are computed directly using sensitivity analysis incorporated

in the standard recursive moment computation procedure. However, computing

O(N2
ρ ) second-order parametric dependency for each moment vector is rather

expensive. To reduce the analysis complexity, an algorithm is developed to only

compute the second-order dependency for the moments of the sink nodes where

the delay and slew analysis is performed.

• The parametric form of the each output slew is obtained by applying simple

and yet accurate slew metric and the computed parametric moments.

• The parametric computation of delay is achieved by constructing a parametric

reduced order model for each sink. For “far” end nodes, this is accomplished

by using closed-form formulas while for the “near” end nodes, numerically effi-

cient perturbation analysis is applied to produce the parametric reduced model.

Then, the reduced model is evaluated using closed-form expressions to obtain

the variation of the voltage response of each sink node. Finally, the variation

in the voltage response is converted directly to delay variation in the quadratic

parametric form, thereby avoiding the application of nonlinear iterations oth-

erwise required in finding a specific delay point.

B. Driving point π-model

A common driving point model is the three-element π-model as shown in Fig. 13,

which is widely accepted for its accuracy for RC interconnect structures. The values

of the three elements in the model are calculated as follows[30]:
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Fig. 13. Downstream interconnect is modeled as a π model.

C1 = y2
2/y3

C2 = y1 − C1 (4.1)

R = −y2
3/y

3
2

where y1, y2 and y3 are the first three moments of the admittance of the inter-

connect network, seen from the driving point:

Y (s) =
I(s)

V (s)
= y0 + y1s+ y2s

2 + y3s
3 + · · · (4.2)

From circuit analysis point of view, the admittance is the current drawn from the

driving point when unit driving point voltage is applied. Thus it is readily available

after the circuit analysis described in the previous section is performed. The paramet-

ric form of the driving point model is calculated by applying parametric admittance

moments in Eqn. (4.2).

In order to calculate the delay and slew at the driving point, the parametric

driving point model needs to be analyzed with the gate delay model. Following

previous discussion, we use a quadratic equation as the parametric delay model, as

shown in Eqn. (3.1). In the context of 50% delay point, the first term in the equation
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can be expressed as:

αd = (
∂Td

∂p1

,
∂Td

∂p2

, · · · ,
∂Td

∂pn

) (4.3)

while the second order effects can be captured by:

Γd =
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...
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∂p2
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(4.4)

Without loss of generality, we only consider 50% delay point. To calculate the

1st order sensitivities in Eqn. (4.3), we have:

V (Td, ρ) = V dd/2 (4.5)

If we take partial derivatives with respect to the variations ρ, we have:

∂V

∂Td

∂Td

∂ρ
+
∂V

∂ρ
= 0 (4.6)

which leads to

∂Td

∂ρ
= −

∂V/∂ρ

∂V/∂Td

(4.7)

In the above equation, the denominator is the slope of the waveform at the cross-

ing point Td and is available after a nominal timing analysis. The numerator is the

sensitivity of the waveform with respect to the variations. In a timing analysis flow,

the driving point π-model is analyzed with nonlinear delay model at gate level or

transistor level. Therefore the parameters of both linear π-model and the gate model

will affect the waveform. However, in the experimental result section, we will only

demonstrate our variational interconnect delay analysis techniques by computing de-
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lay/slew dependencies on the circuit element variations in the interconnect networks.

To ensure the generality of our method, we use adjoint sensitivity analysis to calculate

the first and second order parameters.

C. Adjoint sensitivity analysis for driving point π-model

The classical adjoint sensitivity analysis was originally derived from Tellegen’s the-

orem [31]. The sensitivity of the circuit performance (delay, slew and noise, etc)

with respect to every circuit element can be computed efficiently by just running two

transient analyses. The basic flow is as follows: suppose we want to compute the

sensitivity of the delay at a sink node A with respect to every circuit element. First,

we need to do a standard transient analysis for the original circuit, and save the

branch voltage for every capacitor and branch current for every resistor in a certain

duration of time. Second, an adjoint circuit is constructed based on the topology of

the original circuit, and an input impulse excitation for the adjoint circuit is set at

node A, all the other excitations in the original circuit are set to be zero. We perform

another transient analysis on the adjoint circuit, save the branch voltage for every

capacitor and branch current for every resistor in the same duration of time. Third,

for each capacitor, we do a convolution between the derivative of branch voltage of

the original circuit and the branch voltage of the adjoint circuit, the number we get

will be the sensitivity of the original voltage response at node A with respect to the

value of that capacitor, the sensitivity with respect to parameters can be computed

easily by using the chain rule. For each resistor, the convolution is between the branch

current in the original circuit and the branch current in the adjoint circuit, and the

result of the convolution is the sensitivity of the original voltage response at node A

with respect to the value of that resistor.
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To derive the equations for first order adjoint sensitivity computation, we begin

with the very basic circuit equations. Given two topologically identical circuits, their

topological constraints are the same, so their KCL and KVL equations can be written

in terms of the same reduced incidence matrix A:

KCL : Aib = 0 and Aφb = 0 (4.8)

KV L : vb = ATvn and ψb = ATψn (4.9)

The meaning of the above notations are: vb and ib are branch voltages and branch

currents of the original circuit, ψb and φb are branch voltages and branch currents of

the adjoint circuit. Then the general form of Tellegen’s theorem can be written as

follows:
∑

b

vbφb ≡ 0 (4.10)

∑

b

ibψb ≡ 0 (4.11)

Equation 4.10 and 4.11 can be derived from the topological constraints.

vT
b φb = (ATvn)Tφb = vT

nAφb = 0 (4.12)

ψT
b ib = (ATψn)T ib = ψT

nAib = 0 (4.13)

When there are variations in the original circuit, both branch currents and volt-

ages in the original circuit are subject to changes: vB(t) + δvB(t) and iB(t) + δiB(t).

It can be shown that the following relationship holds:

∑

B

[δvB(t)φB(τ) − δiB(t)ψB(τ)] = 0 (4.14)

Besides the nominal transient simulation on the original circuit, another transient

simulation is required on the adjoint circuit with zero initial conditions. Note that
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the adjoint transient simulation is done backward in time. And the results of adjoint

transient and nominal transient has to be convoluted to compute the sensitivities.

Note although the sensitivity analysis can also capture the sensitivity to the input

signal changes, in our approach, we can null them out since we are not interested in

those changes. We provide more details on the formulation of resistors, capacitors

and nonlinear devices in the adjoint circuit the remaining part of this section:

1. Resistors in the adjoint circuit

Consider the following resistive branch in the original circuit:

VR(t) = R · iR(t) (4.15)

If we introduce a variation on the resistance, we have:

VR(t) + δVR(t) = (R + δR) · (iR(t) + δiR(t)) (4.16)

It is obvious that the variation of the branch voltage can be expressed as:

δVR(t) = R · δiR(t) + δR · iR(t) + δR · δiR(t) (4.17)

The contributions of all resistive branches in the adjoint sensitivity equation

Eqn. (4.14) is:
∑

R

[φR(RδiR + iRδR) − ψRδiR] = 0 (4.18)

since we choose the same resistance for the same resistive branch in the original and

adjoint circuit, it is obvious that φRR = ψR in the adjoint circuit. Thus the first and

last terms in Eqn. (4.18) cancel each other. The contributions of all resistive branches

in the adjoint sensitivity is:
∑

R

φRiRδR = 0 (4.19)
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2. Capacitors in the adjoint circuit

The relationship between branch current and branch voltage in the original circuit

can be expressed as follows:

iC(t) = C · v̇C(t) (4.20)

the variation of the branch current can then be expressed as:

δiC(t) = C · δv̇C(t) + v̇C(t) · δC (4.21)

the contributions of capacitive branches in the adjoint circuit can be shown as:

∫ tf

t0

[φC(τ)δvC(t) − ψC(τ)(Cδv̇C(t) + v̇C(t)δC)] dt (4.22)

we can integrate the above equation by part and only keep the first order terms. By

taking into consideration that the capacitance stays the same in the adjoint circuit,

e.g., φC(τ) = CψC(τ), the above expression can be simplified as:

−CψC(t)δvC(t)|
tf
t0 +

∫ tf

t0

[−ψCτ)(Cδv̇C(t)] dt (4.23)

The simplification can be achieved by assuming that φC(τ) = −Cψ̇τ . In order to

avoid negative energy storage device in the adjoint circuit, we need to choose τ such

that τ = t0 + tf − t. To further simplify the expression in Eqn. (4.23), we choose

initial conditions to be zero:

δvC(t0) = 0 (4.24)

ψC(t0) = 0 (4.25)

then the contributions of the capacitance in the adjoint sensitivity is:

−
∫ tf

t0

ψC(τ)v̇C(t)dt (4.26)
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3. MOSFET devices in the adjoint analysis

In sensitivity analysis, the sensitivity with respect to nonlinear devices are handled

via the linearizion. In a timing analysis flow, it may be possible to use compact

nonlinear driver models to speed up the analysis and impose sensitivity analysis on

the driver models. However, due to the scope of this interconnect analysis work,

we assume that transistor-level description is used for each nonlinear driver. After

the convergence of nonlinear iteration at each time point for the complete nonlin-

ear circuit, the linearized self conductances (e.g., Gds) will remain the same in the

adjoint circuit. The controlling conductance (e.g., Gm) will also remain the same

in the adjoint circuit, although the controlling branches and controlled branches are

swapped, to reflect the fact that that MNA matrices of the original and adjoint circuit

are transposed. Fig. 14 shows the schematic of a simple inverter driving a π-model.

It also shows the linearized circuit as well as adjoint circuit for sensitivity analysis.

Note that in order to introduce voltage branches in the original and adjoint circuit,

we need to add several zero valued current sources in the original circuit.

As can be seen in Fig. 14, it turns out that to compute the sensitivities for the

voltage response of a particular point of time, say Td, an impulse current source needs

to be applied at the driving point in the adjoint circuit, but at time T −Td along the

axis of τ , as illustrated in the figure.

4. Second order sensitivity

In order to calculate the 2nd order sensitivity of the driving point waveform, we apply

finite-difference method. Each of the three element values of the π-model is perturbed

by a small amount and the adjoint sensitivity analysis is performed. By doing so,

we can calculate one column (or row) in Eqn. (4.4) with each additional adjoint
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Fig. 14. An inverter drives a π-model. The linear time-varying adjoint circuit used to

compute the sensitivities of the 50% delay w.r.t π-model elements is shown.

For illustration, device capacitive parasitics are not included.

sensitivity analysis. Since we are only interested in the second order sensitivities of

the three elements in the driving point π-model, the cost of the operation is quite

manageable. More specifically, assume the adjoint sensitivity analysis of the original

circuit yields sensitivity as follows:

αd =

(

∂Td

∂p1
,
∂Td

∂p2
,
∂Td

∂p3

)

(4.27)

We then introduce a small amount of variation into p1 as p1 + δp1. After another

adjoint sensitivity analysis, we obtain the updated sensitivities:

αd =

(

∂T̃d

∂p1
,
∂T̃d

∂p2
,
∂T̃d

∂p3

)

(4.28)

then we can calculate the second order sensitivities as:

∂2Td

∂p2
1

≈

∂T̃d

∂p1

− ∂Td

∂p1

δp1
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∂2Td

∂p1∂p2
≈

∂T̃d

∂p2

− ∂Td

∂p2

δp1
(4.29)

∂2Td

∂p1∂p3
≈

∂T̃d

∂p3

− ∂Td

∂p3

δp1

This operation is quite efficient because one additional adjoint sensitivity analysis

generates one row in the second order sensitivity matrix Eqn. (4.4). In our driving

point model, only three additional adjoint sensitivity analyses are required.

It should be noted that from a theoretical point of view, the 2nd order sensitiv-

ities can be computed without applying finite difference approximation. Due to the

scope limitation of this work, we will not discuss such a possibility in the present pa-

per. Furthermore, the above sensitivity-based analysis has been described under the

context of a particular delay point, say 50%Vdd crossing point. The same procedure

can be applied to the 20% and 80%Vdd crossings such that a quadratic parameter

forms can be computed for the driving point slew. Finally, utilizing the sensitivities

computed above and applying chain rule, quadratic parametric models in terms of

process parameters can be computed for the driving point delay and slew.

D. Experimental results

To demonstrate the variational analysis of interconnects while including nonlinear

drivers, we first consider the case where an inverter is driving a RC network. The

inverter is designed using a 0.13um CMOS technology, and a fixed ramp input with

30ps slew (20% to 80%Vdd) is applied to the input of the inverter. A sink node is

selected and the delay and slew at the node are examined. Fig. 15 and 16 show the

relative error distributions for the delay based on 500 circuit samples. The results

of both the 1st and 2nd order analyses are shown. The reference delay values are

obtained by analyzing the each circuit sample using nonlinear transient analysis,
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Fig. 15. Relative delay error of the 1st order analysis.

where a high-order reduced interconnect model is used to speedup the analysis. Our

parametric analysis results are based on computing the parametric delay expressions

first and then sampling directly these parametric forms. As can be seen in Fig. 15

and 16, both analyses are reasonably accurate with the 2nd order analysis providing

more favorable results by reducing the maximum error of the 1st order analysis from

11% to 6%.

The same comparison is made for slew and the results are shown in Fig. 17 and

18. A similar conclusion can be drawn here.

For a more complete comparison, in Table III, a set of ten RC circuits driven

by the inverter are considered. The nature of these ten RC circuits are similar to
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Fig. 17. Relative slew error of the 1st order analysis.
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Fig. 18. Relative slew error of the 2nd order analysis.
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what we use for the interconnect analysis in Chapter III. The input slew is again set

to be 30ps. In Table IV, three RC circuits driven by an two-input NAND gate are

analyzed. Here, data are organized in the same way as in Table I. As can be seen from

these tables, the average errors of both analyses are quite small. Furthermore, the

2nd order analysis brings notable improvement over the 1st order analysis, especially

in terms of the maximum error.

Table III. Variational interconnect delays/slews of RC circuits driven by an inverter:

inverter input slew (30ps)

1st order: Max/Ave% 2nd order: Max/Ave%

Design Max D/S Var.% Delay E. Slew E. Delay E. Slew E.

1 22.9/18.9 7.8/1.6 6.2/2.0 5.4/1.3 3.9/1.1

2 33.3/23.9 11.4/2.2 11.2/1.3 6.1/1.6 6.8/0.7

3 14.1/10.7 3.3/0.8 4.5/2.3 3.7/0.7 3.3/1.9

4 22.9/21.7 8.8/1.4 9.0/3.2 4.2/0.8 4.4/2.2

5 27.4/29.5 9.8/1.8 7.5/2.3 6.0/1.4 2.9/1.2

6 16.5/16.1 6.5/1.2 9.2/2.2 3.5/0.8 5.7/1.4

7 28.5/26.6 9.3/2.3 8.2/2.2 8.1/1.9 3.5/1.1

8 22.4/21.2 9.3/1.7 7.2/2.1 5.1/1.3 3.8/1.0

9 21.4/21.0 8.2/1.9 8.2/2.5 5.8/1.4 4.1/1.4

10 15.3/11.6 8.2/1.3 5.1/2.0 3.5/0.8 2.6/1.2

In Fig. 19 and 20, the normalized runtimes (w.r.t the nominal case) of the 2nd

order analysis are shown. In Fig. 19, three interconnects are considered and it can

be seen that the runtime shows the expected quadratic dependency on the number

of parameters. In Fig. 20, the same three interconnects are driven by an inverter and

the adjoint sensitivity approach is applied. The interconnects in the first two circuits
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Table IV. Variational interconnect delays/slews of RC circuits driven by a two-input

NAND: NAND gate input slew (30ps)

1st order: Max/Ave% 2nd order: Max/Ave%

Design Max D/S Var.% Delay E. Slew E. Delay E. Slew E.

1 22.5/22.8 6.8/1.5 9.1/1.9 4.4/0.8 4.1/0.9

2 33.4/30.7 13.8/3.0 11.6/2.7 8.5/2.3 5.8/1.1

3 30.3/24.9 12.8/2.4 8.8/1.7 7.3/1.8 4.9/0.8

are relatively small, therefore the runtime is dominated by the transient analyses in

the adjoint sensitivity analysis. The runtime of the last circuit exhibits the same

quadratic dependency because the circuits is dominated by the interconnect.

E. Conclusion

In this chapter, the complete variational interconnect timing analysis flow is pre-

sented. The variational driving point waveform including first and second sensitivi-

ties with respect to process variations are computed by combining the driving point

π-model and adjoint sensitivity analysis method. Then the variational driving point

waveform is propagated through the interconnect nets by using the methodology in-

troduced in Chapter III to get the second order parametric expressions of delay and

slew at any sink nodes. Experimental results show that second order variational anal-

ysis can achieve much better accuracy compared with first order analysis, while the

runtime of our analysis is still under control.
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CHAPTER V

CONCLUSION AND FUTURE WORK

A. Conclusion

In this thesis, the complete variational interconnect timing analysis flow is presented.

A set of practical circuit analysis and simulation techniques are included in this flow.

Our variational interconnect analysis method can translate the interconnect and input

signal variations into the output delay and slew variations efficiently and accurately.

And we also propose to use adjoint sensitivity analysis method to construct the driv-

ing point waveform model. In the step of computing the driving point waveform, we

combine the driving point π-model and the extension of adjoint sensitivity analysis

method in order to handle second order dependency of the driving point waveform

with respect to process variations. Since this proposed analysis flow produces para-

metric expressions for delay and slew of any sink nodes in a typical circuit which

contains a interconnect net driven by a nonlinear gate, it is expected that this flow

can be incorporated easily into a statistical timing environment as an interconnect

delay calculator.

B. Future work

In the variational timing analysis flow, the variations of nonlinear parts of the circuit

are not considered, a natural extension of this flow is to include the variations from

the nonlinear parts of the circuit. Then this flow can be extended as a general

circuit simulator which can do variational/sensitivity analysis for both linear and

nonlinear circuits. It can provide another powerful tool for the statistical timing

analysis/optimization purpose.
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In this thesis, second order adjoint analysis method is utilized only for the driving

point π-model, so another possible research direction is to extend the second order

adjoint analysis method to the entire circuit. Since adjoint sensitivity analysis is

a general analysis/simulation method, it can be used in many other applications

other than variational circuit analysis such as: noise/signal integrity analysis, circuit

optimization etc.
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