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ABSTRACT

Modeling of Multipath Fading Channels

for Network Simulation. (May 2007)

Rajkumar Samuel, B.E., Anna University, India

Chair of Advisory Committee: Dr. Scott L. Miller

Development of accurate physical layer models is very important for generating

realistic network simulation results. Significant effort has been put into setting up

physical layer models for wireless channels that emulate the impact of the channel on

the higher layers of the network. Setting up the models is especially difficult for a

frequency selective channel. In this thesis the use of non-linear functions to convert

the frequency selective channel to an equivalent flat fading channel is examined. The

analytical expressions for the statistics of the equivalent flat fading process that are

needed to set up the physical layer models are derived. These results are used to set

up the physical layer model for the frequency selective channel. Extensive simulations

are performed to verify the accuracy of the model against a detailed physical layer

implementation. The statistics of the model and the actual channel are seen to match,

validating the method of setting up the models.
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CHAPTER I

INTRODUCTION

The prospect of having broadband Internet access over a wireless wide area network

is fast becoming a reality. It is projected as a solution to the last mile bottleneck

that affects conventional wireline data networks [1]. Besides being able to provide

connectivity to fixed users as is available now wireless Wide Area Networks create

the possibility of delivering high speed connections to mobile users as well [2].

Delivering data over wireless networks is a lot more challenging than over wire-

line networks. This is due to the impairments inherent in the wireless channel. Phe-

nomenon such as fading can lead to a large number of packet drops that are not

common in the wired scenario. This is particularly significant as the behavior of the

physical layer can drastically affect the performance of higher level protocols and ul-

timately the applications that run on them. A classic example of this would be what

happens to a TCP flow over a wireless link where packets are dropped. TCP assumes

that packets are dropped solely due to network congestion [3] and in an effort to avoid

overloading an already congested network reduces the transmission rate everytime it

detects a packet loss. Thus it would lead to very poor utilization of the network

resources if the protocols are designed oblivious to the lossy nature of the underlying

medium.

Most applications and protocols in use today were assume a relatively reliable

wired physical channel and hence when they are ported to a wireless environment it

is essential to determine if they will still behave as expected. This is usually done

by extensive simulation but for these results to have any correlation to what could

The journal model is IEEE Transactions on Automatic Control.
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be expected in the field the models need to accurately characterize the behavior

of the channel. On the other hand a complex model that precisely portrays the

channel but makes it impossible to get results in a reasonable amount of time in

simulations involving large networks is of no practical use. Therefore simple models

that accurately abstract the essence of the channel’s nature and at the same time do

not drastically increase the run time are needed.

Over the years a large number of models of varying complexity and accuracy

have been proposed especially for the flat faded Rayleigh channel. However when it

comes to broadband wireless networks and especially those deployed in urban areas

the system bandwidth is much larger than the channel coherence bandwidth and the

channel is frequency selective. A novel approach to describe both flat and frequency

selective channels with a simple Four State Markov Model(4SMM) is presented in [4].

The 4SMM has low complexity and at the same time provides a close match to the

results that are obtained by a full detailed physical layer with explicit modulation,

coding and fading channel modeling. The analytical approach to setting up the models

for the flat and frequency selective channel is presented and this makes it possible

to set up the models without presimulation. However in the case of a frequency

selective channel it is necessary to estimate the diversity order actually achieved by

the particular modulation coding scheme at the SNR of interest to set up the model.

There is no direct way of getting this parameter except for the asymptotic cases and

simulation is required. In this thesis we explore the use of non-linear functions to

convert the frequency selective channel into an equivalent flat faded channel thereby

enabling the use of the models designed for use with a flat fading channel. In particular

we show that the use of the mapping from a frequency selective channel to a flat

channel provided by the Effective Exponential SNR Mapping(EESM) in conjunction

with the 4SMM provides promising results.
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The remainder of this thesis is structured as follows. Chapter II describes the

wireless channel model. Chapter III explains the EESM function and the approach

to get the parameters of the function for various modulation and coding schemes. In

Chapter IV we present the setting up of the 4SMM model for a frequency selective

channel by using the EESM function to convert it to an equivalent flat fading channel.

It also contains a comparison of the frame error statistics of the model and the full

physical layer. Chapter V concludes the thesis.
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CHAPTER II

BACKGROUND ON FADING MODELS

The biggest challenge posed by the wireless channel is the small scale fading cause

by the presence of multiple paths between the transmitter and receiver. It is this

phenomenon that causes rapid changes in the signal strength over small distances

or time and contributes to packets getting dropped. In this chapter we present the

statistical models for the fading in a wireless channel. The method of generating a

fading channel is also presented.

A. Multipath Fading

In a wireless environment there are several paths that a signal can take between

the transmitter and receiver. These paths can add constructively or destructively

depending on the phase of the different signal paths at a given point. As the phase

changes by 2π over one wavelength the received signal power changes very rapidly

with distance. When the channel or the terminals are in motion this fluctuation over

distance manifests itself as rapid fluctuations of the signal strength in time.

Fading is classified based on the relationship between the signal parameters and

the channel parameters. The coherence time of a channel is a measure of how quickly

the channel response decorrelates. When the symbol duration is small compared to

the coherence time the fading is termed as slow fading. When the symbol duration is

comparable to the coherence time of the channel the fading is termed fast. Another

classification of the fading process depends on the relationship between the delay

spread of the channel which is a measure of its time dispersiveness and the symbol

duration. When the delay spread is much smaller than the symbol duration the fading

is classified as flat and when it is not it is termed as frequency selective fading.
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1. Flat Fading

The equivalent complex baseband received signal r(t) in a multipath channel can be

expressed as

r(t) =
N∑

k=1

αk(t)e
jθk(t)s(t− τk) + n(t) (2.1)

where αk, θk and τk are the multiplicative gain, phase shift and the delay of the

kth path, N is the total number of paths s(t) is the transmitted signal and n(t) is the

Additive White Gaussian Noise term.

When the path delays are small compared compared to the symbol duration

s(t− τk) ≈ s(t) and the received signal can be expressed as

r(t) =
N∑

k=1

αk(t)e
jθk(t)s(t) + n(t)

= g(t)s(t) + n(t) (2.2)

where

g(t) = x(t) + jy(t) (2.3)

x(t) =
N∑

k=1

αk(t) cos θk(t) (2.4)

y(t) =
N∑

k=1

αk(t) sin θk(t) (2.5)

From the above equation we can see that the original transmitted signal is mod-

ulated by a random time varying scale factor g(t). x(t) is the in-phase component

and y(t) is the quadrature component of the gain. When the number of paths is large

we can use the Central Limit Theorem to show that x(t) and y(t) are independent

Gaussian random processes. This type of fading is known as Rayleigh fading as the

envelope of the scale factor |g(t)| follows a Rayleigh distribution shown in Figure 1.

fR(r) =
r

σ2
e−

r2

2σ2 , r ≥ 0 (2.6)
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Fig. 1. PDF of Rayleigh Fading Envelope

The phases θk are uniformly distributed in the interval [0, 2π] and independent

for each path. This type of fading is the most commonly dealt with type of fading

in the literature and is a good model for urban areas where there is no dominant or

line-of-sight path available between the transmitter and the receiver.

Let Ωp be the total power in all the paths i.e. Ωp = E[x2(t)] + E[y2(t)] =∑N
k=1 α2

k and fm is the Doppler rate of the channel. Then it can be shown that the

crosscorrelation between the in-phase and quadrature components is

RXY (τ) = Eθ[x(t)y(t + τ)]

=
Ωp

2
Eθ[sin(2πfmτ cos(θ))]

= 0 (2.7)

Thus the in-phase and quadrature components are uncorrelated and therefore

independent Gaussian random processes. The autocorrelation of x(t) and y(t) is
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Fig. 2. Autocorrelation of In-Phase and Quadrature-Phase Terms of Rayleigh Fading

given by

RXX(τ) = Eθ[x(t)x(t + τ)]

=
Ωp

2
Eθ[sin(2πfmτ cos(θ))]

=
Ωp

2
J0(2πfmτ) (2.8)

where J0 is the zero-order Bessel function of the first kind shown in Figure 2.

The power spectral density shown in Figure 3 is obtained from the autocorrelation

function by the Fourier transform.

SXX(f) = F [RXX(τ)]

=
Ωp

2πfm

1√
1− ( f

fm
)2

, |f | < fm (2.9)
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Fig. 3. Doppler Spectrum

2. Frequency Selective Fading

Only when the symbol duration is much larger than the delay spread of the channel

can the fading be considered to be flat. In the frequency domain this is equivalent to

the coherence bandwidth of the channel which is inversely related to the delay spread

being larger than the bandwidth occupied by the signal. In this case the channel

phase and magnitude response is the same across the signal bandwidth. However for

high datarate applications the signal bandwidth increases and the symbol period is

on the order of a few microseconds. The delay spread for urban areas ranges between

1-30 microseconds [5]. Now the channel can no longer be considered a flat fading

channel and the phase and magnitude response of the fading channel is a function of

frequency as well as time.

The frequency selective fading channel can be modeled as an L tap filter shown

in Figure 4. L is the number of resolvable paths provided by the channel and is a
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Fig. 4. L Tap Channel Model

measure of the diversity available in the channel.

L =
⌊
Td

Ts

⌋
+ 1 (2.10)

where Td is the delay spread of the channel and Ts is the symbol duration. The

impulse response of the channel can be then expressed as

h(τ, t) =
L∑

k=1

hk(t)δ(τ − kTs) (2.11)

The usual model assumed for frequency selective fading is Wide Sense Stationary

with Uncorrelated Scattering (WSSUS). This implies that the tap gains are uncor-

related. Each tap undergoes flat fading with autocorrelation of the in-phase and

quadrature components being the zero-order Bessel function of the first type.

RXkXk
=

Ωk

2
J0(2πfmτ) (2.12)

where Ωk is the power in each tap and the total power in all the taps adds up to Ωp
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B. Frequency Diversity

Frequency selective channels present opportunities as well as problems. The delay

spread in the channel being comparable or larger than a symbol period causes In-

ter Symbol Interference (ISI) and additional complexity in the signal processing is

required at the receiver. On the other hand because the resolvable paths are indepen-

dent it is unlikely that all of them will be in a deep fade simultaneously. If the receiver

is somehow able to exploit this availability of independent signal paths and utilize the

frequency diversity in the channel it could provide a much more reliable system than

what could be achieved in a flat fading channel without frequency diversity at the

same average signal to noise ratio. This gain is called the diversity gain achieved by

the system and can be measured by the negative slope of the error probability curve

when both the error probability and the signal to noise ratio are in a logarithmic

scale of the same base [6]. There are three common approaches to extract frequency

diversity and mitigate ISI on the frequency selective channel. They are

• Single Carrier with Equalization

• Direct-sequence Spread-Spectrum

• Multi-carrier Systems

Orthogonal Frequency Division Multiplexing(OFDM) is a discrete implementa-

tion of the Multi-carrier modulation. In OFDM the wideband channel is divided

into a number of smaller orthogonal subchannels. The width of the subchannels is

less than the coherence bandwidth of the channel and hence they are essentially flat.

Appropriate interleaving and coding across the subchannels enables the system to

extract the frequency diversity of the channel. OFDM has emerged as the technology

of choice in a large number of standards for high speed wireless data networks. The
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802.11a and 802.11g for indoor wireless LANs and the emerging 802.16 (WiMAX)

standards for mobile and fixed wide area wireless networks are some of the stan-

dards that use OFDM. In this thesis the simulation results are presented for data

networks that run on an OFDM based physical layer. We use the 802.11a standard

specifications for the implementation.

C. Orthogonal Frequency Division Multiplexing

OFDM uses the idea that sinusoids are eigen functions of a linear time-invariant(LTI)

channel implying that when a sinusoid is input to an LTI system the output is the

same sinusoid with a complex scaling factor. So signaling with a set of orthogonal

sinusoids over such a channel can lead to a simple demodulator design at the receiver.

This is the principle on which OFDM is based where it is assumed that fading is slow

enough that the channel can be considered to be time-invariant over the signaling

period. However the sinusoids have an infinite duration and when the signaling is

over a finite duration say N symbols it is no longer an eigen function. The eigen

function property can be achieved for finite duration signaling by the addition of a

cyclic prefix to the beginning of the N symbol block. The cyclic prefix for an L tap

channel is the last L − 1 symbols of the N symbol block. The N + L − 1 block of

symbols form the OFDM symbol. The cyclic prefix is discarded at the receiver side

and only the N original symbols are processed. This eliminates the ISI between two

OFDM symbols as the channel impulse response lasts for only L symbol periods and

the ISI from the previous OFDM symbol only affects the cyclic prefix of the current

OFDM symbol. The OFDM architecture is illustrated in Figure 5.

A matrix formulation for the OFDM system is presented below. Let X be the
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Fig. 5. OFDM Transmitter and Receiver

N symbol data sequence.

x = IDFT (X) (2.13)

The cyclic prefix taken from the last L − 1 symbols of x followed by the N symbol

sequence x is transmitted over the L tap channel with impulse response h(n)

h(n) =
L−1∑
k=0

h(k)δ(n− k) (2.14)

The impulse response is assumed to be time invariant over an OFDM symbol block.

Let y be the received vector after discarding the ISI corrupted cyclic prefix. Y is the

received data sequence given by Y = DFT (y).

The DFT and the IDFT function are defined as

DFT{x[n]} =
N−1∑
n=0

x[n]e−
j2πkn

N , k = 0, 1 . . . N − 1 (2.15)

IDFT{X[n]} =
N−1∑
k=0

X[k]e
j2πkn

N , n = 0, 1 . . . N − 1 (2.16)

In matrix form the DFT and the IDFT can be written as

X = Qx (2.17)
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x = QHx (2.18)

where Q is a unitary matrix of the form with WN = e−
j2π
N

Q =
1√
N



1 1 1 . . . 1

1 WN W 2
N . . . WN−1

N

...
...

. . .
...

...

1 WN−1
N W

2(N−1)
N . . . W

(N−1)2

N


(2.19)

Due to the presence of the cyclic prefix the received vector y can be expressed as

y = Hx + v (2.20)

where v is the complex Gaussian noise vector and H is a circulant matrix given by

H =



h0 h1 . . . hL−1 0 . . . 0

0 h0 . . . hL−2 hL−1 . . . 0

...
...

. . . . . . . . . . . .
...

0 . . . 0 h0 . . . hL−2 hL

...
...

. . . . . . . . . . . .
...

h2 h3 . . . 0 . . . h0 h1

h1 h2 . . . 0 . . . 0 h0



(2.21)

It can be shown that the eigen vectors of a circulant matrix are the rows of the

DFT matrix which implies that H = QHΛQ. Λ is a diagonal matrix with its diagonal

elements being the eigen values of matrix H.

Λ = Diag([λ1, λ1 . . . λN ]) (2.22)

λi =
L−1∑
k=0

h(k)e−
j2πki

N (2.23)
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The received data sequence can then be written as

Y = Qy

= Q(Hx + v)

= QHQHX + Qv

= QQHΛQQHX + ṽ

= ΛX + ṽ (2.24)

ṽ is only a rotation of the original complex Gaussian vector and hence it has

the same statistics. Thus OFDM breaks down the frequency selective channel into N

parallel non interfering flat fading channels.

Yi = λiXi + ṽi, i = 0, 1 . . . N − 1 (2.25)

D. Fading Process Generation

To accurately model the fading process in a link level simulation a method of gener-

ating the coefficients of the channel impulse response as a function of time is needed.

There are three popular methods of generating a flat fading Rayleigh process. They

are

• Sum of sinusoids or Jakes method

• IDFT Method

• Filtering White Gaussian Noise

A comprehensive survey of these methods is provided in [7]. The filtering method

is the best compromise between accuracy and memory requirements. The input is

a white complex Gaussian sequence and the filter output is also complex Gaussian
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but with the appropriate correlation between the samples. The filter coefficients

are chosen so as to match the required autocorrelation function (zero-order Bessel

function of the first kind) or equivalently the bathtub shaped power spectral density.

There are several ways of designing the filter. One method is to use a third order

filter [8] to generate the Rayleigh fading process.

The third order filter has analog frequency response H3(s) and is implemented

as the cascade of a first oder filter H1(s) and a second order filter H2(s).

H3(s) = H1(s)H2(s) (2.26)

H1(s) =
ω0

s + ω0

(2.27)

H2(s) =
ω2

0

s2 + 2ξω0s + ω2
0

(2.28)

ω0 =
2πfm

1.2
, ξ = 0.175

The analog filter is converted to the equivalent discrete time third order IIR

filter using the bilinear transform. This method is simple to implement and as the

filter produces one output at a time memory requirements are very less. In contrast

the IDFT method [9] requires the entire sequence to be generated in one shot and

stored in memory. This quickly becomes impractical for long simulation runs. The

sequence that is output is a random sequence unlike the output of a the Jakes’ Sum

of Sinusoids [10] method which produces deterministic sequences. This is necessary

because for the frequency selective fading model we need to generate the sequences

for each tap and make sure they are uncorrelated.
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CHAPTER III

EXPONENTIAL EFFECTIVE SNR MAPPING

In this chapter we present the Exponential Effective SNR Mapping (EESM) function

which converts a multi-state channel into an equivalent single-state channel. A multi-

state channel is one in which different sections of the codeword are received with

different Signal to Noise Ratios(SNR) as opposed to a single-state channel where the

entire codeword is received with a uniform SNR.

A. Basic Principle

When an OFDM symbol with N subcarriers is transmitted over a frequency selective

channel each subcarrier has a different gain coefficient λk and consequently each

subcarrier is received with a different SNR. The subcarrier coefficient is related to the

channel tap coefficient realization through the Discrete Fourier Transform as

λk =
L−1∑
i=0

hie
−j2πki

N k = 0, 1 . . . N − 1 (3.1)

The instantaneous channel realization is therefore given by a set of SNR values γ̄ =

[γ1, γ2 . . . γN ] unlike the case of a flat fading channel where the channel realization is

given by a scalar SNR. The EESM function introduced in [11] and [12] is a mapping

function which can convert this set of SNR values into an equivalent scalar SNR

γEESM that characterizes the channel condition. This equivalent SNR can be used to

estimate the Block Error Ratio (BLER) for the realization by reading off the BLER

corresponding to γEESM from the AWGN performance curves.

From the above discussion it is evident that the EESM is basically a mapping
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function that satisfies the following equivalence.

BLER([γ1, γ2 . . . γN ]) ≈ BLERAWGN(γEESM) (3.2)

B. Derivation for BPSK

The EESM function for the binary signaling case is derived in [11] based on the

Union-Chernoff bound on error probabilities. The union bound for coded binary

transmission and maximum-likelihood decoding given by

Pe(γ) ≤
∞∑

d=dmin

αdP2(d, γ) (3.3)

where γ is the SNR, dmin is the minimum distance of the binary code, αd is the

number of codewords at a distance d and P2(d, γ) is the pairwise error probability for

a given distance d at SNR γ.

For BPSK modulation the pair wise error probability can be upper bounded

using the Chernoff bound as shown below

P2(d, γ) = Q(
√

sγd)

≤ e−γd

= P2,Chernoff (d, γ)

= [P2,Chernoff (1, γ)]d (3.4)

From the union bound in the Probability of error can be expressed in terms of

the Chernoff bounded pair-wise error probability as

Pe(γ) ≤
∞∑

d=dmin

αdP2(d, γ)

≤
∞∑

d=dmin

αd[P2,Chernoff (1, γ)]d
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= Pe,Chernoff (γ) (3.5)

When the channel no longer has a uniform SNR but has two states SNR in each

being γ1 and γ2 and occurring with probability p1 and p2 respectively, the pair-wise

error probability between two codewords at a Hamming distance can be expressed as

P2,Chernoff (d, [γ1, γ2]) =
d∑

i=0

dCip
i
1p

d−i
2 e−(iγ1+(d−i)γ2)

= (p1e
−γ1 + p2e

−γ2) (3.6)

Here the average pair-wise error probability over all distributions of the d differ-

ing symbols between the two states is considered. (p1e
−γ1 + p2e

−γ2) is the averaged

Chernoff-bounded symbol error probability for the two state channel. Thus the re-

lationship between the Chernoff-bounded uncoded symbol error probability and the

pair-wise error probability for the two state channel mirrors the relationship in the

single state channel

P2,Chernoff (d, [γ1, γ2]) = [P2,Chernoff (1, [γ1, γ2])]
d (3.7)

The above relation can be extended for the general multi-state channel charac-

terized by γ̄ = [γ1, γ2 . . . γN ] as

P2,Chernoff (d, γ̄) = [P2,Chernoff (1, γ̄)]d (3.8)

The above properties of the Chernoff bounded error probabilities can be used to

find the equivalent scalar SNR for a multi state channel realization. We need to find

an equivalent SNR γEESM such that

Pe,Chernoff (γEESM) = Pe,Chernoff (γ̄) (3.9)
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Using equations this is equivalent to

P2,Chernoff (1, γEESM) = P2,Chernoff (1, γ̄) (3.10)

which implies that

γEESM = − ln(
N∑

k=1

pke
−γk) (3.11)

For the OFDM case which has N subcarriers with different SNR values the equivalent

SNR expressions becomes

γEESM = − ln(
1

N

N∑
k=1

e−γk) (3.12)

C. Extension to Other Modulation Schemes

The equivalent SNR for QPSK modulation can be derived in the same way and results

in

γEESM = −1

2
ln(

1

N

N∑
k=1

e−
γk
2 ) (3.13)

It is more difficult to derive the EESM for other modulation schemes however

the expressions for BPSK and QPSK show that the general form of the expression

for other modulations is

γEESM = − 1

β
ln(

1

N

N∑
k=1

e−
γk
β ) (3.14)

where β is a parameter dependent on the specific modulation coding scheme and can

be determined by simulation.

D. Calibration of β

The β parameter in the EESM function is determined through simulation for the

higher order modulation schemes. A large number of realizations of the fading channel
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Fig. 6. Beta Calibration for 16QAM Rate 3/4

are generated. A realization for the frequency selective channel with OFDM is a set

of SNR values with one SNR value per subcarrier. For each realization the actual

BLER is determined by simulation. From the AWGN Block Error Rate curve we

can get the SNR that corresponds to this BLER. This is the equivalent SNR of the

frequency selective fading channel and this is the value that the EESM function should

return. Therefore the optimum β value (3.15) is that value of β which minimizes the

mean square error between the SNR corresponding to the actual BLER (from the

AWGN curve) and the Effective SNR γEESM predicted by the EESM function. The

minimization is done with the SNR in dB scale [13].

βopt = arg min
β

| SNRAWGN − γEESM(β) |2 (3.15)

Some results for the β calibration are shown in Figs. 6 to 9. In Fig. 6 and Fig. 8

the ability of the EESM function to accurately map the SNR vector corresponding to
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Fig. 7. Residual Error for 16QAM Rate 3/4

a realization to the equivalent AWGN SNR that produces the same BLER. On these

each graphs each realization of the channel in β calibration produces a pair of points

denoted by a red dot and a black x. These points share the same ordinate and that

is the actual BLER for that realization determined by simulation. The abscissa of

the red dot corresponds to the average of the realization SNR vector values and the

abscissa of the black x is the equivalent SNR estimated by the EESM function with

optimized β value. The black x’s all line up on the AWGN BLER curve indicating

that the EESM function has determined the scalar equivalent SNR that produces the

same SNR. Figs. 7 and 9 show the residual error of the EESM mapping function for

a range of β values. From the figures the optimum β value for 16QAM Modulation

with rate 3/4 convolutional code is seen to be 7.6 and for 64QAM Modulation with

rate 3/4 convolutional code it is 24.2.
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Fig. 8. Beta Calibration for 64QAM Rate 3/4

Fig. 9. Residual Error for 64QAM Rate 3/4
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Table I. Optimized Beta Values and Residual Errors

MCS Opt. Beta Residual Error (dB)

QPSK 1/2 1.9 0.0386

QPSK 3/4 1.9 0.0751

16QAM 1/2 4.7 0.1197

16QAM 3/4 7.6 0.0762

64QAM 1/2 12.1 0.1939

64QAM 2/3 17.6 0.1461

64QAM 3/4 24.2 0.1022

Table. I contains the optimum β values for different modulation coding schemes

and their residual errors.
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CHAPTER IV

PHYSICAL LAYER MODELS

The most accurate method of conducting a network simulation involving wireless links

would be to explicitly model the physical layer. This involves making each packet

go through coding and modulation followed by passing the physical layer frames

through an equivalent channel with appropriate fading and noise parameters and

finally performing demodulation and decoding on the received packet to determine if

it gets through error free. Though this sort of simulation might be the most accurate

for assessing the impact of the physical layer on the network protocols, the running

time makes it impossible to use in practice for even the simplest of network topologies.

However it serves as the benchmark to compare other simpler models of the physical

layer. In the following sections we examine some of the existing practically viable

results on modeling the physical layer and their relative merits and demerits.

A. Two State Markov Model

The Two State Markov Model (2SMM) also known as the Gilbert-Elliott model [14]

is the simplest and most widely widely model for the wireless link physical layer. The

model shown in Figure 10 has two states - a good state and a bad state. The model

is parameterized by the transition probabilities between the two states. Whenever

the model is in the good state all the packets get through without error. Whenever

the model is in the bad state all packets are dropped.

The parameters p and q are calculated from the Frame Error Rate (FER) and

the Average Burst Error Length (ABEL). The relation between the parameters of the
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Fig. 10. Two State Markov Model

model p,q and the FER and ABEL is shown below.

FER =
1

1− q
(4.1)

ABEL =
1− p

2− p− q
(4.2)

The FER and ABEL need to be determined by explicit simulation of the physical

layer. From results presented in it is seen that the 2SMM is not a very accurate model

for the wireless fading channel. It is shown that it underestimates the throughput for

low to medium SNRs. However the 2SMM model despite its known drawbacks is still

widely used due to its simplicity.

B. Finite State Markov Model

In this approach originally proposed by Wang in [15] the channel is divided into a

number of states. The structure of the Finite State Markov Model (FSMM) is shown

in Figure 11. Each state corresponds to a range of instantaneous SNR values. Tran-

sitions are only possible to the same state or adjacent states. As a state corresponds

to a range of instantaneous SNR values the Frame Error Rate when the model is
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Fig. 11. Finite State Markov Model

in a particular state is given by the expectation of the FER over the range. The

division of the instantaneous SNR into the states is done such that the average time

that the fading process spends in each state is the same. The model is thus defined

by the FER in each state and the transition probabilities between the states. These

transition probabilities can be determined analytically using the level crossing rates

at the SNR values separating the states.

The FSMM approach provides better results than the 2SMM but is a lot more

complex. The FSMM performs better when the number of states is higher but this

increases the number of parameters that need to be set up. Also the number of

states that are needed to get good results can only be determined by trial and error.

The number of states needed depends on the Doppler rate of the channel with more

states being required for slower fading. Some alternate approaches to set up the

FSMM are partitioning the instantaneous SNR such that all states are equiprobable or

partitioning based on the the thresholds for an optimum Minimum Mean Square Error

Lloyd-Max Quantizer for the SNR range. A generalized FSMC has been proposed

in [16] where the limitation that the states can transition only to adjacent states is

removed. This makes the model more flexible and enables setting up of the model
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through simulation rather than the analytical transition probabilities alone.

The FSMM has been shown to provide better results than the 2SMM. However

the large number of parameters that need to be determined and the complexity in

setting it up have hindered widespread adoption of the model in practice.

C. Four State Markov Model

The Four State Markov Model (4SMM) has been proposed in [4] by Yu and simul-

taneously achieves the requirements of being a simple model and matching the true

behavior of the physical layer. It is shown that matching the run length distributions

of the good and bad frames produces results that agree closely with full physical layer

simulations. Hence any model that accurately matches the good and bad frame run

length distribution produced by the channel should perform reasonably well.

This model improves on the Two State Markov model by bifurcating both the

good and bad states into two separate states each - one corresponding to long runs

and the other to short runs. This is done guided by the observation that the run

length distributions obtained from physical layer simulations look like a mixture of

two different exponential slopes. Having a single good or bad state can only match

one slope and hence does not perform as well as the 4SMM model which is able to

match both portions. The 4SMM model attempts to match the slopes at both ends

of the run length distribution curve (short runs and long runs) by using a mix of

geometric distributions. The run length distribution of the 4SMM model illustrated

in Figure 12 is given by f(k)

f(k) = p(1− a)ak + (1− p)(1− b)bk (4.3)

The parameters of the model are a the initial slope of the run length distribution,
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Fig. 12. Four State Markov Model

b the tail slope of the run length distribution and the p the fraction of short runs or

the mixing probability. Therefore the 4SMM is completely characterized by two sets

of parameters - {ag, bg, pg} for the good run length distribution and {ab, bb, pb} for the

bad run length distributions.

The 4SMM model is relatively easy to set up and also is simple to execute in a

simulation. For the flat Rayleigh fading channel an entirely analytical approach to

setting up the model is presented. This coupled with the fact that the simulation

results match the full physical layer model very closely make it an excellent model

for the physical layer in a wireless channel simulation.
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D. 4SMM Parameters

We omit the detailed derivations of the formulae found in [4] for setting up the 4SMM

and present the key results that are used to set up the parameters of the 4SMM to

match the run length distributions.

1. Tail Exponential Slope

The tail of the run length distributions corresponds to long bursts of frames received

in error for the bad frame run lengths. This is caused when the instantaneous SNR

drops below a threshold γl and all the frames are received in error. Therefore having

to determine the tail exponential slope for the bad runs is equivalent to finding the tail

slope of the distribution of the time duration which the fading process spends below

the threshold γl. Similarly it can be reasoned that good frame runs are caused when

the instantaneous SNR remains above a threshold γu and the tail exponential slope

for the good runs can be obtained from the distribution of the time duration that the

fading process spends above γu. The thresholds γl and γr are chosen as the points

Frame Error Rate curve of the particular modulation coding scheme in AWGN where

the Frame Error Rate is greater than 99% and less than 1% respectively. The bb and

bg values corresponding to the tail slopes of the bad frame and good frame run length

distributions respectively can thus be calculated from the cumulative distribution

function of the instantaneous SNR as

bb = (Pr[γ < γl])
Tf /∆t (4.4)

bg = (Pr[γ > γu])
Tf /∆t (4.5)

Tf is the frame duration and ∆t is the smallest value for which the channel decorre-

lates. ∆t is set to 1.2
πfm
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2. Initial Exponential Slope

The initial slope of the run length distributions correspond to short runs of good and

bad frames interspersed with one another. These are caused when the instantaneous

SNR is between the thresholds γl and γu. It is argued and also confirmed by exper-

imental results that the short runs are independent of the Doppler rate, long term

average SNR and the specifics of the modulation, coding or frame sizes of the physical

layer. Therefore the values are ag and ab are set to 0.5 and are seen to adequately

match the initial exponential slopes of the run lengths.

3. Combination Factor

The combination factor p denotes the fraction of short runs in the total number of

runs. The mixing probabilities are calculated in terms of the ratio of the number of

short and long run lengths per second.

p =
Ns

Ns + Nl

(4.6)

where Ns and Nl are the number of short and long runs per second respectively.

Everytime the instantaneous SNR of the fading process crosses γu in the upward

direction it causes a long run of good frames because all frames are received correctly

in this SNR range. Similarly when the SNR crosses γl in the downward direction it

causes a long run of bad frames. Therefore the number of long runs per second Nl

for the good runs and the bad runs is equal to the level crossing rate of the fading

process at γu and γl respectively.

The number of short runs per second can be determined from the AWGN Frame

Error rate curve and the distribution of the instantaneous SNR

Ns =
∫ γu

γl

P (γ)Pe(γ)(1− Pe(γ))dγ (4.7)
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where P (γ) is the probability density function (pdf) of the instantaneous SNR and

Pe(γ) is the probability of Frame Error at SNR γ.

The combination factors pg and pb can also be setting up using average run length

obtained from the good and bad frame error distributions τg and τb respectively. For

the 4SMM generated frame error process the average run length is given by

τ =
p

1− a
+

1− p

1− b
(4.8)

The p parameters can be chosen such that it matches the actual good and bad average

frame lengths obtained from simulation.

p =
τ − 1

1−b
1

1−a
− 1

1−b

(4.9)

From the above expressions we see that the 4SMM can be completely set up

using

• PDF of the instantaneous SNR of the fading process

• Level Crossing Rate of instantaneous SNR at the thresholds γl and γu

• Frame Error Probability as a function of SNR

E. EESM Alternative for Setting Up 4SMM

For the flat Rayleigh fading case analytical expressions for the PDF of the instanta-

neous SNR and the level crossing rates are well known and the model parameters can

be readily calculated. For the frequency selective case also analytical expressions have

been developed. However when setting up the 4SMM Markov model the diversity or-

der achieved by the particular modulation coding scheme at the SNR of interest is

required. The maximum achievable diversity order is limited by the minimum of the
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Fig. 13. Bad Frame Run Length Distributions at 6dB

diversity available in the channel (the number of paths L) and the minimum distance

of the codeword. However this is only an asymptotic limit and the diversity order

that is actually achieved is a function of the SNR and could lie anywhere between 1

and the maximum. This value has to be obtained by a full simulation of the specific

physical layer and the channel. It also needs to be recalculated at different SNRs.

This problem arises due to the fact that the channel is frequency selective but we

have demonstrated in the previous chapter that the EESM function is able to convert

a frequency selective fading process into an equivalent flat fading process. In Figures

13 to 16 the frame error run length distributions obtained by a full physical layer

simulation are compared with distributions obtained using the EESM function. For

the EESM distributions long runs (approx. 1 million samples) of frequency selective

channel realizations with the appropriate correlation were generated. The EESM

function was used to map the vector of SNR values for each realization into the
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Fig. 14. Good Frame Run Length Distributions at 6dB

Fig. 15. Bad Frame Run Length Distributions at 8dB
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Fig. 16. Good Frame Run Length Distributions at 8dB

equivalent scalar SNR. The Frame Error Rate corresponding to this SNR was obtained

from the AWGN FER curve and the frame was dropped with this probability. The

resulting frame error pattern gives the good and bad frame run length distributions.

The EESM generated distribution matches the true run length distribution of the

channel very closely. This is encouraging as we know that matching the run lengths

is the key to an accurate model. Hence it should be possible to set up the 4SMM

model for a frequency selective channel using the EESM equivalent fading process

without having to evaluate the diversity order.

F. 4SMM Model Parameters Using EESM

The Exponential Effective SNR Mapping as defined in the previous chapter converts

the frequency selective fading channel into an equivalent flat fading channel with
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instantaneous SNR γEESM .

γEESM = −β log

(
1

N

N∑
i=1

exp
−γi

β

)
(4.10)

where β is an experimentally determined parameter that depends on the modulation

coding schemes used and γi’s are the SNR per subcarrier. When the number of inde-

pendent taps in the multipath channel is less than N the correlation between the γi’s

is nonzero. In other words the term inside the log which is the mean of N correlated

terms behaves approximately as the mean of L independent terms. Therefore the

equivalent SNR can be approximated as

γEESM ≈ −β log

(
1

L

L∑
k=1

exp
−γk

β

)

= −β log

(
1

L

L∑
k=1

Rk

)
= −β log (R) (4.11)

To set up the 4SMM in terms of the EESM function we need to characterize

the probability density function and the level crossing rate of the equivalent fading

process. We also need to characterize the Frame Error Probability in terms of the

equivalent SNR. From 4.11 we see that R = exp
−γEESM

β and as it is just a simple

transformation of γEESM we can set up the 4SMM parameters in terms of R as it is

more convenient.

1. Probability Density Function

R = 1
L

∑L
k=1 Rk is the sum of L iid variables Ri. Each Ri is the negative exponential

of a Rayleigh distribution with power equal to the Average SNR of the channel and

scaled by the EESM β parameter. It can be shown that pdf of Ri is nonzero between

0 and 1 and the exact distribution is determined by the ratio of Average SNR to the
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β parameter.

PRi
(x) =

1

α
x

1
α
−1 0 < x < 1 (4.12)

where α = γ̄/β with γ̄ being the Average SNR of the channel.

As R is the sum of L independent variables its pdf is the L-fold convolution of

the pdf of each individual Ri

PR(x) =
1

αL

(
x

1
α
−1 ∗ ... ∗ x

1
α
−1
)

(4.13)

For integer values of 1
α

the pdf can be obtained analytically. For other values

the pdf can be obtained through numerical integration or by curve fitting to the

experimentally obtained pdf.

2. Level Crossing Rate

The Level Crossing Rate of γEESM needs to be determined at the SNR thresholds or

equivalently the level crossing rates of R at levels r1 = exp
−γl

β and r2 = exp
−γu

β .

The level crossing rate of R can be calculated as

L(R) = P (R)
∫ ∞
0

ṘP (Ṙ|R) dṘ

=
∫ ∞
0

ṘP (Ṙ, R) dṘ

=
∫ ∞
0

∫ 1

0
...
∫ 1

0
ṘP (Ṙ, R,R1, ..., RL) dR1...dRLdṘ

=
∫ ∞
0

∫ 1

0
...
∫ 1

0
ṘP (Ṙ|R,R1, ..., RL)P (R|R1, ..., RL)P (R1, ..., RL) dR1...dRLdṘ

=
∫

..
∫

R1..RL:R= 1
L

∑L

k=1
Rk

P (R1, ..., RL)
∫ ∞
0

ṘP (Ṙ|R1, ..., RL) dṘ dR1...dRL

(4.14)
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As the Rk’s are independent we get

P (Ṙ|R1, ..., RL) = P

((
1

L

L∑
k=1

Ṙk

)
|R1, ...RL

)

= P

(
1

L

L∑
k=1

Ṙk|Rk

)
(4.15)

For a unit power Rayleigh flat fading process with envelope r it is known that

P (ṙ) ∼ N(0, σ2
v) (4.16)

where σ2
v = (πfm)2 with fm the maximum Doppler shift [17].

Rk = exp−αr2

(4.17)

Ṙk = −2αrṙ exp−αr2

(4.18)

Therefore,

P (Ṙk|Rk) ∼ N(0, 4σ2
vαR2

k log(R−1
k )) (4.19)

and as a consequence of the Rk’s being independent

P (Ṙ|R1..RL) ∼ N(0,
4

L2
σ2

vα
L∑

k=1

R2
k log(R−1

k )) (4.20)

Using the above results we can write

L(R) =
∫

..
∫

R1..RL:R= 1
L

∑L

k=1
Rk

P (R1, ..., RL)
∫ ∞
0

ṘP (Ṙ|R1, ..., RL) dṘ dR1...dRL

=
1

αL

∫
..
∫

R1..RL:R= 1
L

∑L

k=1
Rk

L∏
k=1

R
1
α
−1

k

∫ ∞
0

ṘP (Ṙ|R1, ..., RL) dṘ dR1...dRL

=

√
2παfm

LαL

∫
..
∫

R1..RL:R= 1
L

∑L

k=1
Rk

L∏
k=1

R
1
α
−1

k

√√√√ L∑
k=1

R2
k log(R−1

k ) dR1...dRL

(4.21)

The level crossing rate can be calculated from the above integral at the thresholds
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Fig. 17. Frame Error Rate in Terms of R

R = r1 and R = r2

3. Frame Error Probability

The frame error probability is obtained for the AWGN channel by simulation. As the

pdf and level crossing rates of the equivalent fading process are derived in terms of

R it is easier to perform the calculation of the 4SMM parameters by converting the

Frame Error Probability to a function of R.

Figure 17 shows the FER as a function of R. The relation between R and γEESM

is γEESM = −β log(R) which implies that a low R value close to 0 corresponds to

high SNR and an R value close to 1 corresponds to a low SNR.
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G. Results

1. Physical Layer Description

The 4SMM model was set up using the EESM equivalent fading process and results

compared with a physical layer simulation. The physical layer simulated was based

on the IEE 802.11a standard for wireless LANs. The IEEE 802.11a standard uses

a 64 subcarrier OFDM. Data is sent on 48 subcarriers and the other subcarriers

are used for pilots and guard band purposes. The standard specifies a 16 symbol

cyclic prefix. It provides a wide variety of rates from 6Mbps to 54 Mbps to be

adaptively switched based on channel conditions. The results presented here are for

the 12Mbps rate mode which employs QPSK modulation and the Forward Error

Correction comprises of a Rate 1/2 terminated-trellis convolutional code with the

standard generator polynomials {1718, 1338}.

The channel is a four tap frequency selective channel (L=4). Each tap is Rayleigh

faded and the taps are uncorrelated and have equal power. The payload on each frame

378 data bits. Accounting for the 6 trellis termination bits gives 384 uncoded bits

which are encoded, modulated and packed into a frame. The frame duration for this

size at the 12Mbps rate is 32µs. The simulations are performed for a Doppler of

100Hz and 50Hz. The fading coefficients for the channel taps are generated by the

third order filtering method described in Chapter II.

2. Run Length Distributions for 4SMM Using EESM

The run length distribution of the 4SMM model for the 4 tap channel is compared

with the good and bad frame error distributions obtained from the physical layer

simulation. Results are presented for Average SNR 6dB and 8dB at Doppler of

100Hz and 50Hz.
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Fig. 18. Bad Frame Run Length Distributions at 6dB, Doppler 100Hz

Fig. 19. Good Frame Run Length Distributions at 6dB, Doppler 100Hz
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Fig. 20. Bad Frame Run Length Distributions at 8dB, Doppler 100Hz

Fig. 21. Good Frame Run Length Distributions at 8dB, Doppler 100Hz
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Fig. 22. Bad Frame Run Length Distributions at 6dB, Doppler 50Hz

Figures. 18 to 21 are the run lengths for the 100Hz channel and Figures. 22 to 25

are for the 50Hz channel. From the plots we can see that the 4SMM model set up

using the EESM method models the run length properties of the frame errors induced

by the physical channel very well. The model provides a good match for all the SNR

and the Doppler cases studied.

3. Comparison with FSMM

The equivalent flat fading process generated by the EESM function can be employed

to set up other models for the physical layer too. Here we study the performance of the

Finite State Markov Model(FSMM) when using the EESM equivalent fading process

to determine the transition probabilities for the FSMM. We use the generalized model

that does not constrain transitions to occur only between states. The range of the

instantaneous SNR is partitioned into 16 states.
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Fig. 23. Good Frame Run Length Distributions at 6dB, Doppler 50Hz

Fig. 24. Bad Frame Run Length Distributions at 8dB, Doppler 50Hz
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Fig. 25. Good Frame Run Length Distributions at 8dB, Doppler 50Hz

Fig. 26. FSMM vs FSMC Bad Frame Run Length Distributions at 8dB
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Fig. 27. FSMM vs FSMC Bad Frame Run Length Distributions at 10dB

Figures. 26 and 27 compare the performance of the Finite State Markov Model

set up using EESM with the Four State Markov Model also set up with EESM.

It is seen that the FSMM does not accurately capture the slope of the run length

distribution as the 4SMM does. This is something expected as this is the case with

flat fading case too where the 4SMM outperforms the FSMM in matching the run

length distribution tail slope.
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CHAPTER V

CONCLUSION

The physical layer models for wireless links in a network simulation were studied

especially for the broadband channel with frequency selective fading. The use of the

Effective Exponential SNR Mapping function for converting the frequency selective

channel into an equivalent flat fading channel was explored. It was seen that the

EESM function provides a good estimate of the Frame Error Rate of a frequency

selective fading channel realization using the AWGN performance characteristics for

the modulation and coding scheme. The β parameter for different modulation and

coding schemes was determined.

Among the models proposed to model the effect of the physical layer in a fading

environment the 4SMM model performs the best in terms of matching the frame

error statistics of the fading process. The ability of the EESM function to convert

a frequency selective realization determined by a vector of SNR values into a scalar

SNR corresponding to an equivalent flat channel was employed to set up the 4SMM

model. This makes it easier to set up for the frequency selective case as there is

no longer the need to determine how much diversity gain the system achieves at a

particular SNR value for the given channel. The analytical formulations for setting

up the 4SMM require the probability density function and the level crossing rates

of the fading process. The probability density function and the level crossing rate

expressions for the EESM equivalent fading process were derived.

Finally the performance of the 4SMM model set up using the EESM function

was compared with the results gathered from running a detailed physical layer on the

frequency selective wireless channel. It has been shown that the key to getting an

accurate portrayal of the effect of the channel in conjunction with the physical layer
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on the higher layers is to have a good match between the run length distributions of

the model generated frame error process and the actual error process produced by

the channel. The results obtained show a close match between the EESM Four State

Markov Model good and bad frame run length distributions and that produced by

the channel. A comparison was made with the Finite State Markov Model also set up

using the EESM equivalent flat fading process and the 4SMM gives better a match

than the FSMM. This validates the use of the 4SMM model as a simpler and more

accurate model for matching wireless channel behavior than other current existing

models. In summary a method to set up the 4SMM model for a frequency selective

channel using the EESM equivalent fading process was developed and good results

in terms of matching the frame error process statistics of the wireless channel were

obtained.
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