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A B S T R A C T

Additive manufacturing (AM) has revolutionized the local production realization of highly customizable items.
However, the high process complexity - inherent to AM operations - renders uncertain the quality performance of
the final products. Consequently, there is often a need to assess the unique fabrication capabilities of AM against
the reoccurring issues of process instability and end-product inconsistency. Improvement opportunities may be
identified by empirically exploring the complex phenomena that regulate the quality performance of the final
products. Thus, focused quality-screening and process optimization studies should additionally take into account
the special need for speedy, practical and economical experimentation. Robust multi-factorial solvers should
predict effect strength by relying on small samples while possibly dealing with non-linear and non-normal trends.
We propose a nonparametric modification to the classical Taguchi method in order to enable the generation of
rapid and robust screening/optimization predictions for an arbitrary 3D-printing process. The new methodology is
elucidated in a recently published dataset that involves the difficult Taguchi screening/optimization application
of a fused deposition process. We compare differences in the predicted effect-strength magnitudes between the
two approaches. We comment on the practical advantages that the new technique might offer over the traditional
Taguchi-based improvement analysis. The emphasis is placed on the ‘assumption-free’ aspect, which is embodied
in the new solver. It is shown that the proposed tool is agile. It could also reliably support a customized 3D-print-
ing process by offering robust and faster quality improvement predictions.
1. Introduction

Additive manufacturing ushers in a new epoch in industrial opera-
tions by placing a great emphasis on innovative custom-based production
tactics (Redwood et al., 2017; Lipson and Kurman, 2013; Chua and
Leong, 2017; Thompson et al., 2016). Additive manufacturing utterly
diverges in philosophy from the traditional ‘subtractive-and-formative’
production mentality via the promotion of the revolutionary idea of
“bottom-up creation” (Tofail et al., 2018; Satish Prakash et al., 2018).
The technological strategy of 3D-printing is at the core of additive
manufacturing because it provides the technical catalyst for the direct
conversion of computer-aided designs (CAD) to rapidly prototyped and
mass-personalized objects (Gibson et al., 2015). It is 3D-printing that
reifies a digital model, ‘layer-by-layer’, to a physical end-product. An
increasing number of contemporary literature reviews supports the po-
tential benefits of engaging additive manufacturing in popular
product-making. Primary working materials may include: composites
(metal alloys, ceramics, polymers and concrete) (Ngo et al., 2018; Wang
et al., 2017), micro- and nano-multidirectional composites (Quan et al.,
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2015; Farahani and Dube, 2018), polymer-fibers (Parandoush and Lin,
2017), novel materials (Lee et al., 2017), biomaterials (Bose et al., 2018),
non-assembly mechanisms (Cuellar et al., 2018), part-decomposition
designs (Oh et al., 2018), functionally-graded materials (Loh et al.,
2018), 3D-printed polymers (Dizon et al., 2018), multi-material struc-
tures (Bandyopadhyay and Heer, 2018), medical applications with
bio-printing (Yan et al., 2018; Kacarevic et al., 2018), high-precision
therapeutics (Trivedi et al., 2018), metals (Francois et al., 2017) and
advanced smart materials (Chang et al., 2018). It is anticipated that it
could be extended in the near future to cover broader areas of
specialization.

The opportunities for disruptive innovation through the adoption of
additive manufacturing over traditional production methods have been
greatly reviewed (Eyers and Potter, 2017; Attaran, 2017; Petrick and
Simpson, 2013; Gao et al., 2015). In brief, they are associated to freedom
of design, flexibility, scalability, on-demand manufacturability as well as
mass customization. The same features unequivocally comprise the crux
of the popular operational strategy known as agile manufacturing (Le,
2018; Potdar et al., 2017). Moreover, the 3D-printing fabrication
April 2021
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mentality aligns with the fast, cost-driven, and lean engineering princi-
ples. Lean production promotes zero-waste operations and just-in-time
process scheduling (George et al., 2004; Bhamu and Sangwan, 2014).
By instilling simultaneously agile and lean competencies in
manufacturing, it elevates product development capabilities to the cov-
eted ‘leagile’ status (Virmani et al., 2018). Creative thinking, which is
supported by quick-and-economical experimentation, catalyzes the dis-
covery pathway toward resilient process and products; it underscores
quick response to customer needs and market changes (Alves et al.,
2012). To achieve dominance over decentralized modular forming,
which is governed by material and geometric complexities, additive
manufacturing must leverage the aesthetic and functional quality issues
that might tarnish the end products (Tofail et al., 2018; Eyers and Potter,
2017; Attaran, 2017). Moreover, quality leadership should assist in
accelerating the product development progress, by boosting the
rapid-prototype verification, and by validating the production efficiency
cycle. This might be managed via the breakthrough tactics and methods
of the lean six sigma initiative (George et al., 2004). In general, it is
admitted that the confluence of lean six sigma tools and agile engineering
methods spur competitive advantage (Kovach et al., 2005). This syner-
gistic effect should enhance the quality of the 3D-printed fabrication
results, because, as mentioned above, the additive manufacturing tech-
nology naturally fosters the leagile mentality as its core technical
archetype. Furthermore, the same archetype spawns a score of
eco-innovation drivers that legitimizes additive manufacturing as the
designated sustainable production mediator (Ghobadian et al., 2020;
Afshari et al., 2020; Mellor et al., 2014).

The 3D-printing technology applications have seen an increase of
almost 50% in highly critical industries, such as in the automotive,
medical, aerospace and military sectors (Kim et al., 2018). Thus,
advanced quality performance becomes imperative for this novel tech-
nology to flourish. Unfortunately, quality control problems have been
recorded to be unique, complicated and of great variety (Wu and Chen,
2018). Mainly, they are associated with the preciseness, repeatability,
reproducibility, and reliability of their end-product key-characteristics.
Specifically, parameter variations in laser power, powder composition
and material-layer thickness may tweak the melt-flow propensities,
which in turn perturb the material porosity, microstructure, surface
roughness as well as the geometric structure. Similarly, the wire-arc
(non-powder) additive fabrication process may be plagued by high re-
sidual stresses, unstable microstructures, solute segregation, and
multi-phase solidification (Cunningham et al., 2018). A non-uniform
thermal profile may exacerbate the end-product anisotropy and hetero-
geneity. Consequently, an enduring low-quality performance clearly
drives the high cost of production, which in additive manufacturing
constitutes one of its pivotal barriers that hamper the progress of this
promising technology (Thomas-Seale et al., 2018).

The challenges of designing quality into the additive manufacturing
processes have been recently delineated (Colosimo et al., 2018). The
ensuing opportunities have been identified to resolving three distinct
types of complexities, in connection with: 1) the product geometry, 2) the
process optimization, and 3) the product data collection. Complexity
awareness is vital in many-component systems that are successively part
of other larger systems. For example, a biological cell or a central pro-
cessing unit are complex systems that belong to even larger complex
systems, such as living organs or electronic devices, respectively (Carlson
and Doyle, 2002). Nevertheless, in additive manufacturing “the
complexity is for free” (Fera et al., 2018). This is because the cost of
complexity in highly adaptable processes is always minimized (Orr,
2000). The minimization of the cost of complexity is an evolutionary
robust result (Welch and Waxman, 2003), which makes explaining novel
3D-printing phenomena scientifically intriguing. However, complexity
and quality conspicuously appear to share a common fate. “Quality is
free, but not a gift” was proclaimed by the quality guru Crosby (1979).
Surely, we do not overlook the assertion in production economics that
was made by the famed quality philosopher Genichi Taguchi: “Cost is
2

more important than quality, but quality is the best way to reduce cost”.
We conclude, then, that the costs of quality and complexity are mini-
mized when product/process characteristics are optimized. However,
process complexity is also an emerging challenge for the quality man-
agement field itself and thus it tempts extra forethought (Kuhn et al.,
2018). Contemporary quality philosophy has evolved to lean six sigma - a
process-improvement data-driven initiative – to reduce companywide
costs (George et al., 2004). Quality improvement luminary Shigeo Shingo
has advocated the prioritization of improving process outcomes in an
increasing order of importance: “easier, better, faster and cheaper”. It
heavily relies on ‘cause-and-effect’ empirical modelling and techniques.
On the other hand, empirical modelling has grown into offering a
competitive edge in discovering and optimizing rapid-prototype pro-
cesses (Garg et al., 2014). Quantification of uncertainty is an essential
task when investigating any ‘cause-and-effect’ relationships (Briggs,
2016). Furthermore, uncertainty and robustness are innately intertwined
in theoretical terms (Hoaglin et al., 2000; Huber and Ronchetti, 2009)
and greatly influenced by complexity (Carlson and Doyle, 2002). Then,
ensuring model robustness may be anticipated as a staple in advanced
additive manufacturing (Gholaminezhad et al., 2016).

In the lean-six-sigma strategy, robust design is a standard tactic –

established on empirical modelling (George et al., 2004). It is in common
practice in additive manufacturing (Wu and Chen, 2018). Robust design
comprises of a statistically engineered toolset that is founded on Design
of Experiments (DOE) (Box et al., 2005; Goh, 1992). Particularly popular
in additive manufacturing is Taguchi's ‘design-and-analysis’ technique
(Taguchi et al., 2000, 2004). The experimental design phase is devoted to
planning a minimal number of trials by suitably selecting those combi-
nations of the studied effects that maximize information generation. The
settings of the examined controlling factors are programmed in terms of
trial recipes through fractional factorial designs (FFDs). The preferred
FFD schemes that have been adopted in the Taguchi methods are a series
of orthogonal arrays (OAs) that may accommodate: 1) linear, 2)
non-linear or even 3) a mix of linear and non-linear dependencies
(Taguchi et al., 2004). In the analysis phase, a single-step double--
optimization effort is attempted to 1) screen out weak effects (shorten the
initial list of examined factors) and 2) locate those settings of the strong
effects that optimize the studied product/process response(s). Taguchi
methods are especially attractive in fast product realization, because they
aid in accelerating the product development cycle while minimizing
product failure, product costs, line-machinery engagement, trial costs
and project execution time. Indicatively, Taguchi methods have been
implemented in additive manufacturing in interlayer bonding improve-
ment of extrusion components (Fitzharris et al., 2018), fused deposition
in the fabrication of lattice structures (Dong et al., 2018), minimization of
warpage in sintered polymer parts (Dastjerdi et al., 2017), and dimension
and tolerance control of fused deposition (Mahmooda et al., 2018).
Nevertheless, there are several intricacies that are associated with the
usage of Taguchi methods in 3D-printing that may impede their broader
applicability to any optimization problem. To render robust the behavior
of a characteristic response, Taguchi methods require replicated datasets
in order to evaluate the repeatability/reproducibility status of pre-
dictions. This necessity - the sufficiently large number of replicates -
might hamper the Taguchi-based optimization approach to become
effective in wider rapid-prototyping applications (Wu and Chen, 2018).
Moreover, the recommended measure for capturing the replicate varia-
tion is obtained from the Taguchi-defined signal-to-noise ratio (SNR)
expressions (Taguchi et al., 2004; Ganeshan et al., 2001). Replicated
datasets that participate in SNR estimations are assumed to follow
normality. Nevertheless, normality is a condition that is not warranted in
3D-printing phenomena. Consequently, this dubiety could raise specific
issues with respect to the general applicability of the original
Taguchi-type SNR data analysis (Schippers, 1998; Box, 1988; Maghsoo-
dloo et al., 2004; Pignatiello and Ramberg, 1992). Conducive to the
complexity of printable materials, ordinary multi-parameter optimiza-
tion treatments, such as those resulting from the analysis of variance
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(ANOVA) and the general linear regression modelling (GLM) may not
always be valid.

A primary utilization of DOE is to uncover those strong input pa-
rameters that influence the total quality performance under process un-
certainties from an economic standpoint (Natarajan, 1993; Murthy and
Ravi Kumar, 2000; Fundin et al., 2018; Tari and Sabater, 2009). Mean-
while, complexity might induce experimental uncertainty to beget
“messy” datasets (Milliken and Johnson, 2004). Messy data are peculiar
groups of observations, the statistical distributions of which are hard to
fingerprint with ordinary means. Consequently, it might be futile to
employ regular multi-factorial treatments such as ANOVA and GLM to
make predictions. This stems from the fact that the clarity of the outcome
interpretations is susceptible to several critical assumptions. For ANOVA,
such assumptions are 1) the randomness of errors, 2) the independence of
errors, 3) the normality, and 4) the homogeneity of variance. For GLM, it
implicates the residual analysis, which must confirm the validity of the
following assumptions: 1) normality, 2) homoscedasticity, 3) indepen-
dence and 4) autocorrelation. It becomes apparent now that in the case
that we ought to confront messy data, the expected performance of an
ordinary multifactorial tool would be doubtful to be judged as either
accurate or ‘leagile’.

An additional - less obvious – assumption is an inherent limitation
that instructs against conducting protracted trial replications (Wu and
Chen, 2018). The extent of replication is analogous to what is only
deemed practical, expedient and economical in each specific study.
However, a minimal replication effort may not be even adequate to
discern if data normality holds or not. On the other hand, normality is a
strict requirement for the Taguchi-type SNR estimations to be valid.
Therefore, caution should be exercised in deciding to implement the SNR
estimator for data reduction with the provisos: 1) few replicates, and 2)
observations prone to a “messy” manifestation. If the statistical distri-
bution remains undetermined, opting to a classical Taguchi-based
factorial analysis might endanger the prediction reliability (Silver,
2015). A possible remedy would be to resort to basic nonparametric
theory (Hettmansperger and McKean, 2010; Hollander et al., 2013). This
might be justifiable since it has been suggested that order statistics could
potentially harmonize the information extraction process from
small-data samples of unresolved statistical nature (Siebert and Siebert,
2017; Pett, 2015). Moreover, nonparametrics have been found to be
more reliable data analyzers for highly complex processes - such as
regarding biological systems - than other common solvers (Ludbrook and
Dudley, 1998).

The purpose of this work is to propose a statistical multi-factorial
screening/optimization method for the general 3D-printing paradigm.
It considers the realistic circumstances that are to be encountered during
the fabrication process: i) data messiness owing to innate process
complexity, ii) necessity for small sampling, iii) mixed-type effects (a
blend of linear and non-linear factors), iv) need for robust predictions, v)
mixed-type balanced/unbalanced factor-settings and vi) fast data-
processing cycle - by eliminating several core assumptions of alterna-
tive mainstream tools. The technique deploys the rank-sum estimator
(Wilcoxon, 1945; Mann and Whitney, 1947) in order to
non-parametrically summarize ‘micro-population’ tendencies, which are
derived from minimally replicated OA-datasets. Messy data analysis is
ensued according to the ‘nonreplicated’ framework (Milliken and John-
son, 1989). A rudimentary version of the proposed profiler has already
been examined only for two trivial setups: 1) on a complex filtration
process with linear effects (Besseris, 2013), and 2) in biomedical di-
agnostics with non-linear effects (Besseris, 2014). The new ‘combo-op-
timizer’ interchangeably utilizes Wilcoxon-Mann-Whitney statistics
(Wilcoxon, 1945; Mann and Whitney, 1947) and Kruskal-Wallis non-
parametrics (Kruskal and Wallis, 1952) to simultaneously profile ‘con-
stant-free and distribution-free’, linear and nonlinear, 3D-printing related
effects. As a matter of convenience, timeliness and assimilation in uti-
lizing the new technique, we re-examine a very recently published
dataset, which was collected for the process optimization of a fused
3

deposition for lattice structures (Dong et al., 2018).

2. Methodology

2.1. Basic assumptions and limitations

The multi-factorial screening/optimization methodology is to be
employed to any 3D-printing product/process improvement project.
Fractionalized trial plans are programmed by implementing general FFDs
(Box et al., 2005) or Taguchi-type OAs (Taguchi et al., 2004). The
approach accommodates at least a primitive trial replication tactic via a
mere duplication of the prescribed OA-recipes. However, adding a third
round of replicates is surely advisable because it could also offer a basal
view with regards to data repeatability concerns. It is an economic
scheme that maintains the trial volume as low as possible whereas it
accelerates the overall project cycle. We define the trial replication
number as R. Since improving 3D-printing processes arguably do not
favor long repetitive DOE plans (Kim et al., 2018), then, the R value
should be generally expected to be small. In a Taguchi-type OA, LN, N is
defined as the number of the prescribed factorial recipes that ought to be
executed. In the proposed approach, there are no conditions to be
imposed on the structure of the OA schemewith respect to: 1) the number
of controlling factor settings, 2) the mix of numbers of settings among
different factors, and 3) the balance among factor settings. The first point
indicates that the proposed analysis is suitable regardless to probing
linear (two-setting) or nonlinear (three-setting or higher) effects. The
second point instructs that multifarious linear and non-linear effects may
be synchronously studied. The third point removes any restriction on the
uniformity of the setting size within a particular effect; it makes an
impending unbalanced factorial analysis more versatile and agile.

The robust optimization/screening of product characteristics should
be apt to compensate for insidious statistical deviations in the collected
datasets. The 3D-printing mechanics of customized items often foster
intricate behavior. Non-normality, heteroscedasticity, and the presence
of data outliers/extremities may not be extrinsic to such phenomena. We
may compound on the previous considerations two other fair yet con-
flicting speculations. One relates to the contingency of multiple or inter-
mixed statistical distributions. The other case regards to the possibility
for an undetermined statistical distribution at all. Either situation may be
exacerbated by the smallness of the dataset. Once present, such condi-
tions augment the impact of ‘messiness’ in the undergoing DOE analysis
(Milliken and Johnson, 2004). Nevertheless, a robust multifactorial
profiler/optimizer should be capable to translate messy data. It is
convenient and agile to propose a distribution-free approach inasmuch as
it eliminates the intermediate step of searching for a specific parametric
distribution model (Hettmansperger and McKean, 2010; Hollander et al.,
2013). In spite of 3D-printing (DOE) studies being linked with small
samples and unusual data distributions, a multifactorial solver should
also withstand the breakdown of its much-desired robustness capability
(Siebert and Siebert, 2017; Pett, 2015). For complex systems, permuta-
tion statistics are superior to ordinary t-statistics (Ludbrook and Dudley,
1998). In the formulation that follows we employ classical Wilcoxon
(1945) ranking operations to de-parametrize the collected replicate
samples. We accumulate the replication effect by viewing a group of
replicates as ‘micro-populations’ - as it was expounded by the Mann and
Whitney theory (Mann and Whitney, 1947). This mentality widens the
usage scope of the replicate sample as opposed to contrasting merely for
sample central tendencies.

2.2. Pre-screening multifactorial DOE datasets

Prior to commencing the effect-profiling procedure, the OA-
generated datasets should undergo a pre-processing stage to reveal any
disparities from normal statistics. This is performed to determine
whether or not it is justifiable to apply the proposed methodology. Before
computing the effect strengths, it is instructive to explore the stability



Fig. 2. Rank-sum transformed OA-based observations to a single com-
pounded response.
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level of the data-reduction process. Therefore, the first step is to prepare a
probability plot that represents the data tendencies of the pooled ob-
servations. Its 95%-confidence-interval performance should also be dis-
played. Similarly, the respective probability plots for each examined
factor should be prepared whereas the datasets for different settings are
portrayed separately. Detecting any departure from normality, in any of
the probability plots, may also be facilitated by combining information
from a visual inspection, as well as from the fitting performance of the
dataset according to the Anderson-Darling test. If there is a strong evi-
dence of departure from normality, the degree of asymmetry in the data
spread may be robustly refined by using boxplots.

To probe the level of the dataset repeatability, it is useful to examine
the replicate partial correlations using linear regression (GLM model-
ling). The classical main effects plot for the data means and the classical
SNR-measure effects plot may be prepared to provide additional insights.
The required data analysis, which is described in this sub-section, is
performed using the statistical software package MINITAB v.18.
2.3. Multi-factorial screening/optimization

We examine the influence of K controlling factors which are sym-
bolized as: X1, X2 …,XK. We assume an arbitrary OA which is denoted as:
LN (s1k1, s2k2, …, sckc) with mixed factor settings {si 2 [2, 3, 4, …] 8 i ¼
1,2,..,c}. For the N total recipes, the settings for each controlling factor
are: x1j, x2j, …, xKj (j ¼ 1, 2 … N). The examined 3D-printing charac-
teristic is arbitrarily denoted as Y. A set of R replicated responses will be
defined as: y1i, y2i … yNi 8 i ¼ 1, 2, …, R. The layout of the input-output
relationship between the parametrized recipes and the associated
response is generically tabulated in Fig. 1. Based on the direction of the
optimization goal, a characteristic is usually categorized according to the
three general types: 1) maximization, 2) minimization, or 3) minimiza-
tion of its departure from a target value (Gholaminezhad et al., 2016). By
convention, we assign the lowest ranks to the observations that lead to-
ward the optimal direction with respect to the predefined goal (Besseris,
2013, 2014). Next, we rank order all replicated observations by a single
roll-out across all replicates. The transformed replicates, frkg, are now
identified by the reforming index k: k ¼ i þ N�(j-1) 8 1 � i � N, and 1 � j
� R. Therefore, the transformation reduces the initial dimensionality of
the replicate matrix:

yij → rk (1)

For any given ith recipe, the Wilcoxon rank-sum, frsig, 8 1 � i � N
becomes a sample estimator to be checked for parity with respect to the
other recipes:

rsi ¼
XR
j¼1

riþN�ðj�1Þ (2)

Consequently, the initial layout (Fig. 1) is now compressed and
simplified as shown in Fig. 2. It has been converted to a ‘nonreplicated’
and saturated form (Milliken and Johnson, 1989).
Fig. 1. General mixed-type orthogonal array scheme and the R-replicated
response layout.
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To examine the influence for each effect, the nonreplicated-saturated
OA arrangement of Fig. 2 undergoes a specialized ‘messy data’ analysis
(Milliken and Johnson, 1989). However, the full utilization of the OA
structure by the investigated effects allows no additional degrees of
freedom to directly estimate the residual error. Thus, a combination of
two (linear and nonlinear) surrogate profilers (Besseris, 2013, 2014) will
be employed to statistically retrieve: 1) the effect potencies and 2) the
uncertainty parities (across different factor settings). The generic
rank-sum vector {sri} of Fig. 2 should be re-indexed to expose the K-effect
dependencies in the formalism that follows. Thus, it becomes { sri1 ;i2 ;…;iK }
which now it may be fitted to a generalized surrogate model (Besseris,
2013, 2014) - regardless to blending linear and non-linear effect
contributions:

sri1 ;i2 ;…;iK ¼M þ
XK
j¼1

Dij þ εi1 ;i2 ;…;iK (3)

The grand median, M, has been defined as:

M ¼medð�sri1 ;i2 ;::;iK�Þ for all i1; i2; ::; iK (4)

For the indices (factor levels) i1; i2;…; iK , it holds that: ij 2 ½1; 2; 3;
…� 8 1 � j � K.

The term, εi1 ;i2 ;…;iK , accounts for the experimental uncertainty in a
particular factorial recipe. We also need to define the medians for each
factor setting, Mil :

f Mil ¼ Medð�LTi1 ;i2 ;…il ;::;iK

�Þ 8 1 � l � K 9 il 2 ½1; 2; 3; …� g
for all i1; i2;…; il�1; ilþ1…; iK (5)

From equations (4) and (5), we define the partial median, Dil , i.e. its
difference of the setting median from the grand median:

f Dil ¼ Mil �M 8 1 � l � K 9 il 2 ½1; 2; 3; …� g (6)

To check uncertainty parities within effects, we form the l-effect error
vector, {rs0 ’i1 ;i2 ;…il ;::;im}:

rs
0
’i1 ;i2 ;…il ;::;iK ¼M þ εi1 ;i2 ;…il ;::;iK for all il and 1 � l � K (7)

The rank-ordered error vector becomes:

rs
0
’i1 ;i2 ;…il ;::;iK → r’i1 ;i2 ;…il ;::;iK for all il and 1 � l � K (8)

At this phase, there are two scenarios that should be considered; one
or more effects are: 1) linear and/or 2) non-linear.

A) Testing error parity for linear effects: If some effects have been
designed to be studied at two settings only, then the minimum rank-sum
of rseil is formed according to the Wilcoxon rank-sum test (Wilcoxon,
1945; Besseris, 2013):

TEl ¼min
rseil

n
rseil ¼

X
ij 6¼l

r’i1 ;i2 ;…il ;::;iK il 2 ½1; 2� o
for all i1; i2;…; il�1; ilþ1:::; iK (9)



Table 1
The fused deposition OA-dataset for the fabrication of lattice structures (Dong
et al., 2018).

Run # A B C D dt1 dt2 dt3

1 1 1 1 1 0.52 0.47 0.22
2 1 2 2 2 0.15 0.13 0.11
3 1 3 3 2 0.18 0.15 0.09
4 1 4 1 1 0.47 0.30 0.60
5 2 1 3 1 0.12 0.15 0.09
6 2 2 1 2 0.34 0.38 0.30
7 2 3 1 2 0.27 0.37 0.32
8 2 4 2 1 0.17 0.17 0.18
9 3 1 1 2 0.32 0.26 0.35
10 3 2 3 1 0.10 0.13 0.12
11 3 3 2 1 0.14 0.15 0.18
12 3 4 1 2 0.45 0.32 0.30
13 4 1 2 2 0.04 0.06 0.07
14 4 2 1 1 0.10 0.13 0.12
15 4 3 1 1 0.18 0.23 0.15
16 4 4 3 2 0.14 0.16 0.17
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The minimum rank-sum, TEl, is translated against the Wilcoxon-
Mann-Whitney (Wilcoxon, 1945; Mann and Whitney, 1947) reference
law. Exact p-values are obtained using the Mann-Whitney test from the
software package MINITAB® (v18.0).

B) Testing error parity for nonlinear effects: If some effects have been
designed to be studied at three or more settings, then the Kruskal-Wallis
test (Kruskal and Wallis, 1952) is applied to the rank-ordered error
vector, r’i1 ;i2 ;…il ;::;iK , and it will be (Tari and Sabater, 2009):

Hel ¼
"

12
NðN þ 1Þ

X
il

Reil
2

nil

#
� 3ðNþ 1Þ 8 il 2 ½1; 2; 3; …� (10)

with
X
il

nil ¼N 8 1� l�K 9 il 2 ½1; 2; 3; …� (11)

and

n
Reil ¼

X
il

r’i1 ;i2 ;…il ;::;iK 8 1 � l � K 9 il 2 ½1; 2; 3; …� o
for all i1; i2;…; il�1; ilþ1:::; iK (12)

The parity of errors for each effect individually is inferred from the
exact p-value that corresponds to the estimation of Hel; it is also obtained
from the software package MINITAB® (v18.0). Similarly, we prepare the
rank sums for the surrogate effects, rs’i1 ;i2 ;…il ;::;iK :

rs’i1 ;i2 ;…il ;::;iK ¼M þ Dil þ εi1 ;i2 ;…il ;::;iK for all il and 1 � l � K (13)

Upon rank-ordering, we get:

rs’i1 ;i2 ;…il ;::;iK → ri1 ;i2 ;…il ;::;iK for all il and 1 � l � K (14)

At this phase, there are also two scenarios that should be considered;
one or more effects are: 1) linear and/or 2) non-linear.

A) Testing significance for linear effects: If some effects have been
designed to be studied at two settings only, then the minimum rank-sum
of rsil is formed according to the Wilcoxon rank-sum test (Wilcoxon,
1945; Besseris, 2013):

Tl ¼min
rsil

n
rsil ¼

X
ij 6¼l

ri1 ;i2 ;…il ;::;iK il 2 ½1; 2� o for all i1; i2;…; il�1; ilþ1:::; iK

(15)

The minimum rank-sum for each effect, Tl, is translated against the
Wilcoxon-Mann-Whitney (Wilcoxon, 1945; Mann and Whitney, 1947)
reference law. Exact p-values are obtained using the Mann-Whitney test
from the software package MINITAB® (v18.0).

B) Testing significance for nonlinear effects: If some effects have been
designed to be studied at three or more settings, then the Kruskal-Wallis
test (Kruskal and Wallis, 1952) is applied to the rank-ordered effect
vector, ri1 ;i2 ;…il ;::;iK , and it will be (Besseris, 2014):

Hl ¼
"

12
NðN þ 1Þ

X
il

R2
ij

nil

#
� 3ðNþ 1Þ 8 il 2 ½1; 2; 3; …� (16)

with

X
il

nil ¼N 8 1� l�K 9 il 2 ½1; 2; 3; …� (17)

and

n
Ril ¼

X
il

ri1 ;i2 ;…il ;::;iK 8 1 � l � K 9 il 2 ½1; 2; 3; …� o
for all i1; i2;…; il�1; ilþ1:::; iK (18)

The statistical significance of each individual effect is inferred from
the exact p-value that corresponds to the estimation of Hl; it is also
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obtained from the software package MINITAB® (v18.0).
2.4. The illustrated case study

To elucidate the necessity for a ‘deeper’ multifactorial analysis, a
state-of-the-art case study is re-examined which enmeshes several op-
portunities for hidden complexity in a novel 3D-printing process. We
selected the Taguchi-type screening/optimization modelling of a fused
deposition for the fabrication of lattice structures (Dong et al., 2018). It is
an intriguing paradigm because it mingles the uncertainty in the pro-
pensities of a crucial cellular material (acrylonitrile butadiene styrene)
with the complexity in the tested lattice geometries. Consequently, the
intricate (end-product) mechanical properties cannot be reliably pre-
dicted from an extant deterministic theory. Furthermore, non-normality
in the governing mechanisms of production may not be rejected. Hence,
the dual (synchronous) ‘screening-and-optimization’ task should be
addressed also using a robust profiler.

The available published dataset was voluminous. Besides a set of four
specific 3D-printing parameters, the study probed the influence of several
design parameters, which were associated with two examined geometry
groups. To scrutinize the robustness level of the final solution and the
optimal prediction of the 3D-printing response, we demonstrate our
methodology for the ‘inclined’ geometry case which was set at an angle of
60� and for a strut diameter of 4 mm (Dong et al., 2018). To summarize
the experimental logistics, the investigated 3D-printing factors were: 1)
the nozzle temperature (A), 2) the print speed (B), 3) the fan speed (C),
and 4) the layer height (D). Three of the 3D-printing factors (A, B and C)
were simultaneously tested for non-linearity, too. Accordingly, factors A
and B were profiled on four settings while factor C was profiled on three
settings. Factors A, B and D were in balanced form across all recipes.
However, factor C was organized in an unbalanced arrangement; the first
setting frequented the experimental recipes twice as many times as the
remaining two settings. The output response from the trials was the range
of thickness (dt) of the tested strut diameter, which was expressed in mm.
The Taguchi-type L16 (42 � 31 � 21) OA-generated output was repeated
three times. The failure method for ‘max deviation’ was chosen (Dong
et al., 2018). The coded OA scheme and the corresponding response
entries have been listed in Table 1 for ease of reference.

3. Results

3.1. Data pre-screening

The first step is to screen all the thickness-range (dt) observations
(Table 1) in a probability plot. In Fig. 3A, we notice that the data do not
spread evenly under the normal distribution assumption. A noticeable



Fig. 3. The dt dataset (Table 1): Normal probability plot with 95% confidence
interval (A), and boxplot (B).

Fig. 4. The dt dataset for factor-settings of A (Table 1): Normal probability plot
with 95% confidence interval (A), and boxplots (B).
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portion of the data points cannot even be contained within the 95%
confidence interval. The indication of non-normality is an inference that
is also supported by the result of the Anderson-Darling test (p < 0.05) on
the same plot. To expose further the data asymmetry, we use a boxplot
depiction (Fig. 3B). The strong presence of skewness now becomes more
pronounced. It becomes evident that a grand mean estimation would not
be meaningful under such severe skewness. This would impair any reg-
ular Taguchi-type optimization predictions since the optimal response is
dependent on the accuracy of the estimation of the grand mean. Deeper
probing, by drilling down through data-screening in terms of factor-
settings, reveals the following:

i) Factor-A: Setting-A1 data do not obey normality (p < 0.05) ac-
cording to the Anderson-Darling test (Fig. 4A). There is great
variation in spreads among boxplots for different settings (Fig. 4B)
as well as exaggerated asymmetry, especially for setting A1.

ii) Factor-B: Data for settings B2 and B3 do not obey normality (p <

0.05) according to the Anderson-Darling test (Fig. 5A). There is
great variation of spreads among boxplots for different settings
(Fig. 5B) as well as exaggerated asymmetry with respect to set-
tings B2, B3 and B4.

iii) Factor-C: All settings appear to obey normality (p > 0.05) ac-
cording to the Anderson-Darling test (Fig. 6A). There is great
spread variation among boxplots for different settings (Fig. 6B) as
well as skewness for the data related to setting C2.

iv) Factor-D: Setting-D1 data do not obey normality (p < 0.05) ac-
cording to the Anderson-Darling test (Fig. 7A). There is great
spread variation among boxplots for different settings (Fig. 7B).
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Data for Setting-D1 are skewed while there are also three outlier/
extremity points.

Next, to check the level of repeatability in the collected dataset, we
cross-correlate the three-replicate data-vectors (dt1-dt3) through pair-
wise line-fitting. The three-resulting linear-regression plots, which are
assorted with their respective 95% confidence intervals, are portrayed for
the three replicate vectors (Table 1) in Fig. 8. In a nutshell, we observe
that the regression fittings are weak. The three corresponding (adjusted)
coefficients of determination range from a minimum of 35.2% to a
maximum of 78.3%. All regression coefficients fluctuate with a persistent
deflection well below unity – from 0.75 to 0.70 (p < 0.05). Furthermore,
in all three plots of Fig. 8, a significant number of observations pose as
outliers; they are situated outside the 95% confidence bands. This is a low
confidence signal in a repeatability assessment. An alternative approach
might be to check for normality the sixteen individual triads of obser-
vations (Table 1); it is clearly not meaningful for replicates of size n ¼ 3.
The above screening results seem to advocate toward a statistical land-
scape that suits up for a ‘messy’ data analysis. At this stage, it becomes
evident that a deployed multi-factorial optimization solver should be apt
to proceed with the profiling process in the absence of an identified
parametric data-distribution.
3.2. Nonparametric multifactorial profiling

By employing the proposed methodology to the dataset of Table 1,
first, we rank-order in a single rollout all the replicate vectors (Table 2).
Next, we sum-up the ranked replicates for each recipe individually in the
same table. In Table 3, we tabulate the effect median estimations. From a
visual inspection, it appears that the effects A, B and C might be



Fig. 5. The dt dataset for factor-settings of B (Table 1): Normal probability plot
with 95% confidence interval (A), and boxplots (B). Fig. 6. The dt dataset for factor-settings of C (Table 1): Normal probability plot

with 95% confidence interval (A), and boxplots (B).
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influential given that the differences of their median rank-sum magni-
tudes post noticeable variations - from 73 (C-effect) to 48.8 (A-effect).
The D-effect is definitely weak. In Table 4, we tabulate the outcomes of
the two-stage profiling analysis - the four examined effects and their
uncertainties. First, we examine the statistical significance of the uncer-
tainty symmetry within effects. No effect is influenced by an unbalanced
load of uncertainty across settings. In all error screenings, we consistently
observe that p> 0.05. This indicates that wemaymove on contemplating
the outcomes of the strength profiling for all four effects. At a first glance,
it is the effects A and C that appear statistically significant at a level of
0.05. However, applying the Benjamini-Hochberg rule (Benjamini and
Hochberg, 1995) for controlling the false discovery rate at α ¼ 0.05, we
conclude that only the C-effect is the only statistically dominant influ-
ence. This is because at a controlling false discovery rate of q*¼ α¼ 0.05
(Benjamini and Hochberg, 1995), it is only the p-value (pC) for the
C-effect, pC ¼ 0.005 (Table 4), that is less than the critical value of 0.013
(¼α/4). From Table 3, we note that it is setting C3 that minimizes the
median rank-sum response. This setting corresponds to a fan speed of
100%. The significance of this result should be further elucidated in
Fig. 9 - in terms of a boxplot screening of the three candidate settings. The
corresponding median estimations of the dt values for fan speed levels of
50% and 100% are 0.145 mm and 0.135 mm, respectively. However, we
observe that the 95% confidence intervals of the rs medians of the two
competing settings overlap (Fig. 9).

From a practical perspective then, we select a 50% fan speed in the
optimal design. This is because it would simultaneously minimize energy
consumption; it is a ‘lean’ and ‘green’ solution. This setting solution
agrees with the original published solution for the fan speed, which was
recommended for the general ‘inclined strut’ structure case (Dong et al.,
2018). Effects A, B and D are judged as inactive. Thus, they may be
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adjusted to any setting that conveniently or practically benefits the
3D-printing process performance. This may be interpreted as follows:

a) The nozzle temperature (A-effect) should be set to 225 �C. This de-
cision leads to minimizing energy consumption.

b) The print speed (B-effect) should be set to 2400 m/s. This is justified
from an optimal 3D-printing performance (maximum production
rate).

c) The layer height (D-effect) should be set to 0.2 mm. This is justified
from an optimal 3D-printing performance (maximum material
deposition).

The solution for the setting adjustments that we recommended above
differs in the three out of the four examined 3D-printing parameters. Of
course, the comparison concerns the general ‘inclined-strut’ lattice-
structure (published) prediction (Dong et al., 2018). We found that the
‘inclined-60�’ geometry case, using the failure method of ‘max deviation’
(Dong et al., 2018), may not be serviced by a general recommendation.
The reasons are obvious now. Discrepancies are attributed to the exclu-
sion of the following elements from the published analysis: 1) the
non-normality of the dt response, 2) the classical Taguchi method does
not allow screening concurrently mean and SNR tendencies, 3) no sep-
aration of screening/optimization outcomes, 4) no statistical significance
evaluation, and 5) no controlling for false-discovery. From an ‘agile
production’ point of view, the 3D-printing process could be sped-up
twice as fast as from it was originally recommended. Finally, the
layered ABS-material could be deposited at a double rate with respect to
the original thickness specification - according to the published dataset
(Dong et al., 2018).



Fig. 7. The dt dataset for factor-settings of D (Table 1): Normal probability plot
with 95% confidence interval (A), and boxplots (B).

Fig. 8. Line fittings between pairs of replicate data (Table 1): Top: dt3 vs dt1,
middle: dt3 vs dt2, bottom: dt2 vs dt1.

Table 2
The rank-ordered and rank-summed conversion of the dataset of Table 1.

Run # r1 r2 r3 Rs

1 47 45 30 122
2 19 12.5 8 39.5
3 27 19 4.5 50.5
4 46 35.5 48 129.5
5 10 19 4.5 33.5
6 40 43 34 117
7 33 42 38.5 113.5
8 24 24 27 75
9 38.5 32 41 111.5
10 6.5 14 10 30.5
11 15 19 27 61
12 44 37 35.5 116.5
13 1 2 3 6
14 6.5 12.5 10 29
15 29 31 19 79
16 16 22 24 62
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4. Discussion

We discuss now possible causes for the discrepancies that have
emerged from the competing optimization scenarios. The characteristic
that was sought to be optimized in the fused deposition case study (Dong
et al., 2018) was the difference between the maximum and minimum
strut diameter, dt. By design, the dt-variable should be minimized for
improved quality performance. The classical Taguchi-performance
measure that was used in the case study (Dong et al., 2018) was the
SNR expression that corresponds to a ‘smaller-is-better’ response
(Taguchi et al., 2000, 2004), η (dB). It is defined as follows for a number
of n replicates:

η ¼ � 10 log10

(
1
n

Xn

i¼1

dt2i

)
(19)

However, the averaged sum of the squared differences, in equation
(19), may be split in terms of its location (mean, dt) and dispersion
(variance, s2 ) components:

1
n

Xn

i¼1

dt2i ¼
�
dt
�2

þ n� 1
n

s2 with dt¼ 1
n

Xn

1

dti

and s2 ¼ 1
n� 1

Xn

1

�
dti � dt

�2
(20)

As long as the respective magnitudes of the squared mean and the
variance estimations of the dt variable are of the same order in the SNR
expression, they may be regarded useful in extracting information.
Otherwise, the squared mean and the variance estimations may be
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confounded rendering the screening/optimization result misleading
(Logothetis, 1990). This condition causes major concern because if the
two measuring scales are not comparable, it may lead to biased outcomes
and eventually spurious (suboptimal) solutions. To examine the relative
behavior of the two estimators for the strut-diameter range variable, the
mean and standard deviation (s) of the replicated dataset (Table 1) are



Table 3
Nonparametric response table for the four effects of the fused deposition.

Factor Setting Median rs

A 1 86.3
2 94.3
3 86.3
4 45.5

B 1 72.5
2 35.0
3 70.0
4 95.8

C 1 115.0
2 50.3
3 42.0

D 1 68.0
2 86.8

Grand Median 68.5

Table 4
Nonparametric profiling of the four effects and their uncertainty balance.

Factor Uncertainty balance P Effect strength P

U/Ha U/Ha

A 6.64 0.084 8.74 0.033
B 2.54 0.469 4.52 0.21
C 1.61 0.447 10.61 0.005
D 24.00 0.442 27.00 0.645

a U-estimator for Wilcoxon-Mann-Whitney test, H-estimator for Kruskal-Wallis
test.

Fig. 9. Boxplot comparisons of rank-sum response (rs variable) for the three
settings of the fan speed factor.

Table 5
Range means and standard deviation for the dataset of Table 1.

run # dt S dt/s

1 0.403 0.161 2.5
2 0.130 0.020 6.5
3 0.140 0.046 3.1
4 0.457 0.150 3.0
5 0.120 0.030 4.0
6 0.340 0.040 8.5
7 0.320 0.050 6.4
8 0.173 0.006 30.0
9 0.310 0.046 6.8
10 0.117 0.015 7.6
11 0.157 0.021 7.5
12 0.357 0.081 4.4
13 0.057 0.015 3.7
14 0.117 0.015 7.6
15 0.187 0.040 4.6
16 0.157 0.015 10.3
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tabulated in Table 5. The ratio of the strut-diameter-range mean over the
strut-diameter-range standard deviation reveals that there is a significant
difference in the magnitudes of the two scales. For the sixteen calculated
entries in the experimental design, their average ratio value is 7.3. Thus,
using exclusively η as a robust performance measure might potentially
lead to a biased result. To proceed with the analysis, we ought to explore
whether there exists a relationship between the mean and the standard
deviation variables. The customary approach to accomplish this is to fit
an appropriate function using the Box-Cox transformation (Logothetis,
1990). The mean and standard deviation estimations, from the
strut-diameter range dataset of Table 5, are firstly log-transformed and,
next, they are line-fitted according to the equation (Logothetis, 1990):

log10ðsiÞ ¼ aþ b� log10

�
dti

�
þ εi ; i ¼ 1; 2; …; n (21)

In Fig. 10, we observe that the performed line-fitting effort is rather
unsuccessful, because the (adjusted) coefficient of determination is low
enough (52.3%) to offer some insight.

Moreover, there are several data points that defy the boundaries
which are set by the estimated 95% confidence interval. Hence, the
regression analysis results also attest to a ‘messy outlook’. We may
contemplate that a transformation for the strut-diameter-range dataset
may be dubious to pursue at this point. It may be implied that a func-
tional relationship between the mean and the standard-deviation esti-
mators might not even exist. Even so, the urgent task is to prevent the
imminent confounding owing to the dominating influence of the mean
values over the SNR estimations. Consequently, we should seek for
suitable performance measures that allow the decoupling of the two
contributions – the mean and standard deviation. Obviously, two sepa-
rate steps are required to identify the factor settings that control: 1) the
‘signal’ (mean) and 2) the ‘noise’ (variance). The two recommended
expressions for the proper signal measure (SM) and the noise measure
(NM) respectively are (Logothetis, 1990):

SM¼ dti and NM¼ � 10log10
�
s2i
	

(22)

We graph the main-effects plots for the strut-diameter-range SM
variable (Fig. 11 A) and the strut-diameter-range NM variable (Fig. 11B).
From a visual inspection, we observe that effects A and C may be sus-
ceptible to factorial adjustment because they generate similar variation.
Sieving through the dataset using the ANOVA treatment (Tables 6 and 7),
we identify the A-effect and C-effect as the only two posing as statistically
significant at a level of 0.05. However, controlling the false discovery rate
at q* ¼ α ¼ 0.05 (Benjamini and Hochberg, 1995), it is only the p-value
(pC) for the C-effect (pC ¼ 0.002 (Table 6), pC ¼ 0.006 (Table 7)) that is
consistently smaller than the critical value of 0.013 (¼α/4). The p-values
for the strut-diameter-range means (Table 6) and strut-diameter-range
noise dispersion (Table 7) are of the same low order (highly signifi-
cant). Still, this screening solution agrees in its entirety with our pro-
posed solution and partly disagrees with the original findings; the
published solution concluded that all four factors were strong (Dong
et al., 2018). Minimizing the SM variable (Fig. 11A) and maximizing the
NM variable (Fig. 11B) converge on optimizing the fan speed behavior at
the setting of 50% (setting C2).

The same practical outcome is also gleaned from the separate boxplot
depictions of the two sets of measures (Fig. 12). In congruence to the
logic in our proposed optimization-method prescription, the median
values for the strut-diameter-range SM variable (Fig. 12 A) and strut-
diameter-range NM variable (Fig. 12 B) are statistically of indistin-
guishable strength at their respective settings of 50% (C2) and 100%
(C3). Consequently, from practical considerations, the fan speed would
be optimally adjusted at the 50% setting by simultaneously incorporating
information from both SM and NM responses. The remaining three
(statistically weak) factors should receive an adjustment that best aligns
to matters of practicality, cost and/or convenience. Justifiably, then, the
solution in this case is merely a parallel narration of our proposed



Fig. 10. Fitting the log-transformed values of the standard deviation against the
mean (for the strut diameter range dataset of Table 5).

Fig. 11. Main-effect plots for range data: A) means (dti) and B) noise dispersion
( � 10log10ðs2i Þ).

Table 6
Analysis of variance for range means (dti).

Factora DF SS MS F P

A 3 0.050847 0.016949 5.94 0.032
B 3 0.026608 0.008869 3.11 0.110
C 2 0.129635 0.064817 22.70 0.002
D 1 0.000400 0.000400 0.14 0.721
Residual Error 6 0.017129 0.002855
Total 15 0.224619

a R2 (adjusted) ¼ 80.9%.

Table 7
Analysis of variance for range noise dispersion ( � 10log10ðs2i Þ).
Factora DF SS MS F P

A 3 273.279 91.093 5.53 0.037
B 3 88.934 29.645 1.80 0.247
C 2 439.504 219.752 13.34 0.006
D 1 2.076 2.076 0.13 0.735
Residual Error 6 98.854 16.476
Total 15 902.648

a R2 (adjusted) ¼ 72.6%.

Fig. 12. Box plots of fan speed for: A) range means (dti), and B) range noise
dispersion (� 10log10ðs2i Þ).
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solution in the preceding section.
In comparison to the alternative treatment and the discussed com-

plications arising from using the SNR transformation in multifactorial
screening/optimization problems, it is evident that our technique: 1)
reaches to optimal solution in a single screening/optimization pass
(combo-solution ‘two-in-one’), 2) there is no need to separate to location
and dispersion components for the replicates, and 3) all required statis-
tical quantities are primed to sustain solution robustness.

The solver robustness as well as the convenience of no-decoupling of
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the estimators in terms of location and dispersion components is clearly
attributed to the innate statistical framework of classical non-
parametrics. The proposed optimization routine managed to incorpo-
rate in its inner workings both of those critical features, thus taking
maximum advantage of the complementary permutation theory of Wil-
coxon and Mann-Whitney. It is this facility that permits the direct
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comparison between samples (‘micro-populations’) that may have been
gathered from various - sometimes even unknowable - distributions.
Relying on this advantage makes our proposed profiling more lean (less
and faster work) and more agile (applicable everywhere). Although, this
thinking is an indispensable part for any modern improvement proced-
ure, it might also be beneficial to highly complex 3D-printing processes.

The proposed methodology aspires to be simple (lean), responsive
(agile) and resilient (robust) by design. These characteristics are para-
mount in additive manufacturing due to the lack of: 1) a single physical
model that comprehensively describes the 3D-printing phenomena, and
2) a single established data analyzer to quantify the accompanying pro-
cess uncertainties. Our proposal attempts to reshape the instrument that
measures the cause-and-effect relationship in the traditional DOE/
Taguchi approach. By heeding to risky events that might loom in the
investigated stochastic landscape, it offers a rudimentary protection
against an otherwise undermined result; an occurrence which is perhaps
associated with counting on a mere naïve application of ordinary alter-
natives (data-analytic). Inexorably, outcomes that have been generated
from FFD-based DOE treatments might occasionally become dicey,
because the small data condition – inherently ingrained in the parsimo-
nious philosophy of the Taguchi-type collection scheme - might harbor
several opportunities that would tend to steer a DOE study to a fallacious
diagnosis. The real circumstances that could give rise to such possibilities
are:

1) The smallness of the replicates renders a classical solver vulnerable
against the detrimental effects of the two familiar contingencies: a)
normal data to behave as departing from normality and 2) non-
normal data to appear behaving as normal.

2) The necessity to evaluate replicate information from both - location
and dispersion - perspectives at the same time (in a single action).

3) The necessity to evaluate information from location and dispersion
measures at the same time (in a single action) for all factor levels -
irrespectively of the mix, type and number of the factor levels in the
experimental scheme.

4) The desire for a solver that it transpires to be computationally simple
(“terse and swift”) - on par with the sparing data collection tactics.

To respond to the above concerns, it is obvious that the pure
nonparametric framework of the solver automatically remedies the first
predicament. Nonparametrics are impervious to any prior dataset
fingerprinting. The second and third concerns are alleviated because the
Wilcoxon/Mann-Whitney statistics zoom out to encircle information
from the broader distribution propensities (Mann and Whitney, 1947).
The fourth item has been resolved by virtue of the preset reference law in
the Wilcoxon/Mann-Whitney statistics and its unlimited adaptability to
messy datasets (Scheffe and Tukey, 1945; Draper, 1988).

5. Conclusion

We proposed a robust multifactorial screening/optimization method
that exploits scarce information from OA-generated data schemes in
order to facilitate the amelioration of 3D-printing process characteristics.
The statistical profiler capability was directly exemplified on mixed-
scheme Taguchi-type orthogonal datasets that were collected from
fabricating lattice structures by a fused deposition process. The show-
cased paradigm was intriguing because it offered the opportunity to
concurrently manipulate inherent material and geometrical complexities
- a daunting task in additive manufacturing. Thus, ample emphasis was
placed on illustrating that natural ‘data messiness’ lurking in interpreting
3D-printing process variables. Several statistical complications were
spotlighted in association to data non-normality, heteroscedasticity,
robustness and convertibility. Particularly, we elaborated on the per-
plexing phenomenon of data conversion using a classical Taguchi-type
SNR-performance measure. It was shown that data reduction using an
SNR estimator might not always be robust and could lead to
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misdiagnosing those critical 3D-printing effects that need careful tuning.
The robustness of optimal predictions hinged upon the de-confounding of
the signal and the noise that represented the collected 3D-printing
dataset.

The proposed method was shown to circumvent this problem by
introducing well-accepted distribution-free estimators for replicating
small samples. Our solution is in accord with the solution of an older DOE
approach that demanded the decoupling of the signal and the noise. Key
advantage of our proposal is that it reaches to a prediction in half the
effort since the older DOE method requires screening the dataset twice
for effect strength. Both commented approaches are in agreement with
the identification of just a single effect (fan speed) as well as its optimal
adjustment (50%). This is also in agreement with the published solution.
However, in search of minimizing the range of the strut diameter in the
paradigm, both discussed predictions affirmed that the remaining effects
appear weak, in disagreement with the original predictions. Further
suggestions for future work could include projects that consider the
concurrent optimization of multiple 3D-printing characteristics, larger
group of examined effects and the influence of partial interactions among
effects.
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