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Abstract
This paper introduces a new symbolic-numeric strategy for finding semidiscretiza-
tions of a given PDE that preserve multiple local conservation laws. We prove that
for one spatial dimension, various one-step time integrators from the literature pre-
serve fully discrete local conservation laws whose densities are either quadratic or a
Hamiltonian. The approach generalizes to time integrators with more steps and con-
servation laws of other kinds; higher-dimensional PDEs can be treated by iterating
the new strategy. We use the Boussinesq equation as a benchmark and introduce new
families of schemes of order two and four that preserve three conservation laws. We
show that the new technique is practicable for PDEs with three dependent variables,
introducing as an example new families of second-order schemes for the potential
Kadomtsev–Petviashvili equation.

Keywords Finite difference methods · Conservation laws · Boussinesq equation ·
pKP equation · Invariant conservation

Mathematics Subject Classification 65M06 · 37K05 · 39A14

1 Introduction

Consider a system of q partial differential equations (PDEs),

A(x, t, [u]) = 0, (1)
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Foundations of Computational Mathematics

where A is a row vector, u has components uα, α = 1, . . . , q, and square brackets
around a differentiable expression denote the expression andfinitelymany of its deriva-
tives.1 We assume that (1) is totally nondegenerate (see [18]). A local conservation
law is a divergence expression,

DivF = Dx {F(x, t, [u])} + Dt {G(x, t, [u])}, (2)

that vanishes on all solutions of (1). The functions F and G are the flux and the density
of the conservation law, respectively, and Dx and Dt denote the total derivatives with
respect to x and t , respectively. The conservation law (2) is in characteristic form if
there exists a column vector Q such that

DivF = AQ, (3)

in which case Q is called the characteristic. The space of total divergences forms the
kernel of the Euler operator, E , whose αth entry is

Eα =
∑

i, j

(−Dx )
i (−Dt )

j ∂

∂(Di
x D j

t uα)
. (4)

Hence

E(AQ) = 0 (5)

if and only if there exists F such that (3) holds. These results generalize immediately
to PDE systems with more than two independent variables.

The literature on the numerical solution of PDEs is rich in numerical methods that
preserve global invariants, but there are relatively few results on the preservation of
local conservation laws. Arguably, local conservation laws are more necessary: they
hold throughout the domain, apply to the set of all solutions, and providemuch stronger
constraints than are needed to preserve the corresponding global invariants. Moreover,
when the domain and boundary conditions are suitable, conservation of such invariants
is automatically achieved.

A new approach for developing finite difference schemes that preserve conservation
laws of (1) was introduced recently in [9]. It exploits the fact that discrete conservation
laws form the kernel of a discrete version of the Euler operator (4). Discretizations of
the PDE (1) having discrete versions of the desired conservation laws are obtained by
requiring that a discrete version of condition (5) is satisfied. This requires the symbolic
solution of a large system of nonlinear equations that is impractical in general. The
complexity of the symbolic calculations can be reduced by introducing compactness
requirements on the schemes, and this direct approach has been applied to a range
of PDEs with different structure in [9–11]. However, the direct approach is greatly

1 To simplify the presentation, we consider here only one spatial variable, x . The extension to PDEs with
more spatial variables is outlined in Sect. 3.3 and illustrated in Sect. 6.

123



Foundations of Computational Mathematics

limited by the capacity of symbolic computation; it has been applied only to second-
order approximations of PDEs with two independent variables.

In this paper, we modify the approach in [9] by finding semidiscretizations of (1)
that preserve semidiscrete local conservation laws. The reduction to one discrete space
dimension significantly reduces the complexity of the computations, to the point that
the determining system can be solved easily without introducing any restrictions on
the form of the schemes. After this, a suitable integrator in time needs to be chosen to
create a fully discrete scheme; this depends on the form of the conservation laws that
one aims to preserve.

If the PDE is equipped with conservative boundary conditions, it is known that the
quadratic invariants of its space discretizations are preserved by symplectic Runge–
Kuttamethods [4,8,20]. In this paper,we extend this result to prove that ifG is quadratic
in [u], then any symplectic Runge–Kutta method preserves the conservation law (2)
locally, regardless of the boundary conditions.

There are various results on local conservation for Hamiltonian PDEs,

Dtu = D ([u]x ) E(H ([u]x )), (6)

where [u]x denotes u and its spatial derivatives only,D is a skew-adjoint operator that
satisfies the Jacobi identity, and H is the Hamiltonian function.

Multisymplectic schemes [3] and their generalizations [21] can preserve local con-
servation laws with quadratic flux and density. Requiring the flux to be quadratic is,
however, a strong constraint that is not satisfied by local momentum conservation laws
ofmany important equations in physics such as the nonlinear Schrödinger (NLS) equa-
tion, the Korteweg–de Vries (KdV) equation, the Benjamin–Bona–Mahony (BBM)
equation, the modified Korteweg–de Vries (mKdV) equation, and the Boussinesq
equation. The strategy introduced in this paper does not suffer from this restriction,
as no assumption is needed about the flux, so it can be applied to the preservation of
these conservation laws as well.

Another popular approach is to use a discrete gradient method for the time inte-
gration of (6). These are obtained from a semidiscretization of H and a skew-adjoint
discretization of D, and preserve a discrete conservation law of the energy [17]. One
widely useddiscrete gradientmethod is the average vector field (AVF)method [5,6,19].
We show that the AVF method yields the local conservation law of the Hamiltonian
under constraints on the discretization of D that are milder than skew-adjointness.
Consequently, conservation of the local Hamiltonian can be achieved for a larger class
of discretizations.

Although the discussion so far has focused onPDEswith two independent variables,
the approach of discretizing one dimension at a time works equally well for PDEs on
higher-dimensional spaces. We discuss this and give an illustration.

The paper is organized as follows. Section 2 introduces a method for obtaining
conservative spatial semidiscretizations. Section 3 focuses on time integration. In
particular, we show the following.

• Conservation laws with quadratic density (without any assumption on the flux)
are preserved by any symplectic method in time locally and independently of
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the boundary conditions. Conservation laws for mass, charge and momentum are
typically in this class.

• For Hamiltonian PDEs, the AVF method preserves the local semidiscrete conser-
vation law of the energy for a wide class of semidiscretizations that generalizes
the result in [17].

• For other types of conservation law, fully discrete methods can be found by intro-
ducing relatively few parameters and fixing themby requiring that the conservation
law is in the kernel of a fully discrete Euler operator. This approach can be iterated
for dimensions, by using a sequence of semidiscrete and discrete Euler operators.

In Sect. 4, we apply this new approach to the Boussinesq equation and intro-
duce methods of order two and four that preserve three conservation laws. Section 5
describes numerical benchmark tests, including evidence of stability and comparison
with other methods from the literature. In Sect. 6, we apply the new technique to
a two-dimensional PDE, the potential Kadomtsev–Petviashvili (pKP) equation and
introduce two families of schemes that preserve two conservation laws. Finally, we
draw some conclusions in Sect. 7.

2 Conservative Space Discretizations

We begin with a regular spatial grid. The stencil consists of M = B − A + 1 nodes,

xm = x0 + mΔx, m = A, . . . , B, (7)

where x0 is a generic grid point; let x denote the vector of the nodes. The forward shift
operator Sm acts as follows on any semidiscrete function f :

Sm : f (xm, t) �→ f (xm+1, t);

the forward difference, forward average, and centred difference operators are

Dm = 1
Δx (Sm − I ), μm = 1

2 (Sm + I ), D(c)
m = 1

2Δx (Sm − S−1
m ), (8)

respectively, where I is the identity operator. The semidiscretizations of uα(x,t) are
given by the column vector U ∈ R

Mq with the (m + αM − B)th entry

Uα
m(t) ≈ uα(xm, t), m = A, . . . , B, α = 1, . . . , q.

The semidiscrete problem is

Ã(x, t, [U]) = 0, (9)

where here and henceforth tildes represent approximations to the corresponding con-
tinuous quantities, and square brackets around a semidiscrete expression denote the
expression and a finite number of its time derivatives.
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A semidiscrete conservation law of (9) is a semidiscrete divergence,

Div F̃ = Dm{F̃(x, t, [U])} + Dt {G̃(x, t, [U])}, (10)

such that

Div F̃ = 0, when [Ã = 0].

The functions F̃ and G̃ are the semidiscrete flux and density of the conservation
law (10), respectively. Similarly, as in the continuous case, we say that (10) is in
characteristic form if there exists Q̃ = Q̃(x, t, [U]), called the characteristic, such
that

Div F̃ = ÃQ̃.

The following result is crucial for obtaining semidiscretizations that preserve conser-
vation laws (see [14,18] for analogous results in the continuous and totally discrete
setting, respectively).

Theorem 1 The kernel of the semidiscrete Euler operator EU, whose αth entry is

(EU)α =
∑

i, j

S−i
m (−Dt )

j ∂

∂(D j
t Uα

i )
,

is the space of semidiscrete divergences (10).

Proof Let L = L(x, t, [U]) such that EU(L) = 0, and consider the derivative

d

dε
L(x, t, ε[U]) =

∑

α,i, j

(D j
t Uα

i )
∂L(x, t, ε[U])

∂(D j
t Uα

i )
. (11)

Integrating by parts yields

(D j
t Uα

i )
∂L

∂(D j
t Uα

i )
= Uα

i (−Dt )
j ∂L

∂(D j
t Uα

i )
+ Dt Ĝ

= Uα
0 S−i

m (−Dt )
j ∂L

∂(D j
t Uα

i )
+ Dm F̂ + Dt Ĝ = Dm F̂ + Dt Ĝ,

for some functions F̂ = F̂(x, t, ε, [U]) and Ĝ = Ĝ(x, t, ε, [U])whose precise expres-
sion is not of importance. Substituting this into (11) and integrating over ε ∈ [0, 1]
shows that L is a semidiscrete divergence.
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If L is of the form (10), EU(L) = 0 follows from the linearity of the Euler operator
and from the fact that for any k (see e.g. [12]),

(
∑

i

S−i
m

∂

∂(Dk
t U

α
i )

)
(Dm F̃) = 0,

⎛

⎝
∑

j

(−Dt )
j ∂

∂(D j
t U

α
k )

⎞

⎠ (Dt G̃) = 0.

��
Based on the result in Theorem 1, the approach used in [9–11] to preserve fully discrete
conservation laws, is adapted here to the preservation of semidiscrete conservation
laws of (1) with characteristics Q�, as follows:

1. Select a stencil that is large enough to support generic semidiscretizations for A
and everyQ�, having the desired order of accuracy. These approximations depend
on a number of free parameters to be determined.

2. Find some of the parameters by imposing consistency, up to the desired order of
accuracy, p.

3. Use symbolic algebra to determine the values of the free parameters that satisfy

EU(ÃQ̃�) = 0, (12)

for � = 1. This guarantees that the first conservation law is locally preserved. As
both Ã and Q̃� are accurate to order p, the discrete conservation law has the same
order of accuracy.

4. Iterate the previous step, replacing Q̃1 with Q̃�, to obtain further constraints on
the parameters. If (12) has no solution for some �, the corresponding conservation
law cannot be preserved without violating one of the previous conservation laws.
Typically, the more complicated a conservation law is, the more parameters need
to be fixed to preserve it.

Remark 1 It might seem appealing to identify a set of conservation laws that one
wishes to preserve and use brute force symbolic computation to solve all constraints
simultaneously. (This was our approach initially.) However, this takes far longer than
the sequential approach and commonly comes up with a null result, with no indication
as to which subsets of conservation laws can be preserved. The sequential algorithm
above enables the user to decide which conservation laws should be prioritized. At
each iteration, the computation is simplified by the fact that some parameters have
already been fixed.

Remark 2 If the algorithm above does not produce any schemes for a given stencil, one
could try preserving the same conservation laws using a wider stencil. However, the
wider the stencil is, the more the computational cost increases. Moreover, if one finds
a conservative semidiscretization, a time integrator that preserves all the conservation
laws is also needed. For example, in the next section we prove that some known
time integrators preserve conservation laws whose density is either quadratic, or is a
Hamiltonian, but to the best of our knowledge there are no methods that preserve both
of these types.
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3 Time Integration

We begin by considering one-step time integrators. For fully discrete schemes, the
stencil is

(xm, tn), m = A, . . . , B, n = 0, 1, t1 = t0 + Δt,

and the forward shift operators in space and time are

Sm : f (xm, tn) �→ f (xm+1, tn), Sn : f (xm, t0) �→ f (xm, t1),

respectively. The forward difference and forward average operators in space are defined
by (8), and the corresponding operators in time are

Dn = 1
Δt (Sn − I ), μn = 1

2 (Sn + I ).

Let un ∈ R
Mq be the column vector whose (m + αM − B)th entry is

uα
m,n ≈ uα(xm, tn), m = A, . . . , B, α = 1, . . . , q,

and let um,n ∈ R
q be the column vector with entries

uα
m,n ≈ uα(xm, tn), α = 1, . . . , q.

3.1 Conservation Laws with Quadratic Density

Here, attention is restricted to PDEs of the form

Dt {g(x, [u]x )} = h(x, t, [u]x ), (13)

where g is linear homogeneous in [u]x ; these include Hamiltonian PDEs. Consider a
conservation law of (13) of the form

Dx {F2(x, t, [u]x , [ut ]x )} + Dt {G2(x, [u]x )} = 0, (14)

where the density,G2, is a polynomial of degree two in [u]x . (Without loss of generality,
assume that no terms in G2 depend on x only.) For many differential problems of
importance in physics (such as KdV, NLS and BBM equations), the conservation laws
of mass (or charge) and momentum are of the form (14) with linear and quadratic
density, respectively.

Let P(x) be an invertible operator such that

g̃(x,U) = P−1(x)U
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and h̃(x, t,U) are two column vectors whose (m + αM − B)th entry is a spatial
discretization of the αth component of g(x, [u]x ) and h(x, t, [u]x ) at xm , respectively.
Let

Dt {̃g(x,U)} = h̃(x, t, P(x)̃g(x,U)) (15)

be a semidiscretization of the PDE (13) with the following approximation to the
conservation law (14):

Dm{F̃2(x, t,U,Ut )} + Dt {G̃2(x,U)} = 0. (16)

Such a semidiscretization can be obtained using the technique in Sect. 2. The flux and
density of (16) have the general form

F̃2(x, t,U,Ut ) = F̃2
(
x, t,U, P(x)̃h(x, t,U)

)
,

G̃2(x,U) = 1
2U

T S(x)U + w(x)TU,

where S(x) = S(x)T ∈ R
Mq×Mq and w(x) ∈ R

Mq is a column vector.
The following theorem shows that symplectic Runge–Kutta methods preserve local

conservation laws with quadratic density. The proof adapts Calvo, Iserles and Zanna’s
proof that such methods preserve quadratic invariants of systems of ODEs [4], to take
contributions from the flux into account.

Theorem 2 The solution of any symplectic Runge–Kutta method applied to (15) sat-
isfies a discrete version of (16).

Proof The conservation law (16) amounts to

Dm
{

F̃2
(
x, t, P(x)̃g, P(x)̃h (x, t, P(x)̃g)

)} = −Dt {G̃2(x, P(x)̃g)}
= −

(
(P(x)̃g)T S(x) + w(x)T

)
P(x)̃h(x, t, P(x)̃g). (17)

Solving (15) using a s-stage symplectic Runge–Kutta method,

g̃n+1 = g̃n + Δt
s∑

i=1

bi h̃(x, tn + ciΔt, P(x)ki ) ≡ g̃n + Δt
s∑

i=1

bi h̃i , (18)

with internal stages

ki = g̃n + Δt
s∑

j=1

ai, j h̃ j , i = 1, . . . , s, (19)
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we obtain un = P(x )̃gn . Moreover,

G̃2(x,un+1) = 1
2u

T
n+1S(x)un+1 + w(x)Tun+1

=
(
1
2 (P(x)̃gn+1)

T S(x) + w(x)T
)

P(x)̃gn+1 =
(
1
2u

T
n S(x) + w(x)T

)
un

+ Δt
s∑

i=1

bi

(
(P(x)̃gn)T S(x) + w(x)T

)
P(x)̃hi

+ Δt2
2

s∑

i, j=1

bi b j
(
P(x)̃h j

)T
S(x)P(x)̃hi .

Using (19) to eliminate g̃n from the first sum and rearranging, gives

G̃2(x,un+1) = G̃2(x,un) + Δt
s∑

i=1

bi

(
(P(x)ki )

T S(x) + w(x)T
)

P(x)̃hi+

+ Δt2
2

s∑

i, j=1

(b j bi −bi ai, j −b j a j,i )
(
P(x)̃h j

)T
S(x)P(x)̃hi .

The condition of symplecticity,

bi ai, j + b j a j,i − bi b j = 0, ∀ i, j = 1, 2, . . . , s,

and (17) give

Dm

{
s∑

i=1

bi F̃2
(
x, tn + ciΔt, P(x)ki , P(x)̃hi

)
}

+ Dn{G̃2(x,un)} = 0,

which is an approximation of (14). ��
Remark 3 Multisymplectic methods preserve conservation laws whose density and
flux are both quadratic. By contrast, Theorem 2 applies to all conservation laws that
have quadratic density. As no assumption is needed on the flux, a larger class of
conservation laws can be preserved.

The following results follow directly from the proof of Theorem 2.

Corollary 1 Any Runge–Kutta method preserves semidiscrete local conservation laws
whose density is linear in [u]x .

Corollary 2 The symplectic implicit midpoint method (defined by (18)–(19) with s =
1, b1 = 1, and a1,1 = c1 = 1/2) applied to (15) preserves the conservation law

Dm
{

F̃2
(
x, tn + 1

2Δt, μnun, Dnun
)} + Dn{G̃2(x,un)} = 0.
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3.2 Conservation Law for the Hamiltonian

We consider here the system of Hamiltonian PDEs (6) defined by a Hamiltonian func-
tion H on a domain with periodic boundary conditions. This assumption is introduced
only for simplicity: the preservation of conservation laws is local and therefore inde-
pendent of the specific boundary conditions assigned to the differential problem. The
following local conservation law for the energy is satisfied by all solutions of (6):

Dt (H) =
∑

α, j

∂ H

∂(D j
x uα)

(Dt D j
x uα) =

∑

α, j

∂ H

∂(D j
x uα)

D j
x (Dt u

α)

= Dx (ψ) + E(H)TDE(H) ≡ Dx (F) (20)

with

ψ =
∑

α,i, j

(Di
x Dt u

α)(−Dx )
j ∂ H

∂ Di+ j+1
x uα

.

Among the best-known energy-conserving discrete gradient methods is the average
vector field (AVF) method [19]. We can use this in two different ways, depending on
the number of points, M , in the stencil in (7). If M is odd, let A = −B so that the
stencil is centred on x0; we denote a semidiscretization of H([u]x ) on such a stencil
by H̃(U). The AVF method approximates (6) by

Dnu0,0 = D̃(u0,u1)̃δ(u0,u1) ≡ D̃(u0,u1)
∫ 1

0
EU

(
H̃(U)

) ∣∣∣
U=(1−ξ)u0+ξu1

dξ.

(21)

If M is even, let A = 1− B so that the stencil is centred at the midpoint of x0 and x1.
Denote a semidiscretization of H([u]x ) as H̃(μmU). We define the AVF method on
such a stencil to be

Dnμmu0,0 = D̃(u0,u1)̃δ(μmu0, μmu1)

≡ D̃(u0,u1)
∫ 1

0
EμmU

(
H̃(μmU)

) ∣∣∣
U=(1−ξ)u0+ξu1

dξ. (22)

McLachlan and Quispel proved in [17] that discrete gradient methods preserve a
discrete version of (20) provided that D̃ is a skew-adjoint approximation of D. The
following theorem proves that the AVF method (21) preserves the local conservation
law for the energy (20) under a milder assumption.

Theorem 3 The AVF methods (21) and (22) preserve a discrete energy conservation
law if there exists a function f defined on the stencil such that

δ̃(u0,u1)T D̃(u0,u1)̃δ(u0,u1) = Dm( f ), (23)
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or

δ̃(μmu0, μmu1)T D̃(u0,u1)̃δ(μmu0, μmu1) = Dm( f ), (24)

respectively.

Proof Equation (23) yields a discrete energy conservation law for (21), namely

Dn H̃(u0) =
∑

i,α

(Dnuα
i,0)

∫ 1

0

∂

∂Uα
i

H̃(U)

∣∣∣
U=(1−ξ)u0+ξu1

dξ = δ̃(u0,u1)T (Dnu0,0)

+Dm(ψ̃) = δ̃(u0,u1)T D̃(u0,u1)̃δ(u0,u1)+Dm(ψ̃)= Dm(F̃),

where

ψ̃ =
∑

j 
=0,α

jΔx

| j |
max{ j,0}−1∑

i=min{ j,0}
(Dnui,0)Si− j

m

∫ 1

0

(
∂

∂U j
H̃(U)

) ∣∣∣
U=(1−ξ)u0+ξu1

dξ.

Similarly, from (24), the conservation law preserved by (22) is

Dn H̃(μmu0) = δ̃(μmu0, μmu1)T D̃(u0,u1)̃δ(μmu0, μmu1) + Dm(φ̃) = Dm(F̃),

where

φ̃=
∑

j 
=0,α

jΔx

| j |
max{ j,0}−1∑

i=min{ j,0}
(Dnμmui,0)Si− j

m

∫ 1

0

(
∂

∂μmU j
H̃(μmU)

)∣∣∣
U=(1−ξ)u0+ξu1

dξ.

�� ��
Remark 4 Theorem 3 holds true in particular when D̃ is skew-adjoint.

Remark 5 Condition (23) is satisfied if and only if

Eun

(
δ̃(u0,u1)T D̃(u0,u1)̃δ(u0,u1)

)
= 0, n = 0, 1. (25)

Similarly, condition (24) holds true if and only if

Eun

(
δ̃(μmu0, μmu1)T D̃(u0,u1)̃δ(μmu0, μmu1)

)
= 0, n = 0, 1. (26)

Conditions (25) and (26) provide simple practical tests for analysing whether the
assumptions of Theorem 3 are satisfied by a given scheme.

Remark 6 The following Hamiltonian-preserving schemes can be obtained from (21)
or (22), where the operator D̃ is not skew-adjoint but satisfies (23) or (24), respectively:

• EC8 and the family of schemes MC8 for KdV in [9],
• EC8(0) (which preserves a quartic density) and MC8(0) for mKdV in [10],
• EC6 for BBM in [11].
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3.3 Conservation Laws of Other Types andMultidimensional Domains

Fully discrete methods that preserve other types of conservation law can be obtained
again by using anEuler operator. For simplicity, we restrict the discussion to the case of
second-order schemes for a PDE with polynomial nonlinearity. These can be obtained
by following the steps below:

1. Let P = ∏r
i=1 Li be a polynomial of degree r in the semidiscretization, where

without loss of generality Li is a linear approximation of a single monomial factor
in the continuous counterpart of P . Therefore, Li can depend on either U or Ut .
Assuming that the stencil has N points in the time dimension, discretize P using

Nr −1∑

j=0

r∏

i=1

α j Li (ui j ), α j ∈ R, (27)

where i j is the i th digit of the representation of Nr − 1 − j in base N , ordered
from right to left, and setting i j = 0 if Nr −1− j has less than i digits. By varying
i j one obtains all possible combinations of N digits of length r . At this stage, we
assume that the coefficients α j only satisfy the requirements for consistency. For
example, in a one-step method linear quantities are approximated by

L1(U) = L1(μnu0), L1(Ut ) = L1(Dnu0),

and quadratic quantities by

L1L2 ≈α0L1(u1)L2(u1) + α1L1(u0)L2(u1)

+ α2L1(u1)L2(u0) + α3L1(u0)L2(u0).

2. The values of the parameters α j are obtained by solving

Eu(ÃQ̃�) = 0, � = 1, 2, . . . , (28)

where Ã and Q̃� are the approximations of the PDE and the characteristic obtained
after steps 1 and 2, and Eu is the difference Euler operator,

Eu =
∑

i, j

S−i
m S− j

n
∂

∂ui, j
, (29)

whose kernel consists of all fully discrete conservation laws [14].

Remark 7 In total, net of consistency requirements, for each monomial of degree r
one needs:

•
(

M + r − 1
r

)
parameters for the semidiscretization. After solving (12), only a

few of these will still be undetermined.
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• Nr new parameters for the full discretization (27), to be determined by solving
(28).

By contrast, if one searches directly for all full discretizationswithout semidiscretizing

first, the strategy in [9] introduces

(
N M + r − 1

r

)
variables for each monomial of

degree r . This in general yields a huge nonlinear systemwhose solution is impractical.

The algorithm above can be iterated, to preserve conservation laws for PDEs with
more than two independent variables, by discretizing a single variable at each iteration.
At the kth iteration the Euler operator in (29) is replaced by

Ek
U =

∑
S−i1

m1
S−i2

m2
. . . S−ik

mk
(−Dxk+1)

j1(−Dxk+2)
j2 . . . (−Dxd )

jk ,

whose kernel consists in the space of conservation laws of the form

Dm1 F̃1 + Dm2 F̃2 + . . . + Dmk F̃k + Dxk+1 Fk+1 + . . . + Dxd Fd .

The proof is similar to that of Theorem 1.

4 The Boussinesq Equation

We consider here the (Good) Boussinesq equation

utt − uxx − (u2)xx + uxxxx = 0, (x, t) ∈ [a, b] × [0,∞), (30)

cast as a system of two PDEs

A = (ut − vx , vt − ux − (u2)x + uxxx ) = 0. (31)

This system can be written in Hamiltonian form,

Dt u ≡ Dt

(
u
v

)
= D(E(H)),

with

D =
[

0 Dx

Dx 0

]
, H = 1

3u3 + 1
2 (v

2 + u2 + u2
x ).
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System (31) has infinitely many independent conservation laws [1]. The first four are
Dx Fi + Dt Gi = 0, with

F1 = − v, G1 = u, (32)

F2 =uxx − u − u2, G2 = v, (33)

F3 =uuxx − 1
2 (v

2 + u2 + u2
x ) − 2

3u3, G3 = uv, (34)

F4 =vuxx − ux ut − uv − u2v, G4 = H . (35)

with characteristics

Q1 = (1, 0)T , Q2 = (0, 1)T , Q3 = (v, u)T , Q4 = (u + u2 − uxx , v)T ,

(36)

respectively. When the boundary conditions are conservative (e.g. periodic), integrat-
ing in space (32)–(35) gives the preservation of the following invariants,

I1 =
∫

u dx, I2 =
∫

v dx, I3 =
∫

uv dx, I4 =
∫

H dx; (37)

here I3 and I4 are the global momentum and the global energy, respectively.

4.1 Conservative Methods for the Boussinesq Equation

We look for semidiscretizations of (31) of the form

Ã := (Dm F̃1 + Dt G̃1, Dm F̃2 + Dt G̃2) = 0. (38)

Solutions of (38) satisfy semidiscrete versions of the conservation laws (32) and (33)
with Q̃1 = Q1 and Q̃2 = Q2. The linear and quadratic terms in (31) and (36) are
approximated as

B∑

i=A

αi Zi ,

B∑

i=A

B∑

j=i

βi, j Zi Z j ,

respectively, where Zi ∈ {Ui , Vi , DtUi , Dt Vi }, and the coefficients αi and βi, j are
chosen by requiring the desired order of accuracy and the preservation of the conser-
vation law of either the momentum (34) or the energy (35), according to the strategy
outlined in Sect. 2. We have not found any semidiscrete scheme that preserves both
of these conservation laws, as the constraints on the approximations of the nonlinear
terms that we have obtained from (12) are not compatible with each other.

In the following, we present the components of (38) and the characteristic Q̃3/4
and density G̃3/4 of the remaining preserved conservation law. The corresponding flux
F̃3/4 does not contribute to our global error estimates; in most cases, it has many terms
and gives little insight, so we omit this.
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Fully discrete schemes that preserve the local momentum or the local energy are
then obtained by applying Gauss–Legendre method or AVF method, respectively. As
these are Runge–Kutta methods, the conservation laws (32) and (33) are preserved as
a consequence of Corollary 1.

Second-order schemes
Here, we introduce new families of second-order schemes that preserve three con-

servation laws. The stencil in space consists of four points, and we set A = −1 and
B = 2 in (7). All the free parameters in the formulae below (α, β, γ, ξ) are O(Δx2).
Free parameters corresponding to higher-degree perturbations are set equal to zero as
their contribution is negligible.

Momentum-conserving schemes
We have obtained six families of semidiscretizations that preserve the conservation

law (34), split by two different forms of the characteristic and the three parameter
values s ∈ {0, 1/3, 1/2}.

The first three families are

F̃1 = − (V0 + αD2
m V−1), G̃1 = μm(U0 + sΔx2D2

mU−1),

F̃2 = (1 + β)D2
mU−1 − U0 − (U0 + (1−s)Δx2

3−5s D2
mU−1)(U0 + sΔx2

5s−1 D2
mU−1)

+ { sΔx2
s+1 + ξ(3s − 1)(1 − 2s)}{D2

m(U 2−1) − (DmU−1)(DmU0)},
G̃2=μm

(
V0+γ D2

m V−1

)
, G̃3= G̃1G̃2, Q̃3=(G̃2, G̃1)

T. (39)

Three remaining are given by F̃1, F̃2 and G̃2 as in (39) together with

G̃1 =μm

(
U0 + γ D2

mU−1

)
,

Q̃3 =
(
μm(V0 + sΔx2D2

m V−1), μm(U0 + sΔx2D2
mU−1)

)T
,

G̃3 = (μmU0)(μm V0)−(γ + sΔx2)μm{(D(c)
m U0)(D(c)

m V0)}
+ sγΔx2(Dm D(c)

m U0)(Dm D(c)
m V0).

In the numerical tests section, we limit our investigations to the semidiscretizations
obtained from (38) with (39) and s = α = β = ξ = 0, γ = λ1Δx2; we use MC2(λ1)

to denote the family of finite difference schemes obtained by using the symplectic
implicit midpoint method (Gauss–Legendre method of order two) to discretize in
time. The iterative technique described in Sect. 3.3 also finds these schemes, but no
others.

Energy conserving schemes
There is only one family of semidiscretizations of the form (38) that preserves the

local conservation law of the energy. For this family, F̃1 and G̃2 are defined as in (39)
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and

G̃1 = μmU0, F̃2 = (1+β)D2
mU−1−U0−(μ2

mU−1)
2, Q̃4 = (−μm F̃2,−μm F̃1)

T

G̃4 = 1
2

{
(μmU0)

2 + (1 + β)μm
(
(D(c)

m U0)
2)}

+ 1
2

{
μm(V0 + αD2

m V−1)μm(V0 + γ D2
m V−1)

}
+ 1

3 (μmU0)μm
(
(μ2

mU−1)
2).
(40)

The resulting system of ODEs can be written in the form

Dt

(
μmU0
μm V0

)
= D̃

(
EμmU(H̃)

EμmV(H̃)

)
, (41)

with

H̃ = G̃4, D̃ =
(

0 D̃x

D̃x 0

)
, D̃x = Dm(μm + γ Dm D(c)

m S−1
m )−1.

The operator D̃ is not skew-adjoint, but satisfies (24). Therefore, by applying the AVF
method (22) to (41) we obtain a family of fully discrete schemes that preserve the
local conservation law of the energy. We use EC2(λ2) to denote the schemes with
α = γ = 0 and β = λ2Δx2. Again, the iterative technique from Sect. 3.3 yields only
these schemes.

Fourth-order schemes
The families of fourth-order schemes introduced here preserve three conservation

laws and depend on free parameters (α, β, γ, ξ ) that are all O(Δx4). Parameters
introducing only perturbations of higher degree are set equal to zero.

For each of the semidiscretizations introduced in this section, the discrete fluxes
F̃j are second-order accurate, but Dm F̃j and the three preserved conservation laws,

ÃQ̃ j = Dm F̃j + Dt G̃ j ,

are approximated with fourth-order accuracy.

Momentum-conserving schemes
On a spatial stencil with six points (A = −2 and B = 3 in (7)), there are two

families of semidiscretizations that preserve the local momentum conservation law.
Let

Φ(Z; p) := Z−1 + pΔx2D2
m Z−2,

Θ(Z; p1, p2, p3, p4, p5, p6) :=D2
mΦ(Z; p1)(D2

mΦ(Z; p2))

+ p3(SmΦ(Z; p4))D4
m Z−2

+ p5Dmμm(Φ(Z; p6))D3
mμm Z−2.
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The first family of semidiscretizations and their preserved conservation laws is
given by

F̃1 = −(V0− Δx2
24 D2

m V−1+αD4
m V−2), G̃1 =μm(U0− Δx2

8 D2
mU−1),

F̃2 = D2
mU−1 − U0 − U 2

0 + Δx2
24 D2

m(U−1 + U 2−1 − 3D2
mU−2) + βD4

mU−2

− γ
2 Θ(U ;− 1

4 ,− 3
8 ,−2,− 3

16 ,−2,− 1
16 ) + 7Δx4

192 Θ(U ; 0, 0, 8
7 ,− 3

8 , 0, 0),

G̃2 = μm(V0 − Δx2
8 D2

m V−1 + ξ D4
m V−2), Q̃3 = (G̃2, G̃1)

T , G̃3 = G̃1G̃2. (42)

The second family has F̃1, F̃2 and G̃2 as in (42), together with

G̃1 = μm(U0− Δx2
8 D2

mU−1+ξ D4
mU−2),

Q̃3 = (
μm(V0− Δx2

8 D2
m V−1), μm(U0− Δx2

8 D2
mU−1)

)T
,

G̃3 = {μm(U0− Δx2
8 D2

mU−1)}{μm(V0− Δx2
8 D2

m V−1)}
+ ξ(Dm D(c)

m U0)(Dm D(c)
m V0) + ξΔx2

8 μm{(D2
m D(c)

m U−1)(D2
m D(c)

m V−1)}.

We use MC4(λ3) to denote the schemes obtained by applying the Gauss–Legendre
method of order four to (42), with α = β = γ = 0 and ξ = λ3Δx4.
Energy-conserving schemes

On the most compact six-point stencil, there are no semidiscretizations of the form
(38) that preserve the local conservation law for energy. However, a seven-point stencil
(B = −A = 3 in (7)) is more fruitful. For n ∈ N, let

ϕn(k) =
{

� n
2 , if k ≥ n

2 ,

k + 1, if k < n
2 ,

and define the operators

ν±
m = I ± Δx2

6 D2
m S−1

m

and the functions

F̂1 = − (ν−
m V−1 + αD4

m V−3),

F̂2 = D2
mU−2 − ν−

m U−1 − (ν+
m U−1)

2 + (β − Δx2
4 )D4

mU−3

+ Δx2
6

{
2(ν+

m U−1)(D2
mν+

m U−2) + D2
m

(
(ν+

m U−2)
2)} .
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The family of semidiscretizations and conservation laws is as follows:

F̃1 = μm F̂1, G̃1 = U0,

F̃2 = μm F̂2, G̃2 = V0 + γ D4
m V−2,

Q̃4 = (−ν+
m Sm F̂2,−ν+

m Sm F̂1)
T ,

G̃4 = 1
2 {(V0 + γ D4

m V−2)ν
+
m (ν−

m V0 + αD4
m V−2)

+ μm{(DmU−1)Dmν+
m (U−1 − Δx2

4 D2
mU−2)} + U0ν

+
m (ν−

m U0 − βD4
mU−2)}

+ 1
3U0ν

+
m

(
(ν+

m U0)
2 − Δx2

6

(
2(ν+

m U0)(D2
mν+

m U−1) + D2
m((ν+

m U−1)
2)

))
.

(43)

The systems of ODEs defined by (38) with (43) amount to

Dt

(
U0
V0

)
= D̃

(
EU(H̃)

EV(H̃)

)
, (44)

with

H̃ = G̃4, D̃ =
(

0 D̃x

D̃x 0

)
, D̃x = Dmμm(Smν+

m + γ D4
m S−1

m ν+
m )−1.

The operator D̃, although not skew-adjoint, satisfies (23). We use EC4(λ4) to denote
the family of schemes obtained by applying the AVF method of order four (see [19])
to (44) with α = λ4Δx4 and β = γ = 0.

5 Numerical Tests

In this section, we solve a couple of benchmark problems to show the effectiveness
and conservation properties of the numerical methods in Sect. 4.

The results are compared with the following second-order structure-preserving
methods:

• The multisymplectic scheme for (30),

PS ≡ D2
nμ4

mu−2,−1 − D2
mμ2

mμ2
nu−2,−1 − D2

mμmμn(μmμnu−2,−1)
2

+ D4
mμ2

nu−2,−1 = 0,

developed in [22] and equivalent to the well-known Preissmann scheme.
• The symplectic scheme for (31) in [7],

MP ≡ (
Dnu0,0 − D(c)

m μnv0,0,

Dnv0,0 + D(c)
m (D2

mμnu−1,0 − (μnu0,0)
2 − μnu0,0

) = 0,

obtained by applying the midpoint rule to a suitable spatial discretization.
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• The energy-conserving scheme for (31) in [16],

DVD ≡ (
Dnu0,0 − Dmμnv0,0, Dnv0,0

+Dm(D2
mμnu−2,0− 1

3 (u
2−1,0+u−1,0u−1,1+u2−1,1)−μnu−1,0)

)=0,

obtained using a discrete variational derivative method. This scheme can be
obtained also by applying the AVF method to the Hamiltonian system of ODEs
defined by

D̃ =
(

0 Dm S−1
m

Dm 0

)
, H = 1

2 (U
2
0 + V 2

0 + μm((DmU−1)
2) + 1

3U 3
0 .

To the best of our knowledge, there are no schemes in the literature for the Boussinesq
equation that are fourth-order accurate in both space and time. Therefore, we com-
pare the performance of the fourth-order schemes in Sect. 4 with the following finite
difference scheme for (30) introduced in [13]:

FD4 ≡ (1 + Δx2
12 D2

m S−1
m )2D2

nu0,0

− D2
mμn

{
(1 + Δx2

12 D2
m S−1

m )(μnu−1,0 + (μnu−1,0)
2) − D2

mμnu−2,0

}
.

The scheme FD4 is fourth-order accurate in space and second-order accurate in time,
so to have a fair comparison we will use this scheme with a time step equal to Δt2.

We consider (x, t) ∈ Ω ≡ [a, b] × [0, T ] and periodic boundary conditions. We
introduce on Ω a grid with I + 1 nodes, xi , in space and J + 1 nodes, t j , in time.
Henceforth subscripts denote shifts from the point (x0, t0) = (a, 0) (e.g. ui, j �
u(a + iΔx, jΔt)).

As the computational time is similar for all the schemes of the same order of
accuracy, our comparisons are based on the error in the solution at the final time
t = T , evaluated as

‖u − uexact‖
‖uexact‖

∣∣∣∣
t=T

, (45)

where ‖ · ‖ denotes the Euclidean norm. We also compare the errors in the global
invariants (37) defined as

Errα =Δx max
j=1,...,J

∣∣∣∣∣

I∑

i=0

(
G̃α

∣∣∣
Um=um+i, j ,Vm=vm+i, j

− G̃α

∣∣∣
Um=um+i,0,Vm=vm+i,0

)∣∣∣∣∣ ,

where α = 1, 2, 3, 4. For the methods introduced in this paper, G̃α is given in Sect. 4.
For all the other schemes, we set

G̃1=U0, G̃2=V0, G̃3=U0V0, G̃4= 1
2 (U

2
0 +V 2

0 +μm((DmU−1)
2)+ 1

3U 3
0.
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Table 1 Single soliton problem: π(Δx) for each scheme

Δx = Δt 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MC2(0) 1.99 2.00 1.97 1.92 1.96 1.94 1.70 2.00

EC2(0) 1.99 1.97 1.94 1.94 1.91 1.88 1.66 1.88

MC4(0) 4.00 3.99 3.98 3.96 3.95 3.99 3.80 3.94

EC4(0) 4.01 4.00 4.05 4.13 4.06 4.21 4.32 4.26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.910−7

10−6

10−5

10−4

10−3

10−2

10−1

100

EC2(0) EC4(0)
MC2(0) MC4(0)
slope 2 slope 4

Fig. 1 Single soliton problem: plot of π(Δx) showing convergence of the schemes

Single soliton
For the first problem, we set Ω = [−60, 60] × [0, 25] and the initial conditions

given by the single soliton solution over R,

uexact(x, t)=− 3p2

2 sech2
( p
2 (x−ct+d)

)
, vexact(x, t)= 3cp2

2 sech2
( p
2 (x−ct+d)

)
,

where c = √
1 − p2. We choose

p = 1√
3
, d = 10.

We first examine the convergence and stability of the schemes found in Sect. 4, set-
ting all parameters to zero. The order of convergence at various step sizes is measured
by

π(Δx) = (k − 1) log(errork/errork−1)

k
, where k = 10Δx,

and errork denotes the error obtained from (45) with Δx = Δt = k/10, for k =
1, 2, . . . , 9. The results in Table 1 and Fig. 1 show that all the methods tend to the
exact solution with the expected maximum order of convergence as the grid is refined
and are stable also for the largest step sizes.
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Table 2 Single soliton problem with Δx = 0.5 and Δt = 0.5 (except FD4)

Method Err1 Err2 Err3 Err4 Sol. Err.

MC2(0) 6.22e−15 6.22−15 1.22−15 7.90−04 0.0293

MC2(−0.21) 5.33−15 1.33−15 1.22−15 3.77−04 0.0059

EC2(0) 4.44−15 4.00−15 1.08−05 6.66−16 0.0415

EC2(−0.20) 3.55−15 3.55−15 2.63−06 1.22−15 0.0062

PS 5.88−16 0.0194 5.79−04 0.0013 0.0238

MP 5.77−15 4.89−15 2.77−04 0.0030 0.0706

DVD 5.77−15 4.00−15 0.0053 3.44−15 0.0740

MC4(0) 5.77−15 5.77−15 2.00−15 3.18−05 7.84−04

MC4(0.06) 5.77−15 9.33−15 2.89−15 8.50−06 1.23−04

EC4(0) 6.66−15 1.36−11 4.02−08 5.03−14 4.12−04

EC4(0.03) 6.21−15 1.57−12 1.47−08 5.57−14 1.94−04

FD4 (Δt = 0.52) 9.97−12 0.0036 1.07−04 2.84−04 0.0038

Table 2 shows the error in the conservation laws and the solution for the different
methods with Δx = Δt = 0.5. For this problem, the values of the free parameters
that minimize the error in the solution of MC2(λ1), EC2(λ2), MC4(λ3), EC4(λ4) are
λ1 = −0.21, λ2 = −0.20, λ3 = 0.06, λ4 = 0.03. Such optimization is easy given
that the solution is known, but is not currently feasible more generally. Therefore, the
results obtained by setting the above parameters to zero are shown for comparison.
This benchmark test illustrates that:

• All schemes preserve the first conservation law, but only those based on the for-
mulation (31) preserve the second conservation law;

• The schemes introduced in this paper preserve three conservation laws up to
machine accuracy;

• The new second-order schemes compare favourably with the methods from the
literature in terms of accuracy in both the solution and the invariants that are not
exactly conserved, even without optimizing the parameters;

• Choosing the optimal value of the free parameter, the error in the solution is roughly
four times smaller (or more) than any other second-order method;

• The fourth-order methods are all more much accurate than FD4 with time step
Δt = 0.52, even for nonoptimal parameters.

In Fig. 2, the upper plot shows the solution obtained by the most accurate scheme,
MC2(−0.21). The motion of the soliton does not produce any spurious oscillations.
These can be seen (with amplitude of about 10−2) in the solutions of MP and DVD.

The lower plot shows the exact solution and the solution of MC2(−0.21) compared
to the solutions of MP and PS around the top of the soliton. (We omit the solution of
DVD as it is the least accurate.) The approximate solutions have been reconstructed
using cubic spline interpolation of the values at the grid points denoted with markers.
This figure shows how well the solution of MC2(−0.21) matches both the phase and
the amplitude of the soliton.
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0.4

0.45

0.5
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Exact
MC2(−0.21)
MP
PS

Fig. 2 Top: initial condition (dashed line) and solution of MC2(−0.21) at T = 25 (solid line). Bottom:
comparison of different schemes around the top of the soliton

Figure 3 shows the difference between the exact solution and the solutions of
MC4(0.06) and FD4 (with Δt = 0.52). The error in MC4 is roughly 30 times smaller,
is located mainly at the peak of the soliton, and can be ascribed to a small phase error.
The error of FD4 is more widespread.

Interaction of two solitons
We now study the interaction of two solitons over Ω = [−150, 150]× [0, 50]. The

exact solution over R is [15],

uexact = −6D2
x logω(x, t), ω(x, t) = 1 + exp(η1) + exp(η2) + A exp(η1 + η2),

(46)
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Fig. 3 Single soliton: error of fourth-order schemes

Table 3 Interaction of two solitons with Δx = 0.5 and Δt = 0.5 (except FD4)

Method Err1 Err2 Err3 Err4 Sol. Err.

MC2(0) 1.69−14 7.83−15 1.62−15 0.0461 0.0257

MC2(−0.19) 1.60−14 9.44−16 9.58−16 0.0479 0.0061

EC2(0) 1.33−14 3.80−15 7.32−05 1.44−15 0.0362

EC2(−0.18) 1.60−14 4.86−15 7.88−05 1.55−15 0.0057

PS 3.11−16 3.44−05 2.84−04 0.0519 0.0176

MP 1.07−14 3.66−15 1.55−04 0.0532 0.0676

DVD 1.07−14 3.72−15 0.0300 1.44−15 0.0422

MC4(0) 1.33−14 4.55−15 1.71−15 0.0494 5.08−04

MC4(0.06) 1.42−14 4.02−15 1.86−15 0.0495 1.12−04

EC4(0) 1.15−14 3.16−15 3.91−07 1.21−14 3.20−04

EC4(0.02) 1.15−14 6.16−15 3.89−07 1.25−14 2.56−04

FD4 (Δt = 0.52) 2.98−12 4.10−04 4.23−05 0.0522 0.0040

where

η j = p j (x − c j t + d j ), c j = (−1) j
√
1 − p2j , A = (c1 − c2)2 − 3(p1 − p2)2

(c1 − c2)2 − 3(p1 + p2)2
.

We obtain the initial conditions from (46) setting

p1 = 1√
6
, p2 = 1√

5
, d2 = −d1 = 20,
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Fig. 4 Solution of EC2(−0.18) on Ω and at the time T = 50

and solve this problemwithΔx = Δt = 0.5. The optimal values of the free parameters
for each of the families MC2(λ1), EC2(λ2), MC4(λ3), EC4(λ4) are λ1 = −0.19,
λ2 = −0.18, λ3 = 0.06, λ4 = 0.02. The results in Table 3 are consistent with those
in Table 2, and analogous remarks apply.

Figure 4 shows the solution of themost accurate second-order scheme,EC2(−0.18),
on the whole domain Ω (upper plot) and at the final time (lower plot). The schemes
MP and DVD produce oscillations (amplitude � 0.005), where the exact solution is
flat. These do not occur in the solution of EC2(−0.18).
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Fig. 5 Comparison of different schemes around the top of the two solitons

Figure 5 shows how the different schemes approximate the peak of the two soli-
tons (omitting the least accurate solution of MP). The solution of EC2(−0.18) best
reproduces the speed and the amplitude of the two waves.

Finally, Fig. 6 compares the difference between the exact solution and the approxi-
mations given by MC4(0.06) and FD4 (with Δt = 0.52). Just as for the single soliton,
the error of FD4 has a higher amplitude and spreads far from the final location of the
two solitons.

6 The Potential Kadomtsev–Petviashvili (pKP) Equation

This section briefly demonstrates that the novel strategy described in Sect. 3.3 is
practicable for PDEs with more than two independent variables. We seek to preserve
two conservation laws,
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Fig. 6 Interaction of two solitons: error of fourth-order methods

Dx Fi + DyGi + Dt Hi = 0,

of the pKP equation,

uxt + 3
2ux uxx + 1

4uxxxx + 3
4uyy = 0. (47)

Note: Throughout this section, Hi and H̃i are components of conservation laws, not
Hamiltonians.

The characteristicsQ1 = 1,Q2 = ux , correspond, respectively, to the conservation
laws with components

F1 = 3
4u2

x + 1
4uxxx , G1 = 3

4uy, H1 = ux , (48)

F2 = 1
2u3

x + 1
4ux uxxx − 1

8u2
xx + 3

8uuyy, G2 = 3
8 (uyux − uuxy), H2 = 1

2u2
x .

(49)

We introduce a uniform grid in space with nodes (xm, yn) and useUm,n(t) to denote
a semidiscrete approximation ofu(xm, yn, t). In this section, Dn andμn are the forward
difference and forward average operators acting on the second index, respectively.

The approach in Sect. 3.3 can be applied to a full 15-point rectangular stencil; this
yields a wide range of families of methods. For brevity, we present here only those
schemes for which all spatial derivatives are approximated on a one-dimensional spa-
tial stencil consisting of three and five points, respectively, for the y- and x-derivatives.
There are just two one-parameter families, both of the form

Dm F̃1 + DnG̃1 + Dt H̃1 = 0 (50)

(so Q̃1 = 1), that preserve semidiscrete versions of (48) and (49).

123



Foundations of Computational Mathematics

The first family is defined by

F̃1 = 3
4 (D(c)

m U−1,0)(D(c)
m U0,0) + 1

4 D3
mU−2,0,

G̃1 = 3
4 DnU0,−1,

H̃1 = (I + αD2
m S−1

m )D(c)
m U0,0; (51)

the semidiscrete version of (49) is

Q̃2 = 1
3 D(c)

m (U−1,0 + U0,0 + U1,0),

F̃2 = ( α
2 − Δx2

6 )
{
(D(c)

m μmU−1,0)(Dt Dm D(c)
m U−1,0) − (Dm D(c)

m U−1,0)(Dt D(c)
m μmU−1,0)

}

+ 1
2 (D(c)

m μmU−1,0)(D(c)
m U−1,0)(D(c)

m U0,0) + 1
12 (D3

mU−2,0)Dm (U−2,0 + U−1,0 + U0,0)

− 1
24 {(D2

mU−2,0)
2 + (D2

mU−2,0)(D2
mU−1,0) + (D2

mU−1,0)
2}

+ 1
8μm {U−2,0D2

nU0,−1 + U0,0D2
nU−2,−1} + 1

16 {U−1,0D2
nU0,−1 + U0,0D2

nU−1,−1},
G̃2 = 1

8 (DnU0,−1)D(c)
m μn (U−1,−1 + U0,−1 + U1,−1)

− 1
8 (μnU0,−1)D(c)

m Dn (U−1,−1 + U0,−1 + U1,−1),

H̃2 = 1
2 (D(c)

m U0,0)
2 + { α

6 D(c)
m (U−1,0 + U1,0) + α+Δx2

6 D(c)
m U0,0}D2

m D(c)
m U−1,0.

The second family has G̃1 and H̃1 as above, together with

F̃1 = (D(c)
m U−1,0)(D(c)

m U0,0) − 1
4 (DmU−1,0)

2 + 1
4 D3

mU−2,0. (52)

The semidiscrete version of (49) is

Q̃2 = 1
2 D(c)

m (U−1,0 + U1,0),

F̃2 = ( α
2 − Δx2

4 )
{
(D(c)

m μmU−1,0)(Dt Dm D(c)
m U−1,0) − (Dm D(c)

m U−1,0)(Dt D(c)
m μmU−1,0)

}

+ 1
4 (D(c)

m U−1,0)(D(c)
m U0,0)Dm (U−2,0 + U0,0) + 1

8 (D3
mU−2,0)Dm (U−2,0 + U0,0)

− 1
16 {(D2

mU−2,0)
2 + (D2

mU−1,0)
2} + 3

16μm {U−2,0D2
nU0,−1 + U0,0D2

nU−2,−1},
G̃2 = 3

16 (DnU0,−1)D(c)
m μn (U−1,−1 + U1,−1) − 3

16 (μnU0,−1)D(c)
m Dn (U−1,−1 + U1,−1),

H̃2 = 1
2 (D(c)

m U0,0)
2 + { α

4 D(c)
m (U−1,0 + U1,0) + Δx2

4 D(c)
m U0,0}D2

m D(c)
m U−1,0.

For both families, α = O(Δx2,Δy2). Let MC1(α) and MC2(α) denote the two
families of fully discrete schemes obtained by applying implicit midpoint in time to
(50) with (51) and (52), respectively.

Numerical test
As a brief test of the above schemes for the pKP equation, we use the following

travelling wave solution of (47) [2]:

u(x, y, t) = 2 tanh(x + y − 7
4 t + 5) + 2. (53)

We apply methods MC1(0) and MC2(0) to the pKP equation on the domain Ω =
[−0.5, 0.5] × [−10, 10] × [0, 5] with initial and Dirichlet boundary conditions given
by (53), using step lengths Δx = 0.01,Δy = 0.2 and Δt = 0.05.

123



Foundations of Computational Mathematics

Fig. 7 Initial condition (left) and solution of MC1(0) at time t = 5

Figure 7 shows the profile of the wave at the initial time and the numerical solution
of MC1(0) at the final time t = 5. Both MC1(0) and MC2(0) simulate the motion of
the wave to the required accuracy, with a maximum absolute error in the solution of
3.40 × 10−4 and 3.41 × 10−4, respectively.

7 Conclusions

In this paper, we have introduced a new approach to constructing finite difference
approximations to a system of PDEs that preserve multiple conservation laws. This
is based on discretizing one dimension at a time, using semidiscrete Euler operators
to find constraints that simplify the remaining symbolic computations. This is much
cheaper than the approach introduced in [9] and can be iterated to apply to PDEs with
more than two independent variables. We have proved that any symplectic Runge–
Kutta method preserves local conservation laws with quadratic density and that the
AVFmethodpreserves the local conservation lawof the energyundermilder conditions
than the skew-adjointness of the discrete operator D̃.

Thenewstrategyhas been applied to obtainmethods that preserve either themomen-
tum or the energy of the Boussinesq equation. These are obtained as families that
depend on a number of free parameters. Numerical tests have shown that the new
schemes are competitive with respect to other methods in the literature and confirmed
their conservation properties. Very accurate solutions can be obtained by selecting
optimal parameter values. However, these values depend strongly on the choice of
initial condition.

Finally, we have given an example that the new approach is practicable for PDEs
with three independent variables, by finding two new families of schemes that preserve
two conservation laws for the pKP equation.
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