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Linear systems analysis for laminar 
fMRI: Evaluating BOLD amplitude 
scaling for luminance contrast 
manipulations
Jelle A. van Dijk   1,2*, Alessio Fracasso2,3,4, Natalia Petridou4 & Serge O. Dumoulin1,2,5

A fundamental assumption of nearly all functional magnetic resonance imaging (fMRI) analyses is that 
the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) 
signal can be described as following linear systems theory. With the advent of ultra-high field (7T and 
higher) MRI scanners, it has become possible to perform sub-millimeter resolution fMRI in humans. A 
novel and promising application of sub-millimeter fMRI is measuring responses across cortical depth, 
i.e. laminar imaging. However, the cortical vasculature and associated directional blood pooling 
towards the pial surface strongly influence the cortical depth-dependent BOLD signal, particularly 
for gradient-echo BOLD. This directional pooling may potentially affect BOLD linearity across cortical 
depth. Here we assess whether the amplitude scaling assumption for linear systems theory holds 
across cortical depth. For this, we use stimuli with different luminance contrasts to elicit different 
BOLD response amplitudes. We find that BOLD amplitude across cortical depth scales with luminance 
contrast, and that this scaling is identical across cortical depth. Although nonlinearities may be present 
for different stimulus configurations and acquisition protocols, our results suggest that the amplitude 
scaling assumption for linear systems theory across cortical depth holds for luminance contrast 
manipulations in sub-millimeter laminar BOLD fMRI.

The cerebral cortex consists of separate cortical regions that perform specialized computations. The first parcel-
lation of the cortex into separate cortical regions was based on anatomical differences across cortical depth, i.e. 
cortical layers or laminae1–6, for reviews see7,8.

Magnetic resonance imaging (MRI) is one of the most popular techniques to study the human brain 
non-invasively. The recent development in static magnetic field strength to ultra-high fields of 7 Tesla and higher, 
has enabled researchers to investigate the human brain at a sub-millimeter (mesoscopic) scale. At this spatial 
resolution, it becomes possible to measure both anatomical and functional cortical depth-dependent signals 
that reflect contributions of different cortical layers. Sub-millimeter (laminar) functional MRI (fMRI) prom-
ises to complement anatomical measurements across cortical depth with functional properties that may indicate 
feed-forward and feedback processes9,10.

However, fMRI across cortical depth faces substantial challenges9,11,12. One dominant challenge relates to the 
cortical vascular organization. While fMRI detects hemodynamic consequences of neuronal activity13,14, the cor-
tical vasculature has a specific organization across cortical layers: blood flows from pial and intracortical arteries 
and arterioles to the capillary bed that directly interfaces with neuronal tissue, and is then drained via venules and 
intracortical veins to larger pial veins at the cortical surface15,16. This likely explains a large part of the consistently 
reported finding that BOLD signal amplitude is larger at the cortical surface and systematically decreases toward 
deeper layers, see e.g.9,17–31. The vascular architecture across cortical depth has also been modeled in detail e.g.32,33 
and poses a fundamental challenge for the analysis of laminar fMRI as blood pooling effects might differently 
affect the blood oxygenation level dependent (BOLD) signal in deeper layers compared to more superficial ones34.
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Furthermore, due to the directional blood pooling across layers, hemodynamic responses from deeper cor-
tical layers influence signals at superficial layers. For example, if there is neuronal activity in the deeper cortical 
depth portions only and not in the more superficial ones, a BOLD signal change would be measured at all cor-
tical depths, due to this directional blood pooling (see Fig. 1, lowest red line). Theoretically, this could occur in 
absence of feedforward signals due to clinical manifestations, see e.g.35, or in situations where neural activity is 
primarily driven by feedback signals -typically arriving in the supragranular and/or infragranular depth portions, 
as demonstrated by Kok and colleagues36 and Klein et al.37.

In summary, the specific cortical vascular organization might undermine fundamental assumptions in fMRI 
analysis at the sub-millimeter scale. Nearly all fMRI data-analysis techniques assume that fMRI responses are 
linearly proportional to a local average neuronal activity over a period of time following linear systems theory38. 
For this theory to hold, two assumptions must be met: scaling and temporal additivity. These assumptions have 
been tested for conventional supra-millimeter fMRI for which they largely hold, provided that the stimuli used 
are within a defined range of stimulus parameters that is commonly used in neuroimaging experiments, see 
e.g.13,38–42; for nonlinearities, mostly found in event-related designs, see e.g.43–49. Based on these results at conven-
tional resolutions, the assumptions for a linear system are expected to largely hold for responses across cortical 
depth. However, the laminar BOLD signal amplitudes and directional blood pooling across layers potentially 
violate these assumptions, as different portions across cortical depth are not independent.

Here we test whether the scaling assumption for a linear system holds in human visual cortex for BOLD 
amplitude across cortical depth using the most common acquisition protocol at 7T; gradient echo (GRE) BOLD 
fMRI. Thus, we seek to extend the BOLD linearity assumption to the cortical depth domain, specifically for ampli-
tude scaling. If we define a system with a hemodynamic transform L, neuronal response over time n(t), and the 
hemodynamic response H(t) as output:

=L n t H t[ ( )] ( ) (1)

For the scaling assumption to be satisfied, the new output must be equal to the original output, multiplied by 
a constant k:

= =L kn t kL n t kH t[ ( )] [ ( )] ( ) (2)

On a sub-millimeter level, however, the hemodynamic response at depth d does not only depend on the local 
neuronal response, but also on responses at deeper cortical depths because of the draining effects towards the 
cortical surface. Thus, the hemodynamic response at depth d can be expressed as:

Figure 1.  Theoretical response amplitude changes across cortical depth as luminance contrast increases. See 
also Eq. 4. WM = white matter, CSF = cerebrospinal fluid. Gray line: Base response amplitude across cortical 
depth for a given contrast, Hc(d), red and green lines indicate theoretical response changes as the luminance 
contrast increases. The green line satisfies the scaling requirement according to linear system theory, i.e. the 
response increase corresponds to a multiplication of Hc(d) with a scaling factor k, resulting in kHc(d). Both 
red lines indicate potential increases in responses that do not follow linear system theory. The lower red line 
corresponds to adding a response at the deepest cortical depth d0, and the resulting draining offset to the 
original BOLD response, Hc(d) + Hc2(d0). Although this is a linear transformation, this does not satisfy the 
scaling requirement for a linear system. The upper red line corresponds to a response increase that includes a 
maximum response. A maximum response is also a nonlinear - and biologically plausible - transformation.
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 reflects the draining from the sum of the hemodynamic 
response Hc(i) at all cortical depths below depth d, up to the gray-white matter surface d0, each weighted by a 
factor wi

50,51. This weighting factor represents an estimation of the draining of altered deoxyhemoglobin content 
and increased blood pressure from lower layers51. The hemodynamic response at a given depth is thus a combina-
tion of the local neuronal activity and draining from deeper layers. Therefore, the hemodynamic response is not 
only dependent on the neural responses at that location (or depth) but also on the neural responses at other loca-
tions (depths). This dependence might violate the assumption that the hemodynamic response is proportional to 
the underlying local neural activity and could drive the system nonlinear. For example, if task demands drive 
deeper cortical depths more actively than more superficial depths due to feedback connections52,53, this would 
result in an increase in the hemodynamic response at all depths, while there is no additional local neuronal com-
ponent at most depths. This is illustrated in Fig. 1, lower red curve. This violates the scaling assumption between 
cortical depths.

We can express the scaling assumption across cortical depth as:

=H d kH d( ) ( ) (4)c c2 1

where Hc1(d) and Hc2(d) are the hemodynamic responses at each cortical depth d, for condition c1 and c2 respec-
tively, and k is a scaling constant from one stimulus condition to another (Fig. 1, green curve), which should be 
constant across depth for the scaling assumption to hold across cortical depth.

We used stimuli with different luminance contrasts (i.e. sinewave gratings with 5, 20, and 80% luminance con-
trast) to elicit gradually increasing neuronal responses. For linear amplitude scaling across cortical depth to hold, 
the BOLD response amplitude across cortical depth to a higher contrast (Fig. 1, green curve) should be equal to 
the response profile across cortical depth for another contrast, multiplied with a scaling factor k that is independ-
ent of cortical depth (Fig. 1, gray curve), therefore retaining the shape but changing in amplitude. Figure 1 also 
shows two changes in response amplitude that do not follow linear systems theory (Fig. 1, red lines). For example, 
an intercept shift due to e.g. a spatially restricted increase in neuronal activation does not satisfy linear systems 
theory requirements (Fig. 1, lower red curve).

All subjects participated in two sessions. In one session, participants passively fixated the center of a large 
fixation cross, while they performed a one-back motion direction discrimination task in the other session. We 
find that response amplitudes increase with increasing contrast, and increase towards the cortical surface. Scaling 
these responses according to linear systems theory resulted in excellent overlap between responses. Our results 
thus support the null-hypothesis that findings from conventional (supra-millimeter) GRE BOLD fMRI extend to 
the cortical depth domain for stimulus luminance contrast.

Results
BOLD signal amplitude increases with luminance contrast and cortical depth.  For each subject, 
the fMRI signal increased both as a function of luminance contrast and cortical depth in V1-3 (see Fig. 2A–C for 
V1 for three example participants; for additional participants see Fig. S2). These signal increases are consistent 
with previous literature reporting increases with luminance contrast38,39 and cortical depth17,21,28,54. The latter is 
expected based on the cortical vasculature, as blood pooling increases towards the pial surface15. The 95% confi-
dence interval across repeated stimulus presentations increased towards the cortical surface. This is expected as 
thermal noise scales with signal amplitude.

Next, we averaged the different subjects and observed the same signal increase (Fig. 2D–F). For example, in 
the central depth bin of V1 (Fig. 2D), the 5% luminance contrast elicited a response amplitude of 0.8% BOLD, 
whereas 20% and 80% luminance contrast elicited 1.1% BOLD and 2.6% BOLD respectively in the same depth 
bin. For V2 (Fig. 2E), the 5%, 20%, and 80% luminance contrast elicited a response amplitude of 1.3, 1.6, and 
2.4% BOLD in the central depth bin respectively. For V3 (Fig. 2F), these values were 1.5, 1.7, and 2.4% BOLD 
respectively.

Variability across cortical depth (Fig. 2G–I) was expressed by dividing the standard deviation of the signal 
amplitude across repeated stimulus presentations at a given cortical depth bin within a given visual field map by 
the mean signal amplitude across repeated stimulus presentations at each depth bin within each visual field map, 
expressed as a percentage. This was calculated for each participant separately. Variability was highest for 5% lumi-
nance contrast responses for all visual field maps, with 80% consistently showing the lowest variability. Variability 
was generally lowest around the central depth bins, increasing outwards. In V1, there is a notable increase in 
variability near the gray-white matter surface. Additionally, variability is generally higher in V1 for 5% and 20% 
luminance contrast with respect to the other visual field maps. This is mainly driven by a lower BOLD response 
amplitude for these luminance contrasts compared to other visual field maps, as visible in Fig. 2D.

Linear systems theory captures differences in signal amplitudes.  To assess the response linearity 
across cortical depth, we plotted all unique combinations of BOLD responses to two different luminance contrasts 
across cortical depth for each individual participant (Fig. 3A–C; see Fig. S2 for separate plots for each contrast 
pair). If responses to a higher luminance contrast (Hc1(d)) are a scaled version of a lower luminance contrast 
(kHc1(d), see Eq. 4), BOLD responses across cortical depth should fall on a straight line going through the origin 
with a slope equal to k. For V1, these linear fits explained an average variance of r2 = 0.99, 0.97, and 0.99 for 5% to 
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20%, 5% to 80%, and 20% to 80% luminance contrast scaling respectively. For V2, the average explained variance 
was r2 = 0.99, 0.99, and 0.98, and r2 = 0.96, 0.99, and 0.98 for V3.

To visualize the results in an alternative way, we plotted the averaged original responses (Hc1(d)) and averaged 
scaled responses (kHc1(d), Eq. 4; Fig. 3D–F). See Table 1, left value in every cell, for all group estimates of k. The 
scaled responses were good predictors for responses at other contrasts. Both analyses indicate that the response 
amplitude across cortical depth elicited by one luminance contrast, was an excellent predictor for the response 
amplitude across cortical depth to another luminance contrast. Moreover, the scaled contrast-independent lam-
inar response curve (Hcir(d), Fig. 3G–I) explained an average variance of r2 = 0.98 for scaling to the 5% contrast 
response curve in V3, and explained an average variance of r2 = 0.99 for all other visual field maps and contrasts. 
See Table 2, left value in every cell, for the associated scaling factors k.

Figure 2.  BOLD response amplitudes as a function of cortical depth and different luminance contrasts for the 
first session. (A–C) BOLD response amplitudes across cortical depth for three example participants, for visual 
field map V1. Error regions represent 95% confidence intervals (+/−1.96 standard errors of the mean) across 
repeated stimulus presentations for a region of interest, for each depth bin and luminance contrast. Panels for 
the other participants can be found in Fig. S2. (D–F) Group averages for visual field map V1, V2, and V3. BOLD 
response amplitudes increase with luminance contrast and towards the cortical surface. Error regions represent 
95% confidence intervals of the mean response across depth between subjects. (G–I) Variability (standard 
deviation across repeated stimulus presentations divided by the mean across voxels, in percentage) over depth 
for visual field map V1, V2, and V3. Thin lines denote individual subject. Thick lines denote group averages. 
Line colors correspond to luminance contrast, as in (A–F).
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Linear amplitude scaling generalizes across sessions.  Next, we assessed whether these results gen-
eralized between sessions. In the second session, participants had to detect when the motion direction of the 
stimulus was identical on two consecutive presentations. The average discriminability (d’) was 2.2, indicating a 
detection performance of well above chance level (d’ of S1-5 were 2.6, 2.2, 2.1, 2.3, and 1.8 respectively, minimum 
d’ for any individual run is 1.4).

Figure 3.  Linear systems theory captures differences in signal amplitude for the first session. (A–C) BOLD 
response amplitude for individual participants for V1, V2, and V3. Different marker shapes represent different 
depth bins. Each possible pair of two out of three luminance contrasts is plotted against each other (different 
colored lines), with %BOLD for the lower contrast on the x-axis, and for the higher contrast on the y-axis. 
Linear fits were forced to only fit a slope parameter, k from Eq. 4. These fits explained 96–99% of variance. See 
Fig. S2 for separate plots of each luminance contrast pair. (D–F) Measured BOLD response across cortical depth 
for different luminance contrasts (colored lines) and visual field maps (different panels), overlaid with scaled 
responses to other contrasts (dotted lines). Scaled responses represent the measured BOLD response across 
cortical depth for other contrasts, scaled by a scaling constant k (see Eq. 4; Table 1). These scaled responses 
explained 96–99% of variance. Error regions represent 95% confidence intervals (+/−1.96 standard errors of 
the mean) of the mean response across depth between subjects. These are scaled by a factor k for the scaled 
responses (see Table 1). (G–I) Measured BOLD response across cortical depth of the first session for different 
contrasts (colored lines) and visual field maps (different panels), overlaid with responses scaled from the 
contrast-independent laminar response curve (Hcir(d)). These scaled responses explained 98–99% of variance. 
Error regions represent 95% confidence intervals of the mean contrast-independent laminar response curve. 
These are scaled by a factor k for the scaled responses (see Table 2).
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Similar to Fig. 3D–F, we plotted the averaged original responses (Hc1(d)) and averaged scaled responses 
(kHc1(d), Eq. 4; Fig. 4A–C). In the central depth bin of V1 (Fig. 4A), the 5% luminance contrast elicited a response 
amplitude of 0.7% BOLD, whereas 20% and 80% luminance contrast elicited 1.1% BOLD and 2.5% BOLD respec-
tively in the same depth bin. For V2 (Fig. 4B), the 5%, 20%, and 80% luminance contrast elicited a response 
amplitude of 1.2, 1.5, and 2.3% BOLD in the central depth bin respectively. For V3 (Fig. 4C), these values were 
1.3, 1.6, and 2.3% BOLD respectively. See Table 1, right value in every cell, for all group estimates of k. The scaled 
responses were excellent predictors for responses at other contrasts. For V1, these scaled responses explained 
an average variance of r2 = 0.98, 0.96, and 0.99 for 5% to 20%, 5% to 80%, and 20% to 80% luminance contrast 
scaling respectively. For V2, the average explained variance was r2 = 0.99, 0.99, and 0.99, and r2 = 0.98, 0.99, and 
0.99 for V3. The scaled contrast-independent laminar response curve (Hcir(d), Fig. 4D–F) explained an average 
variance of r2 = 0.99 for all visual field maps and contrasts. See Table 2, right value in every cell, for the associated 
scaling factors k.

Furthermore, we overlaid the responses across cortical depth from each session (Fig. 4G–I). These responses 
were near identical (r2 = 0.99 for all contrasts and visual field maps), indicating that the reliability between ses-
sions of luminance contrast responses across cortical depth is excellent.

Discussion
We assessed whether the scaling assumption for a linear system holds for BOLD amplitude across cortical depth. 
We evaluated BOLD fMRI responses across cortical depth elicited by viewing moving sinewave gratings with 
5%, 20%, and 80% luminance contrast. We find that BOLD responses vary as a function of both luminance 
contrast and cortical depth. Additionally, we find that the variability of the BOLD response amplitude decreases 
with increasing luminance contrast, and that variability is highest in V1. Moreover, we find that scaled BOLD 
responses across cortical depth - elicited by viewing one luminance contrast- are excellent predictors (average 
explained variance r2 = 0.96–0.99) for responses across cortical depth to another luminance contrast, supporting 
the validity of the amplitude scaling assumption for BOLD amplitude across cortical depth. We do not find differ-
ences between scanning sessions, indicating that the robustness of the amplitude scaling assumption for the tested 
visual stimulus across cortical depth is stable over time.

Variability across cortical depth decreased with increasing luminance contrast, with 5% luminance contrast 
showing the highest variability across cortical depth for all visual field maps. This can be attributed to consistently 
lower signal amplitudes than for other luminance contrasts, with comparable variance (see Fig. 2A–C, Fig. S2). 
Generally, variability showed a U-shaped profile across cortical depth, being lowest around the central depth bins 
and increasing towards the WM/CSF and WM/GM borders (see Fig. 2G–I). However, as physiological and ther-
mal noise may have different layer dependence, variability profiles across depth and the specific values measured 
here are likely to vary with parameters such as functional resolution, distance of the measured tissue to the radio 
frequency coils, and task-related signal amplitude.

Several recent studies have investigated the laminar response profiles focusing on the underlying neurovascu-
lar coupling in humans17,19–22,31,55–62; non-human primates30,63–67; and other mammals29,68–74. All these studies have 
focused on the feasibility of laminar imaging. In addition, a few studies have employed sub-millimeter fMRI for 
systems and cognitive neuroscience questions36,51,54,60,75–82. However, these latter studies have largely avoided the 
interpretation of BOLD amplitude measures, as this type of measure is susceptible to blood pooling effects across 
cortical depth. Here we provide data for the usability of BOLD fMRI amplitude measurements across cortical 
depth and the amplitude scaling linearity assumption that underlies many fMRI analyses.

k (session 1/session 2), individual contrast responses

V1 V2 V3

H20 (d) = kH5(d) 1.50/1.61 1.24/1.26 1.16/1.15

H80 (d) = kH5(d) 3.62/3.89 1.87/1.93 1.58/1.69

H80 (d) = kH20(d) 2.38/2.33 1.50/1.53 1.37/1.47

Table 1.  Group amplitude scaling factor k for all unique combinations of BOLD responses to two different 
luminance contrasts across cortical depth. The left value in each cell represents the scaling parameter for the first 
session, and the right value in each cell represents the scaling parameter for the second session. Separate rows: 
pairs of luminance contrasts. Separate columns: visual field maps.

k (session 1/session 2), contrast-independent response

V1 V2 V3

H5 (d) = kHcir(d) 0.90/0.88 1.67/1.56 1.77/1.81

H20 (d) = kHcir(d) 1.28/1.32 2.07/1.97 2.04/2.08

H80 (d) = kHcir(d) 3.06/3.05 3.07/3.01 2.80/3.04

Table 2.  Amplitude scaling factor k to scale the contrast-independent laminar response curve (Hcir(d)) for 
each visual field map and session to the average responses to each luminance contrast. The left value in each 
cell represents the scaling parameter for the first session, and the right value in each cell represents the scaling 
parameter for the second session. Separate rows: pairs of luminance contrasts. Separate columns: visual field 
maps.
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Here we used a T2*-weighted, gradient-echo (GRE) based 3D-EPI acquisition to collect the functional data. 
This type of acquisition is sensitive to the microvasculature, but also to larger vessels (macro-vasculature; e.g. 
draining veins) and is thus affected by blood-pooling effects across cortical depth. Therefore, a signal elicited at a 
deeper cortical depth affects the measured signal at more superficial cortical depths, which results in less laminar 
specificity and the commonly observed signal increase in that direction, also found in this study. These effects 
could be corrected for in the analysis, for instance by implementing spatial correction approaches as proposed by 

Figure 4.  BOLD response amplitude and amplitude scaling for the second session are very similar to the first 
session. (A–C) Measured BOLD response across cortical depth of the second session for different contrasts 
(colored lines) and visual field maps (different panels), overlaid with scaled responses to other contrasts (dashed 
lines). These scaled responses explained 96–99% of variance. Error regions represent 95% confidence intervals 
of the mean response across depth between subjects. These are scaled by a factor k for the scaled responses (see 
Table 1). (D–F) Measured BOLD response across cortical depth of the second session for different contrasts 
(colored lines) and visual field maps (different panels), overlaid with responses scaled from the contrast-
independent laminar response curve (Hcir(d)). These scaled responses explained 99% of variance. Error regions 
represent 95% confidence intervals of the mean contrast-independent laminar response curve. These are 
scaled by a factor k for the scaled responses (see Table 2). (G–I) Group average BOLD response amplitudes 
across cortical depth for the first session (solid lines) and second session (dotted lines, grayscale). Error regions 
represent 95% confidence intervals of the mean response across depth between subjects. Responses for both 
sessions matched almost perfectly (explained variance 99%).
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Markuerkiaga and colleagues83 and Marquardt and colleagues51, or potentially by implementing more elaborate 
models of BOLD responses at different cortical depths that better capture general spatiotemporal properties of 
the hemodynamic signal, and the dynamics of capillary, arterial, and venous effects23,32,34,84–87 with respect to 
more traditional hemodynamic models88,89. We observed a relative decrease in BOLD amplitude for the most 
superficial depth bin in several visual field maps and for several luminance contrasts. These could be due to partial 
volume artifacts, and because the microvasculature is less dense near the cortical surface15.

One could argue that the increase in BOLD amplitude towards the cortical surface overshadows any cortical 
depth-dependent specificity in sub-millimeter GRE-based fMRI, i.e. the depth-dependent signal may arise from 
partial volume effects of the larger vessels at superficial depths only and signals may decrease as a function of the 
distance from these depths. The BOLD signal stemming from the pial veins may contribute to the trend found 
here. However, biophysical models outline that in the worst-case scenario, extravascular contamination from the 
veins at the pial surface falls off four-fold at a distance of half the vessel diameter, thus rapidly decreasing when 
moving away from the cortical surface90. Additionally, it has been shown that signals from central layers can be 
separated from those of pial veins, presumably depending on the venous topology at the pial surface91.

It is possible that the different vascular compartments across cortical depth have different (non)linear 
contributions to the measured BOLD signal at different luminance contrasts. Contributions from either the 
macro-vasculature (draining veins) or the micro-vasculature (capillaries and small venules) may be nonlinear 
while contributions from the other vascular compartment is linear, or both contributions may be nonlinear but 
cancel each other out. Previous findings have suggested that non-linear contributions from the micro-vasculature 
are less likely92. Thus, the most plausible case is that macro-vascular contributions are nonlinear and 
micro-vascular contributions are linear. We speculate that given the sensitivity of GRE-BOLD fMRI to the former, 
one would expect that nonlinearities across cortical depth resulting from the macro-vasculature would have been 
detected here. We speculate that an increase in spatial resolution would not yield considerably different results. 
One could also argue that the micro-vasculature can exhibit nonlinearities, while the macro-vasculature exhibits 
linear contributions to BOLD signal amplitude across cortical depth, although this scenario is less likely. However, 
if this were the case, GRE-BOLD fMRI would be able to pick up on nonlinearities in the micro-vasculature, espe-
cially closer to the gray-white matter surface as the capillary density is high at that compartment15. These would 
be detectable as nonlinearities at deeper and intermediate cortical depths, as compared to superficial depths, as 
these are most contaminated by macro-vascular contributions. If both the macro-vascular and micro-vascular 
contributions are nonlinear but cancel each other out, it would be hard to separate these contributions using 
GRE-BOLD fMRI. However, this would mean that linearity can still be assumed for most practical applications. 
Interestingly, the model for laminar BOLD responses by Havlicek and Uludag87 predicts linear scaling of BOLD 
amplitude across cortical depth, although the model is nonlinear. This may thus tie in with the above possibility 
of combined nonlinear responses resulting in linear measurements. All in all, linearity is not a feature that is 
only expected of GRE-BOLD fMRI, but also for other acquisition sequences at sub-millimeter resolutions, e.g. 
spin echo-based acquisitions, 3D-GRASE93, and VASO60,69,94. If anything, it is expected that GRE-BOLD fMRI is 
more sensitive to nonlinear macro-vascular contributions than most (if not all) other sub-millimeter acquisition 
protocols.

Although the explained variance for the amplitude scaling is extremely high, there are minor deviations from 
linearity. These deviations are also apparent in Figs. 3A–F, and 4D–F. The deviations from linearity are more 
apparent at the highest luminance contrast, hinting at a potential increase in nonlinearity near the higher end of 
stimulus parameter space.

For a more complete evaluation of linear systems theory for BOLD amplitude across cortical depth in the 
visual domain, stimuli varying in high and other low-level domains such as spatial frequency, as well as the tem-
poral additivity assumption for a linear system should also be investigated. However, the current stimuli span a 
wide range of stimulus energy, also using luminance contrasts at the edge of parameter space (5% and 80%). Thus, 
if the BOLD amplitude across cortical depth were nonlinearly scaled between different stimulus energy, we would 
have been able to capture this. Moreover, contrast manipulations are frequently used in visual neuroscience, and 
were originally used for the assessment of the scaling assumption at supra-millimeter resolutions38,39,95.

Havlicek and Uludag suggest that the scaling assumption may be violated in certain cases, for example when 
there is a significant difference in neuronal activation or cerebral blood flow between cortical layers87 (also see 
Eq. 3). Arguably, this violation of linearity would be most visible using a stimulus paradigm that activates only 
a subset of layers, yet can be varied systematically, and ideally elicits responses across cortical depth that have 
some distinct feature, rather than the monotonic increases as found here. Potential candidates for this stimulus 
paradigm might be the Kanizsa triangle visual illusion or spatial attention manipulation paradigms, as these 
stimuli elicit a distinct response in deep cortical layers due to top-down feedback36,37. A viable manipulation may 
be illusion strength or task difficulty of a spatial attention task, though it is unknown if and how top-down feed-
back scales. Here, we show that linear scaling holds for luminance contrast manipulations. However, this might 
not hold for other stimulus paradigms, especially ones involving stimuli that show a more distinct profile across 
layers.

The current results can be generalized for the visual domain along different contrast levels, while the scaling 
assumption remains to be validated for other modalities and measurements of contrast energy. Our data do not 
allow for the investigation of different contributions to the generation of the BOLD signal, so neural to vascular/
cortical blood flow (CBF) and vascular to BOLD contributions cannot be disentangled with the current exper-
imental design. Additionally, because of the currently used pooling of large numbers of voxels using a region 
of interest-based approach, we cannot exclude that local pockets of non-linearity might be observed within a 
region of interest (here: visual field map). Furthermore, while the current results evaluate BOLD amplitude scal-
ing during ‘steady-state’, scaling may be different or even violated when looking at specific phases of the BOLD 
response (e.g. early, late, and post-stimulus undershoot). This specific assessment is beyond the scope of the 
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current experiment, as acquisition and stimulus presentation parameters are suboptimal for this. In summary, our 
results do provide evidence for the linearity of steady-state BOLD amplitude across cortical depth as a function 
of luminance contrast for region of interest-based approaches. The temporal additivity assumption for a linear 
system was not currently assessed as the presently used volume acquisition time (4 s) results in too sparse a sam-
pling of the fMRI time-series to assess this property. At the current resolution (0.7 mm isotropic voxels), this is 
the fastest our system could collect data. Thus, only one out of two assumptions for a linear system across cortical 
depth has been evaluated thus far.

To our knowledge, response amplitude to different luminance contrasts is only assessed by one other laminar 
fMRI publication to date. In that study, Marquardt and colleagues51 assess the cortical depth profiles of luminance 
contrast responses, but do not assess luminance contrast linearity of BOLD amplitude across cortical depth. 
Instead, they propose a novel spatial deconvolution approach to correct for the directional component of the 
intracortical vasculature51. The range of their measured signal amplitudes is similar to the current findings. They 
also use a GRE-based EPI sequence with the same resolution, albeit with a shorter volume acquisition time (2.94 s 
versus 4 s here) and more coverage (52 slices versus 34 slices in the present study). Upon simple visual inspection, 
both their deconvolved and original results are likely to fit with the current findings, providing further evidence 
that the scaling assumption for a linear system holds across cortical depth for luminance contrast manipulations.

We do not find any evidence for significant changes in signal amplitude across cortical depth between ses-
sions, even though the second session included a stimulus-related task. This appears to be in contradiction with 
previous studies that have shown attention-related differences for supra-millimeter fMRI (see e.g.96,97); across 
cortical depth in e.g. population receptive field center positions37; or suggest such differences due to e.g. a lack 
of feed-forward input in patients with macular degeneration35. Potential explanations for the apparent lack of 
task-driven changes in our study are two-fold. First, evidence suggests that attentional signal modulation in early 
visual cortex is reduced with respect to extrastriate visual field maps37,96,98–100. Moreover, Klein et al.37 focused on 
measures that do not depend on signal amplitudes. When comparing signal amplitudes, they found little mod-
ulation of BOLD amplitude between different attention conditions. Additionally, the one-back task used in the 
present study required very little attentional resources to carry out correctly as the events were sparse, and the 
stimulus was very salient. We therefore argue that attentional modulation did not play a role in the present study.

Conclusion
We provide evidence that the scaling assumption for linear systems theory can be met for BOLD amplitude meas-
ures across cortical depth, i.e. responses scale with luminance contrast, and this amplitude scaling is identical 
across cortical depth. Although nonlinearities may be present for different stimulus configurations and acquisi-
tion protocols, the BOLD linearity assumption for amplitude scaling commonly employed for conventional fMRI 
analysis extends to the cortical depth domain for luminance contrast manipulations.

Methods
Participants.  Five participants (all male, age range 23–44 years) took part in the experiment. One participant 
was left-handed. All participants had normal or corrected-to-normal visual acuity and were experienced with 
the MRI environment. Informed consent was acquired from all participants. All experimental procedures were 
conducted in accordance to the Declaration of Helsinki and approved by the ethics committee of the University 
Medical Center Utrecht.

Stimuli.  Stimuli were presented on a 32′′ LCD screen, specifically designed for use in an MRI environment101. 
The screen resolution was 1920 × 1080 pixels, with an active area of 69.8 × 39.3 cm and a refresh rate of 120 Hz, 
with a built-in linear luminance look-up table. The display was positioned at the end of the bore, and viewed via a 
mirror, at a total viewing distance of 220 cm. The stimulus diameter subtended 10.2 degrees of visual angle (deg).

All stimuli were generated with MATLAB (Mathworks. Matlab; 2015b) using the Psychophysics Toolbox102,103. 
A green fixation cross (0.1 deg in diameter) stretching from corner to corner throughout the center 10.2 deg, was 
presented at all times. The stimuli consisted of sinewave gratings (0.5 cycles per degree) oriented in any of 4 pos-
sible directions (0–135 deg in 45 deg steps; Fig. 5A; similar to104). The gratings were moving perpendicular to the 
orientation of the bars at 1.76 deg per second and limited by a circular aperture with 5.1 deg radius. Movement 
was either towards the left, or towards the right edge of the screen. The luminance contrast of the gratings was 5, 
20, or 80%. These contrasts largely lie within the approximately linear range of stimulus space95.

Stimuli and fixation cross were presented for 12 seconds, followed by a 12-second period of mean luminance 
baseline with the fixation cross. During the 12 seconds of stimulus presentation, stimuli were shown each time 
for 750 ms, followed by 250 ms of mean luminance. The subsequent presentation randomly moved in the same 
motion direction as the previous presentation (12.5% chance), or not. No more than two consecutive presenta-
tions could have the same motion direction. Each block contained a stimulus of only 1 luminance contrast. Each 
run consisted of 15 blocks (5 blocks of each contrast, presented in a semi-randomized order). As the repetition 
time of the functional volumes was very long and averaging between session is undesirable at sub-millimeter 
resolution, this design was the most reasonable.

Task.  Participants completed two sessions. Each session consisted of 6 or 7 runs. The same stimuli were used 
during both sessions. During one session, participants were instructed only to fixate the center of the fixation 
cross. To assess the stability of amplitude scaling between sessions, subjects performed a one-back motion direc-
tion discrimination task on the other session. During this session, participants were instructed to fixate the center 
of the fixation cross and indicate whenever two consecutive stimulus presentations had the same motion direction  
by means of a button press.
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Visual field maps definition.  Visual field maps were acquired in separate scanning sessions, using 
near-identical procedures as in previous studies, e.g.105. All visual field maps were restricted to 5.1 degrees 
eccentricity -the radius of the stimulus in this study- based on eccentricity estimates following the population 
receptive field (pRF) approach105. All data were collected using a Philips Achieva 7T scanner (Philips, Best, the 
Netherlands) using a dual-channel volume transmit coil and a 32-channel receive coil (Nova Medical, MA, USA), 
using a 2D-EPI sequence. For participants S1, S4, and S5, visual field mapping data were collected using a travers-
ing bar-stimulus as in105, but with gray-scale natural images as carrier. Functional data were acquired at a 1.8 mm 
isotropic resolution, with a TR/TE = 1500/25 ms, and 248 time points per run. Three runs were collected for each 
participant. For S2, and S3, identical stimuli were used as by Dumoulin & Wandell. For S2, 8 functional runs were 
collected at a resolution of 2 mm isotropic, and TR/TE = 1500/25 ms (248 time points per run). For S3, 7 func-
tional runs were collected at a resolution of 1.8 mm isotropic, TR/TE = 2100/25 ms (182 time points per run). 
Visual field maps for visual areas V1, V2, and V3 were defined for all participants (Fig. 5B).

High resolution MRI and fMRI acquisition.  High resolution anatomical and functional data were 
acquired using a Philips Achieva 7T scanner with a maximum gradient strength of 40mT/m and a slew rate of 
200T/m/s (Philips, Best, The Netherlands). A dual-channel volume transmit coil was used for all scans (Nova 
Medical, MA, USA). A 32-channel receive coil (Nova Medical, MA, USA) was used for all anatomical scans, while 
two custom-built 16-channel high-density surface receive arrays were used for all functional scans106 (MRCoils 
BV). These surface arrays were positioned adjacent such that the two arrays touched each other lengthwise but 
did not overlap. Participants were positioned such that their external occipital protuberance was approximately 
aligned with the center between the arrays, at the height of the most distal receive elements from the isocenter.

Anatomical data were acquired using an MP2RAGE sequence107. Whole-brain sequence parameters were: TI1 = 
800 ms, TI2 = 2700 ms, TRMP2RAGE = 5500 ms, TR/TE = 6.2/2.3 ms, flip angle α1 = 7, and α2 = 5, bandwidth = 
403.7 Hz/pixel, acceleration factor using SENSE encoding = 3.5 ×1.3 (RL and AP respectively), resolution = 0.64 mm 
isotropic, total scan time 9 min 57 s.

Figure 5.  Stimulus design and processing steps. (A) Example stimuli with 5% (red border), 20% (green border), 
and 80% (blue border) luminance contrast. (B) Example anatomical slice with visual field map definition 
overlay. Inset: slab positioning for functional data acquisition. (C) Anatomical slice with volume-preserving 
depth map (colored), and visual field map (dashed lines) overlay. (D) Anatomical slice with t-statistical 
map (colored), and visual field map (dashed lines) overlay. This illustrates the accuracy of the registration. 
This statistical map is only used for illustrative purposes. (E) Example time-series. Colors correspond to 
luminance contrast presentations with the same color-code as (A). Colored bars represent when the stimulus 
was shown, transparent bars represent the presentation of mean-luminance baseline. (F) Averaged block 
responses at relative cortical depth 0.1 and 0.5, where 0 is the gray/white matter border, and 1 is the gray matter/
cerebrospinal fluid border. The line color corresponds to responses elicited by the luminance contrasts as in 
(A). Error regions represent 95% confidence intervals (+/−1.96 standard errors) of the mean across repeated 
stimulus presentations for V1. Gray rectangle represents when a stimulus was presented. Dashed box represents 
the time points included in the analysis.
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Functional data were acquired with a T2*-weighted 3-dimensional multi-shot EPI (3D- EPI, two shots per 
slice, 34 slices, 68 shots overall). The sequence parameters were: TR/TE = 59/28 ms, flip angle: 20°, accelera-
tion factor using SENSE encoding: 3.5 (right-left) × 1.3 (anterior-posterior), echo planar factor: 27, bandwidth 
(phase-encode): 19.1 Hz/pixel, voxel size = 0.70 mm isotropic, FOV = 131 (right-left) × 120 (feet-head) × 24 
(anterior-posterior) mm, 34 coronal slices, and 28% oversampling in the slice direction. Functional volumes were 
acquired every 4 s and functional scans were each 91 time frames (364 s) in duration.

Additionally, we acquired ‘topup’ functional data with reversed right-left phase-encoding and geometrical dis-
tortions in opposite directions from the original functional data108. Images with opposite phase encoding polari-
ties were extracted, and susceptibility induced distortion was estimated using nonlinear warping to estimate the 
undistorted mid-point between the two volumes in AFNI109. Five volumes were acquired per topup run. For each 
session, 6 or 7 functional and accompanying topup runs were acquired for each participant.

Pre-processing: functional data.  The fMRI data pre-processing was performed using AFNI. First, motion 
parameters between runs were computed by aligning the first volumes for each run to the first volume of the 
first run. Subsequently, motion parameters within runs were calculated by aligning each volume within a run to 
the first volume of that run. The individual motion-corrected runs were then despiked, scaled, and detrended. 
During the scaling step, the time-series for each run and every voxel were converted to percentage BOLD by 
dividing the signal of each voxel by its temporal mean, multiplying the resulting signal with 100, and subsequently 
subtracting 100 to ensure that the mean temporal response for each voxel was zero percent. The detrending step 
was preformed using the AFNI function 3dDtrend with a fourth-degree polynomial detrending. A warp field to 
correct for geometric distortions in the 3D-EPIs was calculated using a nonlinear transformation, performed on 
the original (non-motion corrected, scaled, despiked, or detrended) volumes. For this, the first 5 volumes of the 
3D-EPI for each run, and the 5 volumes of each topup 3D-EPI run were used. As the 3D-EPI volumes have the 
opposite distortions in the phase-encoding direction from the topup 3D-EPI, the undistorted 3D-EPI volume is 
the halfway warping between the two extremes108.

Next, the motion estimates and warp field results were combined to calculate the 3D-EPI mean image, aver-
aging over all warped and motion corrected volumes between runs and collapsing over all time points. This mean 
EPI image was then registered to the anatomical data. This process involved several steps. First, the anatomy was 
clipped so that only the occipital lobe was left. Then the anatomy and mean EPI image were brought into the same 
space by aligning their respective centers of mass. Next, the ‘Nudge dataset’ plugin in AFNI was used to provide 
a good starting point for the automated registration. This registration consisted of two affine transformations, 
using the local Pearson correlation as cost function110. The first one allowed for a maximum shift and rotation 
of 3 mm. The second iteration allowed for a maximum shift and rotation of 1 mm. The transformation matrices 
for the manual and automated steps were joint into a single affine matrix. To reduce the number of interpolation 
steps we applied this registration matrix along with the warp field (see previous paragraph) in a single step to each 
motion-corrected, despiked, scaled, and detrended run (see previous paragraph) to align these volumes to the 
registered mean EPI image. For this, we used the AFNI function 3dNwarpApply with nearest neighbor interpo-
lation. Then, the resulting volumes were resampled into anatomy space to allow for accurate cortical depth calcu-
lation, using nearest neighbor interpolation. This procedure resulted in registered time-series for each run. All in 
all, our procedure involved a total of two spatial interpolation steps to get from the motion-corrected, despiked, 
scaled, and detrended runs to the registered, topup-corrected time-series for each run in anatomy space.

Pre-processing: anatomical data.  The MP2RAGE anatomical images were segmented using the 
CBS-tools plugin111 (www.nitrc.org/projects/cbs-tools/) in MIPAV (http://mipav.cit.nih.gov/), and subsequently 
manually optimized in 3D Slicer112. Next, a volume-preserving distance map between the gray matter-white mat-
ter (GM/WM) border and the gray matter-cerebrospinal fluid (GM/CSF) border was computed113 in 6 separate 
level-set volumes. This approach takes into account cortical folding in the depth estimation and is implemented in 
CBS-tools. These level sets were projected on the 3D-EPI space for subsequent laminar analysis (Fig. 5C).

Analysis.  BOLD across cortical depth.  For each participant, visual field map (V1, V2 and V3) and luminance 
contrast, we took each registered, topup-corrected time-series (Fig. 5E) and divided these into 24 s blocks, each 
starting at stimulus onset. The volume-preserving distance map was divided in 5 quantiles, spanning from gray 
matter/white matter (GM/WM) border to gray matter/cerebrospinal fluid (GM/CSF) border. We calculated the 
mean percentage BOLD signal change for the response amplitude of the second, third, and fourth sampling 
point in a block (at 4, 8, and 12 s after stimulus onset respectively; see Fig. 5F, dashed box), and the 95% confi-
dence interval (+/− 1.96 standard errors of the mean) across repeated stimulus presentations for each depth bin 
and luminance contrast. Note that this approach ignores the depth-dependent differences in temporal BOLD 
response characteristics, see e.g.21,114. As the temporal resolution in this experiment is 4 s, we only sample a few 
points of the response curve, and these temporal BOLD response differences are too small to effectively pick 
up at this temporal resolution. Moreover, averaging over the sampling points further reduces the presence of 
small temporal differences. Initial analysis using a basic general linear model (GLM) with luminance contrast as 
independent variable, yielded near identical results. This type of analysis also takes the post-stimulus undershoot 
into account. However, as the basic assumptions for a GLM include that the system that is being tested adheres to 
linear systems theory, this analysis is inherently circular and therefore not used in this study. We calculated the 
variability across repeated stimulus presentations of the BOLD response amplitudes to each luminance contrast 
for each visual field map by dividing the across repeated stimulus presentations standard deviation by the mean 
signal amplitude across repeated stimulus presentations at each depth bin. These estimates were then averaged 
over participants (Fig. 2G–I). Similar measures were previously used for depth-dependent fMRI by Kim & Ress28.
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It is commonly observed that the relationship between luminance contrast and BOLD amplitude is nonlinear13,95.  
While not the main focus of the current study, we have plotted this relationship for three cortical depth bins for 
all regions of interest and sessions, generally replicating this finding (Fig. S3). We are thus dealing with a nonlin-
ear transformation between stimulus intensity and CBF, and other nonlinear transformations between CBF and 
BOLD115.

Linearity assessment.  To assess the response linearity across cortical depth, we first plotted all unique combina-
tions of BOLD amplitudes across cortical depth (Hc1(d) and Hc2(d)) to two out of three different contrasts across 
cortical depth against each other for each individual participant and visual field map (5% vs 20%, 20% vs 80%, 
and 5% vs 80% grating contrast for V1, V2, and V3; see Fig. 3A–C for group averages, and Fig. S2 for individual 
contrast pairs). We then used a linear fit to estimate the best fitting line to the BOLD amplitudes from each of the 
combinations of BOLD responses across cortical depth mentioned above. Only a slope parameter was estimated 
with this linear fit, as is required to satisfy the linear amplitude scaling assumption. This was done for all individ-
ual participants, and repeated for V1, V2, and V3. This estimated slope of the best fitting line then corresponds to 
the scaling constant k in Eq. 4.

Next, we overlaid the responses to different contrasts for each participant and region of interest by scaling 
each stimulus contrast response (Hc2(d)) by a constant k to fit other measured luminance contrast responses 
across depth (Hc1(d) see Figs. 3D–F and 4A–C for group averages). As there were multiple luminance contrasts, 
multiple scaling constants were estimated, one for each combination of Hc1(d) and Hc2(d). These scaling constants 
were estimated using a regression for each luminance contrast pair, fitting only a slope parameter to scale one 
luminance contrast response amplitude across depth to the other, thus omitting the intercept estimation. Then, 
we calculated the explained variance of the original responses (Hc1(d)) based on the scaled responses to the other 
contrasts kHc2(d) to assess the degree of linearity of the responses across cortical depth. Explained variance was 
calculated for each pair of contrasts (one original, and one scaled) separately. Note that the calculated amplitude 
scaling constants and explained variance using this approach, and the approach used in the previous paragraph, 
are identical. However, the results from the analysis in this paragraph are displayed at the group level. As such, the 
two approaches are complementary. All procedures were performed for both sessions separately (Figs. 3D–F and 
4A–C). To assess the reliability of scaling between sessions we overlaid the response amplitudes for both sessions 
on each other (Fig. 4G–I) and calculated the explained variance between sessions.

Additionally, we calculated the average z-scored response across cortical depth across all subjects and lumi-
nance contrasts. This average was converted from z-values to absolute % BOLD using the mean signal amplitude 
across subjects and contrasts and its standard deviation. The resulting curve was then scaled to a maximum of 1. 
This contrast-independent laminar response curve (Hcir(d)) was then scaled to the original group-level responses 
to each of the presented luminance contrasts. We subsequently calculated the explained variance between the 
scaled contrast-independent laminar response curve and the original responses. This was repeated for all regions 
of interest and sessions (Figs. 3G–I and 4D–F).
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