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ABSTRACT

Cooperative Optimal Path Planning for Herding Problems. (December 2006)

Zhenyu Lu, B.Eng., Tongji University;

M.Eng., Texas A&M University

Chair of Advisory Committee: Dr. John E. Hurtado

In this thesis we study a new type of pursuit-evasion game, which we call the

herding problem. Unlike typical pursuit evasion games where the pursuer aims to

catch or intercept the evader, the goal of the pursuer in this game is to drive the

evader to a certain location or region in the x-y plane. This herding model is proposed

and represented using dynamic equations. The model is implemented in an effort to

understand how two pursuers work cooperatively to drive multiple evaders to the

desired destination following weighted time-optimal and effort-optimal control paths.

Simulation of this herding problem is accomplished through dynamic programming by

utilizing the SNOPT software in the MATLAB environment. The numerical solution

gives us the optimal path for all agents and the corresponding controls as well as the

relative distance and angle variables. The results show that the pursuers can work

cooperatively to drive multiple evaders to the goal.
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CHAPTER I

INTRODUCTION

The traditional two-player pursuit-evasion contest is a well known problem. It has

received serious attention from some areas, such as animal behavior [1] and differential

game theory [2]. The optimal solutions of two-player pursuit and evasion games can

be obtained by solving a mini-max optimal control problem [3]. The solution of

lateral control acceleration is applied by the pursuer and this technique is known

as Proportional Navigation Guidance (PNG). The PNG [4] [5] [6] method has been

widely used in military applications such as aerial intercept guided missile systems

[7]. In most of the pursuit evasion models considered to date, the pursuer’s aim is to

intercept or hunt the evader. Very natural and interesting extensions of the problems

can be considered to cases where the interests of the pursuers and the evaders are

not totally opposite [8]. Inspired by this extension, unlike the traditional pursuit and

evasion games, the aim of the pursuer in our research is to drive the evader to a

certain location or region in the x-y plane.

A dissertation by Shedied [9] formulated a basic herding problem as an optimal

control problem. However, Shedied [9] only covered the two-player case. We extend

the approach of Shedied [9] to consider the multi-player scenario and we suitably alter

the mathematical model that governs the interaction between pursuers and evaders.

Another type of herding problem is the study of shepherding behaviors [10] [11], in

which one group (the shepherds) try to control the motion of another group (the

flock). It mainly focuses on group behavior instead of the optimal path for the flock

to travel to the goal.

The journal model is IEEE Transactions on Automatic Control.
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Multiple robot systems have been a growing interest in many fields of research,

such as search, rescue, delivery and reconnaissance. These systems can provide advan-

tages over a single-robot system. The main goal of a team of robots with cooperation

is to accomplish a certain task more efficiently than a single robot, or to complete

a task that an equivalent single-robot cannot. For example, a thesis by Kang [12]

presents cooperative multi-agent robot constellations for localization and entire path

planning using a weighting function approach to modeling of irregular surfaces based

on the finite element method. Feddema [13] describes how decentralized control the-

ory can be used to analyze the control of multiple cooperative robotic vehicles with

multirobot formation control, perimeter surveillance, and other applications. When

used for localization of chemical sources, simulation and experiments have shown that

by sharing concurrent sensory information, a group of robots can better estimate the

shape of a chemical plume and, therefore, localize its source [14]. The source can even

be time-dependent [15]. In summary, task complexity and environmental uncertainty

suggest that solutions to complex problems can frequently benefit from cooperation

between vehicles.

We report here research on multi-player cooperative herding problems, such as

a system of two pursuers and multiple evaders. We will first formulate an optimal

control problem and then focus on using dynamic programming methods to compute

solutions numerically by utilizing the SNOPT software [16] in the MATLAB envi-

ronment. SNOPT (invented by Philip Gill, Walter Murray and Michael Saunders),

uses a sequential quadratic programming (SQP) algorithm, within a software package

to solve large-scale linear and quadratic programming problems, linearly constrained

optimization problems, as well as local approximation solutions to general nonlinear

programming problems.

We introduce the simplest one pursuer and one evader system (1P1E scenario)



3

first. The evader moves away from the pursuer according to two mathematical rules.

First, the direction of the motion of the evader is modeled as along the straight line

joining the pursuer and the evader. Secondly, the evader’s velocity is bounded by the

inverse of the distance between the evader and the pursuer. As the distance between

the evader and pursuer decreases, the evader increases its velocity in the direction

opposite to the pursuer. With these models, we formulate a basic herding problem

as an optimal control problem. Once the 1P1E scenario is well established, a two

pursuer and two or more evaders (e.g., 2P3E) scenario is considered. The motion of

each evader is influenced by the relative vector of each evader. This can be thought

of as an “influence” vector from each pursuer. If we want both pursuers to influence

the motion of a single evader, we consider the summation of both influence vectors,

one from each pursuer. With this cooperative model, we develop the formulation of

optimal control problems and solve them numerically as done in the 1P1E scenario.

The numerical solution gives us the optimal path for all agents and the corresponding

controls as well as the relative distance and angle variables. The results show that two

pursuers can work cooperatively to drive multiple evaders to the desired destination

following weighted time-optimal and effort-optimal control paths.
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CHAPTER II

ONE PURSUER AND ONE EVADER SIMPLE SYSTEM (1P1E)

For the simple system, we introduce two agents: a Pursuer (P), which represents a

fully equipped robot with global navigation (e.g., GPS) and relative position sensors,

and an Evader (E), which represents a relatively cheap robot with only relative po-

sition sensors. In the context of animal herding, the pursuer can be thought of as a

shepherd and the evader as a member of a flock.

A. System Model

x

r

Pursuer

θ

Evader

y

[0, 0] x

r

Pursuer

θ

Evader

y

[0, 0]

Fig. 1. System Model for 1P1E

Figure 1 gives us a representation of the two agents. The pursuer is generally

located at [xp,yp] and the evader is generally located at [xe,ye]. Beginning at the
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initial positions, [xp0,yp0] for the pursuer and [xe0,ye0] for the evader, the pursuer

should optimally drive the evader to a certain location or region. For the 1P1E

scenario, this is the [0,0] position in the x-y plane.

To formulate this problem mathematically, we must create a model that governs

the interaction of the agents. We require that the evader moves away from the pursuer

according to two mathematical rules. First, the direction of the motion of the evader

is along the straight line joining the pursuer and the evader. Second, the evader’s

velocity is bounded by the inverse of the distance between the evader and the pursuer.

The dissertation by Shedied [9] assumes the distance between the pursuer and the

evader is always the constant. This model is not very realistic either in the context

of animal herding or robot motion. In contrast, the relative distance, r, in this thesis

is allowed to be time varying within a set of limits. As the pursuer gets close to the

evader, the evader increases its velocity in the direction opposite to the pursuer. This

means the velocity is increasing while r is decreasing, but r has its own lower and

upper bounds. For example we might specify that r must lie in the region [1,4]. The

associated dynamics of the problem are given below:

tan(θ) =
ẏe

ẋe

(radial direction evasion policy) (2.1)

where: θ = tan−1

(
yp − ye

xp − xe

)

ẋ2
e + ẏ2

e =
1

r2
, r ∈ [1, 4] (1

r
evasion policy for speed) (2.2)

where: r =
√

(xp − xe)2 + (yp − ye)2
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B. Formulation of Optimal Control Problem

The goal of the pursuer is to drive the evader from the given initial position to the

final region. To formulate the herding problem as an optimal control problem, we

define a performance index and determine the controls. We assume that previously

documented evasion policy is known and deterministic, and choose the square of the

velocity of the pursuer as a measure of the pursuer control effort because it is well

suitated for the robot application. We may also consider the time duration of herding

as another part of the performance index. The performance index J can be expressed

in this form:

J = w1 · tf + w2 ·
∫ tf

0
(ẋ2

p + ẏ2
p)dt (2.3)

In the above expression, w1 and w2 are the weights for time optimal and effort optimal

respectively. As one can see, when w1 = 0 and w2 = 1, the final time is removed from

the performance index. This corresponds to an effort optimal case. When w1 = 1

and w2 = 0, the control effort is not penalized, and any solution with respect to J

becomes a time optimal solution. With this performance index J , the pursuer is to

drive the evader from the given initial position to the desired destination following a

changeable weighted time optimal and effort optimal path. Since ẋp and ẏp appear

in the integral part of the above performance index, it is straightforward to use them

as controls for the pursuer. Another option is to use the rate change of the relative

distance ṙ and position angle θ̇ as controls, but these include position and velocity

information of both agents. Using ẋp and ẏp is easier to implement in an experimental

setting. Additionally, we can keep r and θ as intermediate variables to influence the

motion of the evader. In reality, the motion of the pursuer has its own limitation

so we can include lower and upper limits on the control. The controls (speed of the
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pursuer) are restricted in the following manner:

Controls :





ẋp ∈ [−1, 1]

ẏp ∈ [−1, 1]
(2.4)

We determine differential equations for the states by manipulating and simplifying

the above kinematic models. Equation (2.1) can be written as

ẏe = ẋe tan(θ) (2.5)

By substituting ẏe from equation (2.5) into equation (2.2) , we get

ẋ2
e(1 + tan2(θ)) =

1

r2
(2.6)

Utilizing 1 + tan2(θ) = 1
cos2(θ)

, equation (2.6) becomes

ẋ2
e =

cos2(θ)

r2
(2.7)

By performing similar operations on equation (2.2) in terms of ẏp, we find

ẏ2
e =

sin2(θ)

r2
(2.8)

To get state equations, we need to take square root of the equations (2.7) and (2.8).

Because the evader moves away from the pursuer, we only take the minus sign for ẋe

and ẏe. So state equations are:

State Equations :





ẋe = −1
r
cos(θ)

ẏe = −1
r
sin(θ)

(2.9)

where: r =
√

(xp − xe)2 + (yp − ye)2

θ = tan−1

(
yp − ye

xp − xe

)
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For a representative computation, the initial conditions (t0 = 0) are randomly cho-

sen: [xe(t0), ye(t0)] = [3, 4] , [xp(t0), yp(t0)] = [4, 4.6]. The final constraint at tf is

[xe(tf ), ye(tf )] = [0, 0].

C. Dynamic Programming (SNOPT)

Once the 1P1E herding problem is formulated as an optimal control problem, the next

step is solving it. Because the problem is nonlinear and the final time tf is not fixed, it

cannot be solved in closed form. The problem will increase in complexity as we include

more agents in this game (such as a system of two pursuers and multiple evaders).

One way of solving the optimal control problem is to apply a numerical discretization

procedure to the problem, which is known as the direct method. Direct methods for

solving optimization problems have become extremely popular because of the ease

and speed. After discretization, parameter optimization techniques are employed by

way of a nonlinear programming (NLP) algorithm. The algorithm adopted here is

a sequential quadratic programming (SQP) algorithm implemented in the SNOPT

software [16] in the MATLAB environment. Here we give an overview of the steps

required to utilize the SNOPT software. A general MATLAB code that calls the

SNOPT solver can be organized into the three following programs:

1. The Main Program - This will call all the functions (subroutines) used to define

the variables and constraint functions used by SNOPT, called the main solver,

and perform any additional data manipulation or plotting that the user wishes

to do. In addition, this is where any optional parameters will be set.

2. Variable Function - Before SNOPT can be called, a number of variables must

be defined. These can be defined in one function, incorporated into the main

function, or divided up into separate functions if needed. In these functions,
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upper and lower bounds are placed on the variables and the constraint functions.

For example, the initial conditions are equality constraints and the lower and

upper limits on the controls are inequality constraints. As for the inequality

constraint functions, we need to constrain the relative distance between the

pursuer and evader, r, to lie in the region [1,4] by setting upper and lower

bounds on r. In terms of the problem formulation, this becomes a constraint

on our state variables.

3. User Function - This function defines the constraint equations, F, and the

nonzero elements of the Jacobian matrix, G. The vector F also contains the

objective function. While it does not matter where the objective function is

placed in F, one must redefine the ’Objective row’ option to the correct row.

By default SNOPT assumes the objective function is contained in row 1 of F.

The numerical discretization procedure is applied in this subroutine. There

are a large number of discretization techniques available. For this thesis, the

Trapezoidal method is used to integrate the differential equations because it is

straightforward to implement. Here we present an overview of the trapezoidal

method. Suppose the standard performance index is

J = φ(x(tf ), tf ) +
∫ tf

0
[L(x(t),u(t), t)]dt (2.10)

The states, x(t), and controls, u(t), are subject to the dynamic constraints:

ẋ(t) = f[x(t),u(t), t], t ∈ [t0, tf ] (2.11)

After numerical discretization, the computation variables for the trapezoidal

method are the states and controls at the N+1 node points, i.e., {x1,u1, ...,xN+1,uN+1}.
Because of the computational burden, we set the number of time steps as N = 20
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unless there is a special requirement to increase the number of time steps. The

dynamic equation constraints are formulated as:

xk+1 − xk − h

2
[f(xk,uk, tk) + f(xk+1,uk+1, tk+1)] = 0, k = 1, 2, ..., N (2.12)

where h is the time step size. The performance index is approximated as:

J ∼= φ(xN+1, tN+1) +
N∑

k=1

h

2
{L(xk,uk, tk) + L(xk+1,uk+1, tk+1)} (2.13)

So the trapezoidal method is used to approximately integrate the area below

the L(x) function. Figure 2 shows the picture of this method when the node

points are from N = 2 to N = 4.

 

x 

L(x) 

N=2 N=3 N=4 

h 

L(x2) 

L(x3) 
L(x4) 

h 

Fig. 2. Trapezoidal Method

D. Results of Designed Trajectories

When the weights w1 = 1 and w2 = 1, it becomes a time and effort optimal case. The

trajectories of the pursuer and the evader can be seen in Figure 3. It demonstrates
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that the pursuer drives the evader to the goal ([0,0] position), in tf = 6.1963 seconds.

The value of the performance index J is 9.7651. The computation time is less than 2

seconds. Figure 4 shows the corresponding controls and relative distance and angle

time histories. The responses all demonstrate smooth behavior. As one can see in

Figure 4, the controls and relative distance are bounded by [-1,1] and [1,4] respectively.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 P1

E1

y

x

Fig. 3. Designed Trajectories for 1P1E and Time and Effort Optimal
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0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

xp
do

t

Time
0 2 4 6 8

−0.8

−0.6

−0.4

−0.2

0

yp
do

t

Time

0 2 4 6 8
1

1.2

1.4

1.6

1.8

2

r

Time
0 2 4 6 8

30

40

50

60

θ
Time

Fig. 4. Control and Relative Vector Time Histories for 1P1E and Time and Effort

Optimal

E. Simulation Process and Results

Once all the trajectories of the pursuer and the evader are determined, then the

motion of the entire system has to be simulated as an experiment. The pursuer

moves according to the trajectory defined by offline computation, and the evader is

completely reactionary. The evader acts as a cheap robot, reacting to the relative

distance, r, and relative angle, θ, with respect to the pursuer. So the basic concept

of the simulation is to solve the differential state equations of the evader by utilizing

Ode45 (a Differential Equation Solver in the MATLAB) with the given initial condi-

tion of evader and the ideal trajectory of pursuer, xp(t) and yp(t). This simulation

process is listed as the following:

• Initial Condition: xe(t0), ye(t0)
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• Given: xp(t), yp(t)

• Solve: State Equations (2.9)

The given trajectory xp(t) and yp(t) as computed by solving the NLP problem is

comprised of N + 1 points and is not continuous. Since we are solving the same

state equations, ideally the simulated trajectory of evader should be identical to the

designed offline trajectory. However, Ode45 uses a high-order numerical integration

method while the trapezoidal method is a low-order integration method. This may

result in differences between the simulated and the designed offline trajectories. Fig-

ure 5 demonstrates the simulated trajectory of the evader along with the designed

offline trajectories for the case where w1 = 1 and w2 = 1, the time and effort optimal

case. One can see that the simulated trajectory closely resembles the designed offline

trajectory. For the following cases and scenarios, the simulated and the designed

offline trajectories are plotted in the same figure. For the remainder of thesis, when

both trajectories match very well, a legend will not be shown in the plot.

When w1 = 0 and w2 = 1 (the effort optimal case) tf = 14.1352 and J =

0.5309. Figure 6 shows that the simulated trajectory of the evader slightly diverges the

designed trajectory. The pursuer trajectory is relatively curved because the pursuer is

driving the evader with the minimum amount of control effort, time is not optimized

because the first weight is set as w1 = 0. Also, Figure 7 shows that the magnitudes

of the controls are relatively small compared to other cases.

The time optimal case occurs when w1 = 1 and w2 = 0. The corresponding

values of the final time and performance index are tf = 5.1189 and J = 5.1189

respectively. Figure 8 and Figure 9 demonstrate the results for the time optimal case.

The trajectory seems to follow a straight line after a maneuver because the pursuer

must drive the evader to the goal as soon as possible. The maneuver requires a high
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amount of control to change the evader’s orientation so that it will follow the straight

line behavior while the pursuer is pushing the evader. The pursuer approaches the

evader until the relative distance, r, reaches its lower bound. One can see that r and

θ in Figure 9 becomes constant after around 1.9 seconds when agents are moving in a

straight line after an orientation maneuver. If we examine equations (2.9) and (2.2),

we see that for constant r and θ, the controls should be constant as well. However,

Figure 9 shows that the controls are chattering. This is caused by numerical error.

Figure 8 shows that the simulated trajectory of the evader diverges from the designed

trajectory. In order to make this discrepancy small, we can increase the number of

discrete node points from N = 20 to N = 50. Figure 10 shows that the simulated and

designed trajectories of the evader match fairly well until the later part (last 9 points).

The disadvantage of increasing the number of points is an increase in computational

burden. For example, 50 points takes near 6 seconds of computation time.
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F. Conclusion and Discussion

In this chapter, we introduced the one pursuer and one evader simple system (1P1E

scenario). A mathematical model was developed that governs the motion of the evader

away from the pursuer. Using this model, we formulated a basic herding problem as

an optimal control problem by defining state equations, controls, constraints and a

performance index. Given random initial conditions, the designed offline trajecto-

ries of two agents are solved numerically with N discrete time steps by utilizing the

SNOPT software in the MATLAB environment to solve the resulting nonlinear pro-

gramming problem. By solving the differential state equations, we then simulate the

motion of the system with the pursuer following the trajectory determined by solving

the optimal control problem, and with the evader reacting to the relative distance

and relative angle to the pursuer. The results of three cases, created by changing the

weights in the performance index (time and effort optimal, effort optimal and time
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optimal) are considered. As expected, the time duration of the herding, tf , is the

largest for the effort optimal case and the smallest for the time optimal case. The

performance index J is the highest in the time and effort optimal case because it is

involving both terms. In the effort optimal case, J is the lowest, because the pursuer

is driving the evader with the minimum amount of control effort regardless of time as

long as it satisfies the final constraint. Inevitably, there are numerical errors in the

time optimal case as seen in Figure 9. This was discussed in the last section. When

simulating the response of the system, a high order numerical integration method

was used such as MATLAB’s Ode45. Despite the difference in integration method,

the designed offline and simulated trajectories match well in all cases except the time

optimal case. This case can be improved by increasing the number of discrete points

from N = 20 to N = 50. Additionally, the time optimal case requires more computa-

tion time (2.5006 seconds) than other cases (less than 2 seconds). The time optimal

control case is computationally more challenging than the other cases.



19

CHAPTER III

TWO PURSUERS AND TWO OR MULTIPLE EVADERS SYSTEM

In the previous chapter a game involving two agents, one pursuer and one evader, was

discussed. We now address the more challenging problem of a herding game involving

groups of pursuers and evaders. Methodologies for addressing this problem will be

considered in this chapter.

A. Two Sets of Independent One Pursuer and One Evader Plus Another Evader

Scenario (2×1P1E+E3)

For this system, we introduce five agents: Pursuer 1 (P1) and Pursuer 2 (P2), which

represent expensive robots with global navigation and relative position sensors, and

Evader (E1), Evader 2 (E2) and Evader 3 (E3), which represent a team of three

relatively cheap robots with only relative position sensors.

1. System Model and Formulation of Optimal Control Problem

Using the same mathematical model as the 1P1E scenario, we develop two sets of

independent 1P1E models first. This means there is no cooperation between P1 and

P2 in the game. As shown in Figure 11, each pursuer only deals with the evader with

the same number. There is no influence of P1 on E2 or P2 on E1. Player E3 will be

considered in the simulation part later. However, since we are seeking to have E1 and

E2 arrive at the goal at the same time, the performance index should thus include

both independent problems. Hence, with this system, the performance index is

J = w1 · tf + w2 ·
∫ tf

0
(ẋ2

p1 + ẏ2
p1 + ẋ2

p2 + ẏ2
p2)dt (3.1)
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Fig. 11. System Model for 2×1P1E

The time optimal part is the same as the 1P1E problem and the effort optimal part

is the summation of both pursuers. The state equations and controls in this scenario

will be represented by two sets of independent 1P1E models as the following:

E1 :





ẋe1 = − 1
r1

cos(θ1)

ẏe1 = − 1
r1

sin(θ1)
(3.2)

where: r1 =
√

(xp1 − xe1)2 + (yp1 − ye1)2

θ1 = tan−1

(
yp1 − ye1

xp1 − xe1

)

E2 :





ẋe2 = − 1
r2

cos(θ2)

ẏe2 = − 1
r2

sin(θ2)
(3.3)

where: r2 =
√

(xp2 − xe2)2 + (yp2 − ye2)2
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θ2 = tan−1

(
yp2 − ye2

xp2 − xe2

)

Controls :





ẋp1 ∈ [−1, 1]

ẏp1 ∈ [−1, 1]

ẋp2 ∈ [−1, 1]

ẏp2 ∈ [−1, 1]

(3.4)

For the examples we will consider, the initial conditions (t0 = 0) are: [xe1(t0), ye1(t0)] =

[2.8, 4.1] , [xe2(t0), ye2(t0)] = [3.5, 3.5], [xp1(t0), yp1(t0)] = [5, 5.6], and [xp2(t0), yp2(t0)] =

[5.4, 5.1] (chosen randomly).

The final constraint at tf is [xe1(tf ), ye1(tf )] = [0, 0] and [xe2(tf ), ye2(tf )] = [0, 0].

2. Results of Designed Trajectories

When w1 = 1 and w2 = 1 (the time and effort optimal case), Figure 12 shows that

each pursuer drives its own evader (with the same number) to the goal ([0,0] position)

in time tf = 10.7456 seconds. The value of the performance index, J , is 15.8639. The

computation time is about 5.5 seconds. Figure 13 shows the corresponding controls,

relative distance, and relative angle time histories. The responses are very similar to

the 1P1E scenario.

3. Simulation Process and Results with an Additional E3

The simulation of this scenario is similar to the 1P1E scenario, with the major differ-

ence being that we have two sets of 1P1E. Furthermore, we can include an additional

Evader, E3, in the scenario as shown in Figure 14.

The extra evader, E3, reacts to the motion of either P1 or P2. The simulation

process is listed as following:
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Fig. 14. System Model for 2×1P1E+E3

• Initial Condition: [xe1(t0), ye1(t0)], [xe2(t0), ye2(t0)] and [xe3(t0), ye3(t0)]

• Given: xp1(t), yp1(t), xp2(t), yp2(t)

• Solve: State Equations (3.2), (3.3) and the following equation (3.5) for the E3

part.

E3 :





ẋe3 = − 1
r3

cos(θ3)

ẏe3 = − 1
r3

sin(θ3)
(3.5)

where: (r3 and θ3 chosen based on which pursuer (P1 or P2) drives E3)

r3 =
√

(xp1 − xe3)2 + (yp1 − ye3)2

θ3 = tan−1

(
yp1 − ye3

xp1 − xe3

)

or: r3 =
√

(xp2 − xe3)2 + (yp2 − ye3)2

θ3 = tan−1

(
yp2 − ye3

xp2 − xe3

)
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Figure 15 shows that the simulated trajectories of E1 and E2 match the designed

offline trajectories. E3 (in this case [xe3(t0), ye3(t0)] = [3.1, 3.7]) is not approaching

the goal. Instead, it goes from away from either P1 or P2 depending on which pursuer

E3 reacts to.

4. Conclusion and Discussion

In this section, we combined two sets of independent 1P1E together in the same

performance index using the 1P1E scenario that was proposed in the last chapter. The

whole process, which involves using random initial conditions to solve the designed

offline trajectories and then simulating the motion of the system, is similar to the

1P1E scenario. Each pursuer is able to drive its own evader to the goal at the
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same time. The point of this scenario is to demonstrate how the evaders react when

pursuers do not cooperate. As shown in Figure 15, the trajectory of each single

evader is only influenced by the trajectory of its corresponding pursuer. Without

cooperation between P1 and P2, one can see there is no way for P1 and P2 to handle

E3 in addition to their own evader. Neither of the pursuers is able to independently

drive E3 to the goal. Incorporating this into our scenario increases the complexity

of the problem. This raises the question, how can two pursuers cooperate to drive

multiple evaders to a certain location or region in a manner that is weighted time

optimal and effort optimal?

B. Two Pursuers and Three Evaders Scenario (2P3E)

In this section, we will develop a mathematical cooperation model that allows two

pursuers to drive a team of three evaders to the goal at the same time.

1. System Model

A diagram of the scenario is shown in Figure 16. There are six relative distance

vectors relating the two pursuers to the three evaders as well as six relative angles.

The motion of each evader is influenced by the relative vector of each pursuer. This

can be thought of as an “influence” from each pursuer. If we want both pursuers

to influence the motion of a single evader, we can consider the summation of both

relative vectors, or influence, from each pursuer. This idea is illustrated in Figure 17.

The mathematical model is given below:

Fi = Fi1 + Fi2 (3.6)

In x direction : Fix = Fi1x + Fi2x (3.7)
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In y direction : Fiy = Fi1y + Fi2y (3.8)

where: Fi1x = − 1

r11

cos(θ11)

Fi2x = − 1

r12

cos(θ12)

Fi1y = − 1

r11

sin(θ11)

Fi2y = − 1

r12

sin(θ12)

2. Formulation of Optimal Control Problem

With the influence model presented in equations (3.6) to (3.8), we can develop the

dynamic equations that enable cooperation between pursuers. The state equations

are given by:

E1 :





ẋe1 = − 1
r11

cos(θ11)− 1
r12

cos(θ12)

ẏe1 = − 1
r11

sin(θ11)− 1
r12

sin(θ12)
(3.9)

where: r11 =
√

(xp1 − xe1)2 + (yp1 − ye1)2

θ11 = tan−1

(
yp1 − ye1

xp1 − xe1

)

r12 =
√

(xp2 − xe1)2 + (yp2 − ye1)2

θ12 = tan−1

(
yp2 − ye1

xp2 − xe1

)

E2 :





ẋe2 = − 1
r21

cos(θ21)− 1
r22

cos(θ22)

ẏe2 = − 1
r21

sin(θ21)− 1
r22

sin(θ22)
(3.10)

where: r21 =
√

(xp1 − xe2)2 + (yp1 − ye2)2
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θ21 = tan−1

(
yp1 − ye2

xp1 − xe2

)

r22 =
√

(xp2 − xe2)2 + (yp2 − ye2)2

θ22 = tan−1

(
yp2 − ye2

xp2 − xe2

)

E3 :





ẋe3 = − 1
r31

cos(θ31)− 1
r32

cos(θ32)

ẏe3 = − 1
r31

sin(θ31)− 1
r32

sin(θ32)
(3.11)

where: r31 =
√

(xp1 − xe3)2 + (yp1 − ye3)2

θ31 = tan−1

(
yp1 − ye3

xp1 − xe3

)

r32 =
√

(xp2 − xe3)2 + (yp2 − ye3)2

θ32 = tan−1

(
yp2 − ye3

xp2 − xe3

)

In the state equations (3.9) to (3.11), the first subscript of r and θ corresponds to the

evader and the second one corresponds to the pursuer. As in previous scenarios, we

keep ẋp and ẏp as controls as seen in equations (3.12). We use ẋp and ẏp as controls

rather than ṙ and θ̇ because using the relative distances and angles would require the

addition of eight control constraints to the problem because the rij and θij are not all

independent. Each control obeys the constraints used in previous examples. Those

are given by:

Controls :





ẋp1 ∈ [−1, 1]

ẏp1 ∈ [−1, 1]

ẋp2 ∈ [−1, 1]

ẏp2 ∈ [−1, 1]

(3.12)
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For this scenario, we use the same performance index as the last 2×1P1E scenario.

The constraint on relative distance coupled with other constraints gives 16×N+7

constraint functions when converted to the nonlinear programming problem. To

help reduce the complexity, we incorporate soft constraints into the herding problem.

Instead of keeping the final constraints, xe(tf ) = 0 and ye(tf ) = 0, we incorporate

soft final constraints, x2
e(tf )+y2

e(tf ), into the performance index with a weight w3. In

this manner, the final goal of the team of evaders becomes a small region, like a pen

in the context of animal herding, but it is very close to the origin. The performance

index J can be expressed in the following manner:

J = w1 · tf + w2 ·
∫ tf

0
(ẋ2

p1 + ẏ2
p1 + ẋ2

p2 + ẏ2
p2)dt

+w3 · (x2
e1(tf ) + y2

e1(tf ) + x2
e2(tf ) + y2

e2(tf ) + x2
e3(tf ) + y2

e3(tf )) (3.13)

In this performance index we must choose a proper value of weight (for our example

choose w3 = 10 unless there is a special requirement to change the weight) to penalize

the third term.

For our example, we choose the initial conditions to be: [xe1(t0), ye1(t0)] =

[2.8, 4.1], [xe2(t0), ye2(t0)] = [3.5, 3.5], [xe3(t0), ye3(t0)] = [3.1, 3.7], [xp1(t0), yp1(t0)] =

[5, 5.6] and [xp2(t0), yp2(t0)] = [5.4, 5.1](chosen randomly).

3. Results of Designed Trajectories

Now that we have formulated our optimal control problem, we can determine the

optimal trajectories. Figure 18 demonstrates that two pursuers successfully drive a

team of three evaders to the goal for the time and effort optimal case (w1 = 1 and

w2 = 1) in tf = 9.3388 seconds. The value of the performance index J is 22.0369 and

the computation time is near 16 seconds. Figure 19 shows the corresponding controls,

relative distance, and relative angle time histories. The responses all demonstrate
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smooth behavior.
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Fig. 18. Designed Trajectories for 2P3E and Time and Effort Optimal
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4. Simulation Process and Results

With this cooperative model, this simulation process is explained by the following:

• Initial Condition: [xe1(t0), ye1(t0)], [xe2(t0), ye2(t0)] and [xe3(t0), ye3(t0)] (Same

as the 2×1P1E+E3 scenario)

• Given: xp1(t), yp1(t), xp2(t), yp2(t) (Same as the 2×1P1E+E3 scenario)

• Solve: State Equations from (3.9) to (3.11)

All three cases, including time and effort optimal, effort optimal and time optimal,

are computed and simulated in this scenario. For convenience, we list the results of

three cases in Table I.

Table I. Results for 2P3E scenario

Time and Effort Optimal Effort Optimal Time Optimal

tf 9.3388 19.095 7.1002

J 22.0369 9.9193 7.4053

Computation Time 16.3764 64.8371 34.9583

For the three cases, the simulated and designed offline trajectories are plotted in

the same figure and are very consistent to each other, as shown in Figures 20, 21 and

22. J is the highest when w1 = 1 and w2 = 1 (time and effort optimal case). When

w1 = 0 and w2 = 1 (effort optimal case), Figure 23 shows that the magnitudes of the

controls are relatively small and are approaching 0 near 10 seconds. For this case, the

relative distances are relatively high (near the upper bound) because the pursers do

not use as much effort. As a result, the evaders move away from the pursuers until
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Fig. 22. Designed and Simulated Trajectories for 2P3E and Time Optimal

0 5 10 15 20 25
−1

−0.5

0

0.5

Time

 

 

xpdot1
xpdot2

0 5 10 15 20 25
−1

−0.5

0

0.5

yp
do

t

Time

 

 

ypdot1
ypdot2

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

Time

 

 

r11
r12
r21
r22
r31
r32

0 5 10 15 20 25
−50

0

50

100

150

θ

Time

 

 

θ11
θ12
θ21
θ22
θ31
θ32

Fig. 23. Control and Relative Vector Time Histories for 2P3E and Effort Optimal



35

0 2 4 6 8
−1

−0.5

0

0.5

1

Time

 

 

xpdot1
xpdot2

0 2 4 6 8
−1

−0.5

0

0.5

1

yp
do

t

Time

 

 

ypdot1
ypdot2

0 2 4 6 8
1

2

3

4

5

r

Time

 

 

r11
r12
r21
r22
r31
r32

0 2 4 6 8
−50

0

50

100

150

θ

Time

 

 θ11
θ12
θ21
θ22
θ31
θ32

Fig. 24. Control and Relative Vector Time Histories for 2P3E and Time Optimal



36

the upper limit is reached. This causes the herding for this case to take the longest

time.When w1 = 1 and w2 = 0 (time optimal case), the herding takes the shortest

time as expected, Figure 24 shows that the controls for this case are not smooth, but

display a chattering response.

5. Conclusion and Discussion

In this section, a new mathematical cooperation model was developed that governs the

interaction between pursuers and evaders. We formulated this model as an optimal

control problem using the same process as in the previous scenarios, with the exception

that the final goal became a small region instead of the origin. This was accomplished

by penalizing the final value of xe(tf ) and ye(tf ) (using soft constraints) instead of

using the hard constraints, xe(tf ) = 0 and ye(tf ) = 0. After solving the designed

offline trajectories, the results show that two pursuers are able to successfully drive a

team of three evaders to the goal for three cases, created by changing the weights in

the performance index. That displays the benefit of the cooperation in this scenario.

The results are straightforward and meet our expectations, with the exception of the

time optimal case. The control response for this case chatters, which is typical of

time optimal problems. The computation time is one magnitude higher than the

1P1E scenario because there are 16×N+7 constraint functions in the problem even

without the final constraints.

C. Two Pursuers and Two Evaders Scenario (2P2E)

Even though using two pursuers to drive an additional E3 to the goal is the primary

objective of cooperation, we would also like to see how the performance index is

improved with the cooperative model compared to the scenario using two sets of
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independent 1P1E (2×1P1E). Since the 2×1P1E scenario deals only with moving two

evaders toward the goal at the same time, we consider two pursuers cooperatively

driving only two of the evaders in this section in order to make the two scenarios

comparable. Additionally, we would like to observe the response of an additional

evader, E3, when it is included in the simulation and compare this to the 2P3E

scenario.

1. System Model, Formulation of Optimal Control Problem and Simulation Process

Obviously, for this case, the state equations, performance index, initial conditions and

simulation process are almost the same as for the 2P3E scenario except that there is

no E3 involved in the state equations and performance index. So the state equations

are equations (3.9) and (3.10). The controls are the same as the 2P3E scenario as

seen in equation (3.12). The performance index is

J = w1 · tf + w2 ·
∫ tf

0
(ẋ2

p1 + ẏ2
p1 + ẋ2

p2 + ẏ2
p2)dt

+w3 · (x2
e1(tf ) + y2

e1(tf ) + x2
e2(tf ) + y2

e2(tf )) (3.14)

Since E3 is only involved in the simulation part and is reacting according to the

motions of both pursuers, the simulation process is the same as the 2P3E scenario.

2. Results of Designed and Simulated Trajectories

In this scenario, the shapes of designed trajectories in Figure 25 and the corresponding

controls, relative distance, and relative angle time histories in Figure 26 look very

similar to the 2P3E scenario even though E3 has no effect on the designed motion of

the pursuers. When w1 = 1 and w2 = 1 (time and effort optimal case), the results

are tf = 8.9192 seconds and J = 22.5921 with the weight of the soft constraint set

to w3 = 100. One can see that tf is lower and J is higher than the two sets of
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independent 1P1E scenario.
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Fig. 25. Designed Trajectories for 2P2E and Time and Effort Optimal

After simulating the trajectories with different initial positions of E3, Figure 27

shows that E3 does not always approach the goal, but moves away from the goal

when the initial position (in this case [xe3(t0), ye3(t0)] = [3.3, 3.9]) is a little further

from the goal that other two evaders.
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3. Conclusion and Discussion

Following the 2P3E scenario, we removed the soft constraint, x2
e3(tf ) + y2

e3(tf ), from

the performance index in order to compare the resulting performance index to the

2×1P1E scenario. The results show that the final time as a part of performance index

is improved by using cooperation as opposed to the 2×1P1E scenario for the time and

effort optimal case because the influences from each pursuer have a larger net effect

on the evaders. However, J (excluding the contribution of the soft constraint term

in the performance index) is increased since cooperation of pursuers requires more

control effort. Additionally, in the simulation part, E3 does not always approach the

goal when the soft constraint is not included in the performance index because the

pursuers do not take the trajectory of E3 into account. If we examine state equation

(3.11), the right side of the equations will become positive if the motion of E3 is

slower than two pursuers, and they pass it. This occurs when E3 is a little further

from the goal that other evaders as shown in Figure 27. This causes E3 to move in the

opposite direction, away from the goal. In contrast, if E3 is included in the designed

trajectories as in the 2P3E scenario, it shows that E3 will approach the goal as seen

in Figure 20.

D. Two Pursuers and Four Evaders Scenario (2P4E)

To show the further benefits of cooperation, we include more cheap “dumb” robots

in our problem. Increasing the number of evaders is very challenging as it increases

the difficulty of numerical computation. In this section we study the ability of the

methodology to handle more evaders.
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1. System Model, Formulation of Optimal Control and Simulation Process

This scenario is very similar to the 2P3E scenario. We start with 2P3E scenario and

add one more evader (E4) to the state equations, performance index and simulation

process. Figure 28 shows that the model for each individual evader. The figure shows

Fig. 28. System Model for Each Single Evader

that any single evader (represented by i) has two relative distance vectors relating

two pursuers as well as two relative position angles. Thus, in addition to the state

equations (3.9), (3.10) and (3.11) in the 2P3E scenario, we include state equation

(3.15) for E4:

E4 :





ẋe4 = − 1
r41

cos(θ41)− 1
r42

cos(θ42)

ẏe4 = − 1
r41

sin(θ41)− 1
r42

sin(θ42)
(3.15)

where: r41 =
√

(xp1 − xe4)2 + (yp1 − ye4)2

θ41 = tan−1

(
yp1 − ye4

xp1 − xe4

)
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r42 =
√

(xp2 − xe4)2 + (yp2 − ye4)2

θ42 = tan−1

(
yp2 − ye4

xp2 − xe4

)

The controls are the same as the 2P3E scenario as seen in equation (3.12). The

performance index with E4 included is:

J = w1 · tf + w2 ·
∫ tf

0
(ẋ2

p1 + ẏ2
p1 + ẋ2

p2 + ẏ2
p2)dt + w3 · (x2

e1(tf ) + y2
e1(tf )

+x2
e2(tf ) + y2

e2(tf ) + x2
e3(tf ) + y2

e3(tf ) + x2
e4(tf ) + y2

e4(tf )) (3.16)

In addition to the initial conditions in 2P3E scenario, we include [xe4(t0), ye4(t0)] =

[2.5, 3.4] (chosen randomly). The simulation process is as following:

• Initial Condition: [xe1(t0), ye1(t0)], [xe2(t0), ye2(t0)], [xe3(t0), ye3(t0)] and [xe4(t0), ye4(t0)]

• Given: Same as the 2P3E scenario

• Solve: State Equations (3.9), (3.10), (3.11) and (3.15) for E4

2. Results of Designed and Simulated Trajectories

For convenience, we summarize the results in Table II.

Table II. Results for 2P4E scenario

Time and Effort Optimal Effort Optimal Time Optimal

tf 10.3674 11.7562 8.6942

J 28.4106 17.2611 14.2778

Computation Time 24.4365 26.0727 49.5807
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The results are very similar to the 2P3E scenario. They demonstrate that two

pursuers are able to successfully drive a team of four evaders to the goal for three

cases. The simulated and designed offline trajectories are plotted in the same figure

and they match well, as shown in Figure 29, 30 and 31. The corresponding controls

and relative distance and angle time histories can be seen in Figure 32, 33 and 34.

We can see that the plots for the time optimal case still display chatter.
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Fig. 29. Designed and Simulated Trajectories for 2P4E and Time and Effort Optimal
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Fig. 30. Designed and Simulated Trajectories for 2P4E and Effort Optimal
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Fig. 31. Designed and Simulated Trajectories for 2P4E and Time Optimal
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In the time optimal case shown in Figure 31, P1 seems to move away from

the evaders toward the end of the simulation. In order to get a clearer picture of

the time optimal case, we include three sub-cases, created by changing the weight

of soft constraints, w3 in the performance index. Figure 35, 36 and 37 show the

trajectories with the weight w3 =1, 5 and 100 respectively. Three figures show that

when increasing w3, P1 has higher tendency to move further from the evaders in

order to maneuver into a better position to herd four evaders. When w3 = 100, P1

eventually goes around and passes the evader to push them back toward [0,0].
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Fig. 35. Designed and Simulated Trajectories for 2P4E and Time Optimal (w3 = 1)
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Fig. 36. Designed and Simulated Trajectories for 2P4E and Time Optimal (w3 = 5)
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Fig. 37. Designed and Simulated Trajectories for 2P4E and Time Optimal (w3 = 100)
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3. Conclusion and Discussion

Following the 2P3E scenario, we studied the 2P4E scenario in this section as an ex-

tension. We use the same the process as was used previously except for the addition

of adding E4 in the state equations, performance index, initial conditions and sim-

ulation process. The results show that two pursuers are able to successfully drive a

team of four evaders to the goal for three cases. The plots look very similar to those

of the 2P3E scenario. The final time, tf , is minimum in the time optimal case and

maximum in the effort optimal case. The performance index J is highest in the time

and effort optimal case and lowest in the time optimal case as we expect. However,

the time optimal case is most numerically challenging case. The simulated trajecto-

ries match those designed offline very well. The computation time dose not increase

much compared to the 2P3E scenario despite having 20×N+9 constraint functions.

This means that the cooperative model can be applied to the four evaders scenario,

and maybe more as long as the computation limit allows. The process of adding one

evader (denoted by Ei) to the 2P4E scenario is the same as the process followed to

go from the 2P3E scenario to the 2P4E scenario.
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CHAPTER IV

CONCLUSION AND DISCUSSION

In this thesis, we study a new type of pursuit-evasion game, which we call the herding

problem. Unlike typical pursuit evasion games, where the pursuer aims to catch or

intercept the evader, the goal of the pursuers in this game is to drive the evaders

to a certain location or region in the x-y plane. Starting from the one pursuer and

one evader scenario, a mathematical model was developed that governs the motion

of the evader away from the pursuer. Using this model, we formulated a basic herd-

ing problem as an optimal control problem by defining state equations, controls,

constraints and a performance index and then focused on computing solutions nu-

merically through dynamic programming by utilizing the SNOPT software in the

MATLAB environment. The solution process includes using random initial condi-

tions, solving the designed offline trajectories and then simulating the motion of the

system. Once the 1P1E scenario was well established, a cooperation model was devel-

oped in a two pursuer and two or multiple evaders scenario. Then we developed the

formulation of optimal control problems and solved them numerically as we had done

in the 1P1E scenario. The results showed that we were able to simulate two pursuers

driving a team of three evaders, instead of just two, successfully to the goal for three

cases, created by changing the weights in the performance index. Additionally, we

noticed that when tf is included as a part of performance index the final time is

improved with cooperation compared to the two sets of independent 1P1E scenario.

Also, from the results, we observed that the time duration of the herding, tf , was the

lowest for the time optimal case and the highest for the effort optimal case. The per-

formance index J was the highest in the time and effort optimal case and the lowest

in the effort optimal case. When simulating the response of the system, despite the
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difference in integration method, the designed offline and simulated trajectories are

very consistent with each other in the 2P3E scenario and match fairly well in the 1P1E

scenario. Inevitably, there are always numerical errors in the time optimal case and

the plots display control chatter because we penalized only the unfixed tf . However,

there are methods to smooth chattering controls that may alleviate this problem. In

summary, this research can be implemented in experiments easily after all the steps

are established. Finally, one may consider the very natural and interesting extensions

of problems of this cooperative model to this kind of scenario. If we have a group

of multiple expensive robots, which we call pursuers (more than two) and a group of

multiple cheap robots, which we call evaders, we can apply this cooperative model

by dividing a group of multiple pursuers into different teams. Each team has two

pursuers or one (if the number of pursuers is odd). Then each team can herd 3 or 4

evaders to the goal. A methodology for dividing pursuers into teams and a process

of choosing which evaders a team should herd is a topic of future research.

The main contribution of this thesis are the direction and speed evasion model

and the influence vector policy that allows cooperation among the players.
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