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Abstract 31 

The whitemouth croaker (Micropogonias furnieri) is one of the most commercially important 32 

species along the Atlantic coast of South America. Moreover, some of its biological traits (long 33 

life span, inshore feeding, high trophic position) make this species a suitable sentinel of coastal 34 

pollution. Here, we investigated contamination by multiple legacy and emerging organic 35 

pollutants, such as brominated and chlorinated flame retardants, polychlorinated dibenzo-p-36 

dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), in whitemouth croakers from 37 

two estuaries (Guanabara and Sepetiba Bays) located in industrialized and urbanized areas in 38 

Rio de Janeiro State, Southeastern Brazil. Furthermore, we assessed how biological and 39 

ecological features could explain the observed contamination patterns. Regarding brominated 40 

flame retardants, concentrations of polybrominated diphenyl ethers (PBDEs) varied from 7.6 41 

to 879.7 pg g-1 wet weight (w.w.), with high contribution of tetra-, penta-, hexa- and deca-42 

BDEs. The sum of chlorinated flame retardants (dechlorane-related compounds, ΣDRC) ranged 43 

from <LOD to 41.1 pg g-1 w.w., mostly represented by Dechlorane 603 and Dechlorane Plus 44 

(DP). Concentrations of PCDDs and PCDFs varied from <LOD to 1.7 pg g-1 w.w., while the 45 

Toxic Equivalent (TEQ-PCDD/Fs) levels ranged from 0.1 to 0.2 pg g-1 w.w. Positive 46 

correlations between δ15N and concentrations of tri-, tetra- and penta-BDEs, as well as ΣDRC, 47 

DP and anti-DP isomers suggested that ecological factors (namely biomagnification along the 48 

food web) influence contamination of whitemouth croakers in the estuaries studied. Moreover, 49 

the sum of PBDEs (ΣPBDE), tri- and tetra-BDEs concentrations were negatively correlated 50 

with fish size, suggesting that depuration by fishes and/or habitat shift throughout the 51 

whitemouth croaker’s life cycle might also influence concentrations. Overall, our study 52 

emphasized the need for further investigations to help understand the complex patterns of 53 

bioaccumulation and biomagnification that seem to exist in Southeastern Brazil. 54 

Keywords: Micropogonias furnieri, Brazil; PBDEs; Dechloranes; PCDD/Fs; Stable Isotopes.  55 



Highlights 56 

 Analysis suggested the presence of PBDE commercial mixtures in whitemouth croakers 57 

 First assessment of emerging flame retardants in fish from Southwest Atlantic Ocean 58 

 Dec 603 and DP were the predominant DRCs, followed by Mirex, Dec 602 and CP 59 

 60 

 61 
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1. Introduction 65 

Persistent Organic pollutants (POPs) comprise a wide range of chemicals that have received 66 

considerable attention due to their persistence in the environment, long-range transport and 67 

toxic properties (Jones and De Voogt, 1999; Walker et al., 2012). Restricted or banned POPs – 68 

known as legacy POPs – are regulated by the Stockholm Convention, and include substances 69 

classified as unintentional products [i.e. polychlorinated dibenzo-p-dioxins (PCDDs) and 70 

polychlorinated dibenzofurans (PCDFs)], pesticides, and industrial chemicals [i.e. flame 71 

retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) commercial mixtures] 72 

(UNEP, 2017). On the other hand, the term emerging pollutants refers to replacement 73 

substances for the legacy chemicals, which have been recently observed in the environment. 74 

Among the emerging pollutants, the category of FRs stand out, including brominated [i.e. 75 

pentabromoethylbenzene (PBEB) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] and 76 

chlorinated flame retardants, such as the dechlorane-related compounds (DRCs) [i.e. 77 

Dechlorane 602 (Dec 602; CAS# 31107−44−5), 603 (Dec 603, CAS# 13560−92−4), 604 (Dec 78 

604; CAS# 34571− 16−9) and Dechlorane Plus (Dec 605 or DP, CAS# 13560−89−9) that are 79 

used as substitutes to the banned Mirex. Legacy and emerging pollutants are prone to 80 

accumulate in organisms and biomagnify throughout food webs due to their persistent and 81 

hydrophobic properties (Kelly et al., 2007; Walters et al., 2016; Navarro et al., 2016, 2017 and 82 

2018). Therefore, marine organisms provide opportunities to act as monitors of their 83 

environment, as levels and profiles of these contaminants can serve as intrinsic markers, 84 

reflecting the ecosystem conditions under which biota live and feed (Alonso et al., 2012; 85 

Chouvelon et al., 2014; 2017). 86 

In Brazil, the whitemouth croaker, Micropogonias furnieri (Desmarest, 1823) (Perciformes, 87 

Sciaenidae), has been recommended as a good indicator of environmental contamination 88 

(Dorneles et al., 2016) due to its distribution along the coastal waters of the western Atlantic 89 



Ocean, to its longevity (~35 years), and high trophic position in estuarine ecosystems (Bisi et 90 

al., 2012; Pizzochero et al., 2018; Vazzoler, 1991). Additionally, this species constitutes a 91 

commercially-important resource in coastal demersal fisheries along the Atlantic coast of South 92 

America (FAO, 2018; Haimovici et al., 2016). In this context, investigations on legacy and 93 

emerging pollutants in this species would not only provide information on the contaminants 94 

that are spreading through marine food webs in Brazilian coastal waters, but would also be 95 

relevant in public and human health assessment as ingestion of seafood constitutes the principal 96 

source of human exposure to POPs (Cruz et al., 2015; Sidhu, 2003). 97 

In the present study, concentrations of legacy and emerging POPs were measured in white 98 

muscle samples of whitemouth croakers from Rio de Janeiro state, Southeastern Brazil. We 99 

aimed to investigate whitemouth croaker exposure to POPs and its relation with stable isotopes 100 

ratios of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S), in order to provide a more 101 

comprehensive view of their potential use as sentinels. Combining pollutant determination with 102 

measurements of ecological tracers such as stable isotopes has been shown to be useful for 103 

better understanding sources, pathways, and the trophic flow of toxicants (Bisi et al., 2012; 104 

Chouvelon et al., 2014; 2017). To the authors' knowledge, this is the first study to determine 105 

emerging pollutants [brominated (HBB – hexabromobenzene, BB-153 – 2,2',4,4',5,5'-106 

hexabromobiphenyl, PBEB and BTBPE) and chlorinated (Dec 602, Dec 603, Dec 604, DP and 107 

Chlordene Plus) flame retardants] in fish from the southwest Atlantic Ocean. 108 

 109 

2. Materials and Methods 110 

2.1 Study area and sample collection 111 

Guanabara Bay and Sepetiba Bay are two important fishing areas in Rio de Janeiro state (RJ), 112 

in Southeast Brazil (Fig. 1). Located in the metropolitan area of the Rio de Janeiro city, 113 

Guanabara Bay (22º24' and 22º57' S / 43º33' and 43°00’ W, 328 km2) is the most 114 



anthropogenically-disturbed area along the Brazilian coastline (Dorneles et al., 2008a, 2008b, 115 

2013). This estuary is under the direct influence of approximately 11 million people living in 116 

its surroundings (IBGE, 2016), receiving sewage, industrial waste and consequently many 117 

contaminants that are transported along its drainage basin, which contains more than 12,000 118 

industries (Baptista-Neto et al., 2016; Kjerfve et al., 1997). Sepetiba Bay (22º55’ and 23º 05’S/ 119 

43º40’ and 44º40’W, 450 km2) has also been severely impacted by anthropogenic activities 120 

over the past 40 years. Its drainage basin is surrounded by a population of about 2 million people 121 

and over 400 industries, including metallurgical, petrochemical and pyrometallurgical smelters 122 

(IBGE, 2016; Molisani et al., 2004). Twenty whitemouth croaker (Micropogonias furnieri) 123 

specimens were obtained from commercial fishery landings in Guanabara (n = 14) and Sepetiba 124 

(n = 6) Bays in the 2014 austral winter (dry season). Each fish was weighed, measured and 125 

dissected. Dorsal white muscle samples were wrapped in individual aluminium foil and kept 126 

frozen (-20 °C) until being oven-dried at 60°C to constant weight (> 72h) prior to analysis. 127 

Biological parameters [size, mass and lipid content (%)] of the specimens analyzed in the 128 

present study are presented in Table 1. 129 

 130 

2.2 Chemicals and reagents 131 

Complete details on the standards used are presented in Table S1 (Supplementary data). Dec 132 

602 (95% purity), Dec 603 (98%), and Dec 604 (98%) were purchased from Toronto Research 133 

Chemical Inc. (Toronto, ON, Canada). Chlordene Plus (CP; CAS# 13560-91-3) and DP (syn-134 

DP and anti-DP standards) were obtained from Wellington Laboratories Inc. (Guelph, ON, 135 

Canada). Mirex (CAS# 2385−85−5) was purchased from Cambridge Isotope Laboratories Inc. 136 

(Andover, MA). For brominated flame retardant (BFR) determinations, BFR−LCS (containing 137 

14 13C12−PBDEs, 13C6−HBB, 13C12−BB-153 and 13C6−BTBPE), BFR−ISS (containing 4 138 

13C12−PBDEs) and BFR−CVS (five individual calibration solutions containing among others 139 



35 12C12−PBDEs, 20 13C12−PBDEs, 13C6 and 12C−HBB, 13C12— and 12C−BB-153, 13C6− and 140 

12C−BTBPE) were obtained from Wellington laboratories Inc. (Guelph, ON, Canada). For 141 

PCDD and PCDF determinations, EPA-1613LCS (containing 15 13C12-PCDD/Fs), EPA-142 

1613ISS (containing 2 13C12-PCDDs) and EPA-1613CVS (five individual calibration solutions 143 

containing among others 17 12C12−PCDD/Fs and 17 13C12−PCDD/Fs) were obtained from 144 

Wellington laboratories Inc. (Guelph, ON, Canada). The other chemicals used, i.e. anhydrous 145 

sodium sulphate, silica, sulphuric acid (95–97%) and solvents (hexane, dichloromethane, ethyl 146 

acetate and toluene) for organic trace analysis, were all obtained from Merck (Darmstadt, 147 

Germany).  148 

 149 

2.3 Sample preparation and chemical analysis  150 

The analytical methods used are described in detail elsewhere (de la Torre et al., 2011, 2012). 151 

Extractions were performed with an Accelerated Solvent Extraction system (ASE 100, Dionex, 152 

Sunnyvale, CA, USA) using a mixture of hexane:dichloromethane (1:1 v/v) as solvent, at 100 153 

ºC, 1500 psi, 90% flush volume and three static cycles (10 min time each; 70 mL total volume). 154 

Prior to the extraction step, the samples were spiked with 13C12 labeled surrogate standards (see 155 

Table S1). The oven-dried dorsal white muscle samples, ranging from 1 to 8 g, were 156 

homogenized with 15 g of anhydrous sodium sulphate and introduced into a 30 mL cell 157 

previously loaded by inserting two cellulose filters followed by 2 g of anhydrous sodium 158 

sulphate. The resulting extract of each sample was evaporated to constant weight for 159 

gravimetric lipid determination and then re-dissolved in hexane. Sample purification consisted 160 

of two steps: a liquid extraction with 100 mL of hexane and 50 mL of concentrated sulfuric 161 

acid to remove organic matter from the extracts, followed by the transfer of the organic phase 162 

to an open glass column with 15 g acid silica modified with 44% sulphuric acid, covered with 163 

1 g anhydrous sodium sulphate and eluted with 150 mL of hexane. The cleaned extracts were 164 



concentrated to approximately 1 mL. The fractionation step was performed in an automated 165 

purification Power PrepTM System (FMS, Inc., USA) including acidic silica gel, basic alumina 166 

and carbon columns. Two fractions were obtained: Fraction A containing PCDD/Fs and 167 

Fraction B containing BFRs and DRCs. Both fractions were concentrated to approximately 1 168 

mL under a flow of nitrogen using a Turbo Vap II evaporator (Vertex, Technics, Madrid, 169 

Spain), and spiked with the internal standard spiking solutions (see Table S1). 170 

The instrumental analysis was conducted using high resolution gas chromatography coupled 171 

with high resolution mass spectrometry (HRGC–HRMS; Agilent GC 6890N connected to a 172 

Waters Micromass AutoSpec Ultima NT) at 10,000 resolving power (10% valley) and working 173 

in selected ion monitoring (SIM) mode. The GC column used for PCDD/F determination was 174 

60 m x 0.25 mm x 0.25 µm film thickness (DB-5MS, J&W Scientific), while a short and narrow 175 

column [15 m x 0.25 mm x 0.10 µm film thickness; DB-5MS (J&W Scientific] was used for 176 

BFR and DRC determinations. Instrument operating conditions were as described in de la Torre 177 

et al. (2011, 2012).  178 

Quantification was carried out using the isotopic dilution method (US EPA, 1994). Three 179 

criteria were used to ensure the correct identification and quantification of analytes: i) ± 2 s 180 

retention time between the analyte and the standard, ii) the ratio of quantifier and qualifier ions 181 

had to be within ± 15% of the theoretical values and iii) a signal to noise ratio greater than three. 182 

Recoveries for DP (13C10-syn-DP and 13C10-anti-DP), 13C12-PCDD/Fs, and 13C12-PBDEs in this 183 

study were 81 ± 10%, 79 ± 14%, 82 ± 9% (mean ± SD), respectively. The limits of detection 184 

(LODs) and quantification (LOQs) of the method were calculated as the concentration 185 

corresponding to a signal-to-noise ratio of 3 and 10 respectively (see Table S2). Procedural 186 

blanks were processed and analyzed with every batch of samples under the same conditions. In 187 

addition, instrumental blanks consisting of nonane were run before each sample injection to 188 

check for memory effects and contamination from the gas chromatograph system. 189 



Concentrations in instrumental and procedural blanks were below LOD. For statistical 190 

descriptive calculations, samples with concentrations below LODs were considered as zero. 191 

However, for PCDD/F World Health Organization 2005 Toxic Equivalent (TEQ; Van den Berg 192 

et al., 2006) calculations, not detected values were replaced by LODs. 193 

 194 

2.4 Stable isotope measurements 195 

The data on stable isotope ratios of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) in muscle 196 

samples of whitemouth croakers from Guanabara Bay were extracted from Pizzochero et al. 197 

(2018). This dataset was supplemented with specimens from Sepetiba Bay. Oven-dried dorsal 198 

white muscle samples were ground into powder using mortar and pestle. Approximately 4 mg 199 

of dry powdered material were analysed. Measurements of stable isotope ratios were performed 200 

via continuous flow - elemental analysis - isotope ratio mass spectrometry (CF-EA-IRMS) at 201 

the Laboratory for Oceanology, University of Liege (Belgium), using a vario MICRO cube C-202 

N-S elemental analyzer (Elementar Analysensysteme GMBH, Hanau, Germany) coupled to an 203 

IsoPrime100 isotope ratio mass spectrometer (Isoprime, Cheadle, United Kingdom). Isotopic 204 

ratios were expressed using the widespread δ notation (Coplen, 2011), in ‰ and relative to the 205 

international references [Vienna Pee Dee Belemnite (for carbon), Atmospheric Air (for 206 

nitrogen) and Vienna Canyon Diablo Troilite (for sulfur)]. IAEA (International Atomic Energy 207 

Agency, Vienna, Austria) certified reference materials sucrose (IAEA-C-6; δ13C = -10.8 ± 208 

0.5‰; mean ± SD), ammonium sulfate (IAEA-N-2; δ 15N = 20.3  0.2‰) and silver sulfide 209 

(IAEA-S-1; δ 34S = -0.3‰) were used as primary analytical standards. Sulfanilic acid (Sigma-210 

Aldrich; δ13C = -25.6 ± 0.4‰; δ 15N = -0.13  0.4‰; δ 34S = 5.9 ± 0.5‰) was used as secondary 211 

analytical standard. Standard deviations on multi-batch replicate measurements of secondary 212 

and internal lab standards (animal muscle tissue) analyzed interspersed with samples (one 213 



replicate of each standard every 15 analyses) were 0.2‰ for both 13C and 15N and 0.4‰ for 214 

34S respectively. 215 

 216 

2.5 Data analysis 217 

Each dataset (i.e., each pollutant concentration, stable isotope ratio or biological parameter) 218 

was tested for normality using the Shapiro–Wilk’s W test, and non-parametric tests were 219 

applied since most datasets did not follow a Gaussian distribution. All data are presented as 220 

mean ± standard deviation. 221 

To test whether fishes from Sepetiba and Guanabara bays presented differences in their 222 

contamination pattern, we used one-way ANOSIM (ANalysis Of SIMilarity) to compare 223 

pollutant concentrations in fishes from the two sites. ANOSIM is a non-parametric, multivariate 224 

procedure that uses ranked dissimilarities between samples (here, fishes) to investigate the 225 

presence of significant differences between several groups. ANOSIM is permutation-based and 226 

assumption-free, which makes it a generally applicable way to test the hypothesis that one 227 

response variable (here, the sampling site) is linked with significant differences in a multivariate 228 

dataset (here, the pollutant concentrations; Clarke and Warwick, 2001). All compounds found 229 

in at least one individual fish were used as input variables. The resemblance matrix was built 230 

using Bray-Curtis similarity coefficients, and the number of permutations was set to 9999. The 231 

ANOSIM analyses were conducted using PAST 3.20 (Hammer et al., 2001). 232 

To highlight potential relationships (or the absence thereof) between pollutant concentrations 233 

and stable isotope ratios and biological parameters [length, mass and lipid content (%)], we 234 

performed correlation analyses. 10 pollutants or pollutant classes were retained for correlation 235 

analysis: tri-, tetra, penta, hexa and hepta-BDEs (summed concentrations of all PBDE 236 

congeners with 3, 4, 5, 6 and 7 bromine atoms, respectively), ΣPBDE (summed concentrations 237 

of all polybrominated compounds), ΣDRC (summed concentrations of all dechlorane-related 238 



compounds), Dechlorane 603, anti-Dechlorane Plus, and total Dechlorane Plus (sum of anti- 239 

and syn-Dechlorane Plus concentrations). Correlation analyses between all these pollutants or 240 

pollutant categories (that could be quantified in more than 50% of the fishes) and each stable 241 

isotope ratio (13C, 15N and 34S) and biological parameter (mass, size and relative lipid 242 

content) were performed. Since data did not follow a Gaussian distribution, Spearman’s rank 243 

correlation coefficients (rS) were used. Since the ANOSIM test did not reveal significant inter-244 

site difference in fish contamination patterns (see below), correlations were performed grouping 245 

all fishes from both estuaries. Analyses were conducted using Prism 6.07 (GraphPad Software, 246 

La Jolla, U.S.A.), and the level of significance (α) was set to 0.05. To make visualization of 247 

these numerous correlations easier, results were synthesized in a correlation matrix (Fig. 3). 248 

This correlation matrix was generated using R 3.5.1 (R Core Team, 2018) and the corrplot 249 

package v. 0.84 (Wei & Simko, 2017). 250 

 251 

3. Results  252 

3.1 Organic pollutant levels 253 

The sums of PCDD/Fs (ΣPCDD/F), PBDEs (ΣPBDE) and DRCs (ΣDRC) in each individual 254 

sample are listed in Table 1. Additionally, detailed concentrations in wet weight (w.w.) and 255 

lipid weight (l.w.) for all target analytes are reported in the Supplementary data (Tables S3-S9). 256 

Research budget only allowed PCDD/F investigations in 10 specimens from Guanabana Bay 257 

(Tables S3 and S4). Compounds 2,3,7,8-Tetra-CDD, 1,2,3,7,8-Penta-CDD and 1,2,3,4,7,8-258 

Hexa-CDD could not be detected in any sample. Concentrations of PCDDs were greater than 259 

those of PCDFs in 90% of the individuals, being OCDD predominant PCDD/F in 80% of the 260 

samples, with concentrations ranging from <LOD to 1.25 pg g-1 w.w (Table S3). Calculated 261 

TEQ values ranged from 0.1 to 0.2 pg TEQ g-1 w.w. (Tables 1 and S5). For PBDEs, from 35 262 

congeners evaluated only ten presented quantification frequencies >50%: BDE-47 and BDE-263 



100 (100% of samples; Tables S6 and S7); BDE-154, BDE-49 & 71 and BDE-153 (95%); BDE-264 

66 (85%); BDE-99 (75%); BDE-28 (65%); and BDE-183 (60%). The PBDE profiles observed 265 

in whitemouth croaker (Fig. 2A) indicated a high contribution of tetra-BDE (51 ± 20 %), penta-266 

BDE (15 ± 6 %), and hexa-BDE (12 ± 7 %). The most common compounds represented were 267 

the tetra congener BDE-47 (predominant congener in 15 samples), the penta congeners BDE-268 

100 and BDE-99 and the hexa congeners BDE-153 and BDE-154. Although BDE-209 269 

(decaBDE) was only quantified in 40% of the fish samples (Tables S6 and S7), its contribution 270 

to total PBDE content achieved levels up to 78% (Fig. 2A). Quantification frequencies 271 

decreased for emerging brominated pollutants. PBEB, BB-153, and BTBPE levels were below 272 

LOD in all samples, while HBB was only found in one sample from Guanabara Bay (Gb#3) 273 

with a value of 0.1 pg g-1 w.w. (Table S6).  274 

Amongst the dechlorane-related compounds (DRCs), Dec 604 could not be detected in any 275 

sample (Table S8). Detection frequencies of each DRC ranked as follows: Dec 603 (95% of 276 

samples), DP [65% (anti-DP: 65% and syn-DP: 45%)], Dec 602 (55%), mirex (40%) and CP 277 

(10%). Percentage contributions from individual dechlorane compounds to ΣDRC followed the 278 

same order as seen in their frequency of detection, ranking as follows: Dec 603 (61 ± 26%), DP 279 

(25 ± 29%), Dec 602 (7 ± 8%), mirex (6 ± 11%) and CP (0.2 ± 0.6 %) (Fig. 2B). Considering 280 

the samples in which any DP isomer was quantified (n = 13), anti-DP was predominant in 85% 281 

of them. The relative concentrations of the DP isomers in whitemouth croaker was explored 282 

using the values of the anti-DP fractions (fanti), calculated as the concentration of the anti-DP 283 

divided by the sum of syn- and anti-DP concentrations. The fanti values obtained ranged from 284 

0.4 to 1 (0.7 ± 0.2; mean ± SD) (Table 1).  285 

 286 

3.2 Relationships between pollutant levels, stable isotopes and biological parameters 287 



The stable isotope ratios of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) measured in the 288 

whitemouth croaker muscle samples in the present study are summarized in Table 1. 289 

Considering that the ANOSIM test did not reveal significant inter-site difference in fish 290 

contamination patterns (p = 0.17, R = 0.11), correlations were performed after grouping 291 

individuals from both estuaries. Regarding correlations between pollutant levels (or grouped 292 

pollutants) and stable isotope ratios, ΣPBDE values were not correlated to any stable isotope 293 

ratios; however, using the PBDE congener groups according to the number of bromine atoms, 294 

tri-BDE was positively correlated with δ13C (rS = 0.48, p = 0.03) and δ15N (rS = 0.45, p = 0.04), 295 

while negatively correlated with δ34S (rS = -0.48, p = 0.03) values (Fig. 3; Table S10). Tetra- 296 

and penta-BDE levels increased with higher δ15N values (rS = 0.50, p = 0.02 and rS = 0.45, p = 297 

0.045, respectively). On the other hand, ΣDRC was positively correlated with δ15N (rS = 0.46, 298 

p = 0.04); DP and anti-DP were both positively correlated with δ13C (rS = 0.47, p = 0.04 and rS 299 

= 0.48, p = 0.03, respectively) and δ15N values (rS = 0.59, p = 0.006 and rS = 0.62, p = 0.003, 300 

respectively), while a positive correlation was found between Dec 603 and with δ34S (rS = 0.47, 301 

p = 0.04) values. Regarding biological parameters, a positive correlation was found between 302 

Dec 603 and lipid content (rS = 0.45, p = 0.048), while size was negatively correlated with 303 

ΣPBDE, tri- and tetra-BDEs (rS = -0.48, p = 0.03; rS = -0.45, p = 0.046; and rS = -0.54, p = 0.01, 304 

respectively). No significant correlations (p > 0.05) were found between ΣPCDD/F or TEQ 305 

values and biological parameters or stable isotope ratios (δ13C, δ15N and δ34S) (Table S10). 306 

 307 

4 Discussion 308 

4.1 Pollutant exposure of whitemouth croakers from Southeastern Brazil 309 

The PCDD/Fs levels in whitemouth croakers from Guanabara Bay (from < LOD to 512.7 pg g-310 

1 l.w.; Table S4) were apparently higher compared to those found in skipjack tuna (Katsuwonus 311 

pelamis) from Brazilian offshore waters (mean: 4.2 pg g-1 l.w.) (Ueno et al., 2005). This is not 312 



surprising, given that Guanabara Bay is the most anthropogenically-disturbed area along the 313 

Brazilian coast (Dorneles et al., 2008a, b; 2013). Additionally, the predominance of OCDD in 314 

whitemouth croaker samples agrees with the results observed in blubber samples of Guiana 315 

dolphin (Dorneles et al., 2013), as well as in sewage sludge samples from wastewater treatment 316 

facilities in the Rio de Janeiro metropolitan area (Pereira et al., 2005). Such predominance 317 

suggests that combustion processes, i.e. mass combustion, unleaded gasoline and diesel fuel 318 

combustion, and urban wastewater treatment plants, might be important sources of PCDD/F 319 

contamination in Guanabara Bay (Guerzoni et al., 2007). Regarding TEQ values, the levels 320 

reported in this study were lower than the European action level (Recommendation 321 

2006/88/EC) and maximum permissible level (Regulation 1881/2006) for PCDD/Fs in fish 322 

muscle meat and products (set at 2.3 and 3.2 pg TEQ g-1 w.w., respectively) (EFSA, 2010). 323 

However, these results should be taken with caution, since previous research has demonstrated 324 

that PCDD/Fs accounted for less than 1.2% of the total TEQ in all Guiana dolphins, indicating 325 

that polychlorinated biphenyls (PCBs) are the main cause for environmental concern in Rio de 326 

Janeiro state when compared to PCDD/Fs (Dorneles et al., 2013).  327 

PBDE levels in marine biota along the Brazilian coast are usually related to sampling areas 328 

close to industrial and urbanized regions (Alonso et al., 2012, 2017; Dorneles et al., 2010; 329 

Magalhães et al., 2017; Quinete et al., 2011; Rosenfelder et al., 2012). For example, Lavandier 330 

et al. (2013) have found PBDE values below LOD in muscle of whitemouth croakers from Ilha 331 

Grande Bay, a less impacted estuary classified as a biodiversity hotspot in the south of Rio de 332 

Janeiro state (Creed et al., 2007). Conversely, fish from the Paraiba do Sul river (north of Rio 333 

de Janeiro state) have shown apparently higher PBDE muscle concentrations than the ones 334 

reported here (i.e., with a mean of 2.1 ng g-1 w.w.; Quinete et al., 2011). While Guanabara and 335 

Sepetiba bays are among the most impacted areas along the Brazilian coastline (Baptista-Neto 336 

et al., 2016; Dorneles et al., 2008a, b; 2013; Kjerfve et al., 1997; Molisani et al., 2004), the 337 



presence of urban (Rio de Janeiro and São Paulo cities) and industrial centres (chemicals, 338 

textiles, sugar-alcohol) along the course of Paraiba do Sul river might play a role in the presence 339 

of POPs contamination in its estuary (Linde-Arias et al., 2008).  340 

The high detection frequency and abundance of tetra- (BDE-47) and penta- (BDE-99 and -100) 341 

PBDE congeners in whitemouth croakers (Fig. 2A; Table S6), could reflect the use of 342 

commercial pentaBDE (C-pentaBDE) mixtures in Southeastern Brazil (la Guardia et al., 2006). 343 

Additionally, the high contribution of BDE-47 in whitemouth croakers reflects a worldwide 344 

trend observed in aquatic biota (Barón et al., 2015; Houde et al., 2014; Mizukawa et al., 2009, 345 

Shao et al., 2016), including Brazilian environments (Alonso et al., 2012; Dorneles et al., 2010; 346 

Magalhães et al., 2017; Quinete et al., 2011). However, these results probably originate from 347 

the combination of several factors, such as (1) higher release of BDE-47 and, consequently, 348 

higher bioavailability for uptake by biota, (2) higher assimilation efficiency and resistance to 349 

metabolism, and (3) metabolic transformation via debromination from higher to lower 350 

brominated congeners (Munschy et al., 2011, Roberts et al., 2011; Stapleton et al., 2006). 351 

Unlike BDE-47, BDE-209 has been less reported in biota. This could be linked to its 352 

physicochemical properties that cause low availability for, and low uptake by, biota, and by 353 

debromination into lower brominated congeners (Tomy et al., 2004; Stapleton et al., 2006; 354 

Munschy et al., 2011; Roberts et al., 2011). To the authors' knowledge, this is the first study 355 

reporting BDE-209 in fish from the southwest Atlantic Ocean, as previous studies have not 356 

targeted this congener (Lavandier et al., 2013; Magalhães et al., 2017; Quinete et al., 2011). 357 

The presence of BDE-209 in muscle of whitemouth croaker (Tables S6 and S7), as well as in 358 

the blubber of Guiana dolphin (Sotalia guianensis) from Guanabara Bay (Vidal, 2015), 359 

indicates the use of the commercial decaBDE (C-decaBDE) mixture (> 92 % of BDE-209; la 360 

Guardia et al., 2006) in Southeastern Brazil. Additionally, the presence of BDE-183 in 361 

whitemouth croaker samples also suggests the recent use of commercial octaBDE (C-octaBDE) 362 



mixtures in Southeastern Brazil, since this congener has not been quantified in previous studies 363 

using mussels (sampled in 1996; Zhu and Hites, 2003), Guiana dolphin (from 1994 to 2006; 364 

Dorneles et al., 2010) and rays (Rosenfelder et al., 2012) from Guanabara Bay.  365 

Amongst emerging BFRs evaluated in the present study, only HBB was quantified in 366 

whitemouth croaker samples. To the best of our knowledge, only two studies have previously 367 

reported levels of emerging BFRs in aquatic biota from the southwest Atlantic Ocean (Alonso 368 

et al., 2012; de la Torre et al., 2012). According to Alonso et al. (2012), HBB was detected in 369 

13 (25% of individuals sampled) Franciscana dolphins (Pontoporia blainvillei) from the 370 

Southeastern and Southern coasts of Brazil, while PBEB was detected in four individuals (8% 371 

of the total). The low detection frequency of these compounds in aquatic biota could indicate 372 

their low use in Brazil. While HBB can be used directly as flame retardant in manufactured 373 

products (Covaci et al., 2011; de Wit et al., 2011), its presence in the environment can also 374 

result from thermal degradation of commercial mixtures of PBDEs, and volatilization of 375 

polymeric brominated flame retardants, such as pentabromobenzyl acrylate oligomer (de Wit 376 

et al., 2011; Gouteux et al., 2008). These aspects, combined with the low frequency of HBB 377 

detection in our samples, reinforce the hypothesis of low use of this compound in Brazil.  378 

The dechlorane-related contamination pattern observed in whitemouth croakers (Dec 603 > DP 379 

> mirex ≈ Dec 602 > CP) in the present study suggest, for the first time, Dec 603 as the most 380 

abundant DRC in environmental samples. This pattern is notable since Dec 603 is usually 381 

reported as low or non-detected values in biota (Houde et al., 2014; Mekni et al., 2019; Rjabova 382 

et al., 2016). Patented by Hooker Chemicals (now Occidental Chemical Company, OxyChem, 383 

United States), Dec 603 is identified as a flame retardant, and also as an impurity in technical 384 

products of aldrin and dieldrin (legacy pesticides) (Shen et al., 2011). Brazil allowed the 385 

production of aldrin until 1990 and its use as wood preservative until 2000, while dieldrin has 386 

no register of use in Brazil but its production for export occurred until 1998 (MMA, 2015; 387 



Almeida et al., 2007). However, since aldrin and dieldrin have been reported in crabs (Souza et 388 

al., 2008) and in mussels (Galvão et al., 2015) from Southeastern Brazil, the occurrence of the 389 

emerging pollutant Dec 603 in whitemouth croaker in this region could be associated to the 390 

production and use of these pesticides.  391 

DP showed the second highest contribution to ΣDRC in whitemouth croaker, as well as being 392 

reported in Franciscana dolphins (Pontoporia blainvillei) (Mirex > DP > Dec 603> Dec 602 > 393 

CP) from the Southeastern and Southern Brazilian coasts (de la Torre et al., 2012). Since the 394 

major applications of DP are industrial polymers used for coating electrical wires and cables, 395 

connectors used in computers, and plastic roofing material (Hoh et al., 2006), this suggests that 396 

DP in Southeastern Brazil could be linked to high anthropogenic influence and industrial 397 

activity. The predominance of anti-DP isomer in whitemouth croakers (fanti = 0.7 ± 0.2; Table 398 

1) is consistent with commercial DP products (0.6 - 0.8; from Sverko et al. 2011 and Wang et 399 

al., 2010).  400 

Mirex and Dec 602 showed similar contributions to ΣDRC in whitemouth croaker, but this is 401 

not in agreement with previous studies in aquatic biota worldwide that report higher levels of 402 

Mirex compared to Dec 602 (de la Torre et al., 2012; Peng et al., 2014; Rjabova et al., 2016). 403 

Mirex was widely used as a pesticide for ant control in Brazil (MMA, 2015) and, although 404 

banned in the 1990s (MMA, 2015), Mirex persistence remains an important factor to consider 405 

for understanding its detection in representatives of the Brazilian marine biota that have been 406 

recently sampled (Alonso et al., 2017; de la Torre et al., 2012; Santos-Neto et al., 2014). In 407 

contrast to Mirex, there is no information on Dec 602 use in Brazil, however, its presence in 408 

the environment appears to be related to its use as flame retardant in manufactured products 409 

(Sverko et al., 2011). The presence of Dec 602 in whitemouth croaker, as well as in marine 410 

mammals off the coast of Brazil (de la Torre et al., 2012; Alonso et al., 2017) reinforces the 411 

need for further research to investigate its ecotoxicological relevance.  412 



Although the pollutant exposure of whitemouth croakers in Southeastern Brazil can be inferred 413 

through the POPs concentrations found in this study, to the best of our knowledge, no studies 414 

have focused on the mechanisms for accumulation and depuration, or on risk assessment for 415 

this species. Overall, the most likely routes of POPs uptake in fishes are dietary and respiratory 416 

via the gills and body surface area, whereas elimination is primarily via the respiratory surface, 417 

kidneys, and feces, and often involves metabolic transformation (Arnot and Gobas, 2004; 418 

Munschy et al., 2011; Tierney et al., 2013). Regarding risk assessment for POPs concentrations 419 

in fishes, studies on experimental exposure have demonstrated alterations in the immune and 420 

endocrine systems, as well as in their life-history traits such as reproductive success, growth 421 

and survival (Horri, et al., 2018; Johnson et al., 2013). For example, McCarthy et al. (2003) 422 

have shown that parental exposure to a commercial PCB mixture (Aroclor 1254) through the 423 

diet, during gonadal recrudescence, affected growth and survival skills of Atlantic croaker 424 

(Micropogonias undulatus) larvae, reducing their growth rates and impairing their startle 425 

responses. In this context, POPs exposure could not only affect the physiological responses, but 426 

also recruitment and population dynamics and, to some extent, the effects could also affect 427 

fisheries productivity for commercial species.  428 

 429 

4.2 Linking pollutant exposure of whitemouth croakers to their ecological habits and 430 

biological features 431 

Isotopic ratios of carbon and sulfur are usually used to establish the sources of organic matter 432 

that support food webs (Connolly et al. 2004; McCutchan et al. 2003). Nitrogen stable isotope 433 

ratios can also be used to trace organic matter sources, but are more commonly applied to 434 

provide information on the position occupied by a species in a trophic web, as nitrogen isotopes 435 

show predictable stepwise increases in values from prey to consumer (DeNiro and Epstein, 436 

1981). In this context, our three-isotope approach showed that δ15N was the isotopic ratio that 437 



was the most commonly correlated with pollutant concentrations in whitemouth croaker. 438 

Specimens with high δ15N showed higher levels of tri-, tetra- and penta-BDEs, as well as higher 439 

concentrations of DP, anti-DP isomer and ΣDRC. These findings suggest the occurrence of 440 

bioaccumulation and, to some extent, the biomagnification of some target pollutants through 441 

the coastal food web.  442 

Bioaccumulation and biomagnification of organic pollutants can be influenced by many factors, 443 

such as their molecular size and octanol-water partition coefficients (KOW) (Kelly et al., 2007; 444 

Walters et al., 2016). In aquatic food webs, chemicals with KOW values between 105 and 108 445 

would have higher bioaccumulation and biomagnification potentials, while the opposite would 446 

occur for chemicals with KOW > 108 (Kelly et al., 2007; Stapleton et al., 2006; Walters et al., 447 

2016). Therefore, low brominated PBDEs, such as tri-, tetra- and penta-PBDEs (KOW between 448 

~105 and ~107) are prone to bioaccumulate and biomagnify in aquatic food webs, as reported 449 

previously (Barón et al., 2015; Mizukawa et al., 2009; Shao et al., 2016), while 450 

bioaccumulation and biomagnification potentials of DP would be reduced (KOW ~ 109) (Hoh et 451 

al., 2006; Peng et al., 2014). Due to its high hydrophobicity, DP is mainly adsorbed to organic 452 

materials, and exhibits persistence in sediment (Sverko et al., 2011; Shen et al., 2010). From 453 

this perspective, the use of benthic species or benthivorous demersal species, such as the 454 

whitemouth croaker, might help to demonstrate bioaccumulation and biomagnification of DP 455 

through aquatic food webs (Carlsson et al., 2018; Na et al., 2017; Sühring et al., 2016). 456 

However, for DP isomers, aspects of stereoselective bioaccumulation potential and trophic 457 

transfer remain unclear. For instance, higher anti-DP concentrations upon organisms with 15N-458 

enriched values were found in aquatic biota from Lake Winnipeg (Canada) (Tomy et al., 2007), 459 

as well as in the marine food webs of the Fildes Peninsula (Antarctica) (Na et al., 2017); while 460 

an opposite behaviour was found in the freshwater food web from Longtang Town (China) (Wu 461 

et al., 2010).  462 



Negative correlations between fish size and ΣPBDE, tri- and tetra-BDEs were also found in the 463 

present study. This could be caused by depuration in fish, as reported in previous studies 464 

(Munschy et al., 2011; Tomy et al., 2004). However, it could also be linked with ontogenic 465 

habitat shifts, as older whitemouth croaker move into continental shelf waters outside of the 466 

bays, i.e. out of estuaries that are hotspots for contaminant exposure. This hypothesis is in 467 

accordance with the higher δ34S values found in larger whitemouth croaker from Guanabara 468 

Bay (Pizzochero et al., 2018), as these large fish probably mostly feed in continental shelf 469 

waters, which are 34S-enriched compared to coastal zones (Connolly et al. 2004; Thode 1991). 470 

 471 

5. Conclusion 472 

This study provides new data on the contamination of Brazilian marine coastal environments 473 

by selected organic pollutants. It reveals the presence of non-PBDE brominated flame 474 

retardants and DRCs (Dec 602, 603, DP and CP) in fish from southwest Atlantic Ocean for the 475 

first time, albeit at low levels. PBDEs were detected in all samples analyzed, with the 476 

predominance of BDE -47, -99, -100,-153, 154, -183 and -209, which might reflect the use of 477 

C-pentaBDE, C-octaBDE and C-decaBDE commercial mixtures in the coastal regions of Rio 478 

de Janeiro state. Dec 603 and DP were the predominant DRCs in whitemouth croakers and their 479 

presence in fish raises concern and strengthens the need for further research not only on their 480 

toxicity and bioaccumulation potentials, but also on their occurrence and distribution in the 481 

environment. TEQ total levels for dioxins and furans ranged from 0.1 to 0.2 pg g-1 w.w., which 482 

is lower than the European action and maximum permissible levels for PCDDs and PCDFs for 483 

fish muscle meat and products (set at 2.3 and 3.2 pg TEQ g-1 w.w., respectively). Concentrations 484 

of tri-, tetra- and penta-BDEs, as well as ΣDRC, DP and anti-DP isomer were positively 485 

correlated with δ15N, suggesting biomagnification along the food web resulting in the 486 

contamination levels reported for whitemouth croaker. On the other hand, ΣPBDE, tri- and 487 



tetra-BDEs were negatively correlated with fish size, which could be linked with depuration by 488 

fishes and/or habitat shift throughout the whitemouth croaker life cycle. Overall, our study 489 

confirms that whitemouth croaker might be a suitable sentinel species of coastal pollution. 490 

Moreover, it emphasizes the need for further investigations focusing on multiple species, as 491 

well as in water and sediment samples, to help understand the complex patterns of 492 

bioaccumulation and biomagnification. These processes seem to occur in Southeastern Brazil, 493 

and they could impact not only the marine biota, but also the human population dependent on 494 

this biota for food. 495 
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Table 1: Biological parameters, organic pollutants concentrations (pg g-1 wet weight), fanti values, TEQ values, and stable isotopes ratios of carbon (δ13C), 825 
nitrogen (δ15N) and sulfur (δ34S) in whitemouth croaker (Micropogonias furnieri) muscle samples from Southeastern Brazil.  826 
Sampling 

site 
Code Size (cm) 

Lipid 

content (%) 

Mass           

(kg) 

ΣPBDE a          

(pg g-1) 

ΣDRC b  

(pg g-1) fanti
c 

ΣPCDD/F d 

(pg g-1) 

TEQ e     

(pg g-1) δ13C (‰) δ15N (‰) δ34S (‰) 

Sepetiba 

Bay 
Sb#1 49 0.7 1.5 879.7 33.8 0.6 n.a. - -14 15.2 11.5 

 Sb#2 48 4.9 1.4 101.6 1.1 n.c. n.a. - -14.5 15.3 12.3 

 Sb#3 47 3.4 1.4 111.1 5.1 0.5 n.a. - -14.7 15.5 12.3 

 Sb#4 46 2.5 1.45 160.8 2.8 0.6 n.a. - -14.5 15.2 10.8 

 Sb#5 49 4.3 1.4 40.7 3.8 0.7 n.a. - -15.4 14.4 12.2 

 Sb#6 45 4.2 1.05 84.4 4.5 1 n.a. - -14.4 14.9 12.7 

Mean ± SD 47.3 ± 1.6 3.3 ± 1.6  1.4 ±0.2 229.7 ± 320.8 8.5 ± 12.5 0.7 ± 0.2 - - -14.6 ± 0.5 15.1 ± 0.4 12 ± 0.7 

Min - Max 45 - 49 0.7 – 4.9 1.05 – 1.5 40.7 – 879.7 1.1 – 33.8 0.5 – 1 - - -15.4 – -14 14.4 – 15.5 10.8 – 12.7 

Median 47.5 3.8 1.4 106.4 4.2 0.6 - - -14.5 15.2 12.3 

Guanabara 

Bay 
Gb#1 46 1.6 0.9 221.4 n.d. n.c. n.a. - -18.5 13.3 14.7 

 Gb#2 47 1.6 1.1 7.6 0.7 n.c. n.a. - -18.9 13.6 12.5 

 Gb#3 49 2.7 1.09 326.2 3.0 0.4 n.a. - -15.6 12.8 15.0 

 Gb#4 50 4.9 1.3 67.3 7.0 0.4 n.a. - -16.6 14.4 15.0 

 Gb#5 51 2.2 1.4 59.7 9.7 1.0 0.4 0.1 -16.4 15.2 16.5 

 Gb#6 52 4.9 1.4 43.1 5.1 0.7 0.6 0.1 -18.3 13.5 12.3 

 Gb#7 53 3.8 1.9 53.0 2.7 n.c. 0.5 0.1 -16.7 14.0 17.3 

 Gb#8 56 2.8 1.8 21.0 4.1 n.c. n.d. 0.1 -15.8 14.2 15.3 

 Gb#9 61 6.5 2.2 23.4 2.1 n.c. 0.3 0.1 -16.5 13.9 15.2 

 Gb#10 61 15.9 1.8 315.2 41.7 0.6 0.2 0.1 -18.1 14.7 16.6 

 Gb#11 62 3.4 2.1 30.6 6.6 0.6 1.4 0.1 -16.6 14.0 17.3 



 Gb#12 65 3.4 2.7 43.6 1.0 n.c. 0.01 0.1 -16.1 12.9 15.8 

 Gb#13 66 2.7 3 47.9 3.2 1 1.3 0.1 -15.8 14.1 16.4 

 Gb#14 75 1.6 4.4 14.2 1.1 1 1.7 0.2 -15.4 14.4 14.9 

Mean ± SD 56.7 ± 8.5 4.1 ± 3.7 1.9 ± 0.9 91 ± 110.2 6.8 ± 10.8 0.7 ± 0.3 0.7 ± 0.6 0.1 ± 0.03 -16.8 ± 1.2 13.9 ± 0.7 15.3 ± 1.5 

Min - Max 46 - 75 1.6 – 15.9 0.9 – 4.4 7.6 – 326.2 n.d. – 41.7 0.4 – 1 n.d. – 1.7 0.1 – 0.2 -18.9 – -15.4 12.8 – 15.2 12.3 – 17.3 

Median 54.5 3.1 1.8 45.8 3.2 0.6 0.5 0.1 -16.6 14 15.3 

TOTAL             

Mean ± SD 53 ± 8.3 3.9 ± 3.2 1.8 ± 0.8 132.6 ± 199.1 7.3 ± 11.1 0.7 ± 0.2 - - -16.1 ± 1.4 14.3 ± 0.8 14.3 ± 2 

Min - Max 45 - 75 0.7 – 15.9 0.9 – 4.4 7.6 – 879.7 n.d. – 41.1 0.4 – 1 - - -18.9 – -14 12.8 – 15.5 10.8 – 17.3 

Median 50.5 3.4 1.5 56.4 3.8 0.6 - - -16 14.3 15 

n.d. = not detected. 827 
n.c. = not calculated due syn-DP value below LOD. 828 
n.a. = not analised. 829 
a ΣPBDE: sum of PBDEs (IUPAC congener numbers: 17, 28, 47, 49 & 71, 66, 77, 85, 99, 100, 119, 126, 139, 140, 153, 154, 156 & 169, 183, 184, 206, 207, 208 and 209). 830 
b ΣDRC: sum of Mirex, Dechlorane 602, Dechlorane 603, Dechlorane Plus and Chlordene Plus. 831 
c fanti: anti-DP divided by the sum of syn-DP and anti-DP.  832 
d ΣPCDD/F: sum of 1,2,3,6,7,8– HexaCDD; 1,2,3,7,8,9– HexaCDD; 1,2,3,4,6,7,8– HeptaCDD; OctaCDD (OCDD); 1,2,7,8-TCDF; 2,3,7,8-TCDF; 1,2,3,7,8-PCDF; 2,3,4,7,8-833 
PCDF; 1,2,3,4,7,8-HCDF; 1,2,3,6,7,8-HCDF; 1,2,3,7,8,9-HCDF; 2,3,4,6,7,8-HCDF; 1,2,3,4,6,7,8-HpCDF; 1,2,3,4,7,8,9-HpCDF and OCDF. 834 
e TEQ: sum of TEQ of PCDDs and PCDFs. 835 



Figure captions 836 

 837 

Fig. 1: Map of South America showing Brazil and Rio de Janeiro state. The insert shows the 838 

locations of Sepetiba Bay (A) and Guanabara Bay (B) within Rio de Janeiro state. 839 

 840 

Fig. 2: (A) Relative contribution of PBDEs grouped by the number of bromine atoms in the 841 

molecule to ΣPBDE, and (B) relative contribution of individual dechlorane-related compounds 842 

to ΣDRC in muscle samples of whitemouth croakers from Southeastern Brazil. The figure 843 

presents the individual code of each fish, which includes the sampling area (Sep: Sepetiba Bay; 844 

Gb: Guanabara Bay) and the specimen number (#1, #2…). 845 

 846 

Fig. 3: Spearman rank correlation matrix between organic pollutants and biological parameters 847 

[length, mass and lipid content (%)] and stable isotope ratios of carbon (δ13C), nitrogen (δ15N) 848 

and sulfur (δ34S) in muscle samples of whitemouth croakers from Southeastern Brazil. 849 

Statistically-significant spearman rank correlations (rS, p < 0.05) are shown in blue (positive 850 

correlation) and red (negative correlation) color scale (color intensity related to rS value), while 851 

non-significant correlations are left blank.  852 
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Table S1. Details of standards used for dechlorane-related compounds (DRCs), brominated flame 896 

retardants (BFRs) and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) 897 

determinations. 898 

Type Analytes Standard Solutions 

Surrogate 

standard 

solutions 

(LCS) 

DRCs 13C10-syn-DPa and 13C10-anti-DPa 

BFRs 
BFR-LCSb containing: 13C12 -BDE-28, -47, -77, -99, -100, -126, -153, -154, -169, -

183, -197, -205, -207, -209, 13C6 –HBB, 13C12 –BB-153, 13C6 –BTBPE.  

PCDD/Fs 

EPA-1613LCSb containing 13C12 labeled 2,3,7,8-TCDD, 1,2,3,7,8-PCDD, 1,2,3,4,7,8- 

HxCDD, 1,2,3, 6,7,8- HxCDD, 1,2,3,4,6,7,8-HpCDD; OCDD, 2,3,7,8-TCDF, 1,2,3,7,8-

PCDF, 2,3,4,7,8- PCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8, 9-HxCDF, 

2,3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, and 1,2,3,4,7,8,9-HpCDF. 

Internal 

Standard 

Spiking 

Solution 

(ISS)  

DRCs 

BFRs 
BFR-ISSb containing: 13C12 BDE-79, -139, -180, -206 

PCDD/Fs EPA1613-ISSb containing: 13C12-1,2,3,4-TCDD and 13C12-1,2,3,7,8,9- HxCDD 

Calibration 

Solutions  

DRCs Five individual calibration solutions prepared from natives (Dec 602c, Dec 603c, 

Dec 604c, CP b, Mirexa, syn-DP b and anti-DP b) and labeled (13C12-syn-DPa and 13C12-

anti-DPa). 

BFRs BFR-CVSb five individual calibration solutions containing natives (12C12 -BDE-17, -

28, -30 -47, -49, -66, -71,-77, -85, -99, -100, -119,-126, -138, -139, -140, -153, -

154, -156, -169, -171, -180, -183, -184, -191, -196, -197, -201, -203, -204, -205, -

206, -207, -208, -209, PBEB, HBB, BB-153, BTBPE.) and labeled (13C12 -BDE-28, -

47, -77, -79, -99, -100, -126, -139, -153, -154, -169, -180 -183, -197, -205, -206, -

207, -209, 13C6 –HBB, 13C12 –BB-153, 13C6 –BTBPE) 

PCDD/Fs 

EPA 1613CVSb five individual calibration solutions containing natives (2,3,7,8-

TCDD, 1,2,3,7,8-PCDD, 1,2,3,4,7,8- HxCDD, 1,2,3, 6,7,8- HxCDD, 1,2,3,7,8,9-Hx 

CDD, 1,2,3,4,6,7,8-HpCDD; OCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PCDF, 2,3,4,7,8- PCDF, 

1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8, 9-HxCDF, 2,3,4,6,7,8-HxCDF, 

1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF; OCDF) and labeled (13C12-2,3,7,8-

TCDD, -1,2,3,4-TCDD, -1,2,3,7,8-PCDD, -1,2,3,4,7,8- HxCDD, -1,2,3, 6,7,8- HxCDD,- 

1,2,3,7,8,9- HxCDD, -1,2,3,4,6,7,8-HpCDD, OCDD, -2,3,7,8-TCDF, -1,2,3,7,8-PCDF, 

-2,3,4,7,8- PCDF, -1,2,3,4,7,8-HxCDF, -1,2,3,6,7,8-HxCDF, -1,2,3,7,8, 9-HxCDF, -

2,3,4,6,7,8-HxCDF, -1,2,3,4,6,7,8-HpCDF, and -1,2,3,4,7,8,9-HpCDF 

a Cambridge Isotope Labs (USA) trading house b Wellington Labs (Canada) c Toronto Research Chemical Inc. (Toronto, ON, 899 
Canada). 900 

 901 

 902 



Table S2. Limits of detection (LODs; pg g-1 wet weight) and quantification (LOQs; pg g-1 wet weight) in 903 

whitemouth croaker.  904 

Polychlordibenzo-p-dioxin and dibenzofuranss PCDD/Fs 

LODs 

(pg g-1) 

LOQs 

(pg g-1) 

2,3,7,8-Tetrachlordibenzo-p-dioxin 2,3,7,8-TCDD 0.004 0.013 

1,2,3,7,8- Pentachlordibenzo-p-dioxin 1,2,3,7,8-PCDD 0.005 0.017 

1,2,3,4,7,8- Hexachlordibenzo-p-dioxin 1,2,3,4,7,8- HxCDD 0.006 0.021 

1,2,3, 6,7,8- Hexachlordibenzo-p-dioxin 1,2,3, 6,7,8- HxCDD 0.003 0.010 

1,2,3,7,8,9- Hexachlordibenzo-p-dioxin 1,2,3,7,8,9-HxCDD 0.007 0.022 

1,2,3,4,6,7,8- Heptachlordibenzo-p-dioxin 1,2,3,4,6,7,8-HpCDD 0.007 0.022 

Octachlordibenzo-p-dioxin OCDD 0.012 0.041 

2,3,7,8-Tetrachlordibenzofuran 2,3,7,8-TCDF 0.004 0.013 

1,2,3,7,8-Pentachlordibenzofuran  1,2,3,7,8-PCDF  0.003 0.010 

2,3,4,7,8- Petachlordibenzofuran  2,3,4,7,8- PCDF  0.006 0.021 

1,2,3,4,7,8-Hexachlordibenzofuran  1,2,3,4,7,8-HxCDF  0.005 0.018 

1,2,3,6,7,8-Hexachlordibenzofuran  1,2,3,6,7,8-HxCDF  0.005 0.016 

1,2,3,7,8, 9-Hexachlordibenzofuran  1,2,3,7,8, 9-HxCDF  0.005 0.018 

2,3,4,6,7,8-Hexachlordibenzofuran  2,3,4,6,7,8-HxCDF  0.008 0.027 

1,2,3,4,6,7,8-Heptachlordibenzofuran 1,2,3,4,6,7,8-HpCDF 0.004 0.015 

1,2,3,4,7,8,9-Heptachlordibenzofuran 1,2,3,4,7,8,9-HpCDF 0.006 0.021 

Octachlordibenzofuran OCDF 0.009 0.029 

 

Brominated flame retardants 

 

BFRs 

  

2,4,6-Tribromodiphenyl ether BDE-30 0.023 0.075 

2,4',4-Tribromodiphenyl ether BDE-17 0.015 0.048 

2,4,4'-Tribromodiphenyl ether BDE-28 0.014 0.045 

Pentabromoethylbenzene PBEB 0.006 0.021 

Hexabromobenzene HBB 0.013 0.044 

2,2',4,5'&2,3',4',6-Tetrabromodiphenyl ether BDE-49&71 0.011 0.035 

2,2',4,4'-Tetrabromodiphenyl ether BDE-47 0.004 0.015 

2,3',4,4'-Tetrabromodiphenyl ether BDE-66 0.008 0.026 

3,3',4,4'-Tetrabromodiphenyl ether BDE-77 0.004 0.015 

2,2',4,4',6-Pentabromodiphenyl ether BDE-100 0.019 0.062 

2,3',4,4',6-Pentabromodiphenyl ether BDE-119 0.029 0.097 

2,2',4,4',5-Pentabromodiphenyl ether BDE-99 0.026 0.085 

2,2',3,4,4'-Pentabromodiphenyl ether BDE-85 0.029 0.095 

3,3',4,4',5-Pentabromodiphenyl ether BDE-126 0.025 0.083 



2,2',4,4',5,6'-Hexabromodiphenyl ether BDE-154 0.026 0.087 

2,2',4,4',5,5'-Hexabromobiphenyl BB-153 0.016 0.052 

2,2',4,4',5,5'-Hexabromodiphenyl ether BDE-153 0.027 0.090 

2,2',3,4,4',6-Hexabromodiphenyl ether BDE-139 0.033 0.109 

2,2',3,4,4',6'-Hexabromodiphenyl ether BDE-140 0.041 0.135 

2,2',3,4,4',5'-Hexabromodiphenyl ether BDE-138 0.033 0.110 

2,3,3',4,4',5&3,3',4,4',5,5'-Hexabromodiphenyl ether BDE-156&169 0.046 0.150 

2,2',3,4,4',6,6'-Heptabromodiphenyl ether BDE-184 0.013 0.043 

2,2',3,4,4',5',6-Heptabromodiphenyl ether BDE-183 0.014 0.045 

2,3,3',4,4',5',6-Heptabromodiphenyl ether BDE-191 0.029 0.096 

1,2-Bis(2,4,6-tribromophenoxy)ethane BTBPE 0.375 1.238 

2,2',3,4,4',5,5'-Heptabromodiphenyl ether BDE-180 0.055 0.180 

2,2',3,3',4,4',6-Heptabromodiphenyl ether BDE-171 0.055 0.182 

2,2',3,3',4,5',6,6'-Octabromodiphenyl ether BDE-201 0.130 0.430 

2,2',3,4,4',5,6,6'-Octabromodiphenyl ether BDE-204 0.067 0.220 

2,2',3,3',4,4',6,6'-Octabromodiphenyl ether BDE-197 0.054 0.177 

2,2',3,4,4',5,5',6-Octabromodiphenyl ether BDE-203 0.079 0.261 

2,2',3,3',4,4',5,6'-Octabromodiphenyl ether BDE-196 0.094 0.309 

2,3,3',4,4',5,5',6-Octabromodiphenyl ether BDE-205 0.088 0.291 

2,2',3,3',4,5,5',6,6'-Nonabromodiphenyl ether BDE-208 0.108 0.357 

2,2',3,3',4,4',5,6,6'-Nonabromodiphenyl ether BDE-207 0.074 0.244 

2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether BDE-206 0.064 0.211 

Decabromodiphenyl ether BDE-209 0.270 0.892 

 

Dechloranes and related compounds 

 

DRCs 

  

Dechlorane 602 Dec 602 0.010 0.034 

Dechlorane 603 Dec 603 0.036 0.120 

Dechloranes 604 Dec 604 0.169 0.559 

syn-Dechlorane 605 or syn-Dechlorane Plus syn-DP 0.032 0.107 

anti-Dechlorane 605 or anti-Dechlorane Plus anti-DP 0.029 0.094 

Chlordene Plus CP 0.024 0.080 

Dechlorane or Hexachlorocyclopentadiene dimer Mirex 0.007 0.022 

 905 

 906 
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Table S3. Concentrations (pg g-1 wet weight) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in 908 

whitemouth croakers from Guanabara Bay, Southeastern Brazil. n.d.: not detected; a ΣPCDD/F: sum of all the PCDD/Fs 909 

PCDD/Fs  Gb#5 Gb#6 Gb#7 Gb#8 Gb#9 Gb#10 Gb#11 Gb#12 Gb#13 Gb#14 

2,3,7,8-TCDD n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1,2,3,7,8-PeCDD n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1,2,3,4,7,8-HxCDD n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1,2,3,6,7,8-HxCDD 0.08 0.05 n.d. n.d. n.d. n.d. 0.12 0.01 n.d. n.d. 

1,2,3,7,8,9-HxCDD 0.09 0.06 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.20 

1,2,3,4,6,7,8-HpCDD n.d. 0.12 0.08 n.d. n.d. n.d. 0.13 n.d. n.d. n.d. 

OCDD 0.16 0.27 0.19 n.d. 0.30 0.15 0.26 n.d. 1.25 0.75 

2,3,7,8-TCDF n.d. n.d. 0.02 n.d. n.d. n.d. 0.04 n.d. 0.03 n.d. 

1,2,3,7,8-PeCDF n.d. n.d. 0.04 n.d. 0.02 n.d. 0.06 n.d. n.d. n.d. 

2,3,4,7,8-PeCDF n.d. 0.04 0.05 n.d. n.d. n.d. 0.10 n.d. n.d. n.d. 

1,2,3,4,7,8-HxCDF n.d. 0.06 n.d. n.d. n.d. n.d. 0.09 n.d. n.d. n.d. 

1,2,3,6,7,8-HxCDF n.d. n.d. 0.03 n.d. n.d. n.d. 0.07 n.d. n.d. n.d. 

2,3,4,6,7,8-HxCDF n.d. n.d. n.d. n.d. n.d. n.d. 0.10 n.d. n.d. n.d. 

1,2,3,7,8,9-HxCDF n.d. n.d. n.d. n.d. n.d. n.d. 0.14 n.d. n.d. 0.18 

1,2,3,4,6,7,8-HpCDF n.d. n.d. n.d. n.d. 0.02 n.d. 0.10 n.d. 0.02 n.d. 

1,2,3,4,7,8,9-HpCDF 0.07 0.03 n.d. n.d. n.d. n.d. 0.08 n.d. n.d. n.d. 

OCDF 0.04 n.d. 0.08 n.d. n.d. n.d. 0.12 n.d. n.d. 0.60 

ΣPCDD/F a  0.4 0.6 0.5 0.0 0.3 0.2 1.4 0.01 1.3 1.7 

. 910 



Table S4. Concentrations (pg g-1 lipid weight) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in whitemouth 911 

croakers from Guanabara Bay, Southeastern Brazil. n.d.: not detected; a ΣPCDD/F: sum of all the PCDD/Fs 912 

PCDD/Fs Gb#5 Gb#6 Gb#7 Gb#8 Gb#9 Gb#10 Gb#11 Gb#12 Gb#13 Gb#14 

2,3,7,8-TCDD n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1,2,3,7,8-PeCDD n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1,2,3,4,7,8-HxCDD n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1,2,3,6,7,8-HxCDD 17.2 5.2 n.d. n.d. n.d. n.d. 18.6 1.6 n.d. n.d. 

1,2,3,7,8,9-HxCDD 21.3 6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 58.9 

1,2,3,4,6,7,8-HpCDD n.d. 12.9 10.2 n.d. n.d. n.d. 19.2 n.d. n.d. n.d. 

OCDD 37.6 27.8 23.5 n.d. 15.8 4.1 39.6 n.d. 173.7 222.2 

2,3,7,8-TCDF n.d. n.d. 2.3 n.d. n.d. n.d. 5.7 n.d. 4.7 n.d. 

1,2,3,7,8-PeCDF n.d. n.d. 4.4 n.d. 1.0 n.d. 9.3 n.d. n.d. n.d. 

2,3,4,7,8-PeCDF n.d. 4 6.6 n.d. n.d. n.d. 15.1 n.d. n.d. n.d. 

1,2,3,4,7,8-HxCDF n.d. 6.6 n.d. n.d. n.d. n.d. 13.6 n.d. n.d. n.d. 

1,2,3,6,7,8-HxCDF n.d. n.d. 3.8 n.d. n.d. n.d. 10.6 n.d. n.d. n.d. 

2,3,4,6,7,8-HxCDF n.d. n.d. n.d. n.d. n.d. n.d. 15.5 n.d. n.d. n.d. 

1,2,3,7,8,9-HxCDF n.d. n.d. n.d. n.d. n.d. n.d. 22.1 n.d. n.d. 54.1 

1,2,3,4,6,7,8-HpCDF n.d. n.d. n.d. n.d. 1.4 n.d. 17.0 n.d. 2.2 n.d. 

1,2,3,4,7,8,9-HpCDF 16 3.6 n.d. n.d. n.d. n.d. 12.6 n.d. n.d. n.d. 

OCDF 9 n.d. 9.4 n.d. n.d. n.d. 18.8 n.d. n.d. 177.5 

ΣPCDD/F a 101.1 66.1 60.2 0.0 18.2 4.1 217.7 1.6 180.6 512.7 

913 



Table S5. Toxic equivalent (TEQ) concentrations of dibenzo-p-dioxins and 914 

polychlorinated dibenzofurans (PCDD/Fs), expressed in pg g-1 wet weight, using 915 

WHO-TEQ 2005 values, in whitemouth croakers from Guanabara Bay, Southeastern 916 

Brazil.  917 

Congener 

WHO-TEQ 2005 

Gb#5 Gb#6 Gb#7 Gb#8 Gb#9 Gb#10 Gb#11 Gb#12 Gb#13 Gb#14 

2,3,7,8-

TCDD 

0.0211

2 

0.0266

3 

0.0229

1 

0.0274

6 

0.0294

3 

0.0211

3 

0.0139

4 

0.0144

6 

0.0220

1 
0.0248 

1,2,3,7,8-

PeCDD 

0.0537

6 

0.0441

7 

0.0355

0 

0.0521

0 

0.0333

8 

0.0363

8 

0.0226

9 

0.0332

7 

0.0445

8 
0.0833 

1,2,3,4,7,8-

HxCDD 

0.0037

1 

0.0043

0 

0.0070

4 

0.0051

3 

0.0030

4 

0.0024

4 

0.0063

8 

0.0017

0 

0.0022

4 
0.0050 

1,2,3,6,7,8-

HxCDD 

0.0075

1 

0.0050

6 

0.0050

7 

0.0051

3 

0.0032

1 

0.0026

1 

0.0121

3 

0.0011

0 

0.0022

5 
0.0041 

1,2,3,7,8,9-

HxCDD 

0.0093

2 

0.0058

4 

0.0061

3 

0.0053

9 

0.0032

8 

0.0026

6 

0.0058

9 

0.0018

0 

0.0023

6 
0.0199 

1,2,3,4,6,7,

8-HpCDD 

0.0002

9 

0.0012

5 

0.0008

5 

0.0003

7 

0.0003

5 

0.0002

7 

0.0012

5 

0.0001

6 

0.0004

5 
0.0008 

OCDD 
0.0000

8 

0.0000

8 

0.0000

6 

0.0000

4 

0.0000

9 

0.0000

5 

0.0000

8 

0.0000

1 

0.0003

8 
0.0002 

2,3,7,8-

TCDF 

0.0022

4 

0.0029

5 

0.0019

0 

0.0032

2 

0.0021

8 

0.0028

2 

0.0037

4 

0.0014

6 

0.0033

9 
0.0041 

1,2,3,7,8-

PeCDF 

0.0011

5 

0.0012

6 

0.0011

0 

0.0011

4 

0.0005

6 

0.0008

2 

0.0018

2 

0.0005

4 

0.0006

2 
0.0010 

2,3,4,7,8-

PeCDF 

0.0101

7 

0.0116

7 

0.0163

8 

0.0101

4 

0.0069

3 

0.0080

3 

0.0296

3 

0.0052

2 

0.0060

0 
0.0101 

1,2,3,4,7,8-

HxCDF 

0.0026

7 

0.0063

6 

0.0036

3 

0.0033

1 

0.0033

7 

0.0024

2 

0.0088

7 

0.0016

1 

0.0019

5 
0.0044 

1,2,3,6,7,8-

HxCDF 

0.0025

7 

0.0031

7 

0.0031

3 

0.0032

2 

0.0033

5 

0.0023

3 

0.0069

4 

0.0015

0 

0.0019

3 
0.0041 

2,3,4,6,7,8-

HxCDF 

0.0027

0 

0.0034

1 

0.0076

1 

0.0035

5 

0.0035

2 

0.0025

2 

0.0101

1 

0.0017

3 

0.0020

8 
0.0045 

1,2,3,7,8,9-

HxCDF 

0.0037

6 

0.0046

1 

0.0063

8 

0.0045

0 

0.0045

8 

0.0032

6 

0.0144

2 

0.0020

6 

0.0026

9 
0.0183 

1,2,3,4,6,7,

8-HpCDF 

0.0002

4 

0.0003

2 

0.0002

7 

0.0002

8 

0.0002

6 

0.0001

6 

0.0011

1 

0.0001

2 

0.0001

6 
0.0003 



1,2,3,4,7,8,

9-HpCDF 

0.0007

0 

0.0003

5 

0.0003

2 

0.0004

5 

0.0004

0 

0.0002

7 

0.0008

2 

0.0002

2 

0.0002

2 
0.0005 

OCDF 
0.0000

1 

0.0000

1 

0.0000

2 

0.0000

2 

0.0000

1 

0.0000

1 

0.0000

4 

0.0000

1 

0.0000

1 
0.0002 

ΣTEQ-

PCDD/F 

0.1220

1 

0.1214

3 

0.1183

2 

0.1254

5 

0.0979

5 

0.0881

9 

0.1398

5 

0.0669

3 

0.0933

2 

0.1856

2 

ΣTEQ-

PCDD/F 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 
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Table S6. Concentrations (pg g-1 wet weight) of brominated flame retardants (BFRs) in whitemouth croakers from Guanabara and Sepetiba bays, Southeastern Brazil.  919 

Brominated 

flame retardants 

Sepetiba Bay Guanabara Bay  

Sb#1 Sb#2 Sb#3 Sb#4 Sb#5 Sb#6  Gb#1 Gb#2 Gb#3 Gb#4 Gb#5 Gb#6 Gb#7 Gb#8 Gb#9 Gb#10 Gb#11 Gb#12 Gb#13 Gb#14 

BDE-30 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-17 n.d. n.d. n.d. 0.8 n.d. 1.4  n.d. n.d. 0.3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-28 4.6 1.3 n.d. 3.5 1.5 3.5  n.d. 0.1 0.8 0.8 0.2 0.8 n.d. 0.3 n.d. 1.5 n.d. n.d. 0.1 n.d. 

PBEB n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

HBB n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-49&71 7.0 6.8 10.7 9.8 6.1 9.8  n.d. 0.9 9.4 4.6 4.5 3.6 4.3 1.4 1.0 18.2 2.9 2.3 3.0 1.1 

BDE-47 45.3 64.2 59.1 107.7 19.6 48.2  67.5 3.6 60.6 24.3 26.0 19.4 27.3 11.5 7.1 79.6 14.3 6.9 25.3 7.2 

BDE-66 2.0 2.6 3.7 3.8 2.9 2.0  0.3 0.3 n.d. 0.9 1.2 0.7 0.4 n.d. n.d. 3.9 0.3 0.6 0.7 0.2 

BDE-77 n.d. n.d. n.d. n.d. n.d. 0.5  n.d. n.d. 0.2 0.2 n.d. 0.1 0.2 n.d. 0.1 0.6 0.1 n.d. n.d. 0.0 

BDE-100 8.4 9.6 10.5 10.2 4.4 7.3  10.0 1.1 16.4 6.7 12.8 5.9 8.8 3.9 2.8 23.4 5.5 3.1 9.8 3.2 

BDE-119 n.d. n.d. 1.7 1.0 0.4 n.d.  n.d. n.d. n.d. 1.8 n.d. 1.0 1.0 0.4 n.d. 5.1 n.d. 0.5 1.0 n.d. 

BDE-99 17.1 9.2 0.5 13.1 1.0 3.7  12.0 n.d. 2.6 1.2 0.2 1.1 n.d. n.d. n.d. 4.6 0.6 0.1 0.7 n.d. 

BDE-85 n.d. 0.4 0.3 0.2 n.d. n.d.  n.d. n.d. n.d. n.d. 0.5 n.d. 0.1 n.d. n.d. 0.9 n.d. n.d. 0.3 n.d. 

BDE-126 n.d. n.d. 0.3 n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.3 n.d. 

BDE-154 1.6 2.3 6.3 4.5 3.1 5.7  n.d. 0.9 6.8 7.4 9.1 4.3 4.0 2.3 1.8 18.7 4.0 1.3 4.1 1.2 

BB-153 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-153 2.3 2.8 2.6 2.2 1.2 2.3  n.d. 0.7 4.6 3.5 4.5 2.3 2.3 1.2 1.1 11.2 2.1 1.6 2.3 0.9 

BDE-139 n.d. n.d. n.d. 3.4 n.d. n.d.  n.d. n.d. n.d. n.d. n.d. 3.2 3.9 n.d. n.d. n.d. 0.4 n.d. n.d. n.d. 

BDE-140 n.d. n.d. 0.3 n.d. n.d. n.d.  n.d. n.d. n.d. n.d. 0.7 0.3 0.3 n.d. n.d. n.d. n.d. n.d. n.d. 0.2 



BDE-138 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-156&169 n.d. 1.3 3.0 n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-184 n.d. 0.1 n.d. 0.3 0.2 n.d.  n.d. n.d. 0.2 n.d. n.d. 0.2 0.2 n.d. 0.4 n.d. 0.2 n.d. 0.1 0.1 

BDE-183 3.6 1.0 n.d. 0.3 0.3 n.d.  n.d. n.d. 0.5 1.7 n.d. 0.2 0.2 n.d. 0.7 n.d. 0.2 n.d. 0.2 0.1 

BDE-191 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BTBPE n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-180 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-171 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-201 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-204 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-197 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-203 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-196 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-205 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-208 26.1 n.d. 1.0 n.d. n.d. n.d.  n.d. n.d. 2.3 0.6 n.d. n.d. n.d. n.d. 0.9 1.3 n.d. 1.4 n.d. n.d. 

BDE-207 35.4 n.d. 1.2 n.d. n.d. n.d.  n.d. n.d. 3.6 0.3 n.d. n.d. n.d. n.d. 0.9 3.9 n.d. 1.7 n.d. n.d. 

BDE-206 36.5 n.d. 0.8 n.d. n.d. n.d.  n.d. n.d. 4.9 0.2 n.d. n.d. n.d. n.d. n.d. 3.8 n.d. 1.3 n.d. n.d. 

BDE-209 689.8 n.d. 9.1 n.d. n.d. n.d.  131.6 n.d. 213.0 13.1 n.d. n.d. n.d. n.d. 6.6 138.5 n.d. 22.8 n.d. n.d. 

ΣPBDE a 879.7 101.6 111.1 160.8 40.7 84.4  221.4 7.6 326.2 67.3 59.7 43.1 53.0 21.0 23.4 315.2 30.6 43.6 47.9 14.2 

ΣBFR b 879.7 101.6 111.1 160.8 40.7 84.4  221.4 7.6 326.3 67.3 59.7 43.1 53.0 21.0 23.4 315.2 30.6 43.6 47.9 14.2 

n.d.: not detected; a ΣPBDE: sum of 36 PBDE congeners; b ΣBFR: sum of PBEB, HBB, BTBPE, BB-153 and PBDEs congeners. 920 



Table S7. Concentrations (pg g-1 lipid weight) of brominated flame retardants (BFRs) in whitemouth croakers from Guanabara and Sepetiba bays, Southeastern Brazil.  921 

Brominated 

flame retardants 

Sepetiba Bay Guanabara Bay  

Sb#1 Sb#2 Sb#3 Sb#4 Sb#5 Sb#6  Gb#1 Gb#2 Gb#3 Gb#4 Gb#5 Gb#6 Gb#7 Gb#8 Gb#9 Gb#10 Gb#11 Gb#12 Gb#13 Gb#14 

BDE-30 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-17 n.d. n.d. n.d. 147 n.d. 151  n.d. n.d. 55 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-28 3744 124 n.d. 682 203 405  n.d. 37 167 77 46 87 n.d. 60 n.d. 40 n.d. n.d. 15 n.d. 

PBEB n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

HBB n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. 12 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-49&71 5771 638 1557 1904 823 1148  n.d. 299 2003 427 1036 382 525 251 55 480 443 320 420 311 

BDE-47 37252 6012 8635 20789 2648 5624  19341 1259 12862 2261 5936 2001 3296 2121 377 2108 2192 1015 3509 2121 

BDE-66 1609 244 544 738 385 235  69 101 n.d. 84 259 73 51 n.d. n.d. 104 53 94 94 72 

BDE-77 n.d. n.d. n.d. n.d. n.d. 64  n.d. n.d. 44 17 n.d. 10 20 n.d. 6 16 14 n.d. n.d. 8 

BDE-100 6895 898 1530 1974 601 852  2867 389 3486 626 2929 608 1065 726 147 618 836 460 1360 943 

BDE-119 n.d. n.d. 243 188 48 n.d.  n.d. n.d. n.d. 161 n.d. 103 124 68 n.d. 136 n.d. 75 138 n.d. 

BDE-99 14013 860 74 2523 131 433  3444 n.d. 545 112 56 112 n.d. n.d. n.d. 123 112 17 93 n.d. 

BDE-85 n.d. 35 39 32 n.d. n.d.  n.d. n.d. n.d. n.d. 125 n.d. 14 n.d. n.d. 23 n.d. n.d. 44 n.d. 

BDE-126 n.d. n.d. 37 n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 44 n.d. 

BDE-154 1350 215 952 865 424 671  n.d. 315 1440 691 2084 450 485 416 94 495 612 196 567 360 

BB-153 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-153 1848 262 380 432 172 270  n.d. 242 985 327 1029 236 281 225 60 297 317 241 312 256 

BDE-139 n.d. n.d. n.d. 658 n.d. n.d.  n.d. n.d. n.d. n.d. n.d. 331 466 n.d. n.d. n.d. 63 n.d. n.d. n.d. 

BDE-140 n.d. n.d. 37 n.d. n.d. n.d.  n.d. n.d. n.d. n.d. 150 29 36 n.d. n.d. n.d. n.d. n.d. n.d. 63 

BDE-138 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 



BDE-156&169 n.d. 124 440 n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-184 n.d. 12 n.d. 57 23 n.d.  n.d. n.d. 50 n.d. n.d. 17 18 n.d. 21 n.d. 23 n.d. 18 18 

BDE-183 2992 91 n.d. 58 42 n.d.  n.d. n.d. 98 155 n.d. 18 21 n.d. 34 n.d. 27 n.d. 23 28 

BDE-191 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BTBPE n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-180 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-171 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-201 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-204 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-197 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-203 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-196 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-205 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

BDE-208 21441 n.d. 143 n.d. n.d. n.d.  n.d. n.d. 487 43 n.d. n.d. n.d. n.d. 47 35 n.d. 201 n.d. n.d. 

BDE-207 29097 n.d. 180 n.d. n.d. n.d.  n.d. n.d. 758 32 n.d. n.d. n.d. n.d. 47 104 n.d. 248 n.d. n.d. 

BDE-206 29971 n.d. 115 n.d. n.d. n.d.  n.d. n.d. 1034 23 n.d. n.d. n.d. n.d. n.d. 100 n.d. 194 n.d. n.d. 

BDE-209 566710 n.d. 1332 n.d. n.d. n.d.  37702 n.d. 45177 1219 n.d. n.d. n.d. n.d. 347 3666 n.d. 3346 n.d. n.d. 

ΣPBDE a 722,693 9,515 
16,23

8 

31,04

7 

5,50

0 

9,85

3  
63,42

3 

2,64

2 

69,19

1 

6,25

5 

13,65

0 

4,45

8 

6,40

2 

3,86

7 

1,23

5 
8,345 4,692 6,407 6,637 4,180 

ΣBFR b 722,693 9,515 
16,23

8 

31,04

7 

5,50

0 

9,85

3  
63,42

3 

2,64

2 

69,20

3 

6,25

5 

13,65

0 

4,45

8 

6,40

2 

3,86

7 

1,23

5 
8,345 4,692 6,407 6,637 4,180 

n.d.: not detected; a ΣPBDE: sum of 36 PBDE congeners; b ΣBFR: sum of PBEB, HBB, BTBPE, BB-153 and PBDEs congeners. 922 

 923 



Table S8. Concentrations (pg g-1 wet weight) of dechlorane-related compounds (DRCs) in whitemouth croakers from Guanabara and Sepetiba bays, Southeastern Brazil.  924 

Dechlorane-related 

compounds 

Sepetiba Bay Guanabara Bay 

Sb#1 Sb#2 Sb#3 Sb#4 Sb#5 Sb#6  Gb#1 Gb#2 Gb#3 Gb#4 Gb#5 Gb#6 Gb#7 Gb#8 Gb#9 Gb#10 Gb#11 Gb#12 Gb#13 Gb#14  

Mirex n.d. n.d. 0.10 n.d. n.d. n.d.  n.d. n.d. n.d. 0.18 0.82 1.74 n.d. 1.16 n.d. 4.22 0.43 n.d. 0.90 n.d.  

Dec 602 0.06 n.d. 0.49 n.d. n.d. n.d.  n.d. n.d. n.d. 1.41 2.12 0.37 0.24 0.63 n.d. 7.03 1.2 0.21 0.15 n.d.  

Dec 603 1.67 1.07 2.29 1.0 1.11 2.19  n.d. 0.70 2.48 4.46 5.50 2.59 2.47 2.32 2.05 25.97 3.27 0.83 1.67 0.61  

Dec 604 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.  

CP n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. 0.10 n.d. n.d. n.d. n.d. n.d. 0.9 n.d. n.d. n.d. n.d.  

syn-DP 12.92 n.d. 1.11 0.77 0.68 n.d.  n.d. n.d. 0.30 0.46 n.d. 0.15 n.d. n.d. n.d. 1.54 0.66 n.d. n.d. n.d.  

anti-DP 19.18 n.d. 1.15 1.07 2.02 2.28  n.d. n.d. 0.21 0.37 1.24 0.29 n.d. n.d. n.d. 2.05 1.01 n.d. 0.52 0.48  

ΣDRC a 33.8 1.1 5.1 2.8 3.8 4.5  - 0.7 3.0 7.0 9.7 5.1 2.7 4.1 2.1 41.7 6.6 1.0 3.2 1.1  

DP b 32.1 - 2.3 1.8 2.7 2.3  - - 0.5 0.8 1.2 0.4 - - - 3.6 1.7 - 0.5 0.5  

fanti
 c 0.6 - 0.5 0.6 0.7 1.0  - - 0.4 0.4 1.0 0.7 - - - 0.6 0.6 - 1.0 1.0  

n.d.: not detected; a ΣDRC: sum of Mirex, Dec 602, Dec 603, Dec 604, CP, syn-DP and anti-DP; b DP: sum of syn- and anti-DP; c fanti: anti-DP divided by DP. 925 
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Table S9. Concentrations (pg g-1 lipid weight) of dechlorane-related compounds (DRCs) in whitemouth croakers from Guanabara and Sepetiba bays, Southeastern Brazil.  930 

Dechlorane-related 

compounds 

Sepetiba Bay Guanabara Bay 

Sb#1 Sb#2 Sb#3 Sb#4 Sb#5 Sb#6  Gb#1 Gb#2 Gb#3 Gb#4 Gb#5 Gb#6 Gb#7 Gb#8 Gb#9 Gb#10 Gb#11 Gb#12 Gb#13 Gb#14  

Mirex n.d. n.d. 15 n.d. n.d. n.d.  n.d. n.d. n.d. 17 187 181 n.d. 215 n.d. 112 66 n.d. 123 n.d.  

Dec 602 46 n.d. 71 n.d. n.d. n.d.  n.d. n.d. n.d. 131 485 38 29 115 n.d. 185 186 23 22 n.d.  

Dec 603 1370 101 334 192 149 256  n.d. 242 526 414 1257 268 299 429 108 688 502 126 231 180  

Dec 604 n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.  

CP n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. 10 n.d. n.d. n.d. n.d. n.d. 24 n.d. n.d. n.d. n.d.  

syn-DP 10613 n.d. 163 149 92 n.d.  n.d. n.d. 63 43 n.d. 16 n.d. n.d. n.d. 41 102 n.d. n.d. n.d.  

anti-DP 15761 n.d. 168 206 276 266  n.d. n.d. 45 34 284 30 n.d. n.d. n.d. 54 154 n.d. 72 143  

ΣDRC a 27,790 101 751 547 518 522  - 242 634 649 2,213 533 328 759 108 1,104 1,010 149 448 323  

DP b 26,374 - 331 355 368 266  - - 108 77 284 46 - - - 95 256 - 72 143  

fanti c 0.6 - 0.5 0.6 0.7 1.0  - - 0.4 0.4 1.0 0.7 - - - 0.6 0.6 - 1.0 1.0  

n.d.: not detected; a ΣDRC: sum of Mirex, Dec 602, Dec 603, Dec 604, CP, syn-DP and anti-DP; b DP: sum of syn- and anti-DP; c fanti: anti-DP divided by DP. 931 
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Table S10. Spearman's correlations coefficients between pollutant levels (or grouped pollutants) and biological parameters or stable isotope ratios. 935 

 936 

 

ΣPBDE Tri-BDE 
Tetra-

BDE 

Penta-

BDE 

Hexa-

BDE 

Hepta-

BDE 
Dec 603 anti-DP DP ΣDRC ΣPCDD/F# 

ΣTEQ-

PCDD/F# 

Lipid content (%) 0.01 0.14 0.13 -0.05 0.37 0.19 0.45* -0.07 -0.002 0.20 -0.36 -0,43 

Mass -0.41 -0.38 -0.40 -0.31 -0.20 0.07 -0.05 -0.08 -0.11 -0.02 0.37 -0.06 

Size -0.48* -0.45* -0.54* -0.40 -0.09 -0.02 0.21 -0.15 -0.18 0.10 0.34 -0.06 

δ13C  0.33 0.48* 0.36 0.29 0.08 0.30 -0.22 0.48* 0.47* 0.12 0.06 0.18 

δ15N  0.34 0.45* 0.50* 0.45* 0.38 0.10 0.12 0.62* 0.59* 0.46* 0.06 0.29 

δ34S -0.22 -0.48* -0.24 -0.17 0.18 -0.32 0.47* -0.21 -0.24 0.12 0 -0.10 

* Significative correlation (p < 0.05)   937 

# n = 10 specimens 938 

 939 


