
Is there Anisotropy in Structural Bias?
Diederick Vermetten
LIACS, Leiden University

The Netherlands
d.l.vermetten@liacs.leidenuniv.nl

Anna V. Kononova
LIACS, Leiden University

The Netherlands
a.kononova@liacs.leidenuniv.nl

Fabio Caraffini∗
Institute of Artificial Intelligence,

De Montfort University
Leicester, UK

fabio.caraffini@dmu.ac.uk

Hao Wang
LIACS, Leiden University

The Netherlands
h.wang@liacs.leidenuniv.nl

Thomas Bäck
LIACS, Leiden University

The Netherlands
t.h.w.baeck@liacs.leidenuniv.nl

ABSTRACT
Structural Bias (SB) is an important type of algorithmic deficiency
within iterative optimisation heuristics. However, methods for de-
tecting structural bias have not yet fully matured, and recent studies
have uncovered many interesting questions. One of these is the
question of how structural bias can be related to anisotropy. In-
tuitively, an algorithm that is not isotropic would be considered
structurally biased. However, there have been cases where algo-
rithms appear to only show SB in some dimensions. As such, we
investigate whether these algorithms actually exhibit anisotropy,
and how this impacts the detection of SB. We find that anisotropy
is very rare, and even in cases where it is present, there are clear
tests for SB which do not rely on any assumptions of isotropy, so
we can safely expand the suite of SB tests to encompass these kinds
of deficiencies not found by the original tests.

We propose several additional testing procedures for SB detec-
tion and aim to motivate further research into the creation of a
robust portfolio of tests. This is crucial since no single test will be
able to work effectively with all types of SB we identify.

CCS CONCEPTS
• Theory of computation→ Bio-inspired optimization; The-
ory of randomized search heuristics; •General and reference
→ Empirical studies.

KEYWORDS
Structural bias, algorithmic behaviour, statistical testing, uniformity

1 INTRODUCTION
The modern world has become more computationally daring. More
and more complex optimisation problems need to be solved to fa-
cilitate the ever-growing technological boom. For the majority of
these problems, solving them exactly is no longer possible compu-
tationally due to their dimensionality, complexity or computability.
Luckily, in most situations, it is also no longer necessary: good
heuristic optimisation methods deliver sufficiently good solutions.
However, it does not mean that such solutions are readily obtain-
able: good heuristics require extensive computing resources and
(long) computation time, careful design and tuning. These latter

∗Corresponding author

aspects are largely based on the experience of computer scientists
who are capable of offering an efficient solution for a given problem.

Apart from recently emerging Deep Learning approaches that
have tremendously grown in popularity over the recent years, itera-
tive heuristic approaches deliver excellent and explainable results. A
large body of research accumulated in the fields of classical iterative
optimisation [18, 19] and computational intelligence [7, 9, 12, 20]
potentially allows better guided choices free of various deficiencies.
While these iterative optimisation heuristics are very effective, their
design and configuration is a challenging problem in itself, with
many different aspects to consider in order to create an effective
algorithm.

One key aspect is the sampling of solutions within an iterative
heuristic optimisation algorithm, which is clearly driven by the
landscape of objective function, or more precisely, the differences
in the values of (or derived from) the objective function of candidate
solutions. Loosely following such ‘survival of the fittest’ logic, the
algorithm is moving in function’s domain (slowly) improving the
values of objective function and, thus, heuristically solving the
problem.

However, it has been established [3, 16] that this mechanism
is not the only force driving the search - iterative application of
individual operators that make up the algorithm can produce their
own bias, the so-called structural bias (SB) of the algorithm. In
computation, it manifests itself as a nonuniform preference of dif-
ferent parts of domain regardless of the objective function. The
resulting movement of search then becomes a superposition of two
‘forces’: landscape and structural bias. Typically, the former one
largely overpowers the latter one. However, structural bias can
potentially hinder the search in case the optima are located in the
less ‘favoured’ part of the domain. In this sense, structural bias is
an algorithmic deficiency1.

While some algorithms, notably Evolution Strategies [9], pro-
pose design principles for the algorithm development which are
theoretically motivated to be unbiased in several areas [8], with
the most prominent ones being the rotation invariance (essentially
isotropy in Euclidean spaces) and the stationarity of the search
under random selection (equivalent to unbiasedness on 𝑓02), these
kinds of algorithms are the exception rather than the rule. As such,

1Since optima locations are by definition not known beforehand, we cannot use
structural bias to our advantage by biasing the search towards them. Moreover, at
present, mechanisms of formation of SB are not fully understood.
2See Section 2.1

1

ar
X

iv
:2

10
5.

04
48

0v
1

 [
st

at
.M

E
]

 1
0

M
ay

 2
02

1

Vermetten et al.

detecting presence of SB for a certain algorithm is still a useful
technique for better understanding the design choices for differ-
ent algorithms. It has been shown [16, 25] that structural bias is
not easy to be identified as it intricately depends on the choice of
algorithm’s framework, operators and parameters. The proposed
identification procedure [14, 16] involves executing a series of algo-
rithm runs on a special test function and examining the locations
of final solutions. This special function is designed to decouple
the aforementioned superposition of forces by deactivating one of
them, the landscape force. The collected data is examined by means
of visual or statistical tests. However, at the current stage, statistical
tests, typically preferent over the visual ones, have been shown to
have computational problems. One of such problems stems from
their application on the per dimension basis to account for potential
differences in how generic algorithms treat each dimension.What
should be concluded if statistical test returns a different verdict for
different dimensions? Would it be reasonable to assume structural
bias can indeed exhibit anisotropy in presence, strength or kind, i.e.
different dimensions assume different properties3? Where would such
differences come from? What would be the explanation for such
anisotropy to appear in cases where the algorithms treat all dimen-
sions in similar fashion? If structural bias can indeed possess such
a property, any test for detecting it should necessarily take this fact
into consideration, or otherwise be able to detect this kind of bias
without assuming isotropy.

This paper investigates the aforementioned questions based on
results with such suspected anisotropy reported in [14, 15]. The
structure of the paper is as follows. In Section 2, we describe the
algorithms and structural bias detectionmechanisms used in this pa-
per. Section 3 introduces methods for detecting potential anisotropy,
uses them to identify usecases, and tests whether their data actu-
ally shows anisotropy. Section 4 takes these usecases and identifies
how they can be used to motivate new tests for structural bias. In
Section 5, we discuss these tests and their impact on future analysis
of structural bias.

2 EXPERIMENTAL SETUP AND DATA
COLLECTION

2.1 Structural bias detection
Each algorithm under investigation is run 100 times on function
𝑓0 (Eq. (1)) with 𝑛 = 30, which was first defined in [16] to decouple
the interaction between the objective function and the algorithm:

𝑓0 : [0, 1]𝑛 → [0, 1], 𝑓0 (𝑥) ∼ U(0, 1) . (1)

Note that 𝑓0 is truly stochastic - with values being randomly gen-
erated every time a position 𝑥 is evaluated - which means that
its optimum is located uniformly in its domain [0, 1]𝑛 . Hence, an
algorithm without structural bias is expected to produce uniformly
distributed solutions in [0, 1]𝑛 .

By means of the visual [16] and the statistical tests [14, 15], we
investigated, for some selected algorithms, whether the final points
thereof follow a uniform distribution in [0, 1]𝑛 . The visual test was

3Borrowing the term from physics, where anisotropic is the opposite of isotropic or
having a physical property which has the same value when measured in different
directions.

conducted by rendering the final points from multiple indepen-
dent runs as a parallel coordinate plot, which we inspected visually
against various clustering patterns within each dimension or across
dimensions to determine the degree of structural bias. We further
developed the statistical approach for automating such inspection
process and for quantifying the structural bias. This approach in-
volves testing each component/dimension of the final points against
U(0, 1) via the well-known Anderson-Darling (AD) test [24] and
then aggregating all AD test statistics that produce significant de-
cisions. Amongst various goodness-of-fit test procedures, e.g., the
Kolmogorov-Smirnov (KS) and Cramer-Von Mises (CvM) tests [4],
we chose the AD test due to its dominating statistical power over
KS and CvM tests, which is obtained by simulating the alternative
hypothesis with a mixture of beta distributions [15].

It is worth noting that this statistical approach is essentially a
multiple comparison procedure, where we adopted the false dis-
cover rate (FDR) control to ensure a desired type-I error rate. This
control inherently results in more conservative decisions (by gener-
ating less rejections) and thereby hampers the power of the overall
statistical approach. Hence, in this paper, we counter this down-
side by taking a relatively large sample size. In Section 4.2, we will
discuss this in more detail.

2.2 Algorithms and parameter settings
We consider a varied set of 41 algorithms featuring population-
based heuristics, Estimation of Distribution Algorithms (EDAs) and
single-solution optimisation methods.

The population-based algorithms included to our experimenta-
tion are represented by 11 widely used Differential Evolution (DE)
variants [5]. These are employing the same values for the control
parameters of their ‘compact’ counterparts introduced in the next
paragraph, but are executed with three different population sizes
p∈ {5, 20, 100}. By using common DE jargon, see [3, 5, 13] for de-
tails, the employed DE algorithms can be fully described with the
nomenclature

• DE-best/1/bin and DE-best/1/exp;
• DE/rand/2/bin and DE/rand/2/exp;
• DE/best/2/bin and DE/best/2/bin;
• DE/rand-to-best/2/bin and DE/rand-to-best/2/exp;
• DE/current-to-best/1/bin and DE/current-to-best/1/
exp;

• DE/current-to-rand/1.
Additionally, we consider 17 so-called ‘compact’ algorithms, i.e.

EDAs mimicking the behaviour of established population-based
algorithms through a simple probabilistic model where design vari-
ables are uncorrelated [11]. A subgroup of these algorithms, namely
cGA, cPSO, cBFO and cDElight are taken with the same setup and
parameters setting of [14]. Conversely, while keeping the same
parameter setting of [14] (i.e. only two parameters are required
regardless of the employed configuration), in this study we extend
a number of ‘configurable’ compact DE variants by equipping them
with 13 DE different combination of DE mutations and crossover
operators, thus obtaining

• cDE/rand/1/bin and cDE/rand/1/exp;
• cDE/rand/2/bin and cDE/rand/2/exp;
• cDE/best/1/bin and cDE/best/1/exp;

2

Is there Anisotropy in Structural Bias?

• cDE/best/2/bin and cDE/best/2/exp;
• cDE/rand-to-best/2/bin and cDE/rand-to-best/2/exp;
• cDE/current-to-best/1/bin and cDE/current-to-best/
1/exp;

• cDE/curr-to-rand/1.
Finally, to round off the experimental setup with classic single-

solution methods, we also consider:
• An ‘iterated local search’ referred to as the RIS algorithm.
• The two Powell and Rosenbrock deterministic methods.
• The stochastic Solis-Wets and SPSA [23] algorithms, as well
as its variant SPSAv2 from [15].

• A ‘degenerative’ single-solution particle swarm optimisation
methods named ISPO.

• The ‘non-uniform’ Simulated Annealing nuSA algorithm as
well as a standard Simulated Annealing SA with uniform dis-
tribution for the neighbouring operator and linear ‘cooling’.

• The (1+1)–‘Cholesky’ covariance matrix Adaptation evolu-
tion strategy (1+1)-CMAES.

• The two variants of the (1+1)-ES algorithm, see [15] for
details.

• The popular ‘simplex’ Nelder–Mead Algorithm (NMA).
To run these 13 single-solution methods, we maintained the param-
eters setting employed in [15].

Note that all 41 employed algorithms are meant for general-
purpose optimisation and are expected to explore the search space
without showing preferential exploration directions along specific
coordinate axes.

2.3 Strategies of Dealing with Infeasible
Solutions

Employing the most appropriate Strategy of Dealing with Infeasible
Solutions (SDISs) is key, in particular when optimising several
design variables as it is more probable to generate solutions outside
the search domain [13]. Hence, we execute all aforementioned
algorithms with the 6 SDISs reported below:

• Complete one-sided truncated normal strategy denoted as
COTN.

• Dismiss strategy denoted here as dis.
• Mirror strategy denoted here as mir.
• Saturation strategy denoted here as sat.
• Toroidal strategy denoted here as tor.
• Uniform strategy denoted here as uni.

This list forms an assorted set of SDISs, which has been fully de-
scribed in [13, 14]. Note that these SDSIs are applicable for all al-
gorithms under investigation excluding cGA, which only generates
feasible solutions (and, thus, has the so-called inherent SDIS).

It is important to mention that that all the algorithms considered
in this study and all SDIS treat all problem dimensions in an identical
way.

2.4 Experimental setup
2.4.1 Data from optimisation runs. In order to study the structural
bias of the algorithms under investigation, and its anisotropic be-
haviour, it is required to collect and store the position of the best
found solution by each algorithm at the end of each performed

DE
-b

es
t/1

/b
in

_p
10

0
(s

)

DE
-b

es
t/1

/e
xp

_p
20

 (s
)

IS
PO

 (s
)

Ro
se

nb
ro

ck
 (s

)

cD
E-

ra
nd

/1
/b

in
_p

1
(s

)

cD
E-

ra
nd

/1
/b

in
_p

1
(t)

Po
we

ll
(C

)

RI
S

(C
)

RI
S

(m
)

SP
SA

v2
 (s

)

cD
E-

cu
rr-

to
-b

es
t/1

/b
in

_p
1

(s
)

cD
E-

cu
rr-

to
-ra

nd
/1

_p
1

(s
)

cD
E-

ra
nd

/2
/b

in
_p

1
(t)

DE
-c

ur
r-t

o-
be

st
/1

/b
in

_p
10

0
(s

)

DE
-c

ur
r-t

o-
be

st
/1

/b
in

_p
20

 (s
)

DE
-c

ur
r-t

o-
be

st
/1

/b
in

_p
5

(s
)

DE
-c

ur
r-t

o-
be

st
/1

/e
xp

_p
10

0
(s

)

DE
-c

ur
r-t

o-
be

st
/1

/e
xp

_p
20

 (s
)

DE
-c

ur
r-t

o-
be

st
/1

/e
xp

_p
5

(s
)

DE
-c

ur
r-t

o-
ra

nd
/1

_p
5

(C
)

DE
-c

ur
r-t

o-
ra

nd
/1

_p
5

(m
)

DE
-b

es
t/2

/b
in

_p
10

0
(s

)

DE
-b

es
t/2

/b
in

_p
5

(s
)0

5

10

15

20

25

30

Nu
m

be
r o

f r
ej

ec
te

d
di

m
en

sio
ns

Figure 1: Number of rejected dimensions for different algo-
rithm configurations based on the AD test described in Sec-
tion 2.1 (𝛼 = 0.01). Only those with rejections ∈ [4, 26] are
shown, both for readability and because the cases outside of
these bounds could reasonably be explained as false positive
/ negative cases.

run to then apply further processing and statistical analysis. This
has been obtained by running the algorithms specified in Section
2.2 with the parameters setting indicated in [2]. The source code
for this entire experimental setup is made available at [26], and
a computational budget of 𝑛 · 10000 = 300000 fitness function
evaluations.

Summarising, this means that this study considers:
• 19 amongst EDAs and single-solution algorithms employed
with 6 SDISs plus cGA (which does not require it);

• 11DE variants employed with 3 population sizes and 6 SDISs;
for a total of 19 · 6 + 1 + 11 · 3 · 6 = 313 algorithmic configurations
to test.

Note that only a subset of considered configurations is shown in
figures throughout this paper – configurations that do not exhibit
any SB or suspected anisotropy based on the tests considered here
are excluded from the figures.

2.4.2 SB testing. The code used for processing the experimental
data is available at [27]. For the simulation of uniform random
numbers, we use NumPy [10], and for the statistical tests we use
their implementation in R [22], with the goftest-package [6] for
the AD-test.

3 POTENTIAL ANISOTROPY
3.1 Identifying use cases
We identify two main ways of detecting potential anisotropy in the
final positions. The first is to consider the results of the previously
described test for structural bias on a per-dimension basis. If an
algorithm would be isotropic, we would expect this test to always
lead to the same conclusion for each dimension. However, as we
can see in Figure 1, there are quite a few algorithms for which this
does not seem to be the case.

A second way in which potential anisotropy could be detected, is
by looking at the correlations between the coordinates of the final
positions. This can then be compared to the correlations we would
expect from the case where all dimensions are indeed independent.

3

Vermetten et al.
SP

SA
 (C

)

SP
SA

 (m
)

cP
SO

 (C
)

NM
A

(m
)

NM
A

(t)

cD
E-

cu
rr-

to
-ra

nd
/1

_p
1

(m
)

DE
-b

es
t/1

/e
xp

_p
20

 (m
)

cG
A

(i)

cD
El

ig
ht

_p
1

(d
)

cD
E-

be
st

/2
/e

xp
_p

1
(C

)

DE
-ra

nd
/2

/b
in

_p
10

0
(m

)

DE
-ra

nd
/2

/e
xp

_p
5

(m
)

DE
-b

es
t/1

/b
in

_p
10

0
(m

)

DE
-b

es
t/1

/e
xp

_p
5

(m
)

cD
El

ig
ht

_p
1

(t)

cD
E-

ra
nd

/1
/e

xp
_p

1
(t)

cD
E-

ra
nd

/2
/e

xp
_p

1
(m

)

DE
-ra

nd
-to

-b
es

t/2
/e

xp
_p

5
(d

)

RI
S

(d
)

cD
E-

be
st

/1
/e

xp
_p

1
(m

)0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n

of
 c

or
re

la
tio

n
ou

tli
er

s

Figure 2: Fraction of pairwise Pearson correlation coeffi-
cients between dimensions which lie outside of the 0.99 con-
fidence bound of the independent uniform baseline. The
subset of algorithm shown is based on the configurations for
which the structural bias test did not reject any dimension,
with the largest fraction of outliers. The dashed line at 0.01
represents the expected fraction of outliers resulting from
uniform random distributions.

This baseline is computed by simulating the correlation coefficients
between independent uniform random variables in [0, 1]. Since we
are interested in the detection of outliers (pairs of dimensions with
larger than expected correlation) relative to this baseline, we calcu-
late the 99th percentile of absolute Pearson correlation between the
coordinates of our random samples. Based on 10 000 simulations
of uniform distribution, this value is 0.2484. We can then repeat
this procedure for all considered configurations, resulting in 30·29

2
correlation coefficients. Then, we can say that the correlation is
too large if the fraction of those above our threshold is larger than
0.01 (selected to match the 𝛼 value used throughout this paper). In
Figure 2, we show this fraction for several configurations. The ac-
tual distributions of Pearson coefficients for these configurations is
shown in Figure 3. From this plot, it can be seen that the density out-
side of the calculated boundaries is indeed larger than uniform, but
only a few of the cases are easily visually identifiable as deviating
from random.

3.2 Investigating Anisotropy
While both of the above-mentioned methods show that there ex-
ist algorithm configurations which could be anisotropic in their
behaviour on 𝑓0, there are other factors which might explain these
outliers as well. To figure out if anisotropy is actually present, we
need to look at the individual configurations in more detail.

First, we consider one of the configurations where the orig-
inal test shows structural bias in some, but not all dimensions:
DE/curr-to-rand/1-p5-mir. For this configuration, we plot the
final positions in a parallel swarmplot4 in Figure 4. This visualisa-
tion is similar to a scatterplot, but the points are adjusted in the
categorical axis so they don’t overlap. While this makes reading
the exact y-values slightly harder, it provides a much clearer view
of the distribution of points than a regular scatterplot. Visually,
this plot shows a clear structural bias towards the centre, present

4https://seaborn.pydata.org/generated/seaborn.swarmplot.html

Un
ifo

rm
 R

an
do

m
 (B

as
el

in
e)

SP
SA

 (C
)

SP
SA

 (m
)

cP
SO

 (C
)

NM
A

(m
)

NM
A

(t)

cD
E-

cu
rr-

to
-ra

nd
/1

_p
1

(m
)

DE
-b

es
t/1

/e
xp

_p
20

 (m
)

cG
A

(i)

cD
El

ig
ht

_p
1

(d
)

cD
E-

be
st

/2
/e

xp
_p

1
(C

)

DE
-ra

nd
/2

/b
in

_p
10

0
(m

)

DE
-ra

nd
/2

/e
xp

_p
5

(m
)

DE
-b

es
t/1

/b
in

_p
10

0
(m

)

DE
-b

es
t/1

/e
xp

_p
5

(m
)

cD
El

ig
ht

_p
1

(t)

cD
E-

ra
nd

/1
/e

xp
_p

1
(t)

cD
E-

ra
nd

/2
/e

xp
_p

1
(m

)

DE
-ra

nd
-to

-b
es

t/2
/e

xp
_p

5
(d

)

RI
S

(d
)

cD
E-

be
st

/1
/e

xp
_p

1
(m

)

0.0

0.1

0.2

0.3

0.4

Pe
ar

so
n

Co
rre

la
tio

n

Figure 3: Pairwise absolute Pearson correlations between di-
mensions in the algorithms from Figure 2. The red lines rep-
resent the used boundary to calculate the fraction of outliers.
The uniform baseline plot is calculated from 1000 repeti-
tions of uniform random data (30 dimensions with 100 sam-
ples each, for every repetition). The red line corresponds to
the 99th percentile calculated on the uniform samples.

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 4 5 6 7 8 9
Dimension number

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Figure 4: Swarmplot of the final positions found by al-
gorithm configuration DE-curr-to-rand/1-p5-mir. The red
crosses at the top indicate dimensions for which the origi-
nal AD-test detects structural bias.

in all dimensions. However, the AD-test only identifies issues in a
small subset of them. This highlights an important shortcoming of
the AD-test: given our sample size of 100, this test seems not to be
able to accurately identify nonuniformity if the de facto domain in
a dimension is smaller than the domain of 𝑓0. We will study this
deficiency in more detail in Section 4.2.

Next, we look into one of the cases where we see a large num-
ber of seemingly correlated dimensions: SPSA-COTN. We show the
swarmplot for this configuration in Figure 5. To analyse the pres-
ence of anisotropy in this case, we use a 2-sample Kolmogorov-
Smirnov (KS) test [17] for each pair of dimensions, to check if there
is any difference in their distribution. These p-values are then ad-
justed using the Benjamini-Yekutieli (BY) method [1] to control the
false discovery rate. When using 𝛼 = 0.01, this procedure does not
find any pair of dimensions for which we can say that they do not

4

https://seaborn.pydata.org/generated/seaborn.swarmplot.html

Is there Anisotropy in Structural Bias?

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 4 5 6 7 8 9
Dimension number

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Figure 5: Swarmplot of the final positions found by algo-
rithm configuration: SPSA-COTN. Note that none of the di-
mensions are rejected by the original SB detection proce-
dure.

follow the same distribution. Thus, if anisotropy were present here,
it can only be caused by correlations between dimensions. However,
the test we used to check correlation makes the assumption that the
data is uniformly randomly distributed in [0, 1]. While the AD test
did not reject this hypothesis, visual inspection of the swarm-plot
raises doubts about the validity of this assumption. We clearly see
heavy clustering, combined with relatively large empty gaps in all
dimensions. Because of this, we should confirm the validity of the
original testing procedure for finding structural bias.

Better still, we could relax the assumption that the distribution
of final points is uniform on [0, 1] through a permutation test,
where for each dimension pair we repeatedly shuffle the data within
each dimension and then compute the absolute Pearson correlation
coefficients between them, resulting in a sample from the null
hypothesis for this dimension pair (that they are not correlated).
From this sample, we could approximate the critical value at the 𝛼
level of significance, namely the (1 − 𝛼)th sample percentile. Now,
consider the following collection of random indicators, 1(𝜌𝑖 𝑗 >

𝑐𝑖 𝑗), 𝑖 = [1, .., 𝑛 − 1], 𝑗 = [𝑖 + 1, .., 𝑛], where 𝜌𝑖 𝑗 , 𝑐𝑖 𝑗 are the observed
correlation coefficient and the critical value for dimension pair
(𝑖, 𝑗), respectively. Under an overarching hypothesis that there
is no pairs of correlated dimensions, the sum of those indicator
variables admits the following expectation: E

{∑
𝑖, 𝑗 1(𝜌𝑖 𝑗 > 𝑐𝑖 𝑗)

}
=

𝛼𝑛(𝑛 − 1)/2, which could serve as a reference value/threshold for
rejecting the overarching hypothesis, thereby indicating there is
at least one pair of correlated dimensions (also the presence of
anisotropy).

Even better, consider
∑
𝑖, 𝑗 1(𝜌𝑖 𝑗 > 𝑐𝑖 𝑗) (total counts of rejec-

tions) as a test statistic whose distribution under the overarching
hypothesis can be approximated via bootstrapping, which draws a
sample point by substituting 𝜌𝑖 𝑗 with a correlation coefficient calcu-
lated from a random permutation. From this bootstrapped sample,
one can easily obtain a critical value at some level of significance,
which can be used to compare to the observed counts of rejections
for deciding whether to reject the overarching hypothesis or not
(we could say that we leave this to the future work..).

If we apply this procedure to the SPSA-COTN configuration from
Figure 5, we find that this test statistic gives us a fraction of 0.10

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829301
3

5
7

9
11

13
15

17
19

21
23

25
27

29

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Heatmap for SPSA-COTN algorithm, showing which
dimension pairs have Pearson correlation coefficient larger
than expected based on the 99th quantile of correlations be-
tween random permutations of the samples. Note that this
matrix is symmetric and diagonal is ignored both in the plot
and in the fraction-calculations.

dimension pairs which lie outside the critical range (with 𝛼 = 0.01).
The dimension pairs which are found to be potentially correlated
by this approach are visualised in Figure 6. Because of this, we
can reasonably claim that this configuration is not fully isotropic.
However, since our tests for distribution did not find any difference,
this leaves open the question of whether there is any structural bias
present, which was just not found by the AD test procedure.

4 IMPROVING THE STRUCTURAL BIAS
DETECTION TEST

Based on the configurations investigated in Section 3, we identified
at least two scenarios in which the current structural bias detection
technique does not match our visual inspection of the data (a higher
density of points in the centre of the search space and a large
number of clustered point in each dimension). In order to remedy
this, we need to introduce new techniques which are more suited
to tackle the particular types of deviations from uniformity that we
have found.

4.1 Spacing-based test
For the first type of deviation, where we observe a large amount of
clustering, combined with large gaps which occur in all dimensions,
we look at the distribution of the distances between consecutive
points. We decide to focus only on this version of the spacing
distribution, as opposed to more general𝑚-spacings [21]. To decide
whether or not to reject the samples in a particular dimension, we
perform a 2-sample KS test against a set of spacings from 1000
samplings of the uniform distribution. Note that this does include
the distance to both boundaries of the dimension.

This spacing-test can be done on each dimension individually, or
on the aggregation among all dimensions. To show the effectiveness
of the test, we plot this aggregation for the configuration which
was discussed in Figure 5, SPSA-COTN. The aggregation is compared
to the baselines described above, and shown in Figure 7. This figure

5

Vermetten et al.

0.00 0.02 0.04 0.06 0.08 0.10
1-Spacing

De
ns

ity

Type
Random
SPSA (COTN)

Figure 7: 1-spacing statistic aggregated over all 30 dimen-
sions of the positions found by SPSA-COTN, against the base-
line distribution based on 10000 repetitions of 100 uniform
random samples in [0, 1].

shows that the differences in distribution are large, indicating that
the positions found by this SPSA variant show a clear deviation
from uniformity, which could not be detected using the original
AD-test.

4.2 Boundary-Related Structural Bias
To create a test which is more reliable in cases where algorithms
show bias towards the centre of the space, we propose to perform
a simple transformation on the input samples, collapsing them
across the centre into the domain [0, 12], and performing an AD-
test on these transformed samples. Note that this transformation
inherently decreases the effectiveness of the test on cases where an
asymmetry with regard to the centre is present, so this test should
not replace the standard AD-test, only complement it.

We can illustrate the effectiveness of such transformation by
considering a simplified version of a structurally biased dimension:
data which is sampled from a uniform distribution in [0.05, 0.95].
If we simulate both SB detection procedures on 1000 times on 100
uniform samples following this modified domain, we find that the
original test only rejects in 2.2% of cases, as opposed to 24.9% for
the transformed case (𝛼 = 0.01). While this is still nowhere near
optimal (100%), it is a large improvement. This shows when we
run the test on the data from Figure 4: the test on the transformed
samples rejects for all dimensions.

4.3 Aggregated Tests
While performing these tests on each dimension individually is
recommended in general case where an algorithm can treat dimen-
sions differently, it does lead to a scenario where each dimensions
sample size might be too small to detect any structural bias, even
though it can be found for the data as a whole. We can show this by
considering another case from Figure 2: cPSO-COTN. For this con-
figuration, the original test found no deficiencies. However, with
visual inspection, as shown in Figure 8, we would suspect SB to
be present. Indeed, if we change the testing procedure to perform
the AD-test on the full collection of samples (since the codomain

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 4 5 6 7 8 9
Dimension number

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Figure 8: Swarmplot of the final positions found by algo-
rithm configuration: cPSO-COTN. The blue cross(es) at the top
indicate dimensions for which the transformed AD-test de-
tects structural bias.

of 𝑓0 is the same in all dimensions, this does not require any trans-
formation), so aggregated over all 30 dimensions, it would reject
the null-hypothesis of uniformity (𝛼 = 0.01). This highlights the
fact that while the additional tests suggested in this section can be
useful to find more types of SB, they still struggle to detect more
subtle cases, since the sample size of 100 is not large enough for
these testing procedures. We further illustrate this point by simu-
lating different samples in the uniform distribution on the domain
[0.05, 0.95] and checking what fraction is rejected by these tests.
We repeat these simulations 10000 times for each sample size, and
show the results in Figure 9. From this figure, we can see that even
with the AD test on the transformed samples, we need more than
300 samples per dimension to reject samples from this distribution
with a reduced range (without taking into account any subsequent
p-value correction). However, visually, these cases are easy enough
to identify, since the inaccessible part of the domain is 10% of the
complete space. And indeed, aggregating samples over dimensions
provides enough samples for the original AD test to reject the null
hypothesis. It is worth noting that the transformation of samples in
this way is specifically designed to be more effective in cases where
the deficiency is shaped like this, and not a generic technique. As
such, the sample-sizes shown here are purely illustrative, and will
depend on the particular set of test and types of SB to detect.

In order to get a more complete overview of the effect of the
different proposed techniques for detecting SB, we summarise the
testing procedures in Table 1. Additionally, we have run them on all
algorithm configurations shown so far. Based on this, we have cre-
ated an overview in Figure 10. From this visualisation, we can see
that the aggregated AD test in particular identifies a lot more config-
urations as structurally biased than the original per-dimension AD
test. This highlights the dependence of the AD test on a relatively
large sample size to detect the relatively minor deviations from
the standard uniform distribution that can easily be seen when
visualising the data in swarm or scatter-plots. We also see that
the 1-spacing test detects only a few cases of SB, but the cases
it detects are not found accurately by any of the other methods,
indicating that is should still be considered an important part of a
future portfolio of SB-tests. Additionally, we see that for some of

6

Is there Anisotropy in Structural Bias?

Table 1: Overview of the different SB detection methods discussed in this paper and the types of SB they can identify.

Method Description Type of SB detected

Default AD test Per dimension AD test of uniformity in [0, 1] As described in [14]

AD test on Transformed Samples Per dimension AD test of uniformity of transformed
samples (|𝑥 − 1

2 |) in [0, 12]
More effective in finding bias towards
or away from centre of search space

1-Spacing test
Per dimension test on distances between (sorted) points,
including the boundary. Tested using 2-sample KS test
against simulated random samples.

Clustering of points in each dimension

AD test on aggregated samples AD test of uniformity in [0, 1] on all dimensions at once Overall indication on presence of SB

5 10 25 50 100 150 200 250 300 400 450 500 1000
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

je
ct

io
ns

Test Type
AD Test
Transformed AD Test

Figure 9: Overview of the fraction of samples from the uni-
form distribution on [0.05, 0.95] is rejected by the two ver-
sions of the AD test based on the size of the sample (𝛼 =

0.01). Fractions calculated based on 10 000 simulations. Trans-
formedAD test refers to theAD test on the transformed sam-
ples as discussed in Section 4.2

the configurations with only a slightly larger than expected fraction
of outliers, none of the described tests find any reason to reject the
null-hypothesis. This can either indicate a lack of bias, in which
case the sensitivity of the method used to define outliers might be
too large (considering there is no form of multiple-test correction
in this procedure) and there is no bias present. Alternatively, these
configurations are only mildly biased, in which case our detection
methods are still not sensitive enough. Based on the techniques
discussed in this paper, we can’t definitively give a conclusion one
way or the other. Further study is required to be able to effectively
differentiate and quantify different types of bias, especially in cases
where this bias is mild.

5 DISCUSSION AND FUTUREWORK
Based on the results presented in Section 3, we can say with con-
fidence that very few of the algorithm configurations considered
here show signs of structural bias. With the exception of the SPSA
algorithm, all identified cases of potential anisotropy can be ex-
plained by the shortcomings of individual AD-test. Indeed, even
for this SPSA algorithm, we have identified that structural bias is
present which can be detected by tests which are not impacted by
anisotropy, leading us to conclude that anisotropy has no negative
impact on the ability to detect the presence of SB.

Based on the use cases we identified, we have introduced several
additional testing procedures for detecting structural bias. While
this proves to be a challenging problem, these new tests are able
to detect different types of SB which were missed by the original
approach. Indeed, we have been able to show that the cases where
the results of this original SB detection could be interpreted as
showing anisotropy in the algorithm configurations are instead the
result of a lack of sensitivity to several types of SB. These results
clearly indicate that different types of SB require different testing
procedures. As such, a thorough investigation into these different
types of deficiencies is needed to design effective tests. As we have
shown for the case where part of the domain is not reached by the
algorithm, different tests will show different behaviour for varying
sample sizes. In order to effectively test for SB, the relationship
between sample size, test procedure and type of detected SB has to
be made explicit.

With a more detailed understanding of the kinds of SB and meth-
ods to detect them, one should be able to construct a portfolio of
testing procedures, which can be used to check any algorithm for
signs of SB. This portfolio should then take into account limitations
on sample size, and provide the most effective testing setup for the
users constraints, leading to a measure characterising the presence
of SB, and if so, which type and to what extent. This would be highly
useful for algorithmic design (while introducing the algorithmic
operators), as detecting and characterising SB early on in the design
process can give useful insights into the impact of individual algo-
rithmic operators when they are introduced, and on their collective
behaviour. This information can lead to a better understanding
of the algorithm and its operators, which is an important step on
the path towards removing structural deficiencies from iterative
optimisation heuristics.

REFERENCES
[1] Yoav Benjamini and Daniel Yekutieli. 2001. The Control of the False Discovery

Rate in Multiple Testing under Dependency. The Annals of Statistics 29, 4 (2001),
1165–1188.

[2] Fabio Caraffini and Giovanni Iacca. 2020. The SOS Platform: Designing, Tuning
and Statistically Benchmarking Optimisation Algorithms. Mathematics 8, 5 (May
2020), 785. https://doi.org/10.3390/math8050785

[3] Fabio Caraffini, Anna V. Kononova, and David W. Corne. 2019. Infeasibility and
structural bias in differential evolution. Information Sciences 496 (2019), 161–179.
https://doi.org/10.1016/j.ins.2019.05.019

[4] Sandor Csorgo and Julian J. Faraway. 1996. The Exact and Asymptotic Distri-
butions of Cramer-von Mises Statistics. Journal of the Royal Statistical Society.
Series B (Methodological) 58, 1 (1996), 221–234.

[5] Swagatam Das, Sankha Subhra Mullick, and P.N. Suganthan. 2016. Recent ad-
vances in differential evolution – An updated survey. Swarm and Evolutionary
Computation 27 (2016), 1 – 30. https://doi.org/10.1016/j.swevo.2016.01.004

7

https://doi.org/10.3390/math8050785
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1016/j.swevo.2016.01.004

Vermetten et al.

DE-best/2/bin_p5 (s)

DE-best/2/bin_p100 (s)

DE-best/1/exp_p20 (s)

DE-curr-to-rand/1_p5 (C)

Powell (C)

DE-best/1/bin_p100 (s)

DE-curr-to-best/1/bin_p20 (s)

DE-curr-to-best/1/bin_p5 (s)

DE-curr-to-best/1/bin_p100 (s)

cDE-rand/2/bin_p1 (t)

DE-curr-to-best/1/exp_p20 (s)

cDE-rand/1/bin_p1 (s)

DE-curr-to-best/1/exp_p100 (s)

Rosenbrock (s)

cDE-curr-to-best/1/bin_p1 (s)

DE-curr-to-best/1/exp_p5 (s)

SPSAv2 (s)

RIS (m
)

ISPO (s)

cDE-curr-to-rand/1_p1 (s)

RIS (C)

DE-curr-to-rand/1_p5 (m
)

cDE-rand/1/bin_p1 (t)

SPSA (C)

SPSA (m
)

cPSO (C)

NM
A (t)

NM
A (m

)

cDE-curr-to-rand/1_p1 (m
)

cGA (i)

DE-best/1/exp_p20 (m
)

cDE-best/2/exp_p1 (C)

cDElight_p1 (d)

DE-rand/2/bin_p100 (m
)

DE-rand/2/exp_p5 (m
)

cDE-rand/1/exp_p1 (t)

cDE-rand/2/exp_p1 (m
)

cDElight_p1 (t)

DE-best/1/bin_p100 (m
)

DE-best/1/exp_p5 (m
)

DE-rand-to-best/2/exp_p5 (d)

RIS (d)

cDE-best/1/exp_p1 (m
)

0

5

10

15

20

25

30

0.00

0.02

0.04

0.06

0.08

0.10Rejections AD
Rejections Transformed AD
Rejections Spacing
Reject_aggregated
Fraction Outliers

Figure 10: This figure shows the results of the proposed statistical SB detection methods on the configurations where the
original test doesn’t give the same result for each dimension, shown in Figures 1 and left of vertical dashed line here, and
configurations where the fraction of outliers in the pairwise correlation between dimensions is larger than expected, shown
in Figure 2 and right of vertical dashed line here. The rejection numbers are shown on the left axis, while the fraction of
correlations outside the expected range is read on the right axis. The aggregated rejections is binary, so is the bar is present
the aggregated AD test reject the null hypothesis (𝛼 = 0.01). The configurations are sorted based on number of rejections by
the original AD test, and by fraction of outliers in case of a tie.

[6] Julian Faraway, George Marsaglia, John Marsaglia, and Adrian Baddeley. [n.d.].
goftest: Classical Goodness-of-Fit Tests for Univariate Distributions. https:
//CRAN.R-project.org/package=goftest

[7] David E Goldberg and JohnHenryHolland. 1988. Genetic algorithms andmachine
learning. (1988).

[8] Nikolaus Hansen and Anne Auger. 2014. Principled Design of Continuous Sto-
chastic Search: From Theory to Practice. In Theory and Principled Methods for the
Design of Metaheuristics, Yossi Borenstein and Alberto Moraglio (Eds.). Springer,
145–180. https://doi.org/10.1007/978-3-642-33206-7_8

[9] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159–195. https://doi.org/10.1162/106365601750190398

[10] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez del R’ıo, Mark Wiebe,
Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[11] Giovanni Iacca and Fabio Caraffini. 2020. Re-sampled inheritance compact
optimization. Knowledge-Based Systems 208 (2020), 106416. https://doi.org/10.
1016/j.knosys.2020.106416

[12] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, Vol. 4. IEEE,
1942–1948.

[13] Anna V. Kononova, Fabio Caraffini, and Thomas Bäck. 2020. Differential evolution
outside the box results. https://arxiv.org/abs/2004.10489.

[14] Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas Bäck. 2020. Can
Compact Optimisation Algorithms Be Structurally Biased?. In Parallel Problem
Solving from Nature – PPSN XVI, T. Bäck, M. Preuss, A. Deutz, H. Wang, C. Doerr,
M. Emmerich, and H. Trautmann (Eds.). Springer International Publishing, Cham,
229–242. https://doi.org/10.1007/978-3-030-58112-1_16

[15] Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas Bäck. 2020. Can
Single Solution Optimisation Methods Be Structurally Biased?. In 2020 IEEE

Congress on Evolutionary Computation (CEC). IEEE, Glasgow, 1–9. https://doi.
org/10.1109/CEC48606.2020.9185494

[16] Anna V. Kononova, David W. Corne, Philippe De Wilde, Vsevolod Shneer, and
Fabio Caraffini. 2015. Structural bias in population-based algorithms. Information
Sciences 298 (2015), 468–490. https://doi.org/10.1016/j.ins.2014.11.035

[17] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association 46, 253 (1951), 68–78.

[18] John A Nelder and Roger Mead. 1965. A simplex method for function minimiza-
tion. The computer journal 7, 4 (1965), 308–313.

[19] Michael JD Powell. 1978. A fast algorithm for nonlinearly constrained optimiza-
tion calculations. In Numerical analysis. Springer, 144–157.

[20] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. 2006. Differential evolution:
a practical approach to global optimization. Springer Science & Business Media.

[21] Ronald Pyke. 1965. Spacings. Journal of the Royal Statistical Society: Series B
(Methodological) 27, 3 (1965), 395–436.

[22] R Core Team. 2021. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org

[23] J.C. Spall. 1987. A Stochastic Approximation Technique for Generating Maximum
Likelihood Parameter Estimates. In American Control Conference, 1987. 1161–
1167.

[24] Michael A Stephens. 1974. EDF statistics for goodness of fit and some comparisons.
Journal of the American statistical Association 69, 347 (1974), 730–737.

[25] Bas van Stein, Fabio Caraffini, and Anna V. Kononova. 2021. Emergence of
Structural Bias in Differential Evolution. In Proceedings of the 2021 Genetic and
Evolutionary Computation Conference Companion (Lille, France) (GECCO ’21
Companion). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3449726.3463223

[26] Diederick Vermetten, Anna V. Kononova, Fabio Carafini, Hao Wang, and Thomas
Bäck. 2021. Algorithm implementations used in: Is there anisotropy in structural
bias? https://github.com/facaraff/SOS/releases/tag/V1.0.2

[27] Diederick Vermetten, Anna V. Kononova, Fabio Carafini, Hao Wang, and Thomas
Bäck. 2021. Data and Code from: Is there Anisotropy in Structural Bias? https:
//doi.org/10.5281/zenodo.4725245

8

https://CRAN.R-project.org/package=goftest
https://CRAN.R-project.org/package=goftest
https://doi.org/10.1007/978-3-642-33206-7_8
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.knosys.2020.106416
https://doi.org/10.1016/j.knosys.2020.106416
https://doi.org/10.1007/978-3-030-58112-1_16
https://doi.org/10.1109/CEC48606.2020.9185494
https://doi.org/10.1109/CEC48606.2020.9185494
https://doi.org/10.1016/j.ins.2014.11.035
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1145/3449726.3463223
https://doi.org/10.1145/3449726.3463223
https://github.com/facaraff/SOS/releases/tag/V1.0.2
https://doi.org/10.5281/zenodo.4725245
https://doi.org/10.5281/zenodo.4725245

	Abstract
	1 Introduction
	2 Experimental setup and data collection
	2.1 Structural bias detection
	2.2 Algorithms and parameter settings
	2.3 Strategies of Dealing with Infeasible Solutions
	2.4 Experimental setup

	3 Potential anisotropy
	3.1 Identifying use cases
	3.2 Investigating Anisotropy

	4 Improving the structural bias detection test
	4.1 Spacing-based test
	4.2 Boundary-Related Structural Bias
	4.3 Aggregated Tests

	5 Discussion and future work
	References

